918 research outputs found

    Super-Fast Distributed Algorithms for Metric Facility Location

    Full text link
    This paper presents a distributed O(1)-approximation algorithm, with expected-O(log⁥log⁥n)O(\log \log n) running time, in the CONGEST\mathcal{CONGEST} model for the metric facility location problem on a size-nn clique network. Though metric facility location has been considered by a number of researchers in low-diameter settings, this is the first sub-logarithmic-round algorithm for the problem that yields an O(1)-approximation in the setting of non-uniform facility opening costs. In order to obtain this result, our paper makes three main technical contributions. First, we show a new lower bound for metric facility location, extending the lower bound of B\u{a}doiu et al. (ICALP 2005) that applies only to the special case of uniform facility opening costs. Next, we demonstrate a reduction of the distributed metric facility location problem to the problem of computing an O(1)-ruling set of an appropriate spanning subgraph. Finally, we present a sub-logarithmic-round (in expectation) algorithm for computing a 2-ruling set in a spanning subgraph of a clique. Our algorithm accomplishes this by using a combination of randomized and deterministic sparsification.Comment: 15 pages, 2 figures. This is the full version of a paper that appeared in ICALP 201

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK

    Greedy routing and virtual coordinates for future networks

    Get PDF
    At the core of the Internet, routers are continuously struggling with ever-growing routing and forwarding tables. Although hardware advances do accommodate such a growth, we anticipate new requirements e.g. in data-oriented networking where each content piece has to be referenced instead of hosts, such that current approaches relying on global information will not be viable anymore, no matter the hardware progress. In this thesis, we investigate greedy routing methods that can achieve similar routing performance as today but use much less resources and which rely on local information only. To this end, we add specially crafted name spaces to the network in which virtual coordinates represent the addressable entities. Our scheme enables participating routers to make forwarding decisions using only neighbourhood information, as the overarching pseudo-geometric name space structure already organizes and incorporates "vicinity" at a global level. A first challenge to the application of greedy routing on virtual coordinates to future networks is that of "routing dead-ends" that are local minima due to the difficulty of consistent coordinates attribution. In this context, we propose a routing recovery scheme based on a multi-resolution embedding of the network in low-dimensional Euclidean spaces. The recovery is performed by routing greedily on a blurrier view of the network. The different network detail-levels are obtained though the embedding of clustering-levels of the graph. When compared with higher-dimensional embeddings of a given network, our method shows a significant diminution of routing failures for similar header and control-state sizes. A second challenge to the application of virtual coordinates and greedy routing to future networks is the support of "customer-provider" as well as "peering" relationships between participants, resulting in a differentiated services environment. Although an application of greedy routing within such a setting would combine two very common fields of today's networking literature, such a scenario has, surprisingly, not been studied so far. In this context we propose two approaches to address this scenario. In a first approach we implement a path-vector protocol similar to that of BGP on top of a greedy embedding of the network. This allows each node to build a spatial map associated with each of its neighbours indicating the accessible regions. Routing is then performed through the use of a decision-tree classifier taking the destination coordinates as input. When applied on a real-world dataset (the CAIDA 2004 AS graph) we demonstrate an up to 40% compression ratio of the routing control information at the network's core as well as a computationally efficient decision process comparable to methods such as binary trees and tries. In a second approach, we take inspiration from consensus-finding in social sciences and transform the three-dimensional distance data structure (where the third dimension encodes the service differentiation) into a two-dimensional matrix on which classical embedding tools can be used. This transformation is achieved by agreeing on a set of constraints on the inter-node distances guaranteeing an administratively-correct greedy routing. The computed distances are also enhanced to encode multipath support. We demonstrate a good greedy routing performance as well as an above 90% satisfaction of multipath constraints when relying on the non-embedded obtained distances on synthetic datasets. As various embeddings of the consensus distances do not fully exploit their multipath potential, the use of compression techniques such as transform coding to approximate the obtained distance allows for better routing performances

    Book of Abstracts of the Sixth SIAM Workshop on Combinatorial Scientific Computing

    Get PDF
    Book of Abstracts of CSC14 edited by Bora UçarInternational audienceThe Sixth SIAM Workshop on Combinatorial Scientific Computing, CSC14, was organized at the Ecole Normale Supérieure de Lyon, France on 21st to 23rd July, 2014. This two and a half day event marked the sixth in a series that started ten years ago in San Francisco, USA. The CSC14 Workshop's focus was on combinatorial mathematics and algorithms in high performance computing, broadly interpreted. The workshop featured three invited talks, 27 contributed talks and eight poster presentations. All three invited talks were focused on two interesting fields of research specifically: randomized algorithms for numerical linear algebra and network analysis. The contributed talks and the posters targeted modeling, analysis, bisection, clustering, and partitioning of graphs, applied in the context of networks, sparse matrix factorizations, iterative solvers, fast multi-pole methods, automatic differentiation, high-performance computing, and linear programming. The workshop was held at the premises of the LIP laboratory of ENS Lyon and was generously supported by the LABEX MILYON (ANR-10-LABX-0070, Université de Lyon, within the program ''Investissements d'Avenir'' ANR-11-IDEX-0007 operated by the French National Research Agency), and by SIAM

    Resilient scalable internet routing and embedding algorithms

    Get PDF

    Multi Agent Systems in Logistics: A Literature and State-of-the-art Review

    Get PDF
    Based on a literature survey, we aim to answer our main question: ñ€ƓHow should we plan and execute logistics in supply chains that aim to meet todayñ€ℱs requirements, and how can we support such planning and execution using IT?ñ€ Todayñ€ℱs requirements in supply chains include inter-organizational collaboration and more responsive and tailored supply to meet specific demand. Enterprise systems fall short in meeting these requirements The focus of planning and execution systems should move towards an inter-enterprise and event-driven mode. Inter-organizational systems may support planning going from supporting information exchange and henceforth enable synchronized planning within the organizations towards the capability to do network planning based on available information throughout the network. We provide a framework for planning systems, constituting a rich landscape of possible configurations, where the centralized and fully decentralized approaches are two extremes. We define and discuss agent based systems and in particular multi agent systems (MAS). We emphasize the issue of the role of MAS coordination architectures, and then explain that transportation is, next to production, an important domain in which MAS can and actually are applied. However, implementation is not widespread and some implementation issues are explored. In this manner, we conclude that planning problems in transportation have characteristics that comply with the specific capabilities of agent systems. In particular, these systems are capable to deal with inter-organizational and event-driven planning settings, hence meeting todayñ€ℱs requirements in supply chain planning and execution.supply chain;MAS;multi agent systems

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    Quantum Cryptography: Key Distribution and Beyond

    Get PDF
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Quanta 2017; 6: 1–47
    • 

    corecore