
Free Adaptive Tessellation Strategy of Bézier Surfaces

Raquel Concheiro1, Margarita Amor1, Montserrat Bóo2 and Emilio J. Padrón1

1Dept. Electrónica e Sistemas, Universidade da Coruña, A Coruña, Spain
2Dept. Electrónica e Computación, Universidade de Santiago de Compostela, Santiago de Compostela, Spain

{rconcheiro@udc.es, margarita.amor@udc.es, montserrat.boo@usc.es, emilioj@udc.es}

Keywords: Bézier Surfaces, Adaptive Tessellation, GPU, Real-Time Rendering;

Abstract: Rendering of Bézier surfaces is currently performed by tessellating the model on the GPU and rendering
the highly detailed triangle mesh. Whereas non-adaptive strategies apply the same tessellation pattern to the
whole surface resulting in a uniform tessellation of the patch, adaptive approaches make it possible to reduce
the number of triangles generated without a loss of quality. However, the most usual approaches to adaptive
tessellation have little flexibility and do redundant computations and memory accesses, as each sample is
independently evaluated in the Domain Shader of the DirectX11 pipeline. In this paper an adaptive tessellation
technique based on the exploitation of the spatial coherence (ESC) data within each surface is presented.
The GPU implementation of this technique is simple and efficient and, as consequence, the tessellation of
complex models can be performed in real-time. The analysis of the GPU performance and limitations for
different adaptive degree of the tessellation performed suggest innovations in future graphics card generations
for supporting a larger degree of adaptivity without a penalty.

1 INTRODUCTION

Bézier surfaces are one of the most useful
primitives employed for high quality modeling in
CAD/CAM tools and graphics software. The excel-
lent mathematical and algorithmic properties (Rogers,
2001), combined with successful industrial applica-
tions, have contributed to the popularity of the Bézier
representation.

As graphics cards have been traditionally opti-
mized for the processing of triangles, the paramet-
ric models are usually tessellated into triangle meshes
for the rendering process. There are two main ap-
proaches for the tessellation in terms of the regular-
ity of the resulting triangle mesh: non-adaptive and
adaptive. With a non-adaptive strategy, the level of
tessellation is selected on the basis of the desired res-
olution and the surface is regularly sampled accord-
ing to it. This could produce an excessive amount
of triangles without increasing the quality of the fi-
nal mesh, in addition to not generate enough triangles
in highly complex areas. Furthermore, overtessella-
tion increases the surface evaluation and rasterization
process with a significant performance penalty. Nev-
ertheless, an adaptive strategy adapts the tessellation
pattern depending on some features of the surface.
This reduces the number of triangles to be rendered

as it generates less triangles in some areas according
to a specific quality/speed criteria.

Most of the existing proposals for tessellating
parametric surfaces on the GPU are based on ap-
plying non-adaptive strategies to Bézier patches,
either selecting a tessellation level for each sur-
face patch (Guthe et al., 2005) or for a set of
patches (Dyken et al., 2009; Concheiro et al., 2010).
Thus, the patches are uniformly subdivided once the
resolution has been chosen, with only some specific
modifications in the edges to prevent holes or cracks
between neighboring patches. Other GPU tessel-
lation proposals (Eisenacher et al., 2009; Schwarz
and Stamminger, 2009) follow a GPGPU strat-
egy (General-Purpose Computation on GPU) using
CUDA (NVIDIA, 2008) and also pursue adaptive tes-
sellation at patch level.

The scenario changed with the presentation of a
new GPU tessellation engine in the pipeline of Di-
rectX11. Three new stages (Hull Shader, Tessellator
and Domain Shader) were introduced to support pro-
grammable tessellation, and novel approaches to the
tessellation of parametric surfaces were presented ex-
ploiting the new pipeline. The new tessellation unit
included (Ni and Castaño, 2009) offers a high per-
formance solution, but with reduced flexibility in its
current implementation, as it applies either a fixed or

a semi-regular tessellation pattern. Specifically, the
DX11 tessellation unit generates a triangle mesh from
six independent tessellation factors, one for each do-
main edge and two for the internal axes of the patch.
Once these factors are set, the edges and the inside
of the patch are uniformly tessellated in the paramet-
ric domain. In (Yeo et al., 2012) an implementa-
tion of a tight estimator of the variance between the
screen projection of the exact surface and its trian-
gulation is proposed using the GPU tessellation en-
gine. The new tessellation unit also supports regu-
lar fractional tessellation, and some works, such as
(Munkberg et al., 2008; Amresh and Fünfzig, 2010),
add a non-uniform, fractional tessellation to achieve
a more uniform screen-space triangle area. Neverthe-
less, this scheme does not provide enough support for
free adaptive tessellation, and the independent pro-
cessing of primitives requires special care by appli-
cation developers to prevent cracks. A modification
of the DX11 hardware structure is proposed in Di-
agSplit (Fisher et al., 2009) to allow a higher adapt-
ability, though still keeping a uniform strategy per sur-
face patch. DiagSplit performs a non-uniform tessel-
lation along an edge by applying a recursive process:
first, the edge is partitioned at its parametric midpoint,
and then seven factors are used, one for each edge of
the two subpatches. This proposal, however, is far to
get an adaptive tessellation inside the patch. Another
approach detailed in (Concheiro et al., 2011) proposes
an adaptive tessellation with a simpler scheme where
DirectX 11 capabilities are not needed. As this pro-
posal is based on a simpler pipeline without the three
stages introduced by DirectX 11, the adaptive tessel-
lation is performed on the Geometry Shader exploit-
ing the generation of several primitives for each invo-
cation of the shader.

Broadly speaking, the tessellation of surfaces in
the DX11 pipeline is known for the lack of flexibil-
ity of the sampling schemes in the tessellation unit, as
well as for the independent evaluation of each sample
in the Domain Shader. Therefore, the Domain Shader
is computed once for each vertex besides the corre-
sponding invocations of Hull Shader and Tessellation.
As the amount of shader invocations is increased, the
power consumption is also increased, being the en-
ergy consumption a very significant factor in the de-
sign of new GPU pipelines, specifically on handheld
GPUs since they are supplied by batteries.

In this paper a different GPU approach is pre-
sented, based on the exploitation of spatial coherence
(ESC) of data within each surface with the goal of
achieving a fully adaptive and flexible tessellation.
ESC pipeline is based on the utilization of a surface as
the input primitive of an adaptive tessellation shader,

focusing on having a unique and more computation-
ally complex stage that performs the tessellation and
evaluation of a surface. This approach needs fewer
shader invocations and allows an optimal computa-
tion of the evaluation of all the samples in a surface,
minimizing memory accesses as well. All this also
results in a considerable reduced power consumption.

The main purpose of this work is to analyze a
novel solution to improve the tessellation capabili-
ties of the current rendering pipeline, rather than cod-
ing an optimized implementation. With this aim we
suggest several modifications in the pipeline to get a
coarser grain parallelism based on surfaces instead of
the usual sample-based approach. Anyway, as it is
shown in the results section, good results in terms of
quality and performance have been achieved by the
implementation on current GPUs of this method we
have done to test its feasibility.

This paper is organized as follows: In Section 2.1
an introduction to the Bézier representation is pre-
sented. In Section 2 the pipeline proposal is intro-
duced, and in Section 3 the implemented adaptive
strategy is described. Finally, Section 4 shows the ex-
perimental results and Section 5 highlights the main
conclusions of this work.

2 ESC PIPELINE FOR BÉZIER
SURFACES

ESC, a new pipeline for an efficient adaptive tes-
sellation of Bézier surfaces, is introduced in this sec-
tion. First, a brief introduction to the Bézier repre-
sentation is presented. For reasons of clarity, Bézier
curves are first introduced and then the description is
extended to the Bézier surfaces. A more detailed re-
view can be found in (Piegl and Tiller, 1997; Rogers,
2001). Next, the proposed pipeline is described,
whereas the details of the tessellation algorithm are
detailed in the following section.

2.1 Bézier surfaces

A Bézier curve is specified by giving a set of coordi-
nate positions, called control points, which indicate
the general shape of the curve. Mathematically, a
parametric n degree Bézier curve is defined by:

P(t) =
n

∑
i=0

BiJn,i(t), 0≤ t ≤ 1 (1)

where Bi are the control points and Jn,i is the i-th
degree-n Bernstein basis function defined by:

Jn,i(t) =
(

n
i

)
(1− t)(n−i)t i (2)

Figure 1: Bicubic Bézier surface (n = m = 3).

where n is the degree of the Bernstein basis function.
These functions decide the extent to which a control
point controls the surface at a particular parametric
value t. Note that the first and last control points are
coincident with the end points of the curve, that is,
P(0) = B0 and P(1) = Bn.

The equation for a Bézier curve can be also ex-
pressed in matrix form:

P(t) = [T][N][G] (3)

where [T] = [tn tn−1 . . . t1 t0], the geometry of the
curve is represented as [G]T = [B0 B1 . . .Bn], and the
[N] matrix is defined by:
(n

0
)(n

n
)
(−1)n (n

1
)(n−1

n−1
)
(−1)n−1 . . .

(n
n
)(n−n

n−n
)
(−1)0

.(n
0
)(n

1
)
(−1)1 (n

1
)(n−1

0
)
(−1)0 . . . 0(n

0
)(n

0
)
(−1)0 0 . . . 0

For example, for n = 3 the matrix form is:

P(t) = [T][N][G] =

[t3 t2 t1 1]

 −1 3 −3 1
3 −6 3 0
−3 3 0 0

1 0 0 0

 B0

B1
B2
B3

 (4)

Likewise, the shape of a (n,m)-degree Bézier sur-
face is controlled by a set of control points through
the equation:

Q(u,v) =
n

∑
i=0

m

∑
j=0

Bi, jJn,i(u)Jm, j(v), 0≤ u,v≤ 1 (5)

where Jn,i(u) and Jm, j(v) are the Bernstein basis func-
tions in the u and v parametric directions and Bi, j are
the vertices of a polygonal control net. Again, the
number of control points in the u and v directions are
n+1 and m+1 respectively. As an example, Figure 1
shows a bi-cubic Bézier surface, n = m = 3. In matrix form,
a Bézier surface is given by:

Q(u,v) = [U][N][B][M]T [V] (6)

For the specific case of a bi-cubic Bézier surface, the
matrix form is given by:

Q(u,v) = [u3 u2 u 1]

−1 3 −3 1
3 −6 3 0
−3 3 0 0

1 0 0 0

 B0,0 B0,1 B0,2 B0,3

B1,0 B1,1 B1,2 B1,3
B2,0 B2,1 B2,2 B2,3
B3,0 B3,1 B3,2 B3,3

−1 3 −3 1

3 −6 3 0
−3 3 0 0

1 0 0 0

 v3

v2

v
1

(7)

2.2 ESC Pipeline

Figure 2 schematically depicts the structure of this proposal,
whose goal is to reduce the number of triangles of the fi-
nal mesh while keeping the quality of the resulting image.
The proposed solution is based on a 3-step programmable
pipeline: first, a fixed tessellation pattern is computed to
guide the adaptive procedure for the patch; next, the new
vertices obtained from the first step are conditionally in-
serted by applying a set of heuristics consisting of tests local
to the triangle; finally, a specific scheme is employed to re-
construct the mesh by processing the inserted vertices.

The first step carries out a non recursive procedure
based on the utilization of a fixed tessellation pattern to
guide the tessellation. The level of resolution of each object
depends on the camera position and determines the refine-
ment degree of the surface. Once the level of resolution is
selected, only the positions of the uniform tessellation pat-
tern are evaluated for their conditional insertion.

The tessellation patterns are employed to guide the
adaptive tessellation in such a way that the new vertices can
only be inserted in the candidate positions specified by the
patterns. The second step decides which candidate vertices
are really inserted as a result of a tessellation test (Local Test
in Figure 2).

The evaluation of all samples of each surface takes ad-
vantage of the constant result of [N][B][M]T for every point
on the surface and that the different control points [B] are
accessed only once, transforming the Equation 6 in

Q(u,v) = [U][NBM][V] 0≤ u,v≤ 1 (8)

with [NBM] = [N][B][M]T , whereas the current DX11 tes-
sellation proposal accesses to [B] and computes [NBM] for
each sample on the surface.

The last step of the adaptive tessellation algorithms is
the reconstruction of the mesh from the set of vertices fi-
nally inserted; i.e. once the new vertices have been con-
ditionally added, all the vertices (old and new) have to be
organized and connected to reconstruct the final mesh assur-
ing no cracks or holes in the result (Tessellation Procedure
in Figure 2). The meshing scheme is simple and a triangle
strip is directly generated.

Regarding the test selected in this work to guide the
adaptive tessellation (Local test), a distance-based heuris-
tic was chosen. The objective of an adaptive tessellation
is to generate detailed structures only on those areas where
a high resolution is required while keeping a coarse mesh
in those areas where a higher tessellation results only in
a slight increment in the quality of the final image. In
(Concheiro et al., 2011) a set of different tests local to the

Tessellation
pattern

Local
test

Adaptive
tessellation
procedure

Tessellation ShaderVertex Shader Fragment Shader

Figure 2: Structure of the ESC tessellation proposal.

Figure 3: Triangle patterns for L = 0,1,2,3.

edges are presented. Among them, the Distance test was
selected for the analysis and algorithms comparison per-
formed in this work.

This test analyzes the distance between the control mesh
and the Bézier surface. Specifically, the distance between a
sampling point on the control mesh and the corresponding
point on the Bézier surface is evaluated. If the distance is
small enough, the mesh is considered a good approximation
of the surface, so no vertex is inserted. On the contrary, if
the distance is larger than a threshold a new vertex is intro-
duced as this will mean an increase in the quality of the final
image. The test is given by:

distance = [|VS−VB|> µ] (9)

where VB are the coordinates of the candidate vertex VB on
the Bézier surface, VS are the coordinates of the correspond-
ing sampling point on the control mesh and µ is a quality
threshold selected on the basis of the quality/timing require-
ments of the application. The Distance test achieves good
results in terms of quality of the final mesh and has a re-
duced complexity and, in this sense, is a good candidate to
guide the adaptive tessellation.

3 ADAPTIVE TESSELLATION
STRATEGY

Although the versatility of ESC pipeline makes possi-
ble the use of different tessellation algorithms, the strategy
chosen in this work to perform an adaptive tessellation of
the input surfaces is described in this section. The proce-
dure starts by approximating the surface with a coarse mesh
and performing the adaptive tessellation of each coarse tri-
angle. Specifically, the control point mesh is partitioned
into Nu×Nv cells of size 1

Nu
× 1

Nv
where two adjoining tri-

angles are generated per cell. The implementation employs
Nu = Nv = 3 cells so that eighteen coarse triangles are gen-
erated per Bézier patch. This number of triangles is directly
determined by the use of Bicubic surfaces.

A level of resolution L is assigned to the patch and all
triangles of the patch would be subdivided by employing a
unique uniform tessellation pattern. Examples of tessella-
tion patterns for different values of L are depicted in Fig-
ure 3. The tests are only applied in the candidate positions
located in the original edges of the coarse triangle. Finally,
if a vertex is inserted in the edge, the insertion is also per-
formed along the row in all the candidate positions inside
the triangle.

1

2 3

4 5 6

7 8 9 10

11

Ed
ge

 a

Edge c

Edge b
12 13 14 15

V

V V

V
4 V V

V V V V

V V V V V

(a)

1

2

5 6

7 8 9

11

Ed
ge

 a

Edge c

Edge b
12 13 15

V

V

V V

V V V

V V V V

(b)

Figure 4: Adaptive tessellation (a) Adaptive pattern and (b)
Adaptive tessellation.

An example of the vertex insertion procedure is de-
picted in Figure 4. Figure 4a shows an example of tessella-
tion pattern for the adaptive proposals, respectively. A sin-
gle level of resolution L = 3 was selected but three different
tessellation level L = 1, L = 2 and L = 3 can be applied to
each edge. Figure 4b depicts the result of tessellation once
the insertion decisions have been performed for the adaptive
algorithms, respectively. The test was applied on the orig-
inal triangle edges. As will be detailed in this section, this
different test application procedure reduces the complexity
not only of the test phase but also of the meshing scheme
employed to reconstruct the final triangle mesh.

Once the insertion decisions have been taken a mesh-
ing procedure to connect the vertices is performed. Trian-
gles are generated by connecting vertices in two consecu-

tive rows of vertices, larger triangles connecting vertices in
non-consecutive rows have to be generated in those loca-
tions where vertices are not inserted.

Once the subdivision tests are performed, the resulting
inserted vertices are organized into a set of lists and the ef-
ficient management of this information permits the recon-
struction of the final mesh in a direct way. A triangle strip
is defined by a sorted list of vertices:

T S = {v1,v2, · · · ,vNt}

where each triangle is defined by three sequential vertices,
with an overlap of two vertices between two consecutive
triangles. As an example the i− th triangle is defined by:

4vivi+1vi+2

while the (i+1)− th triangle is defined by:

4vi+1vi+2vi+3

The basic idea of the representation and reconstruction al-
gorithm is the organization of the resulting triangles in rows
and their representation as triangles strips. The regular tri-
angle strip structure is broken only in those positions where
no vertices are inserted. This happens either in a position in
the edge of the coarse triangle or in a full row of vertices if
both vertices in the extreme positions are missing. For the
sake of clarity, we shall start by analyzing the case when
only one of the two extreme vertices of the row are missing.

The methodology we propose is based on the utiliza-
tion of the TS structure that would be generated with a non-
adaptive tessellation as basis for the representation. This
T S list is updated with the utilization of a Virtual Vertex
(VV) for the substitution of missing vertices. More specif-
ically, each non-inserted vertex on the edge of the triangle
is substituted, in the T S representation by the closest vertex
located in the same edge. A simple set of rules for updating
the T S structure when missing vertices appear are applied:

1. Missing vertex. If there is a non-inserted vertex in a
triangle edge, the VV is the vertex located on the same
edge and in the following row of vertices.

2. Group of missing vertices. If there is a group of adja-
cent non-inserted vertices on a triangle edge, each non-
inserted vertex is replaced in the T S representation by
the nearest vertex on the edge. In case of equidistant
vertices, the vertex in the lower row is selected.

3. Replicated vertices in the T S list. Once the missing ver-
tices are replaced by virtual vertices, replicated vertices
can appear in the T S list. These replicated vertices have
to be eliminated; i.e., vi vi is substituted by vi.

4. Vertices from alternating rows. In the non-adaptive par-
titioning, consecutive vertices in the T S list belong to
two rows of vertices. For the adaptive proposal, when
this regular structure is broken a modification has to be
performed. Let us analyze a T S list with three consec-
utive vertices, vi v j vk, where v j and vk come from the
same row of vertices. In this case the T S list is updated
by including a replicated version of vi in between. As
result the list of vertices becomes vi v j vi vk.

An example of application is depicted in Figure 5a. A
non-adaptive tessellation would generate three rows of tri-
angles, each one to be represented with at T S list. The T S

(a) (b) (c)

Figure 5: Examples of semi adaptive tessellations (a) No
empty rows (b) Empty row, upper row with no missing ver-
tex (c) Empty row, upper row with a missing vertex.

lists for the non-adaptive tessellation are:

T S1 = {v2 v1 v3}
T S2 = {v4 v2 v5 v3 v6}
T S3 = {v7 v4 v8 v5 v9 v6 v10}

(10)

As a result of the adaptive tessellation, the vertex v6 is not
inserted. The T S lists are updated by the following steps:
• The missing vertex v6 is replaced by a virtual vertex

VV = v10. This is the closest vertex located in the same
triangle edge and in the following row of vertices. As a
result the T S2 and T S3 lists are updated.

• The utilization of v10 as virtual vertex in the T S3 list
generates a replicated vertex. According to rule 3, the
list T S3 = {v7 v4 v8 v5 v9 v10 v10} becomes T S3 =
{v7 v4 v8 v5 v9 v10}.

• With respect to the alternating rows property and ac-
cording to rule 4, the list T S3 = {v7 v4 v8 v5 v9 v10}
becomes T S3 = {v7 v4 v8 v5 v9 v5 v10}.
Finally the triangle strips for this example are:

T S1 = {v2 v1 v3}
T S2 = {v4 v2 v5 v3 v10}
T S3 = {v7 v4 v8 v5 v9 v5 v10}

and the following triangles are generated:

T S1→4v2v1v3
T S2→4v4v2v54 v2v5v34 v5v3v10
T S3→4v7v4v84 v4v8v54 v8v5v94 v9v5v10

The methodology has to be extended to include those
situations in which both vertices in the extreme positions of
a row are missing. As the insertion decisions are applied to
the interior vertices in the same row, this implies that a com-
plete row of vertices is missing. In this case fewer triangle
strips are generated and a number of modifications have to
be made to the method explained above. The first step is to
update the T S lists of the non-adaptive case by identifying
the two T S lists affected and eliminating the first one. After
this the second list is updated by substituting the missing
vertices by other vertices in the closest non-empty row of
vertices located above. More specifically the substitution
has to be performed by adhering to the following rules:
1. Upper row with no missing vertices. If the row above is

complete, the vertices are directly employed to substi-
tute the eliminated vertices in the T S list. As the num-
ber of vacancies is larger than the number of vertices,
the vertices have to be replicated. To obtain a satisfac-
tory tessellation and to prevent the generation of large
triangles, the pattern of substitution/replication has to
be uniform.

(a) (b)

Figure 6: Models employed: (a) Teacup and (b) Elephant.

2. Upper row with a missing vertex. If the row above has a
missing vertex, this location will be occupied by a VV .
The row of vertices is also employed to update the T S
list under construction, but a number of considerations
have to be taken into account for the VV . The vacancies
are again covered by the vertices in the row, but the VV
vertex can be employed only once; i.e., the VV cannot
be replicated.

Examples of application are depicted in Figures 5b and
5c. In these examples the row of vertices {v4, v5, v6} has
not been inserted. The T S lists generated by the uniform
tessellation (see Equation 10) have to be updated. In this
case lists T S2 and T S3 are affected by the missing row and
the list T S2 is eliminated. List T S3 = {v7 v4 v8 v5 v9 v6 v10}
has to be updated by identifying the missing vertices (v4, v5
and v6) and replacing them with the list of vertices above.
Specifically, and for the example of Figure 5b, the vertices
to be employed are v2 and v3. The number of vacancies is
larger, so the first two vacancies are covered with vertex v2
and the last one with vertex v3. The list becomes T S3 =
{v7 v2 v8 v2 v9 v3 v10}.

Figure 5c shows an example where the row of ver-
tices to be employed has a missing vertex (v2). Follow-
ing the methodology explained above, this vertex is sub-
stituted by a virtual vertex, in this case by v1. This vir-
tual vertex is employed only once while vertex v3 is em-
ployed for the other two vacancies. So the updated list is
T S3 = {v7 v1 v8 v3 v9 v3 v10}.

4 EXPERIMENTAL RESULTS

In this section, the results of the evaluation of ESC
pipeline are presented and analyzed. The adaptive tessella-
tion proposal is compared with the tessellation implemented
by the DirectX11 tessellation unit. Specifically, we have
used the code SimpleBezier11 included in the DirectX11
SDK to design an adaptive solution (AdptTess) based on
a distance test (as presented in Section 2.2) computed in
the Hull Shader. ESC proposal was coded in the Geometry
Shader as this makes it possible to implement a free tessella-
tion algorithm, even though it has the important constraint
of limiting the maximum number of new primitives to be
generated per input primitive to 1024 32-bit elements.

Our algorithm was implemented with Microsoft’s
HLSL DirectX11, and the tests were run on an Intel Core

Table 1: Number of triangles generated (in thousands,
Lmax = 3) and number of input surfaces.

Teacups Elephants

Input Data 2600 8110
Non Adaptive 731.32 2280.94

Adaptive High (93.62%) 684.67 (85.10%) 1941.03
Med (51.96%) 379.98 (50.68%) 1155.70

2 2.4 GHz with 2 GB of RAM and three different GPUs:
AMD/ATI Radeon 5870 (ATI 5870), GPU with 1600 pro-
cessing elements distributed in 20 SIMD processors, each
one having 16 cores with 5-way VLIW support; AMD/ATI
Radeon 6970 (ATI 6970), with 1536 processing elements
distributed in 24 SIMD processors, each one with 16 cores
with 4-way VLIW support; and Nvidia Geforce GTX 580
(Nvidia 580), GPU based on the Fermi architecture that has
4 clusters, with 4 stream multiprocessor (SM) per cluster
and 32 stream processors per SM for a total of 4×4×32 =
512 physical processing elements.

Two models were employed to evaluate the tessellation
(see Figure 6): Teacup and Elephant. These models were
used to build two test scenes, Teacups and Elephants, that
consist of replicated versions of the models: 30, 100 and
10 models, respectively. To check the performance of the
implemented methods a walk-through animation with the
same movement of the camera for the three scenes was
performed. The final images have a screen resolution of
1280×1024 pixels.

The next subsections focus on the analysis of the exper-
imental results in two different key points: the analysis of
the quality in the final image and the performance in terms
of frames per second.

4.1 Performance in terms of quality

As a starting point of the analysis of the results from the
tests, Table 1 presents the number of generated primitives
for each method. In this table the maximum resolution em-
ployed is Lmax = 3 (16×18 triangles for each input surface).
The second row indicates the number of input Bézier sur-
faces per scene. The third row shows the number of trian-
gles generated when a non-adaptive tessellation is applied.
The rest of the rows show the average number of triangles
generated by the adaptive proposal. The Distance test was
applied with two different thresholds on the basis of a qual-
ity criteria: high or medium degree of tessellation. The per-
centage of triangles obtained for each case with regard to a
non-adaptive strategy is shown in parenthesis.

In our experiments, high quality meshes with no cracks
or holes are obtained. Obviously, the application of the
adaptive proposal gives rise to a reduction in the number of
primitives generated, where the decrement can be controlled
by the adequate selection of the quality threshold applied.
As an example of the tessellation obtained, Figure 7 shows
the result of applying three different tessellation procedures
to the teacup model. Figure 7a depicts a non-adaptive tes-
sellation, with all the patches being uniformly subdivided
up to a resolution level determined by the point of view,
with a maximum refinement of Lmax = 3. Figure 7b shows
the tessellation obtained by ESC, generating about a 50%

(a)

(b)

(c)

Figure 7: Examples of tessellation: (a) Non adaptive (b)
adaptive with ESC pipeline and (c) adaptive with AdptTess.

of the triangles created with the non-adaptive approach. Fi-
nally, the output obtained by using AdptTess, configured to
produce a similar number of triangles than ESC, is depicted
in Figure 7c.

As can be observed, significantly fewer primitives are
generated in the flat areas with the adaptive approximations,
especially noticeable in the output from ESC (see the de-
tail being zoomed on the right of each adaptive solution).
In these flat areas the coarse mesh is a good enough ap-
proximation to the Bézier surface, so introducing additional
primitives does not result in a higher quality of the image
for the quality threshold selected. Furthermore, as can be
observed in the zoomed detail on the left of the adaptive
results, the tessellation produced by ESC achieves a better
approximation of the Bézier surface, as geometric aspects
are taken into account (distance-based heuristic) in addition
to the point of view information. Figure 8 shows a shaded
version of the teacup model tessellated by both adaptive ap-
proaches.

4.2 Performance in terms of fps

Performance in terms of fps is another important aspect to
be analyzed. Figure 9 shows the frames per second (fps)
with two different GPUs for an adaptive tessellation with a

(a)

(b)

Figure 8: Shading comparison of the two adaptive ap-
proaches: (a) ESC pipeline and (b) AdptTess.

medium and high degree, as shown in Table 1. The column
labeled as AdptTess display the performance obtained by the
SimpleBezier11 method implemented using the tessellation
unit. The tessellation factors have been selected to generate
a number of triangles similar to the obtained

Figure 9 shows that good performance results in terms
of frame rate (fps) were obtained, and a real-time adaptive
tessellation was achieved even for a high number of trian-
gles. Thus, for instance, the high quality result of the Ele-
phants scene is achieved with a frame rate in our adaptive
approach of 63.53 fps on the ATI 6970, and 61.42 fps on the
ATI 5870.

Broadly speaking, the frame rate achieved by ESC is
similar to AdptTess, and it is important to remark that a soft-
ware approximation of the algorithmic proposal that ESC
introduces has being used. It should be pointed out that
ESC demonstrates better computational exploitation than
the tessellator-based alternatives, since one computing core
(shader) is used for each input primitive, instead of the one
core per output primitive ratio of the DirectX11 tessellator-
based proposals. As a result, an important feature of our
approach is the exploitation of the spatial coherence of data,
as shared common computations within the same patch are
computed only once and reused when needed. This results
in a better performance when the number of primitives in-
creases. Specifically, the results shown in Figure 9 say that,
for the highest level of tessellation, ESC is up to 2.25x faster
on the ATI 5870 and up to 2.05x faster on the ATI 6970.

In summary, considering the good results obtained, the
flexibility of the adaptive proposals, the exploitation of the
locality and the prevention of redundancy computations, our
proposal is a good candidates to be integrated as a specific
tessellation unit in future graphics cards, as nowadays the
existing tessellation units included in current GPUs do not
offer the desirable adaptability.

0

100

200

300

400

500

F
P
S

AdaptTess Medium

ESC Adaptive Medium

AdaptTess High

ESC Adaptive High

ATI 5870 ATI 6970

(a) Teacups

0

100

200

300

400

500

F
P
S

ATI 5870 ATI 6970

(b) Elephants

Figure 9: Processing Speed in Frames per Second (Lmax =
3) (a) Teacups (b) Elephants.

5 CONCLUSIONS

This paper presents a proposal for the adaptive tessella-
tion of Bézier surfaces on the GPU based on the exploita-
tion of the spatial coherence. The proposal do not require
the precomputation of any refinement pattern, and the new
vertices coordinates are computed on-the-fly with a non re-
cursive strategy. This permits the exploitation of the vec-
tor computation capabilities of current GPUs. The proposal
uses a section of the parametric map as input primitive.

This tessellation scheme reduces the divergence in order
to achieve an optimum utilization of the computational re-
sources of the GPU; however, a remarkable degree of adap-
tivity has been introduced. Hence, this proposal processes
considerably fewer triangles than a non adaptive proposal.

The adaptive proposal is based on three main strategies:
the utilization of a fixed tessellation pattern to guide the pro-
cedure, the utilization of a local test to guide the tessellation
decisions and an efficient meshing procedure to reconstruct
the resulting mesh. Our proposal permits the application
of multiple levels of resolution to a Bézier surface and ex-
ploits the locality of the surface and, consequently, reducing
the number of shader invocations and, as a consequence, the
power consumption.

In addition to the good quality and performance results,
the flexibility of the adaptive proposal and the simplicity of
the computations involved could encourage the inclusion of
more flexible tessellation units in future graphics cards.

REFERENCES

Amresh, A. and Fünfzig, C. (2010). Semi-uniform, 2-
Different Tessellation of Triangular Parametric Sur-
faces. In Proceedings of the 6th International Con-
ference on Advances in Visual Computing (ISVC’10).

Concheiro, R., Amor, M., and Bóo, M. (2010). Synthesis of
bézier surfaces. In GRAPP’10: International Confer-
ence on Computer Graphics Theory and Applications,
pages 110–115.

Concheiro, R., Amor, M., Bóo, M., and Doggett, M. (2011).
Dynamic and adaptive tessellation of bezier surfaces.
In GRAPP’11: International Conference on Com-
puter Graphics Theory and Applications, pages 100–
105.

Dyken, C., M., R., and Seland, J. (2009). Semi-uniform
Adaptive Patch Tessellation. Computer Graphics Fo-
rum, 28(8):2255–2263.

Eisenacher, C., Meyer, Q., and Loop, C. (2009). Real-time
View-dependent Rendering of Parametric Surfaces. In
Proceedings of the 2009 Symposium on Interactive 3D
Graphics and Games, pages 137–143.

Fisher, M., Fatahalian, K., Boulos, S., Akeley, K., Mark,
W. R., and Hanrahan, P. (2009). DiagSplit: Parallel,
Crack-free, Adaptive Tessellation for Micropolygon
Rendering. ACM Transactions on Graphics (TOG) -
Proceedings of ACM SIGGRAPH Asia 2009, 28(5).

Guthe, M., Balázs, A., and Klein, R. (2005). GPU-Based
Trimming and Tessellation of NURBS and T-Spline
Surfaces. ACM Trans. Graph., 24(3):1016–1023.

Munkberg, J., Hasselgren, J., and Akenine-Möller,
T. (2008). Non-uniform Fractional Tessella-
tion. In Proceedings of the 23rd ACM SIG-
GRAPH/EUROGRAPHICS Symposium on Graphics
Hardware.

Ni, T. and Castaño, I. (2009). Efficient Substitues for Sub-
division Surfaces. Exhibition Tech. SIGGRAPH’09
Course Notes, 2009.

NVIDIA (2008). NVIDIA CUDA Compute Unified Device
Architecture. Programming Guide.

Piegl, L. and Tiller, W. (1997). The NURBS Book. Springer.
Rogers, D. F. (2001). An Introduction to NURBS with His-

torical Perspective. Morgan Kaufmann.
Schwarz, M. and Stamminger, M. (2009). Fast GPU-based

Adaptive Tessellation with CUDA. Computer Graph-
ics Forum, 28(2):365–374.

Yeo, Y. I., Bin, L., and Peters, J. (2012). Efficient pixel-
accurate rendering of curved surfaces. In Proceedings
of the ACM SIGGRAPH Symposium on Interactive 3D
Graphics - i3D 2012, pages 165–174.

