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Abstract

Standard machine vision approaches are challenged in applications where large amounts

of noisy temporal data must be processed in real-time. This work aims to develop neur-

omorphic event-based processing systems for such challenging, high-noise environments.

The novel event-based application-focused algorithms developed are primarily designed for

implementation in digital neuromorphic hardware with a focus on noise robustness, ease of

implementation, operationally useful ancillary signals and processing speed in embedded

systems.

One stream of research within the neuromorphic engineering space is modelling biological

nervous systems in hardware. In this work however, instead of trying to model the complex

phenomenological details of observed brain activity and circuitry, we focus on the constraints

and requirements many high noise applications share with biological environments. By

probing the large search space of potential hardware solutions to real-time temporal data

processing in high-noise applications, this work seeks to develop functionally equivalent

cognitive processes as occur in the brain in the same decentralized noise-robust manner and,

importantly, through the use of time itself as the central processing variable.

Several new and challenging event-based datasets are designed and presented. The datasets

all involve challenging tasks performed in high speed and in the presence of significant noise.

These datasets are generated for investigation of different aspects of event-based processing

and use a range of the event-based sensors from multiple providers as well as Single Photon

Avalanche Diode (SPAD) imagers.

A wide range of event-based surface generation, surface processing and feature extraction

methods are investigated, highlighting design trade-offs for the development of efficient

hardware implementation. The performance details of a recognition system implemented

in FPGA hardware is discussed. A novel event-based SPAD imager design, which was

also implemented in custom hardware, is presented and discussed. In addition several other
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possible event-based SPAD imager designs are introduced and evaluated on a new SPAD

dataset.

The first event-based space imaging dataset is presented. A number of detection and

tracking algorithms are evaluated on this large challenging and highly noisy dataset. The

dataset and the algorithm investigation results show the significant differences between

controlled terrestrial event-based data streams and real-world uncontrolled environments,

highlighting the different requirements and solutions involved in high-speed event-based

processing in high-noise environments.

The datasets presented and the algorithms developed, demonstrate the utility of event-

based processing in high speed noisy applications. The methods developed take advantage of

the sparse temporal nature of event-based data streams to perform rapid processing during

time intervals with high activity while limiting processing during periods low activity. Finally,

redundancies in the types of features observed in event-based data enable optimizations that

simplify the proposed algorithms and allow their implementation in neuromorphic hardware.
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CHAPTER 1

Introduction

The field of Neuromorphic Engineering seeks to improve-state-of-the-art-sensing and pro-

cessing technologies by borrowing solutions and principles from biology. Biological nervous

systems, which Neuromorphic systems aim to model, are first and foremost weapons of

war. From the beginning of their evolution five hundred and fifty million years ago, nervous

systems have been under intense selective pressure for optimized speed, hardware and sig-

nal efficiency and survival in noisy low-information environments [1]. Biological visual

systems, for instance, have no intrinsic use for high fidelity information capture or storage

and count success exclusively as the ability to generate ecologically relevant output signals

which prevent death before procreation under specific frequently encountered conditions. It so

happens that the most ecologically critical visual environments, such as during predator-prey

interactions, are noisy, dynamic and time-critical [2]. Furthermore, biological sensory systems

such as the mammalian retina are themselves noisy event-based sensors which operate at

close to their activation threshold in order to maximize information capture and minimize

response time [3].

Given these factors, it would indeed be remarkable if biological vision systems were not

optimized for operation in noisy environments. In contrast, conventional cameras and other

imagers seek to encode the value of their observed inputs with perfect accuracy at the max-

imum possible resolution. Similarly, in the field of machine vision which typically operates

on these high fidelity signals, algorithm accuracy is prized far above other performance

measures with an outsized focus on small accuracy improvements on highly constrained

carefully generated datasets. Thus, in contrast to most research in neuromorphic vision, in

3



4 1 INTRODUCTION

the wider machine vision field, hardware implementability and algorithm robustness in high

noise environments are not critical design factors.

Given their contrasting origins and design requirements, it is unsurprising that conventional

machine vision algorithms and biologically inspired vision systems operate on entirely

different principles.

1.1 Neuromorphic Sensing

Neuromorphic sensors emulate the perceptual power of biological sensors via two critical

principles. First, neuromorphic sensors efficiently encode sensory information into time itself.

By converting a highly detailed sensory environment into spikes, bio-inspired sensors use the

relative timing of spikes and/or their rate to encode a wide range of information with arbitrary

precision, reliability, speed or bandwidth depending on the application requirements.

The second way neuromorphic sensors emulate the efficiency of biology is through focusing

on encoding change. While conventional man-made sensors seek to continuously and reliably

encode the absolute value of their inputs at the maximum possible resolution regardless of

how much data is generated, biological sensors cannot afford to waste their sensory and

processing hardware on useless, redundant information. Since living things live and die based

on how quickly and energy efficiently they respond to their unpredictable noisy environment,

their sensors are focused only on change because sensory change is the signal for initiation or

modification of behavior. Similarly, by only encoding sensory change, bio-inspired sensors

drastically reduce the sensory information reported to higher levels of processing and keep

the processing system focused on high-speed reaction to behaviorally relevant stimuli at the

expense of sensory fidelity and resolution. The two drastically different approaches taken in

conventional sensing and neuromorphic event-based sensing are illustrated in Figure 1.1.
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FIGURE 1.1: Comparison of conventional sensing with Neuromorphic
sensing. Top left panel shows the true continuous signal. Bottom left shows
the conventional approach to signal encoding via high resolution quantization.
Right panels shows how neuromorphic sensing encodes sensory change into
spikes or events.

1.2 Brains vs Machines

The field of machine vision is today the subject of intense research. This recent interest,

enabled by the greater availability of ever more powerful computing resources and recent

developments in machine learning, has resulted in an expansion of applications where com-

puters directly interface with and process visual input. From smart phones that detect a smile

to automated breast cancer screenings to driverless cars, the field of machine vision is increas-

ingly entering daily life and is set to expand rapidly, enabling computers to interact with the

external world without the need for constant human supervision, thus greatly expanding their

utility.

Yet the visual processing performance delivered by these advances is dwarfed by the three-

pound, twenty-watt "supercomputer" reading these words. The Google brain project is

illustrative were the Google X labs using deep belief networks and sixteen thousand cores
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processing ten million YouTube videos over three days was able to achieve a 74.8 percent

accuracy rate in identifying cats in YouTube videos [4]. The human brain is indeed the ultimate

visual processor but even for us, vision is hard. Despite more than five hundred million years

of evolution optimizing the visual processing system, nearly half the primate brain is devoted

to vision [5]. The field of human and primate vision is one of the most intensely investigated

areas in neuroscience. With the recent advent of new imaging technologies such as functional

magnetic resonance imaging at the network scale and two-photon imaging at the micro-circuit

scale, we have now begun to glimpse the inner workings of this complex system [6].

The way the brain processes visual information is radically different from the algorithms

used in computer vision. The brain has no software, no CPU, no dedicated memory and

signal speeds in the low meters per second. It processes all information in parallel through a

distributed network of stochastic neurons utilizing the temporal information embedded in their

spiking activity to produce a "neural code”. The simplest neural code which has traditionally

been used in the field of Artificial Neural Networks is rate coding where a neuron encodes

signal information in its output spike rate. This scheme, while mathematically amenable,

incurs a significant energy cost by discarding the rich temporal information available in spike

patterns and requiring many spikes per input channel to transmit a rate-based signal. In

contrast, temporal coding encodes information in the timing of spike. Temporal coding plays

a central part in the energy-efficient operation of the brain. This is because many more spikes

per input channel are required in a rate coding scheme to transmit a real-valued rate compared

to a single spike per channel which is needed in temporal coding for the transmission of

inter-spike interval information[7][8]. In contrast to this efficient encoding scheme, Machine

vision is based on the sequential execution of specialized software running on general-purpose

deterministic processors with the canonical von Neumann architecture where instructions and

data are fetched from memory and executed one at a time with the result stored back into

memory. This so the called ‘von Neumann bottleneck’ in computing [9] which neuromorphic

processors, as well as more conventional GPU systems, attempt to bypass. An area where

engineered digital representation of information is superior to spike-based or any form of

analog encoding is in the ability to encode arbitrary precision in the form of additional digital

bits. Spike-based encoding schemes, as well as other analog representations of information,
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are always limited in precision by noise. However, in most real-world vision applications, the

high precision provided by digital processors is wasted due to the inherent noise in the initial

input signal which makes high precision computing irrelevant [10].

Vision, more than any other computing task, is inherently a parallel processing problem where

many features in the entire visual scene can at any moment be potentially significant and

require detailed processing [11]. Thus inherent incongruity between the problem of vision

and our classical computing architecture is one of the reasons for the great gap in performance

that still exists between biological and machine visual processing systems and serves as the

motivation for investigation of alternate bio-inspired visual processing architectures. Over the

last decade a range of such novel bio-inspired architectures have been presented for visual

processing from the field of neuromorphic engineering.

Another central difference between brains and computers is the ways in which learning,

memory and recognition are realized. In computers every piece of information or instruction

exists as an exact digital value in a precise address in memory from which it can be accessed

by the central processor in highly organized fashion during the execution cycle. While this

precision model of memory is enormously powerful for solving deterministic problems like

calculating the value of pi to the millionth decimal place, in the context of real-world vision

it is entirely inappropriate where the incoming visual signal and even the concepts to be

learnt and recognized (such as a tree) are inherently noisy and probabilistic. Here the extreme

precision built into classical computing is wasted, witnessed by the fact that machine vision

algorithms need to introduce significant noise into otherwise deterministic recognition systems

in order to add generality and improve performance. This realization has led to the emergence

of the field of stochastic computation and stochastic electronics where the probabilistic nature

of electronic circuits is utilized to enhance system performance [10].

On the biological side, the mechanisms by which the brain performs learning, memory and

recognition are still not well understood. There exist many proposed models with several

overarching themes including synaptic adaptation, rate and temporal coding, localized and

distributed information and statistical inference via system dynamics, but unfortunately these

abstract models cannot capture the deep underlying complexities of neural systems and
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offer little predictive power. It is likely that the brain uses a wide range of highly complex

mechanisms in different contexts to generate a very large dynamic space within which

information is encoded.

Although lacking a complete model, there are important constraints on the brain which are

useful for the purposes of engineering alternative learning and memory architectures. Among

these is the lack of centralized control. From an engineer’s perspective, this constraint can be

seen as an extremely limiting handicap. Without a centralized controller such as the control

unit in a CPU, the different elements of a dynamical system seemingly cannot be directed

to work together in a coordinated fashion, the fundamental property by which systems are

actually defined. Yet distributed, decentralized systems can indeed operate with remarkable

effectiveness and can have the benefits of simplicity, scalability and speed [10][12].

Here again researchers in the field of neuromorphic engineering have proposed novel ar-

chitectures which operate via distributed temporal architectures [13–15] and the Synaptic

Kernel Adaptation Network proposed by this author [16]. In this context neuromorphic

engineering takes a discovery-by-design approach to neuroscience, aiming to discover the

underlying computational principles at work in the brain by designing efficient systems that

perform functionally equivalent cognitive tasks as occurs in the brain in the same decentral-

ized probabilistic manner and importantly by the use of time itself as the central processing

variable.

1.2.1 AER Overcoming the Challenge of Connectivity

One of the most important bottlenecks in the design of neuromorphic vision systems is the

requirement for high connectivity between a large number of neurons. One of the techniques

used in neuromorphic engineering is the use of Address Event Representation. In this

method, events generated by a sensor or a processor are time-stamped using a local encoder

augmented with critical information such as their address which in vision is typically the

x and y coordinates of the pixel generating the event. These events are then processed by

arbiters and transmitted over digital buses as a stream of events. This is in contrast to the
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standard frame-based approach where the values of all sensor cells are communicated in serial

or parallel at regular intervals regardless of their information content. AER has become the

standard interfacing protocol in neuromorphic engineering, specifically for multi-chip systems

[17] but also in terms of intra-chip communication in mixed-signal devices. AER is ideally

suited to event-based neuromorphic applications which often process sparse events from a

large number of sources through narrow bandwidth interfaces [18]. The AER protocol has

been successfully used in neuromorphic processors such as SpiNNaker [19] and TrueNorth

[20] and neuromorphic models of the auditory pathway [21]. But arguably the greatest utility

of the AER protocol has been in event-based neuromorphic vision where the combination of

high spatial resolution and sparse event generation rates gives the AER protocol the greatest

advantage over conventional frame-based communication protocols [22, 23].

1.3 Neuromorphic Vision Sensors

The field of Neuromorphic vision sensors begun with the development of the first silicon retina

by Mahowald and Mead [3]. This device incorporated many of the characteristics found in the

current generation of silicon retina. These characteristics include adaptive photoreceptors and

spatial smoothing networks. However, the device lacked the asynchronous communication

paradigm which is central to the operation of current-generation silicon retinas and as was

restricted to its output being scanned directly onto a multi-sync monitor.

Although that device was intended only for demonstrative purposes, it led to a succession of

future sensors that refined and improved the underlying technologies. Zaghoul and Boahen

implemented more detailed biologically-inspired models with both transient and sustained

cell types [24, 25]. This circuit however suffered from large transistor mismatch, highly

variable pixel firing rates and a relatively low dynamic range. The focus for this chip however

was to model biology, rather than producing a device for real-world applications.

A more application-oriented device was the dual-output sensor from Rüedi et al [26]. This

device was one of the first sensors to offer two outputs: a change measurement and an absolute

illumination measurement. This device made use of a global integration time for all pixels,
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but presented the output in the order of the highest to lowest spatial contrast. Although not

event-based, this sensor had the ability to stop the output from the absolute illumination

circuit when enough spatial contrast data had been received. The temporal resolution of the

sensor was still limited by the frame rate of the device and the camera itself did not perform

any temporal redundancy suppression. The devices were later specialized for automotive

applications [27].

Mallik et al. produced an imaging chip in which the individual pixels were capable of

responding to quantized changes in absolute light intensity [28]. It offered both a traditional

Active Pixel Sensor (APS) output and an output that responds to changes and motion in the

scene. This sensor also included the change detection circuitry in each pixel, allowing for the

technology to theoretically scale to larger arrays. The sensor only responded to changes in

absolute illumination and not relative illumination, which limited the effective dynamic range

of the device. The device was also frame-based, with an additional FIFO structure to handle

the change events, which thereby limited the temporal resolution of the change detection to

the frame rate.

It was the work by Kramer [29] which set the foundation for the current approach to event-

based sensing. His paper introduced a 48×48 pixel imaging sensor that outputted ON/OFF

events using an asynchronous binary address bus. The chip made use of a feedback loop,

allowing it to respond to relative changes in illumination and effectively allowing the pixels

to adapt to the background illumination. This circuit was then improved by Lichtsteiner,

Delbruck and Kramer [30], increasing operating range and the symmetry of the ON and OFF

channels. This sensor was followed by a 128 ×128 pixel event-based sensor from Lichtsteiner,

Posch and Delbruck [31] which greatly improved the spatial contrast sensitivity. Elaborating

on this work led to the first Dynamic Vision Sensor (DVS) [32]. As shown in Figure 1.2 this

DVS sensor which has been the basis of most later silicon retinas uses an adaptive change

detection circuit that generates events in response to the log change in illumination. In this

design, every pixel operates independently and asynchronously producing ON and OFF events

when the increase or decrease in illumination passes a preset upper or lower. Thus, the DVS

camera does not operate using a global shutter but transmits information only in response to
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FIGURE 1.2: The DVS pixel functional block diagram and description of
the mode of operation of an event-based DVS pixel. In the top panel, the
block diagram of the DVS pixel is shown detailing how changes in illumination
at the photodiode are passed to a change detection circuit which generates
output events. The middle two panels show an example input stimulus where
a person walks against a static background with the illumination level at the
indicated pixel plotted in blue. The bottom right panel shows the event-based
output generated by the scene demonstrating how increases in illumination
cause ON events (white) and decreases in illumination cause OFF events
(black). The red plot in the lower-left panel shows the change in illumination
over time for the indicated pixel showing an initial rise and corresponding ON
events followed by a fall in illumination which triggers OFF events.

new stimuli effectively performing data compression at the sensor. This event-based mode of

operation where independent, asynchronous pixels generate events in response to stimulus

change that crosses a threshold, is the basis of almost all current neuromorphic vision sensors.

Whereas the above technologies all directly influenced the development of event-based

imagers currently being used, there were many other types of sensors developed. These
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sensors also embodied the neuromorphic approach and offered different scene representations,

often providing additional capabilities over conventional imagers. Culurciello and Andreou

produced an imager which reported the absolute light intensity at each pixel through an

event-based mechanism using inter-event times [33]. However, the output bandwidth in these

devices were inherently linked to the scene luminance, causing problems when imaging dark

scenes with sparse but relatively bright features. This can be attributed to the lack of a reset

feature for each pixel integration time, but did have the advantage of allowing for a small

pixel size.

Another particularly relevant camera technology was the Time-To-First-Spike imager de-

veloped by Guo and Harris [34], in which the time between events for each pixel and a

reference frame directly encodes the absolute light intensity. Chen and Bermak also produced

a Time-To-First-Spike sensor which implements an enforced post-spiking delay to prevent

saturating the output bus with the events generated by bright pixels [35]. This technology

improved on many existing time-based imagers [36] and is similar to the methodology used

in certain Single Photon Avalanche Diode (SPAD) devices.

There have also been devices that have used a “foveated” approach in which a high density of

pixels are located in the center of the device, surrounded by less dense and more complex

pixels [37]. Additionally, frame-based approaches to temporal change detection imagers have

also been developed [38] in which the frame consists of the difference in the integration of

the photocurrent between subsequent frames. These techniques were originally implemented

in software [39] with Aizawa et al. implementing a prototype 32 × 32 pixel array with

parallel frame-differencing pixels [40]. A 189 × 182 pixel sensor built by Gruev and Etienne-

Cummings included both a conventional frame output and a frame-difference output [41].

Also of note are the spatial-contrast imagers [42], in which the pixels produce an output only

when its illumination exceeds the weighted spatial average of its neighbors. A number of

specialized neuromorphic sensors have also been developed including for motion detection

[43] and multi-object center of mass detection [44].

Thus while the field of neuromorphic vision sensor has seen a wide range of approaches and

methodologies one constant in the field has always been relatively low spatial resolution and
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low signal to noise ratios exhibited in the sensors. This will also be true of the sensors we

investigate in this work, motivating the application-based processing approaches presented,

which aim to provide robustness to these limitations while leveraging the high temporal

resolution and speed of the sensors.

1.4 Thesis Summary

This thesis is organized as follows:

In Chapter 2, the field of Event-based Space Situational Awareness (EBSSA) is introduced.

Following the introduction, a new large scale real-world event-based space imaging dataset is

presented and discussed. A set of event-based detection and tracking algorithms are presented

and evaluated on the presented dataset. The results and future work is then discussed.

In Chapter 3, the need for a rigorous investigation of event-based pre-processing techniques

is introduced. Following this introduction, a range of event-based processing techniques

are investigated. These techniques include a range of memory surface generation methods

and kernels as well as a wide range of feature extraction architectures. These processing

techniques are then evaluated in the context of a high-speed event-based airplane tracking and

classification task.

In Chapter 4, a novel feature extraction algorithm using adaptive selection thresholds is

introduced. The event-based algorithm is designed to simplify hardware implementation

at the cost of some information loss while providing useful intermediary signals which are

valuable in the context of neuromorphic hardware limitations. The introduced method is

compared to several previous methods on the airplane dataset presented in the previous chapter

as well as a neuromorphic handwritten digit classification task. Multiple configurations of

the algorithm are tested with a range of back-end classifiers with the performances being

analyzed at each processing stage.

In Chapter 5, Single Photon Avalanche Diode (SPAD) Sensor arrays and their use in flash

LADAR are introduced. The problem of high data rates resulting from high-frame-rate
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SPAD sensors is discussed and the use of on-chip event-based processing to overcome this

problem is proposed. To evaluate this proposed approach, a large SPAD imaging dataset is

presented involving a high-speed airplane tracking and classification task. Various sources of

noise in the dataset are investigated and their effects are discussed. The frame-based SPAD

imaging dataset is then converted via several alternative methods into event-based datasets

and processed using a range of event-based feature extractor networks and pooling methods.

The output of a proposed event generation method is then processed by a feature extraction

and classification system implemented in FPGA hardware. The results and implications for

future work are discussed.



CHAPTER 2

Event-based Object Detection and Tracking for Space Situational

Awareness

Chapter Summary

Neuromorphic event-based sensors differ from conventional cameras by generating events in

response to changes in illumination at each pixel, rather than through synchronous frames.

This unique method of operation makes them well suited for tasks in terrestrial space situ-

ational awareness applications, primarily due to the ability of event-based cameras to exploit

the sparseness of the data when performing sky imaging. These sensors also offer significantly

lower bandwidth and power requirements, making them particularly well suited for use in

remote locations and space-based platforms. Space imaging data differs significantly from

that of conventional computer vision applications as it exhibits a sparser feature structure,

a higher variance in target velocities and extremely low Signal to Noise Ratios (SNRs).

The use of event-based cameras for space imaging therefore presents unique challenges and

requires the development of specialized algorithms in order to take full advantage of the

event-based paradigm offered by these sensors. Such algorithms are tailored to the resulting

data, resulting in highly-efficient systems capable of being realized in hardware. This chapter

also introduces the first event-based space imaging dataset, which includes recordings from

multiple event-based sensors and from multiple providers, greatly lowering the barrier to

entry for other researchers given the scarcity of such sensors and the complexity of operating

telescope hardware. The dataset contains both day time and night time recordings, including

simultaneous co-collections from different event-based sensors. Recorded at remote sites,

and containing 572 labeled targets with a wide range of sizes, trajectories and signal-to-noise

15
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ratios, this real-world event-based dataset represents a challenging detection and tracking task

that is not readily solved using previously proposed methods. A highly optimized and robust

feature-based detection and tracking method is proposed, designed specifically for space

situational awareness applications, and implemented via a cascade of increasingly selective

event filters. These filters rapidly isolate events associated with space objects, maintaining

the high temporal resolution of the sensors. By measuring the unimodality of the angular

activation of time surfaces around incoming events, objects are detected using a single method

regardless of their size, direction of motion, speed, or SNR. To implement a multi-object

tracking algorithm, an event-based line fitting method that operates over a rolling window of

detection events is then used. The results from this simple yet highly optimized algorithm

on the space imaging dataset demonstrate robust high-speed event-based detection and track-

ing which can readily be implemented on sensor platforms in space as well as terrestrial

environments.

2.1 Introduction

Our increasing reliance on space-based technologies for communication, navigation and

security tasks as well as the recent dramatic drop in the cost of space launches has created an

immediate need for better methods for detecting and tracking objects in orbit around the earth

[45]. The cost of collisions in space poses a significant risk to both our space infrastructure

and future space missions.

Space Situational Awareness (SSA), and Space Traffic Management (STM) — its civilian

counterpart — are therefore critical tasks for regulation and enforcement of the use of space,

and to prevent a future catastrophic space event, such as described by the Kessler effect [46].

Space Situational Awareness is defined by the European Space Agency (ESA) as comprising

three segments: Space Surveillance and Tracking (SST), Space Weather and Near Earth

Objects (NEO) [47]. The work presented in this chapter contributes primarily to the task of

space surveillance and tracking, specifically applied to satellites in orbit around the earth.
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Currently, over 80 countries have a presence in space [48] and this is likely to increase, driven

by both national space efforts and private industry [48].

Currently, the majority of SSA data originates from dedicated radar installations operated by

the United States Air Force [49]. However, radars are an expensive technology to install and

operate and there is an increased focus on looking toward optical telescopes to provide a more

flexible, cost-effective and responsive means of obtaining accurate SSA data [48]. In previous

work, we have demonstrated that event-based neuromorphic cameras offer a novel means of

performing SSA tasks and provide capabilities that cannot be achieved using conventional

astronomy cameras [50].

Event-based cameras operate in a different imaging paradigm, emitting data as a spatio-

temporal pattern rather than using conventional frames [51]. The pixels report changes

in log-illumination and are also independent and asynchronous, giving the device a high

temporal resolution and a very high dynamic range [23]. The characteristics of these devices

enable unique and novel approaches to satellite tracking [52], high-speed adaptive optics [53],

satellite identification [54] and real-time in-frame astrometry [55].

This work builds upon those findings and presents two methods for tracking objects in the

spatio-temporal output of an event-based camera. There exist many event-based trackers, such

as those for long-term object tracking [56], real-time particle tracking [57], micro-particle

tracking [58], corner detectors [59] and more complex kernel tracking algorithms [60]. These

methods are all very specific to both their specific application and data, but do not generalize

well and are not easily applicable to event-based space imaging (EBSI) data.

Event-based Space Situational Awareness (EBSSA) is a new and emerging field of study. The

most relevant work to that presented here is the frame-based star tracking method proposed in

[61]. In this work, an event-based camera captures simulated star data from a monitor and

then uses the event-based camera to perform rotation averaging and bundle adjustment using

frames made from the event stream. However, this method can only extract a single velocity

from a star field not multiple independently moving objects. In addition, the algorithm
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was tested on simulated data which did not exhibit the noise and dynamics of real-world

event-based space imaging environment.

2.1.1 Event-based Space Situational Awareness (EBSSA)

The application of event-based cameras to real-world space imaging leverages the unique

nature of the hardware to perform tasks that cannot be undertaken with a conventional camera.

It therefore allows for different and novel approaches to space imaging which can overcome

many of the current limitations in space situational awareness systems. In previous work, we

demonstrated the ability to detect a resident space object in orbits ranging from low-earth orbit

(LEO) to geosynchronous orbits (GEO) [55]. We also demonstrated the ability to observe

objects during the day with an event-based camera, and without any modifications to the

optics.

Figure 2.1 provides a pictorial overview of the benefits of a neuromorphic approach to space

imaging. The low-power and low-bandwidth operation of event-based sensors makes them

highly suitable for use on orbital platforms, and the ability to synchronize cameras in a highly

efficient manner also creates the potential for large distributed SSA observation networks.

The continuous nature of the imaging provided by event-based sensors allows for the camera to

image whilst moving, and as a result, allows the device to operate in less stable environments

than conventional astronomy cameras. This application requires robust real-time space object

detectors and trackers that can operate reliably in the presence of unexpected and random

jolts and in the presence of a wide range of noise conditions. This makes the task significantly

different from conventional detection and tracking problems.

2.2 Methodology

This section describes the structure and nature of the events generated by the event-based

cameras, the method used to generate the event-based space imaging dataset, the methodology

used when labeling the dataset and the metrics used to report sensitivity, specificity and
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FIGURE 2.1: Event-based Space Situational Awareness (EBSSA) com-
pared to the standard CCD sensor approach. Event-based sensors provide
high temporal resolution imaging data of the sparse space environment al-
lowing rapid sensor fusion, low bandwidth communication during continuous
operation during day and night time.

informedness from the event streams. The section further details a complete event-based de-

tection and tracking system, as well as a discussion of alternatives methods for benchmarking

performance.

2.2.1 Generation of the Space Imaging Dataset

The space imaging dataset was captured using both ATIS sensors [23] and DAVIS sensors

[32] and was undertaken at the DST Group’s research facility in Edinburgh, South Australia,

the experiments made use of their robotic electro-optic telescope facility, which was modified

to support the event-based sensors and the existing astronomy equipment simultaneously.

The dataset setup and recording profiles are shown in Figure 2.2. Panels (a) and (b) show

photographs of the equipment used in the recording of the space imaging data. Two identical

telescopes were used for the ATIS and DAVIS event-based sensors alongside a conventional

astronomy CCD camera (FLI Proline PL4710). (a) The ATIS camera is attached to the base

of the lower telescope with the CCD camera shown at the top. (b) Shows the set up used in
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the simultaneous co-collects from both the ATIS and DAVIS cameras. Note that the optics for

the telescopes for the event-based cameras were not altered between daytime and nighttime

operations. Panels (a) and (b) adapted from [55]. Panels (c) and (d) show the distribution of

the recordings in terms of duration and number of events respectively. (e) Plots the timestamp

of all recordings in the dataset as a function of their index. (f) The Dimetric projection of the

event stream from a two-minute recording of the rocket body SL-8 R/B [62] with time as

the vertical axis. This projection of the data stream illustrates the high noise rate of a typical

EBSI recording. Such non-ideal event timing behavior was observed with both the DAVIS

and the ATIS sensors under different conditions.

The conventional telescope configuration comprised an Officina Stellare RH200 telescope and

an FLI Proline PL47010 camera. This telescope and camera set-up was used to provide ground

truth and to build an accurate mount and pointing model, allowing the event-based cameras

to track and to be accurately pointed at objects as is the standard procedure for calibrating

a mount and telescope in visual astronomy [63]. The telescopes were both mounted on a

Software Bisque Paramount MEII robotic mount, as shown in Figure 2.2 (a). The system is

housed in a 7ft Aphelion Dome which also contains a PC that controls the robotic telescope

and controls the event-based cameras.

The event-based cameras were attached to an 8" Meade LX200 telescope, as shown in

Figure 2.2. When performing co-collects with both event-based sensors, a second Meade

LX200 was attached on the other side of the primary telescope as shown in (c). The DAVIS

camera used to generate the dataset has a 240× 180 pixel resolution at 18 µm with a 2000mm

focal length = 7.44× 5.58 arc-minutes = 0.124× 0.093 degrees. The ATIS camera used has a

304×240 pixel resolution at 30 µm with a 2000mm focal length = 15.66×12.36 arc-minutes

= 0.261× 0.206 degrees.

With over 8 hours and 377 million events the presented dataset as detailed in Figure 2.2,

is the first event-based space imaging dataset in the literature. The dataset consists of 84

separate labeled recordings, 45 using the DAVIS sensor and 39 using the ATIS. The full

dataset, supporting material and all processing code proposed in this work can be accessed at

[64]
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FIGURE 2.2: Space imaging set up and resulting dataset.

In addition, a further 152 unlabeled data streams containing 5 hours of recording and contain-

ing 2513 million events are provided. These include 15 recordings from the 180×240 DAVIS

sensor, and 27, 100 and 7 using an original 304×240 pixel ATIS camera, a larger format

640×480 pixel ATIS prototype camera, and the BSI variant of the DAVIS sensor described in

[65].

This larger unlabeled dataset enables further exploration of almost all currently available

EBSI data by the research community. As shown in Figure 2.2(e), the time-stamp profiles
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of all recordings in the dataset show the heterogeneity and non-idealities in the dataset. The

discontinuous staircase features in the time-stamp profiles represent event stream timing

artifacts. These event stream ‘jumps’ and ‘dumps’ occur when multiple events are erroneously

assigned simultaneous time-stamps often at periodic intervals. This effect is likely due to

USB communication delays in the cameras.

Presented on a log-log scale, these discontinuities in time and event index can be observed

more frequently at the lower scale at the lower-left corner but are present with decreasing

frequency at the higher scales, as the plots move to the top-right corner where discontinuities

represent more severe artifacts. The effects of these artifacts on the data stream are also

illustrated in Figure 2.2(f) where at t = 0, a data dump can be observed in the form of a solid

square. This particular recording of the rocket body SL-8 R/B is an especially instructive

data stream in that it contains nearly all the sensor non-idealities, scene complexities and

processing challenges that can be found in the dataset as a whole. It will therefore be used

repeatedly in this work to illustrate many of the event-based processing problems and solutions

presented in this work.

2.2.2 Labelling the Dataset

Generating ground truth labeling for real-world event-based space imaging data is a non-trivial

task. Even when the true position, velocity, size and luminance of all targets in the field of

view of the sensor are known, their detection by the event-based sensor is far from guaranteed.

The clearest demonstration of this problem is in cases where within the same recording, the

biases and circuitry of the camera are configured optimally for one event polarity such that

space objects are clearly visible in one polarity but produce zero events in the other polarity.

In these and analogous situations the use of any ground truth labels from external information

sources such as the co-collects from the CCD camera (or a sky catalog or database as used in

[61]), would likely result in an incorrect evaluation of any event-based algorithm operating on

the actual observed real-world event stream.
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FIGURE 2.3: Dataset labeling. (a) Total number of sub-types and the num-
ber of objects per recording in the dataset shown as a sorted list. The 422
straight streaks represent objects that exhibit zero acceleration and move in
a straight line in space-time. The 10 Curved streaks were object observed to
exhibit uniform acceleration and 140 irregular objects exhibited non-uniform
acceleration while in the field of view. (b) Illustrates the method used for
calculating sensitivity and specificity of event volumes around labeled data
points. A volume of radius r around a line connecting the labeled points marks
the boundary between true and false volumes. The volumes are sliced at 10ms
intervals. The event density of each sub-region designates its volume as a
positive or negative volume depending on whether it is above or below the
mean density of the recording as a whole. Panels (c), (d) and (e) show the
expert labeled objects in the SL-8 R/B recording in a dimetric projection and
across the x and y-axis respectively.

A single instance of such a comparison was recently performed in [66] where the DAVIS

event-based sensor was estimated to have lower sensitivity relative to the CCD sensor. This

difference in relative sensitivity was measured via the limiting magnitude, defined as the

faintest magnitude of a celestial body that is detectable. The event-based sensor was estimated

to provide sensitivity with magnitudes between 1.32 and 1.78 less than the CCD sensor. While

these results do not necessarily generalize to other event-based sensor configurations and

recording environments, they do highlight the general problem of using external labels to eval-

uate event-based data. This work evaluates the tracking algorithms and not the performance
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of the sensor. Hence, ground truth from a different sensor type (such as a conventional CCD)

does not directly allow us to predict the accuracy of the tracker. Thus we require a ground

truth related to the events generated from the camera, and not from external label sets.

For this reason, to generate a more appropriate label set for the observed event streams,

hand-labeling of the data was performed, and a committee-of-experts approach was used

to determine the ground truth labels. Thus expert human labeling of the highly noisy event

stream is here set as a benchmark against which proposed event-based algorithms are tested.

In Section 2.3.1, the quality of expert human labeling performance is tested and quantified us-

ing an artificially generated space imaging dataset in which ground truth labels are analytically

defined. The generated labeled dataset involves a multi-stage labeling and editing procedure

where each of four experts sequentially view and label visible objects in each recording using

a graphical user interface which allows the viewer to move forward or backward through 2D

time surface frames of the event stream at arbitrary frame rates with a maximum sampling

frequency of 1000Hz. The use of multiple experts and multiple stages of labeling and editing

aimed to maximize the accuracy of the labeled dataset. Targets were tagged based on their

motion profiles into straight streaks, curved streaks, or irregularly moving objects as detailed

in Figure 2.3(a). Target entry and exit points, as well as segments of the trajectory exhibiting

acceleration, were all marked manually.

These marked points were then linked programmatically via linear interpolation. After the

first-round of labeling, the experts performed a second editing round with access to their first-

round labeling information as well as those of the other experts. Before the commencement

of the labeling procedure, a three-out-of-four voting protocol was devised for resolving any

disagreement between the experts after the second round of labeling. Ultimately no such

disagreements occurred, resulting in consensus for all labels without the need for the voting

protocol.

After the expert labeling was finalized, the four interpolated label sets were averaged to

generate a single, labeled dataset.
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2.2.3 Measuring Sensitivity, Specificity and Informedness

The algorithms presented in this work are entirely event-based with all components from

the sensors to the detectors and trackers operating entirely in the event-based domain. The

microsecond time resolution of the sensor is therefore maintained throughout the processing

chain. A brief explanation of event-based processing is provided below.

Following the notation in [60], events generated at the sensor, ei can be described mathemat-

ically as:

ei = [xi, ti, pi]
T (2.1)

where i is the index of the event, xi = [xi, yi]
T , is the spatial address of the source pixel

corresponding to the physical location on the sensor, pi ∈ −1, 1 is the polarity of each event

indicating whether the log intensity has increased or decreased, and ti is the absolute time at

which the event occurred. The timestamp ti has a temporal resolution of 1µs and is applied to

the event in hardware within the event-based sensor.

The data from these sensors, therefore, have a high temporal resolution, with the event rate

varying for each pixel and dependent on the activity in the scene. A robust method is required

for measuring how well a given event stream sampled at 1 MHz matches the frame-based

expert labeled dataset which is sampled at a much slower 1 kHz. This accuracy measure must

also be invariant to the extreme differences in event rates produced by different recording

conditions. The measure must also assess the highly noisy raw events of the sensor in the

same manner as the extremely sparse detection and tracking output event streams. To achieve

this, a metric based on relative event density in the event stream is proposed. This method

assigns spatio-temporal volume slices to either a positive or a negative state. These states

are then compared to the labeled dataset which indicates whether the corresponding volume

contains target objects (True), or not (False).

As shown in Figure 2.3(b), for each frame, the spatio-temporal volume slice surrounding

the trajectory of a labeled object by radius r is designated as True and the spatio-temporal

volume outside this region and in frames with no labeled object is designated as False. If,
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for any spatio-temporal volume, the event density is above the global event density of the

full recording, then the volume is activated as positive. Conversely, the volume is designated

as negative if the event density in the volume falls below the global event density of the full

recording (i.e. if there are relatively fewer events per pixel2/second in the local volume slice

than the total number of events divided by the total recording multiplied by the sensor area).

In this way, event streams with drastically different noise profiles and event densities can be

directly compared and evaluated by calculating the mean True Positive (TP ), True Negative

(TN ), False Positive (FP ) and False Negative (FN ) volumes of each recording. Using these

volume-based measures, the event-based sensitivity and specificity of a particular event stream

can be calculated using:

Sensitivity = TP/(TP + FN) (2.2)

Specificity = TN/(TN + FP ) (2.3)

Using these measures, the informedness, or the Bookmaker Informedness of an event stream

can be calculated using (2.4). Informedness, which is a generalization of the Youden’s J

statistic, provides a single statistic that captures the performance of a binary diagnostic test

[67], and "quantifies how informed a predictor is for the specified condition, and specifies the

probability that a prediction is informed in relation to the condition (versus chance)" [68].

Informedness = Sensitivity + Specificity − 1 (2.4)

Informedness seeks to avoid biases of other common statistics, such as accuracy and precision,

which are susceptible to population prevalence and label bias. This makes informedness an

accuracy measure suitable for the highly imbalanced EBSI datasets in which the vast majority

of the spatio-temporal volumes are labeled as False regions.
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TABLE 2.1: Event density activated volume statistics for measuring the
performance of the event stream against labels. Here the statistics are
calculated from the raw events from the SL-8 R/B recording whose data stream
is illustrated in Figure 2.2(f), and whose labels are shown in Figure 2.3(c).
Due to the high disparity in data stream SNRs and event rates, the ON and
OFF polarities are treated as independent data streams.

Polarity Sensitivity Specificity Informedness # Events (ke)
ON Events 0.69 0.68 0.37 1770
OFF Events 0.65 0.79 0.43 360

As an example, the event density activated volume statistics for the SL-8 R/B recording are

detailed in Table 2.1 showing clear differences between the raw ON and OFF event streams.

2.2.4 Artificial Space Imaging Dataset

Given the difficulty of obtaining real-world space imaging data, the collected dataset was

augmented and extended using a large analytically defined artificial dataset. The artificial

dataset was designed to provide analytical ground truth and tested on both human experts via

the same labeling protocol as used in the real space imaging dataset described in Section 2.2.2.

This additional artificial dataset serves to verify the quality of the expert labeling and enable a

more extensive and detailed analysis of the proposed algorithms across analytically defined

Signal-to-Noise Ratios (SNRs) and event rates.

Furthermore, the artificial dataset was designed to contain examples of the most important

and challenging aspects of the real space imaging dataset, such as:

(1) Multiple concurrent objects with independent trajectories and velocities: In the

SSA applications, where a target of interest is often being tracked, the target typically

exhibits slow and often non-uniform relative motion whilst the background star field

moves with a different velocity across the sensor field of view. Figure 2.3(c) is an

example of such a tracking operation with SL-8 R/B as the target. To emulate this

context, each recording in the artificial dataset contains a slow-moving target along

with two other targets each moving with independent velocities.
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(2) Sharp discontinuities in object trajectories: As shown in Figure 2.3 real-world

space imaging data can contain high acceleration saccade-like shifts in the field of

view due to mechanical vibrations or acceleration of the sensor field of view due to

tracking. To replicate this effect, a discontinuity is introduced in the velocity of one

of the objects.

(3) Wide range of background noise event rates and target rates: As real-world

event-based space imaging data streams exhibit a wide range of event rates and

SNRs, the artificial dataset must also test across a wide range of noise and target

event rates. For each object, pixels within a three-pixel radius exhibit an event rate

of λ1 whereas the event rate of pixels outside this radius represents the background

noise rate λ0. In the artificial dataset experiments, the signal event rate is varied on a

logarithmic scale from λ1 = 10−1 to 102 and the noise event rate from λ0 = 10−4

to 100 events per pixel per second. In comparison, the event rate of the real-world

space imaging dataset is λS = 0.240± 0.197 events per pixel per second.

The artificial dataset is described analytically as three objects whose trajectories are defined

by (2.5), (2.6) and (2.7). The first, representing a slowly moving object being tracked, is

defined by:

Q1 = [x1, y1]
T = [β

(x)
1 + α

(x)
1 t/tmax, β

(y)
1 + α

(y)
1 t/tmax]

T (2.5)

where Q1 is the object location, α(x)
1 , α

(y)
1 ∈ {−20, 20} are the velocities of the object,

tmax = 10 seconds is the duration of the data stream and β(x)
1 , β

(y)
1 ∈ [50, 150] is the random

starting location of each of the object.

The second object,Q2 is defined as a circularly moving object, representing a more rapid and

potentially non-linear motion of background targets:

Q2 = [x2, y2]
T = [β

(x)
2 + α2cos(ω2t/tmax + φ2),

β
(y)
2 + α2sin(ω2t/tmax + φ2)]

T
(2.6)
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where β(x)
2 , β

(y)
2 ∈ [50, 150] are the random starting locations, α2 = 100 is the diameter of the

spiral, and ω2 ∈ {−3π, 3π} and φ ∈ [0, 2π) are the angular velocity and phase respectively.

Q3 = [x3, y3]
T = [|β(x)

3 + α3cos(ω3t/tmax + φ3)|, |β(y)
3 +

α3sin(ω3t/tmax + φ3)|]T
(2.7)

Finally, the third object in the test introduces the sharp discontinuities in velocity which can

result from sudden jerk-like motion of the sensor. This is visible in 2.3(c) from t = 6 and

8 seconds. This jerk-like motion is represented through the addition of a discontinuity in

the form of the absolute value function operating on a circularly moving object with random

initial position β(x)
3 , β

(y)
3 ∈ [50, 150], diameter α3 = 100, angular velocity ω3 ∈ {−2π, 2π}

and phase φ3 ∈ [0, 2π) which together result in a zigzagging spiral pattern in space-time.

The randomized instantiations of these three objects together with the signal and noise event

rates λ1 and λ0 define the artificial dataset. An example recording from the artificial dataset,

as well as the associated ground truth labels and algorithm output, is shown in Figure 2.9 in

the Results section.

2.2.5 Event Pre-processing

Event-based algorithms require as input, some form of memory of recent events. Such a

memory can be generated via a range of methods that are investigated in Chapter 3. The

method used in this section and one which typically outperforms other approaches is the

exponentially decaying event time surface. This method weighs each pixel as an exponentially

decaying function of the time since the most recent event as described by (2.8), (2.9) and

(2.10).

Ti = R2 ⇒ R (2.8)

x : t⇒ Ti(x) (2.9)
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Si(x) = e(Ti(x)−ti)/τ (2.10)

Here, Ti(x) is the matrix containing the time-stamp of the most recent event at each pixel

x at the ith event and Si(x) is the corresponding exponentially decaying time surface and

τ = 0.4 seconds is the decay constant. Note that in this work, as each event polarity is

processed independently such that the time surface receives events of only one polarity. This

approach is not typically used in event-based algorithms since it decouples ON and OFF event

information at the lower processing stages and may potentially result in poorer performance.

However, in the event-based space imaging context where the signal and noise event rates ON

and OFF events can differ significantly depending on biases and the imaging environment,

separating the polarities not only allows adaptive processing based on the event rate of each

polarity, but also effectively doubles the dataset while better representing the difficulty of

the real-world detection and tracking task. By splitting the event polarities and processing

them independently, we can better replicate a wider range of observational environments

where potentially the biases of both polarities are ill-suited to the recording environment.

Given the sparseness of event-based space imaging data, this worst-case design approach

aims to motivate the development of the more noise robust space object detection and tracking

algorithms.

As shown in 2.4(a), after updating the time surface, a Region Of Interest (ROI) of size D×D

around the event ei = [xi, yi, ti, pi]
T is selected for processing. The ROIi associated with

event is defined as:

ROIi = Si(xi + ux, yi + uy) (2.11)

where ux = [−R : R] and uy = [−R : R] subject to the constraint:

√
x2 + y2 ≤ R, ∀x ∈ ux,∀y ∈ uy (2.12)
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Thus theROIi generated by event ei is defined as a disc containing the time surface values

Si at time ti from all pixels within a distance R to the location of the current event ei. This

ROIi is then processed by a surface activation test which is defined as:

L <

xi+R∑
x=xi−R

yi+R∑
y=yi−R

(
Ti(x, y) > Φ

)
(2.13)

where Φ is the event activation time interval, L is the number of activated pixels required and

x and y are subject to the distance constraint given in (2.12). Thus, if the number of recently

activated pixels on the time surface within a disc of radius R around the current event ei is

above L, then the ROI is accepted. Here recency is defined as a pixel that has received an

event within Φ seconds. This surface activation test effectively acts as a noise filter and is a

generalization of the nearest neighbor filter described in [69] where R was selected as 1. The

expansion of the spatio-temporal activation test window is crucial here in the space imaging

context due to the significantly lower SNR recording environments and the similarity of the

most challenging targets (small dim geostationary satellites) to background noise.

2.2.6 Feature Detection

In the next stage of processing, a valid ROI is converted to an angular activation vector

Λ, generated by multiplying the ROI with each of N rotated half-bar templates shown in

Figure 2.4.

The half-bar templates are designed to be triggered by events at the tip of a moving streak.

The template consists of a bar of length R + 1 and three pixels wide with a magnitude of one.

While setting the bar width parameter at three pixels appears an arbitrary choice, this pattern

was found heuristically to produce the best performance across a wide range of object sizes

and ROI sizes. This is likely due to the three pixels bar being close to the size of the smallest

resolvable streak in the space imaging dataset.

Outside of the bar, the rest of the template has a negative magnitude of s = −0.2 to penalize

activation from noise events. In practice the N , D × D templates are re-arranged into an
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N ×D2 Look Up Table (LUT) and the D ×D ROI vector is rearranged to a D2 × 1 vector.

This vectorization operation is here denoted as the vec() function. The multiplication of the

ROI vector and the LUT results in an N × 1 Λ vector as described by 2.14 and illustrated in

Figure 2.4(f).

Λi = LUT · vec(ROIi) (2.14)

Note that since only the internal disc of radius R = (D − 1)/2 is processed, the length of

the LUT and the ROI vector can be reduced by a factor of 1 − π(1/2)2 = 0.2146 during

hardware implementation. However when implemented in a software environment, the cost of

retrieving the smaller circular ROI from the D×D time surface patch at each event outweighs

the computational reduction provided by the smaller ROI, necessitating the use of the full D2

length template vector and LUT with zero padding for entries outside the disc. Thus by using

the rearranged LUT, the calculation of angular activation vector Λi fromROIi is converted to

a single vector-matrix multiplication operation. Where libraries of optimized matrix routines

are available, such LUT transformations can result in significantly faster processing.

Optimization of the subsystem that converts the ROI event timestamps to the angular activation

vector Λ is critical in the performance of the proposed algorithm. The calculation of the

angular activation vector is, regardless of the implementation environment, significantly

more computationally expensive than that of the previous surface activation test, but unlike

subsequent stages which are also computationally intensive, this operation is performed

on the majority of the events from the camera. This makes the calculation of the angular

activation vector the most computationally expensive step relative to the number of events

processed, making it a computational bottleneck of the algorithm. This aspect of the algorithm

is investigated in more detail in Results section 2.3.3.

The resulting angular activation vector Λ is compared to an angular activation threshold of Ψ

and if no element of Λ exceeds Ψ the angular activation test fails, otherwise the variable m,

which is defined as the index of the highest activated element of Λ, is passed to the next stage

of processing along with the vector Γ which contains the index of all elements in Λ above

threshold Ψ.
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The threshold used for calculating Γ can be chosen as a static parameter Ψ, or as a dynamic

threshold Ψi which is defined as a scalar factor W of the difference between the minimum

and maximum of elements of Λi as described in (2.15). Use of a static threshold Ψ simplifies

the algorithm implementation whereas the use of a dynamic threshold can provide greater

robustness to noise events. Except where stated, in this work, the dynamic method is used

with W = 0.5.

Ψi = W (max(Λi) + min(Λi)) (2.15)

The angular activation test serves as a filter that removes all ROIs with uniform activation

in polar coordinates. This filter is useful in removing events not associated with a streak on

the time surface. However, this filter does not distinguish between events which are on or

near a streak and those at the streak’s tip. To further extract these later events, a statistical

unimodality test must be applied to the angular activation vector Λ. Previously proposed

unimodality tests include fitting of parametric mixture models [70], as well as non-parametric

tests such as the commonly used Dip Test [71], use of kernel density estimates [72] and

recursive methods based on unimodal template transformations [73]. While these methods

can provide robust solutions to the unimodality test, they are too computationally expensive

for the streak tip detection application where thousand of events must potentially be processed

per second possibly by a low power processor on a space-based platform. Therefore a highly

simplified hardware amenable circular unimodality test for our event-based application is

proposed. This unimodality test simply measures the angular distance between the maximum

value in Λ and the angular mean of all elements above a threshold Ψi.

As shown in Figure 2.4(a), the unimodality block takes as input mi which is the index of the

largest element of Λi. It also takes as input a vector Γi containing the index of all elements in

Λi higher than Ψi: Γi = {n} s.t. Λi(n) > Ψi. The unimodality block then outputs a stream

of filtered events fj which have passed the unimodality test. As plotted in Figure 2.4(f),

the unimodality block performs its test by calculating qi which is the circular mean of Γi

and testing whether the angular distance ζi between qi and mi is below a parameter δ. The
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distance ζi represents how far the peak angular activation is from the mean. This makes ζi a

simplified yet robust measure of the unimodality of the angular activation vector Λi.

Despite its simplicity, this unimodality test is highly selective and performs remarkably well

at extracting space targets from the observed event-based space event streams while being

robust to noise, object velocity, object size and orientation. If the event ei passes this angular

unimodality test, it is augmented with the mean orientation variable θi = qi and results in

an output detection event fj as described by Algorithm 2.1, and illustrated in Figure 2.4(a).

Note that in Algorithm 2.1, G denotes the number of above-threshold elements in Λi and is

therefor the length of the vector Γi.

One important factor is the method used to calculate the circular mean value q. The most

direct approach is via calculating the mean two-argument arctangent equation given in:

◦
x̄ = atan2

(
1

n

n∑
j=1

sinxj,
1

n

n∑
j=1

cosxj

)
(2.16)

However, there are two drawbacks to this method for our event-based space imaging applic-

ation. First, the method is computationally complex, making implementation in embedded

hardware more difficult. Second, for some pathological input cases such as that shown in

Figure 2.5, this direct method can result in an undesirably small circular distance ζ = |m− q|

between the circular mean q and the maximum angular value m as shown in Figure 2.5. In

the space imaging dataset, these pathological cases make up a small but consistent fraction

of the observed ROIs occurring regularly whenever events are triggered late in the trail of a

fast-moving target.

As shown in Figure 2.5, these trail events generate bimodal distributions of Λ which regularly

have circularly symmetric elements that can cancel each other out. In such cases, the standard

circular mean method results in the circular mean index q and circular max index m being

close enough to generate false positive detections. To provide robustness to these streak trail

events, a non-circular mean index q is calculated over the template indices vector Γ generated

from the angular activation vector Λ. A non-circular distance ζ = |m − q| between the
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FIGURE 2.4: Orientation invariant space object detection algorithm and
signals at each stage of processing. Panel (a) shows the block diagram of the
algorithm whereby a sequence of increasingly refined tests operate on an event
ei. If the event passes all test a detection event fj is generated. (b) Shows an
instance of the ON and OFF time surface for the SL-8 R/B recording. Note
the different noise levels and target sensitivity of the two polarities. (b) Shows
the local 15x15 Region Of Interest (ROIi) around the current event ei for
each polarity. (d) N = 36 Streak templates rotated at 10-degree intervals to
calculate the angular activation of the ROI. (e) a stored Look Up Table (LUT)
converts the ROI values to an angular activation vector Λ through a single
vector-matrix multiplication operation. (f) the resultant angular activation is
shown for each of the ON and OFF ROIs. If Λ exceeds the angular threshold
Ψ, it passes the angular activation test after which the circular mean index
q of all angles above the angular threshold Γ, is calculated. If the distance
ζ between q to the maximally activated angle m is below the threshold δ
the event passes the angular unimodality test resulting in a detection event
fj . Note that for visual simplicity, both the static and the dynamic angular
activation thresholds are made static and equal with Ψ = Ψi = 7.

non-circular mean q and maximum angular index m is then calculated. The same operation is

then performed on Λ̆ which is Λ circularly shifted by N/2. These two operations result in

two non-circular distances ζ and ζ̆ the smaller of which is compared to a threshold δ. This



36 2 EVENT-BASED OBJECT DETECTION AND TRACKING FOR SPACE SITUATIONAL AWARENESS

FIGURE 2.5: Comparison of two methods of calculating the circular dis-
tance ζ to estimate unimodality of angular activation Λ.(a) Shows the OFF
polarity time surface from the SL-8 R/B recording as a high-speed target enters
the field of view. (b) A late-triggered event results in an ROI centered on a
pixel on the trail of a streak. (c) Calculating the non-circular means of Γ
and its circular shifted version Γ̆ results in q and q̆ respectively and angular
distances ζ and ζ̆ both of which are larger than δ, thus (correctly) failing the
unimodality test. (d) When calculating the circular mean of Γ via (2.16) the
symmetric entries of Γ cancel each other resulting in a circular distance ζ
which is smaller than δ thus (incorrectly) passing the unimodality test and
generating a false positive detection.

comparison between the minimum distance between the maximum element of Λ and the

mean element of Γ represents the unimodality test as described in:

min(ζ, ζ̆) = min(|mi − qi|, |m̆i − q̆i|) < δ (2.17)

To illustrate the response of this feature detection system to the most commonly observed

ROI patterns in the space imaging environment, Figure 2.6 shows the response of the system

to streaks of various sizes, lines and noise.

Note that due to the rotational invariance of the algorithm, the responses shown are nearly

identical regardless of the orientation of the different features in the ROI. This feature-based

detection method is detailed in Algorithm 2.1.
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TABLE 2.2: Event density activated volume-based statistics for measur-
ing the performance of the feature detection events fj . The statistics cal-
culated are from the detection events generated using the SL-8 R/B recording
whose data stream is illustrated in Figure 2.7

Polarity Sensitivity Specificity Informedness # Events (ke)
ON Events 0.66 0.99 0.65 22.20
OFF Events 0.60 0.98 0.58 15.98

To illustrate in detail the behavior of the feature detector on a real space imaging data stream,

the detection event stream generated from the SL-8 R/B recording is shown in Figure 2.7 with

the associated statistics shown in Table 2.2.
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FIGURE 2.6: Angular activation vectors Λ generated by different ROI
content.(a) Top panel: ROI containing streaks of increasing size from smallest
(1) to biggest (5) which covers an entire half of the ROI. Bottom panel: The
resulting Λ vectors demonstrate that irrespective of streak size, the unimodality
test of (2.17) holds. (b) Top panel: ROI containing lines of increasing size
from smallest (1) to biggest (5). Bottom panel shows the resultant bimodal
distribution in Λ from the increasingly thicker lines. Note that as the line
thickness increases the maximum magnitude angular activation vector falls
such that the resultant Λ for lines 4 and 5 falls below a typically selected
threshold Ψ=7. (c) Top panel: ROI with pure noise input. Bottom panel:
Resultant Λ from noise distributions of different event densities with the
probability of an event per pixel per τ seconds P[e] being varied from 0 to
0.8. Note that here, the mean Λ over 100 trials is always non-positive and
the standard deviation begins at zero for P[e] = 0 and rises to just below 3
before falling again as the time surface becomes saturated with events and thus
becomes uniform. Thus regardless of the noise level, the maximum activation
of Λ remains significantly lower than a typically chosen static threshold Ψ = 7.

As shown in Figure 2.7, due to different noise characteristics and sensitivity of the ON and

OFF polarities, significantly different detection event streams are generated from each of the

polarities. Also, note that the high-velocity streaks exhibit discrete orientation distributions

whereas the slow-moving object being tracked in the field of view generates a uniform
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FIGURE 2.7: Feature detection events from the SL-8 R/B recording. The
panels on the left in (a), (b) and (c) show the x and y location and orientation
of the detection events respectively over time for the ON (red) and OFF (blue)
detection events. The dashed rectangle marks the time interval around the
detection of a high-speed object shown in the close-up right-hand side panels.
The panels in (c) show the dominant orientation of the detection events, based
on the mean index of above-threshold templates θi = qi. Note that the temporal
event bands in the close-up panels are artifacts caused by the data interface.
Panels (d) and (e) show the dimetric projections of the ON and OFF detection
events respectively.

distribution θ ∈ [0, 2π) since the later generates a circular image on the time surface triggering

detection events that are approximately equally in all directions.

As SL-8 R/B leaves the field of view, the uniform distribution also fades away, leaving only

the orientation traces from the high-speed streaks. Also, note a 180 degree shifted angular

‘shadow’ generated by high-speed targets especially for the noisier OFF events. These false

detections, which are pointed in the opposite direction to the true angle of the object’s

trajectory, are due to late-triggered events along the tail of the streak. These detections have

an equal likelihood of being oriented forward or backward. As shown in the close-up panels

in Figure 2.7(a)(b) and (c), even whilst using high sensitivity parameter settings, these false

detection events are significantly less frequent and more dispersed in space and time than the

detections made at the tip of the streak generated by the fast-moving object and as such can

be readily filtered by an event-based tracker.
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Table 2.2 shows that whilst the sensitivity of the event stream is slightly lower than in Table 2.1,

the much higher specificity results in significantly greater informedness than the raw events.

The proposed feature detector can be viewed as a highly refined filter designed to remove

noise events passed to it from the upstream surface activation filter. The far sparser output

event stream of the streak detection events can then be passed to a more computationally

intensive event-based tracker. The event-based tracker, in turn, can be viewed as an even

more restrictive filter capable of removing spurious detection events not associated with other

nearby detection events of the same orientation and velocity. When viewed in this way, as a

series of increasingly refined event-filters, the value of preserving true events generated by

true targets outweighs the value of removing noise events at earlier filtering stages as long as

the noise events will eventually be removed by a downstream filter. Thus, as long as the final

filter can remove all remaining noise events, the only penalty to permissive parameter settings

at the upstream stages is in the increased processing time of the latter filters. This motivates

a conservative parameter selection regime which at the feature detection stage involves the

selection of parameters that generate a significant level of false-positive detection events.

2.2.7 Event-based Tracking

The event-based tracking method used in this work continually generates, updates, and

removes hypotheses in an event-based manner. The state of the hypotheses is modeled as a

population of leaky integrate and fire neurons whilst the hypotheses trajectories are updated

using a sequential least-squares fitting algorithm operating on incoming detection events.

Each active tracked object is modeled as a neuron containing a membrane potential which

decays over time and is incremented via detection events fj assigned to it as detailed later

in this section. The membrane potential represents the level of recent observations of the

object. If the membrane potential reaches the activation potential MA, the object is activated.
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Alternatively, if the membrane potential reaches zero the object is deleted.

M
(o)
k =


M

(o)
k−1 − γ(tj − tk−1) + 1, if fj is assigned toH(o)

k .

0, ifM (o)
k−1 = 0.

M
(o)
k−1 − γ(tj − tk−1), otherwise.

(2.18)

whereH(o)
k is the kth observation of the oth object,M (o)

k is the membrane potential ofH(o)
k

at tk and γ is the decay factor for the membrane potential. If the object activation variable

M
(o)
k reaches the activation threshold MA, the objectH(o)

k is deemed a true tracked object. A

variableA(o)
k tracks the activation level of the object until it reaches MA andA(o)

k reaches 1.

Thereafter A(o)
k remains at 1, permanently indicating the activation of the object regardless of

the value of the membrane potentialM (o)
k .

This behavior is described by (2.19). In addition to indicating the activation of the object,

A
(o)
k will be used weigh the angular distance relative to the spatial coordinates and as such

plays an important role in reducing the weight of the angular distance in the earlier stages of

tracking where the object’s estimated angle tends to be unreliable.

A
(o)
k =

M
(o)
k /MA, ifM (o)

k < MA andA(o)
k < 1.

1, otherwise.
(2.19)

where k denotes the number of previous observations assigned to the oth object and MA is

the object maturation threshold.

Given the jth detection event fj = [xj, yj, pj, θj, tj]
T , zj is defined as the vector containing

the position and angular information excluding the polarity and timestamp entries:

zj = [xj, yj, θj]
T (2.20)

The position and velocity of each active object o in space and time, at the kth observation, is

defined as:

H
(o)
k = [ẑk, bk, pk, tk]

T , o ∈ N, k ∈ N (2.21)
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where ẑk = [x̂k, ŷk, θ̂k]
T and bk = [dx̂/dtk, dŷ/dtk, dθ̂/dtk]

T as estimated via Algorithm 2.3.

The predicted object position at time tj is determined using:

[x̂k, ŷk, θ̂k]
T = [x̂k−1, ŷk−1, θ̂k−1]

T + bk−1(tj − tk−1) (2.22)

where bk−1 = [dx/dtk−1, dy/dtk−1, dθ/dtk−1]
T as estimated via Algorithm 2.3.

When estimating the distance of a new detection event to each object H(o)
k , the weight of

the angular distance in θ relative to the distance in x and y is proportional to each object’s

previous speed and the activation measure A(o)
k as described in (2.19). Thus, the faster the

velocity of an object, the higher the weight of the angular distance is with respect to the

positional distance. Objects moving at close to zero velocity are assigned near-zero weight

since the detection will be oriented at random, whereas objects moving at high speed have

sharp clearly distinguishable angles.

w
(o)
k = V

(√
(dx/dt

(o)
k )2 + (dy/dt

(o)
k )2

)
A

(o)
k (2.23)

where V is a scaling factor which in this work was selected as V = 0.1.

The distance between a new detected event fj and the predicted position of each active object

H
(o)
k at tj is defined as:

d
(o)
k =

√
(xj − x̂(o)k )2 + (yj − ŷ(o)k )2 +w

(o)
k (θj 	 θ̂(o)k )2 < dmax (2.24)

where dmax is the threshold acceptable distance to the detected event and the 	 symbol

denotes circular subtraction.

In summary, at each detection event fj , the weighted Euclidean distance between the event

and the projected x, y, θ position of every object H(o)
k with an active membrane potential

M
(o)
k > 0 at time ti, is measured. This distance is then compared to the threshold dmax. The

detection event is assigned to the closest object with a distance below dmax. If no object is

within dmax of the current detection event, a new objectH(o+1)
1 is created. This algorithm is

described by Algorithm 2.2.
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In order to estimate the position of each hypothesisH(o)
k at the time of each detection event

fj , a sequential least-squares method is implemented involving the sequential calculation of

the ratio of the covariance of the position and timing of the object over the variance of the

timing. In this event-based approach, the covariance and variance measures are calculated

online in a sequential manner. Each measure is calculated using a fixed rolling window of

length K. This online approach allows the rapid calculation of the velocity of each object

in x, y θ space without the need to perform least-squares on previous observations. The

event-based tracker update method is described using Algorithm 2.3.

As shown in Figure 2.8, the event-based line fitting tracker algorithm removes virtually all

false detection events remaining after the feature detection stage while correctly clustering

events from each object. The output events gl from the tracker can be represented in the form

of an event stream defined as:

gl = [xl, yl, pl, θl, ol, tl]
T (2.25)
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where ol is the object index of the lth event generated by the tracker. Figure 2.8 compares

the output event stream of the tracking algorithm to the labeled data. Figure 2.8(f) shows

an example of a labeled object missed by the end-to-end system. In the example SL-8R/B
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FIGURE 2.8: Output of tracking algorithm. Panels (a) and (b) show the
dimetric projection of the labeled data and the output of the event-based tracker
respectively for the SL-8 R/B recording. (c) Shows the number of tracking
events per object. Panels (d) and (e) show the tracker event position in x and y
respectively over time. (f) Example of an expert labeled object not detected by
the algorithm showing the difficulty level at which the algorithm fails. Missed
object at (158 , 56). SL-8 R/B is located at (97 , 170).

recording, three such faint high-speed objects are missed, demonstrating the superior perform-

ance of human experts over the proposed algorithm. Table 2.3 details the statistics generated

for this particular recording demonstrating improved sensitivity, specificity and informedness

with respect to the raw and detection event streams detailed in Tables 2.1 and 2.2 respectively.
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FIGURE 2.9: An instance of the artificial dataset event stream and the
output of the feature detection and tracking algorithms.(a) The raw event
stream in trimetric projection as well as along the x and y dimensions. (b)
Shows the same projections of the detected feature events generated by Al-
gorithm 2.1. (c) Tracked events. (d) Shows the analytically defined ground
truth labels.
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TABLE 2.3: Event density activated volume statistics for measuring the
performance of the tracking event stream gl against labels. The statist-
ics calculated generated using the SL8R/B recording whose data stream is
illustrated in Figure 2.8

.
Polarity Sensitivity Specificity Informedness # Events (ke)

ON Events 0.90 0.99 0.89 20.21
OFF Events 0.87 0.97 0.84 15.13

Figure 2.9 shows the performance of the detection and tracking algorithm on an artificial

event stream with low SNR. For this recording, the three target objects are correctly detected.

By gradually varying the SNR, the performance profile of the proposed algorithms can be

tested against the analytical ground truth across a wide range of noise environments.

2.2.8 Alternative Algorithms

To further evaluate and benchmark the performance of the feature detection algorithm, three

additional event-based methods were implemented and tested on the space imaging dataset. In

all approaches described in this section, the events are first processed through the same time

surface generation and surface activation filter described in section 2.2.6. This pre-processing

and noise filtering removes slightly less than half the events for the entire dataset. Following

each of the alternative feature detection algorithms, the same tracking algorithm described

in 2.2.7 was used on the detection event stream providing an unbiased comparison between

the methods.

2.2.8.1 Global Maximum Detector

The first, alternative method examined is a simple event-based Global Maximum Detector

(GMD). Given the significant sparseness of space imaging data, the narrow field of view and

the stereotypical shapes of space objects, simply looking for the most activated region of the

time surface is an ideal baseline method for investigation. To perform the global maximum

detection in an event-based manner, at every event that passes the surface activation test, the

sum of the ROI activation is compared to a previous global maximum of Gmax.
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With each new event ei, the total ROI activation is measured. This measure is then compared

to the current value of Gmax decayed exponentially with a time constant of τ . Here τ is the

same decay factor used to generate the time surface Si(x, y) in 2.10. If the activation sum of

the current ROI exceeds the decayed value of the previous Gmax, then it replaces Gmax. This

continued exponential decay ensures the global maximum is continually refreshed without

searching the entire time surface. The GMD algorithm is described in Algorithm 2.4.

In the space imaging dataset, where many recordings are taken during satellite tracking or

sidereal tracking, significant portions of each recording contain a single object (the one being

tracked) moving very slowly across the field of view. This tracking event stream is often

punctuated by high-velocity objects, passing rapidly through the field of view1.

While the GMD is far from robust, under this narrow set of conditions which makes up a

significant minority of the real-world space imaging data, this simple method performs quite

well. This is illustrated in Figure 2.10 showing the different tracking methods on the SL-8 R/B

1When tracking satellites, these high-speed objects are often background stars and during sidereal tracking,
the high-speed objects are typically Low Earth Orbit (LEO) objects.
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recording where the extremely simple and fast GMD method performs very well under the

narrow but common conditions when only the SL-8 R/B is in the field of view. However, in the

presence of multiple targets, the detector focuses only on the brightest, typically fast-moving,

object. Furthermore, as discussed in Section 2.2.6, due to mismatch in the pixel circuitry,

the time response of nearby pixels to near-identical changes in illumination can vary. In the

space imaging context, this can result in high-speed objects generating late-triggered events

on the object trail slightly behind the tip of the streak since some pixels respond later than

others. These late events resulting from variance in pixel response times often causes surface

activation patterns that are stronger along the trail of the streak than its tip. This causes the

GMD to detect objects with a delay, on the trail of the streak and often in a disorganized

non-sequential manner instead of sequentially at its tip. This effect is shown in Figure 2.10(a)

and (c).

Finally, when no object is in the field of view, the GMD simply detects random local clusters

of noise events. While this can be avoided by setting higher surface activation threshold

parameters Φ and L, this, in turn, results in reduced sensitivity in the context of faint or

slow-moving space objects.

2.2.8.2 Hough Transform Detector

The second most common class of objects observed in space imaging event streams, after

single slow-moving targets, are the high-velocity streaks. Since these streaks generate

relatively straight lines across the time surface, a high-speed line detecting algorithm such as

a Hough transform serves as an ideal candidate for comparison to the proposed feature-based

detection method. Previous event-based implementations of event-based Hough transform

for the detection of straight lines include [74], where a Hough transform was used to detect

and control a balanced pencil. In [75] a spiking neural network was used to generate local

inhibition in a neural implementation of the Hough space and in [76], the event-based Hough

transform was combined with an efficient end-point generation algorithm to detection line

segments. Here, by projecting the event activation of the detected line onto the x or y edge

of the sensor (depending on the orientation of the line), two endpoints can be found on
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FIGURE 2.10: Behavior of tested algorithms in common space imaging
conditions.(a) When a high-speed object moves across the field of view, the
Hough and feature-based detectors correctly detect the tip of the streak while
the GMD incorrectly detects events along the trail. The Hough transform of
the image is shown on the right-hand side with a clearly visible peak. (b)
With a single slow-moving object, the GMD and the feature-based detector
operate correctly and the Hough fails to detect any object. (c) In the presence
of both slow and fast-moving objects, the Hough detector only detects the tip
of bright fast-moving streak which generates a large peak in the Hough space.
The GMD again detects late events on the trail and the feature-based detector
correctly detects both objects regardless of velocity. (d) With no objects in
the field of view, the GMD incorrectly generates detections around clusters of
noise events while the Hough and feature-based detectors correctly generate
no detections. The red dashed box indicates which of the two alternative
algorithms was automatically selected in the post hoc combined detector.
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the projection, based on the location at which the line activation drops below a pre-defined

threshold. For the implementation of the event-based Hough transform for space imaging data,

the method as proposed in [76] is used with the minor modification that after the detection of

a line segment, the endpoint with the lower number of recent events2 is considered to be the

trail of the streak and discarded. This is because, in the space imaging context, we are only

interested in the tip of the streak which will have more recent events than the tail.

2.2.8.3 Combining the GMD and Hough Detectors

The event-based Hough detection algorithm is clearly capable of rapidly detecting streaks

on an event-based time surface and as shown in Figure 2.10 the event-based GMD method

provides a complementary capability for finding slow-moving objects. Given their extreme

simplicity, efficiency and suitability for sparse space imaging event streams, the combination

of these two complementary algorithms would provide robust performance benchmarks

in terms of processing speed and accuracy against which the proposed algorithm can be

compared. However, since the stimulus type that will be observed for any segment of a

recording is unknown, it is not possible to determine a priori which algorithm must be

used. Even after the data is observed and processing by the algorithms is complete, there is

still no simple way of determining which algorithm performed better without access to the

ground truth labeling. For the purposes of testing the feature-based detection algorithm, these

discrepancies are overlooked and with the aim of providing the best alternative algorithm, a

combined metric is generated where for each 1ms of the dataset, the alternative algorithm with

the highest detection event informedness measure was selected in a post hoc manner. In this

way, the output of the feature detector algorithm can be compared with the best-consolidated

results from the two alternative algorithms. After this post hoc combination of the best

detection event streams from the two algorithms, the same tracker as that used in Section 2.2.7

was run on the output of the post hoc combined GMD-Hough detector.

2To determine the line endpoint with the lower number of recent events, the value of the 75th percentile of
the ROI at each line endpoint is compared and the line end with the lower value is discarded.
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2.3 Results

In this section, the expert labeling procedure and the proposed algorithm are first evaluated

on the artificial dataset described in Section 2.2.4. The performance of the algorithm on the

real-world event-based dataset is then investigated in detail. Finally, the performance of the

proposed algorithm is compared with the alternative algorithms described in Section 2.2.8.

2.3.1 Algorithm and Expert Performance on Artificial Dataset

Figure 2.11 details the performance of our expert labeling procedure on the artificial dataset

across a range of SNR configurations. Each data point represents mean and standard deviations

over 20 trials with each trial being a random instantiation of the event stream defined in Section

2.2.4.

In (a), the top panel shows mean informedness as a function of the signal per-pixel event

rate λ1 for three, per-pixel background noise event rates λ0 on the raw event stream. The

bottom panel in (a) shows the standard deviation. Panel (b) shows the same mean and standard

deviation results on the feature detection stream and panel (c) shows these for the tracking

event stream. In panel (c), the results from the algorithm are augmented with performance

measures of expert labelers with λ0 = 10−2 events/second. Note the logarithmic scale on

the bottom standard deviation panel where results with zero variance are not shown. Panels

(d), (e) and (f) show the mean and standard deviation specificity for the raw, detection and

tracking event streams respectively with (g), (h) and (i) showing the same for sensitivity.

As panels (a), (b) and (c) show, the informedness improves in all cases with increased signal

event rate λ1. The effect of the noise event rate λ0 on informedness is somewhat mixed in

raw and detection event streams due to a stochastic resonance effect [10] where random noise

events assist in activating a proportion of true volume slices above the recording mean density

increasing sensitivity while decreasing specificity to a smaller extent resulting in higher

informedness. In all cases however, the informedness results in (a) and (b) are low when

compared to the tracking event stream of (c). Here the behavior of the full system becomes
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clear erasing any stochastic resonance effects. The informedness of the tracked events

generated by the algorithm and shown in (c) increases monotonically with increased per-pixel

signal event rate λ1 and is invariant to the per-pixel noise event rate up to approximately

λ0 = 1 event per second where it begins to fall. For comparison, the mean event rate of the

real space imaging dataset is approximately 0.24 events per second. This value can also be

assumed to be the noise event rate given the sparseness of signal events in space imaging

data. The expert results also show the performance of experts on the artificial dataset against

the analytically defined ground truth labels. The expert results demonstrate accuracy that is

approximately three times higher (in terms of signal strength λ1) than the proposed algorithm

with perfect specificity at all levels and high sensitivity even at very weak signal strengths.

Altogether these results validate the labeling procedure used for the real space imaging dataset.

2.3.2 Performance on Real World Space Imaging Dataset

The detailed results for all recordings in the dataset are summarized in Figure 2.12. The first

three rows of results (a), (b) and (c) plot informedness, specificity and sensitivity respectively.

The results demonstrate how each stage of processing shifts the distribution toward 1 resulting

in a more informative event stream. The bottom row (d) shows how, at each stage of processing,

the event density of the recordings is reduced into an ever more efficient representation of

the data. Together these results demonstrate that over the wide range of heterogeneous input

event streams, the proposed algorithm generates a sparse yet informative output event stream.

(b) Shows the per recording specificity distribution is shifted from a mean of 0.63 for the

raw events to 0.98 and 0.99 for the detection and tracking events with most results at 1.

Similarly (c) shows how the per recording sensitivity distributions for the raw, detection and

tracking event streams. Here the sensitivity distribution is actually reduced in the detection

stream in comparison to the raw events. This is primarily due to the relative sparseness of the

detection stream. When the sparser detection event stream is interpolated via the tracker, the

sensitivity rises above the raw events. Together the higher sensitivity and specificity result in

a significantly higher informedness distribution as shown in (a). These results demonstrate

the effectiveness of the end-to-end system in transforming noisy raw input events from space
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FIGURE 2.11: Detailed results of experts and proposed algorithm on the
artificial dataset. See text for details.
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FIGURE 2.12: Per Recording Histogram Results on the Space Imaging
Dataset. From left to right, the panels show results from the raw events, the
detection events and the tracking events. From top to bottom the panels show
(a) informedness, (b) specificity, (c) sensitivity and (d) the event density of
each of the event streams.

imaging data, into sparse highly informative noise-free event streams using a series of simple

hardware implementable filters.

An important parameter in evaluating the space imaging dataset is the selection of the

acceptance distance from an object r marking the boundary of the True and False volumes.
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The radius is dependant on the size of the objects in the dataset and based on inspection of the

data, a value of r = 10 pixels was selected for this parameter. To validate the robustness of

the results and to investigate the effect of r selection, all tests were repeated across all possible

values of r with the results shown in Figure 2.13. These results not only validate the parameter

selection but also provide insights about the spatial structure of the dataset. Figure 2.13(a)

shows an expected rise and fall of the informedness statistic as a function of r in the raw event

stream. At the extreme low radius range, the likelihood of events from a labeled object falling

exactly at the labeled point is low, especially given that the objects themselves often cover an

area which is many pixels across. As the acceptance range is increased, the majority of events

from the objects fall within the acceptance threshold activating the space-time volume as per

Section 2.2.3. As the acceptance radius is further widened into regions around the object

where no object exists, the event density of the region falls reducing the probability that events

from the object activate the volume slice. As a result, informedness falls back toward zero.

Note that due to the greater sparseness, the informedness in the detection and tracking event

streams do not show the same drop after r=10 seen in the raw events since there are almost

no noise events in these event streams. As shown in Figure 2.13(d), due to the dominance and

uniform presence of noise events in the dataset, the specificity of raw event stream changes

very little3 as a function of acceptance distance. In contrast to the raw event stream, the

detection and tracking results show a clear increase in specificity between r=[1:10] with little

increase thereafter. The bottom row panels detail sensitivity results showing a rise and fall

in sensitivity for the raw events with a peak around r=10. Similarly, the sensitivity results

in panels (h) and (i) for the feature detection and tracking events respectively, show rise at

r=[1:10] with little change thereafter. The results from all panels demonstrate the validity

of the selection by inspection of r=10. This selection produces near-optimal results on the

raw events stream and further increases of r providing little change on the more selective

detection event streams and even less change on the tracking event streams. Together, the
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FIGURE 2.13: Results on space imaging dataset as a function of accept-
ance distance r. (a) The per recording mean and standard deviation in in-
formedness on the raw event stream as defined in Section 2.2.3 is found to
be maximal at acceptance radius r=10 pixels. The red dashed line marks the
acceptance radius r=10 pixels, chosen from inspection of the data. (b) Shows
informedness of the detection event streams, (c) informedness of the tracking
event streams (d), (e) and (f) show the per recording mean and standard devi-
ation specificity of the raw detection and tracking event streams respectively
as a function of acceptance radius. (g), (h) and (f) show the sensitivity statistic
on the raw events, detection events and tracking events respectively all as a
function of acceptance radius r.



58 2 EVENT-BASED OBJECT DETECTION AND TRACKING FOR SPACE SITUATIONAL AWARENESS

precise pattern of results shown in Figure 2.13 serves to validate the volume-based statistical

measures used to evaluate event streams in this work.

Given the wide range of velocities and event rates observed in the space imaging dataset,

the effect of the value of the surface decay parameter τ on the performance of the algorithm

requires investigation. During the labeling procedure described in Section 2.2.2, a value of

τ = 0.5 seconds was chosen for viewing the dataset. This value was chosen by inspection

of the data. In Figure 2.14 the algorithm results on the space imaging dataset are shown

across a range of τ values. At shorter time constants, the memory of recent events fades so

quickly on the time surface that faint objects, which generate fewer events over time, generate

too short a trace to be distinguishable from noise clusters and thus are rejected, resulting

in lower sensitivity. This faster decay also rejects true noise events which also results in

slightly higher specificity, but this is outweighed by the fall in sensitivity and thus results in

lower informedness overall. At the other extreme, with very large time constants, the memory

from the background noise events remain on the surface for so long that random clusters of

noise events begin to dominate the signal from the true objects. This significantly reduces

specificity but also sensitivity since the adaptive angular activation threshold Ψi described in

(2.15) adapts the sensitivity of the system depending on the amount of activation. The results

show that the informedness metric changes by only 8% across the wide range of time constant

values tested demonstrating the desired robustness of the overall algorithm to poor parameter

selection. Finally, note that the peak informedness of the system occurs at τ = 0.4 seconds

which is very close to the value of τ = 0.5 seconds chosen by inspection during the labeling

process.

2.3.3 Processing Time Results

In this section the processing time and filtering operation of the algorithm is detailed. The

processing times were tested in the MATLAB 2017a environment on a laptop with a 64bit

3The slight drop in specificity at the extreme acceptance radii results from the increasing probability of
extremely active ‘hot pixels’ falling onto the acceptance region and activating the positive volume. Performing
the same test on the raw events processed by a hot pixel removing algorithm reduces this drop to varying degrees
depending on the permissiveness or severity of the hot pixel removing algorithm used.
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FIGURE 2.14: Final results on the space imaging datgaset as a function
of exponential decay factor τ . The dashed red line indicates the τ = 0.5
value chosen during labeling.

4.00 GHz i7-6700 CPU processor and 64GB of RAM. Figure 2.15 shows the cascaded event

filter design of the proposed system, where at each of the increasingly refined processing

stages, the increased computation time is accompanied by a corresponding reduction in events.

As the distributions shown in panels (a) to (d) of Figure 2.15 demonstrate, the event rates at

each stage of processing of the space imaging dataset becomes reduced requiring an ever-

smaller number of events to be processed by the subsequent stage. Furthermore, as panel

(e) shows for the example SL-8 R/B recording, due to the sparseness of activation in space

imaging event streams, the processing speed of the algorithms is remarkably stable over time

within a recording. In other words, given the small size of the area occupied by space objects

relative to the entire field of view, the presence or lack of even bright target objects in the field

of view makes little difference in the global event rate of the raw events. This is in contrast

to terrestrial applications where, due to the complexity and the relative size of the objects

in the visual environment, the event rate can vary by many orders of magnitude depending

on the relative velocity of the visual scene. The relative stability of event rates within EBSI
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recordings can be exploited at every stage of processing. This property of the data provides yet

another important distinction between EBSI processing algorithms and more general event-

based systems. Panel (f) shows the timing response of the entire system for each processing

stage. Here we can observe that as envisioned, at each stage of processing, the increase

in complexity of the following stage is accompanied by an approximately commensurate

reduction in input event rate such that the entire end-to-end system can process all events

at slightly faster than an eighth of the speed of the first simple surface activation test. This

is despite the fact that the last processing stage, the tracker, processes events at a rate that

is more than 230 times slower than the first stage. Finally, note the position of the angular

activation test above and to the right of the diagonal formed by the other tests. This position

identifies this stage as the bottleneck in the system as discussed in Section 2.2.6.

2.3.4 Comparison with Alternative Algorithms

To provide a benchmark for comparison Table 2.4 details the results of the feature-based

detection and tracking algorithm against alternative event-based high-speed algorithms that

could be used on the space imaging dataset against expert labeling. All algorithms operated on

the same event stream which was pre-processed with the same initial local surface activation

filter and were paired with an identical event-based tracker for the tracking results. The

first row in the table sets the raw events as a baseline showing low informedness primarily

due to the low mean specificity of the event streams. Given the high noise rate, the Hough

line detection algorithm is the worst performing algorithm in this context with informedness

lower than the raw events. This, however, is primarily due to the poor sensitivity of the

Hough detector to a great number of the observed objects in the dataset that are extremely

slow-moving. These slow objects generate faint point source-like activation patterns which the

Hough detector can not detect. When augmented with the event-based tracker, the sensitivity

of the system is slightly reduced but specificity rises to close to 1 resulting in a near doubling

of the informedness. In contrast to the Hough detector, the GMD detector performs best on

the more common slower-moving targets thus resulting in significantly higher sensitivity and

thus informedness. The GMD detector, however, performs poorly in noise filtering. This
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FIGURE 2.15: Reduction in event numbers and associated processing
time at each stage of the algorithm. Panel (a) shows the distribution of
the number of events processed in each recording by the initial time surface ac-
tivation test. (b) Shows the angular activation test, (c) the angular unimodality
test and (d) the tracker. (e) Shows processing time per event of the detection
and tracking algorithm for the SL-8 R/B recording. (f) The number of events
at each stage of processing against the mean processing time per event at that
stage. The processing time ratio Rt is the total processing time of each stage
divided by the duration of the recording being processed.

is especially the case for neighboring clusters of noise events from overactive ‘hot pixels’

on the sensor which are a challenging feature of the dataset and which the GMD fails to

remove. Furthermore, these localized stationary clusters of noise activation are also difficult

for the tracker to remove. For this reason, the specificity of the GMD system is about the

same with or without the tracker. However, the tracker does slightly improve sensitivity

mainly through interpolating between periods of higher activity of slow-moving objects.

Next, when the performance of the GMD and the Hough detector are combined in a post hoc
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TABLE 2.4: Summary of results of tested algorithms on the space ima-
ging dataset.

manner the highest informedness is achieved. When the output of this detection system is

processed by the tracker, a result of 0.804 sensitivity, 0.95 specificity, and 0.753 informedness

is achieved. The performance of this artificially created system serves as a benchmark for

comparison to the feature-based detection algorithm. When the feature-based detection

event stream is evaluated alone we observe a low sensitivity value of 0.58 but the highest

specificity so far at 0.984. However, when combined with the tracker the sensitivity jumps

to 0.782, the specificity to 0.992 and the informedness to 0.775 with the latter two being

the highest achieved measures on the dataset, exceeding even the combined GMD-Hough

system. Together these results show that after the tracking stage is completed, the proposed

feature-based detection approach outperforms all other methods tested including the post hoc

combined Hough-GMD detector with unrealistic access to ground truth demonstrating the

performance of the proposed approach on this challenging space imaging dataset. Finally, as

detailed in the last column of Table 2.4, the processing time of the feature-based detector at

0.222 real-time duration, is approximately double the much simpler and lower performing

GMD detector. When augmented with the tracker the feature-based detection and tracking

system process events faster than all other approaches at only 0.27 times real-time duration.

This is less than half the processing time of the GMD detection and tracking system which

passes through a significant number of noise detection events to the more computationally

expensive tracker as is evidenced by lower specificity of the GMD detector relative to the

feature-based detector. This best of both world’s performance, of high processing speed

and high algorithm complexity resulting in high accuracy, is only possible due to the highly

optimized cascaded event-based filtering design described in Section 2.3.3.
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2.4 Discussion and Future Work

In terrestrial event-based recording conditions a typically complex, feature-rich scenery is

observed at a relatively high SNR, generating event streams with high variance in event

rates. In contrast, event-based space imaging typically contains sparse simple featured scenes

with low SNR and very stable event rates. In this context, the primary challenge is not the

processing of a complex environment, but the extraction of simple faint detections from

a highly noisy random event stream. In this context, even the most simple event-based

algorithms such as hot pixel filters can become problematic given the similarity of noisy

pixels to the stationary point sources targeted in EBSSA. Thus EBSSA is to a significant

degree an exercise in SNR enhancement. Two entirely independent solutions to this problem

of low SNR are of course the design of specialized event-based space imaging sensors and

more immediately online automated optimization of current event-based sensor biases to

recording conditions. Among the recordings in the dataset are instances where due to the

incidental alignment of sensor biases to the recording conditions extremely faint low earth

orbits objects exhibiting random trajectories are observed. In theory, such LEO observations

should populate all recordings in the dataset, yet they are present in only a few. On the

other hand, regardless of future improvements in sensor technologies, improved observing

conditions and future implementations of online sensor bias optimization systems, there will

always remain fainter space objects to be observed and extracted from the event stream. This

perpetual requirement for higher sensitivity will continue to motivate the configuration of

sensor biases for higher sensitivity (and higher noise) in the space imaging context. This

ensures that such event-based datasets will continue to be noisy and in need of robust detection

and tracking algorithms like those described in this work.

One important hyperparameter in the algorithms presented, and in all low SNR event-based

applications, is the size of the ROI patch used. While small ROIs with faster decaying memory

suffice in high SNR contexts, in low SNR applications such as EBSI, larger-sized ROIs with

slower decaying memory collect more information from a larger spatio-temporal volume

which typically results in better performance. On the other hand, increasing a system’s

ROI size reduces its speed. Through heuristic testing of the space imaging dataset and the
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algorithms presented in this work, an ROI of fifteen pixels was found to provide a reasonable

trade-off between performance and speed. In future work, we aim to investigate the use of

non-binary ROI collection windows which weigh events continuously with spatio-temporal

distance to the current event.

Another important hyperparameter that was investigated in detail was the shape and weights

of the LUT templates used to generate the angular activation vector Λ. Initially, it was

assumed the precise image used for the template and its fidelity to observed space object

shapes would significantly impact the accuracy of the overall system and be highly specific

for each particular class and size of the objects observed. In practice, it was found through

experimentation with a range of different bar shapes, lengths, widths and template values, that

as long as the template was strongly uni-directional, the precise shape of the template did not

significantly impact performance.

In this work the proxy signal ζ estimating unimodality of the angular activation Λ was used for

scale, speed and rotation invariant detection of point sources. In typical terrestrial event-based

contexts with their higher SNRs and more complex features a more local plane fitting optical

flow algorithm is used as the first step in detecting events on moving edges [77]. These

events are then augmented with orientation information that is analogous to θi in this work. In

future work, we apply the optimized hardware implemented feature-based detection algorithm

presented here to extremely low SNR terrestrial contexts where the larger ROIs are likely to

provide improved performance over more localized optical flow detection algorithms.

The number of streak templates which in this work was chosen as N = 36 was determined

heuristically. In general, with other factors kept constant, smaller values of N resulted in

faster template matching, but reduced feature detection accuracy especially when detection

streaks. Above N = 36, little improvement in performance was observed and for this reason,

N = 36 was selected to generate ten-degree offsets for neighboring templates.

In this work, the angular activation of the detection stream θi was utilized by the tracker in a

straight forward manner as just another spatial dimension albeit a circular one thus helping to

remove spurious delayed trail events. This orientation information, however, can potentially
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be utilized further to update the tracker estimate potentially providing better performance

by incorporating the orientation of motion θi especially in informationally sparse conditions

such as where the velocity of a newly detected faint object has not yet been ascertained. In

such initial conditions where gaps in the trajectory of a faint object are common, further

incorporation of orientation information into the tracker could provide improvements in

performance. Investigation of this approach is the subject of future work.

2.5 Conclusion

In this work, the first event-based space imaging dataset was presented. The labeled dataset,

augmented with a larger unlabeled dataset, provides a test bench for investigation of event-

based algorithms for the unique and challenging space imaging environment. Statistical

measures were introduced where event density activated spatio-temporal volume slices can be

used to compare the sensitivity, specificity and informedness of extremely heterogeneous event

streams. In this way, the output of the proposed detection and tracking systems can be directly

compared to the raw input events quantifying improvements at each stage and providing

insights into properties of the dataset as well as the operation of the algorithm. The expert

labeling procedure used was validated using an artificial dataset with analytically defined

ground truth. The expert labeling procedure was shown to provide a highly accurate label set

across a wide range of SNR environments. Several high-speed event-based algorithms with

different levels of complexity were tested on the dataset with the feature-based detection and

tracking method outperforming the other methods combined, both in terms of accuracy as

well as in speed of operation. By measuring an optimized proxy measure for the unimodality

of angular activation over a fairly large, slow decaying local time surface region, the feature-

based method was shown to provide a scale, rotation and speed invariant target detection

capability that is ideal for the event-based space imaging context. In terms of speed of

operation, the cascaded event-filter design of the detection and tracking system provides a

high-speed event processor.



CHAPTER 3

Investigation of Event-based surfaces

Chapter Summary

In this chapter, we investigate event-based feature extraction through a rigorous framework of

testing. We test a hardware efficient variant of Spike Timing Dependent Plasticity (STDP) on

a range of spatio-temporal kernels with different surface decaying methods, decay functions,

receptive field sizes, feature numbers and back end classifiers. This detailed investigation

can provide helpful insights and rules of thumb for performance versus complexity trade-offs

in more generalized networks, especially in the context of hardware implementation, where

design choices can incur significant resource costs. The investigation is performed using

a new dataset consisting of model airplanes being dropped free-hand close to the sensor.

The target objects exhibit a wide range of relative orientations and velocities. This range

of target velocities, analyzed in multiple configurations, allows a rigorous comparison of

time-based decaying surfaces (time surfaces) versus event index-based decaying surface

(index surfaces), which are used to perform unsupervised feature extraction, followed by

target detection and recognition. We examine each processing stage by comparison to the

use of raw events, as well as a range of alternative layer structures, and the use of random

features. By comparing results from a linear classifier and an Extreme Learning Machine

(ELM) classifier, we evaluate how each element of the system affects accuracy. To generate

time and index surfaces, the most commonly used kernels, namely, event binning kernels,

linearly and exponentially decaying kernels, are investigated. Index surfaces were found

to outperform time surfaces in recognition when invariance to target velocity was made a

requirement. In the investigation of network structure, larger networks of neurons with large

receptive field sizes were found to perform best. We find that a small number of event-based

66
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feature extractors can project the complex spatio-temporal event patterns of the dataset to an

almost linearly separable representation in feature space, with best performing linear classifier

achieving 98.75% recognition accuracy, using only twenty-five feature extracting neurons.

3.1 Introduction

The last decade of development in the field of event-based cameras has motivated the devel-

opment of a range of event-based or spiking feature detection and recognition algorithms

[78][79–82]. These feature-based algorithms and indeed all event-based algorithms, require

as their initial step, a method for storing memory of recent events. In [83], Tapson et.al

proposed the potential use of a wide range of such memory preserving kernels in event-based

systems. These kernels included exponential kernels, Gaussian functions and other more

biological plausible kernels. The first of these kernels, which decay exponentially with respect

to time was also used in [81], where they were labeled as ’time surfaces’ and combined

with unsupervised feature extraction and classification to form an event-based convolutional

network which was named Hierarchy of Time Surfaces (HOTS).

These time surfaces which are a particularly effective method of implementing event-based

memory systems are the subject of the investigation in this work. Here, we set out to rigorously

quantify in detail the share in performance improvement attributable to each element of an

event-based surface generation, convolution, feature extraction and classification system.

More precisely we investigate the memory generation and decay methods, commonly used

memory kernels, use of raw events relative to the use of feature events, the event-based

convolutional structure of the feature extractor networks and the additional classification

performances provided by the back-end classifiers.

An important question arising at every stage of any event-based algorithm is whether the event

rate should inform the progression of the algorithm through time. In this work, we investigate

this question through comparisons of time surfaces and index surfaces where the memory of

events decay either as a function of time or event index, respectively.
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Processing event memory as a function of time is straight-forward and intuitive. By decaying

event memory as a function of time, all elements of an event-based system operate in a

uniform time-based manner regardless of the informational content in any part of the sensor’s

field of view. The behavior of time-based decaying memory does not vary as a function

of sensor size or any aspect of the visual scene that alters the event generation rate, such

as scene contrast or texture. However, once the sensor event rate is incorporated into the

operation of the system, these invariances may no longer hold, since a change in event rate may

alter the decay rate of the memory of the event stream, potentially resulting in information

loss. Therefore, algorithms using event rate information in memory decay require more

careful testing, parameter selection and potentially secondary solutions such as localized

memory decay mechanisms to mitigate information loss. On the other hand, processing

event memory as a function event count or index does have one crucial advantage over a

purely time-based processing system. In general, event-based vision sensors generate more

events in response to faster-moving objects when holding other variables constant. This

approximately proportional relationship between local event rate and local velocity allows an

algorithm operating as a function of event index to effectively make computational decisions

at approximately the same speed as the object being observed. Previous works have suggested

that the use of event index to decay memory provides greater robustness in the presence of

such variance in target velocity [84, 85]. In [85] an event-based Hough transform was used for

tracking and in [86] this was augmented with an event-based particle filter to improve tracking

performance. The Hough transform in these works was implemented using a window of

fixed event size, thus incorporating the event-rate information into the algorithm. The results

showed that higher target velocities increased the update rate of the algorithm, allowing better

tracking performance at high velocity. In [84], windows of fixed event number and fixed time

windows were compared in their performance in simultaneous tracking and recognition, and a

slightly higher recognition accuracy was achieved when the algorithm was tested for velocity

invariance. Such robustness to observed velocities in the data can be critical in a range of

real-world applications. These results, and the potential utility of velocity robust algorithms in

real-world applications of event-based sensors, motivate a central element of the investigation

presented in this work. One such example is one of the few current applications of event-based
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sensors: the field of event-based Space Situational Awareness (SSA) introduced in [87] and

described in Chapter 2 where the number of event-based observations is extremely limited.

A major aspect of this limitation is that particular targets may only have been observed

at a single velocity relative to the sensor. Yet such objects must be detected, tracked and

identified robustly regardless of their relative velocity. This requirement of robustness to target

velocity variations motivates the detailed rigorous examination of time and index surfaces in

combination with a range of commonly used decay kernels.

Another important element in a wide range of event-based algorithms is the use of feature

extractors. The contribution of the feature extraction layer as a whole is the simplest to

determine and yet can often be missing in the literature as a baseline performance measure.

This involves directly feeding sensor events into the final stage classifiers in the same manner

as the output feature layer, skipping the intervening feature extraction layer(s). A more

subtle question is how effective the learnt features are. In other words, how well does the

learning algorithm orient the feature set with respect to the data so as to cover the underlying

non-linearities in the dataset? This can be ascertained by comparing the mean recognition

performance of multiple independently learnt features against random instantiations of features

with the same network structure and feature weight distribution. The power of random features

to cover non-linear feature spaces has been demonstrated by the Extreme Learning Machine

ELM [88] literature. By comparing feature extraction algorithms to a baseline of random

features a better understanding of the relative improvement can be ascertained. An alternate

baseline for learnt features is hand-crafted features which are based on standard basis functions

such as 2D Gabor filters. However, unlike random features, the performance of hand-crafted

features is highly dependent on the precise design of the feature. This approach would thus

require the testing of a very large class of features in order to provide a meaningful comparison

and as such is not used in this work.

Finally, the most complex measure that is investigated is the role of the classifier on the

performance. While there are a wide range of potential back-end classifiers that may be used,

we propose that the combined use of linear classifiers and large hidden layer ELMs have

particular utility in providing a rigorous measure of residual non-linearity following each
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stage of processing. This is because, unlike other classifiers, which through learning orient

their non-linear features toward the training data, the random non-linear projections of the

ELM’s hidden layer create projections that are approximately uniform with regard to the

structure of the data. As such the size of the hidden layer provides a reasonably “unbiased”

measure of the residual non-linearities present after each a processing layer.

3.2 Methodology

3.2.1 The ATIS Plane Dropping Dataset

The system presented in this work constitutes an event-based high-speed classification system

and makes use of a noisy object recognition dataset to demonstrate and characterize its

performance.

A variety of event-based datasets now exist, such as the N-MNIST and N-Caltech101 [89],

MNIST_DVS [90] and the event-based UCF-50 datasets [91]. One common facet of these

datasets is that they have been generated under highly constrained conditions, especially with

respect to the range of target object velocities. For a static image, event-based cameras only

produce data in response to motion and therefore require either the static image or the camera

itself to be moving. Therefore, the velocities involved in many of the event-based datasets

are strictly controlled. This is often a desirable trait to ensure consistency across all samples,

but this constraint is a strongly artificial one. Other event-based datasets, such as the visual

navigation dataset found in [92], do not control velocity in the same manner, but represent

a fundamentally different task and are therefore not well-suited to exploring detection and

feature extraction mechanisms.

The need to explore the effect of variances in velocity is important as these tend to produce

significant variance in the spatio-temporal event patterns generated by event-based cameras.

This can have a significant impact on the performance of a classifier or detection algorithm.

A primary focus of this work is on the comparison of different event-based processing

approaches in the presence of such variance. This required the creation of a new dataset
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designed to test event-based classification algorithms under conditions that are less constrained

and closer to those found in real-world tasks. However, as well as being reasonably difficult,

the dataset was also designed to be constrained enough to allow a rigorous comparison of the

various parameters and architectures of interest. As such the dataset was specifically designed

to act as a proxy for a noisy local region in a larger real-world dataset.

The task is to identify model airplanes as they rapidly pass through the field of view of an

ATIS camera. The airplanes were dropped free-hand, and from varying heights and distances

from the camera, as shown in Figure 3.1(a). Four model airplanes were used, each made

from steel and all painted uniform gray, as shown in Figure 3.1(b). This served to remove any

distinctive textures or marking from the airplanes, thereby increasing the difficulty of the task.

The airplanes are models of a Mig-31, an F-117, a Su-24 and a Su-35, with wingspans of 9.1,

7.5, 10.3 and 9.0 cm, respectively.

The recordings were captured using the same model of ATIS camera and the same acquisition

software used in capturing the N-MNIST dataset in [89], and the recordings were stored in

the same file formats, thereby maximizing compatibility with other neuromorphic algorithms

and systems. The models were dropped 100 times each from a distance ranging from 120 to

160 cm above the ground and at a horizontal distance of 40 to 80 cm from the camera. This

ensured that the airplanes passed rapidly through the field of view of the camera, with the

planes crossing the field of view in an average of 242 ± 21 ms. No mechanisms were used

to enforce consistency of the airplane drops, resulting in a wide range of observed speeds

from 0 to >1500 pixels per second. Additionally, there were variable delays before and

after each drop, resulting in recordings of varying lengths. The dataset was augmented with

left-right flipped versions of the recordings, resulting in 200 drops for each airplane type. An

example of the variability in the airplane drops is demonstrated in Figure 3.1(c), which shows

binned events in the same 3 ms slice of data from 20 randomly selected recordings from

the dataset. The samples demonstrate significant variations in the positions of the airplanes,

their orientations and their sizes. No attempt was made to fine-tune the sensor’s biases for

the particular light condition or target velocities. This lack of tuning is likely in real-world

environments where the recording conditions may not be known a priori. An example of this



72 3 INVESTIGATION OF EVENT-BASED SURFACES

FIGURE 3.1: Data collection setup and samples of the airplane dropping
dataset. (a) The physical setup used for recording dataset in which an ATIS
camera is attached to a table and the airplanes dropped freehand in front of the
camera. (b) A top-down and labeled view of the four model airplanes used to
generate the dataset. (c) Examples of the variation in the dataset in terms of
position, scale, orientation and speed. Each image represents a frame rendered
from the same 3 ms of events extracted from each recording with ON events
represented with white pixels and OFF events represented with black pixels.
The twenty random samples clearly demonstrate the difficulty of the recog-
nition task. Unlike most event-based datasets, the camera was not tuned or
biased for the application, simulating real-world noisy dynamic environments
where such fine-tuning would be difficult or impossible. As a result of this
arbitrary untuned camera configuration the OFF events (black) in the entire
dataset produced essentially noise clouds and as such were discarded. Air-
plane class key ordered from top left to bottom right, Mig-31:{2, 3, 7, 11, 12},
F-117:{9, 15, 16, 18, 19}, Su-24:{1, 5, 8, 14, 20}, and Su-35: {4, 6, 10, 13,
17}.

is the previously mentioned SSA application, where acquired data is inevitably noisy, often

with one of the sensors polarities entirely unable to capture useful events from the target due

to the sensor biases not being matched to the lighting or velocity profile of the target. Even

when the sensor biases are ideal for the lighting and temperature conditions of the recording,

there are always fainter targets of interest in the field of view which can only be viewed by

lowering sensor biases and “delving deeper into the noise” to accumulate events from these

fainter objects. Thus, allowing noise and un-tuned biases into datasets, additional real-world

challenges, such as structured noise and unevenly performing polarities, become apparent,

motivating the implementation of robust solutions and new network behaviors that would

otherwise be missed.
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FIGURE 3.2: The Dataset Summary. (a) Event timestamp profiles of all
airplane drops in the dataset showing the event timestamps of each recording
as a function of event index. The timestamp profiles demonstrate the variable
rates of event generation within and across the recordings. These differences
are a function of the speed, size and shape of the airplanes and the distance
from the camera. Note the color assigned to each recording profile is arbitrary.
(b) Distribution of the number of frames per recording for each recording in
the dataset. (c) Distribution of the number of events per recording for each
recording in the dataset. (d) Distribution of the duration of each recording in
the dataset.

Figure 3.2(a) shows the event time vs. event index profiles of all recordings in the dataset

showing the significant inter and intra-recording variance in data-rate present in the dataset.

While the number of recordings in the augmented dataset is 800, the number of frames making

up the data sample points presented to the detection and recognition algorithm is >20,000.

The free-hand drop methodology resulted in significant variance in velocity and orientation of

the model airplane within each recording. As a result, the spatio-temporal output patterns

varied significantly through each recording, as shown in Figure 3.2(a) and discussed in later

sections. The distribution of the number of frames per recording is shown in Figure 3.2(b).

These frames represent event-based sampling operations presented to the classifier. Figure

3.2(c) and (d) show the distribution in the number of events per recording and recording

duration for the dataset. The full dataset is freely available at [93].
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3.2.2 Time Surfaces vs. Index Surfaces

Following notation in [60], an event ei from the ATIS camera can be described mathematically

by:

ei = [xi, ti, pi]
T (3.1)

where i is the index of the event, xi = [xi, yi] is the spatial address of the source pixel

corresponding to the physical location on the sensor, pi ∈ {−1, 1} is the polarity of the event

indicating whether the log intensity decreased or increased, and ti is the absolute time at

which the event occurred.

Event-based algorithms require iterative processing of each event and therefore require that

each new observation be combined with previously observed local events, both in space

and in time. This is accomplished using a variation of the time surfaces extended to cover

surfaces decaying based on time and also based on event index (index surfaces). The timing

and polarity information contained in each event, as shown in (3.1), allows the generation

of two useful surfaces, based on time and polarity, from which more complex surfaces can

be constructed. The first surface, referred to as Ti, maps the time of the most recent event to

spatial pixel location and is described in (3.2), with the corresponding surface Pi for event

polarity given by (3.3). Note that as discussed above, due to the excessive noisiness of the

OFF events due to untuned biases, only ON events with pi = 1 were used.

Ti : R2 → R,

x : t→ Ti(x)
(3.2)

Pi : R2 → {−1, 1},

x : p→ Pi(x)
(3.3)

Here, we compare the time surfaces which decay as a function of time, with index surfaces,

where the surface values for all pixels decay not as a function of time, but in response to
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new incoming events. We then define the analogous function to 3.2 for index surfaces. This

surface, Ii, is defined in 3.4 and stores the indices of the incoming event for each pixel.

Ii : R2 → R,

x : i→ Ii(x)
(3.4)

In addition to exploring time-based decay and index-based decay, three different transfer

functions or temporal kernels are investigated. These kernels are event binning (BTS/BIS),

linear decay (LTS/LIS) and exponential decay (ETS/EIS). As a point of reference, the

HOTS algorithm makes use of exponential decaying time kernels ETS.

In all surface generation methods, when a new event arrives, the surface at xi is set to Pi.

When using the event binning technique, the value on the surface maintains its value over a

temporal window τe or index window Ne, after which it is reset to zero. The event binning

method for surface generation is described by equations (3.5) for the time-based binning

surfaces (BTS) and (3.6) for the index-based binning (BIS).

BTSi(x, t) =

Pi(x), if t− Ti(x) ≤ τe

0, if t− Ti(x) > τe

(3.5)

BISi(x) =

Pi(x), if i− Ii(x) ≤ Ne

0, if i− Ii(x) > Ne

(3.6)

For the linearly decaying time surface (LTS) and linearly decaying index surface (LIS), the

initial value set on the surface in response to a new event instead decays toward zero linearly

as a function of time. These surfaces are described by (3.7) for time-based linear decay or in

response to incoming events as described by (3.8) for index-based linear decay.

LTSi(x, t) =

Pi(x) ·
(
1− t−Ti(x)

2τe

)
, if t− Ti(x) ≤ 2τe

0, if t− Ti(x) > 2τe

(3.7)
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LISi(x) =

Pi(x) ·
(
1− t−Ii(x)

2Ne

)
, if i− Ii(x) ≤ 2Ne

0, if i− Ii(x) > 2Ne

(3.8)

The exponential decay method works in a similar manner to the linear decay, with the value

placed on the surface decaying exponentially instead of linearly with respect to either time

or event. This results in the equations for the exponentially decaying time surface (ETS)

shown in (3.9, and the exponentially decaying index surface (EIS) shown in (3.10).

ETSi(x, t) = Pi(x) · e
Ti(x)−t
τe (3.9)

EISi(x) = Pi(x) · e
Ii(x)−i
Ne (3.10)

The equations for these surfaces make use of a constant parameter, time constant τe for

time-based methods and index constant Ne for the index-based methods and the chosen values

for these parameters are shown in Figure 3.2(a) and (b). The plots show the time surface and

index surface generation kernels which have an area under the curve of 3 ms in (a), and 554

events in (b), respectively. These values were chosen based on the mean data rate over all

recordings.

Given the 184.5 k event/s event rate for the entire dataset the area under the curves in Figure

3.3, τe = 3 ms and Ne = 554, respectively were chosen to be approximately equal, thus

resulting in approximately equal total surface activation for the time and index-based decay

methods over the entire dataset, but not for any individual recording or section thereof.

To illustrate the difference in the two decay methods, Figure 3.4 shows the index surface

subtracted from the time surface for a single recording from the dataset. The figure shows

that the binning time surface has a lower activation than the binning index surface when the

speed of the airplane is low (at the start of the recording). As the airplane speeds up through

its fall, the total time surface activation continues to increase whilst the index surface remains
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FIGURE 3.3: Graphs of the six methods for generating time and index
surfaces. (a) Shows the three time-based kernels over time. Note that the area
under all kernels is the time constant τe = 3 ms. (b) Shows the value of the
index-based kernel as a function of event index. Here the mean dataset event
rate over all recordings (184.5 k events/s) was used to obtain equivalent sized
kernels with index constant Ne = 554 events.

approximately constant. In fact, at t = 157 ms, the total activation on the time surface is

approximately twice that of the index surface which remains relatively stable throughout

the recording. This stability of index surface activation is the direct result of the decay

process. Since both the increase and decrease in surface activation are a function of event

index, all decay kernels with a finite impulse response will inevitably generate stable surface

activations. This is in contrast to the time decay method where no coupling exists between

the activation and decay of the surface. Panels (d), (e) and (f) in Figure 3.4, show that the

differences between the two decay methods are greatest for the binning method, followed
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by linear decay and finally exponential decay, which is the result of a slight reduction in

surface activation from binning to linear to exponential decay for the time surfaces. This

reduction is due to the kernel width such that the arrival of a new event overwrites the entry

for a pixel that has recently been activated. The motivation for overwriting the previous

surface value, as opposed to the accumulation of event kernels over the surface, is that the

former approach allows event-based surface generation at arbitrary points in time using only

the timestamp of the last event at each pixel. The latter approach, however, requires either

continuous calculation of the surface activation or the storage of all previous events. The

overwrite effect is more pronounced for kernels with a longer time window as the surface

maintains the value for longer. This same effect is also present in the index surfaces but is

less prominent due to the lower variance of the index-based activation plots. Figure 3.4 also

highlights the event-overwrite effect for different decay methods and kernels, as well as the

significantly lower variance of index surface activation in the presence of change in velocity

(due to gravity) relative to time surfaces. Such lower variance potentially allows downstream

processing stages to be optimized for the stable operating point of the index surface.

Panels (a),(b) and (c) of Figure 3.4, show the surface differences (BTSi -BISi), (LTSi -

LISi) and (LTSi - LTSi), respectively at the beginning of the recording (t = 36 ms). This

moment in the recording is marked (1) on panel (d) which displays total surface activation

for the binning method Σx,yBTSi and Σx,yBISi. The two traces in (d) show that at the

beginning of the recording when the target airplane’s speed is low the binning time surface has

a lower activation than the binning index surface. However, as the target speeds up, the total

time surface activation also increases, while the index surface remains approximately stable,

such that by t = 157 ms the time surface activation Σx,yBTSi is approximately twice that of

Σx,yBISi. Panels (e) and (f) show a similar but slightly less pronounced relative increase for

the linear and exponential decay surfaces. Panels (g), (h) and (i) show this relative increase

for the binning, linear and exponential decay surfaces by plotting the differences of (a), (b)

and (c) at t = 157 ms.
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FIGURE 3.4: Examples of the six methods for generating time and index surfaces.
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3.2.3 Target Velocity vs. Surface Activation

Prior to the feature extraction and recognition, the airplane is detected and the location within

the field of view is determined. The speed of the airplanes is much faster than any other

stimulus expected within the field of view of the camera, such as the body of the author

accidentally entering the frame, as can be seen in the lower right pane of Figure 3.5(c).

Therefore, the summation of events across the rows and columns of the camera’s field of view

(after normalization and thresholding as shown in Figure 3.5(a) and (b) provides a simple

method to detect the boundary of the airplane in the limited context of this investigation.

While the presence of slow-moving objects in the background can be rejected as shown in

Figure 3.5(c), complex background objects with similar velocities to the target would impair

this simple object detector.

In terms of limitations, the presented dataset is constrained in the sense of having only a

single high-speed object in the field of view against an effectively blank background. This

restriction allows a more focused investigation of different methodologies as well as of the

sources of variance in the data such as target orientation and velocity. While the restriction

may appear to limit the generalization of the results to more complex scenes, the dataset and

the resulting network solutions should be viewed as investigating a local region within a more

complex visual scene and the processing required for it which would represent a small section

in a larger system. Alternatively, a local index-based decaying method can be used that only

decays the surface within a local region of an incoming event thus avoiding the limitations

outlined. Such an approach is likely to provide advantages but also have limitations. However,

these are beyond the scope of this work.

By using the detection method described we can plot the estimated vertical position of each

target airplane as shown in Figure 3.6, both in terms of time in Figure 3.6(a) and event index

Figure 3.6(b). These vertical position profiles serve to further highlight the difference between

the index-based and time-based approaches in the context of local velocity. Whereas the

estimated position plots take on their expected parabolic shape when plotted against time,

when plotted against event index, the trajectories are linear to a first approximation. The
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FIGURE 3.5: Example of an airplane drop test after 0.08 s. Panels (a)
and (b) show a smoothed summation of recent events across columns and
rows, respectively. The smoothing was performed by using an 8-pixel wide
rectangular moving average window. Due to the relatively high speed of the
airplane these summations, when normalized and thresholded at 0.1, could
reliably be used to extract the fast-moving airplane from the static background
or slower moving objects. The generated target object’s boundary is shown
in (c). Note that movement of the body of the author (light vertical trace on
the left) as he drops the airplane is slow relative to the airplane and generates
relatively few events and does not reach detection threshold.
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linearity of target position with respect to event index provides an interesting insight into the

potential use of index surfaces for tracking, however, this is beyond the scope of the work

presented here, which focuses on detection and recognition.

Figure 3.7 illustrates the wide range of velocities in the dataset and the associated mean rate

of change in surface activation for time surfaces, index surfaces. The exponentially decay

kernel was used for this test. The line of best fit through the data demonstrates different

relationships between velocity and change in surface activation which arise from the different

geometries of the airplanes. In all cases, however, surface activation is significantly more

sensitive to velocity when using time surfaces than index surfaces. This invariance hints at

the potential utility of index surfaces for velocity invariant feature generation, where features

learnt from a dataset with a particular velocity distribution operate equally well on a dataset

with an entirely different velocity distribution, which is not the case for time surfaces. We

explore the ramifications of this invariance further in section Velocity Segregated Dataset.

3.2.4 Event-Based Feature Extraction using SKAN

In this work an unsupervised event-based feature extractor was used to learn the most common

spatio-temporal features generated by the recordings. Unsupervised feature extraction or

feature learning refers to methods where no supervisory signal is used to adapt the neurons

or features of a neural network. The unsupervised spike-based feature extraction algorithm

was developed for hardware implementation, as previously described in [16]. In the Synapto-

dendritic Kernel Adaptation Network (SKAN) algorithm, the adaptive synaptic kernels and

adaptive thresholds allow the neurons to compete in the temporal domain to learn commonly

observed spatio-temporal spike patterns. These adaptive synapto-dendritic kernels provide

an abstracted representation of the coupling of pre- and post-synaptic neurons via multiple

synaptic and dendritic pathways allowing unsupervised learning and inference of precise spike

timings. By conceptually combining multiple synapses, the most numerous elements of any

neuromorphic system, into a single adaptive kernel, the SKAN algorithm allows an efficient

yet reasonably complex model of STDP to be realized in hardware. In [94], the algorithm

was extended using a simplified model of Spike Timing Dependent Plasticity (STDP) [95] to
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FIGURE 3.6: Vertical position of targets in the dataset. Estimated vertical
position of the target as a function of time (a) and as a function of event index
(b). The dashed black line marks the mean position over all recordings. For
the entire dataset, the mean time interval from the first valid object boundary
detection event to the last was 156.2 ms with a standard deviation of 17.8
ms. The target’s position was defined as the midpoint between the object
boundaries as shown in Figure 3.5(c). The gray bar at the top left in (a)
indicates the time window used for investigating the effect of target velocities
on surface activation in Figure 3.7. The same gray time window bar is shown
in the lower (b) panel as a function of event index. The relative thickness of
the bar is proportional to the number of recordings in the time window of (a)
at each event index. Each colored line indicates a single recording.
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FIGURE 3.7: Relationship between change in surface activation and tar-
get velocity and the resultant mean rate of change in surface activation.
Each point represents a single recording in the dataset. The mean value of
target velocity and change in surface activation was calculated over the time
window indicated in Figure 3.6(a). For each panel m indicates the slope of the
line of best fit.

provide synaptic encoding of afferent Signal to Noise Ratio. In [96], the algorithm was used

to perform real-time unsupervised hand gesture recognition using an FPGA. In this work, the
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event-based approach is continued at the feature extraction layer with the output spike of the

winning neuron representing a feature event.

The SKAN layer operates via two simple feedback loops: a synaptic kernel adaptation loop

and a threshold adaptation loop. Each input event ui(t) in a spatio-temporal pattern activates

a triangular post synaptic kernel ri(t) as described by (3.11) and (3.12) where the kernel

value ri(t) rises up to the upper-bound value wi and then decreases back to zero. Note that

in this work, the value of wi does not adapt and the network operates purely through spike

timing adaptation. The kernels generated from this process are then summed at the soma to

generate a membrane potential. While this membrane potential is above the neuron’s adaptive

threshold Θ(t), the neuron output s(t) goes high, which is analogous to a series of action

potentials or a neuronal burst, as described in (3.13). While the neuron output s(t) is high,

the kernels perform their temporal adaptation operation as described by (3.12). According to

this rule every time step where the neuron output is high and the kernel is rising (qi = 1), the

synaptic kernel’s slope ∆ri is reduced by a small amount ddr, thus moving the kernel peak

later in time to better match the observed pattern. Conversely, if the event arrives before the

peak of the membrane potential, the kernel’s slope ∆ri is raised contracting the kernel and

moving its peak earlier in time.

qi(t) =


1, if

(
ui(t) = 1 ∧ qi(t− 1) = 0

)
∨
(
qi(t− 1) = 1 ∧ ri(t− 1) < wi

)
−1, if

(
qi(t− 1) = 1 ∧ ri(t− 1) ≥ wi

)
∨
(
qi(t− 1) = −1 ∧ ri(t− 1) > 0

)
0, otherwise

(3.11)

 ri(t)

∆ri(t)

 =

 ri(t− 1)

∆ri(t− 1)

+ qi(t− 1) ·

 ∆ri(t− 1)

ddr · s(t− 1)

 (3.12)

s(t) =

1, if Σiri(t) > Θ(t− 1)

0, otherwise
(3.13)
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The neuron’s thresholds adapt via a similar mechanism to the kernels. At each time step

where the neuron output is high the neuron’s threshold also rises. In addition at the falling

edge of the neuron’s output pulse, the threshold falls by a small value. A single inhibitory

neuron prevents multiple neurons from spiking at the same time thus preventing duplicate

learning of the same pattern by multiple neurons.

Θ(t) =


Θ(t− 1) + Θrise, if Σiri(t) > Θ(t− 1)

Θ(t− 1)−Θfall, if Σiri(t) = 0 ∧ Σiri(t) > 0

Θ(t− 1), otherwise

(3.14)

This simple hardware implementable rule-set allows the neurons to orient their spatio-temporal

receptive fields from a random starting point toward the most commonly observed patterns,

thus attempting to optimally represent the observed data given a limited number of features.

It is in the class of unsupervised training algorithms used in wide range of neuromorphic

algorithms such as STDP. For a detailed description of the hardware implementation of the

algorithm and resultant behaviors see [97].

When the camera detects a new event, a 13 × 13-pixel region of the surface around it is

converted to a temporally coded spatio-temporal spike pattern. This value to time encoding

method was originally used in [98]. The normalized real-valued intensity of the surface

is first rescaled from 0–1 to 0–255 and then mapped to an 8-bit unsigned integer. This

8-bit encoding of the surface allows for potential hardware implementation of the SKAN

kernels, without needing floating-point operations. This integer representation of the local

surface region is then encoded into spike delays forming a spatio-temporal spike pattern.

The resultant pattern is then used as the input to a 25-neuron network. The neurons were

trained 10 times independently using half the dataset consisting of 50 recordings from each

plane type augmented by the left-right flipped version of these recordings. After training,

the weight and threshold adaptation mechanisms in the neurons were disabled. Independent

training of SKAN on randomly selected sections of the dataset consistently resulted in similar

spatio-temporal features being learnt. Given the shallow network structure, feature sizes
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significantly affect how much of an object is seen by any of the feature detecting neurons.

For this reason, a range of feature sizes were investigated. The panels in Figure 3.8 show the

resulting feature set from two independent trials at different network sizes to demonstrate

this. As the comparison of the trained feature sets shows the same consistent features were

learnt at each network size, with the features coding for the leading edge of the airplane nose

cones and wings dominating the feature sets. In addition, variants of a solitary noise spike

produced often by the ATIS camera are represented as noise features appearing in the top left

of Figure 3.8(b),(c) and (d). This consistency was also observed over training epochs of the

individual trials. As the number of neurons is increased some of the neurons no longer code

for the same features, as can be best seen in the bottom right neurons of Figure 3.8(d). Note

also the increasing number of variants of the “noise feature” as the network size is increased.

These variants of the “noise feature” encode weak traces of features which are too weak to

show in the full-color scale.

Of the many network sizes shown in Figure 3.8 the N = 25 neuron network was chosen for

the investigation of the other parameters in the system. In section Feature Extractor Size

and Number, we return to investigate the effect of network and feature sizes in greater detail.

Following feature extraction, and with learning disabled, the neurons compete to recognize

incoming spatio-temporal event patterns generated from the same 13 × 13-pixel region of the

surface following each new event with the spike output of the winning neuron representing a

feature event. These feature events were then stored onto 25 separate feature time surface or

feature index surfaces, which were generated identically to the event surfaces described in

section Time-Surface vs. Index Surfaces using the same decay method and decay factor.

3.2.5 Spatial Pooling of Feature Surfaces

In order to reduce the required processing and speed up simulation, the subsystems following

the feature surfaces were operated in a frame-based manner such that at periodic intervals

the estimated target region from each feature surface was sampled to generate feature frames.

The interval used for sampling was the same as the time surface decay constant τe = 3 ms.

The frame generation was time-based for both the time and index surfaces so as not to bias the
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FIGURE 3.8: Consistency of feature generation at multiple network
scales. Panels (a) to (d) show 4, 9, 25 and 64 spatio-temporal features, re-
spectively, extracted from the ATIS airplane drop dataset. Each panel show
results from two independent trials. To allow for a visual comparison of the
two feature sets, the features from the first trial have been ordered based on the
sum of the squares of the weight of each pixel in each feature. The features of
the second trial were then sorted based on cosine distance to the first feature
set. Only the feature-set obtained from two instances of the time-based, expo-
nentially decaying surface is shown above for brevity. The features resulting
from the other kernels resulted in qualitatively similar features dominated by
wing edge, nose cone tail features as well as features coding for noise.

comparison. To reduce the input size to the classifier, spatial pooling of the feature surfaces

was performed. To perform this spatial pooling, the estimated object boundary region was

summed along the rows and columns, generating two one dimensional feature vectors, one

for the rows and one for the columns. The length of these vectors would vary at each feature

frame depending on the size of the estimated target region. Thus, in a network with N

neurons for each feature a target region of size R rows and C columns would generate two

one-dimensional vectors (of length R and C, respectively) resulting from the summation of

the image region across rows and columns for each of N surfaces. In order to provide the

classifier with a uniform input layer size, the varied length feature vectors R and C need to

be resampled to a uniform length. This was done using linear interpolation and the uniform

vector length chosen was 72 for each of the row and column vectors. This vector size (72)
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were multiplied by the number of pooling dimensions (2), and the number of features (25),

produced a 3,600-input layer for the classifier.

3.2.6 Classification

The choice of a back-end classifier used to map feature outputs to classes can play a critical role

in the performance of a convolutional feature extraction layer or network. Well-regularized

high-capacity classifiers with internal non-linearities can provide significant improvement

in performance over and above the underlying feature extractors used. In many proposed

event-based recognition systems, only a single type of classifier is tested and often only a

single instance of such a classifier (the best performing configuration) is reported. While

this approach encourages greater attention to the presented work, it can also overstate the

performance of the overall system, due to fine-tuning. What’s more, the use of well-optimized

powerful classifiers without concurrently testing simple linear classifiers obscures the role

of the event-based feature extractors in the system performance. Here, we propose a dual

classifier testing protocol, which ideally should be applied before and after each stage of

processing, to provide insights into the effectiveness of the elements under test. For the

baseline test, a simple linear classifier is used to measure how linearly separable the underlying

data is before and after processing. In addition to this baseline classifier, we utilize a large

capacity ELM, which, by virtue of the large number of random hidden layer neurons, is likely

to project the non-linearities of the dataset into a linearly separable higher dimensional feature

space. In addition, the lack of feature learning in the ELM allows a reasonable unbiased

estimate of the residual non-linearity in data. This framework of testing provides significant

insights, as detailed in the results section, which would not be revealed if only the results

from the best performing classifier were reported.

To evaluate the performance of the system, two measures of recognition accuracy were

considered: per-frame accuracy and per-drop accuracy. For the per-frame measure, the feature

vectors described in Section 3.2.5 were presented to the classifier at periodic time intervals

τe. At each frame, the class with the largest output was selected as the winner for that frame.
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FIGURE 3.9: Block diagram of the full event-based detection, feature
extraction and recognition system. The target is sensed by the sensor and
the generated ON events are processed using a time or index surface. Each
event triggers a comparison of a local patch around the event with a set of
features or neurons. The winning neuron outputs an event which in turn is
placed on a feature surface. The feature surfaces are summed across the rows
and columns and presented to the back end classifier. The classifier is here
depicted as a network with a hidden layer but we also use a linear classifier.
Note that in the feature surface pooling stage only the vector summing the
feature surfaces across columns is shown, with the second vector showing the
summation across rows omitted for clarity.

For the per-drop accuracy measure, the class with the highest number of per-frame during the

entire recording was selected.

A linear classifier and an ELM classifier with a hidden layer size of 30,000 neurons were

trained using the time-based binning method to achieve the highest per-frame recognition

accuracy.The resultant end-to-end system is shown in Figure 3.9.

3.2.7 Parameter Selection

In order to fairly evaluate the relative performance in terms of recognition accuracy resulting

from different decay kernels, surface decay methods, feature extractor numbers and their

receptive field sizes, a large number of free system parameters must first be selected. These

parameters, listed in Table 3.1, are used to implement event and feature surface generation,
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TABLE 3.1: Free parameters used in the system.

frame generation, object detection, feature extraction, spatial pooling, regularization and

classification. In order to ensure that the selected parameters do not advantage the index-

surfaces or the feature extraction methods that are the focus of this work, all subsystem

parameters would need to be evaluated in terms of their combined effect on the performance

of each method under testing. However, this represents a prohibitively large search space

to explore in a brute force fashion. Instead, to remove possible parameter selection bias in

favor of the proposed methods, the approach taken in this work involved optimization of all

parameters to achieve the highest recognition accuracy on what may be considered the null

hypothesis: that simple time-based binning kernels used on raw input events outperform other

kernels, decay methods and feature extractors. To this end, the parameters in Table 3.1 and all

algorithm design choices were selected via a manual heuristic search for optimal recognition

performance using the time-based binning surfaceBTSi whose spatially pooled output was

fed directly to the classifier without the use of feature extractors. The classifiers were then

selected for optimal performance on the output data generated by the selected parameters.

Once optimized in this way for the “null” hypothesis, these same parameters and network

structures were used for all other tests, ensuring that recognition results were biased in favor

of the simple time-based binning approach and not those proposed in this work.
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3.3 Results

3.3.1 Results on the Full Dataset

The per-frame recognition results on the full dataset are shown in Figure 3.10. For each of

the panels, the same performance pattern is observed: when operating on raw event surfaces

as inputs, the large capacity ELM (ELM-E) significantly outperforms the linear classifier

(L-E). This demonstrates the non-linearity of the classification boundaries in this case. In

comparison, when feature surfaces are used as inputs, the improvement margin gained by the

ELM (ELM-F) is small relative to the linear classifier (L-F) suggesting that the output of the

25 feature extractors is significantly more linearly separable, with less room for improvement

through further non-linear expansion. Also noteworthy is that the linear classifier operating on

feature surfaces (L-F) outperforms the ELM operating on the raw event surfaces (ELM-E) for

all surface generation methods. This shows that the application of a small number of trained

local feature extractors is more effective than using a much larger globally connected network

of neurons with random input weights. The ratio of errors between the ELM and the linear

classifier indicated at the bottom of each panel quantifies this reduction in error for each case.

Comparing the results across the panels for the linear classifier operating on events (L-E),

the exponentially decaying surfaces outperform linearly decaying surfaces by a margin of

1.75% for the index surfaces and 0.24% for the time-surfaces. In turn, the linearly decaying

surfaces outperform the binning method by 3.06% and 1.36% for the index surfaces and

time surfaces, respectively. For the case of the linear classifier operating on feature surfaces

(L-F), the exponentially decaying surfaces outperform linearly decaying surfaces by a margin

of 0.57% for the index surfaces and 0.22% for the time-surfaces, and in turn, the linearly

decaying surfaces outperform the binning method by 3.07% and 1.91% for the index surfaces

and time surfaces, respectively. Also, consistently, the improvement of exponential kernels

over linear kernels is not as significant as their margin with the binning method.

It is worth noting that, when the ELM is chosen as the back-end classifier, the margin

in performance improvement obtained from feature extraction is reduced. This result is
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expected since the randomly situated hidden layer neurons of the ELM have a greater chance

of improving the linear separability of segments of the dataset if such segments are not

already linearly separable due to processing in the preceding layer. This effect of obscuring

the performance of other subsystems is not limited to the ELM. A similar effect would be

expected with any other classifier performing non-linear expansion. This underlines the

need to include results from a simple linear classifier when comparing alternative systems.

Also worth noting is that for the preceding results (features outperforming raw events, and

exponential and linear kernels outperforming binning) all system parameters were optimized

for the time-based binning method. These results, therefore, confirm the suitability of

exponential kernels for time and index-surface generation. This conclusion is also supported

by results in Akolkar et al. (2015), where the information from the visual scene is found to

rapidly rise within a small initial temporal window, but thereafter fall gradually with increasing

window size, as is best described by an exponentially decaying kernel. By weighing events

in an approximately compensatory manner to their information content as described in [99],

the exponentially decaying kernel results in the highest information content for the classifier.

Another observation from Figure 3.10 is that all time-based decay methods outperform

the index-based decay methods by approximately 1% on the full dataset with the largest

performance disparity observed between the index-based binning method BISi and the

time-based binning methodBTSi. This would be expected since the latter method was used

during all parameter optimizations and would be most advantaged by the selected parameters.

Based on the results shown in Figure 3.10 we narrow further investigations by selecting linear

classifiers L-E and L-F and focus on exponentially decaying surfaces LTSi and LTSi.

3.3.2 Frame Balanced Dataset

In order to generate a balanced dataset, an equal number of frames from each recording was

selected. In this way, the total number of presentations to the classifier for each class was

equalized. Figure 3.11 shows that 1, 2, 4, 8, 16 and 32 frames were sampled from each of the

airplane recordings and presented to the linear classifier operating on events surfaces L-E and

feature surfaces L-F for each of the LTSi and LTSi surfaces.
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FIGURE 3.10: Per-frame recognition accuracy on the full dataset over n
= 20 independent trials. Each panel shows results from four network arrange-
ments. The box plots show the median (center-line) maximum and minimum
values at the top and bottom respectively. The height of the box captures the
25th to 75th percentile. In (L-E), and (ELM-E) the linear classifier and the
30,000 hidden layer ELM operate on inputs from raw event surfaces. In (L-F),
and (ELM-F) the same classifiers use 25 feature surfaces as inputs. Each panel
shows results for a different surface generation method: The top three panels
show time-based methods using (a) binning, (b) linearly decaying and (c)
exponentially decaying surfaces. The bottom three panels show corresponding
index-based binning (d), linearly decaying (e) and exponentially decaying
surfaces (f). The two ratios at the bottom of each panel indicate the median
error ratio of the ELM over the linear classifier. The black horizontal lines
above and below the box plots indicate the minimum and maximum accuracy
values. The shorter lines indicate outliers.

As Figure 3.11 shows, both the per-frame and per-drop accuracy increase as a function of

the number of frames used during training. Additionally, a sharper increase and a higher

final accuracy is observed for the per-drop accuracy measure as would be expected since the

per-drop measure is analogous to a max-pooling operation which benefits from increased

pool size. The relative performance margin of the network using feature surfaces over raw
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FIGURE 3.11: Comparison of per-frame and per-drop and recognition
accuracy as a function of the number of randomly selected frames used
during training from each recording. The index-based LTSi surface and
time-based LTSi surfaces are compared. Results shown are over n = 20 trials.
A linear classifier was used in all test.

event surfaces is reduced in the per-drop measure, as more information is accumulated over

a recording, reducing error. The highest number of random frames used per recording was

32, as this was approximately equal to the total number of frames in the shortest recording

as shown in Figure 3.2(b). Table 3.2 details the accuracy results for this balanced dataset

while Figure 3.12 shows misclassified recordings for one instance of the highest performing

network using index-based decaying feature surfaces and a linear classifier, illustrating that

some drops are almost impossible to classify correctly.

Interestingly, in contrast to the full unbalanced dataset results detailed in section Results

on the Full Dataset, the per-frame balanced results in Figure 3.11 and Table 3.2 show little

significant difference in accuracy between the index-based and time-based surfaces for either
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TABLE 3.2: Selected Linear Classifier Results. Per-frame and Per-drop
accuracy results on the frame balanced dataset for four selected systems:
Linear classifier operating on events surfaces (L-E) and feature surfaces (L-F)
for each of the LTSi and LTSi surfaces.

FIGURE 3.12: The three drops misclassified by an instance of a linear
classifier using 25 exponentially decaying index-based feature surfaces.
Captured frames show airplanes at mid-point (in time) of recording.

the per-frame or per-drop measures, suggesting that the observed slight advantages in accuracy

on the full dataset may be due to the use of time-based surfaces during parameter selection.

3.3.3 Velocity Segregated Dataset

As outlined in section 3.2.3, the apparent velocity invariance property of index surfaces

motivates a test using a modified dataset which is split in terms of target velocity. Thus, in

order to compare index-based and time-based surfaces in terms of target velocity invariance,

the recordings were divided into 200 “slow” and 200 “fast” recordings based on the estimated
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FIGURE 3.13: Mean and standard deviation per-frame accuracy on a
speed segregated dataset. The results demonstrate superior performance of
index-based surfaces in the presence of variance in target velocity.

vertical airplane velocity at the midpoint (in time) of each recording. Since the airplanes speed

up during the fall, the system was trained on the n-first (slowest) frames of the slow recordings

and tested on the n-last (fastest) frames of the fast recordings. In this way, by varying the

number of n frames, datasets with different degrees of velocity segregation could be tested.

The resulting recognition accuracies in Figure 3.13 demonstrate that with increasing number

of frames, and thus decreasing velocity segregation in the data, the recognition accuracy of

all systems rises. Figure 3.13 further shows that although training on a speed segregated

dataset significantly reduces accuracies for all systems in comparison to training using a

randomly sampled dataset (such as shown in Figure 3.11), the decline is significantly larger

for time-based decaying surfaces. This difference demonstrates the relative robustness of

index-based decay surfaces to variance in velocity and their utility in applications where the

full range of potential target velocities to be encountered during testing is not available in the

training data.

Therefore, given the results in the previous section, it can be concluded that, at the local scale,

with a single target in the field of view, systems using index-based decay surfaces tend to

match equivalent systems using time-based decay surfaces, when presented with an adequately
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wide range of velocities in the training data, since their advantage of velocity invariance is

effectively neutralized. But when the available range of velocity distributions for training is

incomplete, index-based decay surfaces tend to produce more robust performance. Given this

finding, and in order to limit the scope in the next section, we narrow our focus exclusively

on index-based surfaces and investigate the effect of different feature extraction networks

and their effect on recognition accuracy. This is also supported by findings in [84], where a

small superiority was found when using fixed event windows over time windows. However,

those tests were performed using a randomly sampled training set, likely containing data with

velocity distributions that were similar to the test set. As such their results are similar to the

full dataset results examined in section Frame Balanced Dataset of this work, which only

showed a slight improvement due to the velocity variance available in the training dataset. In

this work, by additionally testing the algorithms using a range of velocity segregated datasets,

the robustness of the index surface method is more completely investigated.

3.3.4 The Decay Constants

An important element of any event-based surface is the value of its decay constant. In this work

the value of decay constants, τe = 3 ms andNe = 554 events were effectively chosen arbitrarily.

This raises an important question about the optimality of the chosen decay constants and the

robustness of the generated features and recognition accuracy to different values of these

decay constants. A closely related question, which applies only to index surfaces, is whether

targets which generate more or fewer events, e.g., due to different object size or contrast,

could still be learnt and recognized with the decay constants chosen. To investigate these

questions a wide range of decay constants across six orders of magnitudes were tested on a

frame balanced randomized training and testing dataset. The resulting recognition accuracies

and selected feature sets are shown in Figure 3.14. The results show a similar pattern for time

and index surfaces with little significant difference in classification accuracy. At the extreme

decay rate of 10 events and 54 µs the systems perform little better than chance since virtually

all event information is decayed away before it can be extracted. This leaves all the features

coding for variants of the noise feature. As the decay constant increases by two orders of
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magnitude, coherent features begin to emerge coinciding with a rapid increase in recognition

accuracy. At this event rate, there are still multiple features coding for a single noise spike.

Index decay constants of between three and four orders of magnitude of events correspond

with a plateau in recognition performance. This region coincides with the range where the

noise feature is only represented by one or two neurons with all remaining neurons coding for

complex features. After four orders of magnitude increase in the decay constant, the accuracy

begins to decline slightly. In this region, the noise features begin to be represented once more

but this time with a highly activated background which is a direct result of the much slower

decay rate.

As Figure 3.14 illustrates, when sweeping the decay constant, the number of variants of the

noise feature in the network roughly correlates to the feature extraction performance of the

network. The feature set with the fewest representations of the noise feature (ideally only

one) performs the best. This is expected since the noise feature is unlikely to be correlated to

any particular class of object and the frequency of its representation in a feature-set reduces

the efficiency of that feature-set, leaving fewer neurons to represent classification relevant

feature information. Figure 14 also shows a wide central region of stable performance that

is robust to the choice of τe and Ne. The results also show that overestimating the optimal

value of the decay constant is less detrimental than underestimating with significantly less

reduction in classification accuracy.

3.3.5 Feature Extractor Size and Number

In order to characterize the effectiveness of the feature extraction subsystem in an unbiased

manner, a range of feature sizes and a number of feature extractors were investigated and

assessed in terms of the resultant recognition accuracy. In addition, for each point on the

feature size-feature number space, the results of the learning algorithm described in section

Event-Based Feature Extraction was compared to those of equivalent sized networks using

random feature sets. The mean accuracy results in Figure 3.15 (top panels) demonstrate that

learnt features outperform random features at every scale while exhibiting slightly lower

variance in accuracy (bottom panels).
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FIGURE 3.14: Classification accuracy and typical feature sets as a func-
tion of the decay constants for time and index surfaces. The lower panel
shows accuracy plotted as a function of the index decay constant Ne on a
logarithmic scale. The time surface results are plotted on the same logarithmic
scale where a 5.4152 µs/event conversion rate is used to align the results. This
conversion rate is based on the average event rate over the entire dataset. The
vertical solid line at Ne = 554 and τe = 3 ms (τe = 554 × 5.4152 µs) indicates
the value of the index and time decay constants used in rest of the work. The
horizontal dotted line indicates chance accuracy. All tests were performed
over n = 20 independent feature extraction trials. The feature sets above the
panel show instances of the feature sets for four points on the decay constant
axis.

In addition, while the results from the random features suggest a slight trend toward increased

accuracy as a function of both feature numbers and feature size, the learnt feature results

clearly show that the larger feature sizes (17× 17 and 13× 13) generate higher accuracy with

increasing number of features, while the smallest feature sizes (3 × 3 and 5 × 5) exhibits a

weak downward trend with the number of features. When the feature size is small, only a few
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FIGURE 3.15: Per-frame accuracy on the full dataset as a function of
feature size and number of features used in the feature extraction layer
for both learnt and random features. n = 10 independent feature sets with
10 cross validating classifications per feature set. Note that the baseline linear
accuracy using the raw event surface with no feature extraction layer was
91.38 +/-0.81% as shown in Table 3.2.
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distinct combinations exist. Therefore, when and a large number of them are trained, several

features will be very similar, resulting in near-identical input generating very different input

to the classifier. This reduction in accuracy resulting from the addition of more redundant

features is due to the OR operation which must be performed by the back-end classifier. This

insight demonstrates that convolutional features layers can, if poorly configured, “over-fit”

the data by representing overly specific variants of the same pattern. This effect only becomes

apparent with the combined use of a large number of features, small feature sizes and relatively

small datasets. But this might be an issue in future applications of event-based convolutional

networks, where resource efficiency of a hardware implementation may allow a very large

number of features in a layer to be trained (especially in the first layer) while the level of

independent features in the recorded data may be limited.

We can also note that for both the random and learnt feature sets, the feature size has little effect

on accuracy when the number of features becomes very small. This is because there is very

little additional discriminatory information that can be captured by the larger sized features

when a wide range of unrelated, heterogeneous spatio-temporal patterns become effectively

averaged together to generate the (too) few features used in the network. Thus, local spatial

complexity of observed data determines optimal feature size and feature number relationships,

which, if not considered during hardware implementation, can result in inappropriately scaled

network architectures and effectively wasting hardware resources.

3.4 Discussion and Future Work

As detailed in this work, the selection and optimization of system parameters were performed

on a "null" hypothesis which involved time-based binning surfaces acting on raw event

streams without features. The results have shown that the improvements in accuracy resulting

from exponential surfaces, index-based decay and feature extraction more than compensated

for this biased parameter selection procedure. It is, however, worth noting that if the system

parameters were optimized instead on the elements proposed in the work i.e. features
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operating on index-based exponentially decaying surfaces, then the improvements over the

"null" hypothesis would almost certainly be even larger than the ones presented in this work.

While binning methods examined in this work were shown to perform less well than linearly

decaying surfaces and exponentially decaying surfaces, the significantly simpler implementa-

tion of the binning method allows for much more efficient implementations of event surfaces

in neuromorphic hardware. In a similar fashion, the selection of feature sizes and the number

of features implemented at any layer of a multi-layer event-based network generates trade-offs

between hardware resources and performance. In this context, the network and feature size

investigations presented here provide guidelines for such network designs.

The four-class dataset presented allows reasonably accurate classification using a single layer

of feature extraction in combination with a linear classifier; the task can be made increasingly

difficult by increasing the number of classes in the dataset. In such a case, the output of the

feature extraction layer would retain significantly greater residual non-linearity. This would

increase the performance gap between the linear classifier and the large ELM. Conversely,

adding additional feature extraction layers will work in the opposite direction, producing

output that is more and more linearly separable and thus reducing the performance gap

between the linear classifier and ELM.

The presented recordings in the dataset were varied to cover a wide range of target speeds.

As a result, any random splitting of training and testing data provided an overlapping range

of target speeds in both sets. This overlap removed any advantage of index-based decaying

surfaces that provide robustness to target velocity. However, in many applications, such as the

SSA applications discussed in Chapter 2, the range of velocities in the training set is limited

so that features trained on this limited set of target velocities must generalized to a wide

range of as yet unobserved velocity profiles. In this work, such a condition was simulated

by iteratively segregating the data based on speed to highlight the utility of the index-based

decay method.
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3.5 Conclusion

In this work, we investigated in detail an event-based feature extraction layer. In order to

rigorously investigate the effects of different kernels, decaying methods, classifiers and feature

sizes and numbers, we limited the exploration to a single layer network. Yet the design of

deeper networks can be informed by these single layer results. Using a dataset featuring a

range of target shapes, scales, orientations and velocities, it was observed that exponentially

decaying kernels outperform other kernels, and that index-based decaying surfaces perform

equally as well as time-based decaying surfaces, when robustness to target speed is not

required, and outperform them when it is required. We also showed the clear superiority of

learnt features over random features and showed that the largest networks of neurons with the

largest receptive fields using the most complex kernels outperform all other configurations.



CHAPTER 4

Investigation of Feature Extraction using Adaptive Selection Thresholds

Chapter Summary

Unsupervised feature extraction algorithms form one of the most important building blocks in

machine learning systems. These algorithms are often adapted to the event-based domain to

perform online learning in neuromorphic hardware. However, not designed for the purpose,

such algorithms typically require significant simplification during implementation to meet

hardware constraints, creating trade-offs with performance. Furthermore, conventional feature

extraction algorithms are not designed to generate useful intermediary signals which are

valuable only in the context of neuromorphic hardware limitations. Here we investigate an

event-based feature extraction algorithm with a focus on these issues. The algorithm operates

via simple adaptive selection thresholds which allow a simpler implementation of network

homeostasis than previous works by trading off a small amount of information loss in the

form of missed events that fall outside the selection thresholds. The behavior of the selection

thresholds and the output of the network as a whole are shown to provide uniquely useful

signals indicating network weight convergence without the need to access network weights.

A novel heuristic method for network size selection is proposed which makes use of noise

events and their feature representations. The use of selection thresholds is shown to produce

network activation patterns that predict classification accuracy allowing rapid evaluation and

optimization of system parameters without the need to run back-end classifiers. The feature

extraction method is tested on both the N-MNIST benchmarking dataset and a less controlled

dataset of airplanes passing through the field of view. Multiple configurations with different

classifiers are tested with the results quantifying the performance gains at each processing

stage.

105
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4.1 Introduction

Feature detection is a fundamental building block required for a wide range of computer

vision tasks. These tasks rely on computationally efficient algorithms capable of detecting

features in a reliable, repeatable, and robust manner.

Conventional feature extraction is an active and well-researched field of study and has

produced sophisticated and robust algorithms. Event-based feature extraction poses a different

and perhaps more challenging task. The output of an event-based camera constitutes neither

a frame, as in traditional computer vision, nor a stream of frames, as in conventional video.

As a result, the majority of existing feature detectors are a poor fit for event-based vision

data and require the events to be converted into standard image frames before processing.

In contrast, this work explores the use of event-based features using an unsupervised and

data-driven approach. Originating from the concepts underpinning the Synaptic Kernel

Adaptation Network (SKAN) [97][94], this method, called the Feature Extraction with

Adaptive Selection Thresholds (FEAST) algorithm, makes use of neurons or features with

individually adaptive selection thresholds that are iteratively updated using a competitive

control strategy. These adaptive neurons act as feature extractors that learn data-specific

features in an online, event-based, and unsupervised manner. Adaptive selection thresholds

provide a simple way of maintaining homeostasis between the activation patterns of a large

number of neurons without the need to store or share information about previous neuronal

activity or the internal parameters of the individual neurons. This simplicity also enables

efficient implementation of the algorithm in neuromorphic hardware.

4.1.1 Feature Extraction in Neuromorphic Systems

Feature detection is commonly defined as the process of identifying and describing sections

of an image representation for the purposes of identification, tracking, or classification.

When dealing with conventional cameras, these image representations are often frames of

illumination intensity, containing either monochrome or color information for each pixel.
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Feature detection in the context of event-based cameras operates on a fundamentally different

representation of the visual scene in which the encoding of information includes a pixel-level

temporal component not present in conventional frame-based data.

Event-based vision systems, therefore, need a class of feature detectors that exploit the event-

based and activity-driven nature of neuromorphic vision systems. Tasks such as tracking and

object recognition still require the identification and matching of local visual features, but

these features must represent commonly observed spatio-temporal patterns of events instead

of static images. As with conventional feature detection, the most desirable property of a

feature is still its ability to be uniquely distinguished in feature space [100].

The field of neuromorphic vision has seen a significant increase in interest over the past

few years, resulting in a number of innovative approaches to the task of feature detection

and extraction. Features based on corner detection, such as the Harris corner detector [101]

and cortex-like Gabor filters [102], are examples of an explicit feature detection method

commonly used in conventional computer vision. This approach has been adapted for event-

based sensors, with notable examples including an event-based implementation of the Harris

Corner detector [103], and a novel corner detection method based on finding the intersections

of planes fitted to the event stream from the cameras [104]. Related to corner detection is

the process of edge detection, and this class of algorithms have also been implemented in an

event-based manner. Examples include the Canny edge detector presented in [105] and the

event-based line segment detector presented in [106].

Whereas some feature detection methods have sought to make use of a combination of

event-based and frame-based approaches [59], this work restricts itself to operating only on

the output of the change detection circuity from the event-based camera. The mechanism

for measuring absolute illumination in an event-based sensor varies from device to device,

whereas the change detection produces compatible output across all current event-based vision

sensors. By restricting the algorithms to only the change detection events, this maximizes the

versatility and applicability of the algorithms by allowing them to be compatible with most

existing event-based vision devices, such as the DAVIS event-based cameras [107].
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The HFIRST algorithm [78] is an example of a multi-layer network in which appropriate

features are learned directly from the event-based data. The algorithm is based on the

HMAX algorithm [108] and implements an analogous first-to-spike operation in place of the

maximum pooling operation from which the algorithm derives its name. Another example

of an unsupervised learning method capable of learning spatio-temporal features makes use

of recurrent reservoir networks and a winner-take-all approach [80] allowing the network to

maintain and preserve the high temporal nature of the events throughout the feature detection

system. The Event-Based GASSOM [109] algorithm extends the ASSOM [110] algorithm

to the output of an event-based sensor and successfully demonstrated the ability to learn

features invariant to fast changes in the input signal. Both methods were tested on event-based

datasets similar to, or superseded by, the datasets used to verify the feature extraction method

presented in this work.

The Hierarchy of Event-based Time Surface (HOTS) algorithm [81] represents the closest

work to the event-based feature detection method described in this work. The HOTS algorithm

uses the neuron update learning rule introduced in [111] where neurons are updated in

proportion to the cosine distance of their weights to the input, and where the learning rate

gradually decays as a function of time. The HOTS algorithm makes use of multiple layers

of feature extractors based on unsupervised feature clustering with the output of each layer

fanning out and feeding into deeper feature detectors with longer exponential time constants.

The algorithm successfully demonstrates the ability to use these feature layers to perform

accurate feature classification in an entirely event-based manner.

Here we highlight the significance and benefits of using an adaptive thresholding approach to

feature extraction as well as highlighting the novel use of readily accessible network signals

for estimating weight convergence and predicting network classification performance. The

adaptive thresholding technique presented allows a simple yet robust implementation of

network homeostasis. Unlike in the learning method proposed in [111] and used in HOTS,

the neurons or features in this work do not need to continuously keep count of their updates.

Instead the FEAST algorithm adapts its selection thresholds for incoming events such that

the features are constantly being contracted by accepted events and expanded by rejected or
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missed events. This event-based competition means that the neuron thresholds do not decay

exponentially as a function of time but only in response to missed input data which represents

information not yet well incorporated into the network.

Furthermore whereas the HOTS learning algorithm updates every neuron in proportion to

the cosine distance of the input to the neuron, in FEAST only the winning neuron is updated.

Designating a single neuron as the winner of an input event, and only updating this winner,

not only performs a max-pooling operation, but also significantly reduces computation and

potential hardware costs of such an online learning system.

The major difference between the proposed FEAST algorithm and the SKAN algorithm on

which it is based, is the latter operates directly on spatio-temporal spike patterns whereas the

former operates on continuous values extracted from time surfaces.

The FEAST algorithm was first used in [112] and validated through classification tasks using

the controlled benchmarking datasets. Here, the operation of the algorithm is investigated in

more detail and also tested on the noisy Plane Dropping dataset. In addition a subset of the

tests performed in [112] are repeated. Here we find slightly better performance relative to

random features on the same tests.

By using adaptive selection thresholds, the proposed network provides reliable signals for

the detection of network convergence without requiring access to the network weights. The

most direct indication of network convergence is a stable steady state in the values of the

network weights. In general the change in the network weights does not reach zero but a

steady-state around a small value depending on the magnitude of learning rate. In this work

three additional signals, the selection thresholds, the missed spike rate, and the variance in

the output spike rates, are shown to provide alternative signals for convergence detection

during online learning. This useful property is the direct consequence of the dynamics of the

adaptive selection thresholds. Such proxy signals for weight convergence are unnecessary

when a network is trained offline or if network weights are readily available for inspection

and convergence analysis. However, in neuromorphic hardware applications, continuous

access to network weights may be limited and costly, due to the large number of weights



110 4 INVESTIGATION OF FEATURE EXTRACTION USING ADAPTIVE SELECTION THRESHOLDS

and limited number of output channels. The proxy signals examined in this work are more

accessible and easier to calculate than the change in network weights, enabling more efficient

implementations of neuromorphic on-chip learning hardware.

Thus the FEAST algorithm trades a small amount of information loss for a simpler imple-

mentation of network homeostasis and robust measures of fitness to data and early proxies for

classification accuracy which are shown to predict classification accuracy directly. These novel

uses of intermediary signals are particularly important in the context of on-chip event-based

neuromorphic systems in real-world online learning applications where hardware resources

and opportunities for detailed network investigation are limited.

4.1.2 Feature Extraction via Adaptive Selection Thresholds

As described previously, the output of an event-based camera can be viewed as a continuous

stream of events ei, each of which have the form ei = [xi, ti, pi]
T i ∈ N+ where xi =

[xi, yi] denotes the location of the pixel generating the event, p ∈ [−1,+1] indicates the

polarity of the change in illumination at the pixel causing the event, and t represents the time

at which the event occurred. In a hardware event-based system, the time-stamp would not

need to be explicitly stored for each event, as the time would be implicit as the arrival time of

the event during processing.

The stream of events ei can be used to generate a range of time or index surfaces as described

in Chapter 3. Here, we use the exponentially decaying time surface with a τ of 10 ms and τ

of 3 ms were used for the N-MNIST dataset and Plane dropping dataset respectively.

After generating an event-based time surface, a local Region of Interest (ROI) patch can be

extracted for each event ei such that only a small region of the image requires processing.

Extracting an event ROI from the time surface for an incoming event produces an R × R

ROI Ie containing spatio-temporal information from the neighborhood surrounding the pixel

generating the event. In this work the ROI patch size was selected as the neighboring 11× 11

pixels. In order to perform further processing on this event, the ROI region is converted into a
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descriptor in the form of a one dimensional, 1×R2 vector as follows:

d = vec(I) ≡ [I1,1...IR,1, I1,2...IR,2, I1,R...IR,R]T (4.1)

In the next step, this descriptor is normalized through a division by its norm to achieve

invariance to temporal scaling.

d =
vec(I)

||vec(I)||
(4.2)

The time scale invariance resulting from normalizing the descriptor is an important operation

in the weight update step of the FEAST algorithm. By effectively normalizing the descriptor

I with respect to time, velocity information is discarded in favor of feature robustness.

With the normalized descriptor d as input, online unsupervised feature extraction can be

performed. The FEAST algorithm uses two mechanism for capturing the N most dominant

spatio-temporal patterns observed in an event stream. The first mechanism involves adaptation

of the feature neuron weights wn by way of re-orientation toward observed patterns. Here

each of the N neuron has exactly R×R feature weights corresponding to the ROI input size.

As with the vectorized descriptor, the neuron weights can be stored and processed as 1×R2

vectors. The second mechanism involves balancing the rate of learning across the neurons

through the use of the neurons’ adaptive selection thresholds θn which contract and expand to

make each neuron more or less selective around their orientation in RR2 space.

At each event ei, the normalized descriptor d is compared to each feature wn via a dot product

calculation δn = d · wn. For each neuron δn is then compared to its selection threshold θn. If

for any neuron, the dot product δn is larger than the selection threshold θn, the neuron with

the largest dot product is selected as the winner. In this way, the neuron with the smallest

cosine distance to the observed input is the selected as the winner. If on the other hand, for

all neurons, the dot product δn is larger than the selection threshold θn, then no neuron wins

and the event is missed by the network since the input descriptor is not within the selection

threshold of any neuron.
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In order for the network to learn to orient its features toward the observed data, at each event

ei, if a neuron is selected as the winner, a small mixing rate η is used to slightly move the

winning neuron toward the descriptor:

wn = (1− η)wn + ηd (4.3)

where wn denotes the weights of the winning neuron to the current input ROI descriptor d.

As a point of reference, a mixing rate of η = 0.001 is used in this work. Following this

operation, the feature weights are normalized to prevent the biasing of subsequent dot product

measurements. In this way, all neurons have an equal magnitude of 1. The normalization of

the descriptor serves a similar function across events such that the input descriptor d generated

from each event injects an equal amount of information into the network by 4.3. Normalizing

each input descriptor prior to mixing prevents larger change due to events generated in regions

of higher velocity where the ROIs exhibit larger magnitudes. Without the normalization step,

faster-moving segments of the scene, which have higher magnitude, would have a larger effect

on the learned feature weights in comparison to slow-moving features. This in turn would

result in feature sets that were biased toward faster moving objects at the expense of slower

ones. The full algorithm is described by Algorithm 4.1. Note that for the purposes of brevity,

the event polarities are not included here.

For R × R size ROIs the feature weights and descriptors are located on the unit R × R

hypersphere. In this work the On and Off event-based time surfaces are processed separately

such that descriptors are extracted from positive valued time surfaces. For this reason the

feature weights and descriptors are all placed on the positive quadrant of the unit hypersphere.

In addition to updating the feature weights, the threshold for the winning feature is also

increased by ∆θ+. This contraction of the selective threshold of the winning feature, slightly

reduces the receptivity of the features to new inputs forcing it to become more selective with

each win.

If the input does not match any existing feature, the input is discarded and the thresholds

for all features is decreased by ∆θ−. This has the effect of increasing the receptivity of all
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features making them more receptive to input ROIs with greater distance to their current

location in the feature space. Thus, with each ’missed’ input event, the network as a whole

becomes less selective and more receptive to change.

The effect of this dynamic thresholding serves to ensure that after convergence the rate of

firing of for all features is approximately equal, as decreasing the threshold on matching serves

to reduce the receptiveness of each feature to new data. This balance between expansion

and contraction of the thresholds results in features with weights placed at the center of the

most commonly observed regions of the input space, with selective thresholds that match the

dispersion of observed inputs around those points. This adaptive method takes advantage

of the abundance and informational redundancy in event-based data. By trading off a small
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fraction of events which are missed by all neurons, the algorithm finds the appropriate set of

selective thresholds which balances the feature activation over the dataset.

The top panel in Figure 4.1 shows the evolution of useful system parameters during network

training where after every 100 events, four signals were sampled and the magnitude of their

inter-sample change is plotted over input event index. The signals plotted include the variance

(across neurons) of the output spike rate (divided by ten thousand), the magnitude of the

change in the synaptic weights of all neurons, the magnitude of the change of the selection

thresholds and the missed spike rate (divided by ten thousand).

The bottom panel shows the evolution of the learnt features during training. Note the presence

of three variants of the "noise feature" in the feature sets. These empty features with a single

high value at the central triggering pixel are learnt from events which are not correlated with

any recent adjacent events. While the features appear empty and flat except for the central

pixel, all but one feature per network typically exhibit very weak structure in their empty

regions distinguishing them from each other and the dominant truly flat noise event

As shown in Figure 4.1, at the beginning of training the features are initialized to random

points on the unit hypersphere. Since the selection thresholds are initialized at random, a

minority of the neurons will have thresholds so wide that every input event causes a neuron

to fire, preventing other neurons from spiking and thus learning. Because of their greater

receptivity, these neurons capture all input events such that there are no missed spikes and

no change in the selection thresholds of the more selectively initialized neurons. This is

evidenced by the top panel of Figure 4.1 where during the initial stage the relative magnitude

of change in the thresholds is low since only the thresholds of a few neurons are adapting

(becoming ever more selective).

The magnitude of the change in the feature weights is similarly low due to the early unbalanced

activity of the network, allowing only a few neurons to learn. An additional signal shown in

the panel is the standard deviation of spike rates across neurons. At the early stage of learning,

with only a few highly receptive neurons firing, the variance in the firing rates across neurons

the neurons is low.
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FIGURE 4.1: Evolution of the network variables. Top panel shows the
adaptation of various neural signals in the network over 10 independent trials
as well as the mean over the trials. The bottom panel shows the evolution of
the feature weights for one of the trials.

As the early highly receptive neurons contract their thresholds and become more selective,

more neurons with more selectively initialized thresholds become activated and begin learning.

This learning results in an increasing rate of change in the feature weights and the selection

thresholds. Even greater change is observed in the variance of the output spike rate across

neurons, as more and more neurons become activated while the most selective neurons have
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still not fired a single output. Eventually, as the number of activated neurons with decreased

thresholds increases to a tipping point, the magnitude of the change in thresholds begins to

decline as fewer and fewer highly receptive neurons are left for adaptation. Simultaneously,

the change in weights and the variance in the spike rate of the neurons also falls, as the neuron

weights and thresholds begin to take on the statistics of the input dataset such that the neurons

orient toward the centroids of the most common spatio-temporal pattern clusters while the

thresholds take on values in proportion to the spread of the patterns around these centroids.

Eventually all neurons become so selective that some input events start to fall outside the

selection threshold, causing the first missed spikes. With these missed spikes the thresholds

of all neurons increases causing the final most selectively initialized neurons to respond to

input and begin adapting their weights. After this point all signals move toward their final

steady-state values demonstrating the convergence of the network. In this state the change in

weights and thresholds and inter-neuron spike variance reach their lowest value, while the

missed spike rate reaches a steady state of approximately 2 percent.

Once training is completed, the selection threshold can be discarded such that during inference,

the feature with the largest dot product (smallest cosine distance) to the input is assigned to

the incoming event, regardless of the absolute value of the adapted selection threshold.

4.1.3 Noise Features and Network Size Selection

A heuristic developed during the testing of the FEAST algorithm was to use the number of

noise features to select the appropriate network size. Optimal feature receptive field size

and the corresponding layer size are among the most difficult event-based network meta

parameters to optimize. This is due to the large potential parameter search space, the strong

interdependence of the parameters, and the long feedback loop guiding the parameter selection.

For multi-layer networks the search space increases in a combinatorial manner. Furthermore,

each data point in the network structure search space requires development and convergence

of multiple independent feature extractor networks and subsequent multiple classification

operations.
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To bypass this search, we use a heuristic method of observing the noise features shown in

Figure 4.1 for selecting network size. These noise features are often one of the dominant

features in networks trained on noisy real-world event-based datasets. By representing noise

events that are triggered by the noise in the sensor and not by changes in illumination, such

noise features effectively perform unsupervised noise filtering. In addition, in this work these

noise features are used for the novel purpose of selecting the number of neurons in each

layer for a given dataset. This method is based on the observation that irrespective of the

complexity and structure of the dataset the input descriptors d generated by noise events are

highly correlated with each other and contain mostly redundant information. This would

ideally be described by a single noise feature neuron with all other neurons coding for the

complex structured features present in the dataset. Thus in an extreme case, a large network

whose trained features are all variants of the noise feature is evidence of a training dataset that

contains no structured information beyond noise events. At the other extreme, again assuming

a non-ideal sensor which generates some noise, a network containing only complex features

with no noise features is evidence of a network containing too few neurons since it has yet to

incorporate the information from the noise feature (and presumably, other more significant

non-noise features also). In this heuristic approach, if an event-based sensor is assumed to

generate noise events, the target number of noise features learnt from any dataset should be at

least one and possibly slightly more (to ensure that non-noise features less common than the

noise feature are also incorporated).

In practice, as the number of neurons in the feature set is increased and representation of

unique complex structured features in a dataset is exhausted, the number of additional noise-

like features tends to increase. After this point, given that noise features by definition do

not correlate to any target class, further increase in neuron numbers is likely to produce

diminishing returns. In this work a target of 2-4 noise features was selected for the Plane

Dropping dataset. This target resulted in respective layer sizes of 100 and 25 neurons per

polarity for the N-MNIST and Plane Dropping datasets respectively. This heuristic method

of selecting layer sizes by observing the number of features becomes particularly important

for feature extraction networks developed for noisy real-world event-based data and in

applications where exhaustive search of network structures is unavailable.
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4.2 Methodology

This section presents a brief introduction to the datasets and classifiers used to evaluate the

FEAST algorithm.

4.2.1 Datasets

Two different datasets were used to explore and a validate the FEAST algorithm. There are

a growing number of standardized event-based datasets captured with event-based cameras.

These include datasets for a wide range of vision-related tasks, such as action recognition [91],

optical flow [113], face recognition [81], and visual navigation [92]. The FEAST algorithm

was tested on the N-MNIST event-based dataset [89] to present and characterize the fea-

ture extraction process. The N-MNIST dataset is a conversion of the original and widely

disseminated MNIST dataset [114] to an event-based format. Whereas the letter and digit

dataset presented alongside the HFIRST algorithm contained only a small subset of digits,

the N-MNIST dataset contains the full 70,000 training and testing samples. The dataset is

converted to an event-based representation by projecting the digits onto an LCD screen and

then recording them with an ATIS camera as it proceeded through three defined saccade-like

movements forming the triangle.

While the N-MNIST dataset represents a good benchmarking task for event-based classi-

fication systems, with results reported in multiple papers [109, 115–117], it represents a

heavily controlled classification task. The use of the fixed and predictable saccade motion

creates an unrealistic assumption on which to test feature detection algorithms destined for

less controlled real-world tasks. In addition, the N-MNIST dataset is an extremely clean

dataset containing virtually no noise events. While this noise-free property of the dataset

allows a greater focus on event-based classification, it limits the dataset’s application to more

noisy environments. In order to better evaluate the performance of the feature detectors, the

less controlled Plane Dropping classification task was added which introduces more noise

and greater natural variation into the task. In the plane dropping experiment, the random

noise events, which are inherently generated due to the non-ideal response of the camera, are
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not cleaned. Furthermore, the biases of the sensor which control the pixel event generation

threshold at each pixel are not optimized for the lighting condition of the recorded scene.

These non-optimized settings cause additional noise events which make the dataset more

challenging to process and more similar to real-world recording conditions.

4.2.2 Classifiers

Three different classifiers were used to perform the learning and classification tasks on the

feature events generated from the FEAST algorithm.

The first classifier is an iterative implementation of the Extreme Learning Machine (ELM) [88].

ELM networks consist of a standard three-layer configuration and use random weights to

project from the input layer to a hidden layer. This hidden layer input is passed through a

nonlinear activation function, typically a sigmoid function. A set of linear output weights

are then learned to map the hidden layer output to the output classes, thus performing

classification.

The classifier uses the Online Pseudo-Inverse Update Method (OPIUM) [118] to iteratively

update the linear output weights which project from the hidden layer neurons to the output

neurons. The use of an iterative method of solving the pseudo-inverse for the ELM allows

the classification network to be updated in response to each individual event, however, the

scale of the number of input channels and the size of the event-based dataset make direct

application of the ELM network to the event-based data prohibitively difficult, motivating the

dimensionality reduction provided by the feature extractor network.

The second classifier used in this work is the Synaptic Kernel Inverse Method (SKIM) [13],

which is a neural synthesis technique designed to operate directly on spike-based inputs and

is therefore directly compatible with the event-based output of these event-based sensors.

The SKIM method is inspired by the process of dendritic computation and has a similar

three-layer structure to the ELM network with fixed and random connections from the input

layer to a much larger hidden layer. A set of learned linear weights connect the hidden and

the output layer neurons. The hidden layer neurons in SKIM represent dendritic synapses
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and implement a nonlinear activation function, whereas the random input weights model

the axonal connections to other neurons. The linear output weights represent the dendritic

connections to each output neuron.

The SKIM network also makes use of OPIUM to learn these weights, although any gradient

descent method would be suitable. The original SKIM network as proposed by Tapson et al.

provided a means of synthesizing networks capable of producing specific spatio-temporal

patterns in response to specific input patterns. The implementation of the network requires

a number of modifications in order to utilize the algorithm for a classification task. A full

discussion of these alterations is provided in [115]. In addition to these two classifiers a linear

classifier was also used as a baseline for the performance of the other two classifier.

The two major alterations involve the nature of the training signal and the means by which

the classification output is determined in a multi-class classification task. The original SKIM

network made use of a single spike as the training target, which performed well on simple

spike pattern recognition tasks but did not extend well to larger and more complex datasets,

suffering from a high degree of sensitivity to noise.

These single output spikes were replaced with a multi-step training signal which imparts

more energy into the system and greatly increases the robustness of the learning mechanism.

A range of possible transfer functions can be used for spreading the energy of the events

to later training time steps. These include linearly decaying, exponentially decaying or

Gaussian transfer functions. For this purpose the SKIM classifiers presented in this use

Gaussian transfer functions were used as training signal which was amended to the end

of each recording. A second adaptation required to handle multi-class classification tasks

involves the means by which the winning class is determined. Whereas in ELM networks,

the class with the maximum activation at each time step is the winning output class, this

assumption does not readily translate to the event-based paradigm used in the SKIM network.

In this work, additional time-steps are appended to the end of the training and testing spike

trains. During this augmented section at the end of the spatio-temporal pattern, the supervisory

signal indicating the winning class is activated. For the purposes of this work, the winning

class is determined by the output neuron with the highest cumulative activation during the
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augmented period. This is referred to as the Area determination method, as described in

[115].

4.3 Results

4.3.1 N-MNIST Digit Classification Results

For the purposes of the classification experiments, the FEAST method was used to gen-

erate features on the N-MNIST dataset. Through the heuristic examination described in

Section 4.1.3, 100 features were selected as the feature layer size for each polarity for the

N-MNIST dataset. Only the training samples were used to generate the features, and made

use of the feature extraction parameters configured as ∆θ+ = 0.001 and a ∆θ− = 0.003 with

200 features (100 for ON events, 100 for OFF events) of size 11× 11 pixels.

An ELM network was used as one of the back-end classifiers. ELM networks do not

intrinsically operate on event-based data, and therefore the input sequences from the N-

MNIST dataset cannot serve directly as input for an ELM network. The most direct approach

requires the use of a separate input channel for each pattern at each time-step, and when

dealing with the original N-MNIST sequences, the image size of 34 × 34 pixels and the

316 time-steps (the maximum number of millisecond time-steps in the N-MNIST dataset)

results in a required input size of 365,296 per digit which is prohibitively large. However, by

mapping the data into the feature domain, the size of the input layer is reduced to a single

feature per time-step. For a network containing 100 features, this results in an input pattern

size of 31,600, reducing the input layer by more than an order of magnitude.

Testing with the ELM classifier involved the two different sets of features for each polarity,

with the same event to feature mapping method used for each polarity.

Table 4.1 presents the results of the linear classifier, the ELM classifier and the SKIM network.

The results show that the learnt FEAST features outperform the random features. The ELM

is shown to outperform a SKIM network of the same hidden layer size. As expected, both
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TABLE 4.1: Summary of classification accuracies on the N-MNIST data-
set. Three classifiers, a linear classifier, an 8000 hidden neuron SKIM network
and an 8000 hidden neuron ELM classifier were used on the output of 200
11× 11 pixel features.

Classifier Random FEAST
Linear 63.49 +/-0.33 % 71.42 +/-0.28 %
SKIM 8K 90.64 +/-0.18 % 93.89 +/-0.17 %
ELM 8K 90.34 +/-0.13 % 95.11 +/-0.11 %

networks outperform a simple linear classifier. The results in Table 4.1 generally confirm

those performed in [112] with a minor difference that for the 8000 hidden layer ELM, the

FEAST features provide slightly higher performance relative to random neurons. These

results exceed those achieved using the same number of hidden layer neurons with the SKIM

algorithm alone as previously reported in [115]. Combining the learnt features with the SKIM

network creates a fully event-based network from end to end. The network operates on each

spike, updating the features, and learning in a feed-forward manner. The SKIM network is

also particularly well suited to the nature of the events produced by the adaptive threshold

clustering, as they are inherently sparse spatio-temporal patterns. Where the ELM required

the vectorization of the resulting spatio-temporal pattern in feature space, the SKIM network

can operate on the feature events directly, and therefore has only a single input channel for

each feature.

4.3.2 Plane Dropping dataset Results

Algorithms tested and carefully tuned for ideal datasets can produce unrealistic performance

expectations, and fail when tested in such challenging real-world applications. For this reason

we augment our testing with the Plane Dropping dataset which provides a less controlled,

more noisy dataset for classification than the N-MNIST digits dataset. It is intended to

showcase the ability of the FEAST algorithm to generalize to more real-world conditions

with fast, unregulated motion and unpredictable recording environments that do not match the

tuned biases and controlled environments used in the generation of most event-based datasets

such as N-MNIST. Additionally, although the N-MNIST dataset includes motion through

saccade-like movements used to collect the dataset, this repeated tightly controlled motion
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profile generates repeating predictable patterns for the classifier. In the plane dropping task,

the lower SNR (Signal to Noise Ratio), the varying relative orientations of the similar-looking

targets, and the varying velocity profiles increase the difficulty of the classification task in

ways that are more similar to real-world conditions.

The algorithm used for processing the plane drop dataset was the same as that used for the

N-MNIST dataset, with only three parameter modifications.

Firstly, the higher target velocities and noise levels in the Plane Dropping dataset required a

shorter time constant than the N-MNIST dataset, specifically 3ms in place of 316 ms.

Secondly, whilst the same 11 × 11 feature size as for N-MNIST was used, the number of

features selected was 25 per polarity, as networks with a higher number of features generated

a large number of representations for the "noise feature" shown in Figure 4.1. For the Plane

Dropping dataset, using 11×11 pixel features, 25 neurons consistently resulted in 2-4 variants

of the noise feature which is the target range set out in the heuristic described in Section 4.1.2.

Finally, due to the non-optimized tuning of the biases of the sensor, the OFF events exhibited

very low SNR and carried little information. As a result, only the ON events were used for this

dataset, thereby resulting in only 25 features used in total as opposed to 200 for the N-MNIST

dataset.

As with the N-MNIST dataset, the system was trained on a subset of the airplane dataset.

The training set consisted of random sets of 400 recordings, with the remaining 400 making

up the test set. There is significant variance in the spatio-temporal patterns generated by

the airplanes within each recording of the airplane dataset, due to significant change in

velocity, pose, and the periods of partial occlusion as the planes enter and exit the field of

view. This intra-recording variance significantly adds to the complexity of the dataset. To

capture this variance, the feature surfaces were sampled at 3ms time intervals during each

recording, resulting in approximately 50 classification operations for each recording, such

that approximately 20000 unique training and 20000 unique testing samples were presented

to the classifier.
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An example of the features generated for the plane dataset is presented in Figure 4.1 where

the network produced three variants of the noise features. Since the output of these features

do not correlate with any particular class, they effectively act as naturally evolved noise

detectors, leaving only clean data for the rest of the network and being essentially ignored

by the classifiers. While a similar functionality can be hardcoded using noise filters, the

FEAST algorithm extracts multiple variants of the noise feature from event stream. These

features point to subtle statistical structure in the noise which likely depends on the dynamic

recording environment and the sensor. Such structured data would not be amenable to hard

coding and could only be learnt and detected in an online manner. After the convergence

of the feature detector, the training data was converted to feature space through the FEAST

algorithm and presented to the classifier through a supervised training regime. The training

order was randomly selected. Once the training step was complete, the unseen test set was

passed through the same FEAST layer and the classifier output determined. Two measures of

accuracy were used. First a per frame measure calculating accuracy of each classified frame

and a second per recording accuracy measure which performs a majority voting on the frames

of each recording assigning the recording to the class with the highest number of winning

frames.

In addition to the linear classifier and the 8000 neuron hidden layer SKIM and ELM networks,

a large 30000 hidden neuron ELM network was also tested on the same feature output data

in order to quantify the level of residual nonlinearity after the feature extraction operation.

Finally, to separate the efficacy of the FEAST algorithm from the improvement gained via

the event-based convolution operation, 25 random weighted features with identical weight

distributions were also tested against FEAST while keeping all other aspects of the system

unchanged. These results are shown in Table 4.2

As the results in Table 4.2 show, the highest per-frame classification accuracy is achieved

using the large ELM operating on the FEAST output, resulting in 92.81% accuracy. More

remarkable than the absolute value of the highest accuracy is the relative improvements each

element of the system delivers. When random features are used as feature extractors 64.2%

of the samples become linearly separable. The use of the large ELM on the random features
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TABLE 4.2: Summary of classification accuracies on the Plane Dropping
dataset. Four classifiers, a linear classifier, an 8000 hidden neuron SKIM
network, one 8000 and one 30000 hidden neuron ELM classifier were used on
the raw events, on the output of 25 random features, and on the 25 FEAST
features.

Per Frame Per Drop
Classifier Random FEAST Random FEAST
Linear 64.2 +/-4.9 % 83.8 +/-2.5 % 69.6 +/-5.8 % 87.9 +/-2.7 %
SKIM 8K N/A N/A 74.4 +/-5.0 % 77.0 +/-3.8 %
ELM 8K 67.9 +/-5.0 % 87.2 +/-1.9 % 75.9 +/-5.3 % 90.1 +/-2.2 %
ELM 30K 69.2 +/-4.7 % 92.8 +/-1.8 % 77.8 +/-5.5 % 96.2 +/-2.0 %

only provides an additional 5% improvement. This result provides an insight into the utility

and also into the limitation of the event-based convolution operation. Despite not being

effective representations of the data, the random neurons still significantly improve accuracy

by aggregating local information around incoming events. Yet this aggregation is highly

inefficient, with a significant amount of information lost due to the lack of specificity of the

neurons to the dataset structure. This is shown by the fact that the 30000 hidden layer neuron

ELM can only extract a slight improvement on the available data despite its large hidden layer.

In contrast, by orienting the features toward the data, the FEAST neurons alone manage to

linearly separate 83.8% of the frames and provide enough information to the ELM for it to

linearize a further 9% of the data. In this configuration of the system, when all frames of

the recording are combined in a majority voting operation, a per drop accuracy of 96.2% is

achieved on the 30000 hidden layer neuron ELM. Table 4.3 details the confusion matrix for

this configuration of the system for the 4-way Plane Dropping dataset.

While the SKIM classification algorithm operates on time steps that are analogous to the

frames used for the linear and ELM classifier, no meaningful per frame (or per time-step)

accuracy measure can be deduced from the SKIM algorithm. This is due to the nature of

the algorithm which is trained to output a classification signal at the end of each recording

only. On the random features, the SKIM network’s accuracy of 74.4% was between the linear

classifier and the tested ELMs with the equivalently sized 8000 hidden layer ELM performing

slightly better than the SKIM classifier. This result is in contrast to those from the N-MNIST

dataset. It is likely the result of the great variance in target velocity and the noise present in
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TABLE 4.3: Confusion matrix for mean performance of the per-frame 30000
hidden layer ELM classifier on the 4-class plane dropping results.

Results averaged over 20 trials.
Predicted

F117 Mig-31 Su-24 Su-35 Accuracy
Actual F117 24.5% 0.1% 0% 0.5% 97.7%

Mig-31 0% 20.8% 0.5% 3.1% 85.3%
Su-24 0% 0% 24.79% 0.07% 99.1%
Su-35 0.5% 2.0% 0.3% 21.7% 88.7%
Precision 97.9% 90.8% 97.0% 85.3%

the Plane Dropping dataset compared to the N-MNIST dataset. Here, the random kernels of

the SKIM may work against the classifier by increasing the already high variance in the time

scales of the observed spatio-temporal patterns caused by the varying target velocity as well

potentially extending the effect of noise events via slow decaying kernels. These differing

relative performances between the classifiers highlights the utility of testing algorithms on

datasets of dissimilar design.

Finally, when tested on an equal number of FEAST features that are well oriented towards the

data, SKIM performs worse than a all classifiers tested. This is possibly due to the fact that

the output activation of the FEAST features already provides a linearly separable mapping

to the output classes but the high variance of velocity in the dataset together with the late

supervisory signal in SKIM, which, on this dataset, arrives as the airplane is leaving the field

of view likely impacts the algorithm’s accuracy below the other per frame-based methods

which perform their learning at all stages of each recording providing greater invariance to

target velocity.

4.3.3 Evaluating Feature Sets Via Feature Activation

The most direct measure of the utility of a feature set for any classification dataset is the

recognition accuracy achieved by the classifiers. However, in many circumstances, this

measure can be significantly more computationally expensive than the development of the

feature set itself. Acquiring a rigorous figure of merit for any feature set can require repeated

training of back-end classifiers. This long feedback loop in the evaluation of feature sets
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can be time-consuming and can limit the range of feature extraction parameters that can be

investigated. This same issue was encountered in this work, where the rigorous evaluation

and comparison of feature sets through the calculation of recognition accuracy consumed

significantly more time and computational resource than the development of the features

themselves. However, it was found that the output of the FEAST neurons provided an easily

accessed alternative signal that correlated strongly with final recognition accuracy measure.

The adaptive selection thresholds of the FEAST neurons force the network features to capture

the most commonly observed patterns, while also compensating for the frequency of the

observed patterns. This means that during the learning phase the neurons are constantly being

pushed toward equal activation. During inference, however, without the adaptive thresholds

enforcing equal activation, the network spike rate can vary significantly across neurons with

some neurons spiking more than others. This spike inequality was found to correlate strongly

to the classification accuracy over the dataset, allowing rapid coarse evaluation of feature-sets

and network meta parameters. The measure used for quantifying inequality in spike output

was the Gini coefficient [119]. This measure, commonly used to quantify wealth and income

inequality [120] is defined as the mean absolute difference of all pairs of items in a population

divided by the mean of the population to normalize the scale. The Gini coefficient G is

defined by 4.4 where N is the number of neurons and xi and xj are the output spike counts

of neurons i and j. This measure can easily be calculated for the FEAST neurons at any point

during inference.

G =

N∑
i=1

N∑
j=1

|xi − xj|

2
N∑
i=1

N∑
j=1

xj

(4.4)

Figure 4.2 shows the strong, relationship between the Gini coefficient and classification

accuracy for two thousand random, independently parameterized feature sets. Each data point

represents results from a feature set instantiated with random threshold parameters, feature

sizes, learning rates, training dataset size. The feature sets were randomly selected to have
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FIGURE 4.2: Final classification accuracy and the Gini coefficient of fea-
ture event counts. Each point on the plot represents results from an independ-
ent instantiation of a FEAST network with randomized parameters on random
subsections of the N-MNIST dataset.

sizes between 1 and 100 neurons. with feature sizes randomly ranging from 3 to 19 pixels

across. The training and testing dataset were split randomly with splits ranging from 0.1 and

0.9 of the full dataset. The threshold rise and fall parameters as well as the learning rate

were selected randomly from 0.0001 to 0.01. The results cover almost the entire accuracy

range from chance accuracy to the highest optimized accuracies achieved in this work on

the N-MNIST and the Plane Dropping datasets. Yet across the entire accuracy range, the

relationship between accuracy and the Gini coefficient is remarkably robust, suggesting that

the Gini measure can provide a reliable rapid evaluation and comparison of feature layers,

without the need for further processing and computation. Not only is the Gini coefficient

useful during the algorithm design stage, where many of the interdependent parameters of the
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larger system need to be instantiated, but can also serve as a reinforcement signal in online

learning applications, by quantifying in real-time the relevance of a feature set to any batch of

observed data.

4.4 Discussion and Future Work

4.4.1 Missed Events During Learning

As detailed in Section 4.1.2, events that fall outside the threshold of all features reduce all

thresholds but do not result in an adaptation of the weights. These ’missed’ events can be

treated in different ways. They may be viewed as outliers with respect to the features learned

by the network. This is the simplest approach in the context of hardware implementation and

the one taken in this work. Another approach is to assume the missed events hold important

residual information useful for classification. Being an unsupervised algorithm, the learned

weights of FEAST and the output classes have no direct relationship. As such, the relative

importance of unincorporated outlier events can only be determined empirically through their

effect on resultant feature sets and classification performance. In all our tests, the number of

missed events constituted less than 5 percent of events. Experiments with a larger number

of training epochs or in which missed events were re-included a second or third time into

the dataset produced no observable change in the feature set or recognition accuracy. Such a

result would be expected for the tests performed due to the large number of events and the

significant informational redundancy in data generated by event-based sensors. Thus, while

it is possible that with an extremely small and informationally sparse dataset the FEAST

algorithm may not exhibit the same robustness due to missed events, this was never observed

in our testing.

4.4.2 Thresholds During Learning and Inference

In our tests the initial values for the threshold were randomized. Other tests of threshold

initialization included initializing the threshold at equal values at very high, or low, or zero,
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using uniform or Gaussian distributions. In all such tests, no two neurons were ever detected

to be in identical states, due to the random initialization of the large number of weights.

Because of the adaptive nature of the thresholds and the large size of the training data used, no

significant difference was observed in the behavior of the signals tested across the wide range

of initialization procedures and threshold adaptation parameters. In general, the threshold

adaptation mechanism was found to be robust to parameter selection choices, such that after a

rapid initial adaptation period the thresholds of different features reached a final steady-state

without exception.

After training, a choice arises as to whether the selectivity information contained in the

thresholds should be used during inference or simply discarded and replaced with the simple

cosine distance matching rule. In this work the thresholds were disabled. Methods to

incorporate the information encoded in the selection thresholds is the subject of future work.

4.5 Conclusion

The results presented in this work demonstrate the applicability and capabilities of the FEAST

algorithm for extracting useful features in an unsupervised manner. The algorithm converts

the event stream into efficient feature representations that outperform random features with

the same architecture. The different datasets tested are shown to have significantly different

feature information and noise properties. These aspects of the dataset were demonstrated

in the resultant trained feature sets and used to select network size. On the N-MNIST

dataset, the SKIM classifier operating on FEAST features was shown to outperform all other

configurations, including the ELM classifier, while on the Plane Dropping dataset the ELM

on FEAST outperformed other configurations. Yet on both datasets and in all cases tested,

the FEAST features outperformed raw events and random features. The adaptive selection

threshold approach used in FEAST also illustrated a number of interesting properties of

event-based visual classification and demonstrated the ability to perform integrated noise

filtering, the generation of proxy signals for weight convergence, and ready measures for the
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prediction of classification performance via the Gini coefficient of the FEAST output event

count.



CHAPTER 5

Event-based SPAD processing

Chapter Summary

Single Photon Avalanche Diode sensor arrays operating in direct time of flight mode can

perform 3D imaging using pulsed lasers. Operating at high frame rates, SPAD imagers

typically generate large volumes of noisy and largely redundant spatio-temporal data. This

results in communication bottlenecks and unnecessary data processing. In this work, we

propose a set of neuromorphic processing solutions to this problem. By processing the

SPAD generated spatio-temporal patterns locally and in an event-based manner, the proposed

methods reduce the size of output data transmitted from the sensor by orders of magnitude

while increasing the utility of the output data in the context of challenging recognition tasks.

To demonstrate these results, the first large scale complex SPAD imaging dataset, to the

author’s knowledge, is presented involving high-speed view-invariant recognition of airplanes

with background clutter. Various sources of noise in the data are investigated and their

effects on the proposed event-based generation algorithm are discussed. The frame-based

SPAD imaging dataset is converted via several alternative methods into event-based data

streams and processed using a range of feature extractor networks and pooling methods. The

results of the event-based processing methods are compared to processing the original frame-

based dataset via frame-based but otherwise identical architectures. The results show the

event-based methods are superior to the frame-based approach both in terms of classification

accuracy and output data-rate. Among the several event-based methods examined, systems

with higher output event rates, more resource-intensive pooling and larger, more complex

network structures produce higher classification accuracy. The detailed investigation of

132
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the event-based processing methods informs the implementation of high-speed event-based

architectures in hardware for high noise applications.

5.1 Introduction

5.1.1 SPAD

A Single Photon Avalance Diode (SPAD) is a type of photo-detector that comprises of a

reversed biased photo-diode operated just above the breakdown voltage and as such is able to

detect individual incoming photons from the environment [121]. This ability to detect single

photons enables SPAD cells to calculate precise photon timing information. Integrating an

array of SPAD detectors onto a single CMOS chip and using high precision laser illuminators

allows the development of SPAD cameras, which can capture high-speed 3D images under

extremely low-light conditions. SPAD array cameras have a broad range of applications

from military, meteorology, space, augmented reality, remote sensing, autonomous robotics

[122][123].

The SPAD camera can operate in two modes: Indirect Time of Flight (ITOF) or photon

counting mode and Direct Time Of Flight (DTOF) or photon timing mode. In photon counting

mode, counters integrated to each SPAD cell keep a count of the number of arriving photons

at each cell and effectively provide a measure of illumination from the probing laser pulse. In

timing, or Direct Time of Flight mode, the integrated counters are triggered to start counting

at the clock speed by the laser pulse and stop counting at the detection of the first photon as

shown in Figure 5.1(a).

The data generated by a SPAD array in DTOF mode consists of a three-dimensional time

surface corresponding to the relative distance of the visual scene to the camera and illuminator.

Traveling at the speed of light, these time surfaces activate every SPAD cell within the space

of a few hundred nanoseconds after each laser pulse such that the relative timing of the

activations (or inter-spike time intervals) holds all the encoded spatial information. This

means the data is inherently non-sparse, temporal and requires high-speed parallel processing.
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Additionally, due to device mismatch and stray photons from the environment, the signal

has a high noise floor. In typical applications of SPAD DTOF imaging, due to the multiple

noise sources, high frame rates are required to gather enough data so that a useful signal

can be attained through averaging over a large number of frames. The high amount of data

generated through high frame rate imaging causes significant bandwidth problems and limits

the scalability of the sensor.

5.1.2 Event-based Processing and SPAD

The conventional approach to date has been to encode the time of flight of the arriving photons

using high precision counters for each SPAD cell and to transfer this timing data off-chip for

processing. This approach typically involves as a first step, some form of averaging over a

large number of frames which would significantly increase the cost of on-chip processing.

This transfer process also creates an information bottleneck which is currently one of the

major limiting factors in the speed of operation of high frame rate SPAD cameras. In addition,

the use of conventional CPUs or GPUs for processing this temporal data makes processing

SPAD data computationally intensive using conventional signal processing techniques and

results in significant power and hardware requirements.

Yet the attributes that make SPAD data challenging for conventional processors, when com-

bined with the significant level of temporal redundancy present in real-world visual data,

makes the SPAD cell activation patterns ideal for event-based and spiking neuromorphic

processors that are designed to operate directly on noisy temporal data in a parallel fashion.

While the conversion of high data-rate DTOF SPAD data into local event-based features is

entirely novel, previous works have demonstrated the utility of taking a bio-inspired approach

to SPAD processing. In [124], Berkovich et al. present a scalable 20×20 SPAD imaging array

using asynchronous Address Event Representation (AER) readout. In [125] the same approach

is proposed for use in Positron Emission Tomography applications. The AER protocol is an

efficient communication protocol for sparse event-based data that reports events as they occur

removing the need for global frames [17]. In these works, the SPAD cells operate in an ITOF
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photon counting mode where an analog photon-counting circuit counts incoming photon until

the counter reaches a preset threshold causing the pixel to generate an event indicating a preset

level of illumination. This mode of operation is similar to previously proposed non-SPAD

event-based sensors [32] albeit with the advantage of the SPAD’s high quantum efficiency. In

contrast, the design proposed in this work seeks to combine the inherently temporal nature

of DTOF SPAD spatio-temporal data with neuromorphic event-based feature extraction and

processing.

In the proposed approach instead of encoding, storing and transferring the high-resolution,

(typically 16 bit) photon time of flight data off-chip for processing, the measurement of the

time of flight of the laser pulse is abandoned entirely in favor of a neuromorphic processor

that operates directly in the time domain and on the inter-spike intervals within local regions

of the SPAD array. The proposed approach illustrated in Figure 5.1 motivates the development

and hardware implementation of event-based feature extraction algorithms and circuits that

generate sparse event-based local representations from the non-sparse event-based SPAD

activation data and in this way drastically reduce the I/O requirements of the overall system.

5.2 Methodology

5.2.1 The SPAD Dataset

In this work, we tackle the challenge of performing classification of a large complex SPAD

imaging dataset generated using frame-based and event-based approaches. The task involves

the recognition of fast-moving model airplanes. The view-invariant classification of the fifteen

classes of target airplanes and one distractor represents a challenging problem given the

similarity of the classes, the low spatial resolution, the presence of partial occlusions and the

high noise level in the dataset.

The 32×32 pixel SPAD camera used in this work was fabricated on a standard CMOS chip

with each pixel integrating one SPAD and one time-to-digital converter as illustrated in Figure

5.1(a) and described in [126]. The SPAD camera was fitted with a Navitar NMW-12WA lens
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FIGURE 5.1: Conventional and Neuromorphic SPAD DTOF data pro-
cessing. (a) SPAD imager in DTOF mode using a pulsed laser illuminator.
Using SPAD sensors in Direct-Time of Flight (DTOF) mode enables the
capture of three-dimensional images with a single camera. (b) Standard ap-
proach to processing SPAD imaging data using on-chip counters and off-chip
processing. (c) Proposed event-based approach to SPAD data processing.
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FIGURE 5.2: SPAD sensor airplane drop classification experiment. (a)
Fifteen model airplane types make up the 15 classes in the detection and
classification task. (b) Experiment set-up. Metallic model airplanes painted
a uniform white were dropped in front of the SPAD sensor at close range
(approximately 30-40cm) resulting in high relative velocity. SPAD field of
view is marked by the black dotted line. In the background (approximately 3
meters from the camera) a large model B-747 airplane serves as a distractor.
(c) SPAD image generated from averaging 500 raw frames representing 5ms
of recording time. The background B-747 model is clearly visible. (d) SPAD
image showing of the rapidly moving F-14 model generated through averaging
5 raw frames representing 50µs of recording time.

and a Thorlabs 660 nm filter. The SPAD camera’s field of view was set to 26.22 degrees. The

laser used to obtain DTOF data was a 100 mW 660 nm Coherent CUBE diode laser using a

12× zoom lens such that the region of laser illumination and the SPAD camera field of view

were overlayed as shown in Figure 5.2(b).

The targets in the dataset are imaged using the SPAD sensor in a photon timing mode where

each SPAD pixel operates as a LIDAR sensor. The illuminating laser is pulsed at 100 kHz

providing photon time of flight information at an extremely high frame rate. By dropping

the model airplane at high speed close to the sensor the high temporal resolution of the
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sensor can be leveraged and investigated. As shown in Figure 5.2(b), the experiment involves

the use of a larger more distant background stationary B-747 model as a distractor. This

distractor becomes increasingly more prominent as the number of frames collected for an

image is increased. The inclusion of the larger distractor with the free moving high-speed

target classes ensures that the dataset can only be processed at extremely high frame rates

(for example 10 kHz) which results in a high noise floor that better represents real-world

imaging environments. Unlike controlled image collection environments typically used in

machine vision research, real-world imaging environments are unpredictable, dynamic and

noisy precluding many commonly used image enhancement methods such as arbitrarily long

frame averaging. This experiment design aims to encourage the development of algorithms

that are more robust to noise and can more readily be applied to challenging real-world

imaging environments.

The originally captured dataset involved 3000 individual uncontrolled free hand drops of the

15 airplane classes with 200 drops per class. In the recorded dataset, the targets airplanes

passed rapidly through the field of view with a mean duration of only 40.5 milliseconds

and a standard deviation of 6.4 milliseconds. The dataset and associated supporting files

are available for download at [127]. This 3000 recording dataset was augmented via mirror

reflection as well as 90, 180 and 270 degree rotation resulting in an augmented dataset of

24000 recordings. Here, dataset augmentation refers to the common procedure of appending

an original dataset with a transformed version the same to generate a larger dataset to capture a

greater amount of variance than was present in the original dataset. The transformations used

in this experiment involved vertical reflection in combination with three rotation operations

which in total results in a dataset that is 2× (1 + 3) = 8 times larger than the original. Sample

recordings from the dataset are shown in 5.3 illustrating the significant visual complexity

due to variance in target orientation, occlusions and the similarity of the tested classes. This

complexity is even greater when the entire video of each recording is considered due to

the change in the relative orientation of each target during each recording and due to the

occlusions present at the beginning and end of the recordings as the targets enter and exit the

field view.
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FIGURE 5.3: Sample recordings from the SPAD dataset. Each of the fif-
teen columns shows random samples of each airplane class in the dataset.
The images show the wide range of observed orientations, sizes and partial
occlusions in present in the dataset as the model airplanes pass through the
field of view. The bottom row shows a photo and label of each model. Note
that the images show only the midpoint of the sample recordings.

5.2.2 First-AND Event Generation Method: Discarding Time and

Transmitting Change

In previously implemented SPAD DTOF systems and in our proposed system, when a SPAD

pixel is activated, it enables a latch which stays high until it is reset. The reset is typically

performed after all data from the current laser pulse has been transmitted off the sensor.

This data and the associated delay can be significant especially as the number of pixels on

the imager becomes very large. In the first proposed system, which we call First-AND,

instead of recording and transmitting the time interval from the initial laser pulse, only the

inter-pixel photon arrival order (not the time) is detected. In this way, the requirement for
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precise measurement and transmission of the photon time of flight is removed along with the

resource-consuming high-precision, on-chip, per-pixel counters and memory circuits.

This simplification is achieved through the use of multiple AND gates which take as input a

local group of pixels. The number of input pixels per AND gate must be equal so as to provide

an equal probability of gate activation. The pattern of connectivity and its correlation to the

observed spatio-temporal order of SPAD activation also determines AND gate activation.

For example, an edge bar is more likely to be activated in a natural environment than a

checkerboard pattern since the latter is not typically observed in the visual environment.

In this way, each AND gate encodes a local feature and its activation indicates that all its

input signals have been activated. The choice to use digital AND gates, as opposed to an

analog summing and comparator circuits was made to simplify the Integrated Circuit design

of the system and to ensure a deterministic output for each gate. This choice has significant

implications on the robustness of the system which are discussed in the relevant sections.

The AND gate pattern used in this work have overlapping receptive fields and are tiled across

the visual-spatial field to form a convolutional layer. Thus, the same pattern of AND gate

connectivity is repeated across the visual field. Each AND gate can be interpreted as a neuron

in a local single-layer network of N0 (in this case N0=4) neurons connected to a local r × r

(in this case r = 4) receptive field. For each receptive field as soon as all the input pixels of

a single AND gate latch high, i.e. as soon as the all SPADs feeding an AND gate detect a

photon, the AND gate goes high.

For illustrative purposes Figure 5.4(a) shows a small imager with 5 × 5 = 25 pixels. This

imager uses four 4 × 4 overlapping receptive fields. Each receptive field has four AND

gates. One of the four AND gates takes as input the left/west 8 pixels of the 16 pixels of

the 4 × 4 patch. Another AND gate on the receptive field takes as input the right/east 8

pixels, yet another the lower/south and another the top ones/north. If we consider the imaging

environment illustrated in (b), with the 5×5 imager viewing a scene with a back wall and

a box in the foreground that is seen by pixels row = [3 : 5] and col = [2 : 5], then the

lower/south AND of rf(1,2) (green) and rf(2,2) (blue) will latch which can be expressed as

AND(1,2,3) and AND(2,2,3) latching.
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FIGURE 5.4: Illustrative example of the First-AND event-based imager.
(a) A hypothetical 5x5 imager with four 4x4 overlapping receptive fields. (b)
An example 3D visual scene and the resultant SPAD timing pattern. (c) A
single First-AND receptive field showing the connectivity of the four AND
gate feature detectors.

In the proposed design, the latching of the first AND gate at each receptive field at each laser

pulse, prevents subsequent latching of any later gate via a recurrent enable connection that

gates all AND gates. This temporal inhibitory feedback structure was introduced in the SKAN

network [97] and demonstrated in FPGA hardware. At the beginning of the pulse cycle when

the laser pulse is sent, the enable signal to all AND gates for all the receptive fields is high,

allowing any AND gate to latch. Following the laser pulse, at each receptive field, as soon

as the first AND gate latches, the enable to the other AND gates of this receptive field is set

low. Note that the enable flag going low does not affect the first AND gate that caused the

lowering in the first place. This is achieved through the use of a positive feedback loop that

latches the first, triggering gate to high as shown in Figure 5.5. This is realized through the

following logic: An AND gate can only be high if all its input pixels are high and the local

receptive fields enable flag is high or the AND was already high in the previous clock cycle in

a synchronous system or via an asynchronous mechanism in an asynchronous implementation.

Note that the unit delay elements in the feedback path provide time for the feedback circuit to

stabilize.
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An important edge case is where two or more AND gates latch at exactly the same time. For

the synchronous case, this means that the AND gates latch on the same clock cycle and in the

asynchronous case this means one or more AND gates latch during the time it takes for the

disable signal to travel back to the inputs of the AND gates.

For this edge case, an arbitration logic must be used to either randomly select a winning AND

gate or to discount the result of the offending receptive field for this laser pulse. The latter

choice is preferable to prevent biasing AND gate activation patterns. This can be achieved

through the use of a one-hot gate at the AND gate output as shown in Figure 5.6. This rule-set

creates three possible states for each receptive field in the system:

• When, after a laser pulse, no AND gate has yet latched (i.e. no photons has been

detected) then the one-hot gate is off and the NOR of the AND gates is high which

means this receptive field is still awaiting a winning AND gate event.

• If only one AND gate latches over a clock cycle, then the NOR of the AND gates

will be set high and the one-hot gate will also be also high indicating a successful

feature detection.

• If two or more AND gates have latched at the same clock cycle in the synchronous

case or very close in time in the asynchronous case, then there are multiple AND

gates latched. In this case, the NOR of the AND gates is low but the one-hot gate is

also low indicating a detection failure. When this multi-latch fail state occurs after a

laser pulse, the pulse is effectively ignored.

The detail logical diagram of this competitive AND gate network is shown in Figure 5.5 and

5.6 for one receptive field.

In this approach, each receptive field only requires memory storage for a two-bit address of

the feature which was detected most recently. In theory the feature memory would hold an

accurate representation of the 3D geometry in front of the camera at the most recent pulse. If

this ideal case held in general, and if we wished to minimize the output data-rate, after each

successful laser pulse where only a single feature was detected, the logic would check to see

if this most recently detected feature is the same as the one in memory. If this is so, there is
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FIGURE 5.5: Logical diagram of stage one of the First-AND receptive
field block. The subsystem shown ensures that only the first AND gate(s) can
be triggered and that only a one clock cycle output pulse can be generated.
Outputs A[0:3] signal the winning AND gate has been detected while the
E0 output acts as an enable signal for the generation of a feature event in
subsequent the feature event generation subsystem.

no need to transmit it out since nothing has changed at this receptive field. If on the other

hand, the feature detected at this receptive field at this most recent pulse is different from

the one in memory, then we generate a feature event by storing the new feature in memory,

setting the event flag high and sending the 2-bit feature address out on the AER bus. By only

sending out events when a new feature is detected, a significant amount of redundant data is

no longer transmitted from the sensor.
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FIGURE 5.6: Logical diagram of stage two of the First-AND receptive
field block The subsystem shown acts to detect a change in the feature encoded
at the receptive field. If a change relative to the previous laser pulse is detected
an event is output. This change detection is performed via the Edge Detector
circuit shown in the inset (top) which only goes high if the previous input was
low and the current input is high.

An important element of the First-AND system is its hybrid mode of operation. The feature

detection and event generation circuits described in this section operate asynchronously i.e.

without clock synchronization. Here, feature events are generated and placed on the bus as they

occur. In contrast, the input to the First-AND system, i.e. the latching operation of the SPAD

cells is synchronous and occurs at the rising edge of high-speed (600 MHz) synchronizing

clock. Finally, the output of the First-AND system is processed by a synchronous event-based

FPGA processor which uses a 100 MHz clock. This hybrid mode of operation results from

the integration of distinct systems.

5.2.3 Noise in SPAD Imaging Motivates a Modified Noise Robust Design

Based on the data recorded during our experiment, a range of sensor non-idealities and noise

sources were found. These non-idealities could be broadly divided into false-positive and
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FIGURE 5.7: Three common type of noise in DTOF SPAD data.

false-negative latching events, imprecise timing in the latching of the SPAD pixels (jitter) and

persistent non-ideal timing patterns across the array pixels.

One source of noise identified is that of stray photons emanating not from the laser pulse but

from the environment. These photons detection events are not correlated with the illuminating

laser and can trigger the SPAD cells at any moment. These latching events appear to occur in

a random fashion. This effect is shown in Figure 5.7 where a SPAD cell is activated within

100 clock cycles due to a stray photon from a light source that is not the laser. Another source

of noise is photon scatter whereby a photon from the laser is reflected via an indirect light

path and lands on an incorrect pixel. An example of this is marked in Figure 5.7. The second

source of noise in the SPAD imaging data is the failure of a SPAD cell to detect a photon

where a reflective object should cause a reflected photon to trigger a SPAD pixel. An example

of this false-negative case is shown in Figure 5.7 where the internal regions of the airplane,

which should have been detected, are not. A simple solution to this issue is to increase the

illuminator power to ensure the activation of pixels. This, however, can have drawbacks in

terms of power and the safety requirements of using a high power laser illuminator.
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Imprecise measurement of the time of photon detecion is another source of noise. This

temporal jitter could be due to the noise in the time measurement circuitry, or possibly

due to mismatch in the SPAD latching circuitry, or both. This effect can be seen for the

case of the detected nearby target (the airplane) whose timing distribution is shown in the

measurements marked as ’airplane detections’ in Figure 5.8(c). This variance in timing

measurement can be seen in Figure 5.8(d) and spans 40 clock cycles whereas the timing

should at most be distributed over two clock cycles since each clock cycle represents a distance

of 0.48 meter. The imprecise measurement of photons in time is also seen in the background

where an apparent sawtooth wave is seen in Figure 5.8(c) and in Figure 5.8(d) where it spans

approximately 28 clock cycles. Figure 5.9 shows two different sections of the recording, from

pixel (16, 32) shown in Figure 5.8(a). For the First-AND system, small amounts of jitter,

noted in the SPAD latching times, does not significantly affect the performance of the system

as long the effect is smaller than the relative photon flight delays due to the geometry in the

imaging scene.

The latching times plotted in Figure 5.8(c) show that in this experiment, the probability of an

error due to missed detection is significantly higher than the error due to stray photons. Figure

5.9 illustrates this more clearly by splitting the recording based on the presence of the target at

the indicated pixel. This particular example was chosen as it exhibited an extremely high false-

negative rate of 71.56%. While this particular instance was an outlier in the observed dataset,

such false-negative errors are consistently observed in the dataset and require consideration

during system design.

Another potential source of noise, and one which can potentially have the most impact on the

proposed design is persistent non-ideal timing patterns in SPAD activation timings. These

are the non-zero additive spatio-temporal patterns which can be observed at almost every

laser pulse. An example of this issue, potentially resulting from systematic offsets in the

timing counter or due to mismatched delay paths, can be seen in Figure 5.10. If the observed

persistent non-ideal timing patterns are due to offsets in the timing counters, the removal of

the counters in the proposed design would also remove the effect. If however, they result from

unequal delays in the circuitry, this effect could systematically delay some pixels relative to
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FIGURE 5.8: SPAD cell activation across pixels and over time for a single
pixels. (a) Shows the raw SPAD input frame as the target enters the field of
view. The indicated pixel at (16, 32) should, but for stray photons, consistently
time out at 1023 clock cycles during this section of the recording. (b) Shows
an image generated via averaging the first 20 frames of the recording. (c)
The recorded latch time at the pixel at (16, 32) during the entire 481 frame
recording. The plane passes over the pixel at frame 270. (d) Histogram of
latch times at pixel at (16, 32) during the entire 481 frame recording.
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FIGURE 5.9: Prevalence of stray photons versus missed detections for
the recording shown in Figure5.8. (a) Latching times for the section of
the recording with the airplane not in front of pixel (16, 32) showing a false
positive rate of 1.85%. (b) Latching times with the airplane in front of pixel
(16, 32) showing an extremely high false negative rate of 71.56%.

others. The problem with such systemic delays can best be illustrated when combined with

an equidistant object in the field of view i.e. an imager looking directly at a flat wall. Such an

environment would (in the absence of all other noise sources) cause spurious spatio-temporal

patterns to be detected by the proposed feature detecting AND gates across the entire wall

due to the imperfect delays within the chip. This would result in many of the receptive

fields generating feature events when they should in fact not generate any events. In the flat

wall example, all the AND gates should latch, in theory, at precisely the same moment thus

disabling the one-hot gate shown in Figure 5.6. This significance of this source of noise

greatly depends on the details of the hardware implementation and the success of design

solutions for mitigating this source of noise. However, the details of these circuit design

choices are beyond the scope of this work.

Another source of noise in SPAD imaging data is highly noisy ’hot pixels’. In addition

to being triggered by incoming photons from the laser and the environment, these pixels,
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FIGURE 5.10: Persistent background pattern SPAD timings likely due
to hardwired delays in the imager Panels (a),(b) and (c) show SPAD latch
timings generated at sequential laser pulses. (d) The timings shown in the red
boxes are from the sequence of frames in (a), (b) and (c). The consistent timing
patterns generated be the imager can potentially generate spurious events in a
local feature detection network such the First-AND system.

frequently latch randomly at a high rate regardless of the imaging environment. These non-

ideal latching events are different to the case of stray photons originating from the laser pulse

or photons from other light sources. The activation of these noisy pixels is not correlated

with activation of their normally acting neighbors or the presence of any light, as would be

expected if a common external noise source was triggering the random latching events. Figure

5.11 illustrates the behavior of these noisy pixels as captured in an image of 3600 averaged

frames. Here the five marked noisy pixels on Figure 5.11(a) show an on average earlier arrival

time/reduced depth compared to their immediate normal neighbors. The histogram of two

of the noisy pixels, shown in (b) and (d), the noisy latch times which are conspicuous when

compared to the normal functioning neighboring pixels, shown in (c) and (e). Note that the

target high-speed airplane only activated the four examined pixels from clock cycle 370 to

485. The noisy pixels show higher activation at this distance relative to other distances and to

the nearby non-noisy pixels suggesting an additive noise at work in the noisy pixels where in

this case about a third of the correct on-target activations are in fact due to noise.

The effect of randomly latching noisy pixels is yet another non-ideality that must be handled

by the First-AND feature detector. Fortunately the relative rarity of these random latching

events, in comparison to other sources of noise such as detection failures, makes this source

less of a concern. In addition, the additive and uncorrelated occurrence (across neighboring
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FIGURE 5.11: Comparison between noisy pixels and normal pixels over
all frames in a recording. (a) Long exposure averaged frame highlighting
five hot pixels and two nearby normal pixels. Panels (b) and (d) show SPAD
latch times for two noisy pixel indicated in (a). Panels (c) and (e) show SPAD
latch times for two nearby normal pixels indicated in (a).

pixels) of this noise source means that a competitive AND gate network can readily handle

this form of noise.

The all or nothing behavior of the AND gate design is an advantage in this context. In the

proposed four 8-input AND gate design, 8 noisy pixels of a non-winning AND gate must

erroneously latch together and earlier than the true photon flight time from laser to sensor in

order to set their AND gate before a ’correct’ competing AND gate which is viewing a truly

closer section of the scene. This makes it highly unlikely for this noise source to generate

false-positive First-AND events in the proposed design.

In contrast, to noisy pixels, ’dead pixels’ which rarely or never latch, can significantly harm

the proposed design. This is because, unlike in a simple pixel-based imager, in the proposed

receptive field-based convolutional design of the First-AND system, the detrimental effect

of a single dead pixel expands with the receptive field size as shown in Figure 5.12. Here,

an analog summing and comparator circuit which could activate on say, 7 out of 8 activated

pixels, would provide the robustness to dead pixels but at the cost of a more complex design.
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FIGURE 5.12: Number of receptive fields impaired by a single dead
SPAD at different receptive field sizesX marks the dead pixel the black
grid indicated the pixel region affected by the dead pixel and the colored
squares indicate receptive fields affected by the dead pixel.

The selection of the simpler AND gates as feature detectors means that for the proposed

4 × 4 pixel receptive fields, each dead pixel will disable a maximum of 7 × 7 pixel region

containing 16 receptive fields. Fortunately, no such low activation pixels were observed in

SPAD imaging data.

With the information about the likely sources of noise, we now revisit the event generation

method of the First-AND system in order to introduce robustness to these noise sources. In

the ideal noise-free model of the SPAD sensor array, every time a newly detected feature is

found to be different from the one already stored in memory, that feature (or more precisely

its 2-bit address) should be transmitted via AER since in the absence of noise. This change

must indicate an informative change in the field of view.

However as highlighted, the many noise sources observed in the dataset can act to erroneously

result in a change in the detected feature. In order to make the proposed First-AND system

more robust to these anticipated noise sources, a feature detection success counter is added

such that every time a detected feature in a receptive field is the same as the one already in

memory for that receptive field, the detection counter increments by one. Every time the

newly detected feature is different from the one already in memory, the counter is decremented

by one. If the feature detection counter of a receptive field reaches a pre-set threshold value,
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the receptive field creates a feature event and the counter is set to zero. Conversely, if the

counter reaches zero after a decrement, the newly detected feature which caused the decrement

replaces the old feature that was in memory. In this way, a constantly noiselessly detected

feature will periodically send out a confirmatory feature event, whereas receptive fields where

no feature consistently wins will not output any features. By decreasing the global threshold,

we can decrease the number of times a feature must be detected before it triggers a feature

event. This reduction in threshold increases the data-rate and allows features whose verity is

less certain to be transmitted. Conversely, a higher threshold increases the certainty about

the transmitted features and reduces the data-rate. In this way a global feedback control to

the system can be implemented. While this aspect of the design was not explored it forms an

avenue of investigation in future work.

5.2.4 Implementation of the First-AND Network in ASIC

The First-AND system described in Section 5.2.2 was implemented as part of a Complement-

ary Metal-Oxide-Semiconductor (CMOS) based SPAD cells with supporting mixed-signal

and digital Integrated Circuit (IC) chip design. The First-AND system was implemented as

an Application-Specific Integrated Circuit (ASIC) using a Silterra High Voltage CL130H32

Process Technology by Dennis Delic based on the design developed by this student. The chip

operates in time of flight mode, in this configuration the start of a new acquisition cycle is

synchronized to a laser pulse being fired at the target (i.e. Flash LIDAR). The implemented

128× 128 SPAD array contained 125× 125 4× 4 receptive fields each with 4 silicon digital

AND based feature detectors consisting of North, South, East and West. The system features

priority encoding, a 3-bit feature counter and an adjustable threshold for the detection of

winning features. The network readout is implemented via the AER protocol allowing an

asynchronous DTOF SPAD sensor array with real-time event-based feature extraction for 3D

imaging applications. The inclusion of the 3-bit feature success counter and a globally ad-

justable feature count threshold provides robustness to noise while minimizing the readout of

noise from the sensor. The adjustability of the threshold aim provides control over the output

data-rate of the sensor with higher threshold values reducing the number of output events by
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FIGURE 5.13: Functional block diagram of a single receptive field of the
ASIC implemented First-AND Network.

requiring a higher number of successive activations by the same feature in the same receptive

field. The implementation also removes the need for a high bit counter while providing

SPAD noise immunity through receptive field inter-connectivity. The novel design seeks to

circumvent pitch and array size limitations and problems associated with the miniaturization

of conventional SPAD sensor arrays. These benefits come at the cost of added connectivity

complexity between the overlapping receptive fields and the interconnected SPADs. However,

these challenges were addressed and resolved in the integrated circuit design which is beyond

the scope of this work.

Figure 5.13 shows a functional representation of each receptive field circuit or cell. The 16

SPADs connections are not shown. When the SPADs avalanche or fire, they are synchronously

latched to an on-chip CLOCK (configured via PLL or fed via external CLOCK signal). Within

each receptive field whichever feature (North, South, East, West) detects its particular shape

first and blocks other features from activating.

In this implementation, if the winning feature is the same as the previous one (i.e. from the

previous laser pulse or acquisition cycle) the 3-bit counter is then incremented. Once the

counter reaches a predetermined threshold it triggers and event. The value of the threshold

is set by the input S0/S1 lines shown in Figure 5.13 with the default value is set to 6. The

event is indicated by the CA_Busy_n output line on the chip. When an event is generated,
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the encoded row and column address of the location of this receptive field is output and read

off-chip as well as the class of winning feature North, South, East or West. When the user

has read the address/data information, and acknowledgment is sent to the ext-ack input line

which resets the counter and releases the CA_Busy_n line. The event generator in a particular

receptive field is reset once it receives row and column acknowledge signals as well as a

global acknowledge signal which is generated off-chip. Although the acquisition cycle is

synchronized to CLOCK, events are asynchronously generated off the chip. Thus, while the

SPAD latching events are synchronized to a high-speed (600 MHz) clock, the event generation

circuit operates asynchronously and the on-chip arbiter processes the order of events as they

occur, and events can be generated asynchronously and as such, it is possible that not all

events will be captured and read by the monitoring FPGA between laser pulses.

Figures 5.14 and 5.14 show the layout of a single SPAD pixel and a 4× 4 pixel receptive field

respectively while Figures 5.16 shows the fabricated First-AND chip.

5.2.5 Training Binary Feature Extractor Networks

In order to extract higher-level spatio-temporal patterns generated by the SPAD imager,

an event-based feature extraction network was trained on the event-based dataset. The

Feature Extraction using Adaptive Selection Thresholds (FEAST) method used was detailed

in Chapter 4. This simple event-based unsupervised learning algorithm uses competition

between adaptive neurons to generate balanced network activation in response to incoming

data.

As detailed in Chapter 4, the algorithm operates via of the network’s selection thresholds and

the gradual adaptation of the weights of the network weights to the observed local spatio-

temporal patterns results in a trained network where all neurons fire at approximately equal

rates given a spiking training dataset. By balancing network activation, the FEAST algorithm

ensures that the neurons in the feature extractor network represent the most commonly

observed spatio-temporal patterns resulting in a feature set that best represents the underlying
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FIGURE 5.14: Single Receptive Field Cell showing a SPAD sensor and
Circuitry Blocks, size 75 µm × 75 µm. Here, in the ASIC implementation,
a 4× 8 input logic NAND function is used to implement the first half of the
First-AND design where four AND gates compete in time to be the first to
detect one of four features. This functional behavior of this subsystem is
detailed in Section 5.2.2 and illustrated in Figure 5.5. The neuron pass bank
subsystem shown in the bottom left of the panel implements the second half
of the First-AND design which is functionally described in Figure 5.6. The
neuron pass bank determines whether the current detected feature is the same
as the previous detection. Courtesy of the Department of Defence Science and
Technology. Implemented by Dennis Delic based on designs by this student.
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FIGURE 5.15: Each receptive field is comprised of (connected to) 16
(4×4) neighboring SPAD detectors 30µm in diameter (5µm active area).
Each of the north, south, east and west connected blocks route to one of the
four AND gates of the First-AND system as described in Section 5.2.2 and
illustrated in Figure 5.4. Courtesy of the Department of Defence Science and
Technology. Implemented by Dennis Delic based on designs by this student.

training data. Figure 5.18 shows an example of the FEAST algorithm training a 16 neuron

network on the four-polarity First-AND event-based airplane dataset.

When implementing the FEAST algorithm, the best fitting neuron to an incoming ROI pattern

must be determined. This can be achieved most directly via dot product operation which

requires D1 × D1 × N1 multiplication operations followed by N1 summation operations.

However to reduce the hardware resource requirements for this neuron matching operation

and to remove the need for hardware-implemented multipliers, the continuous-valued feature

weights w1 shown in 5.18 are converted to binary-valued features. Methods for binarizing
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FIGURE 5.16: Manufactured 128×128 First-AND Event Based CMOS
ASIC. Courtesy of the Department of Defence Science and Technology. Im-
plemented by Dennis Delic based on designs by this student.

images include the Otsus method [128], Kittler and Illingworth’s minimum error thresholding

method [129] and the Adaptive Binarization method [130]. Here we use a much simpler

equal activation method where for each neuron, the number of 1 valued pixels m is equal.

During training, at each presentation, the largest m weights on each neuron are set to one.

This method of equal neuron activation allows the unbiased use of AND gates instead of

multipliers. When using AND gates as multipliers, if the number of active pixels per feature

is not equal, neurons with a lower number of on pixels would activate on more patterns than

those with a larger number of on pixels regardless of fitness to the input pattern.

An alternative approach to using AND gates is the use of XNOR gates together with binary

{1,−1} weighted neurons to replace multipliers as used in [131]. This allows other non-equal
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FIGURE 5.17: Block diagram of the end-to-end First-AND event-based
processing system. (a) Shows the raw image generated by the SPAD sensor
in time of flight mode as a B-2 model enters the field of view. The red box
indicates the receptive field of the current generated event. (b) Shows the four
First-AND features and their binary bar-shaped weights. Superimposed are
the state of the latched SPAD pixels at the moment the First-AND feature
generates an event (diagonal black lines). The third feature is the first AND
gate to latch disabling the others and passing its event to the next layer. (c)
Shows S0

i , the binary-valued four-polarity time surface with activation over τ0
seconds. This surface serves as a feature map for the next layer of processing.
(d) Shows the 5×5 Region of Interest ROI extracted from S0

i . (e) Shows the
16 four-polarity binary event-based features which operates on S0

i . (f) Shows
the encoding of the 16 features. (g) Shows the 16 polarity binary-valued time
surface S1

i . Panels (h) and (i) show the pooling and classification layers
respectively.
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FIGURE 5.18: Generating 16 binary-valued features on a four-polarity
event-based dataset. (a) Shows the initial random weights of the sixteen
four-polarity 5×5 features w1. (b) The binary weighted feature set ẅ1 with
the number of on pixels per feature m = 32. (c) Final state of the continuous
features w1 after training. (d) Final binarized feature set ẅ1.
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activation binarization methods to be used, however, the use of XNOR gates incurs additional

hardware resources compared to AND gates, motivating our use of the latter.

After training, the finalized binary features can be used for inference on the input event stream

as an event-based convolutional layer. This results in a first layer feature map S1
i which can

be sampled and processed by the classifier in an event-based manner. In this work, in order

to isolate the gains provided by the event-based convolution layer, the input events stream is

also converted to an input event surface S0
i to be sampled and processed by the classifier in

an identical manner to the feature map. The generation of the input surface S0
i and feature

layer surface S1
i a detailed in Algorithm 5.1 and 5.2 respectively.

5.2.6 Alternative Event-based Methods: On-Off Bi-polar and Uni-polar

Events

In this section, we introduce two alternative methods for comparison to the proposed and

implemented First-AND method. In the first method, the difference between consecutive

SPAD frames is converted into a sparse On-Off event stream using a simple thresholding

operation analogous to those used in other event-based sensors. In the second method, we

then augment these On-Off events by introducing uni-polar and bi-polar events. Event-based

sensors generally operate by converting an analog signal (typically pixel illumination in

vision) to a sequence of events via processing through a change detection and thresholding
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circuit as described in chapter 1. For the DTOF SPAD imager, this analog signal is the photon

time of flight information Zk which encodes detected depth at the kth laser pulse. Algorithm

5.3 details the generation of On-Off events from the photon time of flight data.

This approach to event generation is more straightforward than the First-AND approach and

has the advantage of providing single pixel resolution which is missing in the receptive field

based First-AND method. The trade-off however, is the need for measurement and storage of

high-resolution timing data Zk at each pixel that the First-And approach avoided and which

increases the per pixel hardware resource cost. The hardware requirements for implementing

On-Off events and derived solutions from SPAD DTOF data will be the investigated in future

work and is beyond the scope of this work.

Having generated the On-Off events used in standard event-based sensors, we now augment

these with two additional event polarities. These two event polarities encode shape invariant

local change information via a novel approach. The two event polarities which we name uni-

polar and bi-polar events are used to generating a combined On-Off-Bi-polar and Uni-polar

(OOBU) event stream.
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The bi-polar and uni-polar events are generated using a simple recent event counting operation

over the surrounding 8 pixels around the current event. In this approach, which is described in

Algorithm 5.4, if the recent events in the neighboring 8 pixels are all On or all Off and their

number exceeds a threshold φ1, then a uni-polar event is generated. If however, both On and

Off polarities are present, then if both the On and Off counts are above a threshold φ2 then a

bi-polar event is generated. In this work the values φ1 = 2 and φ2 = 1 were selected through

observation of the data. A detailed investigation of different threshold selections will be the

subject of future work.

Since only the local event count is considered, the orientation or structure of recent events does

not matter. This results in a unique local feature that is invariant to feature shape, allowing a

wide range of different shapes to generate the same event types while still capturing critical

local activation information.

An example of the On-Off and the uni-polar and bi-polar event streams are shown in Fig-

ure 5.19 demonstrating that On-Off event streams faithfully capture the salient spatio-temporal

features of the target while the uni-polar and bi-polar events combine local features in a manner

that provides distinct, higher scale information to the down-stream processor.
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To illustrate the power of uni-polar and bi-polar events in capturing high-level salient feature

information, a simple three-class classification problem is shown in Figure 5.20. Here two

linear thresholds are combined to separate the three classes using only the event polarity count

information. Figure 5.20(a) shows that simple examination of the On and Off event counts

is not a useful method of discriminating the three example classes. For this example, the

best accuracy achievable using two separating On-Off event count ratio thresholds is 44.13%

accuracy which is only slightly above chance 33.33%. In contrast, as shown in Figure 5.20(b),

when bi-polar and uni-polar events are generated from the On-Off event stream, a simple

bi-polar uni-polar event count test results in 92.83% accuracy when two event count ratio

thresholds are used in combination. While this extremely simple event counting method does

not extend to more challenging tasks (such as the full 15 class SPAD dataset) this simple

example illustrates the significant discriminatory power of OOBU events. In this work, we

show that when OOBU events streams are processed in a more sophisticated manner, they
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FIGURE 5.19: Generating On-Off-Bi-polar and uni-polar events from
SPAD sensor data. Panels (a) and (b) show the previous and current captured
frames from the SPAD sensor respectively. (c) Shows the frame difference
between the current and previous frames. (d) Shows the On and Off events
produced via thresholding of the events at θ = +/−2. (e) Shows the uni-polar
and bi-polar events generated via Algorithm 5.4.

outperform other types of event streams and produce the highest performing results of the

dataset.

We now combine the OOBU events generated from the frame-based SPAD dataset into a

single event stream and process it through the same surface generation and feature extraction

algorithm described in Algorithm 5.1 and Algorithm 5.2 using identical training architecture

and learning parameters. In doing so we are able to combine the information from the On-Off,

uni-polar and bi-polar event streams into a single feature extractor network. Figure 5.21

shows the remarkable spatio-temporal patterns extracted at each network size from the SPAD

OOBU event-based data stream. Figure 5.21 demonstrates how the FEAST algorithm extracts

the dominant patterns in the dataset for any given network size and how the information

contained in the On, Off uni-polar and bi-polar event streams can be combined to provide

powerful discriminatory features.
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FIGURE 5.20: Separability of an example three class problem using only
event polarity counts. (a) Plots the ratio of Off event vs On events for each
recording for three example airplane classes. The classes are separated using a
combination of two thresholds resulting in 44.13% accuracy. (b) The same test
is performed using bi-polar and uni-polar event ratios. Again two thresholds
are used to separate the three classes this time resulting in 92.83% accuracy.

5.2.7 Pooling, Surface Sampling and Classification

After the feature extraction operation performed by FEAST is complete, the target region

of size Ax × Ay on the time surface is selected via a surface summation and thresholding

operation described in Chapter 3 and implemented for real-time GPU based platforms in

[132].

After the Ax ×Ay target region is selected, the variable-sized 2D area from the surface must

be mapped to the statically sized classifier input layer. To perform this mapping we explore

two alternative methods. In the first method, which we call 1D pooling, the Ax × Ay region

is summed across rows and columns resulting in two one-dimensional vectors Vx of size

Ax × 1 and Vy of size Ay × 1. These two vectors are then re-sampled to two L× 1 vectors.

To speed up and simplify these re-sampling operations, the input data was first cropped or

zero buffered and resampled using a zero-order-hold operation which was implemented via

pre-calculated Look Up Table. This hardware optimized method was introduced in [132].

In the second method, which we call 2D pooling, the Ax × Ay target region is re-sized to a
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FIGURE 5.21: Trained OOBU neuron weights across network sizes. (a)
Shows a trivial single-neuron network. The four images represent the On
(p0 = 0), Off (p0 = 1), bi-polar (p0 = 2) and uni-polar (p0 = 3) feature
weights of the single neuron (p1 = 1). This single neuron network simply
serves to show the dominant spatio-temporal pattern present in the dataset
which is Off events (p0 = 1) occurring alone (p0 = 3). (b) A two neuron
network (p2 = 0, 1) shows the next most dominant observed pattern is the On
event (p0 = 1) occurring alone (p0 = 3). Note that the first neuron in this
network is nearly identical to that in (a). (c) The third most dominant pattern is
the On and Off events occurring together in a diagonal pattern. (d) The fourth
most dominant pattern is a second variant of the Off event occurring alone on
the right-hand side of the ROI. Note that the presence of this variant results in
the first neuron being trained in a complementary manner with the Off events
occurring on the left-hand side of ROI such that the summation of neuron 1
and 4 would approximately equal the single dominant neuron in (a). Panels (e),
(f) and (g) show networks of 9, 16 and 36 neurons with increasingly complex
features.
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two-dimensional image of size L× L. For this method a 2D resample function using linear

interpolation between adjacent values was used.

The 1D pooling method significantly simplifies the implementation of the resampling and also

provides the added benefit of a classifier with a smaller input layer. However the 2D pooling

method captures significantly more information and as we show in this work, results in higher

recognition performance in most cases, creating design trade-offs that require investigation.

In a similar way, the size of the classifier input layer which is m = L × 2 in 1D case, and

m = L× L in the 2D case, can also affect the accuracy. Extreme pooling of the target region

into a pool size, of say L = 1, results in significant spatial information loss while also greatly

simplifying hardware implementation. Conversely, less pooling with a larger L captures

greater spatial information while increasing hardware resource requirements. For this reason,

in this work, we perform all trials over a range of pool sizes (L ∈ {1, 2, 3, 4, 6, 8, 12, 16, 24})

to investigate these effects and provide useful design guidelines for hardware implementation.

Another important hyper-parameter in the operation of the feature extraction and classification

system is the frequency of surface or image sampling for the processing by the classifier.

For the frame-based data, the time interval between classification operations was selected as

80 microseconds or every 8th laser pulse. This time interval resulted in a total of 1.22 million

classification operations over the entire dataset or approximately 50.51+/−8.07 classification

operations per recording. This total number of operations was then used to normalize the

number of classification operations on the event-based dataset to provide an approximately

equal number of input samples to the classifier enabling an unbiased comparison of the frame-

based and event-based systems. For the First-AND event streams, keeping the total number of

classification operations constant results in an inter classification event interval of 51 events.

For the On-Off and OOBU events, the interval between classification operations becomes 74

and 201 events respectively. By operating the classifier in this event-based manner, the rate of

processing becomes dependent on the level of salient change in the field of view as opposed

to constant in the frame-based approach.
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All classification tests in this work were performed on the full 15 airplane, 24000 recording

augmented dataset. The dataset was split randomly into a 21600 recording (90%) training set

and 2400 (10%) test set. All tests were repeated over n = 20 trials. The original frame-based

dataset was converted to the equivalent event-based datasets via the methods described in

Section 5.2. All tests were performed using a simple linear classifier. The input to the linear

classifier consists of a resized target region from a sampled time surface (S0
i or S1

i ) which is

vectorized into a 1×m input vector u. where, m = L2 for the 2D pooling case and m = 2L

for the 1D pooling case. The output of the linear classifier is a 1× n predicted output vector

v̂ with n being the number of output classes which in this case is 15. The predicted output

vector v̂ is calculated via:

v = Wû (5.1)

whereW is the trained m× n weight matrix.

To determine the winning output class j during inference, an argmax operation is performed

on the predicted output vector vi:

j = argmaxi∈[1..n](v̂i) (5.2)

For the process of training and testing, all sampled input vectors u are concatenated to form

the o × m input matrix U where o is the number of samples over the entire dataset. A

corresponding o× n ground truth output matrix V is also generated using a ’one-hot coding’

scheme with the actual class for each sample set to 1 and all others set to zero.

The input matrix is then split into the 21600 recording training input matrix, Ua and 2400

recording testing input matrix Ub. The corresponding output matrix V is similarly split into

Va and Vb. The classifier is trained via a calculation of the pseudoinverse solution to the

weights mapping the input activation layer or feature layer to the output classes as given by:

W = (UT
a Va)

T (UT
a Ua + λI) (5.3)
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where I is the identity matrix and λ = 0.1 is the regularization factor used for applying ridge

regression [133]. In cases where the pseudoinverse operation could not be performed in a

single pass (due to memory constraints) the equivalent online method was used [118]. In

either approach, the training operation is deterministic and repeatable such that the source of

variance in classification accuracy is exclusively due to the feature extraction operation and

the random splitting of the dataset.

5.2.8 Event-based Processor Implementation on FPGA

The event-based binary feature convolution and classifier system was implemented in FPGA

hardware on a Cyclone IV E platform using Quartus Prime v16.0.0 Lite Edition. The input

to the system is defined as the four-polarity event streams (here referred to as the 4 RFs for

Receptive Fields). This system was implemented in hardware by Langdon Davis based on the

design developed by this student.

The top-level subsystem called NEURO_NET, incorporates a 5 × 5 ROI patch sizes with

16 feature neurons. The AER_FIFO component shown in Figure 5.22, contains the en-

coded AER events received via the event-based SPAD sensor for processing. The FIFO

holds 29 words (512) of 32-bits in length. The FIFO is accessed via an FSM (Finite State

Machine) which sequences the reading and processing of events and is used to control

access to the DDR2 controller and synchronization logic between the 133 MHz clock do-

main of the DDR2 Controller and the clock domain in which the access originates. The

NEURO_REGS component contains the local registers that hold the binary features ẅ1

used by the NEURO_RF_CONV components. The registers are programmed via software

during initialization. The NEURO_RF_CONV components also contain the binary con-

volution logic of the feature set and the ROI patch loaded from the recent time surface

S0. Four NEURO_RF_CONV components are instantiated, one for each event polarity

of the event stream. The output of this component is the convolved feature map. The

ADD_4x8CITS_1CLK components contain the logic for the addition of the convolved fea-

tures maps of each of the four polarities. The NEURO_CLASSIFICATION component

contains the local registers that hold the classifier weights W (pre-calculated offline), the
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FIGURE 5.22: Neuro Net Entity Clock Domains and Instantiated Components.

logic to determine the winning neuron from the sum of the convolved feature maps and the

logic to perform the classification.

Figure 5.23 displays the FSM for the NEURO_NET component. In state ’IDLE’ the AER

FIFO is interrogated and if an AER event exists the event is read and state transition to

’UPDATE_TIME_MATRICES’ occurs. In state ’UPDATE_TIME_MATRICES’ the AER

event is decoded to the row/column addresses along with the neuron triggering the event
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and the event time. The corresponding time address in the DDR SDRAM is updated with

the event time and state transition to ’UPDATE_PATCH_MATRICES’ occurs. In state ’UP-

DATE_PATCH_MATRICES’ the ROI patch is read from the DDR2 SDRAM starting with the

first polarity and one pixel at a time. With an ROI patch size of 5× 5 and 4 polarities, a total

of 100 DDR2 SDRAM addresses are read in series. As each pixel is read, the correspond-

ing NEURO_RF_CONV component is signaled and the read pixel patch time convolution

occurs. Once all patches have been read and processed, the state transition to ’SUM_RF_D’

occurs. In state ’SUM_RF_D’ the outputs of the 4 NEURO_RF_CONV components is

summed and state transition to ’FIND_WINNER’ occurs. In state ’FIND_WINNER’ the

NEURO_CLASSIFICATION component iterates through the summed convolution compon-

ents to determine the max count and determine the winner neuron(s). State transition to

’UPDATE_HIST’ then occurs and in this state the feature output or histogram is updated from

the winning neuron(s). The state then transitions to ’IDLE’ through state ’DONE’. In state

’IDLE’ if the classification time has expired and a prescribed number of events have been pro-

cessed, state transition to ’CLASSIFY’ occurs. In state ’CLASSIFY’ the NEURO_RF_CONV

component performs the vector dot product operations on the feature maps. The result of this

state is the classification and state transition to ’LOG’. The state ’LOG’ samples the current

feature maps for each neuron along with the resultant dot product output values which are

used for classification. The log is added to a FIFO and can be retrieved by the software for

post-processing. A state transition to ’IDLE’ then occurs through state ’DONE’. This process

repeats itself so long as AER events are available.

5.2.9 Real-time Frame-based Feature Extraction Network

Implemented on GPU

To provide a comparison for the performance of the event-based feature extraction networks,

equivalent frame-based systems with identical architectures and training methodologies were

developed and tested. Here the event-based feature extractors are replaced with convolution

and max pooling operations with the same feature sizes. In this way the frame-based networks

precisely replicate the event-based operations with the only difference between the two
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FIGURE 5.23: NEURO_NET Finite State Machine (FSM).

methods being the extra, arguably unnecessary, convolution operations performed in the

frame-based system on the parts of the image exhibiting no significant change i.e. those

with no events. Following the convolutional layer, the same pooling methods and linear

classification operations were performed for all tests providing an unbiased comparison

between the frame-based and event-based systems.

We implemented a subset of these frame-based feature extraction networks on an embedded

NVIDIA Jetson TX2 board [132]. This hardware implementation aimed to demonstrate the

feasibility of realizing a high-speed classifier for noisy low-resolution SPAD imagers. The

real-time performance of the implemented frame-based system was demonstrated on a four

airplane subset of the SPAD dataset presented in Section 5.2.1.

A range of feature extraction network sizes were examined consisting of 4, 8, 16, 32 and 64

random feature extractors. In addition, the 1D pooling method described in 5.2.7 was used

to simplify implementation. In the next section, we compare the classification performance

results of the frame-based systems to a range of equivalent event-based systems.
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FIGURE 5.24: Reduction in data size by event-based conversion. (a)
shows the distribution of size of the frame-based SPAD recordings. Pan-
els (b), (c) and (d) show the size distributions of the First-AND, On-Off and
OOBU event streams respectively. As detailed in Section 5.2.6, the threshold
values θ = +/−2 were used for the On-Off events shown in (c). The threshold
values φ1 = 2 and φ2 = 1 were used to generate OOBU events in (d).

5.3 Results

5.3.1 Data Generation Rates

The recorded frame-based SPAD imaging dataset was converted to a First-AND event-based

data stream via simulation of the implemented First-AND circuit described in Section 5.2.4.

In addition, the dataset was processed using of Algorithms 1 and 2 to generate the On-Off and
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OOBU event-based data streams. As shown in Figure 5.24, the conversion of frame-based

SPAD data to an event stream significantly reduces the recording size and thus the data-rate of

the processor with associated savings in processing power and improved response time. The

First-AND conversion method results in an 81 fold reduction in data-rate whereas the On-Off

and OOBU methods result in 57 and 25 fold reductions respectively. Having examined

the data-rates generated from the different methods, we now compare the classification

performance of the First-AND, On-Off and OOBU event streams to the original frame-based

SPAD imaging dataset.

5.3.2 Classification

The tests presented in this section cover the raw frame-based dataset as well as the event-

based methods described. We further test the effect of different pooling methods as well as

processing by random and trained feature extraction networks. The tests also examine in

detail the effect of pooling window sizes and network sizes on performance. All test were

performed using a linear classifier mapping frames-based images and event-based samples

of time surfaces to the output classes in a repeatable manner. Fixed-point precision using

8-bits was used for simulation parameters mirroring the fixed-point FPGA implementation

described in Section 5.2.8 and the ASIC implementation in Section 5.2.4.

Figure 5.25 shows the classification results when using frame-based processing on the SPAD

dataset. The results are organized in per frame and per recording accuracy results. For the per

recording accuracy measure, the class with the highest number of winning frames is selected

as the correct class. Unsurprisingly, since this process effectively performs a pooling and max

operation over the information in all the frames of a recording, the per recording classification

accuracy is consistently above that of the per-frame accuracy measure.

It is clear from the accuracy results in Figure 5.25, that the 2D pooling almost always outper-

forms 1D pooling. However, the 1D pooling method is significantly simpler to implement in

hardware and faster to compute in software motivating its investigation and comparison to the
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FIGURE 5.25: Classification accuracy on the frame-based SPAD airplane
dataset across a range of parameters. Panels (a) and (b) show per frame and
per recording accuracy respectively where classification is performed directly
on the raw SPAD images via a linear classifier. The top and bottom two panels
show the mean and standard deviation of classification accuracy respectively.
Results for both two-dimensional pooling and one-dimensional pooling are
plotted as a function of pool size and compared to chance 1/15 = 6.7%. The
vertical dashed line at L = 12 indicates the pooling window size chosen in the
subsequent tests. Panels (c) and (d) show per frame and per recording accuracy
respectively after feature extraction as a function of the number of feature
extracting neurons. The dashed vertical line at N = 16 marks the network
size chosen for FPGA implementation. All results presented are over n = 20
independent trials.

2D pooling method. Given hardware constraints, these comparisons provide valuable inform-

ation on the resource versus performance trade-offs which are critical during the hardware

design stage.

The first point in Figure 5.25(a) at L = 1, collapses all information in each frame to a single

number. As expected, this global pooling of the entire raw image produces an identical
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accuracy for both the 1D and 2D pooling methods that is close to chance. This result

effectively demonstrates that, as expected, the mean value across the pixels of the image

provides approximately zero information about the target class. As the size of the pooling

window L increases, the classification accuracy rises sharply before stabilizing above L = 12

pixels. Since little additional information can be generated by increasing the pooling window

resolution to or above the original Ax ×Ay. Thus the best results achievable using the raw

frame-based SPAD data, a pooling layer and a linear classifier is accuracy that is below 25%.

The per recording accuracy measure shown in 5.25(b) is similarly poor providing only slightly

higher accuracy at the larger pool sizes.

Figure 5.25(c) and (d) show the classification accuracy of trained frame-based feature extrac-

tion networks with identical architecture and training parameters as the event-based networks

discussed in Section 5.2.5. The first point in Figure 5.25(c), at N = 1, L = 12 and accuracy

of approximately 30%, represents a trivial convolution of the SPAD frames by the single

commonest feature in the dataset. Capturing slightly more spatial information than the raw

image, this trivial solution performs only slightly better than the raw frame results of (a) with

pool size L = 12. Here, the additional information derived from the incorporation of local

spatial information in the convolution operation provides approximately 10% improvement

in accuracy. As the number of feature extractors is increased, the classification accuracy

increases to slightly above 60% and below 80% for the per frame and per recording measures

respectively at N = 36 neurons. While every increase in network size improves system

accuracy, there are diminishing returns with each layer size increase, a pattern that we see

consistently in all tests.

As a point of comparison, the classification accuracy results achieved in the real-time em-

bedded GPU-based platform on the reduced four airplane dataset are detailed in Table 5.1.

These results show the same pattern of increased accuracy with network size albeit from a

higher accuracy floor due to the greater simplicity of the reduced dataset. In these results,

we see mean accuracies of between 86.98% and 98.7%. Note that the comparison of the 1D

pooling and 2D pooling methods shown in Figure 5.25(c) and (d) demonstrate only a slight
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TABLE 5.1: Accuracy and execution time as a function of feature layer
size for the real-time frame-based feature extractor networks implemen-
ted on the TX2 GPU platform. Modified from [132].

No. Features 4 8 16 32 64
% Accuracy 86.98 92.19 95.31 96.88 98.70

Exec Time (ms) 30.18 31.40 38.61 47.81 65.07

advantage in favor of the 2D pooling method thus validating the hardware design choice of

implementing the simpler 1D pooling method in [132].

Figure 5.26 shows the classification performance of the proposed event generation methods.

The classification results show a large increase in accuracy for all event-based methods relative

to the original frame-based SPAD dataset shown in Figure 5.25(a). The event stream with the

lowest accuracy is that of the On-Off events shown in Figure 5.26(a). The first point plotted is

at pool size L = 1 which shows per accuracy slightly above 10%. This is equivalent to only

using the event polarity count for classification which unsurprisingly results in the lowest

accuracy. As the pool size is increased above L > 8 the per frame accuracy rises reaching

approximately 55% and 65% for the 1D and 2D pooling methods respectively. The results in

(b) follow a similar pattern with per recording accuracies reaching 62% and 76% respectively

for the 1D and 2D pooling methods. The First-AND event results are shown in panels (c) and

(d). Here the 2D pooling accuracies are slightly above those of On-Off events. The relative

improvement accuracy is even greater for the 1D pooling method again motivating its use in

hardware. The OOBU event accuracy results shown in (e) and (f) are consistently higher than

those of both the On-Off and First-AND events making OOBU events the clear winner of the

three approaches.

In the simple three-class example shown in Figure 5.20, the accuracy achieved using only

event counts jumped from 44% for the On-Off event to 92% for the OOBU events. Here, for

the full 15 class problem, the improvement from the first points plotted in Figure 5.26(a) to

(e) is more modest. This shows when only using the event count for classification we can

achieve an improvement of slightly below 20% for the OOBU from slightly above 10% for

the On-Off events. While this more modest improvement is unsurprising given the much
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FIGURE 5.26: Classification accuracy on event-based data streams gen-
erated from the SPAD the dataset. Panels (a) and (b) show the per frame
and per recording accuracy results of the On-Off event streams. Panel (c) and
(d) show the same for First-And events, (e) and (f) for OOBU events and (g)
and (h) show the same for feature events generated from OOBU events using
16 FEAST neurons. All results are shown as a function of the pool window
size L. The vertical dashed line indicates the chosen window size L = 12 used
in subsequent tests.
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more challenging 15 class problem, the results from this and the larger pool sizes still support

a consistent improvement in accuracy from On-Off events to OOBU events.

Finally panels (g) and (h) of Figure 5.26 show the accuracy achieved via the addition of an

event-based feature extraction layer. This configuration is used in the hardware-implemented

system described in 5.2.8 with OOBU events serving as inputs to 16 trained features. The

performance of the full system is examined as a function of different pooling methods and pool

sizes. The per frame and per recording accuracies of the feature extraction layer are the best of

all the event streams tested, starting from slightly above 40% accuracy and reaching 75% and

87% per frame accuracy for the 1D and 2D pooling methods respectively. The per recording

accuracies are even higher at 79% and 90% for the 1D and 2D pooling methods respectively.

Here the L = 1 result at above 40% accuracy and the L = 12 result at 90% accuracy are

both remarkable given the complexity of the 15 class view-invariant airplane classification

dataset, the simplicity of the applied methods and the significantly lower performance on

the frame-based dataset using identically structured and trained classification architectures.

These accuracy results together with the clear data-rate advantages detailed in Section 5.3.1,

highlight the suitability of the use of event-based sensing approach to the high noise SPAD

time of flight imaging data.

Having investigated the effects of different pooling methods on the various event-based data

streams, we now investigate the effect of the feature extractor network size on classification

accuracy. Since the size of the feature extractor network affects hardware resource consump-

tion and/or processing speed, we seek to determine the smallest network which provides an

acceptable level of performance given the resource constraints and speed requirements. Figure

5.27 shows accuracy results for the First-AND and OOBU event streams which provided

the highest performance in the pooling test experiments. Figure 5.27(a) and (b) shows the

per frame and per recording accuracies of the First-AND event stream processed by random

binary-valued feature extraction networks. The first points on panels (a) and (b) represent

trivial single neuron feature extractors. As the layer size increases the mean classification ac-

curacy increases rapidly reaching slightly above 70% at the highest network size tested which

is N = 36. These random feature results provide a baseline for evaluating the trained binary



180 5 EVENT-BASED SPAD PROCESSING

FIGURE 5.27: Classification accuracy using feature event streams gener-
ated from random binary networks and trained binary networks operat-
ing on the proposed First-AND and OOBU event streams (a) and (b) show
per frame and per recording classification accuracy using First-AND events
processed through a random binary feature extraction layer of varying size and
(c) and (d) show the same with the random binary features replaced by trained
binary features. (e) and (f) show per frame and per recording accuracy results
of random binary features operating on OOBU events and (g) and (h) show
the same for trained binary features.
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networks whose results are shown in panels (c) and (d). The identical network architectures

and processing methods used, isolate the improvements gained via feature training alone. The

results show that trained features consistently outperform random features. Here as in the raw

event stream tests, 2D pooling still consistently outperforms 1D pooling, here however, the

margin is smaller. This result is expected since the feature extraction operation projects the

raw event stream onto a large number of sparsely populated feature surfaces such that when

the surfaces are pooled via the 1D method, less information is lost in comparison to the 2D

pooling method. In other words, as the size of the feature extraction layer expands, the effect

of information loss due to pooling becomes less significant.

In panels (e) to (h) the same comparison between random features and trained features is

performed, this time on the OOBU events. We again see that as with the First-AND case,

trained OOBU features outperform random ones. And again we see that OOBU events

consistently outperform First-AND events this time when processed through an event-based

feature extraction network. The results in panel (g) and (h) represent the highest accuracy

achieved on the dataset where at a layer size of N = 36, a per-frame accuracy of 82.64% and

a per recording accuracy 91.5% is achieved. The vertical dashed line in Figure 5.27 represents

the network size N = 16 chosen for the implementation of the event-based FPGA processor

described in Section 5.2.8. This network layer size was chosen to provide a reasonable

trade-off between accuracy and hardware resource requirements.

5.3.3 FPGA Implementation Results

With the accuracy results provided in the preceding section, we now look at the FPGA

implementation results for an instance of the event-based processor whose classification

accuracy results were detailed in Figure 5.27(c) and (d) for the First-AND event streams and

(g) and (h) for the OOBU event streams. Since identical fixed-point implementations were

used in both the software and FPGA implementations, the classification accuracy results from

the preceding sections apply directly to the end-to-end FPGA implemented system which

here is referred to as the NEURO_NET.
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As can be observed from Table 5.2, a substantial amount of the AER_REPLAY and NEURO_NET

nodes each consume a significant amount of memory. Ultimately the AER_REPLAY node

would be removed when the SPAD imager is interfacing the event-based processor directly.

The memory consumed by the NEURO_NET node is primarily due to the FIFO that is used

for logging purposes. The logging node provides a means of both testing/debugging the

neural network design but more importantly allows retrieval of the classification data from

the FPGA and into the software.

Besides the memory resources consumed, the NEURO_NET also consumes 128 DSP elements.

These DSP elements exist in the NEURO_CLASSIFICATION node where the vector dot

product operation on the output feature map or histogram and the classifier weights occur.

Currently, the classifier weights are restricted to a 12-bit signed notation, hence each neuron

consumes two embedded 9-bit multipliers (multiplication is pipelined over two clock cycles),

for a total of 16 neurons 32 multiplications and with four event polarities the results in a total

of 128 multipliers.

Table 5.3 lists the execution times for the Neuro Net states, and the timing information

has been generated from various Signal tap captures. The total time to process a single

AER event and update the feature map or histogram is 29.24µs. The vast majority of this

time is consumed in the ’UPDATE_PATCH_MATRICES’ state where the ROI from the

time surface (or patch data) is read from the DDR2 SDRAM. In this state, a total of 100

memory addresses are read, with a patch size of 5, and with 4 RF, 5×5×4=100. On average

to synchronize and read a single address of the DDR2 SDRAM from the 100 MHz clock

domain takes approximately 290 ns, 29 clock cycles. Any future implementations of this

event-based processor must take into account this bottleneck. Solutions to this bottleneck

include refinement of the logic, faster RAM and finally the development of a cache system

outlined in the discussion section.
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TABLE 5.2: NEURO_NET hardware resource costs. Here, Logic Cells
refer to the fundamental building blocks of an FPGA system. Dedicate Logic
Registers are used to store variables locally on the FPGA. M9K memories are
Altera’s embedded high-density memory arrays and DSP elements refer to
Digital Signal Processing elements which are specialized circuits that perform
predefined mathematical operations in a highly optimized manner. Courtesy
of BAE Systems. FPGA hardware implemented by Langdon Davis based on
designs developed by this student.

TABLE 5.3: NEURO_NET States Execution Time. Courtesy of BAE Sys-
tems. FPGA hardware implemented by Langdon Davis based on designs
developed by this student.
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5.4 Discussion and Future Work

A potential weakness in the First-AND event generation method is the all or none behavior of

the AND gates whereby even a single faulty, inactive pixel can disable the entire receptive

field. While such ’dead pixels’ were not observed in the recorded dataset, their potential

presence in imagers with higher numbers of pixels is more likely. To protect against the effect

of such non-idealities, the replacement of the AND gates with thresholded current summers

will be investigated in future designs of the First-AND system.

In order to reduce the potential effect of inherent internal delays in the SPAD array, the global

clock may be slowed such that the SPAD pixels are effectively sampled at a lower temporal

resolution. In this way, small errors in timing measurement (but also timing measurements of

nearby objects) are effectively quantized at the same low-resolution clock cycle. The utility

or otherwise of this approach will be investigated in future work.

Given the simple method of their generation and orientation and shape invariant informational

properties, OOBU events provide a promising approach to increasing event information in a

wide range of event-based sensor systems. The feasibility of implementing these higher-level

features in local sensor networks will be investigated in future work.

As detailed in 5.3.3 a major bottleneck operation of the event-based FPGA processor is the

loading of a local ROI from the time surface surrounding a current event. Furthermore, this

bottleneck becomes more significant as event polarities and ROI sizes increase. More event

polarities are needed when implementing deep event-based convolutional networks and the

use of larger ROI sizes can often be beneficial in applications where the underlying signal

SNR is low as in event-based space imaging as discussed in Chapter 2.

While the direct approach to speeding up the ROI read operation is to use faster RAM, other

cache-like architectures may provide a solution to the memory loading bottleneck by taking

advantage of the likely proximity in space of new events relative to previous ones. In this

approach, a slightly larger local region than the ROI may be loaded from RAM to local

registers and with each new event, this locally stored address space is first interrogated and if
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the newest event is close to a previous one, its ROI will have been stored locally and can be

fetched at speed. If we assume spatial proximity between temporally proximal events, such

an approach is likely to significantly reduce the memory bottleneck associated with the ROI

retrieval. In future work, we will investigate potential design solutions to this problem with

the aim of providing better timing performance for larger, deeper event-based networks in

hardware.

5.5 Conclusion

In this work, a challenging SPAD imaging recognition dataset was presented. Three event-

based processing approaches were proposed. First-AND, On-Off and On-Off-Bi-polar-

Uni-Polar (OOBU) events. The classification accuracy of these event-based methods was

investigated and compared to the original frame-based dataset using either linear classifiers

or feature extractor networks followed by a linear classifier as a processor. Across all tests,

the event-based methods outperform their frame-based counterparts in terms of accuracy

and reduced data-rate. This is because the event generation methods involve the pooling of

raw sensor data over either time or space or both, significantly increasing the information

content of each event in comparison to the raw pixel range values in the frame-based data.

Within the event-based approaches, the OOBU events resulted in the highest recognition

accuracy followed by First-And and On-Off events. In terms of data-rates, the First-AND

events result in the lowest data-rate followed by the On-Off and OOBU events resulting in 81,

57 and 25 fold reduction in data-rate respectively. In addition to the event-based generation

methods, a range of different network parameters were investigated with larger networks

shown to outperform smaller ones, trained networks outperforming random networks and

two-dimensional spatial pooling outperforming one-dimensional pooling.

The systems investigated in this work provide a range of well-performing points in the event-

based design space which can be integrated with Direct Time of Flight SPAD sensor hardware

to provide event-based processing that not only drastically reduces data-rate coming off the
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sensor, but also the quality of the output data as it relates to challenging tasks such as a view-

invariant classification of large complex datasets. By using the same learning methodology

and the same single-layer network structure and by testing across multiple design dimensions

such as pooling and network size, we demonstrate exhaustively that the event-based methods

outperform the frame-based system across all parameters while serving as a guide for the

design of such networks in hardware. The FPGA implementation of the event-based processor

utilized the tests demonstrates the hardware efficiency and processing speed of the design for

real-time applications of SPAD sensor technology.



CHAPTER 6

Conclusion

In this work a range of event-based detection, tracking and classification algorithms were

investigated on several novel high-noise high-speed datasets. The focus on speed and noise

both in the design of the datasets and the approach to processing, resulted in unique chal-

lenges which are absent in controlled data collection environments. These challenges in turn

motivated the design of distinct solutions each with their accompanying insights. As we

see in this thesis, working with imperfect high-noise real-world data, attempting to process

information in high-speed environments and a fixation on algorithm simplicity for ease of

hardware implementation even at the expense of performance, often results in the development

of distinct approaches and methods which are quite different to the conventional machine

vision and machine learning approaches where optimal performance on relatively controlled

datasets is most valued.

Examples of such distinct approaches developed in this work include the following:

When investigating event-based memory surfaces of differing complexity (for future use in

FPGA hardware) we found that index surfaces provided great robustness to variance in target

velocity on our uncontrolled airplane dropping dataset. Again the motivation for examining

index surfaces in the first place was their potential for simplifying implementation in hardware

relative to time surfaces.

When investigating the FEAST algorithm for use on noisy datasets we found that learnt

noise features could be used to provide automatic noise filtering providing the rest of the

network with a noise free event stream. We also found another use for the noise feature in

selection of the network layer size. We found that by forgoing some information during

187
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feature learning (through the use of adaptive selection thresholds) we were rewarded with the

missed-event-rate and imbalance-in-neuron-activation signals. These two readily available

signals were found to be highly useful for estimating network convergence during learning.

And the later signal was found to also be useful during inference by predicting classification

performance through the Gini coefficient. All these novel ideas and mechanisms were found

as the result of trying to minimize hardware complexity through the use of adaptive selection

thresholds to balance network activation and use of this solution on a noisy dataset.

When developing detection and tracking solutions for real-world space imaging data, the

default focus on event-based noise filtering resulted in a cascaded filter design where noise

suppression, feature detection and tracking all operated as an ever more selective noise

filter. The developed system used large ROIs for maximizing information capture. By using

an event-based template matching method and determining the unimodality of each ROI’s

angular activation, an orientation, size and velocity invariant feature detector was developed.

This feature was found to outperform other high-speed algorithms in terms of accuracy and

speed. The focus on maximizing processing speed motivated a cascaded filter design where at

each layer the increased complexity and response time of each filter was counteracted by the

reduction in the number of events processed such that the over-all system’s processing time

was only slightly greater than the first, fastest layer even though the last layer was slower by

orders of magnitude.

When attempting to minimize the output data-rate and processing requirements of largely

redundant, noisy SPAD DTOF data, we found that a simple local AND-gate based spatio-

temporal on-chip detector was able to reduce sensor data by orders of magnitude while still

providing an increase in classification performance. By completely discarding the conven-

tional measurement aspect of the sensor we were able to convert a high-speed high-noise

frame-based dataset to a stream of highly informative feature events. After the implementation

of our binary event-based FPGA back-end processor (which was designed for a four polarity

First-AND input event stream) the drive to make full use of all four polarities led to the

development of On-Off-Bipolar and Unipolar (OOBU) events (in addition to standard On-Off

events). Investigation of Uni-polar and Bi-polar events was found to significantly enhance
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classification performance by providing highly useful local activation information that was

quite distinct from what a conventional convolutional network can extract.

An important question arising in this thesis that requires further detailed investigation is the

scalability of event-based processing systems. As discussed in Section 5.4, a critical issue in

event-based processing is the memory access requirements which are substantial and likely to

limit scalability. Event-based processing essentially swaps computation with memory access

which given current computing technologies is not a good trade. Solutions to the memory

access issue in event-based processing could involve new technologies that allow high-speed

local memory access as well as alternative architectures. Established memory management

techniques such as cache hierarchies go against the event-based processing creed which holds

that event-based data invariably generates un-ordered highly informative sparse streams of

events from much more ordered less informative data sources making caches unsuitable

for event-based data. While the assumption that event-based data is almost always sparser

and more informative than frame-based data is certainly true, the amount of residual order

remaining in an event-based data stream is likely to be application-dependent and cannot be

discounted without investigation. Thus, the utility of event-based caches for overcoming the

memory access issues discussed in this work remains an open area for investigation.

6.1 Future Work

In future work we will investigate the many open lines of inquiry indicated in each chapter. In

addition to these, we aim to test the methods developed in this thesis in neuromorphic hardware

across a range of real-world environments and in applications where high-speed processing of

noisy event-based data is appropriate. Finally we aim to combine the developed event-based

feature detection, target tracking and object recognition methods in dedicated system-on-chip

hardware to provide noise-robust real-time event-based processing for autonomous platforms.
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