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Uniquely among the sciences, quantum cryptog-
raphy has driven both foundational research
as well as practical real-life applications. We

review the progress of quantum cryptography in the
last decade, covering quantum key distribution and
other applications.
Quanta 2017; 6: 1–47.

1 Introduction

Cryptography is the technique of concealing confiden-
tial information using physical or mathematical means.
While cryptologists find newer methods to conceal a se-
cret, cryptanalysts devise powerful methods to compro-
mise the same. This recursive cat-and-mouse game has
pushed the field and driven progress in it tremendously,
motivating the participation of a large group of physicists,
mathematicians and engineers.

The seminal work of Peter W. Shor [1] uncovered
the security threat that quantum computation posed on
all classical cryptographic schemes that are based on
computational assumptions, such as the hardness of the
discrete logarithm problem and the factorization prob-
lem. One such cryptographic scheme is the Rivest–
Shamir–Adleman (RSA) scheme, which is widely used
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in e-commerce today. RSA in today’s world is safe so
long as a scalable quantum computer remains unfeasible.
However, ideally, we wish to guarantee cryptographic
security that follows only from basic physics. This is the
promise of quantum cryptography.

In particular, note the recent report on a loophole-free
test of Bell’s inequality [2], thereby conclusively veri-
fying the existence of quantum nonlocality in Nature,
and also attesting to the advancement of experimental
techniques to prepare, transmit, manipulate and measure
quantum information. Another direction in cryptography
is to provide practicable tools embracing experimental
limitations, e.g. quantum key distribution with pulses
having mean photon number much larger than one [3].

Several quantum cryptographic tools have now been
commercialized. ID-Quantique, a major player in the
quantum cryptography industry, sells complete crypto-
graphic solutions. Their products include network en-
cryption systems, quantum cryptographic systems espe-
cially designed for industry and government, a quantum
random number generator, a state-of-art photon counting
device, single photon source, etc. QUANTIS, a quantum
random number generator from ID-Quantique deserves
special mention, as it is used in quantum key distribution
and various quantum-classical hybrid machines (e.g., in
casinos); the CLAVIS series of products, which provide
a platform for cryptography research, are worth noting.
Further, ID-Quantique’s cryptographic solution provides
an open platform where buyers can incorporate their own
encryption algorithms.
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Further, there are several other companies trying to
commercialize quantum key distribution (see a long list
of such companies at Wikipedia, which depicts the im-
portance of the field). Among this set of large number
of other companies and the interesting products devel-
oped by them, we would like to point out a few. Toshiba
markets an excellent room temperature single-photon de-
tector, a photon number resolving detector and a quantum
key distribution system using the T12 protocol [4], in
which the probability that bit values are encoded in X and
Z basis are different (otherwise, T12 is similar to Bennett–
Brassard 1984 protocol (BB84)) and decoy qubits are
used. A very attractive example of quantum-classical
hybrid cryptographic product is the world’s first quantum-
key-distribution-based one-time-pad mobile phone soft-
ware designed by Mitsubishi Electric.

The interaction between academia and industry, and
the development of commercially viable products as a
result, has been relatively thriving in this area. In 2015,
H. Zbinden and his colleagues at GAP-Optique, Univer-
sity of Geneva, performed a record breaking long distance
quantum key distribution experiment using a coherent
one-way scheme that uses decoy qubits and a variant of
BB84. They successfully distributed the key in a secure
manner over 307 km. It took only a few months for the
development of the corresponding commercial product,
as in October 2015, ID-Quantique introduced a commer-
cial product using the same protocol (cf. Cerberis QKD
Blade at ID-Quantique).

While quantum key distribution remains the most popu-
lar application of quantum cryptography, potential useful-
ness has been recognized for other areas, in particular for
distrustful cryptography. This involves players with con-
flicting interests who do not necessarily trust one another,
unlike in quantum key distribution. The present review
will try to cover many such areas, including relativistic
quantum cryptography, developed in the last decade since
two comprehensive reviews on quantum key distribution
done in the previous decade [5, 6].

The present review is arranged as follows. In Section 2,
we revisit quantum key distribution, briefly explaining
intuitive and rigorous proofs of security, presenting some
variants of quantum key distribution going beyond BB84,
among them semi-quantum protocols, and touching on
the issue of composability, which is relevant for a large-
scale implementation of a quantum cryptography. A mod-
ification of the quantum key distribution, allowing for
secure deterministic communication, and other allied pro-
tocols, is discussed in Section 3. In Section 4, we cover
the paradigm of counterfactual key distribution, which is
based on interaction-free measurements. Subsequently,
in Section 5, we discuss the practically important area of
device independence, in particular devoting subsections

to the issues of side channels, and then five classifications
of device independence, namely full, one-sided-, semi-,
measurement- and detector-device independence. The
formalism of device independence can in principle also
be useful in a world where quantum mechanics fails to
be valid, being replaced by a non-signaling theory. We
also briefly touch upon this, along with the issue of self-
testing, in the final subsection. Next, we cover various
other issues in cryptography besides quantum key distri-
bution, covering quantum versions for cryptotasks such as
random number generation, strong and weak coin tossing,
private querying, secret sharing and privacy preserving
tasks. Some crypto-tasks not possible in non-relativistic
classical cryptography become feasible with the inclusion
of relativity or the conjunction of relativity and quantum
mechanics. These issues are discussed in Section 7. Tech-
nological issues encountered in practical realization of
quantum cryptography are discussed in Section 8. After
covering continuous variable quantum cryptography in
Section 9, we conclude in Section 11.

2 Quantum key distribution

Quantum cryptography was born when S. Wiesner came
up with the idea of quantum money in the 1970s, though
his paper eventually appeared only in 1983. In 1984,
Bennett and Brassard introduced their famous, epony-
mous four-state protocol BB84 [7], using encoding based
on photon polarization. This was seminal in showing
how quantum features like uncertainty, impossibility of
perfectly discriminating non-orthogonal states and mea-
surement disturbance were ‘just what the doctor ordered’
as far as secret communication goes. For the first time,
it became clear how quantum physical laws can pro-
vide unconditional security, impossible classically. Since
then, quantum key distribution has progressed tremen-
dously both in theory and practice. For a recent com-
prehensive review, see [8]. In 1991, Ekert proposed
his celebrated E91 cryptographic protocol [9], using
Einstein–Podolsky–Rosen pairs (maximally entangled
states), where security was linked to the monogamous
property of quantum nonlocality [10]. As a result, E91
has sometimes been dubbed ‘experimental metaphysics’!
Interestingly, it contained the seeds for the concept of
device-independent protocols [11], that would be intro-
duced about one-and-half decades later. Bennett’s 1992
protocol, which introduced a two-state scheme, showed
that two non-orthogonal states are sufficient for quantum
cryptography [12]. Shor’s efficient quantum algorithms
for finding the prime factors of an integer and for the
discrete logarithm problem [1] created a huge excitement,
optimism and interest among physicists and computer
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scientists because of their potential impact on computa-
tional complexity, indicating strongly that the quantum
computers may prove to be more powerful than their clas-
sical counterparts. The factorization algorithm, which
is now known as Shor’s algorithm, got more attention
because it threatened classical cryptography, on account
of its potential ability to efficiently crack the RSA crypto-
graphic protocol, which depends on the supposed inability
of the classical computers to factorize a large integer in
polynomial time.

The Goldenberg–Vaidman protocol [13] shows, intrigu-
ingly, that orthogonal states suffice for quantum key dis-
tribution. Based on a Mach–Zehnder interferometer ar-
chitecture, Goldenberg and Vaidman introduced a new
paradigm in the foundations of cryptography, where the
spatial distribution of a pulse is exploited to obviate the
need for non-orthogonality of the signal states to pro-
vide security. An experimental realization of Goldenberg–
Vaidman protocol was reported by Avella et al [14]. Later
on, Goldenberg–Vaidman protocol was generalized by
various authors [15–21], in which they established that
almost all cryptographic tasks that can be performed us-
ing a BB84 type conjugate coding based schemes can
also be performed using orthogonal state based protocols.
Specifically, they showed that it is possible to design or-
thogonal state based schemes for quantum private compar-
ison, quantum key agreement, quantum key distribution,
deterministic secure quantum communication, etc., and
that thus conjugate coding is not essential for obtaining
unconditional security.

The first ever experimental demonstration of the quan-
tum teleportation phenomenon was reported in 1997
by Zeilinger’s group at the University of Vienna, Aus-
tria [22], who used the polarization of a photon as a qubit.
Quantum teleportation in its original form is cryptograph-
ically insecure, but it may be used as a primitive to build
schemes for secure quantum communication.

Another new paradigm was introduced in cryptography
in 1999 by Guo and Shi who proposed a protocol based
on interaction-free measurement [23]. In 2009, this was
followed by the Noh protocol [24], which replaces its
use of the Mach–Zehnder interferometer with that of a
Michelson interferometer. An experimental realization of
the Noh protocol was reported by Brida et al. [25].

2.1 Intuitive security

Quantum key distribution is intuitively secure. In BB84,
Alice sends Bob a stream of states prepared in the Pauli
X or Z basis over an insecure channel. Bob measures
them in the X or Z basis randomly. Later over a classical
channel, he announces his measurement bases, and Alice
informs him which results he can keep. This step, called

basis reconciliation, creates a shared sifted key, wherein
Alice and Bob decide to assign bit value ‘0’ to the +1
outcome of X and Z, and bit value ‘1’ to the −1 of the
bases. A fraction of this sifted key is publicly announced.
If Alice’s and Bob’s records diverge on too many bits,
they abandon the protocol run. Suppose an eavesdropper
Eve intervenes by measuring the qubits in the X or Z
basis. At the time of key reconciliation, she knows which
qubits she measured in the right basis. Suppose Alice and
Bob consume m check bits during their final test. The
probability that Eve is not detected on a given bit is 3

4 , or(
3
4

)m
on all m bits.

A more detailed treatment of the above attack must
compare Bob’s and Eve’s information gain during her
attack. Suppose an eavesdropper Eve intervenes by mea-
suring a fraction f of qubits in the X or Z basis. She notes
the result, and forwards the measured qubit. The proba-
bility that she measures in the right basis, and thus has the
right sifted bit, is f

2 . The error rate she introduces is e =
f
4 ,

so that the mutual information between Alice and Bob per
sifted bit is I(A : B) = 1 − h(e), where I(A : B) ≡ H(A) +

H(B)−H(AB), and h(e) = −(e log(e) + (1 − e) log(1 − e))
is Shannon binary entropy. Eve has more information
than Alice, thereby potentially making the channel inse-
cure [26], if Eve’s mutual information

I(A : E) ≡
f
2

= 2e ≥ 1 − h(e) ≡ I(A : B), (1)

which happens around 17.05%. Here, it is assumed
that Eve retrospectively knows when she measured in
the right basis. This is the case if Alice and Bob use
pseudo-random number generators for state preparation
and measurement, respectively, and Eve is able to crack
their pattern based on their public discussion for sifting
the raw key. Otherwise, Eve’s information would be
f (1 − h(1/4)) = 4e(1 − h(1/4)) ≤ I(A:B) throughout the
range 0 ≤ f ≤ 1.

2.2 Unconditional security

More generally, Eve may use sophisticated attacks going
beyond the above intercept-resend method. A rigorous
proof for security must be able to cover not only general
attacks on individual qubits, but also coherent attacks on
all qubits, with Eve’s final manipulations deferred until
after basis reconciliation [27–30].

Here we very briefly review the proof of security of
BB84 in the spirit of [29]. At its core are two ideas:

Entanglement distillation [31] via Calderbank–Shor–
Steane (CSS) quantum error correcting codes or,
more generally, stabilizer codes [32, 33]. This cor-
responds to privacy amplification at the quantum
level.
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Monogamy of entanglement [34], the property that if
Alice and Bob share singlets with high fidelity, then
there is no third party with which Alice’s or Bob’s
particles could be entangled (cf. [30]). More gener-
ally, nonlocal no-signaling correlations are known
to be monogamous [10].

It is interesting that these proofs, which assume trusted de-
vices, make use of entanglement, which is the appropriate
resource for device-independent cryptography (discussed
below), but not necessary for security in the scenario of
trusted devices. In this case, measurement disturbance
and an information vs. disturbance trade-off suffice for
guaranteeing unconditional security of key distribution,
which is proven in [35].

Regarding the first point above, viz., distillation via
stabilizer codes, an important observation is that quan-
tum errors can be digitized into tensor products of
Pauli operators—namely bit flips, phase flips and their
products—if carefully encoded and the errors are small
enough [36, 37], and thereby corrected using a classical-
like (if subtler) technique.

Suppose we are given two classical linear error cor-
recting codes C1 ≡ [n, k1] and C2 ≡ [n, k2] such that
C2 ⊂ C1 and C1 and C⊥2 correct up to t errors on n bits,
with code rates k1/n and k2/n respectively. Then, there
are associated parity check matrices H1 and H2 pertaining
to C1 and C⊥2 , such that given a code word w in a code
that picks up a bit flip error ε of weight of at most t, to
become w + ε, it can be corrected by computing the error
syndrome H j(w + ε) = H j(ε).

The codes C j above define a [n, k1 − k2] CSS quantum
error correcting code, a subspace of C2n

. Given u ∈ C1, a
quantum code word, which is a basis state for the quantum
error correcting code, is

|u + C2〉 =
1
√
|C2|

∑
v∈C2

|u + v〉. (2)

Note that |u + C2〉 = |u′ + C2〉 if u − u′ ∈ C2, so that
|u + C2〉 only depends on the coset of C1/C2 which u is
located in, whence the notation of (2) [37]. Under εb bit
flip errors and ε f phase errors, the above transforms to

1
√
|C2|

∑
v∈C2

(−1)(u+v)·ε f |u + v + εb〉, (3)

The error correcting properties of C1 can be used to cor-
rect the εb Pauli bit flip errors by incompletely measuring
the quantum operators corresponding to the syndromes.
After correcting these bit flip errors, it can be shown that
applying a Hadamard transformation H ≡ 1√

2
(X + Z) to

each of the qubits, transforms these qubits to the form√
|C2|

2n

∑
w∈C⊥2

(−1)u.w|w + ε f 〉, (4)

so that the phase flip errors now appear as bit flip er-
rors, which can be corrected using the error correcting
properties of the code C⊥2 . We recover the state (2) after
application of H to each qubit.

An application of CSS codes is to derive the Gilbert–
Varshamov bound for quantum communication, which
guarantees the existence of good quantum error correct-
ing codes [29]. For a [n, k] CSS code correcting all errors
on at most t ≡ δn qubits, the quantum Gilbert–Varshamov
bound says that there exist codes in the asymptotic limit
such that the code rate k/n is at least 1 − 2h(2t/n), while
giving protection against t bit errors and t phase er-
rors. Thus, in a protocol, after correction of total errors
(. 11%), Alice and Bob share almost pure singlets hardly
correlated with Eve.

The use of CSS codes for distillation can be roughly
described as follows. Suppose the channel introduces
δn errors, and Alice and Bob encode k Bell states using a
[n, k] quantum error correcting code correcting up to this
many errors. Alice sends Bob the qubits corresponding to
the second particle in the Bell states. Both perform iden-
tical syndrome measurements and recovery operations
on their own n-qubit halves of the noisy encoded Bell
pairs, recovering k pairs of qubits that has a high degree
of fidelity with k Bell pairs.

It is important to stress that the man in the middle can
affect quantum key distribution as much as it does classi-
cal cryptography. This involves Eve impersonating Alice
to Bob and Bob to Alice. Perhaps the only protection for
quantum key distribution against man in the middle is for
Alice and Bob to share a short inital secret (like a pass
phrase) for the purpose of person authentication. At the
end of the quantum key distribution session, Alice and
Bob must store a small portion of the shared key to serve
as the pass phrase for the subsequent session. This pass
phrase thus serves as a seed that can be grown into the
full key, making quantum key distribution as a kind of
secret growing protocol [5]. But note that the initial seed
must have been exhanged in person or such equivalent
direct means.

2.3 Some variants

In 2002, Boström and Felbinger introduced the Pingpong
protocol [38] which is a two-state deterministic scheme
based on quantum dense coding. To illustrate the concep-
tual point that entanglement is not required, [39] proposed
the non-entangled version of the Pingpong protocol.

In differential phase shift quantum key distribution [40],
a single photon, split into three pulses, is transmitted to
Bob by Alice. Bob extracts bit information by measuring
the phase difference between two sequential pulses by
passive differential phase detection. Suitable for fiber-
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based transmission, this method offers a superior key gen-
eration rate in comparison with fiber-based BB84. The
scheme has been extended to the use of weak coherent
pulses [41, 42]. Its security against the photon number
splitting attack [43] and detailed security, have been stud-
ied [44]. A variant of differential phase shift quantum
key distribution, called the round-robin differential phase
shift protocol [45] has been proposed, in which a guar-
antee of security is obtained even without any channel
noise statistics being monitored. The robustness of round-
robin differential phase shift with regard to source flaws
has been studied [46]. Recently, round-robin differential
phase shift has also been experimentally realized [47, 48].

The introduction of decoy states [49–51] allows imple-
mentation of quantum key distribution even with weak
coherent pulses instead of single-photon pulses, even in
the presence of high loss. Kak [52] introduced a fully
quantum scheme in which Alice and Bob share secret
bits by exchanging quantum information to and fro in
three stages, in contrast to a protocol like BB84, where
classical communication is necessary.

A research group from Toshiba Research Europe, UK,
demonstrated in 2003 quantum key distribution over op-
tical fibers about 122 km long. The commercial use of
quantum technology was initiated by this key effort [53].

Building on ideas first introduced in [54], in [55] quan-
tum key distribution was analyzed under collective attacks
in the device independence scenario (discussed below),
where devices are not assumed to be trusted or well char-
acterized.

Another direction of research in the security of quan-
tum key distribution is to ask whether it remains secure if
only one of the two players is quantum, while the other is
classical. Boyer et al [56,57] showed that one obtains a ro-
bust security even in this weaker situation. This is of prac-
tical relevance, since it places a significantly lesser burden
on implementation. An open issue may be to consider
how to combine semi-quantum with device-independence
(in particular, one-way device-independence, see below).

The South Africa held 2010 Soccer World Cup marks
a milestone event for the use of quantum cryptography
in a significant public event. Quantum-based encryption
was facilitated by the research team led by F. Petruccione,
Centre for Quantum Technology, University of KwaZulu-
Natal.

The use of free-space quantum communication, rather
than fiber-based optics, entered a significant phase when
J.-W. Pan’s group [58] implemented quantum teleporta-
tion over an optical free-space link. Given the low atmo-
spheric absorption under certain wavelength ranges, this
can help extend the communication distance in compar-
ison with a fiber link. The same research group further
reported [59] the demonstration of entanglement distri-

bution over a free-space link of 100 km, and verifying
violation of the Clauser–Horne–Shimony–Holt inequal-
ity [60]. The high-fidelity and high-frequency techniques
for data acquisition, pointing and tracking in this pro-
cess pave the way for futuristic satellite-based quantum
cryptography.

A scheme for quantum key distribution based on
measurement-device independence was proposed in [61].
Its practical advantage over full device independence
is that it can tolerate the side-channel attacks and re-
duced efficiency of the detectors, while doubling the
secure distance using just conventional lasers. Other
works followed this: phase-encoding for measurement-
device independence [62], study of the practical aspects
of measurement-device independence such as asymmet-
ric channel transmission and the use of decoys [63], ex-
tending secure distance to ultra-long distances using an
entangled source in the middle [64], measurement-device-
independent quantum key distribution with polarization
encoding using commercial devices acquirable off-the-
shelf [65].

An experimental satellite-based quantum key distribu-
tion system, with satellite transmitters and Earth-based
(at Matera Laser Ranging Laboratory, Italy) quantum
receivers was implemented with reasonably low noise,
namely quantum bit error rate of about 4.6% [66]. Send-
ing quantum messages via a satellite based global net-
work took a further step when in 2016 China launched
the $100 million satellite mission named Quantum Ex-
periments at Space Scale (QUESS) aka Micius (after the
ancient philosopher) from the Jiuquan Satellite Launch
Center. The mission aims to study the feasibility of quan-
tum cryptography through free-space.

2.4 Semi-quantum protocols

The protocols mentioned so far are completely quantum
in the sense that all the users (senders and receivers) need
to be able to perform quantum operations (like apply-
ing unitaries or measuring in non-commuting bases) in
these schemes. By a quantum user, we mean a user who
can prepare and measure quantum states in the computa-
tional basis as well as in one or more superposition bases
(say in diagonal basis), whose states are non-orthogonal
to the computation basis states. In contrast, a classical
user is one who can perform measurement in the compu-
tational basis only, has no quantum memory, and who,
upon receiving a qubit, can only either measure it in com-
putational basis or reflect it without doing anything.

An interesting question is whether all the users need to
be quantum? This important foundational question was
first addressed by Boyer et al., [67], where they showed
that some of the users can be classical in a scheme called
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semi-quantum key distribution. Quite generally, such
protocols, where some of the users are allowed to be
classical, are called semi-quantum. After the seminal
work of Boyer et al, several semi-quantum schemes have
been proposed [21, 68–72], and their security proofs have
been reported [73, 74]. For example, a semi-quantum
scheme has recently been proposed for secure direct com-
munication [68], private comparison [21], information
splitting [69], and secret sharing [70]. Thus, in brief, most
of the cryptographic tasks can be done in semi-quantum
fashion, too. This is extremely important as in practical
applications end users are often expected to be classical.

2.5 Composability

Universal composability [75] is a general cryptographic
framework for protocols that demands security even when
protocols are composed with other protocols or other in-
stances of the same protocol. For large-scale applica-
tions, clearly composability plays an important role also
in quantum cryptography [76]. In the context of quan-
tum key distribution, universal composability specifies
additional security criteria that must be fulfilled in order
for quantum key distribution to be composed with other
tasks to form a larger application. The ultimate goal of
security analysis would be to prove composable security
against coherent attacks. See [77] for proofs of compos-
able security in the case of discrete-variable quantum key
distribution and [78] for continuous-variable quantum key
distribution.

The universal composability model entails that a key
produced via quantum key distribution is safe to be used
in other applications, such as a key to encrypt a message.
Unconditional security of quantum key distribution, as
conventionally defined, does not automatically preclude
a joint attack on quantum key distribution and the mes-
sage transmission based on the resulting key. Universal
composability closes this possible security loophole. As
it turns out, the conventional definition of security in
quantum key distribution does entail composable security,
meaning that a key that is produced in an unconditionally
secure way is indeed safe to encode a message with [79].

A relevant example concerns quantum key distribution
being sequentially composed in order to generate a con-
tinuous stream of secret bits. More generally, the criteria
for composability would be more stringent when mutu-
ally mistrustful parties are involved. In this context, [80]
defines a universally composable security of quantum
multi-party computation. [81] invokes the composability
of quantum key distribution to obtain hierarchical quan-
tum secret sharing. A composable security has also been
defined for quantum crypto-protocols that realizes certain
classical two-party tasks [82].

3 Secure deterministic
communication

There are several facets of secure quantum communica-
tion, which can in principle be derived by composing
quantum key distribution and having access to a secure
random number generator. In this subsection we aim
to provide an interconnection between them [83, 84] via
specific examples.

To begin with we describe a scheme for controlled
quantum dialogue. There are three users Alice, Bob and
Charlie, such that the communication channel between
Alice and Bob is supervised by Charlie, who is referred
to as controller. Alice and Bob both can send classical
information to each other in a secure manner using this
quantum channel, which constitutes a quantum dialogue.
However, Charlie fully determines whether the channel is
available to them both. Further, a requirement of quantum
dialogue is that classical communication between Alice
and Bob should be transmitted through the same quantum
channel and that it should be transmitted simultaneously
(namely, there must be a time interval, during which the
information of both parties would be in an encoded state
in the same channel).

Here, it is important to note that Alice and Bob need
to be semi-honest (a semi-honest user strictly follows
the protocol, but tries to cheat and/or obtain additional
information remaining within the protocol), as otherwise
they may create an independent quantum channel of their
own and circumvent the control of Charlie. Now, we may
briefly describe a simple scheme of controlled quantum
dialogue as follows [85]:

Step 1: Charlie prepares n copies of a Bell state, diving
them into two n-qubit sequences S A and S B, with the
first and second halves of the Bell pair, respectively.
Then, he transmits both S A and S B to Bob, after
suitably permuting S B. It is assumed that all qubit
transmissions are secure, with the possible inclusion
of decoy qubits, which are inserted to test for an
eavesdropper and dropped afterwards [86].

Step 2: Using Pauli operations in the manner of quan-
tum dense coding [37] (whereby I, X, iY , and Z
correspond to encoded bit values 00, 01, 10, and 11,
respectively), Bob encodes his message in the qubit
string S A, which he then transmits to Alice.

Step 3: After using the same method to encode her secret
message, Alice transmits back the sequence S A to
Bob.

Step 4: Charlie reveals the permutation used. On this ba-
sis, Bob pairs up the partner particles and measures
them in the Bell basis.

Quanta | DOI: 10.12743/quanta.v6i1.57 June 2017 | Volume 6 | Issue 1 | Page 6

http://dx.doi.org/10.12743/quanta.v6i1.57


Step 5: Bob publicly announces the outcomes of his
measurements, which allows each party to extract
the other’s message using knowledge of her/his own
encoding and that of initial Bell state Charlie pre-
pared.

Without Charlie revealing the particular permutation
used, semi-honest Alice and Bob cannot decode the
other’s message, thereby ensuring Charlie’s control.
Moreover, just before step 4, both Alice and Bob’s mes-
sages are encoded at the same time in the channel, which
ensures satisfaction of the quantum dialogue requirement.

Charlie’s choice of Bell state, if publicly known, would
lead to information leakage, which is often considered
to be an inherent feature of quantum dialogue and vari-
ants thereof. This problem can be eliminated if Charlie
chooses his Bell state randomly, informing Alice and Bob
of his choice via quantum secure direct communication
or deterministic secure quantum communication [87].

The above scheme can be turned into other crypto-
tasks. If Bob, instead of Charlie, prepares the Bell states
initially (with the difference of Charlie’s announcement
being absent in step 4), then the above scheme reduces to
quantum dialogue, of the type introduced at first by Ba
An [88]. This is called the Ba An protocol for quantum
dialogue.

Likewise, a quantum dialogue scheme can always be
obtained from a controlled quantum dialogue scheme.
Further, in a quantum dialogue scheme, restricting one
of the players, e.g., Alice, to trivial encoding (namely,
simply applying Pauli I operation), we obtain a protocol
for quantum secure direct communication, whereby Bob
can communicate a message to Alice without the prior
distribution of a key. In this way, any quantum dialogue
can be turned into that for quantum secure direct com-
munication. In quantum secure direct communication, a
meaningful message is typically sent by the sender. In-
stead, transmission of a random key turns quantum secure
direct communication into a quantum key distribution.
Therefore, any quantum secure direct communication
protocol can be turned into a quantum key distribution
protocol [83].

Likewise, suppose that in a quantum dialogue scheme,
Alice (resp., Bob) transmits key kA (resp., kB) to Bob
(resp., Alice), after which they adopt K = kA ⊕ kB as the
secret key for future communication, this constitutes a
protocol for quantum key agreement, in which each player
contributes equally to K, such that each bit of K cannot
be unilaterally determined by either player. In this way, a
quantum key agreement scheme can always be obtained
from that for quantum dialogue. Also, in asymmetric
quantum dialogue [87], a special case of the quantum
dialogue scheme, involves Alice and Bob encoding an

unequal amount of information (say, Alice sending m bits,
and Bob sending 2m bits).

Other types of reduction are possible. In the above
scheme for controlled quantum dialogue, suppose Charlie
retains sequence S B and only transmits S A securely to Al-
ice, who encodes her secret message using the dense cod-
ing method and then transmits the resultant qubit string
to Bob. Upon reception, Bob encodes his secret using
the same rule and sends the resultant sequence to Char-
lie, who finally measures each received particle with its
partner particle retained by him, in the Bell basis. If in
each case, he obtains the original Bell state, the Alice’s
and Bob’s secrets are identical. This follows simply from
the fact that I = XX = (iY)(iY) = ZZ = I2I2, ensuring
that two encoded messages are identical, then the travel
qubits return as they left.

Therefore, a quantum dialogue or controlled quantum
dialogue scheme can always be turned into one for quan-
tum private comparison, which allows a third party to
compare the secrets of two parties without being able to
know their secrets [21]. This quantum private comparison
is suitable for the socialist millionaire problem or Tierce
problem [89], which is a secure two-party computation
requiring two millionaires to find out if they are equally
rich, without revealing how rich each is (unless of course
they are equally rich). In brief, a modification of quan-
tum dialogue or controlled quantum dialogue provides
a solution for quantum private comparison, the socialist
millionaire problem and a few other related problems.

Just as a quantum dialogue protocol can be turned into
a quantum secure direct communication one, a controlled
quantum dialogue protocol can be turned into one for
controlled quantum secure direct communication (tech-
nically, actually one for controlled deterministic secure
quantum communication). Now, controlled deterministic
secure quantum communication can be used in a quan-
tum e-commerce situation, where Charlie represents a
bank, Alice a buyer and Bob an online shop. To make a
purchase, Alice intimates Charlie, who executes step 1
above. Next, Alice encodes her purchase information in
S A, which she sends to Bob, who in turn informs Char-
lie of having received an order worth a specific amount
from a certain buyer, whose identity is verified by Char-
lie, who then reveals the relevant permutation operation.
Bob then performs Bell measurement and knows about
Alice’s order. Therefore, a quantum e-commerce protocol
of this type is really a straightforward modification of a
controlled quantum secure direct communication scheme.

In fact, in the recent past several schemes of quan-
tum e-commerce and other similar applications of quan-
tum cryptography have been proposed by various groups
[90, 91], that have established that quantum cryptogra-
phy can be used for various practical tasks beyond key
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distribution and secure direct communication. Specifi-
cally, sealed-bid auctions [92–94] and other variants of
auctioning (e.g., English and Dutch auctions) can be per-
fromed using quantum resources [95, 96]. Binary voting
can also be performed using quantum resources (cf. [97]
and references therein).

4 Counterfactual quantum
cryptography

Counterfactual quantum communication transmits infor-
mation using the non-travel of a photon between Alice
and Bob [98–101]. It is based on interaction-free mea-
surement [23, 102, 103], where the presence of an object
is detected without directly interrogating it. Famously
known as the Elitzur–Vaidman scheme for bomb detec-
tion, it involves photon interferometery used to ascertain
the presence of a quantum object in one of the arms with-
out the photon actually passing through it. The single-
photon injected into the beamspliiter of this set-up always
exits one particular output port labelled as the bright port.
The presence of an object in one of the arms of the inter-
ferometer permits the single photon to exit not from the
bright port, but through the port that is otherwise dark.

Experimental realizations proved that indeed such
interaction-free measurements are possible [103]. Further,
a proposal to enhance its efficiency towards 100% using
chained unbalanced beamsplitters, wherein repeated mea-
surements of the initial state in order to arrest evolution,
simulating the quantum Zeno effect, was put forth. The
scheme works as follows: A single-photon incident on
a beamspliiter after M cycles exits from the bright port
but the presence of a detector in these ports restricts the
photon to be always in the lower arm and exit from the
dark port. The chained action leads to the evolution:

|block〉|0〉 → cosM η|block〉|0〉

|pass〉|1〉 → (cos (Mη)|0〉 + sin (Mη)|1〉) (5)

where M is the number of interferometric cycles, and the
first equation indicates absorption at the obstacle. In 2009,
Noh proposed the well-known counterfactual quantum
protocol for cryptography [24].

Though counterfactual quantum cryptography may not
be so useful for long-distance communication, it is inter-
esting conceptually [104, 105]. Schemes to improve the
efficiency of counterfactual quantum key distribution pro-
tocols [106,107], security analysis of such schemes under
various attacks such as intercept-resend and counterfac-
tual attacks [108–110], experimental realisation using dif-
ferent set-ups [25, 111, 112], direct communication proto-
cols [113] and counterfactual generation and distribution

of entanglement [114] have contributed towards better
understanding of applying counterfactuality. The basic
idea of the direct communication protocol is to ensure
counterfactual transfer of information using the chained
beamsplitter approach mentioned earlier. M-chained un-
balanced beamsplitters are nested within N-chained outer
unbalanced beamsplitters. By suitably choosing M and
N, one can achieve direct communication between Al-
ice and Bob. It has been further argued that this is fully
counterfactual [115], an interpretation that has been de-
bated. For an alternative perspective, see [116, 117], but
also [118, 119]. Recently, the proposal in [115] for di-
rect counterfactual communication has been implemented
experimentally [120].

By letting the obstacle to be in a superposition state, as
follows:

(α|block〉 + β|pass〉)|0〉 → α cosM η|block〉|0〉

+ β|pass〉(cos (Mη)|0〉 + sin (Mη)|1〉)

→ α|block〉|0〉 + β|pass〉|1〉 (6)

An idea along this line can be used to counterfactually
transmit a qubit, as against a bit [121–123].

The well-known counterfactual protocol Noh09 [24]
is briefly explained here. Alice and Bob are connected
to each other through one of the arms of a Michelson
interferometer (arm B). The other arm A is internal to
Alice’s station and is inaccessible to the outside world. A
photon traveling along arm A is always reflected using a
Faraday mirror (M1). In addition, Alice is also equipped
with a single-photon source which prepares polarization
states in the vertical (V) or horizontal (H) direction, based
on the output of a quantum random number generator (a).
Bob’s station also consists a quantum random number
generator (b) whose output decides whether a reflection
using Faraday mirror (M2) or a detection using a detector
DB is to be applied. RB controls a switch Q whose polar-
ization state P (pass V and block H) or B (block V and
pass H) determines which of the above operations is to
be applied. The protocol is as follows (cf. Figure 1):

1. Alice prepares polarization states randomly in V or
H states based on a and transmits it to Bob.

2. Bob applies P or B randomly based on b. The follow-
ing table gives the conditional probabilities based on
Alice and Bob’s joint action:

(Alice,Bob) D1 D2 DB

(V, P) or (H, B) 0 1 0
(V, B) or (H, P) RT R2 T

D1 and D2 are detectors in Alice’s station. R and T
are the coefficient of reflectance and transmittance
of the beamsplitter respectively such that R + T = 1.
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3. At the end, D1 detections lead to the generation of
secret key and D2 detections are used for detecting
eavesdropping. D1 detection is counterfactual in the
sense that the photon did not travel to Bob and his
blocking action leads to a remote detection by Alice.
In some sense, the photon takes into account Bob’s
choices before detection.

Future directions here could explore applying the counter-
factual paradigm to other crypto-tasks besides quantum
key distribution.

5 Device independent scenarios

We already noted that a classical cryptographic protocol
is secure only under some assumptions about the hard-
ness of performing some computational tasks. In contrast,
BB84, B92 and other protocols for quantum key distri-
bution, mentioned above, are unconditionally secure in
the sense that their security proof is not based on such
computational assumptions, but instead is guaranteed by
quantum physical laws.

However, the security proofs assume that the practical
realization is faithful to the theoretical specifications, and
that the devices used by Alice and Bob are trusted and
that the duo have perfect control over the devices used for
the preparation of the quantum states, manipulation and
their measurement. Devices are also assumed to be free
from any side channels that would leak secret information
from the laboratories of Alice and Bob.

5.1 Side-channel attacks

Quantum key-distribution promises unconditional secu-
rity under the assumption of perfect implementation of
the protocols in the real-world. But, imperfections in the
experimental set-up creates side-channels that can be em-
ployed by a malicious eavesdropper to compromise the
security without the knowledge of the legitimate partici-
pants Alice and Bob. Side-channel attack allows Eve to
gain information based on certain behavioural patterns of
the devices used for key-distribution and does not depend
upon the theoretical security [124].

Some examples of side-channels are detector clicks,
dark counts and recovery time of the detectors, electro-
magnetic leaks. Sometimes the side-channel attacks are
so powerful that the basis information may be leaked
and render the protocol completely insecure. Such side-
channel attacks identified [125, 126] the danger posed
by not being able to completely characterise sources and
detectors, leading to the device-independent paradigm
[127].

Here, we list some powerful quantum hacking attacks
and countermeasures on commercial quantum key distri-
bution systems:

• Time-shift attacks, which make use of the detec-
tion efficiency loophole, which plays a key role
in the Bell inequality tests [128]. Here we may
count bright illumination pulses to control single-
photon avalanche photodetectors [129], passive de-
tector side channel attacks [130] and detector blind-
ing attacks. In particular, information leakage due
to the secondary photo-emission of a single photon
avalanche detector can be countered by backflash
light characterization [131].

• Time side channel attack where the timing infor-
mation revealed during the public communication
during Alice and Bob is used to extract some parts
of the secret key [132].

• Optical side-channel attacks in order to gain infor-
mation about the internal states being propagated in
the channel [133].

• Source attacks based on tampering of the photon
sources in the measurement device-independent
paradigm [134].

• Preventing side-channel attacks in continuous-
variable quantum key distribution by modulating
the source signal appropriately to compensate for a
lossy channel [135].

5.2 Device-independence

The practical realization of an otherwise unconditionally
secure quantum key distribution protocol will involve the
use of untrusted devices [136], whose imperfections may
be exploited by a malicious eavesdropper to undermine
its security. In 1998, Mayers and Yao [137] introduced
the concept of quantum cryptography with the guarantee
of security based only on the passing by the measurement
data of certain statistical tests, under the assumptions of
validity of quantum mechanics and the physical isolation
(no information leakage) of Alice’s and Bob’s devices; in
other words, a quantum key distribution set-up that can
self-test.

In [54], it was shown how a single random bit can be
securely distributed in the presence of a non-signalling—
not just quantum—eavesdropper. This qualitative argu-
ment was made quantitative by several following works,
providing efficient protocols against individual attacks
[138,139], and subsequently collective attacks [140–142]
against a non-signaling eavesdropper. Better key rates,
but assuming an eavesdropper constrained by quantum
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Figure 1: Basic set-up for counterfactual [24] or semi-counterfactual [104] quantum key distribution based on a Mach–Zehnder
interferometer. Alice’s station consisting of the source (S) initiates the protocol by sending light pulses through the optical
circulator (OC) to the beamsplitter (BS), which splits them into beams along arms A and B. The optical delay (OD) maintains
the phase between the arm by compensating for the path difference in the two arms. Light along arm A is subjected to absorption
by detector DA or reflection from mirror M1 by Alice based on her switch (SW) state. Likewise by Bob along arm B who also
possesses a switch (SW), a detector DB and a mirror M2.

laws, are reported in [55, 143, 144]. All these proofs of
security require an independence assumption, namely that
successive measurements performed on the devices com-
mute with each other [144]. While [145] fixes this issue,
by allowing Alice and Bob to use just one device each,
it is inefficient and lacks noise tolerance. The device-
independent protocol of [146] reports an improvement
guaranteeing the generation of a linear key rate even with
devices subject to a constant noise rate, but relaxing other
assumptions such as the availability of several indepen-
dent pairs of devices.

We briefly mention the connection of device indepen-
dence and nonlocality. A necessary condition in order to
guarantee security in the scenario where devices are not
assumed to be trustworthy—characteristic of the device-
independent scenario—is that Alice’s and Bob’s joint cor-
relation P(x, y|a, b), where a, b are the respective inputs
and x, y their respective outputs, must be such that

P(x, y|a, b) ,
∑
λ

P(x|a, λ)P(y|b, λ)Pλ, (7)

where P(x|a, λ) and P(y|b, λ) are arbitrary probability dis-
tributions for Alice and Bob; and Pλ is the probability
distribution of some underlying variable λ. For if this

were not so, then in principle, knowing λ, Eve would be
able to determine the outcomes of Alice and Bob, when
they announce a and b publicly during the key reconcilia-
tion step. This entails that P(x, y|a, b) must be nonlocal,
namely it should violate a Bell-type inequality, making
the sharing of quantum entanglement necessary.

Other than this, the quantum apparatuses used by Alice
and Bob are viewed as black boxes, with no assumption
made about the internal workings. Interestingly, the root
concept for device-independent quantum key distribution
was implicit as early as 1991 in the E91 protocol [9],
but its true significance was not recognized before the
advent of the study into device-independent cryptography.
Because the security of any device-independent scheme
requires nonlocal correlations, which is in practice an
expensive and delicate resource, it would be difficult to
achieve full device independence. For example, the detec-
tor efficiencies are usually too low to support full device-
independent security. Although the hope for practical
realization of device-independent quantum key distribu-
tion has been raised by recent loophole-free Bell experi-
ments [2, 147, 148], the secure key rates are expected to
be quite low even for short distances.
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Although we have generally talked of quantum key
distribution in the context of device independence, other
tasks can also be considered in this framework, among
them self-testing of the W state [149]

W ≡
1
√

3
(|001〉 + |010〉 + |100〉)

and that of any two projective observables of a qubit [150],
have been reported.

Of interest here is the device-independent quantum
key distribution protocol based on a local Bell test [151].
Several relaxed variants of device-independent quantum
key distribution idea (including semi-device-independent
and one-way device-independent) have been proposed
[61, 152–155] and are briefly discussed below.

5.3 Measurement-device independence

A more feasible solution than device-independent
quantum key distribution is the measurement-device-
independent quantum key distribution [61] scheme,
which builds on [156, 157]. Using weak coherent light
pulses along with decoy states, the measurement-device-
independent quantum key distribution protocol is made
immune to all side-channel attacks on the measurement
device, often the most vulnerable part. However, it is
assumed in measurement-device-independent quantum
key distribution that Eve cannot access state preparation
by Alice and Bob. The security of measurement-device-
independent quantum key distribution against general
coherent attacks, exploiting the effect of finite data size,
has been proven in [158]. In this context, see [124], which
proposes using quantum memory and entanglement to
replace all real channels in a quantum key distribution
protocol with side-channel-free virtual counterparts.

Measurement-device-independent quantum key distri-
bution, in contrast to a full device-independent scheme,
requires neither almost perfect detectors nor a qubit ampli-
fier nor a measurement of photon number using quantum
non-demolition measurement techniques [61, 159]; also
cf. related references cited in Section 2. The most recent
developments of the measurement-device-independent
quantum key distribution scenario, including its strengths,
assumptions and weaknesses are reviewed in [159].

The basic idea behind measurement-device indepen-
dence is that Alice and Bob transmit weak coherent pulses
representing randomized BB84 polarization states to a
central untrusted Bell state measurement station, manned
by Charlie or even Eve. The probabilistic production of
Bell states can be shown to lead to a secure bits, even if
the untrusted station uses only linear optics.

Measurement-device-independent schemes have been
experimentally realized by various groups [65, 160, 161].

It has even been demonstrated through a distance over
200 km, whereas a full device-independent scheme is
yet to be realized experimentally. For discrete-variable
measurement-device-independent quantum key distribu-
tion, the key rate for practical distances turns out to be just
2 orders of magnitude below the Takeoka–Guha–Wilde
bound [162], enabling this method to meet the high speed
demand in metropolitan networks.

5.4 Detector-device-independence

Whereas the key rate of measurement-device-independent
quantum key distribution scales linearly with transmit-
tance of the channel (just as with conventional quan-
tum key distribution), it has the drawback that its key
rate scales quadratically (rather than linearly, as in con-
ventional quantum key distribution) with detector effi-
ciency [8], which can be a practical problem if detectors
of sufficiently high efficiency are not available. Detector-
device-independent quantum key distribution aims to
combine the efficiency of the conventional quantum key
distribution protocols with the security of measurement-
device-independent quantum key distribution [163, 164].
In detector-device-independent quantum key distribution,
receiver Bob decodes photon information from an inse-
cure channel using a trusted linear optics, followed by a
Bell state measurement with untrusted detectors.

The advantage of detector-device-independent
quantum key distribution over measurement-device-
independent quantum key distribution is that key
rate scales linearly (rather than quadratically) with
detector efficiency, essentially because it replaces
the two-photon Bell state measurement scheme of
measurement-device-independent quantum key distri-
bution with a single-photon Bell state measurement
scheme [165]. (In a single-photon Bell state, spatial
and polarization modes—each representing a bit—are
entangled.) However, the security of detector-device-
independent quantum key distribution against all detector
side-challels remains yet to be shown. It is known [166]
that either countermeasures to certain Trojan horse
attacks [167] or some trustworthiness to the Bell state
measurement device is required to guarantee the security
of detector-device-independent quantum key distribution
(as against the strong security of measurement-device-
independent quantum key distribution, where such
assumptions are not needed.) Indeed, a simple imple-
mentation of a detector-device-independent quantum
key distribution protocol can be built directly on the
standard phase-encoding-based BB84 quantum key
distribution [168].
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5.5 One-sided device-independence

Further, violation of Bell’s inequality or equivalently
the use of a Bell nonlocal state can ensure the security
of a device-independent quantum key distribution men-
tioned above, but if one of the users (Alice or Bob) trusts
her/his devices then we obtain a weakening of device-
independent quantum key distribution, known as one-
sided device-independent quantum key distribution [152],
whose security does not require the violation of Bell’s
inequality, but rather a weaker type of nonlocality, namely
quantum steerability.

The condition (7) is symmetric between Alice and
Bob. Now suppose P(x, y|a, b) satisfies the asymmetric
but weaker condition [169]:

P(x, y|a, b) ,
∑
λ

P(x|a, λ)PQ(y|b, λ)Pλ, (8)

where PQ(y|b, λ) is any quantumly realizable probability
distribution for Bob. Such a state is said to be steerable,
and can be pointed out by the violation of a steering
inequality. Steering is a stronger condition than nonsepa-
rability, but weaker than nonlocality.

C. Branciard et al [152] first studied the security and
practicability of one-sided device-independent quantum
key distribution, which belongs to a scenario intermedi-
ate between device-independent quantum key distribu-
tion and standard quantum key distribution. This makes
it more applicable to practical situations than the latter.
Just as a sufficient violation of a Bell-type inequality is
necessary to establish device-independent quantum key
distribution, so a demonstration of steering is necessary
for security in the one-sided device-independent quantum
key distribution scenario.

It may be noted that the prepare-and-measure schemes
of quantum key distribution that do not use entangled
states (e.g., BB84 and B92 protocols) can also be turned
into entanglement-based equivalents, from which we
can obtain their device-independent counterparts by em-
ploying suitable Bell-type inequalities. For example,
M. Lucamarini et al [170] presented a device-independent
version of a modified B92 protocol. T. Gehring et al
[171] reported an experimental realization of continuous-
variable quantum key distribution with composable and
one-sided device-independent security against coherent
attacks. A one-sided device-independent implementa-
tion of continuous-variable quantum key distribution has
been experimentally implemented, wherein the key rate is
directly linked to the violation of the Einstein–Podolsky–
Rosen steering inequality relevant to the context [172].

Here it would be apt to note that for pure states, entan-
glement, steering and nonlocality are equivalent. How-
ever, for mixed states they are different and all Bell non-

local states are steerable, and all steerable states are en-
tangled, but not the other way in each case, namely en-
tanglement is the weakest and nonlocality the strongest
nonclassicality condition among these.

5.6 Semi-device independence

In quantum mechanics, an entangled measurement is rep-
resented by an operator, at least one of whose eigenstates
corresponds to an entangled state. In the semi-device-
independent approach [173], one can certify that the
measurement is indeed entangled on basis of the mea-
surement statistics alone, provided it can be assumed that
the states prepared for testing the measurement apparatus
are of fixed Hilbert space dimension, even if uncharac-
terized otherwise. This approach has been applied to
other quantum information processing tasks, among them
cryptography [154].

Now, it is possible to test the dimension of a physi-
cal system in a device-independent manner, namely on
basis of measurement outcomes alone, without requir-
ing the devices to be characterized, by means of Bell
inequalities [174, 175] or bounds pertaining to quantum
random access codes [176]. More recently, the semi-
device-independent approach has been applied to esti-
mate classical and quantum dimensions for systems in
a prepare-and-measure setup [177, 178]. Experimental
realization of these ideas have been reported [179, 180],
as well as their application to cryptography [154] and
random number generation [181, 182].

For prepare-and-measure protocols in quantum infor-
mation processing, since quantum nonlocality is out of
question, a more natural notion of device independence
applicable is the semi-device-independent scenario. This
uses the notion of bounding the classical or quantum
dimension required to reproduce the observed quantum
correlations by measurements on transmitted particles
prepared in specific states [177, 183]. Let

P(y|α, b) = Tr(ραΠ
y
b) (9)

denote Bob’s probability for getting outcome y given
measurement b acting on state ρα transmitted by Alice,
with Π

y
b being the corresponding quantum mechanical

measurement operator.
A dimension witness for the prepare-and-measure sce-

nario has the form∑
α,b,y

fα,b,yP(y|α, b) ≤ Cd, (10)

where fα,b,y are a set of real numbers and Cd is a positive
real number. Violation of (10) would mean that no classi-
cal particle of dimension d could have generated the ob-
served experimental correlation P(y|α, b). More generally,
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one can bound the quantum dimension, also [177]. This
violation serves as the basis for semi-device-independent
security, just as violation of a Bell inequality serves as
the basis for device-independent security.

In [155] a semi-device-independent version of BB84
protocol has been presented using the notion of semi-
device-independence introduced in [154]. Similar device-
independent and semi-device-independent generaliza-
tions of other protocols are also possible, and a general
prescription for the same is a problem worth exploring.

5.7 Security in a post-quantum world

There is an intrinsic and quite reasonable assumption in
the security proof of all the above protocols on the va-
lidity of quantum mechanics. What would happen to the
keys if the nature is found to obey a theory other than
quantum mechanics? It turns out that so long as a the-
ory admits a no-cloning theorem, then (possibly assum-
ing trusted devices) security is possible [184], whereas
device-independent security would be possible if it is a
nonlocal non-signaling theory. In fact, the concept of
device independence can be adapted to provide security
against even a post-quantum Eve constrained, assuming
only the no-signaling principle [54, 185].

6 Further applications of quantum
cryptography

We shall now survey various crypto-tasks other than quan-
tum key distribution for which quantum cryptographic
schemes have been proposed.

6.1 Quantum random number generation

Apart from key distribution, current levels of quantum
technology suffice for providing a good source of genuine
randomness, which is important for cryptography and in
algorithms for simulation. As noted above, quantum ran-
dom number generators are available commercially now.
By genuinely random we refer to a source whose output
is unpredictable and irreproducible according to known
physical laws. This stands in contrast to pseudo-random
number generator, which generates strings which are pre-
determined according to a deterministic algorithm. One
may then hope that the numbers produced by a pseudo-
random number generator are distributed indistinguish-
ably from a uniform probability distribution. The robust-
ness of pseudo-random number generators is an issue that
would merit careful consideration [186].

From the perspective of algorithmic information the-
ory, genuinely random strings are incompressible, namely

their Kolmogorov complexity is not smaller than the
string’s length [187], whereas pseudo-randomness is al-
gorithmically compressible. Kolmogorov complexity of
string S refers to the length in bits of the shortest com-
puter program (in a given programming language) that
generates S as its output. However, in general, random-
ness cannot be proven because Kolmogorov complexity is
uncomputable. For practical purposes, the randomness of
given data may be evaluated by running the data through
standard statistical tests for random number generators,
such as the suite provided by the National Institute for
Standards and Testing [188].

The most straightforward quantum random number
generator exploits the randomness of outcomes in quan-
tum measurements, for example, by reading off the output
of a 50/50 beam splitter [189–191]. Other sources of ran-
domness include single photon arrival times [192–195],
a laser’s phase noise [196–198] and vacuum fluctua-
tions [199, 200]. Mobile phone cameras provide a good,
if classical, source of randomness [201].

An important issue here is to estimate the entropy of the
randomness source, namely the raw random bits gener-
ated, from which truly random bits can be extracted [202].
Sophisticated techniques have been developed to esti-
mate entropy in specific cases [203, 204]. However, these
methods are somewhat difficult to implement and do not
easily lend themselves to generalization nor to easy real-
time monitoring. Device-independent quantum random
number generator provides a possible solution [205, 206],
which makes use of suitable tests of violation of a Bell-
type inequality [206, 207], making them however not so
simple to implement in practice as a basis for a quantum
random number generator.

Semi-device-independent certification of randomness
[182] is simpler, but not entirely free from loopholes in
practice [208]. A method based on the uncertainty prin-
ciple, but requiring a fully characterized measurement
device, has recently been proposed [209]. As an improve-
ment, Lunghi et al [210] have proposed a self-testing
prepare-and-measure quantum random number genera-
tor protocol based on measuring a pair of incompatible
quantum observables.

The incompatibility, and consequently the amount of
genuine randomness, can be quantified directly from the
experimental data. These authors have also reported a
practical implementation using a single-photon source
and fiber optical communication channel, through which
they report a 23-bit throughput of genuine randomness at
99% confidence level [210] .
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6.2 Quantum secret sharing

Secret sharing is a crypto-task where a dealer splits a
secret into two or more shares and distributes them among
multiple agents such that only designated groups of agents
(who define an access structure) can reconstruct the full
secret.

Secret sharing is a cryptographic primitive used widely
to design schemes for digital signature, key management,
secure multiparty computation, etc. Classical secret shar-
ing, first proposed independently by Shamir and Blakely,
makes certain computational assumptions about complex-
ity, making its security computational rather than uncon-
ditional. Quantum mechanics has given grounds for hope
here [211, 212]. The original proposal for quantum se-
cret sharing [211] distributes a 3-qubit state among three
participants:

|ψ〉 =
1
√

2
(|000〉 + |111〉)

=
1
2

(|+ + +〉 + |− − +〉 + |− + −〉 + |+ − −〉) (11)

The three parties measure in X or Z basis. On a quarter
of the time (that may be established by classical com-
munication), all three would have been measured in the
same basis, and it is clear from Eq. (11) that Bob and
Charlie can reconstruct Alice’s bit (designated the secret)
by combining their results. Any attempt by a third party
to find out the secret disrupts the correlation, which can
be detected by the legitimate parties by announcing full
outcomes in some trial runs. Another important aspect to
be considered is that one or more of the participants them-
selves could be colluding to cheat. A full proof of security
must also consider such player collusion scenarios.

An extension of the above is a quantum (N, k) threshold
scheme, where a quantum secret, split among N parties,
can be reconstructed only if at least k parties combine
their shares. The no-cloning theorem implies that 2k > N.
Threshold schemes have similarities with quantum error
correcting codes [213]. Generalizations of quantum secret
sharing to more general access structures [214, 215] and
the use of various relatively easily prepared quantum
states beyond the Greenberger–Horne–Zeilinger states
[216] have been studied, as well as their use in the related
task of quantum information splitting [217, 218].

The concept of quantum secret sharing has been fur-
ther generalized in various ways, among them: hierarchi-
cal quantum secret sharing [219], hierachical dynamic
quantum secret sharing [81]. Further, in a recent direc-
tion [220], quantum secret sharing based on a d-level
particle (with d being an odd-prime in order to exploit
the cyclic property of the d + 1 mutually unbiased bases
in these dimensions), rather than entanglement, has been

studied. Suppose the vector in this system is denoted Ψ j;k,
where j is the basis and k the index of the vector in that
basis. The generalizations of the qubit Pauli operators,
denoted Xd and Yd, are defined by the actions

Xd :Ψ j;k → Ψ j;k+1

Yd :Ψ j;k → Ψ j+1;k, (12)

where additions are in modulo d arithmetic. Each of
the N participants, denoted n ∈ {0, 1, 2, · · · ,N}, with
the 0th player being the secret dealer, applies the opera-
tion Xxn

d Yyn
d to the sequentially transmitted qudit, where

xn, yn ∈ {0, 1, · · · , d − 1} are private data held by the nth
player. The dealer measures in a random basis Ξ to obtain
outcome ξ. Through public announcement, the players
verify whether

∑n
j=0 yn = Ξ (which happens with prob-

ability 1/d) and reject the round if not. If not rejected,
then the protocol guarantees the perfect correlations

N∑
n=0

xn = ξ, (13)

which provides a basis for sharing a secret via a
(N,N) threshold scheme [220]. Over multiple rounds
of the protocol, the players can test for departure from
(13), which can be used to upper-bound eavesdropping.
For details on security against eavesdropping and or a
collusional attack on the scheme, see [220].

6.3 Strong and weak quantum coin tossing

Suppose Alice and Bob are getting divorced. Coin tossing
is a crypto-task suitable to divide their assets randomly.
Perfect coin tossing is a primitive for Mental Poker [221].
Classically, (non-relativistic) coin tossing is based on
computational complexity [222], whereas relativistic clas-
sical coin tossing involves Alice and Bob sending each
other messages with sufficient simultaneity as to ensure
the independence of their messages (see Section 7).

A crypto-task closely related to coin tossing is bit com-
mitment, serves as a primitive for other tasks such as
zero-knowledge proofs [223]. Bit commitment requires
Alice to commit to a bit a by submitting an evidence to
Bob. Later, she unveils a. During the holding phase be-
tween commitment and unveiling, the evidence must bind
Alice while hiding a from Bob. Quantum coin tossing
can be built on top of quantum bit commitment: Alice
commits to a bit a; Bob publicly announces bit b; Al-
ice unveils a. The toss is a + b mod 2. However, an
unconditionally secure bit commitment protocol cannot
be constructed via calls to a secure coin tossing black
box, even given additional finite classical or quantum
communication between Alice and Bob, making bit com-
mitment strictly stronger than coin tossing in the standard
cryptographic framework [224].
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It is conventionally believed that (nonrelativistic)
quantum bit commitment is not secure, owing to an
entanglement-based attack uncovered by Mayers, Lo and
Chau (MLC) [225–227], described briefly below. For a
similar reason, the impossibility of quantum coin tossing
is also accepted to hold generally [228]. Similar no-go ar-
guments exist for the impossibility of ideal coin flipping,
oblivious transfer and secure two-party computation.

The MLC argument can be cast as follows. In a quan-
tum bit commitment protocol, suppose ρa, with a ∈ {0, 1},
denotes the density operator of the evidence of commit-
ment to bit a that Alice submits to Bob. To be concealing
to Bob, we require

ρ0 ' ρ1. (14)

Mixed states can always be purified by going to a larger
Hilbert space. In this case, the purifications of ρa must
correspond to Schmidt decompositions with the same
Schmidt coefficients, say ξ j. We associate two of these
purifications with the states associated with Alice’s com-
mitment

|Ψ0〉 =
∑

j

√
ξ j|α

A
j 〉|β j〉,

|Ψ1〉 =
∑

j

√
ξ j|α

A′
j 〉|β j〉, (15)

where |β j〉 are eigenstates of ρ0 = ρ1, while the states |αA
j 〉

and |αA′
j 〉 are orthogonal basis states. Alice can cheat be-

cause she only requires a local rotation, connecting these
two bases. She can use this local unitary to switch her
commitment between |Ψ0〉 and |Ψ1〉 at the time of unveil-
ing. This no-go result is an application of the Hughston–
Jozsa–Wootters theorem [229], which shows that any two
ensembles with Bob having the same density operator,
can be prepared remotely by Alice, who holds the second
system that purifies Bob’s state.

It may be noted that various authors have questioned
the generality of the cryptographic framework used to
derive the standard no-go theorem for quantum bit com-
mitment [230–235].

For the most part, the MLC result has motivated re-
search in certain directions deviating from ideal quan-
tum bit commitment, among them bit string commit-
ment [236], where Alice securely commits n bits such
that recipient Bob can extract at most m < n of these bits;
a weaker form of bit commitment, namely cheat-sensitive
bit commitment, where the condition (14) is relaxed to
ρ0 , ρ1. Here, if either party cheats, then the other party
has a non-vanishing probability for cheat detection [237]
(but see [238]). Note that even cheat sensitive bit commit-
ment is classically impossible.

Likewise, weaker versions of quantum coin tossing be-
yond ideal quantum coin tossing have been studied. Here,

one can distinguish between weak and strong flavors of
coin tossing. In strong coin tossing, the coin toss must be
perfectly random. This is the requirement of correctness.
In weak coin tossing, it is known that the two parties want
opposite outcomes, e.g., Alice wants ‘heads’ whereas Bob
‘tails’. Then the coin tossing protocol need not protect
against Alice biasing the outcome towards ‘tails’ and Bob
towards ‘heads’. Strong coin tossing is required when
the bit preferred by the other party is not known or their
preferences clash.

The requirements for a (strong) quantum coin tossing
protocol:

Correctness. If both parties play honestly, then both
outcomes of the coin are equal, namely P(t = 0) =

P(t = 1) = 1
2 , where t is the toss outcome.

Bounded bias. If Bob is honest but Alice is not, then
PA(t) ≤ 1

2 + εA, where εA is her bias. Analogously
for honest Alice and dishonest Bob, PB(t) ≤ 1

2 + εB.

The protocol’s bias is ε, defined as the maximum of ε j

for j ∈ {A, B}. In an ideal quantum coin tossing, ε j = 0.
Quantum coin tossing can be based on quantum bit com-
mitment [239] or entanglement-based [240].

Quantum coin tossing is known to offer an advantage
over classical coin tossing in that quantum coin tossing
can guarantee a cheating probability strictly lower than
1, which is impossible in a non-relativistic classical coin
tossing scheme. Quantum coin tossing protocols with bias
ε lower than half have been proposed [239, 241–243].

Kitaev [244] found that a bias lower than 1√
2
− 1

2 ≈

0.207 cannot be achieved by a fair (one where εA = εB)
quantum coin tossing protocol, a bound that has been
demonstrated to be reachable arbitrarily close [245] (also
cf. [246, 247]).

Quantum coin tossing under noisy conditions can draw
help from quantum string coin flipping [248]. In [249], it
is allowed for honest players to abort with a certain prob-
ability determined by the level of noise. Quantum coin
tossing with partial noise tolerance by means of a nested
structure is proposed in [250]. These considerations are
relevant to practical implementations of quantum coin
tossing. Recent such works include a string of coin tosses
generated using photonic qutrits with entanglement in
orbital angular momentum [251] and an all optical-fiber
single-coin quantum coin tossing [252]. An experimen-
tal realization of the loss resistant quantum coin tossing
protocol proposed in [253] is reported in [254], where,
however entanglement is employed rather than a practical
weak coherent source, because of the protocol’s vulner-
ability to multi-photon pulses. Quantum coin tossing,
which is primarily considered for two mistrustful parties,
can be generalized to multiple parties [255].
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The coin tossing protocol [253] uses the encoding
states

|χβ,a〉 =

√
1 + (−1)ax

2
|0〉 + (−1)β+a

√
1 − (−1)ax

2
|1〉,

(16)
where x ∈ {0, 1}, β represents the basis and a the secret bit.
Alice partially commits to bit a by submitting the states
ρa = 1

2 (|χ0,a〉〈χ0,a| + |χ1,a〉〈χ1,a|. The supports of ρ0 and
ρ1 are not disjoint, and thus Bob’s ability to discriminate
between ρ0 and ρ1 is constrained by a minimum error
discrimination bound. This is just the reason that Alice is
able to re-transmit a state if Bob’s measurement fails and
that the scheme has loss-resistance in conjunction with
the use of a single-photon source.

The protocol proposed in [256] aims to correct this re-
liance on a single-photon source (as against using a source
of weak coherent pulses), albeit by fixing the number of
pulses emitted and thereby bounding the multiphoton
probability. However, its practical realization [257] is
not found to be entirely loss-tolerant, although admit-
ting several imperfections that would be encountered in
practice.

It is an interesting question whether device-
independent methods can be extended to distrustful cryp-
tography. It turns out that for quantum bit commitment
with finite cheat probability and bias, one can construct a
device-independent scheme, and then build coin tossing
on top of that [258]. These authors present a device-
independent scheme for cheat-sensitive quantum bit com-
mitment, where Alice’s and Bob’s cheating probabilities
are ' 0.854 and 0.75, which is used to propose a device-
independent protocol for coin flipping with bias . 0.336.

Zhao et al [259] report using measurement-device in-
dependence [61, 159] to protect quantum coin tossing
against detector-side channel attacks due to Alice, who
may launch a detector-blinding attack based on a recent
experiment. This scheme essentially modifies the pro-
tocol of [253] to incorporate the measurement-device-
independent method, but the authors also consider the
possibility of using weak coherent pulses. This scheme
is found to be loss-tolerant when single-photon sources
are employed. As expected from the use of measurement-
device independence, the resulting measurement-device-
independent quantum coin tossing is shown to potentially
offer a doubling of the secure distance in some cases.

6.4 Quantum private query

Private information retrieval or private query [260] is a
crypto-task involving two parties, a user Alice interacting
with a server Bob, wherein Alice queries him to obtain
an element held by Bob in his private database, such that
Bob does not know which element she queried for (user

security), while he in turn, wishes to restrict informa-
tion Alice may gain about other elements in the database
(database security). A protocol for quantum private query
was proposed in 2007 [261, 262], where it was shown to
provide an exponential savings in communicational and
computational complexity [263].

While an unconditionally secure private query is known
to be impossible, practical, cheat-sensitive schemes can
be proposed. The basic idea of quantum private query
can be illustrated using the phase-encoded scheme pro-
posed in [264]. Let server Bob possess D elements in the
database, labelled d( j) ∈ {0, 1}, where 0 ≤ j ≤ D − 1. To
query item j, Alice transmits the state |ψ〉 = 1√

2
(|0〉 + | j〉),

whereas Bob performs the oracle operation given by

U =

D−1∑
j=0

(−1)d( j)| j〉〈 j| (17)

whereby the query state transforms to

|φ〉 =
1
√

2
(|0〉 + (−1)d( j)| j〉) (18)

and Alice determines her required information by distin-
guishing between the two possibilities 1√

2
(|0〉 ± | j〉). Such

a quantum private query protocol is of practical impor-
tance, assuming Bob does not launch entanglement-based
attacks.

In Eq. (17), the oracle unitary U can be difficult to
implement for large D. As a result, various quantum
private query protocols based on quantum key distribution
have been proposed [265–273].

6.5 Quantum fingerprinting and digital
signatures

Other related protocols include the quantum oblivious
set-membership [274] and private set intersection [275].
In quantum oblivious set-membership, Bob’s server de-
cides if a user Alice’s secret is a member of his private
set in an oblivious fashion, namely without his knowing
which element it is [274]. Requiring a communication
cost of O(1) bits, it yields an exponential reduction in
communication cost with respect to classical solutions to
the problem.

Signature schemes, which are prevalent in today’s elec-
tronic communication, were first proposed by Diffie and
Hellman in 1976 in the classical framework. They per-
mit messages to be transmitted from a sender to multiple
recipients, with the guarantee that the messages remain
authentic and can be forwarded to other recipients without
invalidation.
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In contrast to classical signature schemes, that depend
on computationally secure one-way protocols based on
the RSA algorithm or the elliptic curve digital signature
algorithm, a scheme for quantum digital signature lever-
ages quantum physical laws for the purpose.

In the first proposal for quantum digital signature [276],
in analogy with the classical signature scheme, a quantum
public key is proposed, which is a set of quantum states,
while the private key is the classical description of those
states. A quantum one-way function thus replaces the
classical one-way function to guarantee unconditional or
information theoretic security. Note that quantum one-
way or hash functions have the further property that the
quantum hashes can be exponentially shorter than the
original function input, thereby yielding quantum finger-
prints [277] (see [278] which reports an experimental
realization).

In contrast to the preceding scheme for quantum digi-
tal signature, which required quantum memory in order
to hold the public key and were thus not practical, the
authors of [279, 280] propose a quantum digital signature
scheme where this requirement is absent, taking a giant
stride towards practicality. A further improvement on this
is quantum digital signature protocols that have the same
practical requirements as quantum key distribution [281].

Quantum digital signature has been extended in anal-
ogy with its classical counterpart to three or more parties
[282]. From an experimental perspective, both kilometer-
range quantum digital signature [283] as well as free-
space quantum digital signature [284] have been demon-
strated.

6.6 Blind quantum computation

Universal blind quantum computation is a measurement
quantum computation based protocol, wherein a quan-
tum server carries out quantum computation for client
Alice, such that her input, output and computation remain
private and she does not require any memory or compu-
tational power [285]. The protocol is interactive and has
a feed-forward mechanism whereby subsequent instruc-
tions by Alice to the server can be based on single-qubit
measurements. The method submits naturally to fault
tolerance.

Normally, the client must be able to prepare single-
qubit states. But even a classical client can perform blind
quantum computation by interacting with two entangled
(but non-communicating) servers. It turns out that in
this setting, with authentication, any problem in bounded-
error quantum polynomial time class has a two-prover
interactive proof with a classical verifier. Blind quantum
computation has recently been experimentally realized
[286].

7 Relativistic quantum
cryptography

Unlike quantum key distribution, some mistrustful crypto-
tasks are believed to be insecure even when quantum
resources are leveraged, among them, as we saw, bit com-
mitment and ideal coin tossing. Since bit commitment
can act as a primitive for various other crypto-tasks, such
as zero-knowledge proofs, these results are thought to
weaken the case for the security of quantum mistrustful
protocols for communication and multiparty computation.

However, these tasks may be secure under other frame-
works, such as that based on relativistic constraints or the
assumption of noisy storage with the adversary. Under
the latter assumption, various otherwise insecure two-
party protocols become secure, among them secure iden-
tification, oblivious transfer and quantum bit commit-
ment [287].

A. Kent [288] studied how bit commitment could be
implemented by exploiting special relativity constraints.
Alice and Bob are each split in two agents, and security is
obtained against classical attacks provided relativistic con-
straints can be invoked to prohibit commucation between
agents of the same player. The protocol evades [289]
the MLC attack [225, 226] essentially by departing from
the concealment condition (14), but using synchronous
exchange of classical or quantum information between
the players in order to be concealing to Bob, which im-
poses strong complexity, space and time constraints on
the protocol.

This was followed by another scheme employing both
quantum and classical communication [290], which was
shown to be secure under the assumption of perfect de-
vices [291,292], and has been experimentally realized as a
robust method [293, 294]. However, these protocols were
restricted to a one-round communication, which entails
that for terrestrial agents, the commitment remains valid
for at most just over 20 ms. To improve on this, [295]
proposed a method involving several rounds of classical
communication, which was proved secure against clas-
sical attacks, wherein the holding phase could be made
arbitrarily long via periodic, coordinated communication
between the agents of Alice and Bob. The bound on
the probability ε to cheat in this method was improved
by other authors independently [296–298]. In particular,
K. Chakraborty et al [296] show ε to satisfy the linear
bound: ε . (r + 1)2(−n+3)/2, where n is the length of
the bit string to be communicated between the agents at
each of r rounds. This allows the complexity of protocols
to scale only linearly with the commitment time, during
which Alice and Bob are required to perform efficient
computation and communicate classically.
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Based on this theoretical breakthrough, E. Verbanis et
al [299] reported on a relativistic bit commitment imple-
mentation for a 24-hour bit commitment, with a potential
for extension to over a year by modifying the positions
of agents. Recently, the possibility of making relativistic
quantum bit commitment device-independent has been
studied [300]. In the case of quantum cryptographic tasks
that are secure in the relativistic setting, one can ask (as in
bit commitment) whether special relativity by itself can
provide security, without invoking quantum mechanics
(though quantum mechanics helps).

One crypto-task that requires a conjunction of both
properties of relativity and quantum mechanics is
variable-bias coin toss [301], in which a random bit is
shared by flipping a coin whose bias, within a predeter-
mined range, is covertly fixed by one of the players, while
the other player only learns the random outcome bit of the
toss. While one player is able to influence the outcome,
the other can save face by attributing a negative outcome
to bad luck. Security arises from the impossibility of
superluminal signaling and quantum theory.

Two other protocols, whose security is known to be
guaranteed under the conjunction of relativity and quan-
tum mechanics are location-oblivious data transfer [302]
and space-time-constrained oblivious transfer [303]. The
location-oblivious data transfer involves two mistrustful
parties, wherein Alice transfers data in Minkowski space
to Bob at a space-time location determined by their joint
actions and that neither can predict in advance. Alice is
assured that Bob will learn the data, while Bob is assured
that Alice cannot find out the transfer location. In the
space-time-constrained oblivious transfer, Bob has to out-
put ab (see definition of oblivious transfer above) within
Bb, where B0 and B1 are spacelike separated regions.

In contrast to bit commitment, some crypto-tasks, such
as secure two-party quantum computation of various clas-
sical functions [240,304,305], in particular all-or-nothing
oblivious transfer [205,240,306] and 1-out-of-2 oblivious
transfer [304], which are believed to be insecure in nonrel-
ativistic quantum settings, remain so even in the context
of relativistic quantum settings. In 1-out-of-2 oblivious
transfer, Alice inputs two numbers a0 and a1, while Bob
inputs bit b and then outputs ab. In all-or-nothing oblivi-
ous transfer, Bob retrieves a bit string sent by Alice with
a probability half or gets nothing at all. Also, position-
based cryptography, which uses only geographic position
as the sole credential of a player, is known to be insecure
even with a conjunction of special relativity and quantum
mechanics, if adversaries can pre-share a quantum state of
unbounded entanglement. A quantum relativistic that is
forbidden is that Alice can make available a state received
from Bob at an arbitrary event in the causal future, as per
the no-summoning theorem [307, 308].

8 Technological issues

In this section, we cover the practical issues regarding ex-
perimental realization of a quantum key distribution. This
works in tandem with advances in theory, for example,
the quantum de Finetti theorem, which would be appli-
cable when it is difficult to bound the dimension of the
communication medium (possibly corrupted maliciously).
This result has been applied to derive secure quantum key
distribution when signals used are technologically limited
to Gaussian states or weak coherent states [309], rather
than single-photons.

Practical challenges that emerge because of technolog-
ical issues include:

1. In discrete-variable protocols, key information is
encoded in the polarization or the phase of weak
coherent pulses simulating true single photon states.
Hence, such implementations employ single photon
detection techniques, e.g. BB84. However, the use
of weak coherent pulses leads to some practical at-
tacks such as the photon number splitting attack for
which decoy states have to be used (cf. Section 8.5).

2. In the continuous variable protocols, information has
to be encoded in the quadratures of the quantized
electromagnetic fields such as those of the coher-
ent states and homodyne or heterodyne detection
techniques such as those used for optical classical
communication (cf. Section 9).

3. The security level of a protocol is decided by the
type of attack considered in its security proof, which
in turn could be dictated by technological considera-
tions (e.g., Eve’s ability to fight decoherence by real-
izing massive entangled states). Proving the security
against collective (coherent) attacks and universal
composability (which, for quantum key distribution,
would cover joint attacks over the distribution of
the key as well as its eventual use [79]), at speeds
and distance that are compatible with practical ap-
plications and technologically feasible, is quite a
challenge. In practice, this would require the ability
to realize efficient post-processing, including param-
eter estimation of quantum key distribution perfor-
mance with stable setups across large data blocks.
In a quantum network, the performance of any pro-
tocol is assessed point to point by considering the
key distribution rate at a given security level under
these attacks.

For prevalent usage of quantum cryptography, low cost
and robustness are important. Among efforts being under-
taken in this direction, it has been shown that quantum
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key distribution systems can coexist with dense data traf-
fic within the same fibre, thereby precluding the need
for dark fibers, which are costly and moreover frequently
unavailable [8, 310]. With access network architecture,
multiple quantum key distribution users can have simul-
taneous access in a way that would be compatible with
Gigabit Passive Optical Network traffic [311]. Yet another
direction to reduce not only cost, but also system com-
plexity and power consumption is through a chip-level
photonic integration, which would lead to a high degree
of mass-manufacturable, low cost miniaturization [312].

We first begin with a short introduction of classical
fiber optical communication [313, 314] and then its adap-
tation for quantum communication.

8.1 Classical fiber-optics

There has been a tremendous demand for increasing the
capacity of information transmitted and internet services.
Scientists and communication engineers are in pursuit
of achieving this technological challenge. The invention
of LASER systems in the 1960s dramatically altered the
position of lightwave technologies as compared to radio
or microwaves. The availability of a coherent source al-
lowed one to pack an enormous amount of information
into light signals increasing the bandwidth. A lightwave
communication system consists of a transmission unit
with source and electronics to modulate the signals, an
optical fiber channel connecting the sender and the re-
ceiver and optical amplifiers (also known as repeaters)
placed at certain distances along the fiber link to boost the
signal strength, a receiving unit with optical detectors and
accompanying electronics to retrieve the original signal
and extract the transmitted information. Each unit of the
fiber-optic communication system is described briefly.

In standard telecom optical fibers of 1550 nm, atten-
uation of light is 0.2 dB/km (improved in the recently
developed ultralow-loss fibers to 0.16 dB/km). This lossy
property will restrict of point-to-point quantum key distri-
bution nodes to a few hundreds of kms and strong bounds
on the key rate [162, 315]. With practical quantum key
distribution, the rates achieved are Mbit/s even though
classical fiber optics can deliver speeds upto 100 Gbit/s
per wavelength channel.

8.1.1 Transmission

The choice of a source depends on the type of application.
For high-speed low loss communication with bit rates of
the order of Gbps, the source should meet the following
requirements:

1. Generation of wavelengths leading to low losses in
the channel for a given power level such that the
repeater spacing is large.

2. Spectral line width of the order of ≤ 1 nm to avoid
dispersion (variation in phase velocity of a wave
depending on its frequency).

3. High-speed modulation for achieving the desired
transmission rate.

Typically, semiconductor-based (InGaAsP or GaAs)
light sources, such as laser diodes and LEDs, are used in
optical communication. They emit required wavelengths,
are highly efficient, compact in size and can be modulated
corresponding to the input electrical signals.

LED diodes are basically forward-biased p-n junctions
emitting incoherent light due to spontaneous emission
with 0.1 mW output power and are suitable for transmis-
sion distances of a few kms at 10–100 Mbps bit rates.
On the contrary, semiconductor laser diodes emit coher-
ent light via stimulated emission with an output power
of 0.1 W suitable for longer distances at Gbps bit rates.
Laser diodes have narrow spectral-widths, allowing 50%
of the output power to be coupled into fibers and useful in
reducing chromatic dispersion. In addition, laser diodes
have a short recombination time, enabling them to be
directly modulated at high rates necessary for high-speed
long-distance communications.

High dimension quantum key distribution based on
d-level systems allows transmission of greater than 1 bit
per photon detection, which can enhance communication
capacity at fixed particle rate [316–318]. The round-
robin differential phase shift quantum key distribution
protocol (Section 2.3) allows a positive key in principle
for any quantum bit error rate [45]. Simply by choos-
ing experimental parameters, Eve’s information can be
tightly bounded, thereby removing the need for monitor-
ing the noise level of the channel. The strong security
of measurement-device-independent quantum key dis-
tribution is counterbalanced by the quadratic scaling of
key rate with detector efficiency, a drawback that can
be overcome in practice by reverting to detector-device-
independent quantum key distribution (Section 5.4).

8.1.2 Channel

Optical fibers acting as transmission channels have a cen-
tral dielectric core (usually doped silica) with higher re-
fractive index surrounded by a cladding (pure silica) of
lower refractive index. Light signals are guided along
the fiber axis using the phenomenon of total internal re-
flection. Fibers with sudden and gradual change in the
refractive index at the core-clad boundary are known as
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step-index (which include single-mode and multi-mode
fibers) and graded-index fibers respectively. Single-mode
(multi-mode) step-index fibers can sustain only one mode
(many modes) of light. Different modes travel at different
speeds in a graded-index fiber due to the gradual decrease
in refractive index from the center of the core, allowing
all of them to reach the output at the same instant of time,
thereby reducing chromatic dispersion.

Faithful transmission of signals through these chan-
nels depend on the transmission characteristics of the
fibers which include attenuation, distortion, absorption,
dispersion and scattering losses.

8.1.3 Detection

Optical detectors convert light signals into electrical sig-
nals which is then amplified and processed by exter-
nal circuity. Commonly used detectors for fiber-optics
are semiconductor-based using materials such as Si, Ge,
GaAs, InGaAs, owing to good response characteristics in
the optical domain and compatibility with optical fibers.
Incident light with energies greater than the bandgap of
the semiconductor are absorbed to generate e-h pairs
leading to an external photocurrent. The photocurrent
is suitably amplified and processed for the extraction of
transmitted data. PIN (p-doped, intrinsic, n-doped layers)
diodes and Avalanche photodiodes (APDs) are mostly
used for photodetection. Both the devices are operated
in the reverse-biased condition and the e-h pairs are ab-
sorbed in the depletion region.

The key enabling factor of single-photon detectors is
their low noise, which in turn would depend on the type of
the detection technique. Room temperature single-photon
detectors have been shown to be suitable for high bit
rate discrete-variable quantum key distribution [319]. For
continuous variable quantum key distribution (Section 9),
cooling is not necessary.

8.2 Quantum communication

With this background of classical communication, we
now discuss quantum communication using fiber-optics.
Looking at the Table 1 it is clear that single-mode fibers
are preferable for quantum communication. For secure
quantum communication, the sender and receiver are con-
nected by quantum channels. There is nothing special
about these channels except for the fact that the informa-
tion is carried using single quantum systems known as
qubits, realized as photons, where information is encoded
in one of the degrees of freedom, in fact polarization.

Protecting the polarization of a photon from environ-
mental effects known as decoherence and decoupling
the polarization degree of a photon from its other de-

grees of freedom (such as frequency) to ensure the faith-
ful transmission of quantum information is very tricky.
Single-photons are fragile in nature and cannot sustain
themselves typically after traveling for 200 km.

Optical amplifiers known as quantum repeaters are
placed at certain intervals along the quantum communica-
tion network to maintain the signal strength and increase
the transmission distance. It is worth noting here that,
quantum repeaters [320, 321] are not a straightforward
extensions of their classical counterparts. Quantum sig-
nals cannot be detected or amplified directly without
disturbing it, by virtue of the no-cloning theorem. Hence,
amplification and restoration of the original signal must
be achieved without direct interaction.

In addition, quantum cryptographic security requires
the generation of genuine random number sequences
where each random number is completely uncorrelated
with other numbers in the sequence. It is also not de-
sirable to have any correlations across the runs among
different sequences. Quantum indeterminism forms the
basis for generation of truly random numbers. Measure-
ment of a single quantum system, an entangled state,
coherent state, vacuum state are some methods of random
number generation. Quantum randomness cannot be di-
rectly accessed at the macroscopic level. The quantum
fluctuations are classically amplified to extract genuine
randomness (though there is a theoretical proposal [322]
for quantum amplification of quantum fluctuations). The
random number sequences generated are helpful in the
random selection of basis for encoding a qubit.

It is worth pointing out that measurement-device-
independent quantum key distribution [158] is amenable
for upscaling to a multi-user, high speed communication
networks in metropolitan areas [323, 324], inasmuch as
measurement devices can be positioned in an untrusted,
dense relay, where is accessed by a number of quantum
key distribution users [325], a scenario whose feasibil-
ity has been validated by a number of groups (cf. [326]
and references therein), in particular discrete-variable
measurement-device-independent quantum key distribu-
tion over a distance of 200 km in a telecom fiber [161]
and 404 km in an ultralow-loss fiber [327]. Channel loss
upto 60 dB can be tolerated given high efficiency single-
photon detectors, which translates to a distance of 300
km over standard telecom fiber [328].

Quantum repeaters. Photons are very fragile and hence
for long-distance communication one needs to main-
tain the signal to noise strength for faithful communi-
cation [329, 330]. With quantum repeaters, the idea is
to divide the entire communication distance into smaller
nodes with quantum repeater stations, such that suffi-
ciently noiseless entanglement can be shared between
two consecutive nodes. One then performs entanglement
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Table 1: Comparison between single-mode and multi-mode step-index optical fibers. Note that the above mentioned transmission
distance and rates are for classical communication.

Properties Single-mode fibers Multi-mode fibers
Core (µm) 8-10 50-100

source LASERs LEDs
Transmission distance and rate > 1000 km at 10Gbps 550m at 10Gbps
Operating wavelengths (nm) 1310 or 1500 850 or 1300

Attenuation loss for above wavelenghts (dB/km) 0.4 or 0.2 3 or 1
Cost high low

swapping [331] to entangle nodes farther out, thereby
establishing entanglement between far away nodes

|Ψ〉1234 =
1
2

(|00〉12 + |11〉12)(|00〉34 + |11〉34)

= (|Φ+〉14|Φ
+〉23 + |Φ−〉14|Φ

−〉23

+ |Ψ+〉14|Ψ
+〉23 + |Ψ−〉14|Ψ

−〉23), (19)

where |Ψ±〉 = 1√
2
(|01〉 ± |10〉) and |Φ±〉 = 1√

2
(|00〉 ± |11〉)

are the Bell states [37]. In Eq. (19) measuring particles
2-3 in a Bell basis projects particles 1-4, that may never
have interacted, into an entangled state.

Based on the different approaches to rectify fiber at-
tenuation and operation (gate, measurement) losses at
each node and performance for specific operational pa-
rameters (local gate speed, coupling efficiency, etc.), one
can classify the quantum repeaters into different genera-
tions [332–334]. Each generation aims to achieve better
key rates and decrease in memory errors for long-distance
communication [335]. For loss (operational) error sup-
pression, the method employed is heralded generation
(heralded purification) which is probabilistic and involves
two-way classical communication. But, the quantum
error correction approach for both is deterministic and
involves one-way communication. Various realizations
of quantum repeaters with or without memory are being
explored [321, 336–342]

8.3 Single-photon sources

Quantum communication, especially quantum cryptogra-
phy and quantum random number generation, demands
that single-photons be employed [343, 344], in order for
standard security proofs such as [29, 30] to work. Typi-
cally attenuated lasers are used as substitute single-photon
sources. Usually, they should emit photons with mean
photon-number µ = 1, variance ∆2 = 0 and their second
order correlation function g(2)(t) = 0. Ideally, single-
photon sources should generate single photons as and
when required, namely on-demand, with 100% probabil-
ity. Such deterministic systems are of two types:

Single emitters. Single atoms, single ion and single
molecule emitters are either Λ or three-level sys-
tems in which controlling the pump laser and the
atom-cavity coupling, a certain coherent state is
transferred to the ground state via stimulated Ra-
man adiabatic passage or radiative de-excitation re-
spectively to generate a single photon in the cavity
mode. These sources are scalable, emit indistin-
guishable photons, have low decoherence and multi-
photon effects. Quantum dots [345] and diamond
nitrogen-vacancy (N-V) centers are other popular
sources where single photons are generated by radia-
tive recombination of electron-hole pairs and optical
transitions in the N-V center respectively. But, they
suffer from small coupling efficiency, scaling and
indistingishability of the generated photons.

Ensemble-based emitters. Single photons are generated
by the collective excitations of atomic ensembles of
Cs or Rb. The ensemble is also a Λ-type system with
metastable ground states |g1〉 and |g2〉 and an excited
state |e〉. A weak optical light is coupled to the
population inverted atoms to induce the |g1〉 → |e〉
transition. The de-excitation of a single photon from
|e〉 → |g2〉 is detected and its presence confirmed.
This process is known as heralding. Next, a strong
pulse induces a transition |g2〉 → |e〉 generating a
single heralded photon with |e〉 → |g1〉 transition.

Single-photon sources based on probabilistic photon
emission through parametric down-conversion and four-
wave mixing are also available. The probability of multi-
photon generation in such sources increases with the
probability of single-photon generation. A single-photon
detector cannot distinguish between single photons and
multiple photons. This imperfection can be used by an
eavesdropper to obtain secret key information after basis
reconciliation by measuring the photons acquired from
these multi-photon pulses.

Quanta | DOI: 10.12743/quanta.v6i1.57 June 2017 | Volume 6 | Issue 1 | Page 21

http://dx.doi.org/10.12743/quanta.v6i1.57


8.4 Single-photon detectors

An ideal single-photon detector should detect an incident
photon with 100% probability and have nil dead-time and
dark-count rates. There are various types of single photon
detectors (e.g., single-photon avalanche photodiodes (In-
GaAs,Ge,Si), photo-multiplier tubes and superconducting
based nanowire single-photon detectors). However, none
of them can be considered as an ideal single photon de-
tector as they do not satisfy the above mentioned set of
criteria that is expected to be satisfied by an ideal single
photon detector.

In particular, detection efficiency, wavelength depen-
dence of efficiency and dead time of single photon de-
tectors are still a big concern, and much effort has been
made in the recent past to design better detectors. Often
the choice of optical components and the frequency of
transmission depend on the efficiency of the single photon
detector and the loss characteristics of the transmission
channel. Practically, it is an optimization.

The highest efficiency of single photon detectors is ob-
tained for incident photons of frequency around 800 nm,
but the lowest attenuation in an optical fiber happens
around 1500 nm. Consequently, open air quantum com-
munication systems, including those which involve satel-
lites, are performed using photons with frequency near
800 nm, as the single photon detectors perform best
at this frequency, but fiber-based implementations of
quantum cryptography are realized in teleportation range
(1350–1550 nm), where existing optical fibers show min-
imum attenuation.

It is of cryptographic advantage if the detectors can also
resolve the number of photons in a pulse known as photon-
number resolution. Superconducting-tunnel-junctions,
quantum dot optically gated field effect transistors are
some photon-number resolving detectors. Let us discuss
some of the detectors briefly. For a detailed comparison of
different detectors and their external circuitry refer [346].

Photo-multiplier tubes (PMTs): An incident photon
knocks an electron from a photocathode made of
low work function material, which knocks more elec-
trons causing an amplification of electrons. PMTs
have large and sensitive collection areas, fast re-
sponse time, about 10–40 % efficiency. They are
vacuum operated which limits their scaling and inte-
gration abilities.

Single-photon avalanche photodiode (SPAD): An inci-
dent photon creates e-h pairs in the Geiger-mode
operated photodiode [347]. SPADs have a detec-
tion efficiency of 85% but higher dark count rates as
compared to PMTs. Also, once a pulse is detected,
the wait time for re-biasing the circuitry for next

detection, namely the dead time is longer. Schemes
to reduce this afterpulsing have been realized.

Quantum dot field effect transistors: A thin layer of
quantum dots between the gate and the conduction
channel in a field-effect transistor traps incident pho-
tons modifying the channel conductance. This de-
tector is useful for operation in the infrared region.

The above characteristics discussed are for non-photon
resolving operations but the detector’s operation for
photon-number resolution is also being pursued. The
active area of a detector is divided into many pixels. Each
pixel detects a photon and collectively many photons
are detected and resolved by the detector. Every time a
pixel detects a photon, the amplification process takes
place independently and the pixel undergoes dead- and
recovery-time. Thus, the greater the number of pixels, the
better the resolution is.

8.5 Photon-number splitting attacks

In quantum cryptography, the characteristics of the single-
photon sources and detectors dominate the practical secu-
rity issues. Multi-photon generation, blank pulses, detec-
tor unresponsiveness for certain wavelengths, high dark
counts, dead times, recovery times and jitter are the cru-
cial features which have been used to launch powerful
device attacks which cannot be detected by usual methods.
In this context, we may specifically mention a particular
type of attack that arise due to our technological inability
to build perfect on-demand single photon source and pho-
ton number resolving detectors that would not destroy the
polarization states of the incident photons. The attack is
referred to as the photon number splitting attack and illus-
trates a well known principle of cryptography—Alice and
Bob are restricted by the available technology, but Eve
is not, she is restricted by laws of physics only (in other
words, to provide a security proof, we are not allowed to
underestimate Eve by assuming any technological limita-
tions of the devices used by her).

Let us clarify the point. As we do not have a perfect
on-demand single photon source, we use approximate
single photon sources, usually one obtained by a weak
laser pulse attenuated by a neutral density filter. Such an
approximate single photon source usually contains single
photon (in non-empty pulses), but with finite probability
it contains 2 photons, 3 photons, etc. Now, Eve may use
a photon number resolving detector to count the number
of photons present in each pulse (without changing the
polarization state of the incident photon), and stop all
the single-photon pulses, while she allows all the multi-
photon pulses to reach Bob, keeping one photon from
each multi-photon pulse.
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Subsequently, she may perform measurements on the
photons that she kept from the multi-photon pulses using
right basis (based on Alice’s and Bob’s announcements
during basis reconciliation) without introducing any dis-
turbance. This is the photon number splitting attack,
which requires a photon-number resolving detector that
does not destroy polarization states of the incident photon.
Although, quantum mechanics or any law of physics does
not prohibit construction of such a detector, until now we
do not have any technology to build such a detector.

Otherwise, Alice could use the similar strategy to the
multi-photon pulses and allow only single photon pulses
to be transmitted. This would have solve the need of
single photon sources, too. Unfortunately, no such pho-
ton number resolving detector exists until now. However,
we know a trick to circumvent photon number splitting
attack, which is the decoy state method [49–51, 348].
Specifically, one may randomly mix intentionally pre-
pared multi-photon pulses (decoy qubits) with the pulses
generated at the output of an approximate single-photon
source, which would generate single photon pulses most
of the time. Eve cannot selectively attack pulses gener-
ated from the single photon source. In most incidents,
pulses originating from the single photon source will not
reach Bob, but those originating from the multi-photon
source would reach Bob. Thus, loss profile statistics for
the pulses generated from the two sources will be differ-
ent and this difference (bias) would identify Eve, who
is performing photon number splitting attack from the
natural channel noise which would not be biased. There-
fore, applying decoy states [49–51], Alice and Bob can
estimate both the probability that a transmission results in
a successful output as well as the error rate for different
initial pulses.

8.6 Nonlinear effects

Finally, we discuss some nonlinear effects that occur in
single-mode fibers that have an impact on its propagation
properties. Single-mode fibers are subject to polarization
effects such as birefringence (different phase velocities
for orthogonal polarization modes), polarization depen-
dent losses (differential attenuation between orthogonal
modes) and polarization mode-dispersion (different group
velocities for orthogonal states). Fiber irregularities and
asymmetries are the cause for such effects which can
be overcome by polarization maintaining fibers where
birefringence is introduced on purpose to uncouple the
polarization modes. Fibers are also subject to dispersion,
which is the broadening of signal pulses in the time do-
main as they propagate along the fiber. Each signal pulse
consists different components which travel at different
speeds and hence their arrival time at the output varies.

In case of chromatic dispersion, different wavelengths
travel at different velocities. The overall chromatic disper-
sion in a fiber is governed by the type of material used and
its refractive index profile. Since the material dispersion
is fixed, the refractive index profile has to be engineered
in order to reduce such effects. Dispersion compensating
fibers and techniques (Bragg grating) are employed to fix
this issue.

9 Continuous variable quantum
cryptography

Before we conclude this review, we need to mention that
all the single-photon-based schemes for quantum key dis-
tribution that are discussed here and most of the other
protocols for quantum key distribution, quantum secure
direct communication and other cryptographic tasks men-
tioned are discrete-variable based protocols in the sense
that in these schemes information is encoded in a discrete
variable. However, it is possible to implement most of
these schemes by encoding information in continuous
variable and distributed phase reference, too [349].

Basically, continuous-variable quantum key distribu-
tion involves homodyne detection instead of photon count-
ing encountered in discrete-variable quantum key distri-
bution. Continuous-variable quantum key distribution
was first introduced with discrete modulation [350–352]
and later with Gaussian modulation using coherent states
[353, 354].

Continuous-variable quantum key distribution and
other continuous-variable based cryptographic schemes
that are usually implemented by continuous modulation
of the light field quadratures (usually with the coherent
state [353] or squeezed state [355, 356] of light), are
important for various reasons. For example, they are im-
mune to some of the side-channel attacks that exploit
imperfections of single-photon detectors used in discrete-
variable quantum key distribution to cause leakage of
information. This is so because coherent detectors (im-
plementing homodyne or heterodyne detection) are used
in continuous-variable quantum key distribution.

Further, continuous-variable quantum key distribution
can be implemented using commercially available compo-
nents [357] since the seminal work in continuous-variable
quantum key distribution by Ralph in 1999 [351]. In
this and the subsequent works by Ralph and his col-
laborators [358], small phase and amplitude modula-
tions of continuous wave light beams were exploited to
carry the key information. Subsequently, many schemes
for continuous-variable quantum key distribution have
been proposed [124, 353, 354, 359–363] and security
proofs for a large set of those schemes have been pro-
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vided [78, 353, 364, 365], and interestingly some of the
security proofs are composable in nature (cf. [365] and
references therein). Continuous-variable quantum key
distribution has been experimentally realized by various
groups [366, 367]. For example, in [366, 367] experi-
mental realizations of long distance continuous-variable
quantum key distribution has been reported. However,
continuous-variable quantum key distribution is not im-
mune to all possible side channel attacks, and various
strategies to perform side channels attacks have been dis-
cussed in the recent past (cf. [349,357,368] and references
therein).

Although continuous-variable quantum key distribu-
tion protocols are not more complicated than their
discrete-variable quantum key distribution counterparts,
the security analysis in continuous-variable quantum key
distribution can be relatively involved, with different con-
siderations of hardware imperfections and noise mod-
els. See the recent review [369] and references therein,
where a less restricted notion of unconditional security in
continuous-variable quantum key distribution is consid-
ered. An earlier good overview covering the conceptual
issues but without detailed calculations is [370].

A composable security against general coherent attacks
for continuous-variable quantum key distribution that en-
codes via two-mode squeezed vacuum states and measure-
ment by homodyne detection, based on the uncertainty
relation formulated in terms of smooth entropies [371], is
given in [78]. Also, see [171] (Section 5.5).

Continuous-variable quantum key distribution has
been adapted to one-sided device-independent frame-
work [171, 172], which would be relevant when secure
hubs (such as banks) are linked to less secure satel-
lite stations. Continuous-variable quantum key distri-
bution has also been implemented in the measurement-
device-independent quantum key distribution framework
[372–374]. Here, Charlie measures the correlation be-
tween two Gaussian-modulated coherent states sent by Al-
ice and Bob. However, continuous-variable measurement-
device-independent quantum key distribution requires
homedyne detectors of efficiency over 85% to generate a
positive key rate [159], which has indeed been recently
attained [171, 374]. However, scaling up to an optical
network can be challenging because of losses in the de-
tector coupling and network interconnects (but see [375]).
Therefore, in the measurement-device-independent quan-
tum key distribution, for long distance communication,
discrete-variable based quantum key distribution is prefer-
able to continuous-variable based, though the promise of
high key rates makes continuous-variable measurement-
device-independent quantum key distribution an interest-
ing option to consider. Techniques proposed recently
may help realize a dependable phase reference for the

continuous-variable quantum key distribution systems
[360, 361, 376]. In a variant of this theme, quantum key
distribution can also be based on continuous variables
such as spatial or temporal degrees of freedom, which are
basically used for upscaling the dimension of the infor-
mation carrier in quantum key distribution. The spatial
degree of freedom of a photon can be used as the infor-
mation carrier, but this faces the technological challenge
of high-speed modulators being available [377, 378].

Continuous variable quantum key distribution can be
used to encode in large alphabets, such as the arrival
time of energy-time entangled photons [379], which was
proven secure against collective attacks [380] and also
realized experimentally, where it was found to achieve
a rate of 6.9 bits per coincidence detection across a dis-
tance of 20 km at a key rate of 2.7 MBits/s [381]. While
this advancement improves the key rate of entanglement
based schemes vis-a-vis prepare-and-measure quantum
key distribution methods, practical implementation would
require to meet the challenge of attaining high level of
interference visibility.

10 Post-quantum cryptography

Thus far, we have mentioned several schemes of quantum
cryptopgraphy, and noted that one of the main reasons
behind the enhanced interest in these schemes underlies
in the pioneering work of Shor [1], which entailed that if
a scalabale quantum computer could be built, then many
classical schemes for key exchange, encryption, authen-
tication, etc., would not remain secure, as the quantum
algorithms are capable of performing certain computa-
tionally difficult tasks (which are used to provide security
in classical system) much faster than their classical coun-
terparts. Specifically, in a post-quantum world (namely,
when a scalable quantum computer will be realized) RSA,
DSA, elliptic curve DSA (ECDSA), ECDH, etc., would
not remain secure [382].

Here, we draw the reader’s attention toward the point
that “quantum algorithm can only perform certain com-
putationally difficult tasks (which are used to provide
security in classical system) much faster than their classi-
cal counterparts”. This is so because until now there exist
only a few quantum algorithms that provide the required
speedup (cf. [383] for an interesting discussion on “Why
haven’t more quantum algorithms been found?”). This
leads to a few questions—What happens to those classical
cryptographic schemes which use such computationally
difficult problems that do not have a quantum algorithm
with required speedup? Can they be quantum resistant in
the sense that they can resist an adversary with a scalable
quantum computer?
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Efforts to answer these questions led to a new branch
of cryptography, known as post-quantum cryptography
that deals with families of classical crytographic schemes
which are expected to remain secure in a world where
practical, scalable quantum computers are available [384].
Such schemes are usually classified into six families [382]
such as:

Lattice-based cryptography. This includes all cryptosys-
tems that are based on lattice problems [385, 386].
These schemes are interesting as some of them are
provably secure under a worst-case hardness assump-
tion. However, it seems difficult to provide precise
estimates on the security of these schemes against
some well known techniques of cryptanalysis [382].

Code-based cryptography. This encryption system is
primarily based on error correcting codes. In these
type of schemes, there is trade-off between key sizes
and structures introduced into the codes. Added
structures reduces key size [387], but often allows
attacks [388]. A classic example of this type is
McEliece’s hidden-Goppa-code public key encryp-
tion system, which was introduced in 1978 [389]
and has not been broken until now [382].

Multivariate polynomial cryptography. This is based
on the computational difficulty associated in solving
a set of multivariate polynomials over finite fields.
Although, several schemes of this type have been
broken [390, 391], confidence of the community is
high on some of the schemes like Patarin’s scheme
for public-key-signature system that uses Hidden
Fields Equations (HFE) and Isomorphisms of Poly-
nomials (IP) [392].

Hash-based signatures. This includes schemes for
digital signatures constructed using hash functions
[393–395]. Although, several hash-based systems
have been broken in the past, confidence on the re-
cent hash-based schemes is very high.

Secret-key cryptography. Examples of type Advanced
Encryption Standard (AES), which is a symmetric
private key encryption algorithm, created by Joan
Daemen and Vincent Rijmen. A design goal be-
hind AES is efficiency in software and hardware and
software.

Other schemes not covered under the above mentioned
families.

Shor’s algorithm cannot be used to attack the cryp-
tosystems that belong to above families as the associated
computational tasks are different. However, Grover’s

algorithm may be used to attack some of the schemes,
but since Grover’s algorithm provides only a quadratic
speedup, an attack based on Grover’s algorithm may be
circumvented using longer keys. Thus, it is believed that
the schemes belonging to above families would remain
secure in the post-quantum world.

We have briefly mentioned about post-quantum cryp-
tography, an interesting facet of the modern cryptography
as without a mention of post-quantum cryptography any
discussion on quantum cryptography would remain in-
complete. However, it is not our purpose to discus these
schemes in detail. We conclude this short discussion on
post-quantum cryptography by noting that the confidence
of the cryptographic community in these schemes is a bit
artificial as it is impossible to prove that faster quantum
algorithms for all or some of the computationally difficult
problems used in these schemes will not be designed in fu-
ture. In brief, if a fast quantum algorithm for a task is not
available today, it does not mean that the same will not be
proposed tomorrow. Specifically, there is some practical
reasons for limited number of quantum algorithms that
can provide required speedup [383] and consequently, it
is difficult to strongly establish the security of the above
mentioned schemes in the post-quantum world.

11 Conclusions and perspectives

In this brief review, we covered a number of quantum
cryptographic topics besides quantum key distribution,
among them different crypto-tasks and cryptographic
frameworks. In a review of a vast area such as quantum
cryptography, it is, unfortunately, inevitable that some
important topics may not be covered. A case in point here
is the topic of quantum memory as applied to channel or
device attacks.

Theoretically, the main work ahead in the area is in ex-
tending security proofs in various scenarios to the compos-
able framework under the most general coherent attack.
The main practical challenges are perhaps developing on-
chip quantum cryptographic modules that are free from
side channels and able to be scale to global networks, by
integrating point-to-point quantum cryptographic links.
This may drive the search for proper trade-offs between
ease of implementation and resource usage, or between
reasonable security and economic feasibility.

Regarding the foundational implications of quantum
cryptography, an interesting question is whether the no-
go theorems that give security to quantum cryptography
can be used to derive quantum mechanics. R. Clifton et
al [396] presented a derivation of quantum mechanics
from three quantum cryptographic axioms, namely, no-
signaling, no-cloning and no bit commitment. J. Smolin

Quanta | DOI: 10.12743/quanta.v6i1.57 June 2017 | Volume 6 | Issue 1 | Page 25

http://dx.doi.org/10.12743/quanta.v6i1.57


[397] criticized this view by presenting a toy theory that
simulated these features but was not quantum mechan-
ics. In response, H. Halvorson and J. Bub [398] argued
that Smolin’s toy theory violated an independence reason-
able condition for spacelike separated systems assumed
in [396]. More recently, [184] have argued that gen-
eral probability theories for single systems can be dis-
tinguished between base theories, which feature a no-
cloning theorem, which similar to Spekkens’ toy theory
that defends an epistemic view of quantum states [399],
and contextual theories. The former supports a type of un-
conditional security in the framework of trusted devices,
whereas the latter allows a degree of device independence.

It is known that the usual definition of security in quan-
tum key distribution implies security under universal com-
position. However, keys produced by repeated runs of
quantum key distribution have been shown to degrade
gradually. It would be interesting to study direct secure
communication (Section 3) in the context of universal
composability, and the advantage of schemes for direct
secure communication, if any, over quantum key distribu-
tion under repeated usage.
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efficient solution to the socialist millionaires’ prob-
lem. Discrete Applied Mathematics 2001; 111(1–2):
23–36. doi:10.1016/S0166-218X(00)00342-5

[90] Wen X, Chen Y, Fang J. An inter-bank E-payment
protocol based on quantum proxy blind signature.
Quantum Information Processing 2013; 12(1): 549–
558. doi:10.1007/s11128-012-0398-3

[91] Huang W, Yang Y-H, Jia H-Y. Cryptanalysis and
improvement of a quantum communication-based
online shopping mechanism. Quantum Informa-
tion Processing 2015; 14(6): 2211–2225. doi:
10.1007/s11128-015-0958-4

[92] Zhao Z, Naseri M, Zheng Y. Secure quantum sealed-
bid auction with post-confirmation. Optics Com-
munications 2010; 283(16): 3194–3197. doi:10.
1016/j.optcom.2010.04.019

[93] Naseri M. Secure quantum sealed-bid auction. Op-
tics Communications 2009; 282(9): 1939–1943.
doi:10.1016/j.optcom.2009.01.026

[94] Yang Y-G, Naseri M, Wen Q-Y. Improved secure
quantum sealed-bid auction. Optics Communica-
tions 2009; 282(20): 4167–4170. doi:10.1016/j.
optcom.2009.07.010

[95] Piotrowski EW, Sładkowski J. Quantum En-
glish auctions. Physica A: Statistical Mechan-
ics and its Applications 2003; 318(3–4): 505–
515. arXiv:quant-ph/0108017, doi:10.1016/
S0378-4371(02)01533-9

[96] Piotrowski EW, Sładkowski J. Quantum auc-
tions: facts and myths. Physica A: Statistical
Mechanics and its Applications 2008; 387(15):

3949–3953. arXiv:0709.4096, doi:10.1016/j.
physa.2008.02.071

[97] Thapliyal K, Sharma RD, Pathak A. Protocols for
quantum binary voting. International Journal of
Quantum Information 2016; 15(1): 1750007. doi:
10.1142/S0219749917500071

[98] Jozsa R. Quantum effects in algorithms. In: Quan-
tum Computing and Quantum Communications:
First NASA International Conference, QCQC’98
Palm Springs, California, February 17–20, 1998
Selected Papers. Williams CP (editor), Berlin:
Springer, 1999, pp. 103–112. doi:10.1007/3-
540-49208-9_7

[99] Mitchison G, Jozsa R. Counterfactual computation.
Proceedings of the Royal Society of London. Se-
ries A: Mathematical, Physical and Engineering
Sciences 2001; 457(2009): 1175–1194. arXiv:
quant-ph/9907007, doi:10.1098/rspa.2000.
0714

[100] Hosten O, Rakher MT, Barreiro JT, Peters
NA, Kwiat PG. Counterfactual quantum com-
putation through quantum interrogation. Na-
ture 2006; 439(7079): 949–952. doi:10.1038/
nature04523

[101] Vaidman L. Impossibility of the counterfactual
computation for all possible outcomes. Physical Re-
view Letters 2007; 98(16): 160403. arXiv:quant-
ph/0610174, doi:10.1103/PhysRevLett.98.
160403

[102] Elitzur AC, Vaidman L. Quantum mechani-
cal interaction-free measurements. Foundations of
Physics 1993; 23(7): 987–997. arXiv:hep-th/
9305002, doi:10.1007/bf00736012

[103] Kwiat P, Weinfurter H, Herzog T, Zeilinger A, Ka-
sevich MA. Interaction-free measurement. Physi-
cal Review Letters 1995; 74(24): 4763–4766. doi:
10.1103/PhysRevLett.74.4763

[104] Akshata Shenoy H, Srikanth R, Srinivas T. Semi-
counterfactual cryptography. EPL (Europhysics Let-
ters) 2013; 103(6): 60008. doi:10.1209/0295-
5075/103/60008

[105] Akshata Shenoy H, Srikanth R. The wave-function
is real but nonphysical: A view from counterfactual
quantum cryptography. 2013: arXiv:1311.7127

[106] Sun Y, Wen Q-Y. Counterfactual quantum key dis-
tribution with high efficiency. Physical Review A

Quanta | DOI: 10.12743/quanta.v6i1.57 June 2017 | Volume 6 | Issue 1 | Page 31

http://arxiv.org/abs/1508.05237
http://arxiv.org/abs/1508.05237
http://dx.doi.org/10.1007/s11128-015-1207-6
http://dx.doi.org/10.1007/s11128-015-1207-6
http://arxiv.org/abs/1605.08363
http://dx.doi.org/10.1007/s11128-016-1508-4
http://dx.doi.org/10.1007/s11128-016-1508-4
http://dx.doi.org/10.1016/j.physleta.2004.06.009
http://dx.doi.org/10.1016/j.physleta.2004.06.009
http://dx.doi.org/10.1016/S0166-218X(00)00342-5
http://dx.doi.org/10.1007/s11128-012-0398-3
http://dx.doi.org/10.1007/s11128-015-0958-4
http://dx.doi.org/10.1007/s11128-015-0958-4
http://dx.doi.org/10.1016/j.optcom.2010.04.019
http://dx.doi.org/10.1016/j.optcom.2010.04.019
http://dx.doi.org/10.1016/j.optcom.2009.01.026
http://dx.doi.org/10.1016/j.optcom.2009.07.010
http://dx.doi.org/10.1016/j.optcom.2009.07.010
http://arxiv.org/abs/quant-ph/0108017
http://dx.doi.org/10.1016/S0378-4371(02)01533-9
http://dx.doi.org/10.1016/S0378-4371(02)01533-9
http://arxiv.org/abs/0709.4096
http://dx.doi.org/10.1016/j.physa.2008.02.071
http://dx.doi.org/10.1016/j.physa.2008.02.071
http://dx.doi.org/10.1142/S0219749917500071
http://dx.doi.org/10.1142/S0219749917500071
http://dx.doi.org/10.1007/3-540-49208-9_7
http://dx.doi.org/10.1007/3-540-49208-9_7
http://arxiv.org/abs/quant-ph/9907007
http://arxiv.org/abs/quant-ph/9907007
http://dx.doi.org/10.1098/rspa.2000.0714
http://dx.doi.org/10.1098/rspa.2000.0714
http://dx.doi.org/10.1038/nature04523
http://dx.doi.org/10.1038/nature04523
http://arxiv.org/abs/quant-ph/0610174
http://arxiv.org/abs/quant-ph/0610174
http://dx.doi.org/10.1103/PhysRevLett.98.160403
http://dx.doi.org/10.1103/PhysRevLett.98.160403
http://arxiv.org/abs/hep-th/9305002
http://arxiv.org/abs/hep-th/9305002
http://dx.doi.org/10.1007/bf00736012
http://dx.doi.org/10.1103/PhysRevLett.74.4763
http://dx.doi.org/10.1103/PhysRevLett.74.4763
http://dx.doi.org/10.1209/0295-5075/103/60008
http://dx.doi.org/10.1209/0295-5075/103/60008
http://arxiv.org/abs/1311.7127
http://dx.doi.org/10.12743/quanta.v6i1.57


2010; 82(5): 052318. doi:10.1103/PhysRevA.
82.052318

[107] Zhang S, Zhang B, Liu X-T. Improved direct coun-
terfactual quantum communication. 2014: arXiv:
1410.2769

[108] Yin Z-Q, Li H-W, Chen W, Han Z-F, Guo G-C.
Security of counterfactual quantum cryptography.
Physical Review A 2010; 82(4): 042335. doi:10.
1103/PhysRevA.82.042335

[109] Zhang S, Wang J, Tang CJ. Counterfactual attack
on counterfactual quantum key distribution. Euro-
physics Letters 2012; 98(3): 30012. doi:10.1209/
0295-5075/98/30012

[110] Zhang S, Wang J, Tang C-J. Security proof of
counterfactual quantum cryptography against gen-
eral intercept-resend attacks and its vulnerability.
Chinese Physics B 2012; 21(6): 060303. doi:
10.1088/1674-1056/21/6/060303

[111] Liu Y, Ju L, Liang X-L, Tang S-B, Tu G-LS,
Zhou L, Peng C-Z, Chen K, Chen T-Y, Chen Z-
B, Pan J-W. Experimental demonstration of coun-
terfactual quantum communication. Physical Re-
view Letters 2012; 109(3): 030501. doi:10.1103/
PhysRevLett.109.030501

[112] Yin Z-Q, Li H-W, Yao Y, Zhang C-M, Wang
S, Chen W, Guo G-C, Han Z-F. Counterfactual
quantum cryptography based on weak coherent
states. Physical Review A 2012; 86(2): 022313.
doi:10.1103/PhysRevA.86.022313

[113] Akshata Shenoy H, Srikanth R, Srinivas T. Coun-
terfactual quantum certificate authorization. Phys-
ical Review A 2014; 89(5): 052307. arXiv:1402.
2250, doi:10.1103/PhysRevA.89.052307

[114] Shenoy-Hejamadi A, Srikanth R. Counterfactual
distribution of Schrödinger cat states. Physical Re-
view A 2015; 92(6): 062308. arXiv:1506.03033,
doi:10.1103/PhysRevA.92.062308

[115] Salih H, Li Z-H, Al-Amri M, Zubairy MS.
Protocol for direct counterfactual quantum
communication. Physical Review Letters
2013; 110(17): 170502. arXiv:1206.2042,
doi:10.1103/PhysRevLett.110.170502

[116] Vaidman L. Comment on “Direct counterfactual
transmission of a quantum state”. Physical Review
A 2016; 93(6): 066301. doi:10.1103/PhysRevA.
93.066301

[117] Vaidman L. Counterfactuality of ‘counterfactual’
communication. Journal of Physics A: Mathemati-
cal and Theoretical 2015; 48(46): 465303. arXiv:
1410.2723, doi:10.1088/1751-8113/48/46/
465303

[118] Salih H, Li Z-H, Al-Amri M, Zubairy MS.
Salih et al. Reply. Physical Review Letters 2014;
112(20): 208902. doi:10.1103/PhysRevLett.
112.208902

[119] Gisin N. Optical communication with-
out photons. Physical Review A 2013;
88(3): 030301. arXiv:1304.8053, doi:

10.1103/PhysRevA.88.030301

[120] Cao Y, Li Y-H, Cao Z, Yin J, Chen Y-A, Yin H-L,
Chen T-Y, Ma X, Peng C-Z, Pan J-W. Direct coun-
terfactual communication via quantum Zeno effect.
Proceedings of the National Academy of Sciences
2017; 114(19): 4920–4924. doi:10.1073/pnas.
1614560114

[121] Guo Q, Cheng L-Y, Chen L, Wang H-F, Zhang S.
Counterfactual distributed controlled-phase gate for
quantum-dot spin qubits in double-sided optical mi-
crocavities. Physical Review A 2014; 90(4): 042327.
doi:10.1103/PhysRevA.90.042327

[122] Guo Q, Cheng L-Y, Chen L, Wang H-F, Zhang S.
Counterfactual quantum-information transfer with-
out transmitting any physical particles. Scientific
Reports 2015; 5: 8416. doi:10.1038/srep08416

[123] Salih H. Protocol for counterfactually transporting
an unknown qubit. Frontiers in Physics 2016; 3: 94.
doi:10.3389/fphy.2015.00094

[124] Braunstein SL, Pati AK. Quantum Information
with Continuous Variables. Dordrecht: Kluwer Aca-
demic Publishers, 2003. doi:10.1007/978-94-
015-1258-9

[125] Nauerth S, Fürst M, Schmitt-Manderbach T, Weier
H, Weinfurter H. Information leakage via side
channels in freespace BB84 quantum cryptogra-
phy. New Journal of Physics 2009; 11(6): 065001.
doi:10.1088/1367-2630/11/6/065001

[126] Rau M, Vogl T, Corrielli G, Vest G, Fuchs L,
Nauerth S, Weinfurter H. Spatial mode side chan-
nels in free-space QKD implementations. IEEE
Journal of Selected Topics in Quantum Electron-
ics 2015; 21(3): 187–191. doi:10.1109/JSTQE.
2014.2372008

Quanta | DOI: 10.12743/quanta.v6i1.57 June 2017 | Volume 6 | Issue 1 | Page 32

http://dx.doi.org/10.1103/PhysRevA.82.052318
http://dx.doi.org/10.1103/PhysRevA.82.052318
http://arxiv.org/abs/1410.2769
http://arxiv.org/abs/1410.2769
http://dx.doi.org/10.1103/PhysRevA.82.042335
http://dx.doi.org/10.1103/PhysRevA.82.042335
http://dx.doi.org/10.1209/0295-5075/98/30012
http://dx.doi.org/10.1209/0295-5075/98/30012
http://dx.doi.org/10.1088/1674-1056/21/6/060303
http://dx.doi.org/10.1088/1674-1056/21/6/060303
http://dx.doi.org/10.1103/PhysRevLett.109.030501
http://dx.doi.org/10.1103/PhysRevLett.109.030501
http://dx.doi.org/10.1103/PhysRevA.86.022313
http://arxiv.org/abs/1402.2250
http://arxiv.org/abs/1402.2250
http://dx.doi.org/10.1103/PhysRevA.89.052307
http://arxiv.org/abs/1506.03033
http://dx.doi.org/10.1103/PhysRevA.92.062308
http://arxiv.org/abs/1206.2042
http://dx.doi.org/10.1103/PhysRevLett.110.170502
http://dx.doi.org/10.1103/PhysRevA.93.066301
http://dx.doi.org/10.1103/PhysRevA.93.066301
http://arxiv.org/abs/1410.2723
http://arxiv.org/abs/1410.2723
http://dx.doi.org/10.1088/1751-8113/48/46/465303
http://dx.doi.org/10.1088/1751-8113/48/46/465303
http://dx.doi.org/10.1103/PhysRevLett.112.208902
http://dx.doi.org/10.1103/PhysRevLett.112.208902
http://arxiv.org/abs/1304.8053
http://dx.doi.org/10.1103/PhysRevA.88.030301
http://dx.doi.org/10.1103/PhysRevA.88.030301
http://dx.doi.org/10.1073/pnas.1614560114
http://dx.doi.org/10.1073/pnas.1614560114
http://dx.doi.org/10.1103/PhysRevA.90.042327
http://dx.doi.org/10.1038/srep08416
http://dx.doi.org/10.3389/fphy.2015.00094
http://dx.doi.org/10.1007/978-94-015-1258-9
http://dx.doi.org/10.1007/978-94-015-1258-9
http://dx.doi.org/10.1088/1367-2630/11/6/065001
http://dx.doi.org/10.1109/JSTQE.2014.2372008
http://dx.doi.org/10.1109/JSTQE.2014.2372008
http://dx.doi.org/10.12743/quanta.v6i1.57


[127] Boaron A, Korzh B, Houlmann R, Boso G,
Lim CCW, Martin A, Zbinden H. Detector-device-
independent quantum key distribution: security anal-
ysis and fast implementation. Journal of Applied
Physics 2016; 120(6): 063101. doi:10.1063/1.
4960093

[128] Zhao Y, Fung C-HF, Qi B, Chen C, Lo H-K.
Quantum hacking: experimental demonstration of
time-shift attack against practical quantum-key-
distribution systems. Physical Review A 2008; 78(4):
042333. doi:10.1103/PhysRevA.78.042333

[129] Lydersen L, Wiechers C, Wittmann C, Elser D,
Skaar J, Makarov V. Hacking commercial quan-
tum cryptography systems by tailored bright illu-
mination. Nature Photonics 2010; 4(10): 686–689.
doi:10.1038/nphoton.2010.214

[130] Lu H. Two-way deterministic quantum key dis-
tribution against passive detector side channel at-
tacks in the forward line. Quantum Information Pro-
cessing 2015; 14(10): 3827–3834. doi:10.1007/
s11128-015-1083-0

[131] Meda A, Degiovanni IP, Tosi A, Yuan Z, Brida G,
Genovese M. Quantifying backflash radiation to pre-
vent zero-error attacks in quantum key distribution.
Light: Science & Applications 2017; 6: e16261.
arXiv:1605.05562

[132] Lamas-Linares A, Kurtsiefer C. Breaking a quan-
tum key distribution system through a timing side
channel. Optics Express 2007; 15(15): 9388–9393.
doi:10.1364/oe.15.009388

[133] Ferrigno J, Hlavac M. When AES blinks: intro-
ducing optical side channel. IET Information Secu-
rity 2008; 2(3): 94–98. doi:10.1049/iet-ifs:
20080038

[134] Sun S-H, Xu F, Jiang M-S, Ma X-C, Lo H-K,
Liang L-M. Effect of source tampering in the se-
curity of quantum cryptography. Physical Review
A 2015; 92(2): 022304. doi:10.1103/PhysRevA.
92.022304

[135] Derkach I, Usenko VC, Filip R. Preventing side-
channel effects in continuous-variable quantum
key distribution. Physical Review A 2016; 93(3):
032309. doi:10.1103/PhysRevA.93.032309

[136] Muller A, Herzog T, Huttner B, Tittel W, Zbinden
H, Gisin N. “Plug and play” systems for quantum
cryptography. Applied Physics Letters 1997; 70(7):
793–795. arXiv:quant-ph/9611042, doi:10.
1063/1.118224

[137] Mayers D, Yao A. Quantum cryptography with
imperfect apparatus. Proceedings of the IEEE 54th
Annual Symposium on Foundations of Computer
Science, Palo Alto, California, November 8–11,
1998, pp. 503. arXiv:quant-ph/9809039, doi:
10.1109/sfcs.1998.743501

[138] Acı́n A, Massar S, Pironio S. Efficient quantum
key distribution secure against no-signalling eaves-
droppers. New Journal of Physics 2006; 8(8): 126.
doi:10.1088/1367-2630/8/8/126

[139] Scarani V, Gisin N, Brunner N, Masanes L,
Pino S, Acı́n A. Secrecy extraction from no-
signaling correlations. Physical Review A 2006;
74(4): 042339. arXiv:quant-ph/0606197, doi:
10.1103/PhysRevA.74.042339

[140] Masanes L, Renner R, Christandl M, Winter A,
Barrett J. Full security of quantum key distribution
from no-signaling constraints. IEEE Transactions
on Information Theory 2014; 60(8): 4973–4986.
arXiv:quant-ph/0606049, doi:10.1109/tit.
2014.2329417

[141] Masanes L. Universally composable privacy am-
plification from causality constraints. Physical
Review Letters 2009; 102(14): 140501. arXiv:
0807.2158, doi:10.1103/PhysRevLett.102.
140501

[142] Hänggi E, Renner R, Wolf S. Efficient device-
independent quantum key distribution. In: Advances
in Cryptology – EUROCRYPT 2010: 29th Annual
International Conference on the Theory and Appli-
cations of Cryptographic Techniques, French Riv-
iera, May 30 – June 3, 2010. Proceedings. Gilbert
H (editor), Berlin: Springer, 2010, pp. 216–234.
doi:10.1007/978-3-642-13190-5_11

[143] Pironio S, Acı́n A, Brunner N, Gisin N, Massar S,
Scarani V. Device-independent quantum key distri-
bution secure against collective attacks. New Jour-
nal of Physics 2009; 11(4): 045021. doi:10.1088/
1367-2630/11/4/045021

[144] Masanes L, Pironio S, Acı́n A. Secure device-
independent quantum key distribution with causally
independent measurement devices. Nature Commu-
nications 2011; 2: 238. arXiv:1009.1567, doi:
10.1038/ncomms1244

[145] Barrett J, Colbeck R, Kent A. Unconditionally
secure device-independent quantum key distribu-
tion with only two devices. Physical Review A

Quanta | DOI: 10.12743/quanta.v6i1.57 June 2017 | Volume 6 | Issue 1 | Page 33

http://dx.doi.org/10.1063/1.4960093
http://dx.doi.org/10.1063/1.4960093
http://dx.doi.org/10.1103/PhysRevA.78.042333
http://dx.doi.org/10.1038/nphoton.2010.214
http://dx.doi.org/10.1007/s11128-015-1083-0
http://dx.doi.org/10.1007/s11128-015-1083-0
http://arxiv.org/abs/1605.05562
http://dx.doi.org/10.1364/oe.15.009388
http://dx.doi.org/10.1049/iet-ifs:20080038
http://dx.doi.org/10.1049/iet-ifs:20080038
http://dx.doi.org/10.1103/PhysRevA.92.022304
http://dx.doi.org/10.1103/PhysRevA.92.022304
http://dx.doi.org/10.1103/PhysRevA.93.032309
http://arxiv.org/abs/quant-ph/9611042
http://dx.doi.org/10.1063/1.118224
http://dx.doi.org/10.1063/1.118224
http://arxiv.org/abs/quant-ph/9809039
http://dx.doi.org/10.1109/sfcs.1998.743501
http://dx.doi.org/10.1109/sfcs.1998.743501
http://dx.doi.org/10.1088/1367-2630/8/8/126
http://arxiv.org/abs/quant-ph/0606197
http://dx.doi.org/10.1103/PhysRevA.74.042339
http://dx.doi.org/10.1103/PhysRevA.74.042339
http://arxiv.org/abs/quant-ph/0606049
http://dx.doi.org/10.1109/tit.2014.2329417
http://dx.doi.org/10.1109/tit.2014.2329417
http://arxiv.org/abs/0807.2158
http://arxiv.org/abs/0807.2158
http://dx.doi.org/10.1103/PhysRevLett.102.140501
http://dx.doi.org/10.1103/PhysRevLett.102.140501
http://dx.doi.org/10.1007/978-3-642-13190-5_11
http://dx.doi.org/10.1088/1367-2630/11/4/045021
http://dx.doi.org/10.1088/1367-2630/11/4/045021
http://arxiv.org/abs/1009.1567
http://dx.doi.org/10.1038/ncomms1244
http://dx.doi.org/10.1038/ncomms1244
http://dx.doi.org/10.12743/quanta.v6i1.57


2012; 86(6): 062326. arXiv:1209.0435, doi:
10.1103/PhysRevA.86.062326

[146] Vazirani U, Vidick T. Fully device-independent
quantum key distribution. Physical Review Letters
2014; 113(14): 140501. arXiv:1210.1810, doi:
10.1103/PhysRevLett.113.140501

[147] Shalm LK, Meyer-Scott E, Christensen BG, Bier-
horst P, Wayne MA, Stevens MJ, Gerrits T, Glancy
S, Hamel DR, Allman MS, Coakley KJ, Dyer SD,
Hodge C, Lita AE, Verma VB, Lambrocco C, Tor-
torici E, Migdall AL, Zhang Y, Kumor DR, Farr
WH, Marsili F, Shaw MD, Stern JA, Abellán C,
Amaya W, Pruneri V, Jennewein T, Mitchell MW,
Kwiat PG, Bienfang JC, Mirin RP, Knill E, Nam
SW. Strong loophole-free test of local realism. Phys-
ical Review Letters 2015; 115(25): 250402. arXiv:
1511.03189, doi:10.1103/PhysRevLett.115.
250402

[148] Giustina M, Versteegh MAM, Wengerowsky S,
Handsteiner J, Hochrainer A, Phelan K, Steinlech-
ner F, Kofler J, Larsson J-Å, Abellán C, Amaya
W, Pruneri V, Mitchell MW, Beyer J, Gerrits T,
Lita AE, Shalm LK, Nam SW, Scheidl T, Ursin R,
Wittmann B, Zeilinger A. Significant-loophole-free
test of Bell’s theorem with entangled photons. Phys-
ical Review Letters 2015; 115(25): 250401. arXiv:
1511.03190, doi:10.1103/PhysRevLett.115.
250401

[149] Wu X, Cai Y, Yang TH, Le HN, Ban-
cal J-D, Scarani V. Robust self-testing of the
three-qubit W state. Physical Review A 2014;
90(4): 042339. arXiv:1407.5769, doi:10.
1103/PhysRevA.90.042339

[150] Kaniewski J. Self-testing of binary observables
based on commutation. 2017: arXiv:1702.06845

[151] Lim CCW, Portmann C, Tomamichel M, Ren-
ner R, Gisin N. Device-independent quantum key
distribution with local Bell test. Physical Review
X 2013; 3(3): 031006. arXiv:1208.0023, doi:
10.1103/PhysRevX.3.031006

[152] Branciard C, Cavalcanti EG, Walborn SP, Scarani
V, Wiseman HM. One-sided device-independent
quantum key distribution: security, feasibility, and
the connection with steering. Physical Review A
2012; 85(1): 010301. arXiv:1109.1435, doi:
10.1103/PhysRevA.85.010301

[153] Zhou C, Bao W-S, Zhang H-l, Li H-W, Wang Y,
Li Y, Wang X. Biased decoy-state measurement-
device-independent quantum key distribution with
finite resources. Physical Review A 2015; 91(2):
022313. doi:10.1103/PhysRevA.91.022313

[154] Pawłowski M, Brunner N. Semi-device-
independent security of one-way quan-
tum key distribution. Physical Review A
2011; 84(1): 010302. arXiv:1103.4105,
doi:10.1103/PhysRevA.84.010302

[155] Woodhead E. Semi device independence of the
BB84 protocol. New Journal of Physics 2016;
18(5): 055010. doi:10.1088/1367-2630/18/5/
055010

[156] Biham E, Huttner B, Mor T. Quantum crypto-
graphic network based on quantum memories. Phys-
ical Review A 1996; 54(4): 2651–2658. arXiv:
quant-ph/9604021, doi:10.1103/PhysRevA.
54.2651

[157] Inamori. Security of practical time-reversed EPR
quantum key distribution. Algorithmica 2002; 34(4):
340–365. doi:10.1007/s00453-002-0983-4

[158] Curty M, Xu F, Cui W, Lim CCW, Tamaki
K, Lo H-K. Finite-key analysis for measurement-
device-independent quantum key distribution. Na-
ture Communications 2014; 5: 3732. doi:10.
1038/ncomms4732

[159] Xu F, Curty M, Qi B, Lo HK. Measurement-
device-independent quantum cryptography. IEEE
Journal of Selected Topics in Quantum Electronics
2015; 21(3): 6601111. arXiv:1409.5157, doi:
10.1109/jstqe.2014.2381460

[160] Liu Y, Chen T-Y, Wang L-J, Liang H, Shentu G-
L, Wang J, Cui K, Yin H-L, Liu N-L, Li L, Ma
X, Pelc JS, Fejer MM, Peng C-Z, Zhang Q, Pan J-
W. Experimental measurement-device-independent
quantum key distribution. Physical Review Letters
2013; 111(13): 130502. arXiv:1209.6178, doi:
10.1103/PhysRevLett.111.130502

[161] Tang Y-L, Yin H-L, Chen S-J, Liu Y, Zhang W-
J, Jiang X, Zhang L, Wang J, You L-X, Guan
J-Y, Yang D-X, Wang Z, Liang H, Zhang Z,
Zhou N, Ma X, Chen T-Y, Zhang Q, Pan J-W.
Measurement-device-independent quantum key dis-
tribution over 200 km. Physical Review Letters
2014; 113(19): 190501. arXiv:1407.8012, doi:
10.1103/PhysRevLett.113.190501

Quanta | DOI: 10.12743/quanta.v6i1.57 June 2017 | Volume 6 | Issue 1 | Page 34

http://arxiv.org/abs/1209.0435
http://dx.doi.org/10.1103/PhysRevA.86.062326
http://dx.doi.org/10.1103/PhysRevA.86.062326
http://arxiv.org/abs/1210.1810
http://dx.doi.org/10.1103/PhysRevLett.113.140501
http://dx.doi.org/10.1103/PhysRevLett.113.140501
http://arxiv.org/abs/1511.03189
http://arxiv.org/abs/1511.03189
http://dx.doi.org/10.1103/PhysRevLett.115.250402
http://dx.doi.org/10.1103/PhysRevLett.115.250402
http://arxiv.org/abs/1511.03190
http://arxiv.org/abs/1511.03190
http://dx.doi.org/10.1103/PhysRevLett.115.250401
http://dx.doi.org/10.1103/PhysRevLett.115.250401
http://arxiv.org/abs/1407.5769
http://dx.doi.org/10.1103/PhysRevA.90.042339
http://dx.doi.org/10.1103/PhysRevA.90.042339
http://arxiv.org/abs/1702.06845
http://arxiv.org/abs/1208.0023
http://dx.doi.org/10.1103/PhysRevX.3.031006
http://dx.doi.org/10.1103/PhysRevX.3.031006
http://arxiv.org/abs/1109.1435
http://dx.doi.org/10.1103/PhysRevA.85.010301
http://dx.doi.org/10.1103/PhysRevA.85.010301
http://dx.doi.org/10.1103/PhysRevA.91.022313
http://arxiv.org/abs/1103.4105
http://dx.doi.org/10.1103/PhysRevA.84.010302
http://dx.doi.org/10.1088/1367-2630/18/5/055010
http://dx.doi.org/10.1088/1367-2630/18/5/055010
http://arxiv.org/abs/quant-ph/9604021
http://arxiv.org/abs/quant-ph/9604021
http://dx.doi.org/10.1103/PhysRevA.54.2651
http://dx.doi.org/10.1103/PhysRevA.54.2651
http://dx.doi.org/10.1007/s00453-002-0983-4
http://dx.doi.org/10.1038/ncomms4732
http://dx.doi.org/10.1038/ncomms4732
http://arxiv.org/abs/1409.5157
http://dx.doi.org/10.1109/jstqe.2014.2381460
http://dx.doi.org/10.1109/jstqe.2014.2381460
http://arxiv.org/abs/1209.6178
http://dx.doi.org/10.1103/PhysRevLett.111.130502
http://dx.doi.org/10.1103/PhysRevLett.111.130502
http://arxiv.org/abs/1407.8012
http://dx.doi.org/10.1103/PhysRevLett.113.190501
http://dx.doi.org/10.1103/PhysRevLett.113.190501
http://dx.doi.org/10.12743/quanta.v6i1.57


[162] Takeoka M, Guha S, Wilde MM. Fundamental rate-
loss tradeoff for optical quantum key distribution.
Nature Communications 2014; 5: 5235. doi:10.
1038/ncomms6235
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