16 research outputs found

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas

    Document image enhancement

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Automated framework for robust content-based verification of print-scan degraded text documents

    Get PDF
    Fraudulent documents frequently cause severe financial damages and impose security breaches to civil and government organizations. The rapid advances in technology and the widespread availability of personal computers has not reduced the use of printed documents. While digital documents can be verified by many robust and secure methods such as digital signatures and digital watermarks, verification of printed documents still relies on manual inspection of embedded physical security mechanisms.The objective of this thesis is to propose an efficient automated framework for robust content-based verification of printed documents. The principal issue is to achieve robustness with respect to the degradations and increased levels of noise that occur from multiple cycles of printing and scanning. It is shown that classic OCR systems fail under such conditions, moreover OCR systems typically rely heavily on the use of high level linguistic structures to improve recognition rates. However inferring knowledge about the contents of the document image from a-priori statistics is contrary to the nature of document verification. Instead a system is proposed that utilizes specific knowledge of the document to perform highly accurate content verification based on a Print-Scan degradation model and character shape recognition. Such specific knowledge of the document is a reasonable choice for the verification domain since the document contents are already known in order to verify them.The system analyses digital multi font PDF documents to generate a descriptive summary of the document, referred to as \Document Description Map" (DDM). The DDM is later used for verifying the content of printed and scanned copies of the original documents. The system utilizes 2-D Discrete Cosine Transform based features and an adaptive hierarchical classifier trained with synthetic data generated by a Print-Scan degradation model. The system is tested with varying degrees of Print-Scan Channel corruption on a variety of documents with corruption produced by repetitive printing and scanning of the test documents. Results show the approach achieves excellent accuracy and robustness despite the high level of noise

    Vision-based Detection of Mobile Device Use While Driving

    Get PDF
    The aim of this study was to explore the feasibility of an automatic vision-based solution to detect drivers using mobile devices while operating their vehicles. The proposed system comprises of modules for vehicle license plate localisation, driver’s face detection and mobile phone interaction. The system were then implemented and systematically evaluated using suitable image datasets. The strengths and weaknesses of individual modules were analysed and further recommendations made to improve the overall system’s performance

    Recent Application in Biometrics

    Get PDF
    In the recent years, a number of recognition and authentication systems based on biometric measurements have been proposed. Algorithms and sensors have been developed to acquire and process many different biometric traits. Moreover, the biometric technology is being used in novel ways, with potential commercial and practical implications to our daily activities. The key objective of the book is to provide a collection of comprehensive references on some recent theoretical development as well as novel applications in biometrics. The topics covered in this book reflect well both aspects of development. They include biometric sample quality, privacy preserving and cancellable biometrics, contactless biometrics, novel and unconventional biometrics, and the technical challenges in implementing the technology in portable devices. The book consists of 15 chapters. It is divided into four sections, namely, biometric applications on mobile platforms, cancelable biometrics, biometric encryption, and other applications. The book was reviewed by editors Dr. Jucheng Yang and Dr. Norman Poh. We deeply appreciate the efforts of our guest editors: Dr. Girija Chetty, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park and Dr. Sook Yoon, as well as a number of anonymous reviewers

    Fast Binarization of Unevenly Illuminated Document Images Based on Background Estimation for Optical Character Recognition Purposes

    No full text
    One of the key operations during the image preprocessing step in Optical Character Recognition (OCR) algorithms is image binarization. Although for uniformly illuminated images, obtained typically by atbed scanners, the use of a single global threshold may be sufficient for further recognition of individual characters, it cannot be applied directly in case of non-uniform lightened document images. Such problem may occur during capturing photos of documents in unknown lighting conditions making a proper text recognition impossible in some parts of the image. Since the application of popular adaptive thresholding methods, e.g. Niblack, Sauvola and their modifications, based on the analysis of the neighbourhood of each pixel is time consuming, a faster solution might be the division of images into blocks or elimination of non-uniform background. Such an approach can be considered as a balance solution filling the gap between global and local adaptive thresholding. The solution proposed in the paper, useful also for various mobile devices due to limited computational requirements, is based on the approximation of lighting distribution of the background using the reduced resolution images. The proposed method allows to obtain very good OCR results being superior in comparison to typical adaptive binarization algorithms both in terms of the resulting OCR accuracy and computational efficiency

    A practical vision system for the detection of moving objects

    Get PDF
    The main goal of this thesis is to review and offer robust and efficient algorithms for the detection (or the segmentation) of foreground objects in indoor and outdoor scenes using colour image sequences captured by a stationary camera. For this purpose, the block diagram of a simple vision system is offered in Chapter 2. First this block diagram gives the idea of a precise order of blocks and their tasks, which should be performed to detect moving foreground objects. Second, a check mark () on the top right corner of a block indicates that this thesis contains a review of the most recent algorithms and/or some relevant research about it. In many computer vision applications, segmenting and extraction of moving objects in video sequences is an essential task. Background subtraction has been widely used for this purpose as the first step. In this work, a review of the efficiency of a number of important background subtraction and modelling algorithms, along with their major features, are presented. In addition, two background approaches are offered. The first approach is a Pixel-based technique whereas the second one works at object level. For each approach, three algorithms are presented. They are called Selective Update Using Non-Foreground Pixels of the Input Image , Selective Update Using Temporal Averaging and Selective Update Using Temporal Median , respectively in this thesis. The first approach has some deficiencies, which makes it incapable to produce a correct dynamic background. Three methods of the second approach use an invariant colour filter and a suitable motion tracking technique, which selectively exclude foreground objects (or blobs) from the background frames. The difference between the three algorithms of the second approach is in updating process of the background pixels. It is shown that the Selective Update Using Temporal Median method produces the correct background image for each input frame. Representing foreground regions using their boundaries is also an important task. Thus, an appropriate RLE contour tracing algorithm has been implemented for this purpose. However, after the thresholding process, the boundaries of foreground regions often have jagged appearances. Thus, foreground regions may not correctly be recognised reliably due to their corrupted boundaries. A very efficient boundary smoothing method based on the RLE data is proposed in Chapter 7. It just smoothes the external and internal boundaries of foreground objects and does not distort the silhouettes of foreground objects. As a result, it is very fast and does not blur the image. Finally, the goal of this thesis has been presenting simple, practical and efficient algorithms with little constraints which can run in real time

    High speed event-based visual processing in the presence of noise

    Get PDF
    Standard machine vision approaches are challenged in applications where large amounts of noisy temporal data must be processed in real-time. This work aims to develop neuromorphic event-based processing systems for such challenging, high-noise environments. The novel event-based application-focused algorithms developed are primarily designed for implementation in digital neuromorphic hardware with a focus on noise robustness, ease of implementation, operationally useful ancillary signals and processing speed in embedded systems

    Biometric Systems

    Get PDF
    Biometric authentication has been widely used for access control and security systems over the past few years. The purpose of this book is to provide the readers with life cycle of different biometric authentication systems from their design and development to qualification and final application. The major systems discussed in this book include fingerprint identification, face recognition, iris segmentation and classification, signature verification and other miscellaneous systems which describe management policies of biometrics, reliability measures, pressure based typing and signature verification, bio-chemical systems and behavioral characteristics. In summary, this book provides the students and the researchers with different approaches to develop biometric authentication systems and at the same time includes state-of-the-art approaches in their design and development. The approaches have been thoroughly tested on standard databases and in real world applications
    corecore