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Abstract

Fraudulent documents frequently cause severe financial damages and impose security
breaches to civil and government organizations. The rapid advances in technology and
the widespread availability of personal computers has not reduced the use of printed doc-
uments. While digital documents can be verified by many robust and secure methods such
as digital signatures and digital watermarks, verification of printed documents still relies

on manual inspection of embedded physical security mechanisms.

The objective of this thesis is to propose an efficient automated framework for robust
content-based verification of printed documents. The principal issue is to achieve robust-
ness with respect to the degradations and increased levels of noise that occur from multiple
cycles of printing and scanning. It is shown that classic OCR systems fail under such con-
ditions, moreover OCR, systems typically rely heavily on the use of high level linguistic
structures to improve recognition rates. However inferring knowledge about the contents
of the document image from a-priori statistics is contrary to the nature of document ver-
ification. Instead a system is proposed that utilizes specific knowledge of the document
to perform highly accurate content verification based on a Print-Scan degradation model
and character shape recognition. Such specific knowledge of the document is a reasonable
choice for the verification domain since the document contents are already known in order
to verify them. The system analyses digital multi font PDF documents to generate a de-
scriptive summary of the document, referred to as “Document Description Map” (DDM).
The DDM is later used for verifying the content of printed and scanned copies of the orig-
inal documents. The system utilizes 2-D Discrete Cosine Transform based features and
an adaptive hierarchical classifier trained with synthetic data generated by a Print-Scan
degradation model. The system is tested with varying degrees of Print-Scan Channel cor-
ruption on a variety of documents with corruption produced by repetitive printing and
scanning of the test documents. Results show the approach achieves excellent accuracy

and robustness despite the high level of noise.
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Chapter 1

Introduction

Fraudulent documents frequently cause severe financial damage and impose security breaches
to civil and government organizations. In a typical year, about 75,000-100,000 fraudulent
documents are intercepted at U.S. ports of entry (Hesse, 1999; Kuklinski, 2004; Customs
and Protection, 2009). The rapid advances in technology and the widespread availability
of desktop and mobile personal computers has not reduced the use of printed documents
as a primary means of identification, transferring information, archiving information such
as records and contracts, and more (Sellen and Harper, 2003; Lyman and Varian, 2003).
While digital documents can be authenticated by many robust and secure methods such as
digital signatures and digital watermarks, authentication of printed documents still relies
on physical security mechanisms such as: physical watermarks, security patterns, ultravio-
let and near infrared security inks, magnetic inks, barcodes, micro printing, ghost photos,
holographic patterns, embedding a person’s picture, check digits, plastic seals, stamps,
handwritten signatures and more (Vinicius et al., 2007; Kuklinski, 2004). The significant
visual impact caused by traditional authentication schemes is often an undesired side ef-
fect of these approaches. Furthermore, the aforementioned physical security mechanisms
do not provide a solution in the case where the authors of the documents are interested
in allowing the creation of physical printed copies for any purpose such as: archiving,
distribution, usage as temporary medium prior to signing and/or transmission, and more,
while still providing the author with an efficient and trusted way of verifying that the

contents have not been changed by natural occurrences or by deliberate tampering.

The aforementioned physical security mechanisms for authenticating printed documents
divide into two main categories. In the first and most common authentication category the
media (mainly paper) on which the content is printed is annotated in a predetermined uni-
form way while ignoring the differences in the content between different documents of the
same type. Authentication schemes under this category rely on generating and maintain-
ing a visual standard shared across all documents of the same type which aim to make it
more robust to tampering and counterfeiting and easier to authenticate. These documents
are later authenticated and verified by humans who are expected to remember the subtle
visual differences between many different types of documents which they encounter on a

daily basis, a highly difficult mission (Kuklinski, 2004). Thorough manual authentication



and verification of printed documents usually calls for specially trained professionals to op-
erate specialized hardware such as microscopes. Such professional authenticators and the
equipment needed are not available in most real life ad-hoc situations where authentication
of printed documents is desired, thus creating significant shortcomings in the traditional

physical authentication schemes.

In the second category unique identifiers are embedded on the document such as barcodes
and other unique identifying elements (known as fingerprints) which allow uniquely identi-
fying a copy (Zhu et al., 2003). However barcodes and fingerprints are not usually related

to the contents of the document and are used to only uniquely identify the medium.

Authentication of digital documents is performed by two main approaches: digital signa-
tures and watermarking (Ming et al., 2007). Digital signatures compute a digest of the
digital file using a hash function. The digest is computed as a function of the document
and the private encryption key which belongs to the issuing authority (Goldwasser et al.,
1988; Mao, 2003). Digital watermarking is the process of embedding information into the
document in a way that is difficult to remove (Cox, 2008). A digital watermark is called
imperceptible if the watermarked content is perceptually equivalent to the original content
(Wikipedia, 2012; Khan and Mirza, 2007). A digital watermark is called fragile if it fails to
be detectable after the slightest modification. Fragile watermarks are commonly used for
tamper detection in digital documents. In general, it is easy to create robust watermarks
or imperceptible watermarks, but the creation of robust and imperceptible watermarks
has proven to be difficult (Cox, 2008).

However, existing approaches to authentication of digital documents do not adapt well
to printed documents. The geometric transformations and added noise that are part of
the printing and scanning process ultimately do not allow the authentication of printed
and scanned documents by pure mathematical comparison to the digital document, nor
will fragile watermarks survive the printing and scanning process to continue to be useful.
Consequently, the content perceived in the document image is the only reasonable basis
that may be used for automated verification of Print-Scan degraded documents. This
approach is in fact similar to the way humans perceive symbols and images and ideally
would only reject the document image if the geometric transformations in the document

image are of such extent so that the elements change their meaningful interpretation.

Very little research has been conducted on such content-based print-and-scanned verifica-
tion. Vinicius et al. (2007) suggested a content-based method which partially addresses
this problem. They suggested using a general OCR engine in order to classify the charac-

ters in the printed and scanned document. General OCR is considered a solved problem



for over two decades and typically is able to provide recognition of about 99% in good
quality low noise modern document images (Rice et al., 1995; Rose, 2009). While 99%
accuracy may be acceptable for many character recognition applications it is not accurate
enough for the purpose of verification. For example, consider that an average page con-
tains roughly 2000 characters, an error rate of 0.5% means 10 errors per page. Also it is
important to note that 99% accuracy is achieved by commercial general OCR systems only
in quality scanned, low noise document images, with much lower results usually achieved

in highly degraded document images.

Ming et al. (2007) suggested a content-based method which considers the shapes of different
symbols that may appear in the document and does not rely on a particular character
set as most OCR engines do. However, their method has a few drawbacks including a
security flaw which allows an attacker to replace all of the occurrences of a character in

the document with another character without being detected.

Considering the shortcomings in both methods suggested by Vinicius et al. (2007) and
Ming et al. (2007), robust content-based verification of printed documents still remains an

unsolved problem requiring further investigation.

1.1 Aims and Approach

The aim of this research is to develop an efficient automated framework for robust content-
based verification of printed typed text documents which is based on analyzing an image
of the presented document obtained through standard off-the-shelf printing and scanning
devices. In particular, the suggested verification framework aims to significantly improve
upon the error rate of contemporary general use OCR systems with a focus on text docu-
ment images containing relatively high levels of Print-Scan corruption and noise generated

by repeated printing and scanning of the same document.

The two main factors causing increased error rates in highly degraded document images
are segmentation errors and classification errors (Baird, 2000; Eikvil, 1993). As the level
of degradation increases, the frequency of the occurrence of broken and joined characters
due to noise related transformation and erroneous binarization increases rapidly, which in

turn results in many classification errors.

Thus the objectives of this thesis can be detailed as follows:



1. To research an efficient automated framework for robust content-based verification
of Print-Scan degraded typed text documents images generated by standard off-the-
shelf printing and scanning devices. The focus is on highly Print-Scan degraded
documents images such as images generated after multiple repeating cycles of print-
ing and scanning. Verification is performed for the purpose of detecting intentional
tampering. This includes the evaluation of the effectiveness of different candidate
features, classifiers and model-based synthetic training data for classifying noisy

Print-Scan degraded characters.

2. To develop a method for accurate segmentation of highly degraded document images
by utilizing prior document-specific knowledge. The method must be robust to
Print-Scan induced degradations and transformations, but should support accurate
verification in the presence of critical changes that occur in the document due to

intentional tampering.

This thesis approaches the problem as one of analyzing the ideal digital documents tex-
tual contents, and storing the resulting document verification meta-data, referred to as
“Document Description Map” (DDM). The information stored by the DDM is later used
in the verification stage for: (i) aiding in robust segmentation by simplifying the tasks of
separating joined characters, and joining broken characters; (ii) providing font type infor-
mation to an adaptive classifier which assists in further lowering classification error rates;
(iii) for verifying the content of printed and scanned images of the original document by

comparison of the documents DDM against the current state of the document image.

Furthermore, OCR systems typically use high level linguistic models such as n-gram statis-
tics and dictionaries to improve recognition accuracy (Govindan and P., 1990). Using lin-
guistic analysis mechanisms such as dictionaries and n-grams statistics is in fact equivalent
to the action of inferring what would be the most reasonable content in the document.
However, statistical “best guess” defy the objective of this thesis, which is to verify that
the documents content has not changed, and therefore any use of such methods must be

avoided completely as a method of correcting segmentation and classification errors.

1.2 Significance and Contributions

This thesis makes two main contributions to the field of computer vision:

1. The development of a robust and accurate document image segmentation method in



Print-Scan Channel degraded document images suffering from significant amounts

of noise and symbol degradation due to repeated print-scan cycles.

2. Establishing the region-based 2-D Discrete Cosine Transform (DCT) calculated from
the entire character region as an accurate shape feature highly robust to typical noise

and degradations generated by the Print-Scan Channel.

Together, these two contributions are used to build and evaluate a highly accurate docu-
ment verification system that is shown to outperform state-of-the-art OCR on print-scan

degraded documents.

1.2.1 Robust and Accurate Document Image Segmentation Method

Recognition of characters in degraded documents images is challenging due to the high
frequency of broken and joined characters occurrence (Droettboom, 2003). Joined and
broken characters contribute substantially to classification errors and therefore must be
dealt with in order to obtain high accuracy (Casey and Lecolinet, 1996). Being such a
critical step of the recognition process, this thesis proposes a highly accurate and robust
segmentation method based on prior document information. The proposed method is used
for separating joined characters and joining broken characters by utilizing priori document
contents information and classifier feedback. The suggested method substantially increases
the accuracy of segmentation over pure statistical methods typically used by OCR systems,

and therefore contributes substantially to the increased accuracy of the entire system.

1.2.2 Region-based 2-D DCT as an Accurate and Robust Shape Feature

One of the fundamental and most important steps in content-based verification of docu-
ment images is the accurate classification of the characters present in the documents, as
they are the fundamental building blocks of text documents. A major contribution of this
thesis is a quantitative analysis of the effectiveness of several fast shape descriptors under
conditions of increasing print-scan degradation, showing that region-based 2-D DCT II
is an accurate and robust shape feature achieving overall excellent accuracy with various
classifiers trained with model-based synthetic generated training data. The DCT based
features displayed good resilience to the substantial Print-Scan noise present in the tested

documents images.



1.3 Structure of the Thesis

This thesis is organized as follows. In Chapter 2, literature review of related concepts and
methods such as shape descriptors, document image degradation models and classifiers is

given.

Existing 2-D shape recognition methods are briefly explored and the properties of dif-
ferent suggested shape descriptors, and hence their suitability for allowing the accurate

classification of characters in Print-Scan degraded documents images is discussed.

This is followed by a discussion of established classification methods and their properties
that are used in conjunction with the shape descriptors to classify the shapes present in

the document images.

Next a discussion is given on the effects of the printing-and-scanning process on recogni-
tion. The recognition is substantially enhanced by providing to the classifier examples of
the degraded characters as they might appear in the verified documents. These examples
can be taken from “real” world collected data or by synthetically generating such data.
This Section discusses both options, their advantages and disadvantages, and degradation

models that enable the generation of such synthetic training data.

In Chapter 3, framework overview of the proposed system for robust document image
verification and authentication is presented. The main components of the framework are

introduced and described, and their interaction is presented.

In Chapter 4, the recognition accuracy of characters in noisy Print-Scan degraded docu-
ments is evaluated for different shape descriptors and classifiers combinations. The Chap-
ter commences by defining selection criteria for choosing candidate shape descriptors, and
discusses the relevant properties of the selected shape descriptors, which are leading to
their selection. Following is a discussion of the generation of suitable training data for im-
proving classification. And a physical-based parameterized model for generating synthetic
Print-Scan degradation modeled training data is discussed. Finally tests are performed
on a uniform test set taken from real scanned documents images to achieve comparative

results for the accuracy of the different descriptors-classifiers combinations.

In Chapter 5, a detailed discussion is given on the suggested methods for performing ver-
ification of noisy documents images. The discussion commences by presenting the typical

characteristic phenomenon occurring in degraded document images. Following are the



descriptions of the varied methods used for performing verification and for overcoming the
characteristic difficulties found in noisy documents images. Following, three experiments
are performed to provide an empirical evaluation of the proposed framework. The results

of the experiments are presented and discussed.

Finally, Chapter 6 provides a summary of the thesis, its contributions and potential future

advancements and research possibilities.



Chapter 2

Background

This Chapter presents an overview of common computer vision related techniques that are
used in various applications including OCR systems and in previously suggested systems
for verification of text documents in particular. The Chapter commences by discussing 2-
D shape recognition, a crucial step in numerous applications in computer vision in general
and in the framework for automated verification of text documents suggested in this
thesis. The properties of several shape features are discussed and the presented features
are grouped according to different criteria. Furthermore, shape descriptors are discussed
in the context of character recognition and of OCR systems. The Chapter continues by
providing detailed theoretical presentation of a number of popular classification techniques
including Naive Bayes, k-Nearest Neighbor, Support Vector Machine, Random Forrest and
Artificial Neural Network. In addition, the generation of both real and synthetic training
data is discussed along with a review of the suggested methods for modeling degradation
for classifier training. Following this is a review of the previously suggested document
verification and authentication systems in the literature. And finally, document character

segmentation is briefly discussed.

2.1 2-D Shape Recognition

This Section commences by providing an overview the different categories and proper-
ties of shape descriptors. Following this is an in-depth discussion on a number of shape
descriptors that are referred to in the following Chapters. Finally this Section concludes
with a discussion on the usage of shape descriptors by commercial OCR systems and other

methods which were suggested in the literature.

2.1.1 Overview

Experimental results in human psychophysical research suggest that the “shape” of an

object, which is usually defined by its boundary or region, contributes the most to under-



standing the meaning of the presented image, much more than other features as texture
and colour. In fact, if the only information presented in an image is the boundaries of
the objects, it is usually sufficient for image content understanding (Milan et al., 2007).
Despite of the fundamental importance of “shape” to the perception and understanding
of the world by humans it is a very difficult task to accurately describe shapes linguisti-
cally. Pure mathematical description of shapes is achieved in many different ways however
none of the proposed methods has been generally accepted. Moreover, current effective
syntactic and mathematic descriptions of shapes are unusable for shape recognition tasks
(Milan et al., 2007). Since recognition of characters is an important part of this thesis,
the remainder of this Section will discuss shape recognition in the context of character

recognition.

Characters are a well-defined set of 2-D shapes and more often than not, when characters
are printed to form a document they share a uniform fill texture and colour. Therefore,
under the assumption that it is possible to successfully segment a document into the char-
acters comprising it, a major part of the task of character recognition in document images
is essentially a special case of 2-D shape recognition. This is in fact the predominant ap-
proach in existing OCR systems and suggested document analysis and verification systems
(Mori et al., 1995; Trier et al., 1996a; Vinicius et al., 2007; Ming et al., 2007).

2-D shape recognition is a fundamental part of solving a myriad of problems in computer
vision such as scene understanding, OCR, biometric recognition, medical imaging and
content-based retrieval of documents and pictures amongst many others, and as such it is
still a highly active field of research. Commenced in the middle of the previous century,
2-D shape recognition has materialized in many suggested methods in the literature, some

of which are to be reviewed in later parts of this Chapter.

The task of 2-D shape recognition in images can be generally summarized as follows:

1. Decide on the method for extracting and computing the descriptive features for the

shapes. These features are commonly referred to by the term “shape descriptors”.

2. Choose one or more classifier(s) and train it/them with shape descriptors extracted

from a training set.

3. Perform low level pre-processing to the image such as noise suppression and other

local enhancements.
4. Segment the image into shape components.

5. Perform additional low level pre-processing if required to do so in order to satisfy
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requirements imposed by the shape descriptors such as: thinning, boundary extrac-

tion, skeletonization etc.
6. Extract/compute the shape descriptors for each of the shapes.

7. Feed the shape descriptors into one or more classifier(s) trained to discriminate

between different shapes of interest.

8. Label the segmented shape components with the output obtained from the classi-
fier(s).

In Yazici and Sener (2003) feature extraction is defined as “extracting from the raw data
the information which is most relevant for classification purposes, in the sense of minimiz-
ing the within-class pattern variability while enhancing the between-class pattern variabil-
ity”. Moreover, selecting the most suitable shape descriptor is considered to be the most
influential step on the final features dataset and thus on the overall recognition accuracy.
With that said, it is important to stress that selecting the best feature descriptor is not
the only significant step in building a 2-D shape recognition system. The other steps also
need to be optimized in order to achieve the best possible recognition rate (Trier et al.,
1996a).

The task of choosing a suitable shape descriptor is further complicated by a number of
factors such as (Trier et al., 1996a; Latecki, 2005):

e The large number of suggested methods in the literature.

e The fact that different descriptors might be more suitable for different applications

and particular classes of shapes.

e The significant variations in performance which are reported when different classifiers

are used with the same shape descriptor.

e Different descriptors have different properties such as invariance to some of the affine

transformations such as translation, rotation and scaling.

e Relying on the descriptors’ reported success rate as a comparative measure of suit-
ability is not practical since in many cases different classifiers, different training sets
and different testing sets were used for obtaining classification accuracy results for

the proposed shape descriptors.

In the following Sections the focus is on feature extraction methods and related concepts

for the purpose of 2-D shape recognition.
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2.1.2 Shape Features Groups

Shape descriptors extraction methods can be generally divided into the following groups
(Veltkamp and Hagedoorn, 1999; Milan et al., 2007; Latecki et al., 2000):

e Voting schemes.
e Global shape descriptors

— Region-based.
— Contour-based.

— Skeleton-based.

2.1.2.1 Voting Scheme Shape Descriptors

Voting scheme shape descriptors consider only a set of interest points or sub regions on the
shape’s boundary or in the shape’s region. An example for a suggested approach which
uses this technique is the basic peephole method in which certain interest points in the
image “light up” if they are covered by foreground pixels. Different combinations of zones
which are covered by foreground pixels correlates to different shape classes. This was in
fact the method used in “Electric Reading Automation” (ERA) by Solatron Electronics
Group LTD, one of the earliest commercial OCR systems but has since been abandoned

in favour of more accurate region or boundary based techniques (Mori et al., 1995).

2.1.2.2 Global Shape Descriptors

Global shape descriptors consider the entire shape region or boundary as a whole when
extracting the descriptor. The main disadvantages of this approach as Veltkamp and
Hagedoorn (1999) points out, are that the shape needs to be accurately segmented and
extracted from the image before calculation of the descriptors, which is usually a compli-

cated problem in itself, and the relatively high sensitivity to occlusions.

Region-Based Shape Descriptors Global region-based shape descriptors consider the
entire region of the shape when calculating the descriptors (Milan et al., 2007). These in-

clude global shape image transforms from the pixel space domain to the frequency domain
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such as the 2-D discrete Fourier transform, 2-D discrete cosine transform, 2-D wavelet
transform and more. Another popular approach is calculation of geometric (Flusser and
Suk, 1993), Zernike (Teague, 1980) and Legendre (Hosny, 2007) affine moment invariants
and using the low order moment coefficients as entries in a feature vector, as they are less
sensitive to noise. Additional region-based shape features such as: top-bottom or left-
right ratios, major and minor axis orientation, Euler number, compactness and more can
be calculated from the entire shape region. An advantage of the region-based approach
over the contour-based and the skeleton-based approaches is that the colour or grey in-
tensity values of the shape’s region pixels are maintained and available for consideration.

However, these descriptors usually do not convey any local information about the shape.

Contour-Based Shape Descriptors Global contour-based shape descriptors consider
only the outer boundary of the shape when calculating the descriptors (Milan et al., 2007).
It is not conclusive if the shape’s region indeed contain more information about the shape
than the contour of the shape (provided that the colour channels or the intensity values
of the shape’s region pixels are not of interest), or which approach is superior. And
indeed, there are many contour-based shape descriptors suggested which consider only the
contour, or in other words, the boundary of the shape. In fact, it is claimed by Zhang
and Lu (2005) that contour-based methods are the predominant approach. According to
Zhang and Lu (2005) it is easier to derive contour-based methods since contours can be
represented by a one dimensional signal therefore making it more approachable and more

stable numerically than the region-based approaches that involve two-dimensional signals.

Example for contour-based shape descriptors is the commonly used and thoroughly stud-
ied Fourier Descriptors (Zahn and Roskies, 1972) and its shape signature based variants
such as Multiscale Fourier Descriptors (Kunttu et al., 2003), Chord-Length Functions
Fourier Descriptors (Wang and Shi, 2006), Position Function (complex plane coordinates)
Fourier Descriptors (Zhang and Lu, 2005) and many other; other suggested methods are
Inner Distance (Ling and W. Jacobs, 2007); Chain Codes (Milan et al., 2007), Curvature
Scale Space Contours (Mokhtarian, 1995), and geometric boundary representations such

as Hierarchical Polygonal Approximation (Veltkamp, 1998), and more.

As mentioned above, an advantage of contour-based methods is that a shape’s contour
can be conveniently represented by a one dimensional signal. This compactness in the
representation of a shape offers substantial savings in the amount of data which needs
to stored and processed. On the other end, this creates a disadvantage in the form of
increased sensitivity to noise over the region-based representation since the boundary of

the shape is more susceptible to deformations caused by noise. In addition, points which
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are close in the spatial domain may be far away in the boundary representation of the
shape which creates a problem in reflecting the relationship between neighboring points

(Milan et al., 2007).

Skeleton-Based Shape Descriptors Skeleton-based methods are the result of an-
other approach which is by far not as common as the boundary-based and region-based
approaches. These methods extract information from a skeleton of the shape region usu-
ally generated by mathematical morphology thinning techniques or by the medial axis
transform of the shape’s region (Milan et al., 2007; Blum, 1973). The resulting skeletons
are than usually transformed into a graph and are measured in relation to other obser-
vations by a graph similarity measure. An example of such method is given in Latecki
et al. (2000) which compares skeletons of shapes by converting the skeleton into a directed

acyclic graph and use a graph matching algorithm to obtain a dissimilarity measure.

Skeletons of regions are very sensitive to changes in the boundary and as a result small
variations in the boundary of the shape can cause a substantial impact on the shape’s skele-
ton. To mitigate this problem a few skeleton generation techniques have been suggested
that are less sensitive to changes in the shape’s boundary such as scale-space approach pre-
sented in Maragos (1989) and varying smoothing presented in Wright and Fallside (1993).
Another major problem in skeleton representation of the shape’s region is that non-similar

simple shapes might have the same skeleton.

2.1.3 Shape Features Properties

Different shape descriptors have different approaches to considering and analyzing shapes
therefore they often have different properties. The difference in the properties between the
different shape descriptors implies they are influenced differently by changes and degra-
dations caused by noise, occlusions, transformations and more. A list of the prominent
properties of shape descriptors is now given and discussed briefly (excluding robust and

accurate retrieval rates which are obvious criteria):

e Prerequisites.

Invariance.

Global, local and hierarchical information representation.

Reconstruction ability.
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Compactness.

Generality.

Clarity.

Computational complexity.

2.1.3.1 Prerequisites

As discussed in Section 2.1.2 different shape descriptors operate on different representa-
tions of the shape such as the boundary, the entire region or the skeleton. These require
different pre-processing of the image in order to prepare the shape for analysis and extrac-
tion of features. Additional prerequisites are binarization of the image which is required
by a large number of shape descriptors, and coupling with certain types of classifiers or

specialized classifiers.

2.1.3.2 Invariance

Since different people may classify a shape to different classes, it indicates that the decision
whether a shape belongs to one class or the other is a subjective decision. Also deciding
at what level of deformation a shape no longer belongs to its “true” class is often a non-
conclusive decision for humans. Despite the subjective nature of classifying deformations
of shapes and the difficulty to understand and define this process mathematically in an
accurate way (Machajdik and Hanbury, 2010) it is expected that a good shape descrip-
tor be invariant to intra-class shape variations, reasonable deformations caused by linear
and nonlinear transformations and especially be invariant to characteristic noise which is
relevant to the application domain. Real world data intrinsically suffers from inaccura-
cies such as calibration of devices, different lighting, sampling jitter, numerical rounding,

misplacements as well as rotations of the objects and more.

In particular some linear transformations such as: scale, translation minor skew and ro-
tation are considered important since they preserve the shape and therefore invariance to
these transformations is considered to be an important property when comparing differ-
ent shape descriptors. Invariance to rotation may be required only to a certain degree,
depending on the application, or may be waived completely under the assumption that
rotations would be fixed to a normalized orientation by pre-processing techniques such

as the Principal Axes Transformation (Alpert et al., 1990). Invariance to noise is also a
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very important consideration since some degree of noise is present in almost all practical
applications and moreover reasonable amounts of noise can also be considered to preserve

the shape.

2.1.3.3 Global, Local and Hierarchical Information Representation

Different shape descriptors provide information on different scopes such as global, local
and hierarchical scale representation. Local or hierarchical representations might be a
desirable property for systems which are interested in shape information across different
scales, usually with increasing resolution, or to be able to make a granular local distinction
between shapes. This property may be useful for systems which increase efficiency by

quickly ruling out invalid options on a coarse scale.

An example of a global shape descriptor is the global image transforms such as 2-D Fourier
transform results in a set of coefficients that provide frequency information about the entire
shape and therefore do not provide any local shape information. In contrast, the Curva-
ture Scale Space method presented in Mokhtarian (1995) is an example of a descriptor
which provides information on a shape in a hierarchical scope which allows discriminating

between shapes on different resolution scales.

2.1.3.4 Reconstruction Ability

A shape descriptor is said to have the reconstruction ability property if the original shape

can be reconstructed from the derived descriptors.

This property holds if and only if isomorphism exists from the shape space into the feature
space. This implies that the features are unique for each shape regardless of how small the
variations are between two similar shapes. It further implies that some direct and distinct

physical or mathematical connection exists between the shape and the descriptor.

Although for some description methods, exact reconstruction of the original shape from
the features may require an arbitrarily large or infinite number of features, it is possible to
perform partial reconstruction to different levels of fidelity and detail by taking a subset of
the features. This has the implication that some of the features contain more “relevant”

data about the shape than others.
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Examples of such descriptors are the global image 2-D Fourier transform, 2-D Discrete Co-
sine Transform and the boundary chain code representation. An example for a descriptor
which does not hold this property is the geometric affine moment invariants (Flusser and
Suk, 1993) since the monomials on which the shape is projected upon are not orthogonal
and therefore they do not provide the ability to uniquely reconstruct a shape from the

descriptors (Teague, 1980).

2.1.3.5 Compactness

This property relates to the dimensionality of the data which is required in order to
represent a shape. In some features, the amount of data required for representation is
correlated with the amount of granularity of detail that is desired which means that the

dimensionality of the data can be increased in order to provide finer level details.

Lower dimensionality results in lower storage requirements, faster computations, ease of
analysis and understanding and does not suffer from the peaking phenomenon and the in-
famous “curse of dimensionality” as badly as high dimensional data (Sima and Dougherty,
2008; Bellman, 1957). Furthermore, to a limit, as the dimensionality of the descriptors
decreases, the size of the training required to obtain the same accuracy also decreases.
Therefore, compactness (or in other words lowered dimensionality) of the descriptor vec-

tor is highly desirable.

2.1.3.6 Generality

Generality is a measure of the scope of different applications and problem domains for
which the suggested shape features are applicable. Low generality (or in other words high
specialization) of shape features generally implies that the performance decreases quickly
outside of the domain for which they have been developed. Therefore shape features with
low generality are usually computationally less stable and predictable in the way they

respond to deformations of shapes.

2.1.3.7 Clarity

Clarity refers to intuitive and simple derivation of the descriptors. Descriptors which

are developed with a straightforward mathematical or physical approach usually result
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in having a smaller number of parameters, which leads to less tuning and less prone to
errors in parameter selection and hence higher generality. Moreover, clearly derived shape
descriptors are generally easily and intuitively understood. Clarity may also relate to the
similarity measure being intuitive and clear. A simple and intuitive descriptor would not
be considered to possess the clarity property if the similarity measure used to distinguish

between different shapes is very complicated or unintuitive.

2.1.3.8 Computational Complexity

Computational complexity relates to the number of computations and therefore the run-
ning time that is required for generating the shape features and for calculating the sim-
ilarity measure. Since many practical applications may involve a large set of shapes to
classify, and usually a far larger set of observations in the training set which need to be
considered during classification, computational complexity is one of the most important

properties to consider when selecting a shape descriptor for a practical application.

2.1.4 Shape Descriptors Used in Character Recognition

Follows is in depth description of three shape descriptors which were proven to previously
give satisfactory results in OCR applications (Trier et al., 1996b; Oztiirk et al., 2001;
Amanatiadis et al., 2011). In addition one of the methods (Fourier Descriptors) was used

by Ming et al. (2007) in their suggested document images verification system.

o Geometric Affine Moment Invariants (GAMI).
e Centroid Distance Function Fourier Descriptors (FD).

e 22D DCT II (DCT).

2.1.4.1 Geometric Affine Moment Invariants

Geometric Affine Moment Invariants (GAMI) interpret a shape’s image as a normalized
probability density of a 2-D random variable (Milan et al., 2007). The shape signal is
projected onto different monomials to generate various statistical measures of the shapes.
Initially presented by Hu in Hu (1962), and corrected by Reiss (Reiss, 1991), the theory of
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GAMI has been further developed by Maitra (1979), Li (1992), Flusser and Suk (1993) and
others to be invariant to general affine transformations such as rotation, scale , translation,
skew and more. GAMI are usually applied to a shape’s region, however they may be

applied to a shape’s boundary as well in order to extract the shape descriptor.

There are a few inherent weaknesses to using geometric moments as a shape description
method. First to note are the non-orthogonal properties of the monomials which decrease
the separation between different shapes representations in the transformed feature space.
Secondly, there is no understanding of what the higher-order moments represent in the
spatial domain, and as the order of the moments increases, each pixel contributes sub-
stantially to the summation, making the higher order moments very sensitive to noise and
deformations (Zhang and Lu, 2004).

GAMI were applied successfully to general shape recognition tasks and OCR, applications
in particular in various languages such as English, Arabic and others (Trier et al., 1996b;
Flusser and Suk, 1994, 1993; El-Khaly and Sid-Ahmed, 1990; Milan et al., 2007; Veltkamp
and Hagedoorn, 1999; Nagy, 1992). They were studied extensively and there are many
papers which compare them to other shape recognition methods with satisfactory results
(Dhanya and Ramakrishnan, 2002; Trier et al., 1996a; Amanatiadis et al., 2009; Mehtre
et al., 1997; Amanatiadis et al., 2011).

There are two parameters which are to be decided when using GAMI as shape descrip-
tors. The first is the order and number of features to use. Combining the problematic
nature of the higher-order moments with the fact that low order moments do not provide
sufficient discrimination when the number of classes is large implies it is not a trivial task.
The second is the optional segmentation of the shape to subareas on which the moment
calculation is applied. Extracting features from the entire shape may result in substantial
loss of detail and on the other hand segmenting a shape to areas which are too small
causes the features to be too sensitive to local deformations and possible noise (Dhanya
and Ramakrishnan, 2002).

For full description of the general theory of moments invariants see Flusser and Suk (1993)
and Reiss (1991).

The centralized moment of order (p + ¢) denoted by m,,, for an image f with dimensions

MxN and pixel coordinates z,y is given in Equation (2.1):
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where z. and y. denote the shape’s region center of mass coordinates which are given by:

Ze = Mig/ Moo Ye = Mo1/ Moo (2.2)

In this thesis, four centralized moment based invariants were calculated for the purpose
of creating the shape descriptor feature vector as proposed in Flusser and Suk (1993) and
Flusser and Suk (1994):
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2.1.4.2 Fourier Descriptors

Fourier descriptors are a very popular and large family of shape descriptors based on the
principle of applying the Fourier transform to a one-dimensional function of the shape’s
boundary. This function is generally referred to as the shape’s signature and it can be
derived from the shapes boundary in various ways such as: the center of mass distance,
tangent angle, complex coordinate position, cumulative angular function, wavelet trans-
form, bending energy and many others (Zahn and Roskies, 1972; Zhang and Lu, 2005;
Kunttu et al., 2003; Wang and Shi, 2006; Van Otterloo, 1991; Milan et al., 2007; Zhang
and Lu, 2004). Each of the suggested ways for calculating the shape signature would
result with a high probability in a different shape signature (representation of the bound-
ary) and therefore the results given by the various Fourier descriptors methods are highly

dependent on the way the shape signature is calculated.
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A generally considered drawback of Fourier descriptors is its inherent inability to success-
fully overcome occlusions, however for the purpose of document image verification it is
in fact a desirable property since it enables the detection of substantial occlusions. An-
other potential drawback is the global descriptive nature of Fourier descriptors as they
provide general information about the shape signature’s frequency contents without any
local shape information. In order to address this drawback, methods such as short time
Fourier descriptors (Eichmann et al., 1990) and wavelet signature (Kunttu et al., 2003)
were suggested that are intended to provide both local and global information about the

shape’s boundary.

Fourier descriptors have been successfully applied in general shape recognition applications
and OCR applications (Taxt et al., 1990; Trier et al., 1996b; Amanatiadis et al., 2009;
Zhang and Lu, 2004). They were studied extensively and there are many papers which
compare some of the Fourier descriptors methods to other shape recognition methods
such as autoregressive models, chain codes, various moments and multiscale curvature
scale-space with results suggesting that Fourier descriptors outperform those other shape
descriptors (Kauppinen et al., 1995; Mehtre et al., 1997; Amanatiadis et al., 2011).

There are three considerations when using Fourier descriptors as shape descriptors. The
first and most important is selecting the method in which the shape’s signature function is
calculated. The second is the number and selection of coefficients to use as features. The
third is the optional normalization of the number of sample points on the shapes boundary.
Moreover, there is ambiguity as to how to handle shapes containing holes. Most authors
address this issue by considering only the outer perimeter, or equivalently filling all holes

prior to extracting the boundary.

Selecting the shape’s signature calculation method can dramatically change the general
performance of the descriptor. In Taxt et al. (1990), three Fourier descriptors have been
compared: Kuhl and Giardina’ Elliptic Fourier Descriptors (Kuhl and Giardina, 1982), Lin
and Hwang’s Elliptic Fourier Descriptors (Lin and Hwang, 1987) and Cumulative Angular
Function (Zahn and Roskies, 1972), and it has been concluded that the Elliptic Fourier
Descriptors (Kuhl and Giardina, 1982) outperform the other two methods. Zhang and
Lu (2005) has evaluated six different methods for calculating the shape descriptor: Com-
plex Coordinates (Granlund, 1972), Centroid Distance Function (Zhang and Lu, 2005),
Chord Length Signature (Zhang and Lu, 2005), Cumulative Angular Function, Curvature
Signature (Krzyzak et al., 1988) and Area Signature (Zhang and Lu, 2005), and has con-
cluded that for general shape classification tasks, the Centroid Distance Function gives
the most accurate results. Zhang and Lu (2001) compared Fourier descriptors to short

time Fourier descriptors and concluded that Fourier descriptors are superior both in ac-
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curacy and in compactness of representation. Wang (2011) lists the Cumulative Angular
Function, Centroid Distance Function, Complex Coordinates and Curvature Signature as
the most commonly used shape signatures but without specifying application domains.
Wang (2011) also provides comparative results between the following methods: Centroid
Distance Function, Complex Coordinates, Curvature Signature, Area Signature, Wavelet
Signature, Perimeter Area Function (Wang, 2011) and a combination of the Perimeter
Area Function and of the Centroid Distance Function. It concludes that the best perfor-

mance is given by Centroid Distance and Perimeter Area shape signatures.

The second important consideration is the number and selection of coefficients to use as
features. In general, many publications such as: Wang (2011), Zhang and Lu (2005),
Zhang and Lu (2001), Krzyzak et al. (1988), and Amanatiadis et al. (2009) reported the
typical number of coefficients used as a feature vector to be 30-60. Persoon and Fu (1986)
determines that if the boundary contains adjacent linear curve sections the descriptors
obtained by the Cumulative Angular Function converge slower to zero relative to descrip-
tors obtained from the Complex Coordinates Signature. This occurs due to the Gibbs
phenomenon around points of discontinuities. This suggests that the Cumulative Angu-
lar Function descriptors require a higher dimensionality of coefficients, and overall reduces
their suitability to describe binary rasterized characters (Trier et al., 1996b; Krzyzak et al.,
1988). Zhang and Lu (2005) has evaluated the convergence of the Centroid Distance Func-
tion and has concluded that for general shape classification tasks, using only the 10-15 low
order coefficients as the feature vector is sufficient. Moreover, according to Milan et al.
(2007), 10-15 low order coefficients are sufficient for OCR.

Normalization of the number of sample points is an optional step some researchers have
utilized. This thesis’ approach is the normalization is important as it results in uniformity
of the discrete frequencies of the basis functions. Therefore the comparison between the

different resulting coefficients of the DF'T comprising the feature vector is more meaningful.

Centroid Distance Function Since the Centroid Distance Function has proved to
give good results in comparison to other shape signatures, and moreover, holds additional
benefits in the simplicity and clarity of its calculation and implementation, its robustness
to boundary noise and very low dimensionality, further details are provided below. The
discrete center of mass distance function or discrete centroid distance function S(k)0 <
k < T expresses the distance of the shape’s discrete boundary pixels to the shape’s region
center of mass in coordinates x. and y.. The center of mass distance shape signature is

calculated as follows:
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T is the number of pixels comprising the shape’s boundary, B(k), and B(k), are respec-
tively the x and y coordinates of the k" boundary pixel. z. and y. denote the shape’s

region center of mass coordinates.

Following this initial calculation is a step to resample S(k) to a uniform length N (denoted
by Sny(k)) so that the discrete Fourier series coefficients a, 0 < n < N represent the
magnitude and phase of the same discrete frequencies 27n/N. Moreover, if N is selected
so that it is a power of 2, the Fast Fourier Transform (FFT) algorithm may be used to

calculate the discrete Fourier series coefficients more efficiently.

Next the discrete Fourier transform (DFT) is applied to Sy (k) to result in a set of discrete
Fourier coefficients {a,, | 0 < n < N} by the following operation:

N—
1 TN
an NE - n=01,...,N -1 (2.9)
k=0

S(k) is invariant to translation by definition since z. and y. are translated along with
the shape, therefore the discrete Fourier coefficients {a, } are also invariant to translation.
Assuming that the origin is located at (x., y.), selecting a different starting pixel along the
boundary for tracing, or rotation of the shape around the origin results in a phase shift
of S(k), which is reflected in a phase shift of the phasors represented by {ay}. Scaling
of the original shape results in a linear scaling of S(k) which linearly increases the DC
component ag (Zhang and Lu, 2001, 2005).

Since S(k) is real-valued, a, = a},_,,, where a;, denotes the complex conjugate of a,. It
follows that ap and a(y/9) are both real-valued, and the DFT is entirely defined by the
first half of its coefficients {a, | 0 <n < N/2}.
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To obtain {b; | 1 < k < N/2} a set of invariant features to scale, rotation or selection of

starting pixel, and translation, it is defined:

_ lan]

b, =
|ao|

k=1,2,...,N/2 (2.10)

Moreover, by using only the low order by coefficients, it is possible to reduce the noise
which usually resides in the high frequency range and also remove transient changes in the
boundary while maintaining the most substantial information of the shape. This has the
effect of applying low pass filtering to the boundary, but also results in loss of fine detail
of the shape (Zhang and Lu, 2001).

2.1.4.3 2-D Discrete Cosine Transform

The Discrete Cosine Transform (DCT) (Ahmed et al., 1974) is a real valued unitary
transform related to the Discrete Fourier Transform (DFT). DCT transforms a real, band
limited, N periodic and even signal z(n) from the spatial domain to the frequency domain
by expressing the signal as a superposition of discrete sinusoids with varying amplitudes
and linearly increasing frequencies. This alternative representation of the signal (an image
in the case of shape recognition) in the frequency domain is then used as a mathematical
framework for the representation of different shapes in a compact and relatively accurate
manner. The DCT is usually applied to a shape’s region however it may be applied to a

shape’s boundary as well in order to extract the shape descriptor.

There are four standard DCT variants which differ by the implied symmetry at the signal
boundaries (Zhou and Chen, 2009). The most common variant is the type-II DCT (Ahmed
et al., 1974), which implies the signal x(n) is even around n = —1/2 and even around
n = N — 1/2. Herein after the type-II DCT shall be refered to simply as the “DCT” and
its definition is given in Equation (2.11) (Ahmed et al., 1974):

where:
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Y2rx=0

w(z) =< N (2.12)
2
N,ZE > 0

The type-1II DCT implies the signal’s boundary conditions are even around n = 0 and odd
around n = N. The definition of the type-III DCT is given in Equation (2.13) (Ahmed
et al., 1974):

N-1

:1X0+;Xkcos[;n<k+l)} n=01,....,N—1 (2.13)

V2

2(n) ;

The type-1II DCT is the inverse of the type-II DCT and shall be refered to in short as the
“inverse DCT” (IDCT).

In Figure 2.1 (taken from Stevenj (2009), used with permission under the GNU Free
Documentation License, Version 1.2), the different symmetries implied by the different
types of DCT are illustrated.

The DCT-II's even extension on both boundary points of the signal guarantee a smooth
periodic extension of the signal which result in better approximation of the signal with
less sinusoids. Or in other words, as shown empirically by Ahmed et al. (1974) and gen-
eralized by Hamidi and Pearl (1976), the DCT converges faster than other linear integral
transforms, except for the optimal Karhunen-Loéve transform, and in particular converges
faster than the DFT, which results in higher compactness of the data required to approx-

imate the signal.

The DCT can be applied to multi-dimensional signals in a straightforward extension of
the one-dimensional definition, a composition of DCTs along each dimension of the signal
Milan et al. (2007). It follows that a two-dimensional DCT-II of a two-dimensional signal
(e.g. an image) is the one-dimensional DCT-II, performed along one of the dimensions,
followed by repeating the transform in the second dimension (rows then columns or vice

versa).

M—-1N-1 T 1 T 1 p=0,1,...,N—1
Xpq = wp(p)weq Z Z x(m,n) COS[M (m—i—i)p} cos{ﬁ (n+§>q} )

m=0 n=0
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where:

L z=0

wy(z) = WQ (2.15)
M,ZE >0
L =0

wy(z) = Wz i (2.16)
\/;,x>0

Similarly, the multi-dimensional IDCT is calculated by the one-dimensional IDCT, per-
formed along one of the dimensions, followed by repeating the transform in the second
dimension. In Figure 2.2 (taken from Devcore (2008), public domain), the DCT basis

functions in the two-dimensional case where M = N = & are illustrated:

A well-known drawback of the DCT as a shape descriptor is its global descriptive nature
as it provides general information about the shapes signature’s frequency contents with-
out any local shape information. Moreover, the DCT has variance to translation, scale
and rotation by definition. However this can be solved by normalization of the shape’s

translation, size and rotation prior to transforming.

The DCT is widely used for many and varying applications and in particular compression
and encoding of video in well known formats such as JPEG and MPEG Khayam (2003)
Milan et al. (2007), and the modified discrete cosine transform, derived from the DCT-
IV, is used in many popular lossy audio compression formats such as AAC, WMA, and
MP3. The application of the 2-D DCT in the context of Bangla language OCR has
been reported by Abul Hasnat and Khan (2007) where the authors have horizontally
segmented each character into several frames, used 2-D DCT transforms to extract features
from each frame and then fed the features sequencing to a HMM classifier. Dhanya
and Ramakrishnan (2002) has compared features obtained from Geometric Moments, 2-D
DCT and the Discrete Wavelet Transform for a bilingual Tamil/Roman OCR system. To
generate the 2-D DCT features Dhanya and Ramakrishnan (2002) divided each symbol
into four sub-blocks and 2-D DCT is taken on each sub-block. As features only the
H/6 x W/6 low frequency coefficients are retained where H and W are the dimensions
of the sub-blocks. It was concluded that the best overall results were given by the DCT
based features. Similarly, Charan (2006) used 2-D DCT on sub-blocks of characters in the
Telugu script.
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Figure 2.1: Illustration of the four different symmetries implied by the different types of the DCT.
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There are a number of important factors which are to be decided when using 2-D DCT
transform coeflicients as shape descriptors. First, a decision is to be made if the transform
is applied to the shape’s region or to its boundary only. In the case of transforming the
shape’s region, it is also necessary to decide whether the transformation is applied to
the binarized region or to the intensity or colour channels values of the shape’s region.
Furthermore, since the DCT is variant to rotation and scaling, the methods of rotation
and scale normalization need to be predetermined. And finally, one must decide upon the

number and selection of coefficients to use as features.
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Figure 2.2: Illustration of the DCT basis functions in the two-dimensional case where M = N = 8.

2.1.5 Shape Descriptors and OCR Systems

Recognition of character shapes present in images of documents is a process which is
generally referred to by the term “Optical Character Recognition”, or OCR, in short. OCR
has been an active field of research for over six decades now and so it is imperative to
understand which methods were used in the past and are used presently in OCR systems
and what success rates these OCR systems obtain. This information is important in
helping make a decision on which approach to take in order to succeed with the thesis’

goal.

There are many methods which have been published on 2-D shape descriptors with OCR as
the main intended application. A considerable part of the most promising and prominent
approaches up until the mid-90s have been surveyed in Trier et al. (1996b) and Eikvil
(1993). Unfortunately these surveys do not provide experimental results on a common
training set, classifier and testing set and so no baseline for comparison between the
accuracy of the different methods is available. Since the publication of Trier et al. (1996b)
and Eikvil (1993) a myriad of new shape features has been suggested in the context of

OCR or as general methods for shape discrimination. Unfortunately, as discussed in
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Section 2.1.1 using the available results provided by the publications for comparing the
suitability, accuracy and efficiency of the different methods for this thesis’ particular goal

is an impossible task.

Another possible source of information on effective features in the context of OCR is their
implementation in contemporary OCR systems. Unfortunately most of the established
and well-regarded OCR systems available today such as: ABBYY’s FineReader, I.R.I.S.’s
ReadIRIS and Nuance’s OmniPage are commercial closed propriety systems which do not

provide to the public details of the algorithms and methods used in their implementations.

However, there are a small number of state-of-the-art open source systems such as Tesser-
act (Google, 2012b), OCRopus (which is partially based on the Tesseract OCR engine)
(Google, 2012a) and GOCR, (Schulenburg, 2012) which provide partial documentation and

details on their approach and implementation.

The most notable of these open source systems today is Google’s Tesseract. A brief
description of Tesseract’s background is given in Google (2012b) “An OCR Engine that
was developed at HP Labs between 1985 and 1995 and now at Google. The Tesseract
OCR engine was one of the top 3 engines in the 1995 UNLV Accuracy test. Between 1995
and 2006 it had little work done on it, but since then it has been improved extensively by

Google and is probably one of the most accurate open source OCR engines available”.

For shape matching, Tesseract uses a method in which scanned characters are estimated by
short segments of polygonal approximations as features (Smith, 2007). However, according
to Smith (2007), Tesseract relies heavily on recognition of words to improve segmentation
and classification. Tesseract determines the best match for a particular blob or a set of
blobs by utilizing a weighted distance of a possible segmentation from matches found in a

number of dictionaries.

It is not surprising that Tesseract uses word statistics and dictionaries to improve accuracy.
In fact, it is very reasonable to assume that all other commercial OCR systems probably use
some sort of linguistic analysis such as dictionaries, n-grams statistics and other methods
to improve their accuracy rates. Unfortunately for the purpose of authentication and
verification of document images it is not reasonable to take the same approach and to try
and infer knowledge about the document image presented for verification since that would
defeat the entire purpose of the system. Therefore any use of statistical linguistic analysis
such as dictionaries and n-grams statistics must be avoided completely as a method of

correcting classification mistakes and improving classification results.
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2.2 Classifiers

To be able to recognize symbols in document images the shape descriptors must be pro-
cessed by a classifier in order to ascribe the input features calculated from a given symbol
in the document to a certain character class. It is known in the literature that differ-
ent combinations of shape features and classifiers will achieve different results. Therefore
shape features and classification both play an important part in the recognition of char-
acters. In the next Sections an in-depth discussion of a number of the most prominent

classifiers is given.

Before discussing the classifiers a number of definitions are given. Let Cser = {C; | j =
0,1,..., M} to be the dependent categorical class variable conditional on the values of a
set of random variables X .y = {X; | i =0,1,..., N}, (i.e. the feature variables), where
in many practical applications |C| < |X|. And let an observation X be defined as the
random row vector X = {x1,x9,...,2,} where z1 € Xj,29 € Xo,23 € X3,...,2, € X,

are referred to as the components of the observation.

2.2.1 Naive Bayes

Naive Bayes (NB) is regarded as one of the most accurate and computationally efficient
supervised learning algorithms (Zhang, 2004; Milan et al., 2007). The NB classifier uses
a conditional probability model to classify random vectors of an arbitrary dimensionality

whether continuous or discrete.

A NB classifier simplistically assumes the random variables X; are mutually independent,
and thus simplifies the model generation and the classification process drastically. In
other words, a NB classifier assumes that the value of a particular feature of a class is
uncorrelated to the value of any other feature, given the class variable. The assumption
of independence reduces the calculation of the multivariate conditional probability to a
series of single variable conditional probabilities. Despite the simplistic assumption of
mutual independence of the features, NB classifiers are known to give satisfactory results

in various applications.

Under the assumption that the features are independently normally distributed, the NB
classifier requires only a relatively small number of training observations to estimate the
model’s parameters, the means and variances of the variables. Estimation of the param-

eters is usually achieved by maximum likelihood estimates of the probabilities, in other
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words, the relative frequencies of values in the training data. Class prior distributions
p(C;) can be determined by assuming equiprobable classes so that p(C;) = 1/M where
7=0,1,2,..., M , or by estimating the class probabilities from the training data.

By Bayes’ theorem the posterior probability for a given observation {z1, za,...,x,} to be

classified as C} is given by:

p(xla Z2,... 7$n|CJ)p(CJ)
; e, Tp) = 2.1
p(Cj|3§'1,$2, y L ) p($1,$2,-.-,$n) ( 7)

Since p(z1, z2, .. ., Ty), the unconditional probability of the given observation {z1, z2, ..., 2y}
remains constant for all C; the denominator can be ignored. Therefore Equation (2.17) is

reduced to:

p(Cj | 1, 22,...,2n) X p(x1,22,..., 2, | C;)p(Cj) (2.18)

However, since the variables are assumed to be statistically independent, p(x1, 2, ..., Zy, |

C;) can be decomposed into a product of terms as follows:

N
p(x1,22,..., 2, | Cj) = I_Ip(acz | Cj) (2.19)
i=1
and therefore:
N
p(Cs | 21,23, 2n) = p(Cy) [[ plai | Cy) (2.20)
i=1

Using Equation (2.20) above and the maximum a posteriori decision rule, a new observa-
tion {x1,x9,...,xy,} is labeled with a class identity C; that results in the highest posterior

probability.

31



2.2.2 k-Nearest Neighbor

k-Nearest neighbor (k-NN) is regarded as probably the simplest classification algorithm
(Milan et al., 2007). k-NN is a lazy learning technique where the model is approximated
only locally, and no computation is performed until classification. k-NN classifies random

vectors of an arbitrary dimensionality whether numerical or categorical.

k-NN classifies a given new test observation {xi,zs,...,z,} by a majority vote of its
neighbors, with the observation assigned a class value C; as the most common class value
amongst its k nearest neighbors. The neighbors are chosen during classification from
the set of training observations for which the correct class is known. In practice usually
Euclidean or Mahalanobis distance is used to calculate the distance from the new test
observation to the training data. If any of the random variables X; are categorical, an

appropriate distance function should be defined, such as Hamming distance.

The most common distance function is the Euclidean distance function which is defined
by:

deuc(V,U) = (2.21)

(2.22)

where V and U are column vectors in R".

The Euclidean distance of V from the origin is given by deue(V,0) =|| V [l2= VVTV,
which is also known as the Euclidean norm of V. Therefore, all of the points with the
same distance ¢ from the origin satisfy ¢> = VTV which is the equation of an origin
centered n-sphere in R™ with radius c. It follows that all the components {vy,va,...,v,}
of the observation V have equal contribution to the Euclidean distance of the point V

from the origin.

However, in the case where it is of interest to account for the variance of the random
variables Xget = {X; | ¢ = 0,1,..., N} when calculating the distance of a random vector
(observation) X, the normalized Euclidean distance can be used, which is a special case

of the Mahalanobis distance when the covariance matrix S is diagonal:
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N
dnar(V,U) = | S <””_“”> p (2.23)

n=1 S%
= Jv - 0)rsv - v) (2.24)
where V and U are column vectors in R?, S = diag(s?, s3,...,s2) and {s;} are the standard
deviations of {X;}.
The parameter k is normally a positive integer, in the special case where k£ = 1, the

classified observation is simply assigned to the same class as its nearest neighbor, and the
entire process is referred to as the “nearest neighbor classification”. The optimal value of
k depends upon the data. Selecting higher values of k£ can reduce the errors introduced
by outliers and noise, however has the drawback of possibly making boundaries between
classes less distinctive. Estimating the optimal k£ can be achieved by different heuristics
such as cross-validation (Witten and Frank, 1999).

An important drawback of the k-NN algorithm is its inherent disposition to suffer from the
curse of dimensionality. As the dimensionality of the observations increases, the probability
of having more components pairs to be unequal increases, resulting in arbitrary increase
of the distance between any two given points. Therefore, the measure of distance between
points loses its discriminative capability as the dimensionality of the data increases (Sima
and Dougherty, 2008; Elkan, 2011). However, despite the possibly high dimensional space
in which observations are represented as points in, if the different classes’ points cluster
“nicely” in a subspace of lower dimensionality then the likelihood to obtain good accuracy
by classifying using k-NN-based methods increases (Elkan, 2011).

An additional disadvantage of the basic k-NN algorithm and other simple majority voting
classification schemes in general is that when k > 2 an averaging or voting scheme is
required for combining the voting C; of the multiple training neighbors, which may be
difficult to define. In addition, classes with higher prior probability are likely to dominate
the labeling decision of the test observation, since they are more likely to be chosen in the
set of k nearest neighbors in areas where classes are mixed. Weighing the nearest neighbor’s
voting in reverse ratio to their distance or using alternative weighted voting schemes such
as presented in Coomans and Massart (1982) have been suggested to compensate for the

bias caused by training data with non-equiprobable classes.

In this thesis a variant of the basic algorithm is used where the contribution of the &

nearest neighbors is weighted in opposite ratio to their distance from the test observation.
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The contribution of the class C; of each of the k nearest points to the final decision is

weighted in proportion to the inverse of the distance between the pair C;/d.

Another drawback of the k-NN algorithm is its high sensitivity to the scaling of data.
Components with high variance are more likely to contribute more to the overall distance
although they may be less discriminative than other components. This is indeed an im-
portant issue and can be reasonably overcome by normalizing the different components.
The normalization accuracy increases as the number of observations in the training sets

increases.

And finally the last drawback to be discussed is the relatively high computational com-
plexity of making predictions. Consider the case where there are p training observations
in R™. Subsequently classifying one new test observation requires O(pn) calculations. If
p < 10 more efficient data structures such as a kd-tree (Bentley, 1975) can be used to ac-
celerate finding the nearest neighbors. Unfortunately for larger p, and in particular when
p > 20, there is no known method to be used for improving the running time over the

simple linear case (Kibriya and Frank, 2007).

k-NN has a significant and desirable consistency property. For sufficiently large training
set size p, and for kK = 1 the error rate of the k-NN classifier will not exceed twice the
Bayes error rate, the optimal theoretical possible error rate (Milan et al., 2007). Moreover
it is shown in Devroye et al. (1994) that if:

k,p — oo, while lim k/p— 0 and i lim k/logp — o0 (2.25)

k—o00,p—o0 —00,p—00

then the k-NN’s error rate optimally converges to the Bayes error rate.

2.2.3 Support Vector Machine

Support Vector Machine (SVM) (Cortes and Vapnik, 1995) is a non-probabilistic binary
linear classifier. Given a training set of observations, the SVM classifier builds a model
which is then used to predict for a given test observation to which of the possible two

output classes, C1 or C_1, it belongs.
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Figure 2.3: Illustration of separating and non-separating hyperplanes.
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SVM classifier model represents observations as points in R™. If the classes are linearly
separable then usually there are many (n-1)-dimensional hyperplanes that can separate
the data so that each of the resulting half spaces contains observations of only the same
type of class. In Figure 2.3 (inspired by Cyc (2008), public domain), H1 and H2 are
two possible hyperplanes linearly separating the two different classes, while H3 does not

linearly separate the two classes:

SVM aims at finding the hyperplane which has the maximum distance to the closest
observations in both classes. Provided that such a hyperplane exists, it is referred to as
the maximum-margin hyperplane and can be used to define a linear classifier known as
the “maximum margin classifier”. The observations which are closest to the separating
hyperplane in both classes are referred to as the “support vectors”. Test observations are
then classified to belong to a class based on which side of the hyperplane they map to as
illustrated in Figure 2.4 (taken from Buch (2011), public domain).
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Figure 2.4: Illustration of the margins (dashed lines) and the optimal mazimum margin hyperplane

(solid line). The observations located on the margins are the support vectors.
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The SVM methodology can be extended to handle data that is not fully linearly separable.
Referred to as “soft margin SVM”, this extension of SVM introduces the “slack” or “soft
margin” parameter i which allows for the presence of observations on the incorrect side of
the margin boundary and enables trade-off between establishing the optimal margin and

minimal occurrence of misclassifications.

SVM can also efficiently perform classification of non-linearly separable data. By using
a technique known as the “kernel trick”, SVM implicitly maps observations into feature
spaces with higher dimensionality. The “kernel trick” becomes useful if the observations,
being linearly inseparable in the original lower dimensionality space, are separable in a

higher dimensionality feature space given a proper mapping.
For example, data which is linearly inseparable in the two dimensional space can be-

come linearly separable in the three-dimensional space given the mapping ¢(z1,z2) =

(1,2, |x1| + |r2|) as demonstrated in the Figure 2.5:
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Figure 2.5: Illustration of a mapping transforming data that is linearly inseparable in the two

dimensional space to linearly separable data in the three-dimensional space.
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To classify or perform regression using SVM on linearly inseparable data, it is initially
required to decide upon a kernel which is expected to map the linearly inseparable data
into an alternative feature space where it is possible to linearly separate the mapped
data. Unfortunately, there is no method to perform this automatically, therefore finding
a suitable kernel requires priori or domain specific knowledge to be applied, and usually
evaluation and optimization by empirical methods such as trial and error. Examples of
common kernels are the Polynomial kernel, Sigmoid kernel, and the Gaussian Radial Basis
kernel (Lin and Lin, 2003; Fletcher, 2009; Milan et al., 2007).

In practice, the kernel functions used for implicitly mapping the inputs are based entirely
on the inner products of vector pairs. Therefore, there is no need to explicitly define
or calculate the mapping but only explicitly define the new inner product on the higher
dimensionally mapped input observations. This has significant practical impact on low-
ering the computational complexity of classification using kernel methods. However it is
important to remember that the resulting accuracy of the SVM classifier is determined by

the selected kernel and its parameters, and the soft margin parameter 7.

A drawback of the SVM is that it is only directly applicable for binary classification
problems. Hence, multi-class classification is only achievable by using procedures that
reduce the multi-class problem into a number of binary problems such as the one-versus-
all (OVA) (Milan et al., 2007), one-versus-one max-wins voting (Duan and Keerthi, 2005),
large margin DAGs (Platt et al., 2000), error correcting output codes (Dietterich and
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Bakiri, 1995), pair wise coupling (Hastie and Tibshirani, 1998) and others.

The mathematics for calculating the maximal margin hyperplane are somewhat lengthy
therefore they are not brought here, full details are given in Cortes and Vapnik (1995),
Burges (1998) and Milan et al. (2007).

2.2.4 Random Forest

The Random Forest (RF) is an ensemble predictor which yields the mode voting outcome
of a large number of randomly built classification trees (Breiman, 2001; Ho, 1995). RF
can classify observations of an arbitrary dimensionality whether numerical or categorical.
RF is an ensemble of weak learners suitable for solving both classification and regression

tasks. In RF, the weak learners are implemented by a decision tree (CART).

Assuming the global training data set is comprised of M observations each of dimension-

ality N. The P trees in the RF are constructed according to the following guidelines:

1. For each a new tree pjpew, randomly select with replacement M observations from

the training data set to be used as training data for ppeq.

2. For each node of ppew, randomly select n components (feature variables) (n < N)
which are to be the decision variables at that node. The value of n is constant in

the course of the forest growing.

3. For each node of pyeq, determine the optimal split depending on its n components

in the training set randomly selected in step 1.

4. The tree is grown as large as possible, no pruning is performed.

To classify using RF, the test observation is pushed down all the trees. Each tree outputs
the class label of the training observation corresponding to the leaf the test sample ends
up in. the final prediction of the RF ensemble is the unweighted mode vote of all the trees

comprising the forest.
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Figure 2.6: Illustration of over-fitting of a Random Forest classifier model.

(a)

RF has been recognized to give superior results both in direct comparisons to other clas-
sification methods and in many practical applications (Caruana et al., 2008; Meyer et al.,
2003; Verikas et al., 2011; Caruana and Niculescu-Mizil, 2006). In addition, RF has many
other advantages such as consistent accuracy for data of varied dimensionality (Caruana
et al., 2008); it requires no calibration and in many cases presents optimal out-of-the-
box performance (Caruana and Niculescu-Mizil, 2006); it has a single parameter - n, the
number of random components used as decision variables at the nodes; RF is capable of
splitting the feature space into a number of subspaces each affiliated with a different class,
whilst this may be an advantage with certain types of data, in other cases it results in
over-fitting to the training data and therefore poor generalization (Segal, 2004). Figure
2.6 (taken from Ronhjones (2012) and Headlessplatter (2011), public domain) illustrates
over-fitting of an RF model, Figure 2.6 (a) visualizes a dataset containing 200 observations
(100 green and 100 red). Both green and red points were randomly generated having a
Gaussian distribution with circular variance of 1 unit. The mean for the green points is
(0,1), and the mean for the red points is (1,0). A RF consisting of 50 trees was trained
on this data. Figure 2.6 (b) illustrates the feature space representation of an RF model
for this dataset where the purity of the colour indicates the portion of the 50 trees that
voted in agreement. It is observed that due to over-fitting, each of the classes is repre-
sented in the feature space by a set of smaller disjoint subspaces. In contrast, Figure 2.6
(c) illustrates the feature space representation of a logistic regression model for the same

dataset.

The error rate of RF depends on the correlation between any two trees in the forest and
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the accuracy of each tree in the forest (Breiman, 2001). Higher correlation between the
trees increases the error rate of the RF. Moreover, increasing the accuracy of the individual
trees decreases overall error rate of RF. Unfortunately the parameter n generates a trade-
off between the low correlation and the accuracy of the individual trees. Decreasing n
decreases both the correlation and the accuracy of the individual trees, and in contrast,
increasing n increases both. Fortunately, the optimal n lies within a reasonably sized

range and is relatively easy to determine (Breiman and Cutler, 2012).

To help achieve low correlation, randomization is applied in the selection of components
used as decision variables at the nodes. To obtain low bias the trees are grown to full
depth (no pruning). However Segal (2004) has determined that limiting the depth of the

trees decreases over-fitting.

2.2.5 Artificial Neural Network

Artificial Neural Network (ANN) decision models typically involve an interconnected net-
work of basic processing elements (also referred to as neurons). ANNs achieve advanced
decision making capabilities by defining an evolving connection patterns between the dif-
ferent neurons and the individual parameters of single neurons. Typically, ANNs take
advantage of algorithms that modify the connections (referred to as synaptic weights)
in the network to produce a desired signal flow thus creating an adaptive system that
effectively changes its organization during a training (learning) phase. ANNs are used
for myriad of applications that involve classification (Zhang, 2000), regression analysis,
pattern recognition in data and modeling intricate relations between inputs and outputs.
A detailed introduction to this subject is given in Haykin (1999).

Training an ANN is performed by selecting one configuration for the model from the set
of allowed configurations that minimizes an arbitrary previously defined cost function.
For classification purposes ANNs are typically trained by a supervised learning procedure
where the cost function reflects the mismatch between the known data to class mapping
and the ANNs output therefore implicitly assuming and utilizing prior knowledge about

the problem domain.

Being a data driven self-adaptive method, the usefulness of ANN models manifest in the
ability of the ANN to infer a function from a given set of inputs without requiring any
explicit specification of the underlying function or distribution. This property is useful
primarily for the inference of a function where the data or task is so complex that the

explicit manual design of such function is unfeasible. Moreover, ANNs are capable of
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approximating any linear or non-linear function with arbitrary accuracy (Devijver and

Kittler, 1982) which makes them effective in modeling real world complex relations.

On the other hand, ANNs suffer from a number of significant and critical disadvantages
(Haykin, 1999; Mehta and Kaur, 2013). The first disadvantage is the complexity of design-
ing an optimal ANN for solving most real life learning and classification problems. This is
due to the many different ANN heuristics available and for the infinite number of possible
models that may be defined. Moreover, ANNs come at a very significant computational
complexity when dealing with real-world problem sets. Furthermore, the model parame-
ters that are ultimately selected by the learning algorithm often have no direct physical
meaning to the data and the resulting tables are very hard to understand and to interpret
by humans. And finally, ANN requires large amounts of training observations to perform
effective classification (Haykin, 1999; Mehta and Kaur, 2013).

ANNSs have been broadly used in various applications to document analysis and character
recognition (Cybenko, 1989). However according to Cybenko (1989), various experiments
exhibit critical issues of accuracy and of computational complexity when dealing with
real-world problem sets. Given the amount of time available for completion of this thesis,
the difficulties in designing successful ANN and the potential performance issues it was

decided to not evaluate the recognition accuracy of ANNs as part of this thesis.

2.3 Print-Scan Channel Model and Training Data

Following the discussion of the features and classifiers, the next task is to consider the
effects of the printing-and-scanning process on recognition. This printing-and-scanning
process will be referred to as the “Print-Scan Channel” and is occurring outside of the
domain of the system, being performed usually by a human user with access to printed
copies of the original document. Moreover, it is possible that the document has been
printed and scanned multiple times before being presented for verification. Hence there
are many unknown factors which affect the properties of the Print-Scan Channel and
therefore the final channel’s output (e.g. the scanned document image which is presented
for verification). The printing and scanning process results in local and global degradations
and transformations such as thinning, thickening, translation, skew and rotation. These
can be thought of as transformed and noisy variations from the ideal image representation
of the document and obviously have a major impact on the shape, location and orientation
of the characters in the printed and scanned document image. These degradations and

transformations are caused by a myriad of physical factors which affect the final image
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appearance of the print-scan process. Some of the most significant factors are (Baird,
2000; Lins, 2009):

e Paper positioning due to manual placement of papers in scanners.
e Non-uniform illumination induced by defects in design and production.

e Blurring or defocusing caused by the optical components and by mechanical vibra-
tions caused by movement of parts in the printers and scanners, and by uniform or

non-uniform movement of the paper in the printer and scanners.

e Finite and discrete spatial and brightness sampling rate, and quantization errors

inherent to current electronic equipment.
e Poor print brightness fidelity such as low or high contrast and brightness offset.

e The unique qualitative properties of the different types of printing and scanning

equipment such as differences between makes and models.

e The paper’s type and quality resulting from usage of different raw materials and

production procedures.
e Document wear and tear.

e The number of concurrent prints-and-scans which results in accumulated degrada-

tion.

The large number of factors and their possible different varying relative impact means
that theoretically no two Print-Scan Channels are identical. As a quick and intuitive
illustration to the randomness of the channel consider the randomness of the paper’s
texture as it is determined by the composition of many cellulose fibers of different sizes
and directionality with over 10,000 physical and chemical parameters (Deng and Dodson,
1994). Interestingly, the randomness of paper’s texture is used in Fournel et al. (2007) as
a random number generator for creating a random encryption key. The paper’s texture in
turn affects the way the ink is immersed and spreads onto the paper, or the way in which
toner particles attach to the paper (Zhu et al., 2003), which results in slightly different

degradations on each sheet of paper.
To conclude, the Print-Scan Channel is a highly complex stochastic process capable of

producing a broad range of degradations depending on many physical and user (human)

related factors.
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2.3.1 Modeling Degradation for Classifier Training

As discussed in the following Chapters, verification will be performed by using a classifier
on the features to recognize characters. Thus it becomes important to be able to provide
a reasonable prediction of what the characters may look like after some degrading, and
use such degraded symbols as the training data provided to the classifier. Without this,
classifier accuracy will suffer since the classifier would be represented by ideal characters,
which are already known to not exist in the scanned image. Moreover according to Baird
(2000); Zi and Doermann (2004); Cheriet and Moghaddam (2008), there is strong evidence
that larger training sets which are well balanced with respect to the number of observa-
tions for each of the different classes, and in addition, are also well distributed in respect
to covering the range of expected variations in the test data contribute significantly to
improving classification accuracy. Therefore there is valid justification to use a training

set as large as is useful to achieve optimal accuracy.

Real and Synthetic Training Data The most straightforward method of generating
accurate training data to train the classifier is to manually scan a large number of doc-
uments, segment and extract the character images and ground truth them. It has also
been determined, according to Baird (2000); Rice et al. (1992), that for optimal accuracy,
the training sets used should be as real and close to the test data as possible. However
generating large amounts of training data by such a manual process requires a great deal
of labor in producing the documents, printing and scanning them, and labeling tens of
thousands of images. In addition, only a limited range of printers and scanners could
reasonably be used to create this data. This implies a limited fidelity of the generated
training data to real-world situations, in which any arbitrary combination of printers and
scanners may be used. Moreover, performing changes and adaptations to the training data
would require a repeat of the manual generation process, either entirely or partially. In
the long term this would be prohibitively expensive and tend to discourage extending or

enhancing the system, such as adding support for new font typefaces.

An alternative to the collection of such “real” training data is the generation of synthetic
training data that would be used to train the classifier. Generation of synthetic training
data is usually performed by following a model which is aimed at mimicking the degrada-
tions caused by the Print-Scan Channel so that the end result would appear to be similar
to training data observations collected from real scans of documents. Once the model is
implemented, generation of additional training data is done at almost no additional cost.
This allows generation of training sets which are orders of magnitude larger than manually

generated training sets. An additional benefit is that the labeling and formatting of the
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output data is done automatically.

Use of Synthetic Only Training Data An important disadvantage of using model-
based training data to train the classifier is that the synthetic model is an approximated
generalized version of reality and so does not necessarily reflect what real training data
obtained from actual scans would produce. Furthermore, it is very hard to accurately
model all the factors causing the different transformations, degradation and effects of the
Print-Scan Channel. The difficulty arises due to the extremely large number of factors
and their variations. Therefore, there is no guarantee of the accuracy and relevance of
the generated training data for accurately assisting with the classification of real-world
observations. However, given the findings in the literature (Baird, 2000; Nonnemaker and
Baird, 2009) that large amounts of reasonably-modeled synthetic data generally outper-
forms smaller amounts of real data, and the fact that synthetic models for the Print-Scan
Channel exist and have been experimentally verified, it was considered more worthwhile
to investigate the approach of synthetic model based training data first and determine
its validity by testing and measuring the accuracy of the predictions given by different

classifiers trained with such synthetic data.

2.3.2 Literature Review of Suggested Degradation Models

Despite the usefulness of document image degradation models and the explicit or implicit
use of such models over the last six decades by many OCR systems, only two such models
have been suggested prior to the year 2000 (Kanungo et al., 2000, 1993; Baird, 1995) and
a few more since (Zi and Doermann, 2004; Moghaddam and Cheriet, 2009; Pezeshk and
Tutwiler, 2010). According to Baird (2000), document degradation models are based on
two different methodologies. The first approach is physics-based and is based on imitating
the physical mechanisms involved in producing the final document image as it is degraded
by the Print-Scan Channel. The accuracy and relevance of these models are explained by
referring to the physics involved with the print scan process. Example of a physics-based
model is given in Baird (1995). The second approach is appearance based. These models
aim to be as simple as possible while keeping the appearance of the output generated
by the Print-Scan Channel and do not intend to be physically accurate. These models’
accuracy and relevancy is explained only by statistical analysis (Baird, 1995), an example

of such model is found in Kanungo et al. (1993).

Baird (1995) suggested a physical-based document degradation model that by applying

sequentially a small number of simple and parameterized per-symbol and per-pixel trans-
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formations models the defects and degradations caused by the Print-Scan Channel. This
model has the advantage of relying on modeling of physical phenomena to justify its va-
lidity and being comprised of straightforward parameters, however it has the drawback of
not being readily applicable to an entire image, and therefore it is mainly used to process
single character images. Also it is important to stress that the Baird (1995) model suffers
from the drawback of being purely symbol-based and therefore not accounting for defor-
mations caused due to joining of characters, or any other degradations which are present

at the document level.

Kanungo et al. (1993) has suggested a model capable of modeling both global and local
degradations such as perspective distortion (global), non-linear illumination (global), non-
linear optical point spread function (local) and a probability-based morphological model
for local degradation of characters. In contrast to Baird (1995), this model is applicable
to an entire image and may be used to model the degradation of entire image or part of.
However the local degradations are morphological and probability-based and therefore it

is harder to justify its validity.

Zi and Doermann (2004) suggested using custom print drivers to render ground truth
TIFF images of documents and applying the model suggested in Kanungo et al. (1993) for
pixel level degradation. For generating page level degradation, Zi and Doermann (2004)
use noise templates extracted from the background of real scanned images and merge them
with the ideal image. This model has the same advantages and drawbacks as Kanungo
et al. (1993), however in addition it also suffers from justifying the use of real scans for
noise templates as being applicable to all scenarios as the noise signature depends on the

particular equipment, settings, paper type and other factors.

In addition to the aforementioned general degradation models, two more specialized degra-
dation models have been suggested to address specific recognition needs. Moghaddam and
Cheriet (2009) addresses the defects generated due to aging and ink seepage for the pur-
pose of restoration of bleed-through corruption in double-sided document images. Pezeshk
and Tutwiler (2010) extends the model defined in Baird (1995) to mimic the various arti-
facts and degradations typical in characters extracted from maps. These models are highly

specialized and therefore are not applicable to the research of this thesis.

In the following Section the physical-based degradation model suggested by Baird (2000)

is now discussed in more detail.
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Degradation Model Suggested In Baird (2000) The Print-Scan Channel modeling
suggested in Baird (2000) generates synthetic training data according to the physical-based
document degradation model defined in Baird (1995). It models defects and degradations
by applying sequentially a small number of simple and parameterized per-symbol and per-
pixel transformations. The transformations set applied in the model include (Baird, 1995,
2000):

e size: output size in points (point = 1/72 of an inch).

e resn: output spatial sampling rate (pixels/inch).

e skew: rotation in degrees.

e xscl, yscl: linear scale factors for the horizontal and vertical axes respectively.
e xoff, wyoff: linear translation offsets in units of output pixels.

e kern: offsets the horizontal placement of the high resolution image relative to the
down sampling grid, in units of output pixel size. This slightly changes the locations

of the “pixel sensor” centers and mitigates systematic resampling effects.

e jitt: jitter, the distribution of pixel sensor centers locations from the ideal square
grid in units of output pixels. Jitter is modeled by randomly generating for each
“pixel sensor” a two-dimensional vector representing its location offset from the ideal

square grid.

e blur: defocusing by a circularly symmetric Gaussian point spread function with
a standard deviation measured in units of output pixel size. The Gaussian point

spread function is centered at the “pixel sensor” center.
e ssnw: symbol sensitivity, intensity offset for the entire symbol in units of intensity.

e psnw: per-pixel sensitivity, the distribution of per pixel additive noise in units of

intensity.

e thrs: binarization threshold in units of intensity where 0 represents white and 1

represents black.

For each modeled character, the values of the parameters of the above transformations are
either constant or re-chosen pseudo-randomly from a uniformly or normally distributed

population with predetermined mean and variance values.
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The values of the parameters to all the transformations above, except for jitt and psnv,
are selected for to the entire symbol. jitt and psnv are per-pixel transformations and their
parameters control the randomization of each pixel value. Therefore, the entire symbol
transformations can be controlled directly by providing a constant value, however the
effects of the per-pixel transformations can only be controlled indirectly, an important

issue in parameter estimation.

2.4 Document Verification Systems

Authentication and verification of digital documents is performed by two main approaches:
digital signatures and watermarking (Ming et al., 2007) which do not adapt well to printed
documents due to the noisy nature of the Print-Scan Channel. The geometric transfor-
mations and added noise that are part of the printing and scanning process ultimately
do not allow the authentication of printed and scanned documents by pure mathematical
comparison to the digital document or its digest as is the case with digital signatures.
Consequently, the content perceived in the document image is the only reasonable basis
that may be used for automated verification of Print-Scan degraded documents. Thus the
following Sections will discuss two different content-based methods that were suggested
for verification and authentication of document images contents; an OCR-based hashing

approach by Vinicius et al. (2007) and a symbol-clustering approach by Ming et al. (2007).

2.4.1 OCR Hashing

Vinicius et al. (2007) suggested a content-based authentication and verification method
in which a binary hash value is calculated as a function of the binary representation of
the original text string (the text in the verified document) and a key that depends on the
string itself. The binary hash has the same length as the original text string, and it is

embedded in the document itself by modulating the characters’ luminance.

To verify a printed document copy, OCR is applied to the document image and in addition
the average luminance of each character is determined. The hash calculation process is
repeated for the output from the OCR and the observed characters luminance, and if any

discrepancies are found a document is rejected.

According to the authors, this approach delivers a number of key benefits. First, the

verification does not require retrieval of information from an external database as the ver-
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ification information is completely contained in the document itself. Moreover, it is difficult
to forge the authentication process which provides a high level of security and confidence.

Finally, the approach can be applied to both the digital and printed documents.

Despite the aforementioned advantages, this method has three significant shortcomings.
First it is assumed that no OCR errors occur as any OCR, error would change the resulting
hash value for the document image. Unfortunately, despite being thoroughly researched
for a number of decades, general OCR is typically unable to provide recognition accuracy
of over 99% in good quality low noise modern document images (Rice et al., 1995; Rose,
2009). While 99% accuracy may be acceptable for many character recognition applications
it is not accurate enough for the purpose of verification. For example, consider that an
average page contains roughly 2000 characters, an error rate of 0.5% means 10 errors per
page and therefore in practice this method would likely reject almost 100% of documents.
Also it is important to note that 99% accuracy is achieved by commercial general OCR
systems only in quality scanned low noise document images, with much lower accuracy

usually achieved in highly degraded document images.

Moreover, OCR systems are generally black box type systems that do not offer extensive
configuration options and do not reveal the fine segmentation and accurate layout details,

information which is required for accurate verification.

Finally, since only the global hash value calculated from all of the characters recognized in
the document image is compared to the embedded recognized hash, only global rejection is

determined without any information suggesting where the changes were detected locally.

2.4.2 Symbol Clustering

Ming et al. (2007) suggested a content-based method which considers the shapes of different
symbols that may appear in the document and does not rely on a particular character set
as most OCR systems often do. In the proposed method, symbols in a binary document
are partitioned into classes based on the results of k-means clustering in the feature space.
Each class is then assigned a different label. The sequence of symbols in the document
is then mapped to produce an ordered sequence of labels and the position of the first
occurrence of the symbol label on the document is recorded for each cluster. The ordered
sequence of labels and a secret key is then input into a cryptographic hash function to
produce a hash value. The hash value and the positions of the first occurrences of character
classes are joined to produce a digital signature. The computed signature is suggested to

be embedded on a printed hardcopy document in the form of a bar code.
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To perform verification of the document image the following steps are performed (assuming

symbols from the document image are properly segmented):

e Features are calculated for the symbols segmented from the document image.

e The feature values of the symbols having locations agreeing with the pre-stored
positions contained in the digital signature are used as initial mean starting points

in the feature space for the k-means algorithm.

e Recognition and labeling of the symbols recognized in the document image is per-

formed based on the k-means clustering in the feature space.

e An ordered label sequence is formed from the labeled symbols in the document image
and compute a hash value is computed from the label sequence. The calculation of
the hash value from the document image is performed using the same cryptographic
hash function and secret key as was used to generate the digital signature of the

original document.

e The computed hash value is compared to the expected hash value encoded in the

digital signature and the document is rejected in case of any discrepancy.

Using this method, Ming et al. (2007) suggest that it is possible to detect any intentional
tampering, while at the same time achieve robustness to a moderate amount of Print-Scan
Channel induced noise. However, their method has a number of significant drawbacks,

including major security vulnerability.

The most prominent shortcoming of the method suggested in Ming et al. (2007) is a
security flaw which allows an attacker to replace all of the occurrences of an existing
character in the document with another non-existing character without being detected.
This is possible since the first occurrence for each symbol class is noted as the starting mean
for the k-means clustering and therefore as long as all of the following occurrences of the
replaced symbol are consistent the document would be successfully verified. Consider the
following example, an attacker replaces all occurrences the number ‘0’ in “1,000,000” with
the number ‘9’ which results in the number “1,999,999” when verification is performed the
features of the leftmost number ‘9’ would be taken as the starting point for the k-means
algorithm. Therefore, all of the following ‘9" would have the same label and the document

would be successfully verified.

Moreover, Ming et al. (2007) also ignores other known characteristic Print-Scan Channel
phenomenon such as the joining of characters (see Section 5.1.4) which requires segmenta-

tion (decomposition of a document image into sub images of individual characters) logic
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to solve. Unfortunately, in commercial OCR systems, segmentation is known to be in-
correct often enough to contribute substantially to the error rate of the system. In fact,
according to Casey and Lecolinet (1996), even when ideal noise free patterns were input

to commercial OCR systems, spacing errors alone averaged a 0.5% error rate.

In addition, although the overall concept suggested by Ming et al. (2007) is an interesting
bootstrap method of using the scanned characters population itself for the clustering,
it is difficult to guarantee that the degraded characters will cluster naturally together.
Furthermore if the first occurrence for some symbol class is degraded in a way which does
not change its perceived appearance but changes the features sufficiently from the rest of
its class it could cause a chain reaction of errors throughout the entire document as these
key characters are the starting mean points for the k-means clustering during document

verification.

And finally, in a similar manner to Vinicius et al. (2007), only global rejection is determined

without any information suggesting where the changes were detected locally.

2.5 Text Document Character Segmentation

Most OCR systems work relatively well in mildly noisy modern documents images. How-
ever, OCR in low-quality or degraded documents images is more challenging due to the
high frequency of broken and joined character occurrences (Droettboom, 2003). Joined
and broken characters contribute substantially to classification errors and therefore must
be dealt with in order to obtain high accuracy (Casey and Lecolinet, 1996). In the follow-
ing discussion, the process of decomposing a document image into sub images of individual

characters shall generally be referred to as “segmentation”.

Ultimately, segmentation can be viewed as a process that decides whether a sub image
isolated from the document image is that of a complete single character. As with any
decision making process, segmentation can be correct or incorrect. Unfortunately, in com-
mercial OCR systems, it is known to be incorrect often enough to contribute substantially

to the error rate of the system (Casey and Lecolinet, 1996).

Being such a critical step of the recognition process, character segmentation methods have
been researched extensively over the past decades. Unfortunately, as the large number of
suggested methods imply, the segmentation of a document image into separate characters

is not a trivial task when no prior information is available about the contents of the
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document.

Achieving error-free segmentation with no prior information about the document’s con-
tents is still an unresolved problem. In cases where the document layout is not constrained
and when no prior information about the content of the document such as font types and
layout is available, all existing document segmentation techniques rely on statistical anal-
ysis of patterns in the document in attempt to segment it into paragraphs, sentences and
ultimately characters. Such statistical segmentation methods often tend to fail more in
the presence of high levels of noise since the corruption changes the shape of the charac-
ters and moreover increases the occurrences of joined characters in the document image

as discussed in Section 5.1.

Many simple and advanced document segmentation methods were suggested in the litera-
ture for specific applications where some constraints are assumed on the content, and also
for the case where no information is known about the document and there are no restric-
tions on the content. The interested reader is referred to Casey and Lecolinet (1996) as a

starting point to explore this large subject.

Given that pure statistical segmentation methods are not utilizing prior document knowl-
edge they are not ideal to use as part of this work, considering that such information is
explicitly available. In Section 5.2.5 a new segmentation method is proposed that utilizes
such prior information about the content of the verified document in order to perform
highly accurate segmentation when the document image content is in agreement with the
expected contents. And on the other hand, it is designed that it would fail when the
content has been tampered with, thus increasing the chance of detecting tampering in the

verified text document.

2.6 Summary

In this Chapter an overview was given of the different methods and concepts related to
this thesis. The subjects discussed were shape descriptors, classifiers, document image
degradation models, related suggested verification systems and text documents segmen-
tation. In the next Chapter an overview of the proposed framework for robust document

image verification is presented.

51



Chapter 3

Document Verification Framework

This Chapter presents an overview of the proposed framework for robust document image
verification. The objective of the system is to analyze scanned documents and verify that
they have not been tampered with in comparison to the original digital documents. To
achieve this objective, the system analyzes the original digital documents stored in the
popular PDF format to extract descriptive information which is stored and used in the
document image verification stage. This information is refered to by the term “Document
Description Map”, or in short by the acronym “DDM?”. The proposed approach for robust
and accurate verification is to use an adaptive character recognition and segmentation
algorithm which would optimize the classifier’s scope by considering only the relevant
information for each document or document part. In Section 5.2.4.1 the term “scope of
classifier” is defined, along with presentation of the inherent benefits to adapting the scope
of the classifier as a method to increase accuracy. Moreover it is demonstrated that by
considering the DDM for the purpose of segmentation and for the purpose of narrowing the
scope of the classifier (e.g. only relevant fonts) combined with adequate feature extraction,
classification and training, much higher accuracy is achieved in comparison to current
state-of-the-art OCR systems.

The automated document verification process is comprised of three main components as

enumerated below and shown in figure 3.1:
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Figure 3.1: Owerview of the main process flow for the document verification system proposed in
this thesis.
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1. The Document Analysis Component performs analysis and summarization of the
original digital document contents. It extracts the location and font type (typeface
family and size) of each character in the digital PDF document. In addition, this
thesis simplifies image registration via embedding graphics landmarks in the docu-
ment’s corners (see Section 3.3.2), and their locations are noted by the system and
stored as part of the DDM. This information comprise the DDM of that document
and is stored for later retrieval and reference in the verification stage where it as-
sists with the estimation and correction of global transforms due to the Print-Scan
Channel degradation, classification, segmentation and comparison of the scanned

document image to the original digital document.

2. The Print-Scan Channel Modeling Component generates synthetic training data to
emulate the effect of the printing and scanning process on characters using the doc-
ument degradation model defined in Baird (1995). This model-generated synthetic
data is used to train a classifier for the particular character sets referenced by the

DDM for use in the next stage.

3. The Document Image Verification Component performs the verification of the scanned

document images by segmenting document characters and classifying them accord-
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ing to the synthetically-trained classifier. The classified characters in the document

image are verified against the DDM and any discrepancies are identified.

3.1 Document Analysis Component

The digital document analysis process is comprised of the following principle steps:

1. Read in the document in its digital form (currently supporting PDF documents)
and perform extraction of the bounding box and font type for each character in the

document.

2. Generating the DDM from the information gathered and storing it for later retrieval

by verifying clients.

3.1.1 Extracting Document Content Information

The bounding box coordinates of each character are extracted from the PDF file in PDF
coordinates. The origin of the PDF coordinate space is by default in the bottom left
corner of the document. The vertical and horizontal axes grow by default in the up and
right direction respectively. The units in the PDF space are referred to as “points” and
are equal to 1/72 of an inch, traditionally considered to be a standard measure in print
applications. More information on the PDF coordinate system is available in the official
PDF reference (Adobe Systems, 2009).

However, since the verification step will be performed on a scanned image of the document,
it is necessary to be able to convert PDF coordinates to document image pixel coordinates.
Fortunately this is a simple computation as long as the image scan dots-per-inch (DPI) is

provided:

Pdfay
72

where pizel,, is the image coordinates, pdf;, is the pdf coordinates and dpi is the scanned

X dpi (3.1)

pizelyy =

image DPI, typically 300 DPI for good-quality scans.

Extracting and storing each character’s bounding box location in PDF coordinates allows
the system to support different scan resolutions. In the current system implementation
only 300 DPI scanned images are supported, however nothing prevents it from supporting

different scan resolutions in the future.
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The font type of each character is recorded for the purpose of assisting with segmentation
and for adapting the scope of the classifier later in the verification stage. More details
on this subject are given in Section 5.2. When performing verification the system queries
the DDM for the expected characters’ font type and dynamically changes the classifier’s

decision model in respect to the expected fonts.

3.1.2 Document Identification, DDM Storage and Retrieval

In the current implementation the DDM is stored locally on the verifying machine and
its location and document ID is provided manually to the verifying client. However, it
is possible to compress, encrypt, digitally sign and embed on the document (e.g. in the
form of a 2-D barcode) the DDM as a whole. An alternative approach is to encode in
the barcode a key which uniquely identifies the original document, or a URI identifying a
network resource from which the DDM may be retrieved. This procedure would provide
a secure and convenient means of embedding information on the document which could
then be used by the system to identify the base document for comparison. However, such
a storage mechanism would use existing well-known methods and so was not chosen to be

included in the scope of this research thesis.

3.2 Print-Scan Channel Modeling Component

Once knowledge of the DDM for a particular document is obtained and stored, the goal of
the overall system is to later accept a digital scan image of that document and verify that
the contents match the original document (as encoded in the DDM). In between these
two stages, the document would have been printed and scanned back in, possibly multiple

times.

The printing and scanning process results in local and global degradations and transforma-
tions such as thinning, thickening, translation, skew and rotation. These can be thought of
as transformed and noisy variations from the ideal image representation of the document
and obviously have a major impact on the shape, location and orientation of the charac-
ters in the printed and scanned document image. These degradations and transformations
are caused by a myriad of physical factors which affect the final image outcome of the

print-scan process (see Section 2.3).

Since verification will be performed by using a classifier (see Sections 2.2 and 5.2.4) on the
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features discussed in Section 5.2.4.2 to recognize characters, it thus becomes important to
be able to provide a reasonable prediction of what the characters may look like after some
degrading, and use such degraded symbols as the training data provided to the classifier.
Without this, classifier accuracy will suffer since the classifier would be represented by
ideal characters, which are already known do not exist in the scanned image. Moreover
according to Baird (2000) Zi and Doermann (2004) Cheriet and Moghaddam (2008), there
is strong evidence that larger training sets which are well balanced in respect to the number
of observations for each of the different classes, and in addition, are also well distributed in
respect to covering the range of expected variations in the test data contribute significantly
to improving classification accuracy. Therefore there is valid justification to use a training

set as large as is useful to achieve optimal accuracy.

The most straightforward method of generating accurate training data to train the classi-
fier is to manually scan a large number of documents, segment and extract the character
images and ground truth them. However as discussed in Section 2.3.1 generating large
amounts of training data by such a manual process suffers from many shortcomings. An
alternative to the collection of such “real” training data is the generation of synthetic

training data that would be used to train the classifier (see Section 2.3.2).

The Print-Scan Channel Modeling Component implemented in the system proposed by
this thesis generates synthetic training data according to the document degradation model
defined in Baird (1995). This synthetic data is used to train the classifier. In subsequent
Chapters it is shown that classifying accuracy improves substantially when training the
classifier with a training set that is comprised of synthetic character variations as opposed
to training only on the ideal noise free characters. The generation of synthetic training
data occurs once for each font type since the artifacts of this component can be stored

and recycled for reoccurring use.

3.3 Document Image Verification Component

The process of verifying scanned documents images is comprised of the following principle

steps:

1. Identifying the document and retrieving the relevant DDM information which was

extracted from the original digital document.

2. Correction of transformations caused by the printing and scanning process.
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3. Binarization of the document.
4. Extraction of connected components (connected components labeling).

5. An iterative process of analysis of the connected components which includes classi-
fication, further segmentation, and comparison with the information extracted from
the digital document (DDM). Based on the analysis performed at this stage a deci-

sion is made if the document has been tampered with or not.

3.3.1 Identifying the Document

In order to verify a presented document image it is required first to determine which
document is the relevant basis for comparison. Possible methods that could allow the
system to perform this have already been covered in Section 3.1.2, ranging from manually

identifying the document to embedded barcodes.

3.3.2 Estimation and Correction of Transformations

Following the determination of a particular document as the ground basis for comparison
a correction of the major transformations caused by the printing and scanning process
is performed next. This is necessary since the printing and scanning process generates
local and global degradations and transformations such as thinning, thickening, trans-
lation, skew and rotation. These can be thought of as variations from the ideal image
representation of the document and obviously have a major impact on the shape, loca-
tion and orientation of the characters in the printed and scanned document image. These
degradations and transformations are caused by a myriad of physical factors which affect
the final image outcome of the Print-Scan Process (as discussed in Section 2.3). In this
thesis the approach is to focus on estimating a small but critical subset of the aforemen-
tioned degradation factors and considering the others as part of the general noise caused
by the Print-Scan Channel. In particular the following linear conformal transformations

are estimated and corrected: translation, scale, and rotation.
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Figure 3.2: Illustration of registration landmarks embedded in a text document

o o

CNN -- On this week's Tech Check podcast, Doug Gross, Stephanie Goldberg and Mark
Milian discuss a federal agency's proposal that all use of mobile phones while driving be
made illegal.

Most folks seem to agree that a law against using your hands behind the wheel -- whether
texting or holding the phone up to your ear -- might not be such a bad thing. But they go
further, saying Congress should make it illegal to use your phone as a mapping system or
even talk with a hands-free device.

o o

Translation and scale changes the location and bounding boxes of the characters in the
document and therefore would lead to mistakes in verifying the location of the characters
in the document image against the information provided in the DDM and therefore must
be estimated and corrected. Another reason for estimating and correcting any scaling
and translation is that the locations of the characters are also used to assist in accurate
and robust segmentation of the document image into characters. Rotation must also be
estimated and corrected before extracting features from the symbols in the scanned doc-
ument image since the shape description features used in this framework are not rotation

invariant.

Accurate image registration is required by the segmentation algorithm and for verifying
the perceived symbols in the document by matching against the original digital document
contents. In the current implementation, specifically designated graphic symbols are em-
bedded on the document (typically at the corners of the document, but not necessarily
so) to assist with the estimation and correction of the global document transformations
scale, rotation and translation. The locations and shape(s) of these embedded designated
graphic symbols may be unique for each document and as such they may be stored as
part of the DDM. Figure 3.2 shows an example of a text document embedded with the

registration assisting symbols.
This approach was chosen since it is simple and accurate and allows the thesis to focus
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on developing the methods required for content-based verification. Nonetheless, image
registration can be performed by a number of alternative well-developed methods such
as RANSAC (Fischler and Bolles, 1981) which do not necessarily require the aid of any
modifications to the document to perform registration of the scanned document image
with the ideal document image, but at the cost of computational complexity and possibly

lower accuracy in registration.
To perform registration, the locations of the assisting symbols in the scanned document
image are extracted and used in conjunction with their respective pairs in the original

digital document to estimate the linear conformal transformation (also referred to as the

similarity transform) which can be expressed as:

' = sRgx +1 (3.2)

where s is an arbitrary scale factor and Ry is the 2-D rotation matrix by the angle 6:

Ry = (3.3)

cos(f) —sin (9)]
sin ()  cos(0)

To compute the estimated input space coordinates [u, v] for the given transformed space

coordinates [z, y] equation (3.4) is solved for sc, ss, tx and ty.

[u,v] =[ry 1] |ss sc (3.4)
tx ty
where:
sc = scos(0) (3.5)
ss = ssin(f) (3.6)
t = [tz ty] (3.7)
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At least two pairs of corresponding points are required to solve for the four unknown

parameters.

3.3.3 Binarization

After the global transformations are estimated and corrected it is necessary to isolate
characters from their surrounding background. To perform this the simple and popular
approach of binarization is used. Binarization of the document is performed in order
to separate the elements of interest (foreground) from the background and is based on
the assumption that brightness intensity levels of the characters will be sufficiently and
uniformly different to the background’s (usually the paper) brightness intensity (Otsu,
1979). A side effect of binarization is the loss of the foreground pixels’ grayscale values.
However, since the extracted features which are used for classification are region-based,
only the characters’ shapes are of interest. Therefore the grey scale values of the characters’
pixels can be safely discarded, and this loss of information is in fact a desirable side effect

of the binarization process.

3.3.4 Connected Components Analysis

Binarization is closely related to (and is usually used for) extraction of connected com-
ponents from the document. Connected components labeling (or analysis) is the process
of dividing a set of pixels in the images to mutually exclusive subsets based on their
connectivity (Milan et al., 2007). It is a reasonable to assume that in the ideal image
representation of a document a high likelihood of separation between neighbor characters
pixels is maintained. In such a perfect document image, by using connected components
analysis it is possible to accurately and efficiently segment the document to form the set

of characters of which the document is comprised.

3.3.5 Segmentation and Classification

Unfortunately, as shown and discussed in Chapter 5, the likelihood of having characters
successfully separated by connected components labeling decreases quite rapidly with in-
creased noise levels and degradations in the document image. This is caused mainly by
some of the degradations discussed in Section 2.3 such as blurring, smearing and thick-

ening which causes neighboring characters to be joined. Moreover, the opposite process
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in which characters are broken into a few connected components also occurs in higher
frequency due to irregularities in brightness and low contrast which are introduced as the
noise levels increase. However, despite the limitations and problems discussed above, con-
nected components labeling is used to provide an initial segmentation of the foreground

pixels to reasonably accurate sets correlated to individual characters in the document.

Finally, an iterative process of analysis of the extracted connected components which in-
cludes classification, further segmentation, and comparison with the information extracted
from the digital document (DDM) is performed. Based on the analysis performed at this
stage a decision is made if the document has been tampered with or not. A detailed

discussion on this procedure is given in Chapter 5.

3.4 Summary

In this Chapter an overview of the proposed framework for robust document image ver-
ification is presented. The framework aims to overcome the difficulties arising from the
degradations and the noise generated by the Print-Scan Channel. The framework consists
of three major subcomponents: (i) the Document Analysis Component, (7i) the Print-Scan

Channel Modeling Component, and (7ii) the Document Image Verification Component.

The Document Analysis Component extracts descriptive information about the document
contents (DDM) by analyzing the digital PDF document. The DDM is stored for later
retrieval and reference in the verification stage where it assists with the classification,

segmentation and comparison of the document image to the original digital document.

The Print-Scan Channel Modeling Component implements the physical based degradation
model suggested by Baird (1995). This model is utilized to synthesize reasonable predic-
tions of what the symbols may look like after some Print-Scan degrading, and use the
generated degraded symbols as the training data provided to a classifier. This synthetic
training data substantially increases the classifier accuracy as opposed to training only on

the ideal noise free characters.

The Document Image Verification Component performs the content-based verification of
the presented documents images. The component retrieves the DDM for the verified
document; performs a series of pre-processing steps such as estimating and correcting the
global linear conformal transformations introduced to the document image, binarization

and more; and performs the segmentation, classification and verification of the document’s
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observed content in comparison to the expected state of the document which is stored in
the DDM.
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Chapter 4

Disjoint Character Verification for

Feature and Classifier Selection

In the previous Chapter an overview of the proposed framework for robust document
image verification was given. This Chapter presents an evaluation of recognition accu-
racy of individual characters in noisy Print-Scan degraded documents for different shape

descriptors and classifiers combinations.

One of the most important steps in content-based verification of document images is the
accurate classification of the characters present in the documents, as they are the funda-
mental building blocks of text documents. In this Chapter, the recognition accuracy of
individual characters in noisy Print-Scan degraded documents is evaluated for different
shape descriptors and classifiers combinations. This Chapter aims to evaluate the recog-
nition accuracy for the individual characters given they are properly segmented from the
scanned document image. Chapter 5 addresses the additional issues that are typical to
scanned text document images due to the typically closely spaced layout of the characters

in the documents.

The Chapter commences by defining selection criteria for choosing candidate shape de-
scriptors, and discusses the relevant properties of the selected shape descriptors, which
are leading to their selection. It also introduces an image degradation model that is
used to generate suitable synthetic Print-Scan degradation modeled training data for im-
proving classification. Finally tests are performed on a uniform test set taken from real
scanned documents images to achieve comparative results for the accuracy of the different

descriptors-classifiers combinations.

4.1 Selection Criteria of Shape Descriptors for Evaluation

Selecting the most suitable shape descriptor based on information given in the literature

for the task of document images verification is a challenging task considering the difficulties
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in comparing and assessing the suitability of the different shape descriptors such as:

The large number of suggested shape descriptors in the literature.

e The fact that different descriptors might be more suitable for different applications

and particular classes of shapes.

e The large variations in performance which are reported when different classifiers are

used with the same shape descriptor.

e Different descriptors have different properties such as invariance to some of the affine

transformations such as translation, reflection, rotation and scaling.

e Evaluation of the different descriptors was done independently by each author on

different testing and training sets, and for different application domains, therefore,

the reported results are not directly comparable.

e The noise levels present in the test data used for evaluating the different descriptors

are usually not measured and not reported. Therefore, no conclusion can be made

on the effectiveness of the evaluated shape descriptors in noisy document images,

which is the primary interest of this thesis.

Therefore in order to accurately assess the suitability of candidate shape descriptors it is

required to implement and perform a comparative test of selected shape descriptors over

the same training, testing sets and choice of classifiers. However it is impossible to study

and test all of the shape descriptors suggested in the literature within the scope of this

thesis due to the large number of available methods. Therefore, selection criteria based

on the theoretical and practical properties presented in Section 2.1.3 is stated herein after

which is used to select suitable candidate methods for evaluation purposes:

e Minimal and simple prerequisites.

o Clear.

Low coupling to classifiers.

Computationally fast.

Compact.

e Variance to major inter-class deformations and occlusions.
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e Invariant and robust to typical Print-Scan Channel noise.

e Thoroughly reviewed in the literature and proven to previously give satisfactory

results in OCR applications.

Relevance and Potential Impact of Selection Criteria To illustrate the difference
between the goals of contemporary shape descriptors and this thesis’s goal of symbol veri-
fication, consider properties such as invariance to affine transformations including transla-
tion, skew, rotation, reflection and scaling which may have a substantial potential impact

on other parts of the system.

For example, consider the following pairs of characters (‘d’, ‘p’), (‘d’, ‘b’), (‘6°, ‘9’), (‘m’,
‘w), (‘x’, ‘X’) and (‘1', -’), they are essentially rotated and/or linearly transformed varia-
tions of the other (up to a certain error). Consider a scenario where a shape descriptor that
is invariant to rotation is used. In order to discriminate between the character pair (‘6’,
‘9’) additional logic would need to be applied during the classification stage to determine
the orientation of the character. Moreover, when deciding on the different classes available
as the classifier’s output, and therefore in the training data, perhaps it would be better to
unite classes which are very similar but rotated such as the pairs (‘d’, ‘p’) and (‘6’, ‘9’) into
a single class. The reasons are: (i) they are essentially the same (or a very similar) shape,
therefore the same shape would receive twice the representation in the training set if both
characters are kept as separate classes, and if equal priori representation is assumed for
all classes in the training set; (i) reducing the overall number of classes available for the
classifier to choose from, could potentially increase classification accuracy and therefore
the overall performance of the system. Finally, an additional potential impact is that
rotation would not be needed to estimated and corrected, which could potentially improve
running time. However, such equivalence between symbols that differ in rotation is not

actually desirable for verification purposes.

Another significant factor is that many shape descriptors aim to be able to distinguish
between classes in the presence of large deformations such as nonlinear transformations
and occlusions in a similar way to human perception. In Figure 4.1 some examples of
nonlinear deformations in three shape classes are presented (examples taken from the
MPEG-7 Core Experiment CE-Shape-1 part B data set).
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Figure 4.1: Ezamples of nonlinear deformations in three shape classes.
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Most shape descriptors and in particular the newer state-of-the-art descriptors aim to clas-
sify such deformed shapes as equivalent. However, for verification purposes it is desirable
that the shape descriptor would be relatively sensitive to such changes in the symbols
as the detection of deformations and alterations that effect the meaning of the symbol is

required.

Another important criterion for choosing shape descriptors is their computational com-
plexity and its derived running time. For many practical applications a running time not
exceeding the order of tens of milliseconds per shape is desirable. However, some of the
recently suggested state-of-the-art shape descriptors report running times in the excesses
of 30 seconds per query (over the MPEG-7 Core Experiment CE-Shape-1 part B data set
(Bai et al., 2010)). Since documents may contain a large number of characters, the time
required to classify the characters in documents may become prohibitive for any practical

application if such descriptors are used.

4.2 Selected Shape Descriptors for Evaluation

Three methods which satisfy the above criteria were chosen for the evaluation stage.
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e Geometric Affine Moment Invariants.
e Centroid Distance Function Fourier Descriptors.

e 2.D DCT II.

For a detailed description of the selected shape descriptors for evaluation refer to Section
2.1.4.

Selected Shape Descriptors Properties The three selected shape descriptors for
evaluation share a number of important and desirable properties. All three methods have
simple prerequisites; are derived with clear reasoning and small number of parameters,
and have a strong relation to the physical properties of the shape’s boundary and/or
region; computationally inexpensive; can be used with all general purpose classifiers; and

are thoroughly reviewed in the literature and used in a multitude of applications.

The uniqueness and difference in the properties for each of the selected features for eval-

uation are summarized below:

4.2.1 Geometric Affine Moment Invariants (GAMI)

GAMI features are based on a set of a few central moments calculated from the foreground
silhouette of a shape. As such, they are computationally efficient in both time and space

requirements and have been shown to be useful for recognition under noisy conditions.

e Compactness — GAMI are potentially highly compact, as little as 4-7 dimensions
may be used (Flusser and Suk, 1993, 1994; Milan et al., 2007). Localization is better
achieved by partitioning the character image into blocks and calculating the GAMI
features for each of the blocks (Dhanya and Ramakrishnan, 2002) but at the expense

of higher dimensionality.

e Computational Complexity — The computational complexity of GAMI descrip-
tors is linear in respect to the number of pixels in the shapes region (Milan et al.,

2007) positioning them as one of the fastest shape descriptors to calculate.

e Proven to Give Satisfactory Results in OCR Applications — GAMI were
studied extensively and were proven to be useful in various shape recognition tasks

and OCR applications in particular. Refer to Section 2.1.4.1 for more details.
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e Affine Transformation Invariance — GAMI are specifically designed to be in-

variant to affine transformations.

e Robustness to Noise — Low order moments are considered relatively robust to
noise. As the order of the coefficients grows each pixel contributes substantially to
the sum making the higher order moments more sensitive to pixel noise (Zhang and
Lu, 2004).

4.2.2 Centroid Distance Function Fourier Descriptors (CDFD)

CDFD features are based on the principle of applying the Fourier transform to a one-
dimensional function of the shape’s boundary and have proved to give good results in

comparison to other shape signatures.

e Compactness — CDFD are considered to be relatively compact features. Conver-
gence rate of the coefficients has been studied in various publications (Zhang and Lu,
2005; Amanatiadis et al., 2009; Zahn and Roskies, 1972; Trier et al., 1996a) which
recommended the number of coefficients used as a feature vector to range from 10
to 32. According to Milan et al. (2007); Mori et al. (1995), between 10 and 15 low

order coefficients are sufficient for OCR.

e Computational Complexity — The computational complexity of CDFD descrip-
tors is O(N log(N)) utilizing the Fast Fourier transform (FFT) algorithm where N
is the length of the shape signature (Milan et al., 2007).

e Proven to Give Satisfactory Results in OCR Applications — CDFD has
been used successfully in many general shape recognition applications and OCR ap-
plications in particular. They were compared to other shape recognition methods
such as autoregressive models, chain codes, various moments and multi-scale cur-
vature scalespace with results suggesting that CDFD outperform these other shape

descriptors. Refer to Section 2.1.4.2 for more details.

e Affine Transformation Invariance — In general CDFD are invariant to transla-
tion, but are sensitive to other general affine transformations and to selection of the
boundary’s tracing starting pixel. However, CDFD can be made invariant to rota-
tion and to the selection of the boundary’s starting pixel by discarding the phase
information. Invariance to scale is also achieved by normalizing the norm of the
coefficients in respect to the DC coefficient (Zhang and Lu, 2005).
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e Robustness to Noise - CDFD is considered to be generally robust to noise (Ama-
natiadis et al., 2009).

4.2.3 2-D DCT II (DCT)

DCT features are based on the principle of applying the 2-D DCT transform to the entire
region of the shape. This representation of the shape in the frequency domain is then used

for the representation of various shapes in a compact and relatively accurate form.

e Compactness — The DCT exhibits excellent convergence rate of the coefficients
which makes it more compact in comparison with other integral transforms (Ahmed
et al., 1974; Khayam, 2003). However for shape description applications, to the best
of this author’s knowledge, information is not available on the number of coefficients

required for successful recognition.

e Computational Complexity — A fast algorithm for calculating the 2-D DCT II
in O(N log(N)) operations is available utilizing the FFT algorithm where N is the
number of pixels in the shape image (Milan et al., 2007).

e Proven to Give Satisfactory Results in OCR Applications — The appli-
cation of 2-D DCT II for character recognition purposes was proposed in a small
number of relatively recent non-commercial frameworks for recognition of Bangla,
Tamil/Roman and Telugu scripts. These proposed frameworks however use different
methods to extract the descriptors from the characters in comparison to the method
proposed by this thesis, and do not specify if they were evaluated on noisy Print-Scan

degraded documents images. Refer to Section 2.1.4.2 for more details.

e Affine Transformation Invariance — The 2-D DCT II is not affine transforma-
tions invariant, however, through normalization of the shape’s size, translation and
rotation prior to applying the 2-D DCT transform, the resulting features are invari-

ant to linear conformal transforms such as scale, translation and rotation.

e Robustness to Noise — The 2-D DCT II can be made relatively resilient to the
effects of noise by discarding the higher order coefficients, where the signal-to-noise

ratio is typically smaller (Milan et al., 2007).
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4.3 Print-Scan Channel Model and Training Data

Given the selected features, the next task is to consider the effects of the printing-and-
scanning process on recognition. This printing-and-scanning process will be referred to
as the “Print-Scan Channel” and is occurring outside of the domain of the system, being
performed usually by a human user with access to printed copies of the original document.
Moreover, it is possible that the document has been printed and scanned multiple times
before being presented for verification. As discussed in Section 2.3 there are many un-
known factors which affect the properties of the Print-Scan Channel and therefore the final

channel’s output (e.g. the scanned document image which is presented for verification).

4.3.1 Modeling Degradation for Classifier Training

Since verification will be performed by using a classifier on the features discussed in Sec-
tion 4.4.1.2 to recognize characters, it thus becomes important to be able to provide a
reasonable prediction of what the characters may look like after some degrading, and use
such degraded symbols as the training data provided to the classifier. Without this, classi-
fier accuracy will suffer since the classifier would be trained on ideal characters, which are
already known do not exist in the scanned image. Moreover according to Baird (2000);
Zi and Doermann (2004); Cheriet and Moghaddam (2008), there is strong evidence that
larger training sets which are well balanced in respect to the number of observations for
each of the different classes, and in addition, are also well distributed in respect to cover-
ing the range of expected variations in the test data contribute significantly to improving
classification accuracy. Therefore there is valid justification to use a training set as large

as is useful to achieve optimal accuracy.

Real and Synthetic Training Data The most straightforward method of generating
accurate training data to train the classifier is to manually scan a large number of doc-
uments, segment and extract the character images and ground truth them. It has also
been determined, according to Baird (2000); Rice et al. (1992), that for optimal accuracy,
the training sets used should be as real and close to the test data as possible. However
as discussed in Section 2.3.1 generating large amounts of training data by such a manual

process suffers from many shortcomings.

An alternative to the collection of such “real” training data is the generation of synthetic

training data that would be used to train the classifier. Generation of synthetic training
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data is usually performed by following a model which is aimed at mimicking the degrada-
tions caused by the Print-Scan Channel so that the end result would appear to be similar

to training data observations collected from real scans of documents.

Given the findings in the literature (Baird, 2000; Nonnemaker and Baird, 2009) that large
amounts of reasonably-modeled synthetic data generally outperforms smaller amounts
of real data, and the fact that synthetic models for the Print-Scan Channel exist and
have been experimentally verified, it was considered more worthwhile to investigate the
approach of synthetic model based training data first and determine its validity by testing
and measuring the accuracy of the predictions given by different classifiers trained with

such synthetic data. For a detailed discussion of this topic refer to Section 2.3.

4.3.2 Degradation Model Selected

As discussed in Section 2.3.2 document degradation models are based on two different
methodologies. The first approach is physics-based and is based on imitating the physical
mechanisms involved in producing the final document image as it is degraded by the
Print-Scan Channel. The second approach is appearance based. These models aim to
be as simple as possible while keeping the appearance of the output generated by the

Print-Scan Channel and don’t intend to be physically accurate.

The Print-Scan Channel modeling selected in this thesis generates synthetic training data
according to the physical-based document degradation model defined in Baird (1995) (see
Section 2.3.2). It models defects and degradations by applying sequentially a small number

of simple and parameterized per-symbol and per-pixel transformations.

Model Parameters Since the synthetically degraded characters output by the model
are a population of observations having statistical attributes defined by the model’s pa-
rameter values, it is expected that the model’s generated output would cover variations
across a range of degradation levels. However, if simulating populations with higher levels
of degradation are of interest, two main approaches can be taken. The first is changing
the model’s parameter values such as offsetting the mean and/or increasing variance for
the different transformations where applicable. Alternatively, the model could be applied
multiple times repetitively to its own output with the same parameter configuration to
simulate the accumulating degradation of repeating printing and scanning. The former

approach was used in this thesis to generate sufficiently degraded training data.
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Baird (1995) recommended parameters values for the transformations defined in the model
excluding size and resn which are to be configured according to the desired output size
and resolution. Note that Baird (1995) specifies all normal distributions’ parameters in
terms of mean and standard error. In this thesis’ implementation the standard error was
replaced with the standard deviation so it would not decrease as the sample population
grows. Following is a review of the recommended parameters values suggested by Baird
(1995), along with the parameters values used in this thesis for generating the synthetic
data:

e size: equivalent to the modeled font size (i.e. 12 for a 12 point font).
e resn: constant at 300, to model 300 pixels per inch (DPI) scans.

o skew (rotation): Baird (1995) recommends a normal distribution with zero mean
and 1.4 standard error. These are deduced from measurements taken from over 1000
scanned pages. The same distribution was used in this thesis. Baird (1995) does
not specify the reference point for rotation. The point selected by this thesis as the

reference point for rotation was the image center point.

e xscl: Baird (1995) recommends a uniform distribution over the range [0.85,1.15].

The same distribution was used in this thesis.

e yscl: Baird (1995) recommends a normal distribution with zero mean and 0.02

standard error. The same distribution was used in this thesis.

e xoff, yoff: Are fixed at zero since the translations of the characters are not of

interest for this thesis at the classification training stage.

e jitt: for both axis Baird (1995) recommends a normal distribution with zero mean

and 0.7 standard error. The same distribution was used in this thesis.

e kerx, kery: Baird (1995) defined a single parameter kern to be applied only in the
horizontal direction. However in this thesis’ implementation kerning was applied to
both axes therefore the single parameter kern was expanded into the two independent
parameters kerx and kery. Baird (1995) recommends kern to be modeled with a
uniform distribution over the range [—0.5,0.5]. The same distribution was used in

this thesis but applied for both axes independently.

e blur: Baird (1995) recommends a normal distribution with 0.7 mean and 0.3 stan-

dard error. The same distribution was used in this thesis.

e ssnv: Baird (1995) recommends a uniform distribution over the range [0,1]. The

same distribution was used in this thesis.
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e psnv: Baird (1995) recommends a normal distribution with 0.125 mean and 0.04

standard error. The same distribution was used in this thesis.

e thrs: Baird (1995) recommends a normal distribution with 0.25 mean and 0.04
standard error. This thesis’ approach was different. For each symbol the optimal
threshold was calculated using Otsu’s method and then offset by a pseudorandom
value taken from a population with normal distribution with zero mean and 0.05
standard deviation. This thesis’ belief is that this approach models variation in
erroneous selection of the thresholds values better than the method proposed in
Baird (1995) since selection of threshold value(s) in document images is usually
performed by an attempt to perform an optimal selection, which in practice results

in some degree of error from the optimal choice.

In this thesis, the inputs to the model are ideal high resolution (3,000 DPI) grayscale
images representing the ideal character in high resolution spatial domain. For each in-
put image, modeling the Print-Scan Channel degradations was achieved by applying the

transformations in the order illustrated in Figure 4.2.

The implementation of the model was used to generate training data for the set of al-
phanumeric characters and four punctuation symbols: apostrophe, comma, period and
dash for the Times New Roman 12 point font. Figure 4.3 presents the ideal character set
for which the synthetically degraded variations were created. In this Chapter, as discussed
in Section 4.4, the evaluation is performed on single characters in the times new Roman
12 point font. In Chapter 5 verification of multi-font documents is addressed and the

required training data is generated for these additional font types.
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Figure 4.2: Ilustration of the order of applied transformations used for the generation of synthetic
training data according to the document degradation model defined in Baird (1995).

Input - 3000 DPI - C N
ideal symbol Image > Scale (xscl, yscl) | Rotation (skew) » Kerning (kerx, kery)
A 4
Threshold (thrs) |« Sensitivity (ssnv, psnv) | Blur (blur) =€ Downsample (jitt, size, resn)

A 4

Output - 300 DPI
Print-Scan Modelled Image

Figure 4.3: The ideal character set of the Times New Roman 12 point font for which synthetic
training data was generated using the synthetic degradation model defined in Baird (1995).

abcdefghijklmnopqrstuv
wxyzABCDEFGHIJKLM
NOPQRSTUVWXYZ", . -

4.4 FEvaluation

The aim of this evaluation is to measure the accuracy of the different combinations of shape
descriptors and classifiers obtained when classifying real Print-Scan degraded characters.
The three shape descriptors chosen for evaluation: Geometric Affine Moment Invariants
(GAMI), Centroid Distance Function Fourier Descriptors (CDFD) and Discrete Cosine
Transform type II (DCT) are discussed in Section 2.1.4. The four classifiers chosen for
evaluation: k-Nearest Neighbor (k-NN), Random Forest (RF), Support Vector Machines
(SVM) and Naive Bayes (NB) represent a range of popular, successful and fundamentally
different approaches to classification, and are discussed in detail in Section 2.2. For eval-
uation, each of the shape descriptors is coupled with each of the classifiers resulting in a

total of twelve feature-classifier combinations.
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4.4.1 Method

In the following Sections an overview of the test data, features extraction and the classifiers
that were used to evaluate the accuracy of the different combinations of shape descriptors

and classifiers is presented.

4.4.1.1 Test Data

In order to directly compare these methods in a meaningful manner, they are compared
when applying the same pre-processing operations, and on a uniform set of training and

testing data.

For all of the following experiments, unless otherwise specifically noted, the test data
was comprised of 3,193 characters extracted from self-produced PDF text documents.
The characters are all instances of Times New Roman 12 point font and contain the
entire English language alphanumeric character set except for lower case ‘i’ and ‘j’, a
total of 60 characters (classes). The characters ‘i’ and ‘j” are comprised of two shapes, and
therefore require applying additional higher-level logic to extract them from the document
images and to recognize them, an issue which will be addressed specifically in Chapter 5.
Consequently, it was decided to omit ‘i’ and ‘j* and concentrate on evaluation of shapes

in the “purest” sense which are comprised of a single part.

The test documents’ contents were based on short paragraphs copied from various news
articles, from which the characters ‘i’ and ‘j’ were removed for the reason explained above,
and onto which the digits ‘0’-‘9’ and uppercase ‘A’—Z’ characters were artificially in-
terleaved into the document in equal numbers to uniformly increase their frequency of
appearance in the text. As a result, the occurrence frequency of the different test charac-
ter classes is not uniform, but more inclined towards real world distribution. However, it

is guaranteed to give sufficient representation to all character classes excluding ‘i’ and ‘j’.

Given that this thesis aims to handle verification under conditions where the document
image is significantly degraded from printing and scanning noise, the test documents were
printed and scanned repetitively three times in order to simulate three increasing levels
of Print-Scan degradation. The documents were printed and scanned using a HP 7500A
model standard inkjet consumer all in one printer and scanner on standard general use
office paper. The printing was done using the default standard settings and the scanning

was done using 300 DPI grayscale settings. The characters images used for testing were
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Figure 4.4: The cumulative degradation generated after each additional print-scan cycle is shown

in increasing order from (a) to (c).
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extracted only from the last (most degraded) repetitive print-scan image (after three

accumulated repetitive print-scan applications).

The test characters were adequately spaced to guarantee that the cumulative degradation
caused by the repeating print and scan process does not result in joined characters which
would complicate the segmentation process. Moreover, the test data was inspected to re-
move all broken characters as this also requires higher-level segmentation methods to solve
and would discriminate against Fourier descriptors which are more sensitive to this type
of defect. Segmentation of document images for correcting joined and broken characters

defects is addressed specifically in Chapter 5.

Prior to extracting the characters from the documents and generating the shape features,
the document scan images are transformed to compensate for the possible linear conformal
transformations scale, rotation and translation which are introduced by the recurring print-
scan process. To simplify the estimation and correction of the transformations, specifically
designated graphic symbols were embedded at the corners of the document. To separate

foreground pixels from background pixels global binarization is used where the global
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Figure 4.5: The binarized documents excerpts illustrating the effects of the cumulative degradation

generated after each additional print-scan cycle on binarization is shown in increasing order from

(a) to (c).
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threshold was determined using Otsu’s method (Otsu, 1979). Finally, connected compo-
nents analysis was performed to extract the characters from the documents. It is important
to stress that no noise filtering or any morphological operations were performed at any

stage prior to or following binarization and connected components analysis.

It is noticeable in Figure 4.4 that with each repeated printing and scanning cycle, more
irregularities are formed in the characters. These irregularities are present both in the
shape’s region and at the shape’s boundary where they are prominent in particular. Also
it is quite noticeable that the contrast between the characters and the paper (foreground
and background pixel populations) is diminished with each repeating print-scan cycle. This
is expressed in increased overlapping between the intensity levels of the foreground’s and
background’s pixels and increases the separation error achieved by binarization methods,
and results in severe irregularities of the binarized characters boundaries as can be observed
in Figure 4.5. For clarity, it is noted that binarization occurs once after all repeating cycles

of printing and scanning are completed.
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4.4.1.2 Feature Extraction

For all of the performed experiments, unless otherwise specifically noted, both training and

testing observations were calculated by the methods described in the following Sections.

GAMI Features For generating the GAMI descriptors each input character is scaled
using bilinear interpolation so that the larger of its height or width is 32 pixels, and if
required the other dimension is padded with zeros symmetrically resulting in a 32x32
pixel image without distorting the original proportions of the character. Following that,
the character is divided into 16 disjoint 8x8 pixels blocks. For each block the I1 — I4
invariants as defined by Equations (2.3)—(2.6) are calculated from the entire block region,
and grouped to form a 64 dimensional feature vector. This sub-blocking approach is similar
to the approach taken by Dhanya and Ramakrishnan (2002) which is shown to increase

localization and accuracy.

CDFD Features For generating the CDFD descriptors the outer boundary pixels of
the character are extracted ignoring any holes in the character as illustrated by Figure
4.6.

The Euclidean distance for each boundary pixel from the character’s centroid is calcu-
lated to generate the Centroid Distance Function shape signature as described in Section
2.1.4.2. To maintain uniform discrete frequencies as a sound basis for comparison of the
different characters when calculating the Discrete Fourier Transform, the shape signature
is normalized to a fixed length of 128 samples by linear interpolation to facilitate the
Fast Fourier Transform (FFT) algorithm. An illustration of the extracted and normalized
Centroid Distance Function shape signature for the character ‘a’ from Figure 4.6 is given

in Figure 4.7.
The 16 low order invariant descriptors {b; | 1 < k < 16} are then computed as described

in Section 2.1.4.2 and grouped to form a 16 dimensional feature vector. The number 16

was chosen based on recommendations found in Milan et al. (2007); Mori et al. (1995).
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Figure 4.6: Illustration of the boundary extracted from characters containing holes for calculation
of the CDFD features.
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Figure 4.7: An illustration of the extracted and normalized Centroid Distance Function shape

signature for the character ‘a’. the top Figure shows the Centroid Distance Function prior to

resampling to length of 128, and the bottom Figure shows the same after resampling.
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DCT Features For generating the DCT features each input character is scaled in a
similar manner to the GAMI features using bilinear interpolation so that the larger of
its height or width is 32 pixels, and if required the other dimension is padded with zeros
symmetrically resulting in a 32x32 pixel image without distorting the original proportions
of the character. The 2-D DCT II transform is than performed on the entire character
region and the low order 6x6 transform coefficients are grouped to form a 36 dimensional

feature vector.
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4.4.1.3 Classifiers

The four classifiers chosen for evaluation are: k-Nearest Neighbor (k-NN), Random Forest
(RF), Support Vector Machines (SVM) and Naive Bayes (NB) represent a range of popu-
lar, successful and fundamentally different approaches to classification. K-NN is a simple,
effective and very popular classifier which has proven successful in a multitude of applica-
tions. RF is an ensemble of decision trees where each of the trees is built by following a
nondeterministic algorithm using a different subset of the training data for growing each
tree. RF can be useful for classifying hard-to-separate data by dividing the feature space
into a large number of sections where each section represents a different class output, but
at the expense of lower generalization and possible overfitting. SVM is the perceptron of
optimal stability performing classification by fitting a hyperplane that best separates the
data in the maximum-margin sense. SVM is considered today one of the most effective
classifier, especially when the data is “reasonably” linearly separable in the feature space.
Finally NB is a probability-based classifier based on estimation of the distribution for the
different classes, which has also proven to be useful in a large number of scenarios. For
additional description and an in-depth discussion of these classifiers refer to Section 2.2.
In the following experiments the Witten and Frank (1999) implementation was used for

all classifiers.

Classifiers Parameters and Configuration For all of the performed experiments,
unless otherwise specifically noted, the classifiers were configured with the following pa-

rameter values:

k-Nearest Neighbor (k-NN)

o k=3.

e All components are standard score normalized so that components on different scales
contribute equally to the distance function, z; = *£, where z; is the resulting
normalized component, x; is the raw non normalized component, u is the mean

value of the component and ¢ is the standard deviation of the component.

e Neighbors X,, n = 1...k votes are weighted by the inverse of their distance to the
test observation, 1/d where d is the Euclidean distance between the neighbor X, to

the test observation X;.
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Note that in experiments 1-A and 1-B there is only one training observation of each
class, therefore the weighted neighbors votes are in fact equivalent to nearest neighbor

classification.

Random Forest (RF)

e P (number of trees) = 20.

e n (number of splitting components per node) = (logy N) + 1 where N is the dimen-

sionality of observations.

Support Vector Machines (SVM)

e Trained using SMO algorithm (Platt, 1998).
e Multi-class classification solved using pair wise classification (Krebel, 1999).

e Standard inner product kernel (linear kernel).

e All components are standard score normalized, z; = zi;“ , where z; is the normalized

component, x; is the raw non normalized component, y is the mean value of the

component and o is the standard deviation of the component.

Naive Bayes (NB)

e Estimating distribution by assuming single conditionally independent normal distri-

bution per feature variable.

4.4.2 Experiments

Four experiments are performed for evaluating the accuracy of the different combinations
of shape descriptors and classifiers, with respect to the ideal training observations and with
the inclusion of different model-based synthetic training set sizes. Twelve feature-classifier
combinations in total are evaluated, the three selected shape descriptors: Geometric Affine
Moment Invariants (GAMI), Centroid Distance Function Fourier Descriptors (CDFD) and
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Discrete Cosine Transform type II (DCT) when coupled with each of the following four
classifiers: k-Nearest Neighbor (k-NN), Random Forest (RF), Support Vector Machines
(SVM) and Naive Bayes (NB). The evaluation is performed on a uniform test set taken

from real scanned documents images.

Experiment 1-A aims to evaluate how well the ideal noiseless examples translate to well-
separated points in the feature space for the different features, as well as how well the
Print-Scan degraded test data clusters in proximity to the points representing their ideal
examples, whilst remaining separate from other classes. In experiment 1-B, the test is
repeated with the same intention, however, confusions that occur in character pairs which
are very similar (as discussed in Section 4.4.2.2) are not counted as errors to provide a

comparison in terms of perceptual similarity.

Experiment 2-A aims to evaluate the relevancy of the synthetically generated training data
in respect to real Print-Scan degradation, and its contribution to the classification accu-
racy. Moreover, this experiment evaluates the suitability of the different feature-classifier
pairs when trained with model-based synthetic training data in accurately recognizing real
Print-Scan degraded characters. In experiment 2-B, the test is repeated with the same
intention, but as with experiment 1-B confusions between perceptually similar classes are

not considered as classification errors.

An analysis of the results of experiments 1 and 2 and the conclusions drawn is then given,
followed by an explanation to the motivation for performing the follow-up experiments

number 3 and 4.

Experiment 3 aims to determine the optimal DCT feature dimensionality. In a similar
manner to experiment 2-B, confusions between perceptually similar classes are not con-

sidered as classification errors.

Experiment 4 aims to further explore different combinations of feature dimensionality and
training dataset size. Again, in a similar manner to experiment 3, confusions between

perceptually similar classes are not considered as classification errors.

4.4.2.1 Experiment 1-A

In this experiment, the accuracy of the different combinations of shape descriptors and
classifiers is measured when the training data is comprised of one ideal 300 DPI rasterized

image per character class, a total of 60 images.
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Table 4.1: The error rates results for the different classifier-shape descriptor pairs evaluated in
experiment 1-A. The rows represent the different classifiers and the columns represent the different

shape descriptors.

GAMI | CDFD DCT
NB | 0.6156 | 0.7575 | 0.3186
KNN | 0.6719 | 0.3010 | 0.0978
SVM | 0.7485 | 0.3236 | 0.0941
RF | 0.5477 | 0.5737 | 0.3780

All classifiers were configured with the values specified in Section 4.4.1.3 except for k-NN
and SVM which had normalization disabled.

Results The error rates (misclassifications/total characters) of experiment 1-A for the
different descriptor-classifiers pairs are summarized in Table 4.1. Experiment 1-A results
demonstrate that under the given conditions, DCT is consistently the most accurate shape
descriptor by a large gap when coupled with all classifiers. The top five combinations
when ranked by decreasing accuracy are: DCT-SVM, DCT-KNN, CDFD-KNN, DCT-NB
and CDFD-SVM. The two most accurate pairs, DCT-SVM and DCT-KNN (bolded), are
grouped closely with only 0.0037 separating the two. Following them by a large 0.2032
gap is the CDFD-KNN pair. The three least accurate pairs in decreasing error ratio are:
CDFD-NB, GAMI-SVM and GAMI-KNN. A detailed analysis and discussion of these

results is given later in Section 4.4.2.5.

4.4.2.2 Experiment 1-B

Experiment 1-B is conducted to account for the perceptual and mathematical (in terms
of the calculated features) similarity that is inherent to several character groups in the
English character set as discussed in the following Sections. Experiment 1-B is identical
to experiment 1-A in terms of training and testing data, and classifier configuration,
however confusions in the similar classes groups (discussed later in this Section) are not
considered as classification errors. It is important to note that the relaxations allowed in
this experiment are largely unhelpful to the DCT features since the DCT is unlikely to

get confused between affine transformed characters except for scale-only transforms.
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Figure 4.8: Perceptually similar characters pairs in the Times New Roman 12 font.
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Perceptually Similar Characters It is important to note that Times New Roman 12

point font contains character pairs which are essentially a scaled version of one another, or
resemble one another very closely, as illustrated in Figure 4.8. Moreover, the test characters
extracted in practice from the documents have substantially lower resolution in pixels than
the characters in Figure 4.8. As the resolution decreases, the rasterizing process diminishes
the subtle differences between these character pairs, hence essentially they become more
and more alike. Furthermore, increased amounts of noise further diminish the differences

between these character pairs.

Since all three evaluated shape descriptors are invariant to scale (either by definition or by
normalization of the input size prior to extracting the features), it is reasonable to assume
that there would be a relatively high confusion rate for the character pairs presented in
Figure 4.8. Moreover, it is very likely to assume that discriminating between those pairs
when their size is normalized would prove to be a difficult and confusing task even for
humans (although perhaps to a lesser extent for ‘P’-‘p’, ‘C’-‘c’ and ‘U’-‘u’ since they do

have some perceptual distinction between their two versions).

Affine Transformed Similar Characters There are additional character groups in
which the characters are affine transformations of one another (or very close to being
such) and therefore are regarded as “perceptually similar” by shape descriptors which are

invariant to the relevant affine transformations families.
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Figure 4.9: Groups of characters that are, or very close to being an affine transformations of the

others (excluding only scale transforms) in the Times New Roman 12 point font.
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In particular GAMI are designed to be invariant to all affine transformations such as ro-

tation, shear, reflection and others, and CDFD are derived to be invariant to rotation.
For example, consider the following three characters ‘b’, ‘d’, ‘q’ and ‘p’, they are rotated
and/or reflected versions of one another and therefore the GAMI features of these char-
acters are very similar. In another example, consider the pair ‘6’ and ‘9’, since they are
rotated versions of one another the CDFD features calculated for these characters are
essentially almost the same. Therefore these features could result in high confusion rates
between these classes especially in the presence of noise. In figure 4.9 the groups of char-
acters that are affine transformations of the others (excluding scale-only transforms) in

the Times New Roman 12 point font are presented.

Results The error rates (misclassifications/total characters) resulting from experiment
1-B are summarized in Table 4.2. These results confirm once more that under the condi-
tions of this experiment DCT is consistently and by far the most accurate shape descriptor
when coupled with all classifiers. The top five combinations in increasing error ratio are
identical to experiment 1-A: DCT-SVM, DCT-KNN, CDFD-KNN, DCT-NB and CDFD-
SVM. The two most accurate pairs, DCT-SVM and DCT-KNN (bolded), are now even

closer to one another with almost no difference between the two.
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Table 4.2: The error rates results for the different classifier-shape descriptor pairs evaluated in
experiment 1-B. The rows represent the different classifiers and the columns represent the different

shape descriptors.

GAMI | CDFD DCT
NB | 0.5577 | 0.7256 | 0.2498
KNN | 0.6494 | 0.2332 | 0.0256
SVM | 0.7116 | 0.2532 | 0.0250
RF | 0.5499 | 0.5027 | 0.2942

In third place is CDFD-KNN with a 0.2076 gap to second place, about the same gap as
with experiment 1-A. The three worst pairs in decreasing error rate order are identical
to experiment 1-A: CDFD-NB, GAMI-SVM and GAMI-KNN. A detailed analysis and

discussion of these results is given later in Section 4.4.2.5.

4.4.2.3 Experiment 2-A

In this experiment, the accuracy of the different combinations of shape descriptors and
classifiers is measured when the training data is comprised of one ideal and 100 syntheti-
cally generated 300 DPI rasterized images per character class, a total of 6,060 images. In

this experiment the classifiers were configured with the values specified at Section 4.4.1.3.

Results The error rates (misclassifications/total characters) of experiment 2-A for the
different classifier-descriptor pairs are summarized in Table 4.3. Under the conditions of
this experiment DCT is again the most accurate shape descriptor by far when coupled
with all classifiers. The top five combinations in increasing error ratio are: DCT-SVM,
DCT-KNN, DCT-NB, DCT-RF and surprisingly GAMI-RF. The two most accurate pairs,
DCT-SVM and DCT-KNN (bolded), are grouped very closely with only 0.0087 separating
the two in favour of DCT-SVM. In third place is DCT-NB with a small 0.0025 gap to
second place, a substantial decrease of about 0.2 in the gap from the second to the third
place in experiment 1-A. The three worst pairs in decreasing error rate are: GAMI-SVM,
GAMI-KNN and CDFD-NB.
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Table 4.3: The error rates results for the different classifier-shape descriptors pairs evaluated in
experiment 2-A. The rows represent the different classifiers and the columns represent the different

shape descriptors.

GAMI | CDFD DCT
NB | 0.3223 | 0.4683 | 0.0340
KNN | 0.5018 | 0.2889 | 0.0315
SVM | 0.8967 | 0.2710 | 0.0228
RF | 0.0925 | 0.2767 | 0.0559

These results display some expected outcomes and also reveal a few surprising phe-
nomenon. As expected, almost all pairs displayed significant improvement in accuracy
with the addition of 100 synthetic training samples per class. The only surprising excep-
tion is GAMI-SVM which displayed a large increase in error rate from about 0.75 (which
is very low to begin with) to about 0.9 when additional training data was provided. In
contrast the pair GAMI-RF showed for the first time somewhat reasonable results for the
GAMI descriptor with an error rate of about 0.09. A detailed analysis and discussion of

these results is given later in Section 4.4.2.5.

4.4.2.4 Experiment 2-B

Experiment 2-B is identical to experiment 2-A in terms of training and testing data, and
classifier configuration, moreover, in a similar manner to experiment 1-B, confusions in
the aforementioned similar classes pairs are not considered as classification errors. This is
done to account for the perceptual similarity between some of the classes as described in
Section 4.4.2.2.

Results The error rates resulting from experiment 2-B are summarized in Table 4.4. As
expected, improvement in all descriptor-classifier pairs is observed following relaxation of
the confusion constraints for similarly looking character classes. The top five combinations
in increasing error ratio are identical to experiment 2-A: DCT-SVM, DCT-KNN, DCT-NB,
DCT-RF and GAMI-RF.
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Table 4.4: The error rates results for the different classifier-shape descriptors pairs evaluated in
experiment 2-B. The rows represent the different classifiers and the columns represent the different

shape descriptors.

GAMI | CDFD DCT
NB | 0.2448 | 0.4302 | 0.0075
KNN | 0.4549 | 0.2219 | 0.0053
SVM | 0.8695 | 0.2082 | 0.0025
RF | 0.0647 | 0.2091 | 0.0187

The two most accurate pairs, DCT-SVM and DCT-KNN (bolded), are now closer to one
another than in experiment 2-A with 0.0028 error rate separating the two in favour of
DCT-SVM. In third place is DCT-NB with a very small 0.0021 gap to second place. The

three worst pairs in decreasing error rate order are identical to experiment 2-A: GAMI-
SVM, GAMI-KNN and CDFD-NB.

4.4.2.5 Analysis and Discussion

GAMI Results As evident from the performed experiments GAMI typically exhibit
very poor results when coupled with all classifiers except for RF ranging from 0.8967 (2-A
GAMI-SVM) to 0.0187 (2-B GAMI-RF) with an average error rate of 0.5312 across all
experiments. To eliminate the possibility that the poor accuracy is due to the sub-block
division, experiment 1-A was repeated when the GAMI were applied to the entire character
(without block division) and worse results were observed. Very interesting is the fact that
when substantially increasing the size of the training set from one to 101 examples per
class, the deterministic linear kernel SVM classifier finds it more difficult to calculate the
optimal maximum margin splitting hyperplanes resulting in a significant 0.8695 error rate.
In contrast, the nondeterministic RF classifier, which uses a different subset of the training
set each time the model is built, achieves an error rate of 0.0647 under the same conditions.
These results suggest that the GAMI features are linearly inseparable in Hilbert Space
and therefore attempts to perform generalization of the decision by splitting hyperspaces
results in high error rates. On the contrary, RF classifier is comprised of an ensemble of
random trees, where each tree essentially defines a different split on a different section of

the original space. Therefore RF classifier is able to separate the feature space through
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different tree voting combinations into smaller sections where each section results in the
output of a different class, which in the case of GAMI features, proves to be a valuable
property. A graphic example illustrating a similar scenario with the RF classifier is given

in Figure 2.6.

CDFD Results CDFD has displayed results with error rates ranging from 0.7575 (1-A
CDFD-NB) to 0.2082 (2-B CDFD-SVM) with an average error rate of 0.3778 across all
experiments. The reasons for CDFD’s failure are varied. One such reason is the occasional
joining of formerly disjoint parts in the characters due to increased noise levels which create
new holes and thus result in extreme deformations of the perimeter as illustrated in Figure
4.10. Another possible reason is the breaking up of characters which may alter the shape’s
perimeter quite substantially especially when the character contains large holes as can be
observed in Figure 4.11. Degradations such as presented in Figures 4.10 and 4.11 certainly
have less effect on GAMI and DCT than their effect on the Centroid Distance Function
shape signature which is used to generate CDFD.

And finally, another important possible reason for the low accuracy displayed by CDFD
is the substantial loss of data occurring when the phase information is discarded when
calculating {b,} (see Section 2.1.4.2). To estimate the effect of discarding the phase in-
formation when calculating the invariants {b,} an experiment was performed in which a
shapes perimeter was reconstructed by applying the IDFT on the invariants {b,} calcu-
lated from the Complex Coordinates shape signature (Granlund, 1972). The characters
reconstructed as part of this experiment were very different in comparison to the original
characters to the point where they were unrecognizable, and moreover, they were percep-
tually very similar to one another. In Figure 4.12 a number of original and reconstructed

characters by applying the IDFT to the Complex Coordinates {b,} are presented.
This implies that the phase information contributes to accurately describing the shape

and that the method in which the invariants {b,} are calculated results in substantial loss

of information which results in decreased accuracy of the CDFD.
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Figure 4.10: Examples of joining of formerly disjoint parts in characters due to increased noise

levels which create new holes and thus result in extreme deformations of the perimeter.
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Figure 4.11: Ezamples of breaking up in characters due to increased noise levels which result in

extreme deformations of the perimeter.
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Figure 4.12: The original (in blue) and reconstructed (in black) ‘B’, ‘C’, ‘D’ and ‘E’ characters
generated by applying the IDFT to the Complex Coordinates {b,} as suggested in Granlund (1972).
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DCT Results In contrast to GAMI and CDFD, DCT based features displayed con-
sistently excellent results and impressive robustness to significant Print-Scan degradation
when coupled with all classifiers. In experiment 1-B, DCT-SVM and DCT-KNN have ob-
tained 0.0250 and 0.0256 error rates respectively. This result is very impressive considering
the dimensionality of the features was 36 and the training set size was only 60 observations,
one ideal observation per class, a ratio of 60% between the dimensionality to the training
set size. Since both linear SVM and nearest neighbor classifiers achieved similar results
with the minimum possible training data, despite the “curse of dimensionality” and/or
the peaking phenomenon (Sima and Dougherty, 2008; Elkan, 2011), it indicates that the
DCT features are separated well in the feature space (Elkan, 2011). Moreover, since the
error rate in experiment 2-B has decreased substantially to 0.0025 with the additional

synthetically generated training data, it indicates that:

e The synthetic training data reasonably imitates the degradations generated by the

Print-Scan Channel, at least in terms of the feature space.

e The impact of both the real Print-Scan Channel degradations and the model-based

degradations on the DCT based features are such that the features calculated from
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both the synthetic generated training data and from the real test samples cluster
together in the feature space, but cluster separately to other classes. This in turn
allows the different character classes to be linearly well separated, which translates

to high accuracy by both classifiers.

Both DCT-SVM and DCT-KNN have displayed excellent and very similar accuracy with
a slight advantage to DCT-SVM. Furthermore as discussed in Section 2.2, once the model
is generated, SVM is more efficient. Therefore SVM is the most reasonable choice for the
classifier to pair with the DCT based features.

Since the dimensionality of the features, the size of the training set and different clas-
sifier’s parameters affect the overall accuracy it is required to further evaluate different

combinations of these factors in order to determine the overall optimal configuration.

Conclusion In light of the results obtained in experiments 1 and 2, it is concluded
that both GAMI and CDFD are not suitable for robust character recognition in Print-
Scan degraded noisy documents. On the other hand, DCT has displayed overall excellent
accuracy and an impressive resilience to the substantial Print-Scan noise present in the test
data. Moreover, the DCT is relatively straightforward and fast to compute with the FFT
algorithm, does not require any special prerequisites, and can be conveniently coupled
with all classifiers. Therefore, it is concluded that it is suitable as a shape descriptor for

the purpose of accurately classifying characters in Print-Scan degraded documents images.

However, additional tests are required to optimize the performance of DCT-SVM combi-
nation. In particular, the effect of the dimensionality of the DCT features and amount of
training data on the overall accuracy should be evaluated. Consequently two additional

follow-up experiments are now performed.

4.4.2.6 Experiment 3

The aim of this experiment is to determine the optimal DCT feature dimensionality, when
in a similar manner to experiment 2-B, confusions in the aforementioned similar classes

pairs are not considered as classification errors.
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Table 4.5: The error rates results for the different DCT feature dimensions evaluated in experi-
ment 3. The columns represent the different error rates obtained when changing the selection of

coefficients as features.

5x%5 - 25 Dim | 6x6 - 36 Dim | 7x7 - 49 Dim | 8x8 - 64 Dim | 10x10 - 100 Dim
0.0053 0.0031 0.0031 0.0031 0.0037

The training data was identical to experiment 2-B, comprised of one ideal and 100 syn-
thetically model-based generated 300 DPI rasterized images per character class, a total
of 6,060 images. The SVM classifier was configured with the values specified at Section
4.4.1.3.

Results The error rates resulting from experiment 3 are summarized in Table 4.5. The
columns represent the different error rates obtained when changing the selection of coeffi-
cients as features. In all cases the features selected are the vertical x horizontal low order
coefficients as indicated in the Table. These results show that there is little difference

between the error rates of 6x6, 7x7 and 8x8, with 10x10 somewhat reduced in accuracy.

4.4.2.7 Experiment 4

The aim of this experiment is to further explore different combinations of feature dimen-
sionality and training dataset size, when in a similar manner to experiment 3, confusions

in the aforementioned similar classes pairs are not considered as classification errors.

In all tests the training data is always comprised of one ideal and additional number
of synthetically model-based generated 300 DPI rasterized images per character class as
indicated by Table 4.6. The training set is grown through a method of expansion, which
means that smaller training sets are proper subsets of larger sets. The SVM classifier was

configured with the values specified at Section 4.4.1.3.

Results The error rates resulting from experiment 4 are summarized in Table 4.6. The
columns represent the different error rates obtained when changing the selection of coeffi-
cients as features. In all cases the features selected are the vertical x horizontal low order

coefficients as indicated in the Table.
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Table 4.6: The error rates results for the different DCT feature dimensions evaluated in experi-
ment 4. The columns represent the different error rates obtained when changing the selection of

coefficients as features. The rows represent the amount of training data used to train the classifier.

6x6 - 36 Dim | 8x8 - 64 Dim | 10x10 - 100 Dim
1 ideal 4+ 200 synthetic 0.0037 0.0031 0.0040
1 ideal 4 300 synthetic 0.0043 0.0028 0.0028

Table 4.7: A summary of the error rates results obtained in experiments 3 and 4. The columns
represent the different error rates obtained when changing the selection of coefficients as features.

The rows represent the amount of training data used to train the classifier.

9XH 6x6 <7 8x8 | 10x10
1 ideal + 100 synth | 0.0053 | 0.0031 | 0.0031 | 0.0031 | 0.0037
1 ideal 4 200 synth N/A | 0.0037 N/A | 0.0031 | 0.0040
1 ideal 4 300 synth N/A | 0.0043 N/A | 0.0028 | 0.0028

The results for experiments 3 and 4 are summarized in Table 4.7. The lowest overall error
rate was obtained when using either 8 x8 or 10x 10 low order of DCT coefficients classified
with the linear SVM classifier trained with 1 ideal + 300 synthetic observations per class.
These results show that if the dimensionality of the features is sufficient, then the inclusion
of additional training data improves the overall accuracy, but as the size of the training
sets and the dimensionality of the features continue to grow, the improvement becomes

marginal, as expected.

4.5 Summary

In this Chapter the accuracy of different combinations of shape descriptors and classifiers
was evaluated, with respect to the ideal training observations and with the inclusion of
different model-based synthetic training set sizes. Twelve feature-classifier combinations
in total were evaluated: the three selected shape descriptors: Geometric Affine Moment
Invariants (GAMI), Centroid Distance Function Fourier Descriptors (CDFD) and Discrete
Cosine Transform type II (DCT) when coupled with each of the following four classifiers:
K-Nearest Neighbor (k-NN), Random Forest (RF), Support Vector Machines (SVM) and
Naive Bayes (NB). The evaluation was performed on a uniform test set taken from real

scanned documents images.
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The experiments show, that both GAMI and CDFD are not suitable for robust charac-
ter recognition in Print-Scan degraded noisy documents. The results suggest that GAMI
features are linearly inseparable in Hilbert Space and therefore attempts to perform gen-
eralization of the decision by a perceptron classifier such as linear SVM results in high
error rates. CDFD display poor results probably due to the substantial corruption in the
boundary of the characters when high levels of Print-Scan corruption is present, in addi-
tion to the significant loss of information occurring once the phase information is discarded

when calculating the invariants {b,}.

Fourier descriptors were suggested to be used as the main shape feature in the content-
based verification system suggested by Ming et al. (2007). However, due the observed
poor performance of CDFD in the experiments performed as part of this thesis, the system
suggested by Ming et al. (2007) would suffer a high false rejection rate under conditions
of significant Print-Scan degradation. This is due to the inherent problems of perimeter-
based character recognition in noisy conditions such as the self-joining of and breaking of

characters part which result in substantial changes to the perimeter of the shape.

On the other hand, DCT has displayed overall excellent accuracy with all classifiers and an
impressive resilience to the substantial Print-Scan noise present in the test data. From all
of the evaluated classifiers combinations, both DCT-SVM and DCT-KNN have displayed
outstanding and very close accuracy with a slight advantage to DCT-SVM. It is interesting
that even when the training set was comprised of only one ideal observation per class,
DCT still achieved reasonable accuracy. Furthermore, with the inclusion of additional
model-based synthetic generated training data a substantial decrease in the error rate
down to 0.0028 was observed. Therefore, it is concluded that (i) the synthetic training
data reasonably imitates the degradations generated by the Print-Scan Channel, at least in
terms of the feature space; (4i) the impact of both the real Print-Scan Channel degradations
and the model-based degradations on the DCT based features are such that the features
calculated from both the synthetic generated training data and from the real test samples
cluster together in the feature space, but cluster separately to other classes. This in turn
allows the different character classes to be linearly well separated, which translates to high

accuracy by both classifiers.

Moreover, the DCT is relatively straightforward and fast to compute with the FFT algo-
rithm, does not require any special prerequisites, and can be conveniently coupled with all
classifiers. Therefore, it is concluded that the DCT is suitable as a shape descriptor for the

purpose of accurately classifying characters in Print-Scan degraded documents images.

The best overall results were achieved by the DCT-SVM when features were comprised of
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the 8x8 low order DCT coefficients classified using linear SVM trained with 1 ideal + 300
synthetic observations per class. Therefore it is concluded that this combination is to be

used in the proposed framework and taken forward to Chapter 5.
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Chapter 5

Verification-Driven Segmentation
in Print-Scan Degraded

Documents

In the previous Chapter, evaluation of shape features and classifiers suitable for recognition
of characters in noisy Print-Scan degraded documents was performed. It was concluded
that DCT-based shape features classified by the Support Vector Machines classifier are

suitable for successfully recognizing characters in noisy print scan degraded documents.

In this Chapter, a detailed discussion of the methods used for performing verification
of noisy documents images is given. This Chapter commences by presenting the typical
characteristic phenomenon occurring in degraded document images. Following are the
descriptions of the varied methods used for performing verification and for overcoming the
characteristic difficulties found in noisy documents images. And finally, the results of an

empirical evaluation of the proposed framework are presented and discussed.

5.1 Inherent and Degradation Related Characteristic Phe-

nomenon in Document Images

Accurate classification of individual symbols in the presence of increased degradation is
necessary for automatic robust document verification but is not sufficient on its own for
performing accurate verification. Real life Print-Scan Channel degraded document images
frequently require handling additional complications due to the inherent nature of the

documents or due to degradation related characteristic phenomenon such as:

e Transformations.

e Multipart characters.
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e Broken characters.

e Joined characters.

The following Sections discuss each of these issues and explore their effects and extent
on scanned document images in order to define the problems that must be resolved for

achieving a successful verification framework.

Before continuing the discussion, note that throughout the remains of this Chapter, un-
less otherwise specifically noted, the examples given in the figures were taken from test
documents featuring Times New Roman 12 point font. The documents were printed and
scanned repeatedly three times in order to produce significant levels of Print-Scan degra-
dation using a HP 7500A model standard inkjet consumer all-in-one printer and scanner
on standard general use office paper. The printing was done using the default standard set-
tings, and the scanning was performed using 300 DPI grayscale settings. These examples

are 400% magnified binarized characters taken from the aforementioned documents.

In addition, the term “false-positives” is defined as verification errors where characters that
were not changed are determined to have been changed. And the term “false-negatives”
is defined as inobservance of changes in characters, or in other words, failure to detect

tampered characters by the verification system.

5.1.1 Transformations

The printing and scanning of the documents presented for verification are occurring outside
of the domain of the system, being performed by a human user with access to printed
copies of the original document. Moreover, it is possible that the document has been
printed and scanned multiple times before being presented for verification. Hence there
are many unknown factors which affect the properties of the Print-Scan Channel and
therefore the final channel’s output (e.g. the scanned document image which is presented
for verification). One class of degradations that are of particular interest are the global
affine transformations occurring in the document image such as translation, scaling, skew
and rotation as they can significantly change the shape, location and orientation of the
characters in the verified document image. These transformations are caused by a myriad
of user related and physical factors which affect the final image produced by the print-
scan process (Baird, 2000; Lins, 2009). However, from all of the contributing factors there
are a number which are dominant in particular in their contribution to transformations,

specifically:
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e The number of print-scan repetitions which may result in accumulated transforma-

tions.
e Paper positioning.

e The type of equipment used for printing and scanning and the physical properties

and/or the operational settings of the printing and scanning equipment.

These factors and their large number of resulting transformations imply that theoretically
no two Print-Scan Channel’s outcomes are identical (Zhu et al., 2003). Furthermore, some
of the prominent global linear conformal transformations translation, scaling and rotation

must be estimated and corrected for the following reasons:

e The shape descriptor selected in this thesis, 2-D DCT 11, is sensitive to rotation and
therefore substantial rotation could potentially result in deterioration of classification

accuracy.

e Some character pairs such as ‘d’-‘p’, ‘m’-‘w’, ‘6’-‘9’, ‘\’-/” and ‘(’-‘)’ for example,
can be considered very similar but rotated version of one another, therefore if the

rotation is substantial enough, these characters change their perceptual meaning.

e Translation, rotation and scaling result in changes of the location and size of the
characters. As explained in Section 5.2.5, the expected location and dimensions of
the characters stored by the DDM is used to assist in the accurate segmentation of
the document image to separate characters. Furthermore, the characters recognized
in the document image are compared against the characters expected to be found,
and any discrepancies cause the document to be rejected. Therefore, it is important
that the characters in the document image would be located as close as possible to

their expected ideal locations.

A description of how the linear conformal transformations discussed above are estimated

and corrected is given in Section 5.2.2.1.

5.1.2 Multipart Characters

Characters may be comprised of several parts, where some or all of the parts are different
in shape. In the English language the following characters are examples of multi-part

characters: ‘i’ and ‘j° from the alphanumeric group; colon, semicolon, question-mark,
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exclamation and quotation-marks from the punctuation group; and percentage and equal

symbols from the special characters group.

Recognizing multipart characters cannot usually be performed by using only basic shape
recognition techniques such as the techniques discussed in Section 2.1 because these rely
on lower level pre-processing techniques such as connected components analysis to segment
and extract symbols. While standard shape recognition methods may be used to recognize
the different characters’ parts, some higher level logic must be applied to recognize the
character as the sum of its parts. This task might be further complicated if any of the
parts break down into smaller fragments due to degradation, which is discussed in details

in Section 5.1.3 below.

5.1.3 Broken Characters

As shown in Figure 4.4 (which is brought here again for convenience as Figure 5.1), with
each repeating printing and scanning cycle, more irregularities are formed in the charac-
ters. These irregularities manifest both in the shape’s region and at the shape’s boundary.
Moreover, the contrast between the characters and the paper (foreground and background
pixel populations) is diminished with each repeating print-scan cycle. This is expressed
in increased overlapping between the intensity levels of the foreground’s and background’s
pixels and increases the separation error or equivalently decreases the separation effective-

ness achieved by binarization methods.

To provide a quantitative insight into the effects of degradation on binarization, Table 5.1
shows the optimal threshold value and the separation effectiveness n* as defined in Equa-
tions (1)-(15) of Otsu (1979) for a document image in five levels of degradation, starting
at the ideal document image (zero print-scans) and up to four repeating accumulated
print-scan cycles. It can be observed that both values decrease steadily as the degradation

levels increase. These values confirm the observations previously made in this Section.
Due to this phenomenon, as the level of degradation increases, binarized characters are

more often erroneously segmented to several disjoint character fragments. In Figure 5.2,

examples of characters broken into two or more fragments are given.
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Figure 5.1: (A repeat of Figure 4.4) The cumulative degradation generated after each additional
print-scan cycle is shown in increasing order from (a) to (c).

sGbegisGbeg
todelqtodeldtodels
sOIno|sOIno|sOlno
GaryZ4Gary4Gary/
InUnglinUnglinUng

w7 o W Dl w7 o Y30 | x7 » %57 T
(a) (b) (c)

sGbeg

Table 5.1: The calculated optimal threshold value and the separation effectiveness n* as defined in
Equations (1)-(15) of Otsu (1979) for a document image in five levels of print-scan degradation,

starting at the ideal document image (0 print-scan) and up to four repeating accumulated print-scan
cycles.

0 print-scan

1 print-scan

2 print-scan

3 print-scan

4 print-scan

Threshold

0.4980

0.4294

0.4020

0.3784

0.3725

*

Ui

0.9705

0.9622

0.9482

0.9310

0.9153
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Figure 5.2: Examples of characters broken into two or more fragments taken from real scanned

document image.

(@) (b) © (© 43) (@

@
i k3

Cnhiugil

The main difference between broken characters and multipart characters lies in the non-
deterministic nature of the breaking process that result from a combination of stochastic
irregularities in the brightness levels of groups of pixels and selection of binarization thresh-
old value. Therefore, the resulting character segments may be created in a multitude of
combinations of highly varied shapes and forms. This is in contrast to the multipart char-
acters which in most cases can be assumed to follow a known pattern of composition of

expected parts.

5.1.4 Joined Characters

The joining of characters can occur due to two different main scenarios referred to as Type

I Joins and Type II Joins in this thesis.

Type I Joins are the joining of characters due to their placement in the digital document.
Depending on the characters’ size, shape and location, certain characters are placed in the
document in such way they are drawn one on top of the other. In Figure 5.3, examples
of 400% magnified and binarized Times New Roman 12 point font characters taken from
an ideal noiseless digital image are given. Whilst most of the Type I joins are only due to
a narrow “bridge” connecting the neighboring characters, this would be enough to cause
connected components labeling to return a single blob that actually represents two or more
characters. Type I joins cannot be ignored since they occur in the ideal document image,

which is the basis for the printed document image.

In contrast, Type II Joins occur due to the increasing levels of noise and irregularities that

are introduced by the repetitive print-scan cycles which occasionally result in the
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Figure 5.3: Ezxamples of 400% magnified and binarized ideal Type I joined characters in the Times
New Roman 12 point font.

(a) (b) (c)

(d) (e) ®

thickening of the binarized characters’ strokes, especially in places where the distance
between neighboring characters is relatively small. As a result the gap between neighboring
characters is diminished so that after binarization the two characters are joined to form
a single connected component. Examples of joined characters due to Print-Scan Channel

degradation are given in Figure 5.4.

To illustrate the phenomenon of joined characters, a measurement was performed as part
of this thesis. It has been observed that the occurrence of joined characters increases
substantially with each additional print-scan cycle. The number of occurrences of joined
characters and the mean number of characters joined per occurrence (chain length), were
measured in a document comprised of 974 characters in the Times New Roman 12 point
font. The measurement was performed on the ideal noiseless document bitmap image as
well as on four scanned document images featuring four different levels of corruption ob-
tained by repetitively printing and scanning the document up to four times. The threshold
value for each document was determined globally using Otsu’s method (Otsu, 1979). The
results of this measurement are summarized in Table 5.2. Note that 0 print-scan refers to

the ideal noiseless bitmap representation of the digital document.
These measurements clearly show that under the terms of this experiment, even the ideal

noiseless bitmap representation of the digital document suffers from joined characters

occurrences due to Type I Joins. Furthermore, there is a rapid increase in the number
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Figure 5.4: Ezamples of 400% magnified and binarized print-scan degraded Type II joined char-

acters in the Times New Roman 12 point font.

(a) (b)

(©)

(d)

Table 5.2: The number of joined characters occurrences and the mean length of the joined char-
acters chains in a print-scan degraded document image in five levels of print-scan degradation,
starting at the ideal document image (0 print-scan) and up to four repeating accumulated print-

scan cycles.

0 print-scan

1 print-scan

2 print-scan

3 print-scan

4 print-scan

Occurrences

16

34

94

191

243

Mean chain len

2.0625

2.1176

2.1915

2.2723

2.5679

of Type II Joins and in the average length of the joined characters chains as the level of
degradation increases. The test document of 974 characters was grouped in 168 words,
with an average word length of 5.7976. These results imply that after as little as three
repetitive print-scan cycles, with a very high probability, most, if not all of the words in

the document suffer from one or more occurrence of joined characters.

The increased frequency of joined character occurrences, can be explained by the physical
properties of the Print-Scan Channel such as defocusing (point spread function) and the
way in which the spreading and/or smearing of ink/toner occurs in the paper (Baird,
2000; Eikvil, 1993). It is however important to note that the number of joined characters
in a particular document depends on many factors such as the font type used, document

formatting, printing and scanning technology and settings, threshold selection method
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Figure 5.5: Ilustration of character joins that result in new shapes that resemble other characters.
(a) (b) 1 (d)
rm-m |cl-d |\/-V|rt-n
(e) ® 1 d ° o (2) ()
vv-w ol-d | 1n-u|ll-U

and other factors. Therefore, the results obtained as part of these measurements do not
necessarily accurately apply to all document images, however it serves to highlight the

potential scale of the problem.

Furthermore, another issue of significance resulting from joining of neighboring characters
is the phenomenon where the new shape produced by the join perceptually resembles a
different character in the “legitimate” character set. This phenomenon depends on factors
such as font type, page formatting and the location where the joining occurs. For example
consider the following combinations 200% magnified 300 DPI ideal Times new Roman 12

point font given in Figure 5.5.

Such combinations impose additional complexity in the segmentation and classification
stages since their presence increases the number of different segmentation and classification
possibilities for a give chain of joined characters and therefore are likely to contribute to

increased recognition errors.

5.1.5 Change in Perceptual Identity

Change in perceptual identity of characters due to Print-Scan Channel noise is the phe-
nomenon where the character is transformed into a new shape that perceptually resembles
a different character in the “legitimate” character set. The following Sections expand upon
this phenomenon and discuss two common scenarios that may result in a change to the

perceptual identity of a printed and scanned character: self-joining and opening of holes.
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5.1.5.1 Self-Joining

Self-joining in characters is the phenomenon where two or more near but separated areas
of a character are bridged. Self-joining typically occurs due to the increasing levels of
noise and irregularities that are introduced with increasing levels of degradation which
occasionally result in the thickening of the binarized characters’ strokes, especially in
places where the distance between the character’s parts is relatively small. Self-joining
typically results in the formation of new holes in affected characters. Examples of self-
joining can be observed in Figures 5.6 (a), 5.6 (b), 5.6 (d) and 5.6 (e).

5.1.5.2 Opening of Holes

Another characteristic phenomenon which is essentially the opposite of self-joining is the
elimination of holes which occur when a character’s region, usually thin, is transformed

from foreground to background when binarization is applied.

Even when the change in the affected character is small, these types of defects can have a
substantial impact on some of the shape descriptors such as the boundary based Fourier
descriptors and on other global features such as Euler number which together are a major
part of the recognition methods used in the verification method suggested by Ming et al.
(2007) (see Section 4.4.2.5). Moreover in cases where the change is sufficiently large this
type of defects may potentially perceptually change a character’s meaning such as can be
observed in the character pairs of Figures 5.6 (c), 5.6 (e) and 5.6 (f), where ‘B’ become

’ is almost completely morphed to ‘c’.

similar to ‘R’, ‘s’ become similar to ‘8’, and ‘e
Moreover, these type of defects can also create new invalid symbols as can be observed in
)

Figures 5.6 (a), 5.6 (b) and 5.6 (m).

As can be observed these types of defects can perceptually change the meaning of the
character to become a completely invalid symbol, or morph towards a different symbol. In
cases where these defects change the shape of the character substantially it usually leads
to classification errors that, from a verification point of view, are in fact justified in the
cases of substantial character changes. Therefore these false-positive classification errors
would translate to local rejection of the verified documents which could then be further
inspected by a human operator and be confirmed or rejected. This is preferable over the
problem of false-negatives in which intentional tampering or other substantial changes to
the document are not detected, which is naturally much harder to detect by a human

operator.
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Figure 5.6: Ezxamples of 400% magnified binarized characters from real document images resulting

in self-joining, and elimination or formation of new holes.

a d €
(@) {b) © CY (o) 4]

In the next Section a detailed discussion of the methods suggested to solve the aforemen-

tioned issues is given.

5.2 Proposed Approach

In this Section, the methods used in the framework are discussed. This includes meth-
ods for segmentation and classification that are proposed to overcome the aforementioned
inherent difficulties and characteristic phenomenon that occur in Print-Scan Channel de-

graded document images as described in Section 5.1.

5.2.1 Identifying the Verified Document

To perform recognition, the document image must be identified as a printed copy of a
digital document as a basis for comparison and the corresponding DDM must be retrieved.
As discussed in Section 3.1.2, the information identifying the document and/or the DDM

can be stored in a secure manner on the document in the form of a 2-D barcode.

5.2.2 Pre-Processing

Considering the scanned document image is a transformed and noisy variant of the ideal
noiseless document image a number of different low-level techniques are employed in order
to assist with achieving a number of crucial tasks such as the proper alignment of the

scanned image, the separation of the foreground from the background, the suppression of
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noise and the segmentation of the characters. These methods are commonly cumulatively

discussed under the “pre-processing” umbrella term.

5.2.2.1 Estimation and Correction of Global Linear Conformal Transforma-

tions

Accurate image registration is required by the segmentation algorithm and for verifying
the perceived symbols in the document by matching against the original digital document
contents. In the current implementation, special graphic symbols are embedded on the
document (usually at the corners of the document) to assist with the estimation and cor-
rection of global document transformations scale, rotation and translation (see Section
3.3.2 for details). The locations and shape(s) of these embedded designated graphic sym-
bols may be unique for each document and as such they may be stored as part of the
DDM. However, other methods exist for image registration such as RANSAC (Fischler
and Bolles, 1981) which do not necessarily require the aid of any modifications to the
document to perform registration of the scanned document image with the ideal docu-
ment image, but at the cost of computational complexity and possibly lower accuracy in

registration.

5.2.2.2 Binarization

In the implemented test system, the global binarization threshold is calculated using Otsu’s
method (Otsu, 1979), which was found to give satisfactory results. However, other local or
global methods such as the methods discussed in Sahoo et al. (1988); Pal and Pal (1993);
Trier and Taxt (1995); Garain et al. (2006) can be used if the input documents images
to the system are unevenly illuminated or otherwise suffer from brightness intensity of
the characters and/or paper not being uniform. Table 5.1 in Section 5.1.3 provides a
quantitative measurement of the effects of degradation on binarization. Table 5.1 shows
the optimal threshold value and the separation effectiveness n* as defined in Equations
(1)-(15) of Otsu (1979) for a document image in five levels of degradation, starting at the
ideal document image (zero print-scans) and up to four repeating accumulated print-scan
cycles. It can be observed that both values decrease steadily as the degradation levels
increase. In addition, to give a visual illustration of binarization, Figures 5.7 (a) and 5.6
(b) show the binarization output using Otsu’s method on a complete scaled down grayscale

document.

108



Figure 5.7: Illustration of the effects of binarization using Otsu’s method. (a) Entire grayscale
document scaled down before binarization. The colors represent different grayscale values. (b) The

same document after binarization.

(2) (b)

Former Prime Minister Khaleda Zia, also chief of Bangladesh Nationalist Party, earlier
this month asked party members (o take o the sireets demanding the resignation of the
government.

The elections nezd to be held under an i caretaker ‘the electi
will be rigged if it's held under any political government, said Zia, the arch rival of
present, Prime Minister Sheikh Hasina.

She said the g failed to run th country properly and criticized the
government forcign policy saying the ruling Awami League government had become

vvvvv subservient towards Indie.

Police said initialy they had used clubs o disperse the protestors, but as mobs turned
violent attacking policemen, they fired bullets and tear gas shells.

‘The Bungladesh Nationalist Party claimed several hundreds of its activists were injured
and many more were detained jo different parts of the country.

‘The ruling pariy itself is creating anarchy in the country by using police to foil the
opposition’s peaceful democratic program, BNP Secretary General Mirza Fakhrul Islam
Alamgir ssid.

5.2.2.3 Extraction of Connected Components

Extraction of connected components (CCs) from the binarized document image is per-
formed by connected components analysis according to the algorithm outlined in Haralick
and Shapiro (1993). The accuracy of connected components analysis for the segmentation
is closely dependent on the level of noise in the document. Table 5.2 in Section 5.1.4
shows the results of a measurement of the number of joined characters occurrences and
the mean chain length for the same document in different levels of corruption. It has
been observed that the occurrence of joined characters increases substantially with each

additional print-scan cycle.

After the CCs are extracted, a filtering process based on the area of the CCs is carried
where CCs that are smaller than n pixels are discarded. This is performed to remove to
remove small noise artifacts which are occasionally created after binarization. In general, if
this step is skipped the proposed framework’s accuracy does not tend to suffer, however in
heavily degraded documents filtering of very small CCs helps to speed up calculations. In

the test implementation n = 5 was used in practice and satisfactory results were obtained.
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5.2.2.4 Morphological Closing

Prior to classification, the morphological closing operation (morphological dilation followed
by erosion) is applied to all CCs using a disk shaped structuring element with a radius of
two pixels (Milan et al., 2007). The morphological closing operation has been observed in
experiments performed as part of this thesis to slightly increase the DCT features based
classification accuracy in noisy documents without any observed negative side effects and

therefore was applied to all CCs prior to classification.

In order to measure the effects of adding post binarization morphological closing on classi-
fication accuracy, an experiment similar to Experiment 1-B Section 4.4.2.2 was performed.
This measurement was identical to Experiment 1-B Section 4.4.2.2 except for the follow-
ing differences: (i) this experiment was performed only for the DCT-SVM pair and; (%i)
morphological closing was performed on the binarized characters with a 2 pixel radius
disk shaped structuring element. As a result of applying post binarization morphological
closing, the measured error rate was reduced from 0.025 (see Table 4.2 Section 4.4.2.2) to
0.0206.

5.2.3 Affiliation of Connected Components with DDM Characters

The verification of a document image requires comparing the type and location of the
perceived characters in the document image with the expected document contents stored
in the DDM. One such way of doing so is the generation of a mapping between the two
sets. Therefore it follows that a text document image is considered to be verified if and
only if a satisfactory bijection exists from the set of symbols perceived in the document
image to the set of expected characters in the digital document (as encoded in the DDM)

so that the following conditions are maintained:

e The relative or absolute locations of the perceived characters in the document image

are in agreement with the locations of their paired characters in the digital document.

e The relative or absolute sizes of the perceived characters in the document image are

in agreement with the locations of their paired characters in the digital document.

e The classes of the perceived characters in the document image are in agreement with

the classes of their paired characters in the digital document.
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The score for a particular connected component denoted as C'C to be affiliated with a

particular character in the digital document is given by Equation (5.1).

NIP

~op S (5.1)

plaffiliated) =

Where NIP is the number of pixels in the intersection of the bounding boxes of C'C' and
the character in the DDM, NCP is the number of pixels contained in the bounding box of
the character in the DDM, and S = 0 if C'C' is suspected of being a joined CC comprised
of two or more characters (detection of joined characters is discussed in Section 5.2.5.1)
or S = 1 otherwise. The DDM character which scores the highest positive score is then
affiliated to the CC. By letting S = 0, a score of zero is calculated for CCs which are
suspected of being joined characters since it is of interest to build a bijection that includes

only fully segmented characters.

It follows from Equation (5.1) that the score for non-intersecting DDM characters and
CCs of being affiliated is zero, so that a maximum affiliation distance threshold between
a CC and a DDM character is implicitly defined.

Therefore, to perform the pairing efficiently it is sufficient to perform the score calculation
only for characters in the DDM whose bounding boxes intersect with the CC. An efficient
search for the intersecting characters can be performed using a quad-tree or by intersecting

of the output sets given by two interval trees, one for each axis.

The method of mapping by a greedy maximum shared area requires accurate registration
between the scanned document image and the ideal document image to work well. It is
not practical to expect the registration between the two images to be pixel level accurate.
For this reason the method performs well since it allows for some degree of error in the
registration between the two images while at the same time requiring a high level of relative
fidelity of the scanned document image to the ideal document image. If the two images are
inconsistent with one another, an exact matching between all of the CCs in the scanned

document image to the characters in the DDM would fail with a very high probability.

The affiliation between the two sets is updated as necessary when the set of CCs is updated
due to the segmentation process. For example, when a CC is separated into two or
more smaller CCs, as in the case of segmenting joined characters, the old segmented CC
affiliation is deleted, and the new segmented CCs are affiliated with their corresponding

pairs if any adequate characters are found in the DDM.
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5.2.4 Classification

To classify the CCs extracted from the document, an adaptive hierarchical linear kernel
SVM /template matching classifier is used. First an adaptive font-specific SVM is applied,
then common mismatches due to the perceptually similar symbols are disambiguated using
template matching. The different stages and concepts related to the adaptive hierarchical

classifier are explained in more detail in the following Sections.

5.2.4.1 Adaptive Classification

Many OCR algorithms suggested in the literature use a single classifier model approach
where a single set of features and classification technique are used for recognizing every
test observation (Park et al., 2000; Mori et al., 1995; Nagy, 1992; Mantas, 1986). The
single model approach becomes problematic in multi-font and/or multilingual scenarios
when the number of classes increases substantially as it leads to lower accuracy and higher
computational complexity which may also translate to longer classification time per sym-
bol (Kahan et al., 1987; Oztiirk et al., 2001; Nagy, 1992). The problem of decreased
accuracy due to the increase in number of classes is of a particular interest in this thesis
since achieving sufficient performance for a verification system heavily relies on accurate
classification. To address this issue different techniques have been suggested where an
adaptive classifier is used to dynamically reduce the number of overall classes to choose
from. One such way is attempting to recognize the font and/or language and then use the
appropriate model to perform classification of the single recognized font (Oztﬁrk et al.,
2001). Another suggested method is by using a varying scale hierarchical adaptive classi-
fier that with each iteration increases the image resolution in areas of interest and reduces
the number of classes to consider (Park et al., 2000). Bootstrap methods that use the con-
tent of the document itself to improve classification has also been explored (Nagy, 1992;
Smith, 2007).

The classifier used in this framework is an adaptive classifier that can dynamically select
its decision model as required. The motivation of this approach is that by decreasing
the number of overall possible output classes to choose from, higher accuracy and lower
computational complexity (faster running time) can be achieved. Since the framework has
prior knowledge about the document available in the DDM it can be used to adapt the

classifier thus reducing the total number of candidate classes.
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In the proposed method, prior to classifying a CC, the classifier checks if the CC is affiliated
with any particular character in the DDM. If the CC is affiliated then the classifier switches
to the relevant model for the particular font type which is expected to be found according to
the DDM (if it is not the active model at that point already). Since the different models for
each font type are computed once during the training stage and are stored on the verifying
machine, the action of switching between different models is relatively fast as no new model
calculations are required. Moreover, text documents usually feature a small number of
font types, and do not switch frequently between the different font types. Therefore, active
switching of models by the classifier does not impose a significant overhead in common
text documents. Alternatively, if the CC is not affiliated with any character in the DDM,
then the classifier uses the model representing the neighboring characters’ font type or
the most frequent font in the document if there are no immediate neighbors (or if the
neighbors are of different font types). To perform this process efficiently, the CCs may
be grouped according to their expected font type before every classification cycle thus

minimizing the number of overall model replacements.

5.2.4.2 Features, Training Data and SVM Configuration

The adaptive linear kernel SVM classifier is trained with the synthetic data generated
by the Print-Scan degradation model defined in Baird (1995) and uses the DCT shape
description features as defined in Sections 4.3.2 and 4.4.1.2. The training set is comprised
of one ideal plus 300 synthetically generated 300 DPI rasterized images per character class,
and the DCT coefficients which are used as features are the 8x8 low order coefficients as

concluded to be most effective in Section 4.5.

The SVM classifier is configured with the following options:

e Trained using SMO algorithm (Platt, 1998).
e Multi-class classification solved using pair wise classification (Krebel, 1999).
e Standard inner product kernel (linear kernel).

e All components are standard score normalized, z; = (x; — pu)/o, where z; is the
normalized component, x; is the raw non normalized component, u is the mean

value of the component and o is the standard deviation of the component.

In the implementation of the system used for experiments the SVM classifier implemented
by Witten and Frank (1999) was used.
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5.2.4.3 Second Tier Classification by Template Matching

Perceptual similarity between different character classes typically occur due to lower-
case/uppercase character’s similarity and may even occur between two “unrelated” classes
as in the case of lowercase el - ‘I’ and the digit one ‘1’ in the Times New Roman font (see
Section 4.4.2.2 and Figures 4.8 and 4.9). In most cases the differences between these per-
ceptually similar characters are very subtle to the extent that in some cases these classes
are hardly separable even by humans if no context information is given. In this frame-
work, the character image dimensions are normalized prior to the DCT shape features
calculation and moreover do not consider any context information for generating features.
Therefore, the DCT features calculated for these perceptually similar characters are very

close and these classes are often misclassified with their similar counterparts.

To solve this problem a list of perceptually similar class sets such as such as {‘X’, ‘x’} and
{‘P’, ‘p’} is defined and stored for each font. Now consider the event that according to the
DDM a particular CC (herein after denoted as C'C) is expected to be classified as a certain
class C, € G, where G, is a particular set of perceptually similar classes. However it is
instead classified by the SVM classifier as any of the other similarly perceptual classes in its
group Cy € G = # y. In such cases it is reasonable to assume that confusion has occurred
due to the similarity between the classes, thus a second tier classification by template
matching is performed in order to improve the distinction between the perceptually similar

classes.

The template matching classification is performed by calculating the normalized cross-
correlation of the misclassified CC' (test pattern) with the ideal binary templates h,, rep-
resenting respectively all C}, € G, perceptually similar classes in that particular group

which is given by Equation (5.2).

Ry(ab) = 1 Miwf (CC(m,n) = CO)(hy(y +a,x +b) — by
PR _Ma*Na—i-Mb*Nb—l OccOhp

m=0 n=0

(5.2)
where p =1,2,...,|Ge|, CC is M, x N, pixels, hy is My x Nj, pixels, 0 < a < M, + M, —1,
0<b< N,+N,—1,CC and l“Tp are the mean of CC' and h,, respectively, o.. and oy, are

the standard deviation of C'C' and h,, respectively.

Following the calculation of all {R,(a,b) | p = 1,2,...,|G¢|}, the maximum achieved
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normalized cross-correlation scalar values between the CC and all other templates {h,} is
determined for each template {R,(a,b) | p =1,2,...,|G¢|} which is denoted as RMAX,
where RM AX, = max(R,) for all {R,}.

Next, to assist in reducing marginal confusions, the difference d between the two maximum
valued {RMAX,}, d = RMAX 00 — RMAX 422 is calculated, where

RMAX 4, = argmax({RMAX)}) is the largest valued {RM AX,}, and

RMAX 00 = argmax({ RMAX, }\{RM AX 4, }) is the second largest valued { RM AX),}.

Two possible scenarios are distinguished depending on the value of d. Consider the case
where d = RMAX g0 — RM AX a2 is a small number. A small d value indicates that
at least two ideal binary templates were found to be closely matched to the classified
pattern C'C' in the group and therefore the results could be within the range of statistical
error which is caused due to the Print-Scan Channel degradation. On the other hand, if
d is sufficiently large it is an indication that the best matching template has substantially
more resemblance to the test pattern CC than to all other templates in the perceptually
similar group Ge. In the test implementation the value of 0.08 was selected for d based on

empirical results.

In addition to d, another important indication is the value of RM A X4, in absolute terms.
Higher values of RM AX 4, indicate higher similarity between the test pattern CC and
the best matching template, and lower values of RM AX,,,, indicate the opposite.

Therefore, the result of the template matching is considered in light of four parameters,
the classification results of the SVM, the expected class in the DDM, the values of d and

the value of RM AX 4, To reach the final conclusion the following logic rules are applied:

e Suppose that the DDM indicates a particular lowercase character is expected, how-
ever the SVM classifier has classified the CC' as its uppercase perceptually similar
counterpart. Then provided that both d and RM AX,,,, are sufficiently large, and
the results of the normalized cross-correlation show there is higher cross-correlation
with the uppercase character variant, then the decision of the SVM classifier is over-
ruled and the C'C is marked as the uppercase version of the character. The exact
same logic is applied in the opposite case where according to the DDM a particular
uppercase character is expected, however the SVM classifier classifies the CC as its

lowercase perceptually similar counterpart.

e For all other cases which are not expected to be a lowercase-uppercase confusion,

the following logic is applied. If both d and RM AX,,., are sufficiently large the
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results of the cross-correlation overrule the classification, if d is not sufficiently large
then the SVM output is taken as the final classification.

5.2.5 Segmentation

As discussed in Section 2.5, most OCR systems work reasonably well in mildly noisy
modern documents images. However, OCR in low-quality or degraded documents images
is more error prone due to the high frequency of broken and joined characters occurrence

as discussed in Section 5.1.

Both Vinicius et al. (2007) and Ming et al. (2007) who suggested frameworks for verifica-
tion of document images have not explicitly addressed the segmentation problem. Vinicius
et al. (2007) suggested using a general OCR engine in order to segment and classify the
characters and/or words in the documents images, therefore he implicitly makes the as-
sumption that such general OCR systems can solve this issue with sufficient accuracy as
required by a verification system. On the other hand, Ming et al. (2007) chose to ig-
nore the issue completely. However, as previously discussed in Sections 5.1.3 and 5.1.4,
joined and broken characters are common in document images, and the frequency of such
occurrences rises very quickly when the levels of degradation increases. Therefore, it is
reasonable to assume that the system proposed by Ming et al. (2007) could not possibly

achieve reasonable results on the degraded documents studied in this thesis.

Achieving error-free segmentation with no prior information about the document’s con-
tents is still an unresolved problem. However, since the proposed system has the advantage
that it can obtain information about the documents’ contents it is suggested to utilize this
knowledge for the purpose of high segmentation accuracy. Nevertheless, it is important to
remember that any such usage must still rely in principle on the contents of the document
image, so that if any changes are in fact introduced to the document, either by means of

natural degradations or malicious tampering, they would still be detected by the system.

As explained in Chapter 3, the suggested verification framework extracts and stores in-
formation about the location and font type of the expected characters in the document
(which is referred to DDM). The extraction of the DDM is performed at the last authoring

stage, once the document is finalized and ready for print.

To solve the problem of broken and joined characters a multi-phase method is suggested
in which both the classifier output and prior knowledge of document contents are consid-

ered in the different decision making stages, which is described in detail in the following
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Sections.

5.2.5.1 Detection of Joined Characters

The aim of this procedure is to detect and flag all CCs which are suspected to be comprised
of joined characters and estimate how many and which characters (complete or partial)
each suspected joined characters CC is comprised of. To check whether a particular CC
is suspected to be comprised of a number of joined characters, a search is performed in
the DDM for the ideal characters in the ideal digital document whose bounding boxes
intersect with the bounding box of the respective CC. An efficient search of the DDM for
the intersecting characters can be performed using a quad-tree or by intersecting of the

output sets given by two interval trees, one for each axis.

The existence of intersection between the CC’s bounding box and multiple DDM charac-
ters bounding boxes is not sufficient by itself as the only criteria. The reason is that the
Print-Scan induced global transformations in the document image which are estimated
and corrected by the methods presented in Section 3.3.2 are not corrected to pixel accu-
racy. As the level of degradation grows due to multiple print-scan cycles, the accuracy of
transformations estimation will worsen due to the repeated accumulated transformations
that occur in each print-scan cycle. Therefore even after correction of estimated trans-
formations, the bounding boxes may still be spatially shifted a small number of pixels in
any direction independently for each character relative to their ideal expected location.
Therefore, the intersection with multiple DDM bounding boxes is not a sufficient criterion

on its own for flagging a CC as suspected of containing joined characters.

To solve this problem, for each character in the DDM whose bounding box is found to
intersect the CC’s bounding box, the vertical (rows) intersection ratio (denoted as VIR)
and the horizontal (columns) intersection ratio (denoted as HIR) are calculated as given
by Equations (5.3) and (5.4) .

NIR
VIR = 5.3
min{ T, character_height}) (5:3)

NIC
HIR = 5.4
i min{T, character_width}) (54)

Where NIR and NIC are the number of intersecting rows and columns respectively
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between the current intersected character’s bounding box and the CC’s bounding box. T
is a value selected per font type which guarantees a minimum rate of growth for VIR
and HIR as functions of NIR and NIC respectively. In other words 7' increases the
sensitivity of Equations (5.3) and (5.4) to wide and/or tall characters.

If both VIR and HIR exceed the vertical and horizontal thresholds r, and rj, respectively,

the character is added to the chain of joined characters.

To illustrate the need for T', consider the Times New Roman 12 point font ‘M’ and ‘i’

characters in Figure 5.8, taken from a 300 dpi scan.

The width of ‘M’ is 43 pixels, and the width of ‘i’ is only 8 pixels. Therefore a horizontal
overlap of the CC’s bounding box and the DDM character of 4 pixels would evaluate to 0.5
in ‘1" and to 0.093 in ‘M’ if only the ratio NIC/character_width was considered. Therefore
the inclusion of 1" as a maximum value for the denominator compensates for the decrease
in the value of Equation (5.4) in wider characters. For example, in the case of ‘M’, with
T = 15, Equation (5.4) evaluates to 0.266 instead of 0.093.

In Figure 5.9 (a), a CC comprised of the two joined characters ‘n’ and ‘t’ is shown. This
CC was taken from one of the test documents after the estimation and correction of global
transformations. To the right of it in Figure 5.9 (b), the word “month” is displayed with
the ideal DDM bounding boxes drawn superimposed. It can be observed that the left
most pixels of ‘n’ penetrate its left neighbor’s ‘o0’ expected location. However, since the
penetration is marginal in the horizontal direction, Equation (5.4) would not exceed the
threshold r;, and therefore only ‘n’ and ‘t” will be selected as the characters which comprise
the CC on the left of the Figure.
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Figure 5.8: Ezamples of 400% magnified binarized ‘M’ and ‘i’ characters in the Times New Roman
12 point font. The characters were extracted from real 300 DPI document image.

() (b)
9

Figure 5.9: (a) A connected component comprised of the two joined characters ‘n’ and t’. (b)
The word “month” with the superimposed ideal DDM bounding boxes.

(a) (b)

5.2.5.2 Joining of Multi-Part and Broken Characters

Whilst the previous Section described a method to detect joined characters, a different
issue is handling characters that are split. The aim of this procedure is to join all multi-part
and broken characters occurrences in the document by using a single method that fits all
different scenarios. The suggested approach joins parts of multi-part or broken characters
even if it results in the formation or extension of joined characters chains. This approach
is taken since as discussed later in Section 5.2.5.3, a method is suggested to perform highly
accurate segmentation of joined characters chains. Therefore, it is preferable to have a
minimum number of multipart and broken characters to remain disjoined at the end of this
procedure, despite the possible trade-off of more joined characters chains and/or longer

joined characters chains in average.
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Figure 5.10: (a), (b) Two connected components that are determined to be joined. (c) The

compound connected component resulting from the join.

A

(a)

(c) -L

The DCT shape feature does not suffer from the limitation of classifying multipart shapes
since the input to the DCT features are binary images which can contain any number
of disjoint connected components. To simplify the discussion, the term “compound CC”
is now defined to indicate a union of two or more disjoint CCs, maintaining the relative
spatial relationships between them. In the implementation of the framework, a compound
CC is represented by a binary image and the bounding box of all CCs in the transforms
corrected scanned document image. In Figures 5.10 (a) and 5.10 (b), example of two
connected components that are needed to be joined is given. In Figure 5.10 (c) the

compound CC resulting from the join is presented.

To check whether a particular CC is suspected to be a part of a DDM character, a search
is performed in the DDM for the ideal characters in the ideal digital document whose
bounding boxes intersect with the bounding box of the respective CC. An efficient search
of the DDM for the intersecting characters can be performed either by using a quad-tree
or by intersection of the output sets given by two interval trees, one for each axis. This
search is similar to the search performed in Section 5.2.5.1 and could be done using the
same mechanism, however it is performed for the purpose of joining of multi-part and

broken characters.

For the same reasons as explained in Section 5.2.5.1 due to accumulated transformation
and degradation artifacts, the existence of intersection between the CC’s bounding box
and the DDM character bounding boxes is not sufficient by itself as the only criteria
for deciding whether to join a CC to other CCs which are considered part of the same

character.

For example consider Figure 5.10 (b), the word “month” taken from one of the test doc-

uments after the estimation and correction of global transformations is displayed with
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the ideal DDM bounding boxes drawn superimposed. It can be observed that the left
most pixels of ‘n’ penetrate its left neighbor’s ‘o0’ expected location as defined by its ideal
bounding box. Since the overlap is marginal in the horizontal direction, if existence of

intersection is the only criteria, the characters ‘o’ and ‘n” would have been joined.

Clearly the scenario of joining connected components where the overlap of their neighbors’
bounding boxes is marginal should be avoided. To address this issue, whenever a CC’s
bounding box is found to intersect with a character in the DDM, a score is calculated as
given by Equation (5.5). The score is based on the ratio of actual intersection between
the CC’s bounding box and the character’s bounding box, and the suspected number of

joined characters of CC is comprised of (if applicable).

A
7 (s, o

Where A is the number of intersecting pixels between the CC’s bounding box and the
intersecting character’s bounding box. B is the number of pixels in the CC’s bounding box
given by multiplication of the CC’s bounding boxes dimensions. C' is the number of pixels
in the intersecting character’s bounding box given by multiplication of the intersecting
character’s bounding boxes dimensions. The value C' is introduced to the score calculation
to account for the scenario where the CC is both part of a broken character and in addition

also a chain of joined characters such as the example given in Figure 5.10 (b).

If the value of J is sufficiently large and exceeds a predetermined threshold, the CC
is joined with all other CCs that were determined to belong to the same character to
create a new compound CC. Following is the deletion of contributing separate CCs and
the bounding box of the newly created compound CC is updated based on the bounding
boxes of the joined CCs. In the test implementation the value of 0.75 was used as the

joining threshold.

5.2.5.3 Separation of Joined Characters

Precise segmentation of the scanned text document image to the atomic characters that
it is comprised of is both compulsory and highly significant for classification accuracy
since the classifier requires complete character images as inputs. In order to segment a
CC which is suspected to be a chain of joined characters to its single complete characters

components the following procedure is performed.
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Figure 5.11: Connected component comprised of five joined characters.

In Section 5.2.5.1 a method is described to analyze the document and flag all CCs which
are suspected of being comprised of joined characters. In addition, for each CC which is
suspected of being such, the characters in the digital document that are suspected to be

part of the joined chain for that particular CC are noted.

Suppose a particular CC extracted from the document is the target of segmentation (here-
inafter denoted as CC'). Let L.. = {C; | i =1...k} be defined as the set of characters in
the digital document that are suspected to be part of the joined characters chain compris-
ing CC, where k is the number of suspected characters in the chain and C; are arranged

from left to right as ¢ grows.

Before describing the segmentation process the reader is advised to refer to Figure 5.16
early as it illustrates the segmentation process and therefore may contribute to clarify the

remainder of this Section.

The segmentation process is performed by repeating the following procedure for all C; €
L. Begin by localizing the best match for the template h; in the “left-most subsection”
of CC, where h; is the M rows by N columns ideal binary template representing the i-th
joined character C; € L. h; is defined so that the value one corresponds to the foreground
pixels while the value zero corresponds to background pixels. The “left-most subsection”
is defined as the area starting at the first (left-most) column of C'C' and ending (%) at the
end of CC, or (ii) after p columns where p is typically slightly larger than N (in the test

implementation p = N + 4 was used).
In Figure 5.11 a CC comprised of a chain of five joined characters is presented. The first
“left-most subsection” extracted from the CC is shown in Figure 5.12. As observed in

Figure 5.12, the extracted subsection cover also a small part of the character ‘A’ to
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Figure 5.12: The first “left-most subsection” extracted from the connected component in Figure
5.11.

the right, however after the following steps are performed the final segmented image is

sufficiently accurate as later experimental results will show.

The best match localization for the template h; in the “left-most subsection” of C'C
is calculated using the normalized cross-correlation (Equation (5.2)) of the pattern and

template (illustrated in Figure 5.13).

Once the best match between the “left-most subsection” of the C'C and the template h;
is determined, a rectangle in exactly the same dimensions of the template h; is cropped
from the C'C' covering the best match location. In the event that C'C' is not large enough
to allow an exact crop, the cropped rectangle is padded with zeroes where required so it
has the same dimensions as h;. In Figure 5.15 (a) the best match rectangle cropped from
the CC is presented.

Consider the scenario where some overlapping is expected between the preceding character
C;—1 and/or the succeeding character C;y; with the currently segmented character C;.
This situation is illustrated in Figure 5.14 featuring binary 400% enlarged Times New

Roman characters with the expected bounding boxes taken from an ideal document image.

To take this scenario into account when performing segmentation the number of intersect-

ing columns between the bounding boxes of the previous character C;_1 and the current
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Figure 5.13: (a) Graphic representation of the ideal template of the character ‘H’. (b) Illustration
of the results of the normalized cross-correlation between the first “left-most subsection” shown in
Figure 5.12 and the ideal template shown in (a). A strong peak (dark red colour) in the cross-

correlation results is observed about the middle area.

(2)

character C; in the ideal digital document image is determined from the information stored
in the DDM, which is denoted as 2,¢». In addition, the number of intersecting columns
between the bounding boxes of the current character C; and the next character C;;1 in
the ideal digital document image is determined from the information stored in the DDM,

which is denoted as Tpept-

To finalize this iteration of segmentation all of the pixels in h; are assigned the value
1 except for the zppe, left-most columns (if zpe, is positive) and the rightmost zpeq
columns (if eyt is positive). Figure 5.15 (c¢) gives an example of a mask where there is
no intersection with any of the left or right neighboring characters, as a result all of the

ideal template’s pixels values are set to one (representing logical true).
Finally the logical AND operation is applied pixel wise between the “left-most subsection”

of the CC and h;. These steps are intended to guarantee that what is segmented of the

CC is the actual contents of the document image and if and only if some overlap between
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Figure 5.14: Owerlapping of ideal bounding boxes due to the shapes and placement of characters
in the ideal document.

Figure 5.15: (a) The best match (according to the results of the cross-correlation) rectangle cropped
from the connected component. (b) A graphic representation of the ideal template of the ‘H’ char-
acter. (c) The logical mask used for segmenting the character ‘H’, in this instance all the pizels
are set to logical true. (d) The results of the pizel-wise logical AND operation between the ideal

template and the connected component.

two adjacent characters is expected then the ideal template h; is used only at the section
of actual overlap to help segment the two or more overlapping joined characters. The final

segmentation of the character C; can be observed in Figure 5.15 (d).

The final step before repeating the process for segmenting character Cjy1 is the removal
of all left-most columns of the C'C' that were: (i) the N — xyeqt left-most segmented
columns to the character C; (ii) all columns that are positioned left to any column that

was segmented to belong to the character C;.

Another example of a segmentation process of a character that has a shared area with its
right neighbor is given in Figure 5.16. In Figure 5.16 (a) the CC comprised of two joined
characters is presented. In Figure 5.16 (b) the “left-most subsection” extracted from the
CC is shown. Figure 5.16 (c¢) shows the ideal noiseless template representing the expected
character ‘. In Figure 5.16 (d) the results of the normalized cross-correlation between the

“left-most subsection” and the ideal noiseless template are graphically illustrated where
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Figure 5.16: Illustration of the different stages of the segmentation of two joined characters. (a)
Connected component comprised of two joined characters. (b) The “left-most subsection” extracted
from the connected component. (c) Ideal template of the character ‘f’. (d) Illustration of the
results of the normalized cross-correlation between the first “left-most subsection” shown in (b) and
the ideal template shown in (c). (e) Refined bounding box estimate and crop based on template
matching results. (f) Ilustration of the logical AND mask. (g) Final segmentation obtained by
performing the logical pizel-wise AND operation between the image in (e) and the mask in (f).

(a)

©) ) (@) .

the peak is represented by the dark red area. Figure 5.16 (e) displays the rectangle
cropped from the CC covering the best match location in exactly the same dimensions of
the ideal template of ‘f’. Figure 5.16 (f) shows the ideal template after all of its left-most
columns which are not shared by the neighboring character as expected by the DDM are
transformed to foreground value (numerically 1 or equivalently logically true). Finally
Figure 5.16 (g) displays the segmented character after applying the pixel wise logical and
operation between the images in Figure 5.16 (e) and Figure 5.16 (f).

In Figure 5.17 the remainder and yet unsegmented part of the CC is presented after

removal of the N — ¢, left-most already segmented columns.

To complete the segmentation for the entire C'C' the same segmentation process is repeated
for the entire C'C' until all of the characters which were suspected to comprise the joined

character chain are segmented, or alternatively until the C'C' is completely processed.

As the experimental results in the next Sections show, this process is very effective in
providing accurate segmentation when the presented document image for verification is
true to the contents of the digital document as encoded in the DDM. Additionally, in the

case where the document’s content is different than what is expected (e.g. due to
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Figure 5.17: The remainder and yet unsegmented part of the connected component segmented in

Figure 5.16 after segmentation of the character ‘f’.

tampering), there is a very high probability that the segmentation would result in meaning-
less symbols thus increasing the chance of classification error and therefore the successful

detection of tempering.

5.2.5.4 Further Processing of Rejected Symbols

The processes described in the preceding Sections of segmentation and classification of
the symbols perceived in the document results in the agreement or disagreement of the
segmentation and classification results with the expected contents of the document as en-
coded in the DDM. In the case of such disagreement, further logic is applied through local
binarization, segmentation, noise removal and reclassification to those particular symbols
that have failed the verification process so far. This method aims at improving segmen-
tation and classification results for “problematic” symbols by utilizing prior knowledge
of the document’s content encoded in the DDM and by applying additional and different
low level operations. However, the emphasis remains on relying solely on the symbols

appearing in the scanned document image.

In the case where a CC (possibly compound) has failed to comply with the expected
characters in the DDM, variants on the basic approach are performed to handle different
types of noise that often occurs. The first variant is to binarize the CC using a local
threshold in order to search for a match under conditions where the local characters are
poorly scanned. The second variant is to apply median filtering (Milan et al., 2007) to the
CC before classifying, in an attempt to repair the deformations caused by the print-scan

process.
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Local Threshold The CC (possibly compound) is regenerated by cropping the relevant
sub-image (based on the bounding box of the rejected CC) from the input grayscale
document image and then calculating the optimal threshold for the cropped sub image
method using Otsu’s method. This is equivalent to performing local binarization in the
area of the CC when the threshold calculation is performed using Otsu’s method (Otsu,
1979).

Next segmentation and classification is repeated for the newly extracted CC. If the results
agree with the expected character in the DDM the mapping between the CCs and the
DDM is updated and no further action is taken. However, if the classification results still

do not agree with the DDM then further processing is applied to the CC as follows.

Median Filtering Again the process of cropping the relevant sub-image from the input
grayscale document image and then calculating the optimal threshold for the cropped sub

image method using Otsu’s method is repeated.

Next a 3x3 two-dimensional median filtering (Milan et al., 2007) is applied to the newly
extracted CC (possibly compound) to remove noise. From experimental results performed
as part of this thesis, the 3x3 two-dimensional median filtering has been observed in the
majority of cases to result in excellent removal of many of the typical deformations caused
by the Print-Scan Channel noise. In Figure 5.18 a number of examples are given for
characters before (left hand) and after (right hand) median filtering. Examples of the
typical effect of median filtering on noisy characters is shown in Figures 5.18 (a) to 5.18
(e). However in some cases, as can be observed in Figures 5.18 (f) to 5.18 (h) median
filtering result in higher degradation, typically causing the disappearance of thin strokes.
This is a serious problem which in some scenarios actually changes the perceived meaning
of a character such in the case of the example shown in Figure 5.18 (g) where the character

‘e’ was transformed into the character ‘c’.

Following the median filtering, segmentation and classification is repeated for the newly
extracted CC. If the results agree with the expected character in the DDM the mapping
between the CCs and the DDM is updated and no further action is taken. However, if
the classification results still do not agree with the DDM then no further processing is
applied to the CC, resulting in the CC marked as conflicting with the expected content of

the document.
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Figure 5.18: Ezamples of the effects on median filtering on print-scan degraded characters. Left

hand characters are before median filtering and right hand characters are after median filtering.
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5.3 Evaluation

Ideally, a comparative baseline for the accuracy achieved by the suggested verification
framework would be a similar commercial or literature proposed verification systems such

as the system proposed in Vinicius et al. (2007) and in Ming et al. (2007).

In consideration of the discussion in Section 2.4.2; the system suggested in Ming et al.

(2007) has three significant shortcomings:

e A substantial security flaw which allows an attacker to replace all of the occurrences
of an existing character in the document with another non existing character without

being detected.

e The system suggested in Ming et al. (2007) ignores joining of characters, a phe-
nomenon typical to highly degraded text documents as discussed in Section 5.1.4.
Ignoring joining of characters due to Print-Scan noise would undoubtedly result in
a rapid and substantial decrease in the accuracy of the proposed verification system

as the level of noise increases.

e The system suggested in Ming et al. (2007) utilizes contour-based Fourier descriptors
as its main shape descriptors. Therefore, the maximal theoretical accuracy achieved
by this system is closely related to the accuracy of the suggested descriptors. As
discussed in Section 4.4.2.5, the contour-based Fourier descriptors are unsuitable for

performing accurate character classification in noisy text documents.
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Therefore, in consideration of the arguments above, it seems that the system proposed in
Ming et al. (2007) is unsuitable for accurate verification of noisy document images and

therefore would not provide an adequate comparative baseline.

On the other hand, as described in Section 2.4.1, Vinicius et al. (2007) suggested a content-
based verification method that uses a commercial OCR engine to perform segmentation
and classification of the characters in the verified document. Therefore the theoretical
accuracy limit of the verification system proposed in Vinicius et al. (2007) is bounded
by the accuracy of the OCR engine used. Hence, comparing the results of the system
proposed in this thesis against a selected OCR system is in fact equivalent to evaluation
of the proposed system against the maximal theoretical accuracy of the system proposed
in Vinicius et al. (2007).

Consequently, it was decided to compare the results obtained by an implementation of
the framework suggested in this thesis against the accuracy of Tesseract, Google’s state-
of-the-art OCR system (Google, 2012b).

5.3.1 Test Data

Since the suggested framework requires both the digital file in PDF format and the scanned
images of the same documents to perform verification, no public document images database
was found suitable to be used for evaluation of the suggested framework. Therefore, it

was required to self-produce the test documents, and the documents images scans.

The documents used for the evaluation in all of the following tests are self-produced
PDF text documents that contain the entire English language alphanumeric character set
and the period, comma, apostrophe and dash punctuation marks, a total of 66 character
classes. The test documents’ contents are based on short paragraphs copied from various
news articles. Therefore, the occurrence frequency of the different test character classes is

not uniform, but is closely related to real world distribution.

Given that this thesis aims to handle verification under conditions where the document
image is significantly degraded from printing and scanning noise, the test documents were
printed and scanned repetitively up to three times in order to simulate three increasing
levels of Print-Scan degradation. However, unlike Chapter 4, every print-scan cycle out-
put was tested, providing an indication of the tested systems’ accuracy when processing

document images in different levels of degradation.
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Figure 5.19: A scaled down example of one of the test documents used for the experiments in
Section 5.3. (a) The ideal noiseless document. (b) Same document image after three print-scan

cycles.
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The documents were printed and scanned using a HP 7500A model standard inkjet con-
sumer all in one printer and scanner on standard general use office paper. The printing
was done using the default standard settings and the scanning was done using 300 DPI
grayscale settings. The evaluation was performed on all document images from the three
different levels of print-scan degradation. In Figures 5.19 (a) and (b) a scaled example of
one of the test documents is given in its ideal noiseless form as well as after three print-scan

cycles.
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5.3.2 Experiments

Three experiments are performed for evaluating the accuracy of the suggested verification

framework.

Experiment 1 aims to evaluate the false rejection (false positives) rate for documents
featuring a single font type. The false positives rate is evaluated for the verification system
and is compared against the recognition error rate of a state-of-the-art OCR system on

the same documents as a baseline for comparison.

Experiment 2 aims at evaluating the accuracy of the proposed framework in detecting
inconsistencies present in the document images with the digital document’s contents, or in

other words the true positives accuracy in detecting tampering by the proposed framework.

Experiment 3 aims to evaluate the false rejection (false positives) rate for documents
featuring multiple font types. This experiment is performed to obtain a measure of the

effect on the accuracy when the number of fonts increases.

5.3.2.1 Experiment 1

In this experiment, the false rejection (false positives) rate of the verification system was
evaluated for documents featuring a single font type - Times New Roman 12 point. The
experiment was performed on 20 different documents where each of the documents was
analyzed in three different levels of degradation generated by repetitively printing and
scanning the document images up to three times. Therefore the total number of im-
ages verified by the system was 60, representing 20 different documents in three different
increasing levels of Print-Scan Channel degradation containing a total of 61,284 charac-
ters. To obtain a baseline for comparison, the same document images were processed for
recognition by Tesseract, Google’s state-of-the-art OCR system (Google, 2012b), and the

number of errors in the recognized output document was recorded.

It is important to note, that the proposed framework also verifies the location of the
perceived characters against their expected locations as encoded in the DDM. Therefore, in
the case of poor registration of the scanned input document image with the ideal document
image the system may reject some characters even if the recognition was accurate. This
is not the case with Tesseract OCR which is only evaluated for its recognition accuracy.

Therefore this experiment is slightly biased in favour of Tesseract OCR.
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Table 5.3: Results observed in experiment 1 for the proposed framework.

Degradation | Proposed OCR Proposed OCR | Performance
Level | Err Rate | Err Rate | Docs No Err | Docs No Err Index

1 print-scan | 0.00014 | 0.00308 17 (85%) 3 (15%) 17-2-1
2 print-scan 0.00063 | 0.00729 9 (45%) 0 (0%) 20-0-0
3 print-scan 0.01076 | 0.11445 0 (0%) 0 (0%) 20-0-0
All docs 0.00385 | 0.04160 26 (43.3%) 3 (5%) 57-2-1

Results The results observed in experiment 1 for the proposed framework are summa-
rized in Table 5.3 as follows. The Proposed Err Rate is the proposed system’s average false
rejection rates defined as (rejections/total characters) are given. OCR Err Rate is the av-
erage error rate obtained by Tesseract OCR across all documents calculated as (recognition
errors/total characters). Proposed Docs No Err is the absolute number and percentage
of documents that were verified successfully by the system without any false rejection
occurring. OCR Docs No Err shows the number and percentage of documents that were
processed by Tesseract OCR without any recognition errors. Performance Index aims at
summarizing which system has outperformed in the per document comparison level. The
Performance Index comparison is given in the x-y-z format where x represents the number
of documents in which the suggested framework has outperformed Tesseract OCR in terms
of errors per document, y represents the number of draws between the two systems, and
z represents the number of times in which the Tesseract OCR system outperformed the
suggested framework in terms of errors per document. The three top rows of the Table
represent the different levels of corruption in increasing order and the bottom row of the

Table represents the overall average values across all tested document images.

A graphical representation of the results summarized in Table 5.3 is given in Figure 5.20.
Figure 5.20 shows clearly the effect of degradation on classification accuracy, with both
systems failing more frequently with higher degradation. However, in comparison to the
suggested framework, Tesseract basically collapses at the highest level of degradation

achieving on average just over one error per 10 characters.

In addition to the results summarized in Table 5.3 it is interesting to note the following
statistical observations. The worst result obtained by the system for a particular document
was 29 false positives out of 1245 characters or equivalently a 0.025 rejection rate. On the
other hand, the worst result obtained by Tesseract OCR for a single document was 213

errors out of 1117 characters or equivalently a 0.1907 error rate. Both results were
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Figure 5.20: A graphical representation of experiment 1 results. The error rates of the proposed
system and of the Tesseract OCR system are shown grouped by system. The blue bars represent
the level of degradation achieved after one print-scan cycle, the green bars represent the level of
degradation accumulated after two repeating print-scan cycles, and the maroon bars represent the

level of degradation accumulated after three repeating print-scan cycles.
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achieved for different documents images that were printed and scanned three repetitive

times.

Furthermore, there were only three documents images that obtained results worse than
0.02 by the proposed system, all three are documents that were printed and scanned three
repetitive times. Tesseract OCR on the other hand, has obtained results worse than 0.02
for 20 out of the 60 document images, 19 of these were documents that were printed and

scanned three times, and one document which was printed and scanned two times.

The smallest absolute performance ratio between the system and Tesseract OCR for a
particular document image was three false positives by the system compared to 19 recog-
nition errors by Tesseract which is equivalent to a ratio of 6.33 times the error rate in
favour of the proposed framework. The largest absolute performance ratio between the
system and Tesseract OCR for a particular document image was two false positives by
the system compared to 79 recognition errors by Tesseract which is equivalent to a ratio
of 39.5 times the error rate in favour of the proposed framework. Both aforementioned
document images were printed and scanned repetitively three times therefore containing

the highest levels of noise tested.
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Table 5.4: Additional statistical information on experiment 1 results.

Measurement System OCR

Best result 2 print-scan 0 (9 docs) 0.0031

Worst result 2 print-scan 0.0019 0.026

Best result 3 print-scan | 0.0022 (2 docs) 0.0196

Worst result 3 print-scan 0.025 0.1907

Variance of results for three print-scan 0.000049 | 0.00262
Variance of results for all docs 0.000038 | 0.003524

Some more statistical information on experiment 1 results is given in Table 5.4. The test
results reveal that the proposed framework consistently outperforms the Tesseract OCR
system. Furthermore as the levels of Print-Scan Channel noise in the tested documents
images increases, the accuracy of the OCR system drops much more quickly than the
accuracy drop observed in the proposed system, and the latter outperforms Tesseract
in every case. This is demonstrated both by the overall higher accuracy and by the

substantially lower variance in accuracy obtained by the proposed system.

As discussed in previous sections of this Chapter, the large decrease observed in OCR
performance is very likely due to both classification errors and the substantial increase in
occurrence of broken characters and of joined characters chains which raises the difficulty

and complexity of achieving accurate segmentation.

Further inspection of the rejections reported by the system shows that most false positives
were due to confusion between the characters ‘I’ and ‘I’ in the most severely degraded of
images. As the level of degradation grows these two characters become more and more
alike and therefore are more likely to be confused in the classification stage. Since the
two classes are very much similar to one another this is indeed a hard problem to solve
in noisy text documents without context information. Furthermore, this shows that the
overall performance of the system in highly degraded document images is in the general
case very accurate and stable when the classes are reasonably separate from another in
terms of perceptual similarity. The observed accuracy achieved by the proposed system
implies that the segmentation and classification methods both are sufficiently robust and

accurate to be useful for practical implementation of a robust verification system.
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5.3.2.2 Experiment 2

Experiment 2 aims at evaluating the accuracy of the proposed framework in detecting
inconsistencies present in the document images with the digital document’s contents, or in
other words the true positives accuracy in detecting tampering by the proposed framework.
This experiment is not applicable to OCR therefore this experiment was not evaluated on

any other system as for a comparative baseline.

When performing this evaluation, the focus is shifted from evaluating accuracy in the
context of complete documents (e.g. measuring rejection rate of tampered documents)
towards focusing on evaluating the accuracy in detecting different categories and types
of tampering. The reason is that the rejection rate of tampered documents depends also
on the number, types, and scope of the changes made to the document. Documents
featuring a single change have higher probability of escaping detection over documents
featuring a larger number of changes. Similarly, changes of smaller scope are also harder
to detect than changes of larger scope. Moreover, as discussed later in this Section,
some types of modifications are harder to detect than others, and furthermore a small
number of modifications are found to exist that the system failed to detect. Therefore,
the measurement of successful rejection rate for complete documents does not reveal much

about the system’s performance.

Establishing this, to evaluate the accuracy of the proposed framework, this experiment
defines several categories of modifications and measures the accuracy of the framework
in detecting changes in these particular categories across different levels of print-scan
degradation. It is important to note that since later scans are based on earlier scans,
failures to detect specific modifications (false negatives) will tend to accumulate. Any
undetected modification in an early scan will likely continue to produce the same results

in subsequent scans.
Modification Categories

Extended Scope Modifications Modifications under this category include the follow-

ing:

e Replacement of a number of adjacent characters or a word with characters that are

not perceptually similar, but without causing a substantial shift of the subsequent
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characters. For example “boat” changed into “shop”.

e Any modification that results in substantial shift of the subsequent characters in
the same and/or following lines. For example modifying the word “SHOPPING” to
“SHIPPING” may result in the second ‘I’ in the word to be sufficiently displaced so

it would end completely out of its expected location.

e The addition or deletion of an entire word or more.

Small Scope Prominent Modifications Modifications under this category include
modifications that do not generate a substantial shift of the following characters, hence

the changes to the document are local or in other words having a small scope:

e The replacement of a character or two adjacent characters with characters that are
not perceptually similar, but without causing a substantial shift of the following

characters. For example “made” changed into “make”.

e The deletion or addition of one or two adjacent characters, but without causing a

substantial shift of the following characters if any.

Small Scope Subtle Modifications Modifications under this category include the
replacement of a character or two adjacent characters with characters that are perceptually
similar, but without causing a substantial shift of the following characters. Examples of

some of the modifications evaluated as part of this experiment are given in Table 5.5.

For the purpose of conducting the experiment, 274 modifications were performed in nine
documents containing a total of 12,071 characters so that almost every line in the docu-
ments contained at least one modification. Each of the documents was analyzed in three
different levels of degradation generated by repetitively printing and scanning the docu-
ment images up to three times. Therefore the verified document images contained a total

number of 822 modifications embedded in a total of 36,213 characters.
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Table 5.5:

Ezxamples of modifications in the small scope subtle category evaluated in experiment

2.
Changed From | Changed To Changed From | Changed To
first first Zynga Tynga
10 lo list lisf
beef beet Have Haue
comments connnemts will wili
suck svck now how
85 8S November Novcmber
It’s It’s creator creatOr
right righl Rosenblatt Rosenhlatt
Ttaly’s Ttalv’s Romano Komano
distinguished distinguisbed || DHAKA DITAKA
elections elecfions demonstrations | demonsttations
recent reeent IPO 1PO
million mlllion 2009 2009
something scmething started. started,
perfect perrect expense expenSe
SUV SVV churned Churned
government govemment rigged ripped
common coininon FORTUNE FORTVNE
Results The results observed in experiment 2 are summarized in Table 5.6. The data

in the cells of Table 5.6 are formatted in the X/Y form where X represents the number
of detected modifications in the category and Y represents the total number of changes in

the category..

The results show that all extended scope modifications were detected regardless of the

level of degradation present in the document images.

The small scope prominent modifications were all detected except for a replacement of
the character ‘U’ with the characters “II”. This occurred probably due to the way the two
characters were joined and segmented. These results were consistent across all three levels

of degradation.

The absolute majority of all small scope subtle modifications were detected in all three
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Table 5.6: Results observed in experiment 2 for the proposed framework in verifying different

modification categories.

Degradation Level | Extended Scope | Small Scope Prominent | Small Scope Subtle
1 print-scan 39/39 79/80 138/155
2 print-scan 39/39 79/80 137/155
3 print-scan 39/39 79/80 131/155

levels of degradation. However there was a small decrease in accuracy observed as the
level of degradation increased. Analysis of the modification detection failures reveal that

the failures can be divided into two main categories.

The first category applies to changes that were usually detected but were occasionally
missed. The modifications in this category include mostly changes in the case of a character
such as ‘s’ changed into ‘S’, ‘w’ changed into ‘W’ and ‘v’ changed into ‘V’. Also contained
in this category is a single failure of detecting “ti” modified into “fi” and a single failure
of detecting “fr” changed into “ft”, modifications that are both very subtle in terms of

perceptual similarity in noisy documents.

The second category contains modifications that were repeatedly and consistently unde-
tected by the system. In particular the system consistently failed to detect changes in

words containing the following modifications:

9

e ‘m’ changed into “rn”, such as in the case of “government” changed into “govem-

ment”.
e “mm” changed into “inin”, such as in the case of “common” changed into “coininon”.
e “mm” changed into “nnn”, such as in the case of “comments” changed into “connnents”.

e ‘H’ changed into “II”, such as in the case of “DHAKA” changed into “DIIAKA”.

In the case of ‘m’ changed into “rn”, the joining of the two characters results in a new
shape which is very similar to the original character and therefore the failure to detect

this type of modification is expected.

In the case of “mm” changed into “inin” the system verified the lower parts of the ‘i’
coupled with the ‘n’ as the character ‘m’, however the top part of the ‘i’ (the dot) was

detected as not belonging to the document (an addition).
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The two other cases fail only in the event where the characters are joined. The resulting
shapes from the segmentation stage are similar enough to the expected characters so
that the classifier recognizes these as the shapes that are expected and therefore the

modifications are wrongly verified.

In all other subtle modifications cases tested, the system exhibited stable and consistent

rejection rates across all levels of degradation tested.

5.3.2.3 Experiment 3

In this experiment, the false positives rate of the proposed verification system was evalu-
ated for documents containing multiple font types. Content wise (characters), the docu-
ments used in this experiment are a subset of the documents used in experiment 1, however
the documents were edited to be rendered in a mixture of the following font types - Times
New Roman 12 point, Arial 10 point and Boopee 11 point (see Figure 5.21). The change
in the font types used in the documents also changed the layout and position of the text in
the documents (in comparison to experiment 1). The change in the fonts was performed
in varied places such as beginning of paragraph, beginning of sentence, per words, in the

middle of words, and per character.

The font type Boopee 11 point was chosen in addition to the Arial and Times New Roman

fonts due to its characteristics and the difficulties imposed on the system:

e Boopee 11 point font is different to the other two fonts and appears to be a somewhat

randomly shaped cursive like script.

e Boopee 11 point font is relatively small which makes binarization and classification

more sensitive to noise.

e It is very thin which makes it more fragile and results in a larger number of broken
characters with higher level of erosion and therefore larger spatial separation between
the parts in comparison to the other two font types as the level of degradation
increases. To visually illustrate this, in Figure 5.22 character ‘I’ is displayed in

magnification for the three fonts discussed here.

e The characters are relatively very close to one another and therefore the Boopee
11 point font tends to suffer more from the phenomena of joined characters as the

degradation level increases.
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e Since some of the characters in the font are very thin (e.g. lower case ‘I’ and ‘1’)
the estimation and correction of the linear conformal transformations must be very
accurate or else the algorithm would suffer reduced accuracy since the mapping
between the connected components found in the document and the DDM depends
on intersection of the bounding boxes in the ideal document and the scanned image

document.

The experiment was performed on 10 different documents where each of the documents
was analyzed in three different levels of degradation generated by repetitively printing
and scanning the document images up to three times. Therefore the total number of
images verified by the system was 30, representing 10 different documents in three different

increasing levels of Print-Scan Channel degradation containing a total of 29,172 characters.

In Figure 5.23 an excerpt of one of the test documents after three repeating print-scans and
before binarization is given to illustrate the appearance of the three fonts in high level of
print-scan degradation. And in Figure 5.24 a section of the same document excerpt (before
binarization) is shown in magnification. Substantial joining of characters and print-scan

induced degradation of the characters is observed.

141



Figure 5.21: The three fonts used in experiment 3, Times New Roman 12 point (top), Arial 10
point and Boopee 11 point (bottom). The absolute dimensions of the characters in the image are

not accurate however the relative sizes and spacing are correct.

abcdefghijklmonpgrsuvtwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789, -
abcdefghijklmonpqrsuvtiwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789’, .-

abedefghijKimonpqrsuvtwyzABCOEFGHLIKLMNOPORSTUVWXYZ 0123456789 .-

Figure 5.22: The character lowercase el - ‘U’ is displayed in magnification for the three font types:
(a) Boopee 11 point, (b) Arial 10 point, (¢) Times New Roman 12 point.

(a) (b) (c)

Figure 5.23: FExcerpt of one of the test documents used in experiment 3 after three repeating

print-scans and before binarization.

Italy's current president, Giorgio Napolitano, fondly recalled Scalfaro's ti
of parfiament, interior minister and eventually president.

Scoffaro has been a leading figure of the democratic politicd! ife i the various decedes of the republic,
example of coherence and moral integrity, Napolitew said in 2 Stotement.

Prime Minister Moo Monti lauded Scifaro for having consistently defended the
values of the repblic, set out in the constitution.
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Figure 5.24: Magnification of a section of the document excerpt shown in Figure 5.23.

re of the democrotic politicd fife
and moral integrity, Na

Results The results observed in experiment 3 for the proposed framework are summa-
rized in Table 5.7 as follows. Column A shows the system’s average false rejection rates
defined as (rejections/total characters). Column B represents the absolute number and
percentage of documents that were verified successfully without any false rejection occur-
ring. Column C shows the respective error rates change in experiment 1 for the same
document subset. The three top rows of the Table represent the different levels of corrup-
tion in increasing order and the bottom row of the Table represents the overall average

values across all tested document images.

The test results reveal that while achieving good accuracy the proposed framework has
displayed a drop in the accuracy in comparison to experiment 1. For one print-scan
documents the decrease in accuracy was by a factor of 6.93, for two print-scan documents
the decrease in accuracy was by a factor of 13.2 and for three print-scan documents the
decrease in accuracy was by a factor of 7.89, all in comparison to experiment 1 results.
Despite testing multi-font documents the results achieved by the proposed framework in
this experiment are still significantly better than the results obtained by Tesseract OCR

in experiment 1 for single type documents.

Further inspection of the rejections reported by the system in this experiment show that in
documents that were printed and scanned once the rejections are distributed between the
fonts as follows: Boopee - 66.67%, Arial - 25% and Times New Roman - 8.33%. Moreover,
the errors occur exclusively in the characters ‘i’ - 62.5% and ‘1’ - 37.5%. The errors occur
mainly due to shifting of the relative locations of the bounding boxes and the relative

thinness of these characters that affects their segmentation. This result is interesting in
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Table 5.7: The results observed in experiment 3 for the proposed framework.

A B C

1 print-scan | 0.0014 | 3 (30%) | 0.00021
2 print-scan | 0.0067 1 (10%) | 0.00051
3 print-scan | 0.0412 0 (0%) | 0.00523
All docs | 0.0164 | 4 (13.3%) | 0.001984

light of the expectation that the classification of other characters in the Boopee 11 point
font would results in errors since the increased difficulty inherent to the font as it is much

smaller, thinner, and significantly spatially less spaced then the other two fonts.

In documents that were printed and scanned more than once the Boopee 11 point font
has contributed substantially more to errors than the two other fonts. As the level of
degradation increases, the characters in the Boopee font are much more likely to join and
break than the two other fonts. When combining the higher frequency of broken and
joined characters with increased shifts in the bounding boxes due to the global and local

transformations, the segmentation task becomes much more difficult and prone to errors.

To summarize the results of experiment 3, the verification of characters in the Times
New Roman 12 point font remained comparatively the same in comparison to documents
featuring a single font. Characters in the Boopee 11 point and Arial 10 point generated
more false rejections (false positives) mainly in the ‘I’ and ‘i’ characters as they are not
easily distinguishable due to lack of serif in these fonts. The overall recognition of Boopee
11 point was very good in documents scanned and printed up to two times despite the
additional challenges due to its thin strokes being particularly vulnerable to degradation.
All in all, the results show good robustness to scanning degradation, exceeding 99% for

all but document images generated after three print-scan cycles.

Additional research is required to improve accuracy further when faced with higher level
degradation. One such potential approach is first estimating the level of degradation in
order to further fine-tune the adaptive classifier’s models. Another approach is improving
the flexibility of the bounding boxes mapping in conjunction with the DDM data when
performing segmentation as many of them verification errors in the ‘I’ and ‘i’ characters
were caused due to the relative shift of the characters in respect to the expected locations

in the ideal document images.
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5.4 Summary

This Chapter discussed the typical characteristic phenomenon occurring in degraded doc-
ument images and presented the varied methods suggested for overcoming the difficulties
that arise in verifying noisy documents images. Finally, three experiments were performed
to evaluate the suggested approach in practice and the results of the experiments were

presented and discussed.

The experiments show that the proposed approach achieves substantially higher accuracy
than observed by a state-of-the-art OCR (Tesseract) system to which it was compared
against, in particular in noisy print-scan degraded document images. Moreover, the ex-
periments show that the system is capable to detect tampering and other changes in text

documents with high accuracy and sensitivity to subtle changes.
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Chapter 6

Conclusion

This Chapter contains two main sections. The first is a summary of the conclusions made
as part of the work on this thesis, while the second Section highlights some of interesting
questions that rose during this work but presently still remained unanswered. These
Sections combined, suggest to the reader some of the possible future research possibilities

for yet improving the accuracy of automated text document verification frameworks.

6.1 Concluding Remarks

Fraudulent documents cause significant financial overhead and impose security breaches
to civil and government organizations. While many robust methods have been suggested
for the verification of digital documents such as digital signatures and digital watermarks,
authentication of printed documents still relies on physical security mechanisms. Unfor-
tunately, existing approaches to authentication of digital documents do not adapt well to
printed documents. The geometric transformations and added noise that are part of the
printing and scanning process ultimately do not allow the authentication of printed and
scanned documents by pure mathematical comparison to the digital document. Conse-
quently, the content perceived in the document image is the only reasonable basis that

may be used for automated verification of Print-Scan degraded documents.

In this thesis a method for robust content-based verification of print-scan degraded doc-
uments using standard off-the-shelf printing and scanning devices was investigated. The
objective of the system is to analyze printed and scanned documents (possibly multiple
times) and verify that they have not been tampered with in comparison to the original
digital documents. The Document Analysis Component discussed in Chapter 3 analyzes
the original digital documents stored in the popular PDF format and extracts descriptive
information about the document contents (referred to as “DDM?”, see Section 3.1) that is

stored and used later in the document image verification stage.

The DDM is used as a baseline to which the perceived content and its placement in the
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document image is compared against. Moreover, since the system performs verification
rather than only recognition, it is not feasible to use n-gram statistics or dictionaries
to infer knowledge about the verified document thus improving recognition rates. In
the absence of such mechanisms for improving recognition in highly degraded document
images, an alternative method is applied. By relying on prior document knowledge encoded
in the DDM the system can segment the document images more accurately than systems

that solely rely on statistical methods such as general OCR systems for example.

Accurate classification of the characters present in the documents is one of the most impor-
tant steps in content-based verification of document images as they are the fundamental
building blocks of text documents. In Chapter 4, the recognition accuracy of individ-
ual characters in noisy Print-Scan degraded documents was evaluated for different shape
descriptors and classifiers combinations utilizing differently sized synthetically generated
training sets. It was concluded that region-based DCT features give excellent accuracy
with all tested classifier combinations and resilience to the substantial Print-Scan noise
present in the test data. From all of the evaluated classifiers combinations, both DCT-
SVM and DCT-KNN have displayed outstanding and very close accuracy with a slight
advantage to DCT-SVM.

It is interesting that even when the training set was comprised only of one ideal observation
per class, DCT provided reasonable recognition accuracy. Furthermore, with the inclusion
of additional model-based synthetic training data generated according to the degradation
model suggested in Baird (1995) a substantial decrease in the error rate was observed.
Therefore, it was concluded that (i) the synthetic training data generated by the model
reasonably imitates the degradations generated by the Print-Scan Channel, at least in
terms of the feature space; (7i) the effect of both the real Print-Scan Channel degradations
and the model-based degradations on the DCT based features are such that the features
calculated from both the synthetic generated training data and from the real test samples
cluster together in the feature space, but in separate to other classes. As a result the
different character classes are linearly well separated in the feature space, which translates
to high accuracy by both k-NN and SVM classifiers. The best overall results were achieved
by the DCT-SVM when features were comprised of the 8x8 low order DCT coefficients

classified using linear SVM trained with 1 ideal 4+ 300 synthetic observations per class.

On the other hand, it was concluded, that both Geometric Affine Moment Invariants
(GAMI) and the Centroid Distance Function Fourier Descriptors (CDFD) are not appli-
cable for robust character recognition in Print-Scan degraded noisy documents. It was
concluded that GAMI features are linearly inseparable in Hilbert Space and therefore

generalization of the training data by a perceptron classifier such as linear SVM does not
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provide accurate classification. CDFD also failed to deliver good results most likely due
to substantial corruption in the boundary of the characters in the presence of high levels

of Print-Scan corruption.

In Chapter 5, a detailed discussion of the methods used for performing verification of noisy
documents images is given. In particular, Chapter 5 discusses the problem of effective and
accurate segmentation with respect to the typical characteristic phenomenon occurring in
degraded document images such as the joining, morphing and breaking of characters. It is
concluded, that by using the DDM and by incorporating template matching, it is possible
to perform accurate segmentation in the presence of high levels of print-scan degradation,

while still being sensitive to detecting fine levels of tampering of the documents.

To evaluate the effectiveness of the approach three experiments were performed for eval-
uating the false-positive and false-negative detection rates of the system in varying levels
of print-scan degradation and for single and multi-font documents. It was concluded that
the proposed approach is substantially more accurate than a state-of-the-art OCR system
(Tesseract) to which it was compared against, in particular in noisy print-scan degraded
document images. Moreover, it was concluded that the proposed approach is capable
of detecting tampering in text documents with high accuracy and sensitivity to subtle

changes.

6.2 Future Work

There are many ideas that were left out of this thesis due to time and scope constraints.
In the following list, some of the many suggestions and ideas to extend this research are

brought.

e Estimation of degradation levels in a particular document image would allow to
further optimize the scope of the hierarchal adaptive classifier. Classifier models
representing distinct levels of degradation for a particular font type may be generated
in advance and loaded as required depending on the actual levels of degradation

detected in the verified document image.

e Automatic consolidation of classes sharing very high perceptual similarity such as
lowercase el - ‘I’ and the digit ‘1’, and automatic generation of perceptually similar
classes sets based on auto generated similarity metrics. This would also enable the

Gy«
1

system to break compound classes such as ‘i’, j” and ‘:’to shared primitive building
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blocks and would simplify the segmentation of the document.

Improving classification accuracy by generation of real-time ad hoc classification
models utilizing the characters present in the verified document, a specialized degra-
dation model, and prior document knowledge. The degraded characters already
verified in the document contain information about the degradation that can be ex-
pected in the reminder of the document and therefore may provide the most accurate

basis for the generation of additional training samples.

Despite giving satisfactory results in this thesis, the output of the degradation model
defined in Baird (1995) is quite different to the characters obtained from real life
scanned images in perceptual terms, especially as the level of degradation grows.
It is this author’s opinion that there is much work that can be done on improving
the available degradation models such that the output would be perceptually more

similar to characters extracted from real life scanned document images.

Verification of documents containing embedded images in various levels of Print-Scan
degradation. Many documents feature embedded images and other graphic elements
such as logos and handwritten signatures which would require verification but have

not been dealt with at all in this thesis.

Improving upon the generation of the bijection between the document image and the
DDM contents to allow for varying levels of flexibility based on different constraints

(e.g. character dimensions) when mapping the two.
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