

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

In the name of God,
the most beneficent,
the most merciful

A Practical Vision System for

the Detection of Moving Objects

by

Bijan Shoushtarian

Submitted in accordance with the requirements
for the degree of Doctor of Philosophy

Loughborough University
Department of Computer Science

June 2011

Acknowledgements

I am especially grateful for the financial support of the Ministry of Science,
Research and Technology (MSRT) of Iran, the University of Isfahan, and Computer
Engineering Dept. for my doctoral scholarship.

I dedicate this work to my wife, Afsaneh, and my children, Farzad and Farnaz, for

their patience, sincere support and encouragement to complete my research and write
my thesis. I also dedicate this work to my parents who provided me with invaluable
support on all matters.

 I

Table of Contents

Abstract …………………………………………………………………… …….. 1

Chapter One – Introduction …………………………………………………… 3

1.1 Motivations ………………………………………………………………. 3
1.2 The problem statement and the thesis organisation …………………….. 4

Chapter Two – The block diagram of a simple vision system ………………... 7

2.1 Introduction ………………………………………………..……………... 7
2.2 A simple vision block diagram …………………………………………… 7

2.2.1 Converting a video film to a sequence of images …………………. 7
2.2.2 Image registration …………………………………………………. 9
2.2.3 Background generation ……………………………………………. 9
2.2.4 The colour difference image ……………..………………………... 10
2.2.5 Thresholding the colour difference image …………………………. 10
2.2.6 Connected components labelling ………………………………….. 13
2.2.7 Binary image representation and compression …………………….. 14

2.2.7.1 Run-length encoding ……………………………………… 15
2.2.7.2 Chain codes ……………...………………………………… 16

2.2.8 Size filter ………………………………….……………………...... 18
2.2.9 Shadow detection and removal ……………………………… …..… 19

2.2.9.1 Cast shadow analysis ……………………………………… 20
2.2.9.2 Classification of shadow algorithms ….…………………… 21
2.2.9.3 A review of a number of recent shadow papers …………… 23
2.2.9.4 Performance evaluation of shadow algorithms based on

quantitative and qualitative metrics ..…….………………… 30
2.2.9.5 Limitations of shadow algorithms ……….………………… 32

2.2.10 Boundary extraction …………………………….……………….... 33
2.2.10.1 Contour tracing ……………………………………. 34

2.2.11 Boundary smoothing …………..………………………………..... 39
2.2.11.1 Existing smoothing methods for binary image contours .. 41
2.2.11.2 Binary contour smoothing using chain codes ………….. 42
2.2.11.3 Binary contour smoothing using RLE representation ….. 43

2.2.12 The remaining blocks …………………………………………….. 44

 II

Chapter Three – Reviewing background removal algorithms ………………. 46

3.1 Introduction ……………………………………………………………… 46
3.2 Problem statement and requirements of background removal methods ….. 46

3.2.1 Optical flow ………………………………………………………… 46
3.2.2 Temporal differencing ……………………………………………… 48
3.2.3 Background subtraction ……………………………………………. 49

3.3 A review of background removal algorithms ….………………………… 52
3.3.1 Non-recursive techniques ………………………………………….. 52
3.3.2 Recursive techniques ………………………………………………. 56

3.4 A brief comparison of background removal techniques ………….……… 60

Chapter Four – Selecting optimum thresholds for the colour difference
 image …………………………………………………………… 64

4.1 Introduction ……………………………………………………………… 64
4.2 Optimum thresholding method for colour difference image …………….. 64

Chapter Five – A ‘Pixel-based’ approach to adaptive dynamic background

 subtraction …………………………………………………….. 74

5.1 Introduction ………………………………………………………………. 74
5.2 Definitions, characteristics and problems with background generation …. 75
5.3 Algorithms for generating dynamic background …………………………. 76
5.4 Selective update using temporal averaging ……………………………… 76
5.5 Selective update using Non-Foreground Pixels of the input image ………. 79
5.6 Selective update using temporal median ………………………………… 79
5.7 The ‘Pixel-based’ approach ……………………………………………… 79
5.8 Evaluation of the ‘Pixel-based’ approach ………………………………… 84

5.8.1 Quantitative evaluation of the ‘Pixel-based’ approach ……………... 84
5.8.2 Qualitative evaluation of the ‘Pixel-based’ approach ……………..... 88

5.9 The advantages and disadvantages of the ‘Pixel-based’ approach …..……104

Chapter Six – An object-based approach to adaptive dynamic background
 subtraction …………………………………………………… 109

6.1 Introduction ……………………………………………………………... 109
6.2 Introducing the colour filter of the ‘Object-based’ approach……………….

 109
6.3 Classification of the foreground regions ……………………………....... 114
6.4 Performances of three ‘Selective Update’ algorithms …………………… 119

6.4.1 The performance of the ‘Selective Update Using Non-foreground
 Pixels of the Input Image’ algorithm ……………………………… 119
6.4.2 The performance of the ‘Selective Update Using Temporal
 Averaging’ algorithm …………………………………………….. 120
6.4.3 The performance of the ‘Selective Update Using Temporal
 Median’ algorithm ………………………………………………… 120
6.4.4 The results of three ‘Selective Update’ algorithms ……………….. 121
6.4.5 The advantages of the ‘Selective Update Using Temporal Median’

 method ……………….. 126
6.5 Comparison with related works ………………………………………… 126

 III

6.5.1 The criteria of comparison ………………………………………… 127
6.5.2 Comparison of the ‘Object-based’ approach and the ‘Pixel-based’

approach …………..……………………………………………….. 128
6.5.3 Comparison of the ‘Object-based’ approach with related algorithms 133

6.5.3.1 Comparison of the ‘Object-based’ approach with the
Horprasert’s algorithm …………………………………… 133

6.5.3.2 Comparison of the ‘Object-based’ approach with the
Cucchira’s algorithm …………………………………….. 140

Chapter Seven – Foreground Boundary Smoothing …………………………. 142

7.1 Introduction ………………………………………………………………142
7.2 A practical smoothing method …………………………………………... 142

7.2.1 The general idea of an RLE smoothing method …………………… 142
7.2.2 A suitable data structure for boundary smoothing ………………… 145
7.2.3 RLE boundary smoothing forms ………………………………….. 154
7.2.4 Left side and right side RLE boundary smoothing forms …………. 154
7.2.5 Top side and bottom side RLE boundary smoothing forms ………. 166
7.2.6 The strategies of applying RLE smoothing forms …………............ 174
7.2.7 The min-of-two versus related methods …………………………… 176

7.2.7.1 Comparison with chain code smoothing methods ……….. 177
7.2.8 The results of applying min-of-two method ………………………. 179
7.2.9 The qualitative comparison of the min-of-two method with

standard morphological operators …………………………………. 186
7.2.10 The quantitative comparison of the min-of-two method with

standard morphological operators ……………………………….. 190

Chapter Eight – Conclusions and Future Work .…………………………….. 191

Appendix A – Summaries of Two Background Subtraction Algorithms …... 194

References…….…………………………………………………………………. 197

 1

Abstract

The main goal of this thesis is to review and offer robust and efficient algorithms
for the detection (or the segmentation) of foreground objects in indoor and outdoor
scenes using colour image sequences captured by a stationary camera. For this
purpose, the block diagram of a simple vision system is offered in Chapter 2. First
this block diagram gives the idea of a precise order of blocks and their tasks, which
should be performed to detect moving foreground objects. Second, a check mark ()
on the top right corner of a block indicates that this thesis contains a review of the
most recent algorithms and/or some relevant research about it.

In many computer vision applications, segmenting and extraction of moving
objects in video sequences is an essential task. Background subtraction has been
widely used for this purpose as the first step.

In this work, a review of the efficiency of a number of important background

subtraction and modelling algorithms, along with their major features, are presented.
In addition, two background approaches are offered. The first approach is a
‘Pixel-based’ technique whereas the second one works at object level. For each
approach, three algorithms are presented. They are called ‘Selective Update Using
Non-Foreground Pixels of the Input Image’, ‘Selective Update Using Temporal
Averaging’ and ‘Selective Update Using Temporal Median’, respectively in this
thesis. The first approach has some deficiencies, which makes it incapable to produce
a correct dynamic background. Three methods of the second approach use an
invariant colour filter and a suitable motion tracking technique, which selectively
exclude foreground objects (or blobs) from the background frames. The difference
between the three algorithms of the second approach is in updating process of the
background pixels. It is shown that the ‘Selective Update Using Temporal Median’
method produces the correct background image for each input frame.

Representing foreground regions using their boundaries is also an important task.

Thus, an appropriate RLE contour tracing algorithm has been implemented for this
purpose. However, after the thresholding process, the boundaries of foreground
regions often have jagged appearances. Thus, foreground regions may not correctly
be recognised reliably due to their corrupted boundaries. A very efficient boundary
smoothing method based on the RLE data is proposed in Chapter 7. It just smoothes

 2

the external and internal boundaries of foreground objects and does not distort the
silhouettes of foreground objects. As a result, it is very fast and does not blur the
image.

Finally, the goal of this thesis has been presenting simple, practical and efficient

algorithms with little constraints which can run in real time.

 3

Introduction

1.1 Motivation

Vision is the primary sense of human beings. Using this sense, a large amount of
information can be perceived. For example, by looking at a few images, a person
may receive a great deal of valuable information which may not be obtained by other
senses as easily. Even if the information of those images is written as a text, it may
consist of a number of pages and still the information of the images is not conveyed
well. On the other hand, it is possible that the capability of seeing the environment,
i.e. the visual sense, is provided for a man-made system, such as a robot. In this way,
it is observed that the robot’s abilities, e.g. finding a correct route and transferring
objects to specific places accurately, are extremely increased. Therefore, vision is not
only the primary sense for human beings but also using visual information is extens-
ively being developed in various areas. Computer vision, image processing, robotics,
information and communication technology (ICT), etc are among the fields that
make maximum use of visual information (Umbaugh, 1998).

The computational power of standard PCs has increased over the past decades due
to advances in micro-electronics industries. Many companies offer very powerful
PCs at low prices. These personal computers are capable to perform highly complex
operations in a short period of time. Meanwhile, there are a large number of CCD
(charge couple devices) cameras on the market which their prices continuously
decrease. The decreasing cost of cameras has been a good motivation so that cameras
are used more and more for gathering visual information. In this regard, many
of them are now being installed in different places for a variety of purposes.
These cameras produce a large amount of data in form of video or image sequences
which should be analysed. Therefore, due to availability of powerful PCs and cheap
CCD cameras on the market, the range of computer vision applications has been
extended since several years ago. Video security and surveillance, traffic monitoring
and transportation, quality control and medical imagery are some typical examples of
computer vision applications in different fields (Umbaugh, 1998).

CChhaapptteerr 11

 4

Image processing is a field by which human beings examine and process images.
The output (processed) images are also created for the utilisation of human beings.
However, computer vision is a field in which applications require a computer to
process visual information such as video or image sequences directly. Nowadays,
these two fields have become more and more interrelated so that many image
processing techniques are being used as essential tools for various computer vision
tasks (Umbaugh, 1998).

The goal of computer vision is to develop efficient and robust techniques for

visual data acquisition, analysis, interpretation and understanding. Image acquisition
is concerned with capturing a video sequence and converting into a sequence of
digital images using a frame grabber. Digital images are then stored on a hard disk
for off-line processing or in the main memory for applications which need on-line
processing. Once a sequence of images are captured and stored in the memory, an
application starts its analysis. Due to a large number of pixels in each image,
working at pixel level usually has a low efficiency and requires a long processing
time. It is often preferred that the pixels, which have common features such as
similar colours, are grouped together to constitute regions (Umbaugh, 1998).

In many computer vision applications, separating the regions of interest (ROIs)
from the rest of the video, i.e. a segmentation process is an important task. Often
these ROIs correspond to foreground objects which may be moving. Detection
and tracking moving foreground objects are fundamental and crucial processes for
recognising mobile objects. These processes are used to infer a high-level description
of mobile objects’ activities and behaviours. However, the robustness and effectivity
of video understanding process highly depends on earlier stages. Computing an accu-
rate dynamic background and identifying foreground objects without their shadows
correctly are examples of such earlier stages. Finding algorithms, capable to reliably
extract foreground objects from visual information, is still a great challenge which
needs more investigation and research. This is the underlying motivation for this
thesis.

1.2 The problem statement and the thesis organisation

The main goal of this thesis is to offer a robust and effective algorithm for detection
(or segmentation) of foreground regions (or objects) in indoor and outdoor scenes
using colour image sequences captured by a stationary camera.

Image segmentation, in general, is a sophisticated, difficult and fundamental
problem in image processing. Its difficulty is not only due to the complexity of the
mechanisms used but also has an inherent ill-posed nature. By segmentation, regions
of pixels, which have some type of homogeneity such as colour, texture or motion,
are grouped together. However, since there is not a precise and unique definition for
segmentation, different algorithms may yield different segmentation results (Kim et
al., 2001).

As the basis of the research in this thesis, a block diagram of a simple vision

system is explained in Chapter 2 (Fig. 2.1). The block diagram consists of a number

 5

of blocks including: dynamic background generation (or modelling), thresholding,
connected componenets labelling, size filter, shadow detection and removal,
boundary detection and boundary (silhouette) smoothing, etc. In fact, Chapter 2
offers the preliminary and literature review for the blocks of this diagram.

Dynamic background modelling is the first stage of many vision systems because

a large number of pixels of each input image of a video sequence are often back-
ground pixels. If all background pixels of each input frame are correctly identified, it
speeds up the later processes such as detection and tracking of foreground regions. In
fact, recognition and separation background areas have a key role in segmentation of
foreground regions. In this regard, numerous algorithms for background modelling
have been reported in the literature since more than twenty years ago. A lot of vision
researchers who have offered new detection and tracking algorithms have introduced
background modelling methods as well. An introduction to background modelling
and a review of the most important background algorithms is offered in Chapter 3. In
addition, short descriptions of two background subtraction algorithms are given at
the end of Chapter 3. This is because those two algorithms are compared with the
proposed background method in Chapter 6.

Detecting foreground objects correctly is an important issue in computer vision

systems. The pixels of foreground objects (regions) can be determined using the
pixels of the colour difference image. For easier and faster processing, often colour
difference images are converted to binary frames by thresholding. As a result,
threshold values should be chosen suitably so that foreground and background pixels
are correctly separated and minimum numbers of noisy pixels are appeared in
the binary image. Chapter 4 deals with selecting optimum thresholds for colour
difference image.

A major part of research in this thesis is devoted to dynamic background

modelling for colour video sequences. For this purpose, two groups of background
approaches are proposed. The first one is a ‘Pixel-based’ technique whereas the
second works at object level. For each approach, three algorithms are presented.
They are called the ‘Selective Update Using Non-Foreground Pixels of the Input
Image’, the ‘Selective Update Using Temporal Averaging’ and the ‘Selective Update
Using Temporal Median’, respectively.

In Chapter 5, the ‘Pixel-based’ approach for background modelling using the

above methods is presented. The pixels of each input image are discriminated using a
normalised rgb colour filter in two major groups, i.e. background and foreground
pixels. Then ‘Pixel-based’ approach updates only background pixels based on one of
the above methods. Besides, in order to check wethter a pixel is in motion or remains
stationary for a period of time, a timer is assigned to each pixel of the image. Thus, a
pixel’s timer is incremented if it is considered as a foreground pixel. At the end of
the chapter, it is concluded that these ‘Pixel-based’ methods are unable to produce a
correct dynamic background frame for each input image. This is due to failure of
colour filter and some difficulties concerning the timers of foreground pixels. The
deficiencies of the ‘Pixel-based’ methods conduct us to seek an ‘Object-based’
approach.

 6

Three selective methods for an ‘Object-based’ approach are presented in Chapter
6. The methods of the second approach use an invariant colour filter and a suitable
motion tracking technique, which selectively exclude real foreground objects from
updating and return the remaining regions as background. Then the total initial and
returned background pixels are upadated. The difference between three algorithms of
the second approach is in updating method of the background pixels. It is shown that
the ‘Selective Update Using Temporal Median’ produces an appropriate background
image for each input frame. The advantages of this method are: it operates in
unconstrained outdoor and indoor scenes. Also it is able to handle difficult situations
such as removing ghosts and including stationary objects in the background image
effectively. Very good results obtained on a number of image sequences confirm the
effectivity of the new algorithm. Finally, the comparison between the mentioned
method and two algorithms is given in Chapter 6.

In Chapter 7, a contour tracing algorithm using RLE (run-length encoding) data

based on Quek’s algorithm (2000) is utilised and implemented. In addition, a very
effective silhouette smoothing method based on RLE data is proposed in this chapter.
In practice, a complex combination of horizontal, vertical and diagonal one-pixel-
width out-spikes may occur on the boundaries of foreground regions. In this case, the
RLE smoothing method is simultaneously performed as the contour of a foreground
region is traced. Once an out-spike is found on a segment of the contour, it is
smoothed. Then tracing is continued by considering the smoothed segment. This
RLE smoothing method called min-of two method only works on external boundary
pixels of objects and has no concern with the other pixels. The min-of-two method
also removes all one-pixel-width out-spikes by a single traversal of a region bound-
ary. As a result, it is very fast and does not blur the image. Finally, conclusions and
future work are discussed in Chapter 8.

Based on the above paragraphs, it is observed that the focus of the research in this

thesis is based on dynamic background modelling and RLE boundary smoothing of
the foreground regions.

Many algorithms for low-level and mid-level processing of video sequences in

computer vision have been offered. A lot of them are highly sophisticated and
theoretical. In addition, once they are implemented, they don’t have the desired
performance or may not run in real time. On the other hand, in this thesis, the
emphasis is on avoiding complex and theoretical algorithms. The goal has been on
presenting simple, practical and effective algorithms with little constraints which can
run in real time. The performances of the proposed methods are also compared with
corresponding suitable algorithms in the literature.

 7

The Block Diagram of a Simple
 Vision System

2.1 Introduction

The block diagram of a simple vision system is explained in section 2.2 which is the
basis of the research in this thesis. This chapter is also concerned with the literature
review of majority of the blocks of the simple vision system.

2.2 A simple vision block diagram

Fig. 2.1 shows the block diagram of a simple (low-level/mid-level) vision system. A
check mark () on the top right corner of a block indicates that this thesis contains a
research about it. For an easier reference, the blocks of this block diagram are
numbered by adding a sequence number on their top left corners. The details of each
block are given in the following subsections.

2.2.1 Converting a video film to a sequence of images

It is assumed that the camera is stationary. In some applications such as video
surveillance, traffic monitoring, etc the camera may be installed at a suitable and
usually high altitude where it can view public areas such as highways, airports,
streets, car-parks, etc.

Cameras produce video signals which are then converted to sequences of digital
images using a hardware (or software) frame grabber. Some cameras also produce
digital image sequences directly (block number 1 in Fig. 2.1).

CChhaapptteerr 22

 8

 3

 Colour Background Image

 1 4

 An outdoor/ 2
 Indoor Colour Difference
 Image
 Scene

 5

 Binary image with noise

 6

 Segmented (labelled) binary image with noise

 7

 Foreground Regions without noise

 8

 Foreground Regions without shadows

 9

 Foreground Region boundaries

 10

 Smoothed Foreground Region Boundaries

 Object high-level
 12 features 11

 Objects’ silhouettes Colour objects

 and trajectories, etc without shadows

 Fig. 2.1 – A simple block diagram for detecting and tracking objects

 Stationary
Camera and

Frame
Grabber

Dynamic
Background
Generator

Colour
 Differencing

Grey-Scale Converter
(Automatic Thresholding)

Segmentation
(8-Connected
Components

Labelling)

Object Detection
and Tracking

Object Behaviour
Understanding

 Boundary (Silhouette)
 Extraction

 Filtering (Size Filter)

Boundary (Silhouette)
Smoothing

Image
 Registration

Shadow Detection
and Removal

 9

2.2.2 Image registration

It is very possible that the camera is shaken by the wind (in an outdoor scene) or by
any other cause (in an indoor environment) and as a result the image plane changes
slightly over time. This occurs when a stationary camera takes a video sequence from
a scene but occasionally the camera has a small amount of motion.

In order to have the same image plane, which is necessary for later processes such
as background generation, image differencing, etc, the input frames must be adjusted
in a pre-processing stage. The process, by which the frames of an image sequence are
aligned to same coordinate frame, is called image registration. Geometrical adjustm-
ents based on similarity, affine or projective transformations are often used as spatial
transformations for image registration (Radke et al., 2005). For example, the images
in a sequence can be corrected by translating them with respect to any image in the
sequence or to some reference image such that their cross-correlation is minimised
(Rosin and Ellis, 1995). Fortunately, image registration is a well-studied subject
(Brown, 1992, Lavallee, 1995, Maintz and Viergever, 1998, and Zitova and Flusser,
2003) and software implementations (Ibanez et al., 2003) are available. Thus, after
the frame grabber, the captured input frames are passed through an appropriate image
-registration software so that the output images have the same coordinate system.

2.2.3 Background generation

Suppose there are a set of images of the same scene taken at different times. Sets of
pixels in the last frame of a sequence, which are “significantly different” from their
corresponding pixels in the previous frames, constitute the regions of change (Radke
et al., 2005). Detecting regions of change in a video sequence captured from the
same scene has attracted a great deal of attention in many computer vision applica-
tions. For this purpose, many spatial and/or temporal approaches have been proposed
in the literature.

In video surveillance applications, change detection is closely related to the

problem of background modelling. Here, the change detection problem is to
determine background pixels prior to classifying the remaining pixels as foreground
(i.e. changed) pixels which are then divided into different objects. In background
modelling, all or a number of frames of a sequence may be utilised as the basis for
deciding about changed areas (Radke et al., 2005). Thus one change detection
method is concerned with producing background images. The question is how
background images are generated using input frames?

A trivial approach for background estimation is where the reference image is

obtained when the scene is static (i.e. there is no background motion). However,
since there are variations in lighting conditions caused by changes of light level in an
outdoor environment (e.g. due to changing position of the sun, clouds, etc), the
reference frame gets out of date very soon. Thus, adaptive updating techniques
should be applied to the background image in order to keep it up-to-date (Rosin and
Ellis, 1995).

 10

In a realistic situation, it may be impractical for a surveillance system to acquire a
background image with no moving object (e.g. for a traffic surveillance system
which monitors a street or a highway) and sometimes stationary objects are moved
away from the scene (e.g. a parked car is taken out or a gate is opened and then is left
opened) (Dawson-Howe, 1996). Thus, an adequate dynamic background modelling
method is the solution to overcome these problems.

Background subtraction is recognised by the scientific community as a simple and

common method for segmenting moving objects. Most background subtraction
approaches consist of two steps: first a reference image/model is properly updated
and then the current image is subtracted from the reference background image/model
(Spagnolo et al., 2006).

Due to importance of dynamic background modelling in this thesis, the next three

chapters are devoted to dynamic background generation/modelling for colour video
sequences.

2.2.4 The colour difference image

Once a dynamic background image is obtained for each input frame, foreground
regions can be detected using background subtraction, also called colour differenc-
ing. Background subtraction, which is performed in block number 4 (in Fig. 2.1), is
obtained by taking the pixel-by-pixel absolute difference of the current image (Ii) and
a background image (Bi) for each colour channel separately. The obtained frame is
called colour difference image (Di).

Di (x, y) = | Ii (x, y) – Bi (x, y) | (Eq. 2.1)

where x and y are the row and column of the pixel and index i is the frame number.
Eq. 2.1 is applied to red, green and blue colour channels individually. For example,
Fig. 2.2a to Fig. 2.2c show an input image, its corresponding background and colour
difference images, respectively.

2.2.5 Thresholding the colour difference image

It is possible to determine the pixels of foreground regions using the pixels of the
colour difference image. However, for later processes it is not easy and moreover it
is very time-consuming if the decision is made based on three grey-scale (i.e. red,
green and blue) images. For this purpose, it is better to convert the colour difference
image to a binary frame. This requires thresholding the difference image by applying
a grey-scale converter. After thresholding, foreground and background pixels of the
thresholded (or binary) image are labelled by 1 and 0, respectively.

Thresholding is a simple and common technique by which the pixels of an image
are divided into two dominant groups based on their grey-level intensities: the
foreground (objects) and the background. The idea for this technique is that the grey

 11

levels of the object pixels are significantly different from the grey levels of the back-
ground pixels (Sezgin and Sankur, 2004).

 There are two main categories for thresholding techniques: global thresholding
and local (adaptive) thresholding. In global thresholding, the foreground and the
background of an image are separated based on a fixed threshold value applied to the
whole image. Utilising a single value for all the pixels of an image makes the global
thresholding a simple and effective tool which is sufficient in many cases (Solihin
and Leedham, 1999).

Local thresholding methods use local information of the image and compute a

threshold value for each pixel. Local thresholding is usually used when the image is
unevenly illuminated. For this purpose, often a rectangular window is selected and
local information such as intensity histograms of pixels (Chow and Kaneko, 1972,
Eikvil et al., 1991, Taxt et al., 1989), maxima and minima of pixels (Bernsen, 1986)
or mean and standard deviation of pixels (Niblack, 1986) in that window is
considered. Then a threshold value is computed according to the region under
consideration and is assigned to each pixel. Based on the size of the window, local
thresholding methods need to perform a number of computations for the selection of
the threshold value for each pixel. Therefore, local thresholding methods are much

 (a) (b)

 (c)
Fig. 2.2 – (a) Input image Fld249; (b) Background image Back-Img249; (c) Colour
difference image Dif249.

 12

slower than global thresholding techniques making it inefficient for many computer
vision applications. Thus global thresholding is used in this work.

The magnitudes of pixel intensities of a difference image are the only information

available for separating structural changes from the rest of the image. These magni-
tudes should be significantly high in order to detect such changes. Thus, the value of
the threshold is of great importance.

The choice of a threshold τ should be slightly higher than the perturbations in

pixel values of the difference image which are due to noise. If the value chosen for τ
is too low, then spurious changes will be detected. If τ is too high, many pixels of the
structural changes (i.e. the pixels of the objects) are removed as well. In this case, not
only a large number of noise pixels are deleted, but also in the binary frame, some
parts of the foreground objects are eroded (see Fig. 2.3).

 (a) (b)

 (c)

Fig. 2.3 – Thresholding the colour difference image Dif249; (a) Thresh249 with Red-τ = 8,
Green-τ = 6, Blue-τ = 9, a large number of spurious pixels are visible in the thresholded
image; (b) Thresh249 with Red-τ = 26, Green-τ = 24, Blue-τ = 30, some parts of the fore-
ground object are eroded and the majority of the spurious pixels are removed; (c) Thresh249
with Red-τ = 12, Green-τ = 10, Blue-τ = 14, foreground objects are not eroded but a number
of spurious pixels are visible in the thresholded image. It is important that the pixels of the
foreground objects are not eroded. Then spurious pixels can easily be removed using a size
filter.

 13

Thresholds can be determined empirically (i.e. manually) or automatically. If the
threshold is selected manually, it will indicate that an operator is involved in the
system process. He should examine each difference image and interactively tunes a
threshold value according to the scene characteristics. Obviously this approach is
cumbersome and inappropriate for automatic computer vision applications which
work on long image sequences. Therefore, for optimal threshold selection, a suitable
automatic approach which depends on the scene content, the illumination conditions
and the camera noise should be applied. Several automatic methods for threshold
selection will be explained in Chpater 4 and an optimal threshold will be chosen
(block number 5 in Fig. 2.1).

2.2.6 Connected components labelling

Connected components labelling is a fundamental task in many image processing
and computer vision applications. The goal of this procedure is to extract and label
various disjoint and connected components in an image for automating image
analysis applications.

Once an image has been thresholded to produce a binary image, binary-1 pixels
(i.e. pixels of foreground regions) are grouped together by a connected components
labelling operator in order to obtain maximal connected regions. These binary-1
pixel components form candidate regions for representing objects in the binary
image. The input to the labelling procedure is often a binary image but its grey-level
version can also accept a grey-level image. The output of the labelling procedure is
a symbolic image in which the pixels of each connected component are identified by
a unique integer label (Haralick and Shapiro, 1992; Jain et al., 1995) (see Fig. 2.4).

Connected components labelling is an image transformation technique for group-

ing pixels into regions (or objects) (Haralick and Shapiro, 1992). The reasons for this
transformation are as follows:

0 1 1 0 1 0 0 0 1 1 0 2 0 0

0 1 1 0 1 0 1 0 1 1 0 2 0 2

1 1 1 0 1 0 1 1 1 1 0 2 0 2

0 0 0 0 1 1 1 0 0 0 0 2 2 2

0 1 0 0 0 0 0 0 3 0 0 0 0 0

0 1 1 1 1 1 0 0 3 3 3 3 3 0

0 1 1 1 0 0 0 0 3 3 3 0 0 0

 (a) (b)

Fig. 2.4 – (a) A binary image; (b) Symbolic image produced from (a) by the connected
components operator (Haralick and Shapiro, 1992).

 14

1. For each individual colour pixel, there are a few properties which consist
of its position, intensity and colour.

2. The properties of the individual pixels alone do not provide any useful and

important information for the whole image.

3. A region consists of a number of pixels and has much a richer set of pro-
perties than a pixel. Shape, area, perimeter, position (i.e. the centre of
gravity), average colour and the contour pixels are among the properties of
a region.

Connected components analysis of a binary image starts with scanning an image

pixel by pixel (frequently from top to bottom and left to right). Two 1-pixels p
and q belong to the same connected component if there is a path or a sequence of
neighbour (or adjacent) 1-pixels among them. Then, based on the definition of
connectivity between the pixels of a binary image (e.g. 4-connected or 8-connected
neighbourhood – see Fig. 2.5), pixels are grouped into components.

There are several methods for implementing the connected components labelling

operation including recursive, sequential and parallel. Recursive implementation
procedure is time-consuming and requires a large stack for big images. Several
parallel algorithms for labelling procedure have also been reported in the literature
(Agrawal et al., 1987, Cheng et al., 1994, Ranganathan et al., 1995, Wang et al.,
2003). However, due to emphasis on simplicity in this work, a simple and effective
sequential method based on run-length encoding (RLE) has been used (Haralick and
Shapiro, 1992, chapter 2).

After connected components labelling, connected foreground regions (or objects)

are identified in the output symbolic image (block number 6 in Fig. 2.1).

2.2.7 Binary image representation and compression

In many computer vision applications, each frame of a colour video sequence
contains a large number of pixels which need a great amount of memory. Due to

 • • • •

 • X • • X •

 • • • •

 (a) (b)

Fig. 2.5 – (a) Pixels • that are 4-connected to the centre pixel X; (b) Pixels • that are
8-connected to the centre pixel x; (Haralick and Shapiro, 1992).

 15

consideration of computational time and memory space, it is often desirable to
convert the colour difference image to corresponding binary image by thresholding.
On the other hand, as the binary image may contain several regions and in order to
extract features of foreground binary regions, they should be described in a form
suitable for further processing. In this way, binary images are more conveniently and
efficiently processed from the view point of computation time and required memory
size. The main utilised approaches in this regard are based either on the characteris-
tics of regions such as run-length encoding or region contours such as chain codes
(Zingaretti, et al., 1998). Thus, after connected components labelling, foreground
regions in a binary image are described by a suitable region representing approach.
For this purpose useful information about both representations is given in this
section.

2.2.7.1 Run-length encoding

Run-length encoding (RLE) is a compact representation of a binary image. RLE of a
binary image represents each scan line of the image as a list of contiguous typically
horizontal runs (sequence) of 1-pixels. RLE is commonly represented by two
approaches. In the first one, each run is described by the location of the starting pixel
of the run and the length of the run. In the second one (Fig. 2.6), the locations of the
starting and the ending pixels are used (Haralick and Shapiro, 1992).

RLE has the advantage that a number of operations and image computations may
be performed directly using its representation (Quek, 2000). ‘And’, ‘Or’, and
‘Negation’ are pixel-wise Boolean operations that can easily be performed on RLE
data (Rosenfeld and Kak, 1982). Meanwhile, RLE can directly be utilised for
geometric computations such as area and centroid (Klaus and Horn, 1986). Other
operations such as connected components labelling can be accomplished using RLE
representation as well (Rosenfeld and Kak, 1982). Also RLE is utilised in a number
of applications such as image digitizers (Lindley, 1991), satellite image represent-
ation (Gonzalez and Wintz, 1987), image transmission, and in region representation
for computer vision (Paul, 1986; Francis, 1990) and graphics (Newman, 1979).

 (a) (b) (c)

Fig. 2.6 – (a) A binary image, (b) its run-length encoding, and (c) Each run of 1-pixels is
encoded by its row (ROW) and the columns of its starting and ending pixels (START_COL,
and END_COL). In addition, for each row of the image, ROW_START points to the first
run and ROW_END points to the last run of the row (Haralick and Shapiro, 1992).

 ROW START_COL END_COL
0 0 0 1
1 0 3 4
2 1 0 1
3 1 4 4
4 2 0 2
5 2 4 4
6 4 1 4

 ROW_START ROW_END

1 1 1 1 0 0 1
1 1 1 1 2 3
1 1 1 1 2 4 5
 3 -1 -1
 1 1 1 1 4 6 6

 16

2.2.7.2 Chain codes

Once there are several foreground regions in a binary image, those regions can also
be described by their boundaries. In chain code representation proposed by Freeman
(1961), the contour of a region is represented by a start pixel address followed by a
string of code words due to a sequence of movements around the region’s border.
The direction vectors between successive boundary pixels are encoded using 2-bit
or 3-bit code words based on 4- or 8-connectivity (Fig. 2.7), respectively. Freeman
chain codes for 4- and 8-connectivity are represented by the sets {0, 1, 2, 3} and
{0, 1, 2, 3, 4, 5, 6, 7} as shown in Fig. 2.7a and Fig. 2.7b, respectively (Shih and
Wong, 1999; Trimeche, 2000).

Regions/objects may have two types of boundaries: external and internal. The

external boundary is the boundary which is surrounding the object while the internal
boundary is the one surrounded by the object. External boundaries are traced count-
er-clockwise but internal boundaries are followed in a clockwise manner (Kim et al.,
1988).

The chain code properties (based on 8-connectivity) are as follows:

 Horizontal and vertical directions correspond to even codes {0, 2, 4, 6} while

diagonal directions are due to odd codes {1, 3, 5, 7}.

 Each code denotes an angular direction, i.e. 45i° with {i | i = 0, 1,…., 7}

contour-clockwise (or clockwise) from the positive x-axis.

 A region contour is completely described by the absolute coordinates (x, y) of

the first contour pixel (e.g. top, leftmost) together with the chain code of the
contour (i.e. a sequence of 3-bit code words).

 A change between two consecutive chain codes shows that the contour has

changed direction. In this case, the corresponding point is defined as a corner.

Chain codes have the following advantages (Shih and Wong, 1999; Di Zenzo et al.,
1996):

 x x
 2 1
 3 1

 4 0 2 0

 5 7

 6 3
 y y

 (a) (b) (c)

Fig. 2.7 – (a) 8-Directions Freeman chain code, (b) in 4-Directions, (c) Boundary pixel
orientations: A 060057444543120020 and its 3-bit chain code: A 000 110 000 000 101 111
100 100 100 101 100 011 001 010 000 000 010 000 ((c) from Trimeche, 2000).

 17

 A very compact region representation is provided by chain codes.

 Efficient coding is achieved by minimising the number of code words required

to describe a boundary.

 Image processing and analysis are made easier.

 Chain codes are suitable for detecting features of a region such as sharp turns

(‘corners’), concavities, area, perimeter, centres, moments, projection and
straight-line segments.

Chain codes have the following disadvantages (Levner, 2002):

 They are quite long.

 Chain codes are sensitive to noise, distortion and imperfect segmentation.

 They are not invariant to scale and rotation.

Some of the above problems can be alleviated. A coarser sample grid (i.e. larger
pixels) can reduce the length of chain code at the expense of reducing precision.
A coarser sample grid has also the advantage of compensating for the scale changes
(Levner, 2002).

Due to above problems, some modified chain codes are also proposed as follows:

 Instead of the actual directions of the chain links, the derivative of the chain

code is used in the derivative chain code method. 4-direction grid is used in
this method and the directions are as follows (Levner, 2002; Trimeche, 2002):

♦ 2 is the encoding for two successive links in the same direction.

♦ 1 is the encoding for a convex corner.

♦ 3 is the encoding for a concave corner.

 In order to have a rotation invariant code, instead of using the code itself,
the first difference of the chain is utilised. Thus, a difference chain code is
obtained by taking the difference of the adjacent elements. For example, if the
original chain code is: 0, 0, 3, 0, 0, 3, 3, 3, 2, 1, 2, 2, …, then the difference
chain code would be: 0, 3, -3, 0, 3, 0, 0, -1, -1, 1, 0, … (Levner, 2002).

 An alternative contour encoding method to the original chain code is called

crack code. In this method, neither the contour pixels associated with the object
nor the contour pixels associated with the background are used. Instead,
the line, i.e. the ‘crack’ in between the object contour and the background
contour is utilised. The crack code is similar to 4-direction chain code as
illustrated in Fig. 2.8.

 18

 1
 Crack codes = 2 x 0
 3

 (a) (b)

Fig. 2.8 – (a) Crack codes are similar to a chain code with 4 directions, (b) Contour pixels
utilised in the chain code are diagonally shaded. The ‘crack’ is shown with the thick black
line. The crack code is {3, 2, 2, 3, 2, 3, 3, 0, 3, 0, 0, 3}.

2.2.8 Size filter

After the connected components labelling process, connected foreground regions are
identified in the corresponding input frame. Each region in the input frame is easily
identified using the unique labels (integer values) of the output symbolic image.
However, it is very probable that lots of spurious small regions and scattered pixels
are also recognised. These spurious small regions usually do not correspond to any
foreground region and are mostly due to camera motion, sensor noise, illumination
variations, etc. So it is very important and necessary that such noisy regions are
removed.

Two morphological operations, which can usually be used for removing noise, are

‘erosion’ and ‘dilation’. For example, two successive erosions followed by one
dilation operation may be used for cleaning the binary image. Morphological
operators can not only serve as noise cleaning operators but also fill gaps or close the
contours of the foreground regions (using ‘opening’ or ‘closing’ morphological
operators). However, they have an adverse effect which makes their usages undesir-
able in some cases. In this work, morphological operators have not been used
because they distort the shape of foreground objects.

There are many applications in which the objects of interest are greater than a

minimum size of T0 pixels. In such cases, after connected components labelling, the
sizes of all regions can be computed easily. Then if a simple size filter is used, all
components of size less than T0 are removed (block number 7 in Fig. 2.1). In this
case, the corresponding pixels of all these components are changed to 0. Thus, many
small noisy regions are removed while the other components are preserved without
any change in their shapes. Fig. 2.9 shows that the size filter is very effective in
cleaning the noise while desirable components remain without any distortion.

The value of the threshold T0 should be determined based on the application. If

the foreground objects in a scene are very small, T0 should be selected as a low
value. On the other hand, if the foreground objects are large, the value of T0 may

 19

Fig. 2.9 – Thresh_Sizefilt249 is Thresh249 in Fig. 2.3c after applying the size filter. Almost
all spurious pixels less than T0 (e.g. T0 = 10) have been removed from the thresholded image
using a simple size filter. Meanwhile, the shapes of foreground objects have not been
distorted.

be increased. In addition, the value of T0 is not necessary to be fixed for the whole
video sequence. In fact, T0 can be adaptively set for each input frame based on
several parameters. The number, the sizes and the amount of interactions between
foreground objects can be among the parameters which may affect the correctness
and exactness for the selection of T0. Due to simplicity and effectivity of the size
filter, finding an appropriate technique for selecting an adaptive threshold value T0
for each input frame is of great importance.

2.2.9 Shadow detection and removal

For many computer vision applications, detection and tracking of moving objects is
an essential task. A major problem, which occurs in both outdoor and indoor scenes,
is that moving objects cast shadows over the surfaces which they move upon.
Shadows may also be cast on surfaces close to the objects’ paths (such as the walls).

Shadows represent a difficult phenomenon when detecting objects in outdoor

and indoor scenes. In this case, shadows, which modify some characteristics of
objects such as their shapes and colours, should be explicitly detected and effectively
removed as otherwise they may be misclassified as objects or parts of objects.

Shadows can be considered from two points of view. First, they provide important

information about the scenes in which they occur. This information may represent
the type of light sources (point or wide) or the colour of the illuminentation unit, the
characteristics of surfaces, the shapes and the relative positions of objects. Second, a
cast shadow may be either attached to the object or completely separated from it. In

 20

the first case, the shapes and the colours of segmented objects are distorted so that
the information about the segmented object is not useful or reliable. As a result,
the subsequent methods, which use the shape and colour of objects for their
segmentation and classification, will fail. In the second case, the segmented shadow
may be erroneously identified as an object in the scene not corresponding to any real
object (Salvador et al., 2003). Thus, in many applications, segmenting and extracting
moving objects will encounter serious problems when objects cast shadows.

For the above reasons, it is very important that shadows are accurately identified

and segmented in order to recognise objects correctly. For this purpose, block
number 8 (in Fig. 2.1) is dedicated to shadow detection and removal.

2.2.9.1 Cast shadow analysis

Shadows are usually classified as static or dynamic. Static objects such as buildings,
parked cars, trees, etc produce static shadows while dynamic shadows are produced
due to moving objects such as pedestrians, cars, trucks, etc (Nadimi and Bhanu,
2002). The cast shadow of a moving object is also called moving cast shadow
(Stauder et al., 1999).

Shadows are produced due to total or partial occlusion of a light source in the

scene by an object. A shadow consists of two parts: the self-shadow and the cast
shadow. The part of the object, which is not illuminated by direct light, is called
self-shadow. Meanwhile, the area projected on the scene in the direction of direct
light is called cast shadow. Cast shadows are further divided into umbra and penum-
bra. The part of the cast shadow that the object has completely blocked the direct
light is called an umbra. However, a penumbra is the part of the cast shadow where
the object has partially blocked the direct light (Jiang and Ward, 1994). The umbra is
darker and more easily detected than the penumbra. Meanwhile, it usually has a
greater probability to be misclassified as a moving object (Prati et al., 2003). If the
light source is a point, only umbrae are generated in shadows. However, both umbrae
and penumbrae are produced due to an area light source.

In outdoor scenes, if the sky is cloudy, shadows are either weak (mostly
penumbra) or non-existent. Meanwhile, there is no control over the illumination and
little or no information may be available about the scene geometry (Nadimi and
Bhanu, 2002). In indoor scenes, such as a lab, the illumination is often generated by
an area light source. Thus, in indoor scenes, both umbrae and penumbrae may exist
in cast shadows. On the other hand, in outdoor environments, the light source is often
a far away point source (i.e. the sun). In addition, the distance between the objects
and the background is negligible in comparison to the distance of illumination
sources to objects (Nadimi and Bhanu, 2002). However, it is not logical to assume all
cast shadows in outdoor scenes to be umbrae. Therefore, a shadow detection and
removal algorithm designed to work in both indoor and outdoor environments should
be able to detect the umbra. It may also detect the penumbra pixels in the cast
shadow. Meanwhile, in an outdoor scene, the area of a penumbra may be very small

 21

compared to an umbra; so the detection of a penumbra could be very difficult if the
shadow has sharp edges (Salvador et al., 2004).

Shadows contain information about the shape and the relative positions of objects.

They also provide cues about the characteristics of surfaces and light sources in the
scene. However, tracking and recognition algorithms encounter difficulties when
objects have moving cast shadows (Salvador et al., 2003).

Object merging, object shape distortion and even object losses (due to the shadow

cast over another object) are the effects that shadows cause for the objects in images.
Two main reasons concerned with shadow detection are as follows (Prati et al.,
2003):

 Shadow pixels are detected as foreground pixels since their visual features

(i.e. their brightness and colour) are significantly different from the corresp-
onding background pixels.

 Shadows move along with their objects because the speed of objects and their

cast shadows are the same. That is, shadows have the same motion as the
objects casting them.

Thus, for accurate object detection and segmentation, effective shadow detection and
removal algorithms are utilised.

2.2.9.2 Classification of shadow algorithms

In most shadow papers, a shadow model, which consists of a number of hypothes-
es, has been utilised. A summary of a shadow model is as follows (Prati et al., 2003):

 The light source is sufficiently strong.

 The light source is isotropically scattered within the object.

 There is a static reference image which is textured and planar.

 The object has perfectly matte (or Lambertian) surfaces.

For a good understanding about shadow algorithms, it is better to organise various
algorithms based on a suitable taxonomy. Fortunately, Prati et al. (2003) has prposed
an appropriate taxonomy for shadow algorithms.

Prati et al.’s two-layer taxonomy is shown in Fig. 2.10. In the first layer, the
shadow algorithms are divided in two classes based on how uncertainty in the
decision process is exploited. Based on this taxonomy, deterministic approaches use
a yes/no (or on/off) decision to classify candidate shadow pixels. However, statistical
approaches use probabilistic functions to decide on the class membership of the
considered pixels. Statistical approaches usually use a number of parameters to
determine class membership. Moreover, the parameter selection is a critical issue in

 22

these approaches. For these reasons, statistical approaches are further divided into
parametric and non-parametric methods. On the other hand, deterministic approaches
are also divided into model based and non-model based methods depending on
whether the decision process uses the knowledge of the model or not (Prati et al.,
2003).

The second layer of the taxonomy in Fig. 2.10 shows the types of features that are

exploited in the shadow detection process. These features are based on the following
domains (Prati et al., 2003):

 Spectral: Approaches may use different spectral features, i.e. grey level or

colour information.

 Spatial: Spatial information at a region level instead of pixel level may be used

by some approaches to improve the results.

 Temporal: Temporal redundancy information may be exploited by some

methods to integrate and verify the results obtained.

In another taxonomy presented by Salvador et al. (2004), shadow detection

techniques have been classified into two groups: model-based and property-based
approaches. A priori knowledge of the geometry of the scene, the objects, and the
illumination is used by model-based techniques while features such as geometry,
brightness or colour of shadows are used by property-based approaches. Model-
based techniques are designed for specific applications such as aerial image under-
standing (e.g. Irvin and McKeown (1989); Wang et al. (1991); Bejanin et al. (1994))
and video surveillance (e.g. Koller et al. (1993); Sonoda and Ogata (1998);
Yoneyama et al. (2003)). Sets of geometric features such as edges, lines and corners
are used by model-based techniques to match with 3D object models. Obviously,

Fig. 2.10 – Shadow detector approaches taxonomy. (Prati et al., 2003).

Statistical Deterministic

Parametric Non-Parametric Model based Non-Model
based

Features

 Spectral Spatial Temporal

 grey level colour local region static dynamic

Shadow Suppression
Approaches

 23

these techniques are successful when dealing with simple objects and are only
applied to specifically designed schemes. On the other hand, property-based techni-
ques overcome these limitations by utili-sing spectral and geometrical features of
shadows. Examples of these features are: luminance, chrominance, gradient density
information, edges, texture information, colour ratios, invariant colour spaces, etc
and some combinations of these features.

2.2.9.3 A review of a number of recent shadow papers

A review of recent shadow papers (from 2007 to 2010) is given in this section as
follows:

Zha et al. (2007) proposed a shadow detection algorithm using normalised rgb
for colour video sequences. They offered a uniform framework to eliminate cast
shadow by energy minimisation. At first, moving objects are detected by background
subtraction. Shadow candidates can be determined by pre-processing moving objects
according to the shadow physical property. By comparing shadow and foreground
points in the current input frame with their corresponding points in the background
image, colour information, texture information and temporal-spatial coherence are
obtained, which are then combined in a probability framework. Next, the maximi-
sation of posterior probability will convert to an energy function based on Gibbs
energy. Finally, moving cast shadows and foreground objects are segmented
accurately by the minimisation of the energy function based on binary graph cuts.

The algorithm has the following advantages (Zha et al. 2007):

 The proposed method can work well in both indoor and outdoor scenes.

 In comparison with classical methods, it has good performance both in accurate

shadow and foreground detections.

The disadvantage of the algorithm is (Zha et al. 2007):

 The parameters of the energy function are sensitive to different scenes and their

values are determined empirically. They should be adjusted dynamically for
better adaptability in different environments.

Zhang et al. (2007) proposed a moving cast shadow detection algorithm using

ratio edges. Edge information can be used for shadow detection because edges in an
image do not change with the illumination condition. Ratio edge is computed by the
ratio of the intensity of one pixel to the intensity of its neighbouring pixels. It can be
proved that ratio edge is illumination invariant. Then in ratio edge domain,
background subtraction is performed. Shaded background areas are good candidates
for shadow detection. Thus, in such areas, the distribution of the normalised backgro-
und difference of ratio edge is analysed and is approximated to be a χ2-distribution.
Then, automatic shadow detection is performed by a significant test. Meanwhile,
intensity constraint and geometric heuristics are imposed to further refine the
detection results. Finally, shadow intensity ratio, which is defined as the ratio of the

 24

intensity of the shaded image to the intensity of the background image, is estimated
by implementing an iteration strategy. The iteration process can detect shadows
quickly and correctly.

The algorithm has the following advantages (Zhang et al., 2007):

 In comparison with similar state-of-the-art methods, the algorithm is much

simpler but more effective.

 It can detect moving cast shadows automatically and robustly.

 It has a better overall detection rate in comparison with similar methods.

The disadvantage of the algorithm is (Zhang et al., 2007):

 For updating the shadow intensity ratio Ф, a parameter λ needs to be set for

each image sequence manually. Improper selection of λ severely affects
shadow detection and shadow discrimination rates.

Fang et al. (2008) proposed a method for segmenting moving vehicle cast

shadows in traffic surveillance images. In order to identify candidate shadow regions,
an initial hypothesis is tested using a moving object detection algorithm. Then,
the method exploits spectral and geometrical properties of shadows, the relationship
between a point in shadow region and space position, and vehicle shape to verify this
initial hypothesis. For segmenting the boundary between self-shadow and cast
shadow, an occluding function is defined which is based on geometrical property
of shadows. Meanwhile, a multi-resolution wavelet transform is used to detect the
feature points of the occluding function.

The advantages of the algorithm are (Fang et al., 2008):

 The method does not need any camera calibration or a priori information

regarding the scene.

 There is no restriction on the colour difference between vehicle and backgro-

und.

 It has no knowledge in advance about the illumination direction.

 For improving the speed and robustness of the algorithm, the features of the

occluding function are detected using 1D wavelet transform. As a result, the
suggested method is real-time even on common PCs.

The disadvantages of the algorithm are (Fang et al., 2008):

 In video sequences of high traffic, the assumption that background is stationary

may not lead to correct detection of foreground objects and their cast shadows.

 The method is suitable for simple scenes and may fail to detect and segment

 25

shadows in complicated environments.

 The algorithm considers the first image of a sequence as the first background

frame. In video sequences of high traffic, this assumption may not be valid.
Thus, it may affect the accurate detection of foreground objects and their cast
shadows.

Joshi and Papanikolopoulos (2008) proposed an adaptive technique for detecting

moving shadows in colour video sequences. For extracting useful features, at first, a
background model using mixture of Gaussians is obtained. Next, for each pixel in the
detected foreground regions (or foreground mask), features based on illumination,
colour and edges are extracted. Then, a learning technique is used, which employs
support vector machines (SVMs) and a co-training method to train the algorithm
with a small set of labelled image data for shadow detection. In fact, two classifiers
(SVMs) are trained in this algorithm using two different feature sets on the initial
labelled data. For detecting shadows on the unlabelled image data, each classifier is
deployed at each round, which chooses from each class the example that it can label
most confidently. This process is iteratively repeated for a fixed number of rounds or
until all original unlabelled data are labelled.

The advantages of the algorithm are (Joshi and Papanikolopoulos, 2008):

 In comparison with other supervised approaches, the algorithm requires a small

quantity of human labelled image data.

 The algorithm employs a semi-supervised learning technique which makes the

model adaptive to changing scene conditions and gives better classification
accurately at the same time.

The algorithm has the following disadvantages (Joshi and Papanikolopoulos, 2008):

 Due to high cost of manual labelling, providing the initial labelled data set may

be a time-consuming and difficult task.

 If the size of the initial labelled data set is large, the algorithm requires a long

time for training.

 It is hard to select an appropriate size of training data which provides good

accuracy values for any new video sequence.

 Co-training needs to run online as new data become available. If the number of

co-training rounds is large, the algorithm will fail to run in real-time.

Carmona et al. (2008) proposed a new approach for segmenting moving objects
based on blob-level knowledge. The algorithm considers a number of categories in
each frame including: real moving objects, shadows, ghosts, reflections, fluctuation
or background noise region(s). The idea of the algorithm is to process each pixel
differently depending on to which mentioned category it belongs. In this regard, for
each pixel in the input frame at time t and position (x, y), the relation existing

 26

between its RGB vector, i.e. (,) (, ,)x y
tI r g b and its corresponding background vector,

i.e. (,) (, ,)x y
tB r g b is characterised with the value of the angle that they form, i.e.

(,y)x
tθ and the magnitude of difference of their modules in absolute value, i.e. (,)

mod
x y

t∆ .
For this new two-dimensional space named angle-module space, a rule called angle-
module rule is defined whose application produces an initial approach to the final
foreground map. Next, reflections are eliminated from the foreground map by
applying a reflection filtering operator. Similarly by applying shadow, ghost and
background noise filters, respectively, moving foreground blobs are obtained as the
final stage of the segmentation process.

The algorithm has the following advantages (Carmona et al., 2008):

 The proposed method is adaptive since it can update both the background and

threshold models.

 The results obtained confirm the robustness of the method as it can operate in

different indoor and outdoor scenes.

 It has low computational cost and as a result, it is a real-time algorithm.

The disadvantage of the algorithm is (Carmona et al., 2008):

 The algorithm considers the first input image as the first background frame.

Thus, ghosts will appear in the background frame for the first Cmax = 48
images. Therefore, the ghost elimination filter fails to remove ghosts for about
two seconds (by assuming 25 frames per second).

Huang and Chen (2009) proposed an online statistical learning approach to model

the background appearance variations under cast shadows. By assuming constant
ambient illumination and direct light sources, at first, normalised spectral ratio is
derived as the background surface invariant colour features based on the bi-
illuminant dichromatic reflection model (Maxwell et al., 2008). The normalised
spectral ratio remains constant independent of different background surfaces and
illumination conditions. Then, the colour features extracted from all moving pixels
are modelled using a single Gaussian mixture model (GMM). In order to differentiate
cast shadows having similar colours to background, a pixel-based GMM is utilised,
which describes the gradient intensity distribution for each pixel. The pixel-based
GMMs are updated using the confidence predicted from the global GMM through
confidence-rated learning to accelerate convergence rates.

The algorithm has the following advantages (Huang and Chen, 2009):

 It can learn model parameters very fast in an unsupervised manner and adapt to

illumination conditions or environment changes.

 The method is robust to scenes with few foreground activities and videos

captured at low or unsteady frame rates.

 27

The algorithm has the following disadvantages (Huang and Chen, 2009):

 Due to high computational load, the method will run at very low frame rates.

 If the local shadow model is learnt following conventional Gaussian mixture

learning method, the algorithm’s model may still not be built due to the long
training time and disturbance by foreground objects. As a result, it may affect
the algorithm’s performance or the algorithm may even fail in such
circumstances.

Tian et al. (2009) proposed a method to extract shadows from a single outdoor

colour image. A tricolour attenuation model (TAM) describes the attenuation
relationship between shadow and non-shadow background. The algorithm’s idea is
that for every pixel in the image, if the minimum attenuated channel is subtracted
from the maximum attenuated channel, the results in shadow regions will be lower
than the results in non-shadow regions. This is based on the mechanism of image
formation. The parameters of the TAM are determined using the spectral power
distribution of daylight and skylight, which are estimated by employing Planck’s
blackbody irradiance theory. Finally, based on the proposed TAM, a multi-step
shadow extraction method detects shadows in the image.

The advantages of the algorithm are (Tian et al., 2009):

 Unlike most other methods which are suitable for video sequences, the

algorithm can detect shadows from only a single image.

 The algorithm is not designed for specific applications and can automatically

extract shadows even in complex outdoor scenes.

 The algorithm does not need any prior knowledge about the scene or the light

source and is completely data-driven.

The disadvantages of the algorithm are (Tian et al., 2009):

 It extracts all types of shadows in an image. Thus, it cannot distinguish cast

shadows from self-shadows and shadows of stationary objects such as build-
ings and trees. Thus, the algorithm cannot be used for removing moving cast
shadows in image sequences.

 The method will fail to detect shadows in sunrise and sunset because at these

times the CCTs (correlated colour temperatures) of sunlight and skylight are
very different from the CCTs adopted in the algorithm.

Jung (2009) presented a method for background subtraction and shadow removal

for greyscale (monochromatic) video sequences. An α-metrically trimmed mean are
used as a robust estimator in the training stage to model the background. Besides, in
order to evaluate the spread of noise around the actual background value, the mean
absolute deviation (MAD) is used as a robust scale estimator. Then, foreground
pixels are detected in the evaluation stage by local spatial coherence to minimise the

 28

occurrence of isolated foreground pixels. A combination of a statistical model and
expected geometrical properties based on the relations of pixel ratios within small
neighbourhoods are utilised for shadow identification and removal. Finally, for
removing isolated foreground pixels and residual noise, a morphological post-
processing scheme is used.

The algorithm has the following advantage (Jung, 2009):

 It uses a simple and fast foreground test, which effectively detect foreground

objects and remove shadows in greyscale video sequences.

The disadvantages of the algorithm are (Jung, 2009):

 It is not suitable for colour image sequences as it does not use colour cues.

 The method focuses on identifying weak shadows in indoor scenes. In outdoor

environments, strong shadows in sunny days are misclassified as dark objects.

 Homogeneous foreground objects, which appear in front of homogeneous

portions of the background, may be erroneously classified as shadow pixels.

 If foreground objects have distinct colours in comparison with the background

but the luminance component of these objects are similar or exactly the same,
the proposed algorithm, which relies only on luminance, will fail.

Johansson et al. (2009) proposed a method that combines shadow detection and a

3D box model including shadow simulation, for estimation of size and position of
vehicles. For classifying each pixel into background or foreground, a GMM is used
to estimate the colour distribution over time. If the colour of a pixel is unlikely to
belong to the distribution, that pixel is considered as foreground, which is further
classified into foreground/shadow/highlight categories. If the colour of a pixel lies in
a cylinder region between the black (the origin) and any of the centre colours of the
background Gaussians (see Fig. 2.11), the pixel is classified as a shadow pixel. The
shadow cylinder lies between 0.3 and 0.95 of the Gaussian centre with radius 15
(based on RGB colour space with range [0-255]). Highlight pixels are defined as
pixels that do not belong to foreground objects and are brighter than the
average background colour. If a pixel’s colour lies in a cylinder between 1.05 and 1.5

Fig. 2.11 – Illustration of the shadow/highlight classification in the RGB color space
(Johansson et al., 2009).

 29

above the Gaussian centre with radius 30 (Fig. 2.11), that pixel is classified as a
highlight pixel. In addition, a similarity measure is defined between a simulated
image of a 3D box, including the box shadow, and a captured image that is segmen-
ted into background/foreground/shadow regions. Then, an optimisation procedure is
utilised to find the optimal box state, which is based on the similarity measure.

The algorithm has the following advantages (Johansson et al., 2009):

 It is shown in a number of examples that the combination of shadow detection

and shadow simulation can improve the performance compared with only using
either method. The improvement is more evident in cases where the shadow
detection or shadow simulation is inaccurate.

 The 3D box optimisation including highlight detection and spatial window is

used for predicting heading and refining box size estimates.

The disadvantages of the algorithm are (Johansson et al., 2009):

 A fundamental problem is concerned with the time window for learning of the

GMM background model. Tuning the time window to suite all varieties of
traffic density and light conditions is a difficult task. In fact, heavy traffic and
varying light conditions will cause slower convergence of the background
model since the model is not updated in foreground/shadow/highlight regions.

 The vehicles, which temporarily remain stationary for a long period of time,

will eventually disappear and become part of the background model. Once they
resume their course, they may leave ghost vehicles behind them in the
background. Thus, it may affect the correct operation of the algorithm.

Choi et al. (2010) proposed an adaptive shadow estimator to detect and eliminate

the shadow of a moving object automatically while adapting to varying illumination
of the environment. First, a GMM is used to produce the background image. After
background subtraction and in order to discriminate the shadow and the moving
object, the algorithm uses a cascading of chromaticity difference estimator, bright-
ness difference estimator, and local relation estimator. After these estimators, the set
of moving pixels is divided into the candidate set of object pixels and the final
candidate set of shadow pixels. Finally, a spatial adjustment is performed as the
final step; i.e. a small object pixel region inside the shadow region is considered as
a shadow and a small shadow pixel region in the object region is considered as a
moving object.

The advantages of the algorithm are (Choi et al., 2010):

 The thresholds of its estimators are computed automatically. In addition, the

algorithm does not need an additional training step. Thus, it rapidly adapts to
variation in the environment.

 It is fast enough to operate in real-time. Thus, it is appropriate for surveillance

applications.

 30

 It outperforms the existing adaptive methods and has a superior performance
over the existing learning-based and manual setting methods.

The algorithm has the following disadvantages (Choi et al., 2010):

 Once the algorithm starts, if the illumination changes quickly, the GMM back-

ground model needs time to adapt to varying environment. During this period,
the background and the moving object set are invalid and as a result, shadow
estimation is meaningless.

 If there are two or more light sources, e.g. in an indoor environment, the

algorithm’s performance drops substantially.

The recent shadow papers presented in this section, which are classified based on

Prati et al.’s (2003) taxonomy, are shown in Table 2.1.

Statistical Parametric

Statistical Non-Parametric

Paper Spectral Spatial Temporal Paper Spectral Spatial Temporal

Zha et al. (2007)

Zhang et al.
(2007)

Jung (2009)

Johansson et al.
(2009)

C

C

G

C

L & R

L & R

L & R

L & R

D

D

D

D

Fang et al. (2008)

Joshi and Papani-
kolopoulos (2008)

Huang and Chen
(2009)

Choi et al. (2010)

C

C

C

C

R

L & R

L

L & R

D

D

D

D

Deterministic Model-based

Deterministic Non-Model-based

Paper Spectral Spatial Temporal Paper Spectral Spatial Temporal

 Carmona et al.
(2008)

Tian et al. (2009)

C

C

R

L & R

D

S

Table 2.1 – Classification of a number of recent shadow algorithms (G = Grey-level, C =
Colour, L = Local/Pixel-level, R = Region-level, S = Static, D = Dynamic).

2.2.9.4 Performance evaluation of shadow algorithms based on

quantitative and qualitative metrics

Various shadow detection and removal algorithms can be systematically evaluated
based on quantitative and qualitative measurements. For this purpose, a number of
systematic evaluation metrics are proposed in the literature as follows:

1. The following two quality measures must be identified (Prati et al., 2003):

 31

 Good detection: the probability, which a shadow point is misclassified,
should be low. This corresponds to minimising false negatives (FN), i.e. the
number of shadow points classified as background or foreground.

 Good discrimination: the probability, which a non-shadow point is misclass-

ified as a shadow point, should be low. This one is also equivalent to mini-
mising false positives (FP), i.e. the number of foreground or background
points detected as shadows.

2. Medioni (1999) proposed two metrics for the evaluation of moving object

detection. They are Detection rate (DR) and False Alarm Rate (FAR) defined
as:

 = ; =
 + +
TP FPDR FAR

TP FN TP FP
 (Eq. 2.2)

where TP is the number of true positives (i.e. the shadow points correctly
identified), FN and FP are defined as before. However, for shadow evaluation,
DR and FAR are not suitable metrics since it is not specified whether a detected
shadow point belongs to a foreground object or to the background. For
example, false positives belonging to background do affect neither the object
detection nor the object shape. So in this case, shadow detection cannot be used
for improving moving object detection since only DR (but not FAR) is proble-
matic (Prati et al., 2003).

3. Prati et al. (2003) modified the DR and FAR metrics and proposed the shadow

detection accuracy η and the shadow discrimination accuracy ξ defined as:

 (Eq. 2.3)

where the subscripts S and F correspond to shadow and foreground points,
respectively. TPF is equal to TP - FP. TP is the number of ground-truth points
of the foreground object that were correctly detected. Meanwhile, FP is the
number of points detected as shadows but belonging to foreground objects. In
addition to the above quantitative metrics, robustness to noise, flexibility to
shadow strength, width and shape, object independence, scene independence,
computational load, and detection of indirect cast shadows and penumbra are
considered as qualitative measures in their evaluation.

4. Tattersall and Dawson-Howe (2003) accept the second quantitative metric (i.e.
shadow discrimination accuracy ξ) of Prati et al. (2003). However, they argue
that this metric cannot be used to evaluate how well the foreground pixels were
classified because it does not take into account the shadow pixels that have
been incorrectly classified as foreground pixels. For this purpose, they propose
a new metric that is concerned solely with how accurately foreground pixels
have been identified as:

- = ; = =
+ + +

S F S S

S S F F S S

TP TP TP FP
TP FN TP FN TP FN

η ξ

 32

 - =
 +

F S

F F

TP FN
TP FN

ϕ (Eq. 2.4)

where TPF and FNF are the same as before and FNS corresponds to all the
pixels that should be foreground but were classified as shadows.

5. Cavallaro et al. (2005) presented an objective evaluation which is performed
with respect to ground-truth segmentation. In fact in their approach, the
evaluation of shadow segmentation is done through the evaluation of video
object segmentation. For obtaining an objective evaluation, the deviation of
segmentation mask with respect to ground-truth segmentation is considered.
They define two types of errors in each frame of sequence n, i.e. false positives
εp(n)and false negatives εn(n). Incorrectly detected pixels belonging to the
object mask are defined as false positives. Meanwhile, pixels belonging to the
object but not detected are false negatives. card(C(n)) is defined to represent
the number of pixels detected as object pixels at frame n and similarly
card(Cg(n)) represents the number of pixels belonging to the ground-truth.
Then they define deviation from the reference segmentation as:

 (Eq. 2.5)

where ε(n) is in [0, 1]. The spatial accuracy of the segmentation result is then
quantified as:

 ν(n) = 1 – ε(n) (Eq. 2.6)

that its values are in [0, 1]. If ν(n) = 1 then there is a perfect match between segment-
ation results and ground-truth.

2.2.9.5 Limitations of shadow algorithms

The main limitations of many shadow algorithms, which may cause their failure
in some situations, are as follows (Porikli and Thornton, 2005):

 A shadow algorithm may fail when pixels of foreground objects are darker than

the background and have a uniform gain with respect to the reference surface
they cover. This happens when the algorithm only exploits luminance based
criteria.

 Shadow algorithms based on geometrical model heavily depend on the view-

point of the camera and the shapes of objects.

 Achieving robust shadow elimination for a wide range of conditions may not

be possible just by using several predefined (or fixed) parameters.

0 if (()) 0 (()) = 0
ε() = ε () + ε () otherwise

(()) (())

g

n p

g

Card C n Card C n
n n n

Card C n Card C n

= ∧

 +

 33

 Most shadow algorithms are unable to adapt themselves to different types of
shadows, e.g. light shadow (due to ambient light source) or heavy shadow (due
to strong spot lights). The main reason for their failure is due to using fixed
thresholds for various conditions.

Therefore, a powerful shadow algorithm should be dynamic so that it can be updated
with each frame. For example, if the lighting condition (and as a result, shadow
properties) changes, it can dynamically adapt itself to new condition automatically.
Unfortunately, the main limitation of such dynamic shadow algorithms is their
high computational loads which hopefully run in real-time by appearing more power-
ful PCs in near future.

2.2.10 Boundary extraction

Locating the boundaries of objects is a fundamental task in a variety of image
analysis and computer vision applications. This process is also equivalent to an
image segmentation method. If the boundaries between objects are found, objects are
indirectly defined. Boundaries, which characterise the shape of an object, can be
obtained by linking edges. Once they are specified, geometrical features of objects
(or regions) such as size and orientation are easily computed (Umbaugh, 1998).

Once connected foreground regions are identified in the thresholded binary image,

lots of spurious small regions and scattered pixels are also recognised which are due
to noise. Thus, such noisy regions can be removed using, for example, a size filter to
clean up the binary image. In addition, for correct recognition of objects, the cast
shadows of foreground objects should also be removed using an appropriate method
as explained in section 2.2.9.3.

After removing the cast shadows of objects, the silhouettes of all of the objects are

obtained using a boundary extraction method. The shape, location, and orient-ation
of silhouettes of regions are the primary information content within a binary image.
Such information can be obtained by the knowledge of the boundaries of the regions
(Capson, 1984).

The shape of objects often constitutes a major feature in different areas such as in

visual databases (image, graphics and video) since it contains meaningful semantic
information about the associated visual object (Xiao et al., 2001). In a user survey
presented by Lambert (et al., 1999) concerning cognition aspects of image retrieval,
it was concluded that users are more interested in retrieval by shape than by
colour or texture. On the other hand, in computer vision, one of the most frequently
used approaches for image segmentation is based on the extraction of the contours of
the objects. The main reason for this selection is that most of the information about
the shape of a 2D object is found in its contour (Iannizzotto and Vita, 2000).
Also representing the shape of an object by its contour corresponds to the way that
humans perceive objects. Due to this reason, the visual system of human beings
concentrates on edges and ignores uniform regions (Hildreth, 1983).

An important feature of the shape of an object in a binary image is its object

 34

contour. The contours of objects are useful in a number of situations such as object
analysis (Koplpwitz and Deleone, 1996), pattern recognition (Li et al., 1989), image
restoration (Chang and Leu, 1990; Cai, 1988), and the computations of object
features (Samet, 1984; Dorst and Smeulders, 1987; Yuan and Suen, 1995) such as
the perimeter, area and corner (Chia et al., 2003).

2.2.10.1 Contour tracing

Contour tracing (also called contour following) algorithms trace the boundaries of

regions by ordering successive border pixels. In other words, the sequence order
among boundary pixels are specified by a contour tracing method based on a
counter-clockwise or clockwise traversal (Liow, 1991).

Contour tracing algorithms often consist of three parts (Ren et al., 2002):

1. A starting point is detected for tracing.

2. The next boundary point is found.

3. The condition for terminating the tracing operation is determined.

Boundary tracing can be performed for both binary and grey-scale images. However,
only binary images are dealt with in this thesis.

The next paragraph concerns contour representation for three conventional cont-
our tracing algorithms shown in Fig. 2.12 as follows:

The background pixels have the value of 0 and are represented by white colour.

The object pixels have the value of 1 and are represented by black colour. The outer
(or external) contour has a counter-clockwise direction while the inner (or internal)
contour has a clockwise direction. A binary image is scanned from up to down and
from left to right (raster scan mode). Tracing is also performed based on 8-connectiv-
ity. A contour is an outer contour if it encloses an object region. Similarly, a contour
is an inner contour if it encloses a background region (i.e. a hole). Contour points are
defined as black pixels belonging to an object whose neighbouring pixels involve at
least one background (white) pixel. Meanwhile, the contour line is formed by a set of
contour points (Ren et al., 2002; Miyatake et al., 1997).

Three conventional contour tracing algorithms are illustrated in Fig. 2.12. The

same example figure has been used so that the results of three algorithms can easily
be compared with each other. These algorithms are briefly described in the following
(Miyatake et al., 1997):

 Pixel-centre tracing (Yokoi et al., 1973; Suzuki et al., 1983): This is the

most popular algorithm among the three approaches. Tracing starts by raster
scanning of the image to locate the first contour point. Then its 8-connected
neighbours are checked in an anti-clockwise direction to find the next border
point. This procedure is repeated until when the starting point is revisited

 35

after tracing a closed loop. In order to avoid re-entering the same contour
several times as the image is scanned, every contour point once visited is
marked. In this way, the loop of contour points constitutes a contour line
(Fig. 2.12.a). The contour tracing algorithm continues its raster scanning to
find another non-marked starting point each time a transition of pixels from 0
to 1 is detected.

 Pixel-corner tracing: In this algorithm, each pixel is regarded as a square. For

each contour point, the corners of the square pixel are the subject of tracing.
The tracing algorithm starts at a non-marked pixel corner. Then it continues to
visit adjacent corners successively. Tracing is terminated when the starting
corner is reached again. As a result, the loop is a contour consisting of only
horizontal and vertical vector segments as depicted in Fig. 2.12b.

 Edge-point tracing of run data (Agrawala and Kulkarni, 1977; Grant and

Reid, 1981; Capson 1984): The input to this algorithm is an image expressed
by a set of run data. The algorithm checks any two adjacent horizontal scan
lines for testing that the runs in both scan lines are connected to each other in a
suitable manner. Then the contour is obtained by linking the edge points of the
two runs (Fig. 2.12c).

The summary of the features of the above typical algorithms is given in Table 2.2
(Miyatake et al., 1997). Based on this table, it is obvious that each of the mentioned
algorithms has its own weaknesses. These drawbacks are either due to tracing speed,
accuracy of representation, or required buffer memory size.

Two newer chain code algorithms plus a rapid RLE contour tracing method with

better performances are briefly explained as follows:

1. A chain code-based contour tracing algorithm for tracing boundary contours in
2D binary images is presented by Ren et al., (2002). In this algorithm, background
and object points are represented by 0 and 1, respectively. It operates as follows (Ren
et al., 2002):

1. A new labelling method is used in this algorithm. The background point

neighbouring and out of the outer contour is called OB. The background

 (a) (b) (c)

Fig. 2.12 – Contour representation in conventional algorithms: (a) pixel-centre tracing;
(b) pixel-corner tracing; (c) edge-point tracing of run data (Miyatake et al., 1997).

 36

 Conventional algorithms

 Pixel-centre tracing Pixel-corner tracing Edge tracing of run data

Tracing speed Slow Slow Fast

Accuracy of Imperfect
restoration Perfect Perfect (at concave figure portion)

Accuracy of Imperfect Imperfect
enlargement (at one-pixel Perfect (at concave figure
 width portion) portion)

Required Large Large Small
Memory capacity (frame buffer) (frame buffer) (line buffer)

Applications For small-scale images For small-scale images For small-scale images
 where tracing is allowed but high definition needed. where lower definition

 tracing is allowed.
 (e.g. industri al use)

Table 2.2 – Features of three conventional algorithms (Miyatake et al., 1997).

neighbouring and enclosed by the inner contour is called IB. They are both
labelled to 2. An object point on a traced contour is labelled to 3. If the
change of value of two consecutive points (x, y) and (x+1, y) is from 0 to 1
or from 2 to 1, a new outer contour starting at (x+1, y) is found. However,
if the change is from 1 to 0 or from 3 to 0, a new inner contour starting at
(x, y) is found. Meanwhile, the labelling operation and contour tracing are
performed simultaneously.

2. Once a new contour is found, the tracer is started. Then it examines bound-
ary points one by one according to a predefined sequence which consists of
eight 3 x 3 windows (Fig. 2.13). Depending on the current chain code of the
tracer (named pcode), one of eight 3 x 3 window is selected. Then in that
window, relations between the chain codes of points on position labelled 0-6
and pcode are orderly examined until the next boundary point is found. In
this way, a sequence of contour points is generated.

3. When the tracer reaches the starting point, the closed contour of a region is

obtained.

 (a) pcode = 0 (b) pcode = 1 (c) pcode = 2 (d) pcode = 3

 (e) pcode = 4 (f) pcode = 5 (g) pcode = 6 (h) pcode = 7

Fig. 2.13 – The sequence number of examination for next boundary point from the current
boundary point b.

 37

The algorithm has the following advantages (Ren, et al., 2002):

 Connectivity is preserved and never lost. That is, by utilising this algorithm,
the boundary of a region is never split into many segments.

All region boundaries are traced and no boundary is lost. In other words, the
outer and inner contours of all arbitrary complex images are correctly
traced. Thus, it is more general and practical.

 The computing complexity of the algorithm is low.

 It is a simple, easily implemented and short time process which traverses the

image in one pass.

 By contour filling, which is the reverse operation, a perfect copy of the

original image is obtained.

2. Chan and Hsu (2008) describes a shape-preserving contour tracing method for
extracting one-pixel-width closed contour for the profile of heterogeneous objects
based on grey-scale images. The algorithm called PSCTM (i.e. Pbl Srp Contour
Tracing Method) consists of two synch-ronously-performing procedures called
PBL (progressive boundary linking) and SRP (synchronous redundancy pruning).
The role of BPL is to trace the complete object border pixel-by-pixel using a 3 x 3
sliding window. SRP has the duty of removing random noises and pruning trivial
branches/cracks from the contour of the objects simultaneously with PBL.

The advantages of PSCTM algorithm are (Chan and Hsu, 2008):

 The extracted contours using PSCTM are qualitatively and quantitatively

superior to those extracted using conventional and mathematical morpho-
logy methods.

 In noise-less or non-heavy noisy images, PSCTM has capability to extract

one-pixel-width closed contours of the objects in real-time.

 In comparison to conventional and mathematical morphology cleaning pro-

cesses, PSCTM preserves the finer details of the object contour and at the
same time removes visual redundancies and trivial branches/cracks.

3. A fast finite state machine-based algorithm for the boundary extraction of RLE

regions is presented by Quek (2000). It operates directly on the run data structure
contained in RLE description of image regions. The boundaries of regions (either
external or internal) are obtained in the form of 4- or 8-connected point lists which
describe closed positively directed contours of 4- or 8-connected regions, respect-
ively. The algorithm works as follows (Quek, 2000):

For computing a positively directed region boundary (either external or

internal), boundary segments may be grouped into four forms including Up-Right,
Down-Left, Down-Right, Up-Left (Fig. 2.14). These segment types constitute the

 38

states of a finite 4-state machine. In fact, the algorithm requires knowing which
potions of various runs to be included in the boundary. To do this, it maintains
the state of the current traversal as a state in a finite state machine. Transitions
between states occur for each move from one segment to the next consecutive
segment.

Fig. 2.14 – Boundary segment labels for positively directed boundary (Quek, 2000).

By merging Up-Right and Up-Left into an UP state and Down-Left and Down-

Right merging into a DOWN state, the finite 4-state machine may be reduced to
two states.

The algorithm tags each run as left-used or right-used. If a run has no tag, it

is assumed to be unused (i.e. default case). Two walking functions WALKr and
WALKl are also utilised which add points to a boundary list moving to the right
and left from a starting point toward the specified end of a run. Besides, the top-
leftmost unused end of a run is always considered as the starting point of a
boundary. If the first unused end encountered is a left-end, the boundary is
external and the initial state is set to DOWN. If the first unused end encountered is
a right-end, the boundary is internal and the initial state of the machine is set to
UP. Once a starting point and the initial state are determined, the finite state
machine generates a closed positively directed boundary of a region based on the
transition table in Fig. 7.1.

The advantages of this algorithm are (Quek, 2000):

 It is a fast algorithm which operates directly on the run data structure

contained in RLE.

 It produces closed positively directed contours for all regions of a binary

image.

 Each closed boundary is labelled as internal or external.

 It can handle internal boundaries for each RLE region.

 The algorithm can yield boundaries either in the form of 4- or 8-connected

 39

point lists for describing the contours of 4- or 8-connected regions.

 The utilisation of RLE as an attractive object-based region representation is

enhanced by the algorithm as it complements the existing operators which
work directly on such region descriptors.

Based on the advantages of the above papers (i.e. Ren et al., (2002), Chan and

Hsu (2008), and Quek (2000)), it is concluded that these algorithms are powerful
methods for contour tracing of binary/grey scale images. However, as mentioned in
sections 2.2.7.1 and 2.2.7.2, both chain code and RLE forms are popular methods for
compact representation of foreground regions in binary images. However, some
criteria should be determined in order to select one of the above methods for
implementation. The selected method should have the following criteria:

 The different processing and computations of foreground regions using the

selected method should be simple, efficient, and easily implemented.

 It should be utilised and easily matched with the implementations of a number
of blocks of this thesis as illustrated in Fig. 2.1.

One major difficulty with chain codes, as mentioned in section 2.2.7.2, is that they

are quite long. So if there are several large regions in each binary image of a video
sequence, those regions are represented by long linked lists. Linked list processing is
slow especially when the lists are very long. Thus a number of blocks of this thesis
may not be performed in an acceptable duration of time if their foreground regions
are represented by long linked lists of chain codes. In addition, once foreground
regions are represented by their closed contours, for a number of blocks in Fig. 2.1,
usually contour information only are not sufficient. Meanwhile, for background
subtraction, shadow detection and removal, and object matching and recognition the
information of the pixels of foreground regions is also necessary.

Although a linked list is used for each scan line in the run data table of Quek’s

algorithm, such lists are processed very fast as they are often very short. In addition,
Quek’s algorithm operates directly on RLE data, used by the representations of other
blocks in Fig. 2.1. Therefore, RLE representation has been selected as the more
appropriate choice for representing a number of blocks in this thesis including
connected components labelling, shadow detection and removal, and boundary
extraction and smoothing. For this purpose, Quek’s algorithm, as the selected
contour tracing method, has been implemented successfully.

2.2.11 Boundary smoothing

Once cast shadow regions are removed, the boundary extraction method can find
the silhouettes of all objects. However, the boundaries of objects after segmentation
usually have a jagged appearance. Often it is necessary that the outlines of objects
are smoothed. Two approaches may be taken:

1. Smoothing the rough outlines of objects can be performed on the binary image.

 40

2. Instead of smoothing objects in the binary image, the boundaries of objects
may be transferred to the corresponding input image. Then smoothing can be
performed based on the boundaries of objects using colour information.

Consider the first approach. Morphological operators can be utilised for this

purpose. Smoothing the outlines of objects in the binary image can be done using the
‘closing’ (i.e. a dilation followed by an erosion) operation. However, the selection of
a structuring element is important. A simple structuring element is needed to only
remove single pixel irregularities. For smoothing the outlines of objects usually more
than one structuring element is needed. Alternatively, n successive dilations followed
by the same number of erosions may be applied for smoothing irregularities of n
pixels in size (Parker, 1997).

Processing of the binary image using morphological operations is fast. The only

problem, as already stated, is that morphological operators usually distort the shape
of objects. For resolving this problem, a number of contour smoothing methods for
binary images are presented in the next sections.

For the second approach, spatio-temporal grey-scale smoothing methods can be

applied. Gaussian, mean, and median are samples of smoothing algorithms which
can be used. However, Gaussian and mean are linear filters which usually blur edges.
Many non-linear algorithms for smoothing have been reported in Literature, too.

Smoothing has extensively been studied in Literature (Xiuwen et al., 2000; Chen,

2000). However, most researchers have paid more attention to grey-scale images
than binary ones. In fact, a large number of methods about grey-scale images have
been investigated to smooth image noise while important information such as edges
is preserved. For this purpose, two main types of smoothing, i.e. linear and nonlinear,
are used. Some traditional linear filters are (Lynch et al., 2004; Morse, 2000):

 Averaging multiple frames

 Neighbourhood averaging

 Gaussian smoothing

Averaging multiple frames is a technique to reduce image noise. However, this

technique is effective only when a number of frames of the same scene are available.
Neighbourhood averaging technique replaces a pixel value with the average of the
values of the pixels in its neighbourhood (for example, in a window with size n x n,
n = 3 or 5). Although only one image is used in this technique, however, it has the
drawback that the resulting image is blurred. In Gaussian smoothing, each pixel is
replaced by a weighted average of its spatial neighbours (Fig. 2.15). The above linear
filters have the advantage of reducing the amount of image noise. However, remov-
ing or blurring edges are considered as their drawback.

Edge-preserving smoothing algorithms are non-linear filters which have more
suitable feature extraction than linear existing smoothing filters (such as Gaussian
and mean filters). Some examples of such filters are (Garnica et al., 2000):

 41

 Median Filter

 Symmetrical Nearest Neighbour Filter (SNN)

 Maximum Homogeneity Filter (MHN)

 Conditional Averaging Filter

The features of the above filters are high smoothing degree in homogeneous areas,
preserving edges and corners, and conservation of very small homogeneous image
regions. Such filters produce filtered grey values without considering the values of
neighbouring pixels.

 1/15 *

Fig. 2.15 – Normalized 3x3 2D Gaussian masks with integer values

The goal of non-linear filters is to remove noise while sharp edges are still main-

tained. As a result, non-linear filters preserve edges; however, a loss of resolution
occurres due to suppressing fine details (Lynch et al., 2004; Morse, 2000).

Due to the complexity of the calculations of edge-preserving algorithms, they
need more computation times than simple smoothing methods which are applied to a
binary image. On the other hand, for many computer vision applications, which
mostly need to work on a large sequence of images in real-time instead of one, speed
of computations is a crucial factor. In fact, edge-preserving smoothing methods
normally suit image processing tasks operating on a single image but are often not
real-time for processing each frame. Thus, in general, non-linear smoothing methods
for colour images are very time-consuming processes and may not be appropriate for
a sequence of frames.

2.2.11.1 Existing smoothing methods for binary image contours

After the thresholding process, the boundaries of foreground regions often have
jagged appearances. The corrupted binary contours are due to discrete sampling (i.e.
digitisation), binarisation (i.e. thresholding), and image noise. The sources of noise in
the image include the camera, the lenses, the lighting or the signal path. For the
following reasons binary image contours should be smoothed (Legault and Suen,
1997; Yu and Yan, 1997):

 Corrupted boundaries make the recognition of foreground regions unreliable.

1 2 1

2 3 2

1 2 1

 42

 A number of measurements such as perimeter, area, moments, tangent slopes,
curvature, etc are obtained based on binary contours which are used to repres-
ent foreground regions. Thus, no reliable estimates of these measurements can
be obtained when binary regions contours are corrupted by noisy pixels.

 It is very important in computer vision and pattern recognition that foreground

region contours are represented and processed accurately.

Based on the discussion given in section 2.2.11, it is simpler, much easier and

a less time-consuming process if smoothing is performed on binary contours. Thus,
some boundary smoothing algorithms should be sought which only operate on the
boundary pixels effectively. In this regard, a review of the smoothing methods for
binary contours is given in the next sections.

2.2.11.2 Binary contour smoothing using chain codes

Several smoothing methods for binary contours based on chain codes have been
proposed in the literature as follows:

 Suen et al. (1992) applied a simple contour smoothing technique. For each

contour point, its coordinates are replaced by averaging them with the coordin-
ates of the neighbouring points (i.e. the preceding and the following points).
This technique is applied twice around the entire contour.

 Legault and Suen (1997) proposed an algorithm for obtaining optimal local

weighted methods defined as Eq. 8.1:

(Eq. 2.7)

The constant coefficients αj should be determined for smoothing binary
contours according to specific goals such as accurate estimation of point
positions, slopes of tangents, or deviation angles from point to point. For this
purpose, a simple model based on an infinite horizontal border with random
one-pixel noise is considered. The goal of this algorithm is to eliminate the
“wiggles” along the noisy horizontal border as much as possible so that after k
smoothing iterations, the border pixels are “as straight as possible” (Legault
and Suen, 1997). The major drawbacks of this algorithm are its high
computational load due to k smoothing iterations which require floating point
operations and removing just one-pixel noise.

 Yu and Yan (1997) proposed an effective sequential algorithm for binary

contour smoothing using difference chain codes. The algorithm is able to
remove noisy pixels along a contour and convert boundary points to a set of
straight lines. It also finds convex and concave segments along the contour
based on detecting structural feature points. The algorithm has the advantage of
operating only on contour chain codes without requiring any derivative-based
corner detection procedure. So it is very fast and its implementation is efficient

() (1) = , = 1, 2,, P P
n

k k
ji i j

j n
k kα −

+
=−
∑

 43

(Yu and Yan, 1997). The weakness of the algorithm is considered as just one
boundary point smoothing.

 Hu et al. (1998) proposed a similar algorithm for binary contour smoothing
based on the work of Yu and Yan (1997). The new method is called “multiple-
point smoothing algorithm” for further smoothing of the boundary. After the
algorithm’s operation, the noise in boundary contours is greatly reduced and
the chain code properties are preserved. Also three kinds of feature vectors
(even and odd chain code directions and bending points) are extracted for each
boundary. The advantages of this algorithm are:

• The feature vectors have more effectivity in comparison with the previously

proposed feature points.

• The algorithm’s operations including the smoothing and feature extraction
are very fast because they are based on chain codes and use no float-ing
point operations.

2.2.11.3 Binary contour smoothing using RLE representation

Run-length smoothing algorithm (RLSA) was introduced by Wong et al. (1982)
and taken up again by Wang and Srihari (1989). It is a low complexity technique and
is often used for segmenting printed documents such as newspapers into rectangular
blocks. Then the algorithm classifies these blocks into meaningful regions, for
example, text, graphics, and halftone image regions. It is common that documents are
printed as dark points (represented by 1’s) on a light background (represented by
0’s). The main idea of RLSA is to eliminate white (background) runs in the
horizontal and vertical directions and replace them with black (foreground) runs. For
this purpose, any two black (foreground) pixels (1’s), which their distances are less
than or equal than a threshold sv, are merged into a stream of dark pixels. White
(background) pixels remain unchanged. For example, with sv = 3 and the input
sequence: 000110000001100100001, the result of RLSA on this sequence will be:
111110000001111100001 (Wang and Srihari, 1989).

RLSA usually consists of three main stages. First, in the binary image, RLSA is

applied row-by-row to eliminate horizontal runs whose lengths are smaller than a
threshold hsv. Then RLSA is applied column-by-column to eliminate vertical runs
whose lengths are smaller than a threshold vsv. The resulting two bit maps are
subsequently combined with each other by a logical AND operation to produce a new
smoothed image. However, there are some small gaps among the blocks of text lines
in this image. An additional horizontal smoothing operation is performed by using a
new threshold value ahsv to produce the final smoothed image. RLSA has an effect
of a smear on the binary image by connecting together black pixels of the image
which are closely located. Once the major blocks of a document are determined, the
next stage extracts the text lines (Papamarkos et al., 1996; Wang and Srihari, 1989).

The main disadvantages of RLSA are as follows (Papamarkos et al., 1996):

 44

 RLSA uses two/three parameters hsv and vsv (and sometimes ahsv) threshold
values for horizontal and vertical directions. These two/three parameters should
be determined manually based on some heuristic methods.

 The method is not robust because if the assumptions made for the determina-

tion of the heuristic parameters are not satisfied, the method will fail.

Papamarkos et al. (1996) proposed an algorithm for automated calculation of the
proper horizontal and vertical smoothing values (i.e. hsv and vsv) of RLSA method.
These parameters are calculated based on the mean character length (mcl) and the
mean text line distance (mltd) of the document. The contributions of the horizontal
and vertical run-lengths determine the values of mcl and mltd (Papamarkos et al.,
1996).

As discussed in section 2.2.10.1, RLE representation has been chosen for connec-

ted components labelling, shadow detection and removal, and boundary extraction
and smoothing. In addition, Quek’s RLE contour tracing method was implemented to
extract the boundaries of foreground regions in each binary image. Meanwhile, as
stated above, RLSA is more suitable for document smmothing but it is not approriate
for smoothing the boundaries of foreground objects in an image sequence.
Fortunately, a simple and fast smoothing method for smoothing the jagged outlines
of binary objects will be proposed in Chapter 7 (for block number 10 in Fig. 2.1).
Other advantages of the proposed method are smoothing only the boundaries of
objects while preserving their shapes with no or very little distortion.

While smoothing, the RLE-based data structures, which store information of the

objects, should be corrected based on changes created in the outlines of the objects.
Thus, after smoothing, the RLE data structures will also be updated to indicate all
changes created on the boundaries of objects.

2.2.12 The remaining blocks

For the next stages, including object recognition and tracking (block number 11)
and object behaviour understanding (block number 12), required information is
available. In fact, after low and mid-level processing, each object has its own feature
profile. For each object, a separate feature profile is stored in the data structure(s) of
the computer vision system which may contain the following items:

1. The start and end addresses of each line of pixels of a region corresponding to

an object, stored in a RLE-based data structure.

2. The boundary pixels of each object.

3. If an object has a cast shadow, its shadow region information should be stored

in a separate RLE-based data structure. The outline pixels of the shadow
region should also be stored.

From the above information all other information can be obtained and stored in

 45

object feature profile. It may include the following items:

 Geometrical features such as perimeter, area, object centre, medial axes, etc.

 Colour or texture features such as average colour, necessary information of the

homogeneous segments within the object regions, etc.

 Temporal features such as speed, acceleration, distance from a specified origin,

motion direction, motion trajectory, etc all computed for each frame and in
comparison to the image plane.

 Spatial features similar to all temporal information given above but in the

frequency domain.

 All above information concerning the cast shadow of each object (if there is

any cast shadow).

Thus, depending on a specific application, a computer vision designer can decide
about the required features which the vision system should keep for each object.

From the above discussion, it is obvious that the effectivity of high-level process-

es like recognition, tracking, interpretation and understanding depends on previous
stages. So for successful operations of high-level processes, low- and mid-level
processes must do their best to produce the most accurate and correct information.
Any minor failure of low- and mid-level processes may cause the later processes to
become ambiguous or fail. In the worst case, an autonomous computer vision system
may crash by providing erroneous results. Therefore, it can be concluded that the
more accurate the results of low- and mid-level operations are, the more effective
and robust the high-level processes will be.

 46

Reviewing Background Removal
Algorithms

3.1 Introduction

In this chapter, background removal algorithms will be reviewed. First, the problem
and the main goal of all background removal methods are stated in Section 3.2. Then
in Section 3.3, a summary of different approaches in the literature are given. Finally
in Section 3.4, a brief comparison of salient features of the most important methods
is presented.

3.2 Problem statement and requirements for background removal

methods

In numerous computer vision applications, extracting moving objects from a video
sequence captured using a static camera is a very important task. Some typical
applications are video surveillance, traffic monitoring and analysis, human motion
detection and tracking, industrial automation, etc. The main goal in the above areas is
to “detect all foreground objects”.

Three common approaches to moving target detection are optical flow (Fejes and
Davis, 1998; Wixen and Hansen, 1999), temporal differencing (Anderson et al.,
1985) and background subtraction (e.g. Haritaoglu et al., 2000; Toyama et al., 1999;
Wren et al., 1997) as explained in the following subsections.

3.2.1 Optical flow

If an observer (a camera or a human eye) moves in a 3D scene, the pattern of

motion of objects, surfaces, and edges in a visual scene caused by the relative motion
between the observer and the scene is called optical flow. The direction and the speed

CChhaapptteerr 33

 47

of motion of the features in the visual scene can be described by optical flow. The
magnitude and direction of optical flow at each position is represented by the
direction and the length of an arrow. In an image sequence, motion can be estimated
as either instantaneous velocities or discrete image displacements. Fig. 3.1b shows
the optical flow pattern from two images of a rotating Rubik’s cube shown in Fig.
3.1a.

 (a)

 (b)

Fig. 3.1 – (a) A Rubik's cube on a rotating turntable; (b) Flow vectors calculated from
comparing the two images of a Rubik's cube (Russell and Norvig, 1995)

Differential optical flow methods calculate the motion between two image frames

taken at times t and t + Δt at every pixel position based on local Taylor series
approximations of the image signal. These methods utilise partial derivatives with
respect to the spatial and temporal coordinates.

Motion estimation, video compression, object detection and tracking, movement

 48

detection, robot navigation and visual odometry are a number of optical flow
applications. As an example, target detection and tracking can be performed using
optical flow even though there is no prior knowledge about the background or when
the camera is moving. But optical flow methods need very complex computations
which cannot be coded in real-time algorithms without specialised hardware
(Spagnolo, et al., 2003). In addition, optical flow methods are also sensitive to noise.
Thus, many researchers usually do not prefer using optical flow methods for implem-
enting real-time background generation techniques.

3.2.2 Temporal differencing

Temporal differencing (or frame differencing (Hou and Han, 2004)) is a technique
by which the arithmetic difference of corresponding pixels in the same physical
locations in two frames of an image sequence is obtained. The first variant of this
technique uses two consecutive frames (Jain, 1981). The difference image contains
non-zero values whenever objects have moved to another location but will be black
when no moving object is detected. The problems with the earlier variant are as
follows (Yang and Levine, 1992):

1. A pre-selected threshold is necessary to obtain the thresholded difference

image. As a result, this method will be dependent on the video sequence and
selected threshold.

2. If an object moves too slowly so that it is stationary in two consecutive frames,
the object will not appear in the difference frame.

3. Extending the method to use more than two frames is difficult.

In later variants, the extracted frames from the sequence are at time t0 and time tk

(the selected frames are not necessarily consecutive). The advantages of these
variants are that they can detect targets in real-time and are adaptive for dynamic
environments (Neri et al., 1998; Thomas and Ngan, 1998). However, they have the
following disadvantages (Spagnolo, et al., 2003):

1. Generally, they poorly extract the entire relevant feature pixels and the real
shapes of objects are not obtained. They also do not produce closed object
contours. Therefore, morphological operations (e.g. dilation) or an edge closure
algorithm e.g. guided by the edge gradient must be added (Cucchiara, et al.
2000). Meanwhile, the interior regions of objects are detected as static. Thus,
possibly holes inside moving objects are generated.

2. The conventional method relies on incorporating only two consecutive frames.

Improved variants of this method are also presented (Collins, et al., 2000, Jolly,
et al., 1996, Yoshinari and Michihito, 1996), which use three-frame subtraction
(i.e. double frame difference) to extract the moving objects. Double frame
difference is more precise in locating real objects than single frame difference.
Although better results are obtained using these improvements, usually they
still have shortcomings of temporal differencing algorithm.

 49

Temporal differencing (single or double frame difference) techniques can be useful
when the object’s motion is mainly along a known direction, for instance when a
road is monitored with coming and going vehicles (Cucchiara, et al. 2000).

3.2.3 Background subtraction

The most important and most common approach to identify and segment moving

objects in a video stream is background subtraction, which involves computing a
reference image for each new frame. Then, by comparing the next input frame with
the reference image, regions of the image which have changed are identified.
Thresholding the result produces a binary segmentation which is used for discrimi-
nating the moving objects from the background regions.

In the simplest case, background subtraction can be performed by subtracting each

incoming frame from a reference image. As reference image an initial input frame
may be selected, which does not include any moving object. However, sometimes it
is not practical to select an initial input frame as a reference image. Also in some
situations, there is no possibility to obtain an initial model using a short training
sequence which contains no moving object. For example, it may be impossible for a
traffic surveillance system which monitors a busy street or a highway to acquire
a background image with no moving object. As another example, it may be difficult
or impossible in some situations, such as public areas, to control the area being
monitored, which are characterised by a continuous of moving objects or other
disturbing effects (Gutchess, et al., 2001).

 As already indicated in Section 2.2.3, due to several factors, the background

image must be temporally adaptive and it should be updated continuously in order to
be kept up to date. Some of these factors (i.e. background generation requirements)
are (Piccardi, 2004):

 Illumination changes

• Gradual variations in lighting conditions.

• Sudden illumination changes (such as turning a lamp on or off in an indoor

environment or abrupt changes of light level in an outdoor environment due
to covering or uncovering the sun by clouds).

 Motion changes

• Camera oscillations.

• Small movements of background objects such as trees waving in the wind or

sea waves, rain, snow, etc.

 Changes in the background geometry

 50

• Introducing or removing objects in the scene (such as a door is opened and
then is left opened or a parked car is moved on).

 An initialisation process is required by a number of algorithms.

These problems and requirements are the constraints which should be considered as
important characteristics by adaptive background removal algorithms.

There are a lot of background removal algorithms in the literature which the flow
diagram of most of them consists of four major steps as follows (Cheung and
Kamath, 2004; Elhabian et al., 2008):

1. Pre-processing (e.g. including simple tasks such as converting the raw input
video into a format suitable for later processing steps)

2. Background modelling (also called background maintenance)

3. Foreground detection (also known as background subtraction)

4. Data validation or post-processing (for removing pixels that do not belong to

actual moving objects)

In the following these steps are explained (Elhabian et al., 2008):

1. Pre-processing steps are performed to filter out unimportant changes or to do
some initial actions before any decision about object detection is made. These
steps include:

 Geometric adjustments: Camera motion may cause intensity changes of

pixels which are never desired to be detected as real changes. Thus, frame
registration is utilised to align several frames into the same coordinate
frame.

 Radiometric/Intensity adjustments: Pre-compensation for illumination varia-

tions between frames may be performed which is due to changes the
strength or the position of light sources in the scene. For example, the pixel
intensity values are normalised both for the current input frame and its
corresponding background image to have zero mean and unit variance.

 Image derivatives: Sometimes pixel-based features such as spatial and

temporal derivatives are utilised by a number of algorithms to incorporate
edges, level lines, and motion information, which are invariant to illumin-
ation changes, to have a suitable representation of the scene background.

 Data reduction: In order to reduce the data processing rate, frame-size and
frame-rate reduction are commonly used by real-time systems.

 Noise reduction: As an initial pre-processing stage, simple temporal and/or

spatial smoothing is often used to reduce camera noise and to remove

 51

transient environmental noise such as snow and rain captured in outdoor
scenes.

 Format transformation: Pre-processing may include feature extraction such
as transforming input frames into the most appropriate feature space (e.g.
converting data format) derived only from input frames. Colour images have
become popular for background removal algorithms. The RGB space is
generally used colour space since RGB values are readily provided by most
frame grabbers. However, RGB colour space does not behave well with
respect to colour perception because a distance computed between two
colours in RGB space does not show their perceptual similarity. Thus, some
algorithms transform RGB colour space to other spaces such as YUV, HSV,
normalised rgb, C1C2C3, etc as a pre-processing step.

2. Background modelling: The heart of any background removal algorithm is

background modelling, also known as background maintenance. According to
Cristani et al. (2003), a background modelling process is usually characterised
by three issues; model representation, model initialisation, and model
adaptation. The kind of model used to represent the background is described by
the first one. The second one is concerned with how the model is initialised and
the third one regards the mechanism of adapting the model to background
changes (e.g. illumination changes).

3. Foreground detection: For detecting foreground objects, each input frame is

compared with the background model to identify candidate foreground pixels
in the input frame. The result of this comparison is called difference image or
difference map, which is binarised by thresholding to classify foreground
pixels. The correct threshold value is determined based on the scene, the
camera noise, and the illumination conditions.

There are a number of methods to generate the difference map including

absolute difference edge-based, relative difference, predictive-based, statistic-
cal-based approaches such as single Gaussian-based, mixture of Gaussians-
based, kernel density estimation-based, etc. However, one of the simplest but
effective methods is absolute differencing, which was explained in section
2.2.4.

4. Data validation: The output of a foreground detection algorithm is a binary

frame called foreground mask. It generally has a noisy appearance with isolate-
ed foreground pixels and a number of connected foreground components
with jagged silhouettes and holes inside them. The process of improving
the foreground mask based on the information outside of the background
model is known as data validation, which is sometimes referred to as the post-
processing phase (Cheung and kamath, 2004).

False positive and false negative misclassifications may occur in the
segmentation of the foreground mask. Data validation aims to reduce the
number of false positives (i.e. background regions incorrectly classified as

 52

foreground) and false negatives (i.e. foreground regions mistakenly labelled as
background) without an essential degradation in classification speed.

Simple standard binary image processing operations such as using median

fitters to remove small groups of pixels or morphological operations to smooth
object boundaries may be used as the post-processing phase by some algori-
thms. However, more sophisticated post-processing operations can be applied
to both the foreground mask and the original image. For example, typical
features such as motion, colour and edge information can be analysed to
improve the spatial accuracy of detected foreground regions.

A brief review of the most important background removal algorithms will be

given in the next section. The goal is to observe how much the vision researchers
have been successful to satisfy the constraints mentioned in this section.

3.3 A review of background removal algorithms

Background modelling is the core of all background removal algorithms. Many
researchers have developed a background model that is robust against environmental
changes in the background. The goal of using background removal methods is to
detect all moving objects of interest. Background removal methods can be classified
into two broad categories: non-recursive and recursive (Cheung and Kamath, 2004).
These two categories are described in the following subsections.

3.3.1 Non-recursive techniques

A non-recursive technique uses a sliding-window approach containing a number of
last frames for background estimation. They maintain a buffer to hold N previous
input frames. The background image is estimated based on the temporal variations of
each pixel in the buffered frames. Only the frames within the buffer (inside the
sliding-window) are used for estimating the background and more previous input
frames have no effect on the computations. A significant storage requirement is
considered as the weakness of these techniques as a large buffer may be needed by
some methods to cope with slow-moving objects. One solution to alleviate the
problem of keeping a large number of frames is to store video sequences at a lower
frame rate r (Cheung and Kamath, 2004). A number of commonly-used non-
recursive techniques are as follows:

 Frame differencing:

One of the oldest methods of background generation is the frame difference
algorithm (Jain, 1981). In this method, which uses the difference of two
consecutive frames, the previous input frame is considered as the estimated
background. Obviously this algorithm can only work in special conditions of
objects’ speed and frame rate (Piccardi, 2004). The advantages and draw-
backs of this method have also been mentioned in Section 3.2.2.

 53

 Mean filter:

A simple approach for estimating the background image can be the average
over the last N input frames containing no moving object. However, in
situations where foreground objects are inevitably visible in the video stream
(such as in public areas) the mean cannot produce a correct background
image. This happens when the number of frames N is small and the difference
in luminance between background and the moving objects is high. In such
cases, especially when there are lingering or slow-moving objects in a video
sequence, a blurring effect of those objects occurs which makes the back-
ground image unacceptable.

 Mode filter:

Some articles propose to perform the background update using statistical
functions on a sequence of the most recent samples such as mode function
(Shio and Sklansky, 1991). They argue that the most correct estimation
for the background is given by the mode which gives the most probable
luminance value as the maximum of the probability distribution. However,
for implementing the mode function, enormous data structures (i.e. a linked
list with N nodes for each image pixel) need to be kept in the memory
(Cucchiara, et al. 2000).

 Median filter:

Temporal median filtering is another statistical function, which is utilised as
one of the most commonly used background modelling techniques. For this
filter, the assumption is that pixels remain in the background for more than
half of the frames in the buffer. For example in Rosin and Ellis (Rosin and
Ellis, 1995), each pixel in the reference image is obtained as the result of
applying a median filter to the input image at the same pixel (Bx,y = mediant
It

x,y).

In contrast to the mean function, which is very fast, the median function

requires sorting the last N samples of each image pixel. The complexity of
computing the median is O (N log N) for each pixel. In addition, temporal
median filters work well if objects have some movement. Thus, if foreground
objects have few movements, gradually some parts of objects are transferred
to the background and the difference image will be zero for those regions.

The mean, mode and median filters are called basic methods. In these three

methods, the background model at each pixel location is updated using the recent
history of the pixel (e.g. N previous frames). Moreover, no spatial correlation bet-
ween the locations of neighbouring pixels is used (Piccardi, 2004).

 Selectivity:

Methods, which exclude moving object pixels from background update, are
called selective background update algorithms (Cucchiara, et al., 2000;

 54

Elgammal, et al., 1999). However, using selectivity causes a problem
concerning ghosts; if ghosts are excluded from the background update, the
background will never be correctly estimated, and the ghosts will be
permanently deleted (Cucchiara, et al., 2003). Thus, adaptive background
generation algorithms should precisely consider the ghost problem.

The basic methods can apply selectivity in their approaches to have a
better performance. The utilised procedure is as follows (Piccardi, 2004):

• Each pixel in every input frame is classified as either a foreground or

a background pixel.

• If the pixel is detected as a foreground point, it is ignored in the

background update process.

As a result, the pixels, which logically do not belong to the background scene,
are prevented from the background update process.

 Least median of squares:

Yang and Levine (1992) proposed an algorithm for constructing the backgro-
und primal sketch, which is an edge map of the background without moving
objects. They built the background primal sketch by taking the median value
of the pixel colour over a series of images. Their suggestion was to compute
Bt (x, y) using the least median of squares (LMedS) estimate, i.e.

Bt (x, y) = minb mediant (It (x, y) – b)2 (Eq. 3.1)

The disadvantages of this method are the need for various parameters as
well as the requirement of a continuously unoccluded view of the background
(Rosin and Ellis, 1995).

 Linear predictive filter:

The Wallflower method (Toyama, et al., 1999) uses a three tiered algorithm
for the background subtraction problem. The background is modelled by
(Javed, et al., 2002):

1. Pixel-by-pixel linear prediction using colour information

2. Region-level by region filling algorithm for dealing with background

object relocation problem

3. Frame-level by model switching for detecting global illumination
changes

The current background estimate is computed by applying a simpler version
of the Kalman filter called Weiner filter on the pixels in the buffer (Mittal
and Paragios, 2004). This algorithm can only handle sudden changes in

 55

illumination if the model describing the scene after the illumination changes
is known a priori (Javed, et al., 2002).

The Wallflower method assumes that an initial model can be obtained
using a short training sequence which contains no foreground object.
However, it is sometimes difficult or impossible to control public areas.
So the initialisation process may malfunction in such cases. Moreover, the
filter coefficients are estimated at each frame based on the sample
covariances, making the technique difficult to apply in real-time (Cheung and
Kamath, 2004).

 Non-parametric background model:

In the non-parametric background model (Elgammal, et al. 1999) or kernel
density estimation (KDE), the background probability density function (p.d.f)
is obtained by the histogram of the N most recent pixel values as follows:

 (Eq. 3.2)

where K(.) is a smoothing Gaussian kernel estimator. The pixel It (x, y) is
considered as a foreground point if there is little possibility that f (It (x, y))
has such a distribution, i.e., f (It (x, y)) is smaller than one global threshold
value τ. Utilising the full density function for a single estimation has the
advantage of representing multimodal background such as waving trees,
ocean waves, rain, snow, moving clouds, etc. Moreover, the algorithm has the
advantage of increased detection sensitivity and simultaneously reduces false
positives (Cheung and Kamath, 2004).

The non-parametric kernel density algorithm uses the median of the
absolute differences between successive frames as the width of the kernel.
Thus, it requires intensive computations for kernel values of each point in
order to declare it as a foreground pixel. In addition, this method needs a
significant memory requirement (N * size (frame)).

 Standard mean-shift based estimation:

In this gradient-ascent method, the modes of a multimodal distribution are
detected using their covariance matrix. The method uses an iterative approach
so its step is decreased until it is converged. For n data points xi, i = 1. . . n in
the d-dimensional space Rd, the multivariate mean shift vector computed with
kernel g in the point x is given by:

2

1

2

1

 ((- /))
() = -

((- /))

n

i i
i

n

i
i

x g x x h
m x x

g x x h

=

=

∑

∑
 (Eq. 3.3)

 where h is the kernel bandwidth (Comaniciu, 2002).

11((,)) = ((,) - (,))
t

t t i
i t N

f I x y K I x y I x y
N

−

= −
∑

 56

The major problems with the standard mean-shift method are that the algori-
thm is very slow and requires the amount of “N (i.e. buffer length) * size
(frame)” memory (Piccardi, 2004).

 Eigenbackground subtraction:

The eigenspace model is formed by taking a sample of N frames and these
frames are re-arranged as the columns of a matrix A. Then, both the mean μ
(background image) and its covariance matrix C = AAT are computed. By
an eigenvalue decomposition, the covariance matrix can be diagonalised as
L = ФCФT, where Ф is the eigenvector matrix of the covariance of the data
and L is the corresponding diagonal matrix of its eigenvalues. Only the
first M eigenvectors (eigenbackgrounds), corresponding to the M largest
eigenvalues, are kept to give a ФM matrix. A principle component feature
vector Ii – ФT

M Xi is then formed, where Xi = Ii – μ is the mean normalised
image vector. Each input image Ii is projected into an M eigenvector sub-
space, i.e. Bi = ФM Xi to model the static parts of the scene, pertaining to the
background. By thresholding the Euclidean distance between the input image
and the projected image, i.e. Di = | Ii – Bi | > τ, where τ is a given threshold,
the moving objects are detected (Oliver, et al., 2000).

The authors of the paper (Oliver, et al., 2000) state that it works well and is
faster than the MOG (mixture of Gaussians) approach (Piccardi, 2004).

3.3.2 Recursive techniques

Recursive techniques do not use buffer for background estimation. Instead, a single
background model is updated using each input frame recursively. Often more
weights are given to most recent samples and as a result, input frames from past
distance usually have less effect on the current background model (Cheung and
Kamath, 2004).

In comparison with non-recursive techniques, recursive techniques require much
less storage. However, if an error object suddenly appears in the background image,
it may remain in the background for a much longer period of time. Some recursive
techniques are described as follows:

 Running average:

The background image is updated for comparison with the next input frame
as follows:

 Bt+1 (x, y) = α * It (x, y) + (1 – α) * Bt (x, y) (Eq. 3.4)

where 0 < α < 1. α is called the learning rate and is typically 0.05. If this
updating process is used, only the current and the previous background image
should be stored.

 57

 Running average with selectivity:

In this approach, the background model uses both running average and
selectivity for updating background pixels as follows (Piccardi, 2004):

Bt+1 (x, y) = α * It (x, y) + (1 – α) * Bt (x, y) : if It (x, y) is a background pixel
 (Eq. 3.5)

Bt+1 (x, y) = Bt (x, y) : if It (x, y) is a foreground pixel (Eq. 3.6)

 Approximated median filter:

In this technique, the running estimate of the median is incremented by one if
the input pixel is larger than the estimate, and decreased by one if smaller
(McFarlane and Schofield, 1995). This estimate eventually converges to a
value for which half of the input pixels are larger than and half are smaller
than this value, that is, the median (Cheung and Kamath, 2004).

 Kalman filter:

Kalman filter is a widely-used recursive technique for tracking linear dyna-
mical systems under Gaussian noise (Cheung and Kamath, 2004). Different
versions of Kalman filtering have been proposed for background modelling.
In the simplest version, only luminance intensity is used (Halevy and
Weinshall, 1999; Boult et al. 1999; Wren et al. 1997). Karman and von
Brandt (Karman and von Brandt, 1990) apply intensity and its temporal
derivative. Their approach is able to adapt with lighting and weather temporal
changes. However, there are two difficulties in this method. Firstly, the
method needs parameters which should be set manually. Secondly, inappro-
priate selection values for two parameters of the method leads to severe
performance degradation. Thus, this technique cannot be used in systems
which need to produce background image automatically.

Ridder et al. (1995) modelled each pixel with a Kalman filter which made
their system more robust to lighting changes in the scene. While this method
uses a pixel-wise automatic threshold, it still recovers slowly and does not
handle bimodal backgrounds well (Stauffer and Grimson, 1999).

 Running Gaussian average:

Pfinder (Wren et al., 1997) uses colour images and a statistical model of the
background instead of a reference image. It assumes that most of the time,
the system processes a scene containing a relatively static situation (i.e. a
slow-changing environment). For this purpose, this approach models the
background as a textured surface, each point of which is associated with a
mean colour and a variance about the mean. Thus, Pfinder fits one Gaussian
distribution (μ, σ) over the histogram which gives the probability density
function (p.d.f) of the background. It also applies the running average to
update the background p.d.f as follows:

 58

1(x, y) = * I (x, y) + (1 -) * (x, y)t t t+µ α α µ (Eq. 3.7)

2 2 2
1(,) = * (I (,) (,)) + (1 -) * (,)t t t tx y x y x y x y+ −σ α µ α σ (Eq. 3.8)

 The method uses a threshold for partitioning the background pixels into
visible and occluded points by examining the following test:

 | It (x, y) – μt (x, y) | > τ, where τ = kσ. (Eq. 3.9)

In each frame, the statistics of visible pixels are updated using a simple

adaptive filter in order to compensate for background changes due to
illumination and human motion (Spagnolo, et al., 2003). However, for Pfinder
to operate correctly in indoor environments, the room must be kept empty
during the initialisation period. Thus, this system is sensitive to initialisation
inaccuracies. In addition, Pfinder has another difficulty in modelling the
background in outdoor scenes because it cannot handle small motions of
background objects such as waving trees. Therefore, it cannot cope with
multimodal backgrounds (Piccardi, 2004).

 Mixture of Gaussians:

In the mixture of Gaussians (MOG) model (also called Gaussian mixture
model or GMM), the intensity of each background pixel is adaptively repres-
ented by the summation of k weighted Gaussians (Stauffer and Grimson,
2000 and 1999). The MOG model maintains a density function for each pixel
and as a result is capable of handling multimodal background distributions.
The number of modes (i.e. k) is usually predefined from 3 to 5. The pixel
distribution f (It (x, y) = u) is modelled as a mixture of k Gaussians (Cheung
and Kamath, 2004):

 , , ,
1

 (I (x, y) =) = . (;)
k

t i t i t i t
i

f u u
=
∑ω η µ σ, (Eq. 3.10)

where , , (;)i t i tu , η µ σ is the i-th Gaussian component with intensity mean

, i tµ and standard deviation , i tσ . , i tω is the portion of the data accounted for

by the i-th component. For each input pixel It (x, y), the component î whose
mean is closest to It (x, y) is declared as the matched component if

 ˆ ˆ, 1 , 1| I (x, y) - | 2.5t i t i t− −≤µ σ (Eq. 3.11)

At every new frame, the parameters of the matched component are then
updated as follows:

ˆ ˆ, , 1 = (1 -) + i t i t−ω α ω α (Eq. 3.12)

ˆ ˆ, , 1 (x, y) = (1 -) (x, y) + I (x, y)ti t i t−µ ρ µ ρ (Eq. 3.13)

 59

2 2 2
ˆ ˆ ˆ, , 1 , (x, y) = (1 -) (x, y) + (I (x, y) - (x, y))ti t i t i t−σ ρ σ ρ µ (Eq. 3.14)

where α is a user-defined learning rate with 0 ≤ α ≤ 1. ρ is the learning rate
for the parameters and can be approximated by

ˆ, i t

≈
αρ
ω

 (Eq. 3.15)

Actually the mixture of Gaussians models both foreground and back-

ground. In order to determine whether It (x, y) is a foreground or background
pixel, all components are ranked by their / , , i t i tω σ . If i1, i2, …., ik is the
component order after sorting, the first M components that satisfy the
following criterion are declared to be the background components (Cheung
and Kamath, 2004):

1

,
Mi

k t
k i=

≥ Γ∑ω (Eq. 3.16)

where Γ is the weight threshold.

The advantages of Gaussian mixture models (GMMs) are dealing with
lighting changes, slow-moving objects, and introducing or removing objects
from the scene. A drawback of GMM algorithms is that the number of the
mixture components is pre-set and fixed-value. GMM approach for fore-
ground segmentation is a time-consuming process. This is due to estimating
the number of parameters which are mostly determined by the number of
mixture components. Also the application of GMMs for background subtract-
tion requires an efficient method for learning the GMM parameters which are
computationally expensive. Therefore, the selection of the number of compo-
nents and the initialisation process are two important problems of the GMM
algorithm for background subtraction (Cheng et al., 2006).

GMM algorithms have other disadvantages. Using a few Gaussians may

not easily model the fast variations of the background. Thus it may be unable
to provide sensitive detection (Elgammal, et al., 1999). Depending on the
learning rate, GMM algorithms may also encounter trade-off problems for
adapting to background variations. They may fail to detect sudden illumin-
ation changes in the background due to a low learning rate which produces a
wide model. The background model absorbs slowly moving foreground
pixels once the model adapts too quickly. As a result, this phenomenon,
called the foreground aperture problem (Toyama et al., 1999), produces a
high false negative rate (Kim et al., 2005). Nevertheless, due to the popularity
of this method, a number of techniques have been developed to improve the
performance of the GMM algorithm (Tian, et al., 2005, Eng et al., 2004,
Harville, 2002, Javed, et al. 2002). For example, Figueiredo and Jain (2002)
proposed an unsupervised algorithm for learning a finite mixture model
which has two properties (1) it selects the number of components auto-

 60

matically (2) it is less sensitive to initialisation (Cheng et al., 2006). Zivkovic
and van der Heijden (2006) developed Figueiredo and Jain’s research (2002)
and proposed an online algorithm which automatically selects the required
number of components per pixel. The advantage of the new method is that it
can fully adapt to the observed scene. Its other advantages are reduced
processing time and improved segmentation result (Zivkovic and van der
Heijden, 2006).

 Sequential kernel density approximation (SKDA):

In this method, the density is represented by a weighted sum of Gaussians,
whose number, weights, means and covariances are updated at each time step
to include the new data into the model (Han, et al., 2004).

The approach uses a variable-bandwidth mean shift mode which detects

samples just at initialisation time. For each mode, a Gaussian component is
created whose mean is given by the mode location. The covariance of the
Gaussian is also derived from the Hessian matrix which is computed at the
mode location.

This method relies on the modelling and density modes which are

propagated by adapting them with the new samples as follows:

 Probability density function (x) = α (new_mode) +
 (1 – α) (∑existing_modes) (Eq. 3.17)

The number of modes is not fixed a priori. Moreover, heuristic procedures
are utilised for merging the existing modes (Piccardi, 2004).

This method is faster than non-parametric kernel density estimation (KDE)

and in comparison with KDE, it requires low memory. Also it is faster than
the standard mean-shift based estimation.

3.4 A brief comparison of background removal techniques

In this section a brief comparison among the reviewed background removal algori-
thms in Section 3.3 (subsections 3.3.1 and 3.3.2) is given. The methods reviewed are
as follows:

 Non-recursive techniques:

• Frame differencing
• Mean filter
• Mode filter
• Median filter
• Basic methods (i.e. mean, mode and median) with selectivity
• Least median of squares

 61

• Linear predictive filter
• Non-parametric background model or kernel density estimation (KDE)
• Standard mean-shift based estimation
• Eigenbackground Subtraction

 Recursive techniques:

• Running average
• Running average with selectivity
• Approximated median filter
• Kalman filter
• Running Gaussian average
• Mixture of Gaussians
• Sequential kernel density approximation (SKDA)

The criteria for comparison among these methods are the ‘speed of computations’,
the ‘amount of required memory’, and ‘accuracy’. Let’s compare the above methods
based on these criteria and the data available from the literature as follows (Piccardi,
2004):

 The speed of computations:

• Real-time:

♦ frame differencing, mean, mode, median (close to real-time), basic
methods with selectivity, running average, running average with select-
ivity, approximated median filter

• Non-real-time:

♦ Almost fast†

: Kalman filter (depending on the application), running Gau-
ssian average, least median of squares, linear predictive filter

♦ Intermediate: non-parametric background model, mixture of Gaussians

♦ Slow: standard mean-shift based estimation

 The amount of required memory:

• High: mean, mode, median, basic methods with selectivity, non-parametric
background model, standard mean-shift based estimation, least median of
squares

• Intermediate: Kalman filter, running Gaussian average, linear predictive
filter, mixture of Gaussians

† i.e. frame rates are more than 50% and less than 90% of real-time frame rates.

 62

• Low: frame differencing, running average, running average with selectivity

 Accuracy:

Accuracy may be defined based on a few precise measurement metrics such
as TP, FP, TN, and FN as already defined in Section 2.2.9.4. For computing
the accuracy of different background removal methods a number of specified
video sequences should be available. Then a researcher should implement each
background algorithm and calculate the above measurement metrics for every
sequence. This is absolutely a difficult and a time-consuming process since a
large number of methods have been proposed in the literature especially in
recent years. In addition, it is possible that the authors of some papers do not
offer all the details of their algorithms. Thus, the researcher may not implement
a method exactly in the same way that its authors have done it. So a little (or
sometimes a substantial) different results may be obtained. The original (source
or executable) code of an algorithm is often not available as a means of
measuring the performance of each method. Thus, a very precise and unbiased
comparison among various background algorithms is almost impossible.

Instead of accuracy, the correctness (or the overall performance) of a back-

ground algorithm may be defined as how much each method is capable to
handle the factors which was given in Section 3.2.3. Table 3.1 is offered for
this purpose to present important features of each algorithm.

It is difficult to compare different background removal algorithm since each

one has some advantages and disadvantages. However, by looking on Table 3.1
and comparing different methods, someone can decide which background
removal algorithm is more appropriate for his application. For example, a
researcher may pay little attention to the ‘amount of required memory’ because
nowadays, most ordinary PCs have at least 2 to 4GB of RAM. This amount of
memory is often sufficient enough for implementing most of background
algorithms. Therefore, at the present time, the ‘required memory’ is not
considered a limiting constraint (or a bottleneck) for a method. On the other
hand, algorithms, which can run in real-time with acceptable performances,
may have more importance in many applications. There are very fast PCs at the
market, however, a number of sophisticated background algorithms still cannot
run in real-time. As another example, an algorithm may be able to handle
multimodal backgrounds but it is not capable to manage the problem of the
movements of background objects.

Based on the above discussion and depending on the application, research-

ers can decide which features of a background method are more important to
be suitable for their vision system.

 63

Method

Non-Recursive

(N) or Recursive
(R)

Real-time

Required
Memory

Frame Differencing N Yes Low

Mean Filter N Yes High

Mode Filter N Yes High

Median Filter N Yes High

Basic methods with
selectivity N Yes High

Least Median of
Squares (LMedS) N Yes High

Linear Predictive
Filter N Yes Intermediate

Non-parametric
Background Model N No

 (Relatively Slow) High

Standard Mean-Shift
Based Estimation N No

(Very Slow) High

Eigenbackground
Subtraction N No

(Relatively Slow) Intermediate

Running Average R Yes Low

Running Average with
Selectivity R Yes Low

Approximated Median
Filter R Yes High

Kalman Filter R No
(Almost Fast) Intermediate

Running Gaussian
Average R No

(Almost Fast) Intermediate

Mixture of Gaussians
(MOG) R No

 (Relatively Slow) Intermediate

Sequential Kernel
Density Approximation R No

(Relatively Slow) Intermediate

Table 3.1 – A brief comparison among reviewed background algorithms.

 64

Selecting Optimum Thresholds for
the Colour Difference Image

4.1 Introduction

This chapter is concerned with surveying thresholding methods in order to select
optimum thresholds for the colour difference image.

4.2 Optimum thresholding method for colour difference image

Suppose a suitable dynamic background generation algorithm is used to produce an
adaptive colour background frame for each colour input frame of an image sequence.
Then based on Eq. 2.1, the absolute difference between the current input image
Ii(x, y) and its corresponding background frame (i.e. Bi(x, y)) for each pixel (x, y) are
obtained. In this case, what is the best thresholding method for each colour difference
image Di that satisfies the following conditions?

1. The optimum thresholding method (OTM) should obtain the highest quantita-
tive measurement scores based on PCC, Jaccard and Yule coefficient values
where these coefficients are explained in the following.

2. The OTM should produce the best quality binary images in which the shape

and the connectivities between the pixels of the foreground regions are
preserved and the minimum numbers of spurious regions (which are due to
noise) are produced.

3. The OTM should be the fastest thresholding algorithm (among all threshold-

ing methods) which can operate on colour images and is able to convert the
colour difference image to binary in a short fraction (e.g. 5% to 10%) of the
real-time period. The real-time period is defined as a period of time between
every two consecutive frames in an image sequence, which are entered to the

CChhaapptteerr 44

 65

vision system. For example, if 25 frames are input in each second (generated
by the frame grabber), based on this definition, the real-time period is equal to
40 ms.

4. The OTM’s parameters are automatically computed for each frame.

where PCC (i.e. percentage correct classification), Jaccard (Sneath and Sokal, 1973)
and Yule (Sneath and Sokal, 1973) coefficients are defined based on TP (true
positives), FP (false positives), TN (true negatives), and FN (false negatives) as
follows:

• TP: Number of change pixels correctly detected.
• FP: Number of no-change pixels incorrectly flagged as change by the algori-

thm.
• TN: Number of no-change pixels correct detected.
• FN: Number of change pixels incorrectly flagged as no-change by the algori-

thm.

 PCC = (TP + TN) / (TP + FP + TN + FN) (Eq. 4.1)

 Jaccard coefficient = TP / (TP + FP + FN) (Eq. 4.2)

 Yule coefficient = | (TP /(TP + FP)) + (TN/(TN + FN) – 1 | (Eq. 4.3)

Now that the question concerning thresholding is specified, it is time to search for

an OTM which satisfies the above conditions. Based on the survey of Sezgin and
Sakur (2004), seven thresholding methods with high performances are examined on
three video sequences. For this purpose, for every input frame of each three image
sequences, the corresponding dynamic background image is computed using the
algorithm outlined in Chapter 6 (the ‘Selective Update Using Temporal Median’).
Then, using Eq. 2.1, the absolute difference Di is obtained for three colour channels.
Table 4.1 shows the PCC, Jaccard and Yule coefficients for seven thresholding
methods applied to three video sequences Fld, Bijan1 and Lab where these
coefficients are computed as follows:

In order to compute the PCC, Jaccard and Yule coefficients for each thresholding

method, a number of colour difference images (e.g. 100 frames) of three video
sequences Fld, Bijan1 and Lab are selected. For simple description of the process,
consider for example Fld sequence.

For each colour channel c of every sample of difference image of Fld sequence,

the adaptive grey-scale threshold τc is computed based on the technique described in
the paper of each thresholding method. Then, the grey-scale converter compares the
pixels of the difference image with their corresponding grey-scale thresholds τc as
follows:

 Grey_Maskc (x, y) =
1, if difference image (x, y) >
0, otherwise

c c

τ
 (Eq. 4.4)

 66

where c = red, green and blue.

After thresholding using one of the methods in Table 4.1, a size filter with specific
T0 value (e.g. T0 = 10) is applied to every sample of thresholded image sequence of
Fld. Utilising the size filter is necessary because the above coefficients are computed
correctly once the video frames are free of spurious small noisy regions.

Algorithm

Measure

Image Sequence

Fld Bijan1 Lab

Ridler and
Calvard
(1978)

PCC 0.9806 0.8428 0.9558

Jaccard 0.8218 0.3638 0.7394

Yule 0.9735 0.7147 0.9269

Tsai
(1995)

PCC 0.9627 0.8316 0.8683

Jaccard 0.6549 0.3160 0.4109

Yule 0.9598 0.6983 0.7715

Otsu
(1979)

PCC 0.9863 0.9402 0.9600

Jaccard 0.8744 0.7815 0.8214

Yule 0.9730 0.8210 0.8864

Kapur
(1985)

PCC 0.9174 0.8140 0.8843

Jaccard 0.2379 0.2354 0.2371

Yule 0.9069 0.9603 0.9240

Huang and
Wang
(1995)

PCC 0.8821 0.9402 0.8867

Jaccard 0.0416 0.7815 0.1008

Yule 0.8807 0.8210 0.8759

Yager
(1979)

PCC 0.8966 0.7808 0.8410

Jaccard 0.0439 0.0184 0.0317

Yule 0.8961 0.7629 0.8322

Unimodal
(Rosin, 2001)

PCC 0.9918 0.9516 0.9649

Jaccard 0.9331 0.8300 0.8640

Yule 0.9790 0.8460 0.8899

Table 4.1 – PCC, Jaccard and Yule coefficients for different threshold methods.

 67

After applying the size filter, a further important point is that how the results
of three binary masks of a sample thresholded difference image are combined to
produce the final binary frame. For simplicity and speeding up the total thresholding
process, the following possibilities are our proposal for combining the binary masks.
The one, which produces the best result, is selected. Of course, other approaches with
better results may exist, which requires more investigation and/or research.

- Initillay, Binary_frame (x, y)← 0

1. if (Grey_MaskRed (x, y) = 1 and Grey_MaskGreen (x, y) = 1 and
 Grey_MaskBlue (x, y) = 1) then (Eq. 4.5)
 Binary_frame (x, y) ← 1

2. if (Grey_MaskRed (x, y) + Grey_MaskGreen (x, y) + Grey_MaskBlue (x, y) ≥ 2) then
 // i.e. at least two of three or majority (Eq. 4.6)
 Binary_frame (x, y) ← 1

3. if (Grey_MaskRed (x, y) = 1 or Grey_MaskGreen (x, y) = 1 or
 Grey_MaskBlue (x, y) = 1) then (Eq. 4.7)
 Binary_frame (x, y) ← 1

In order to choose the best option, the results of these techniques are qualitatively

compared with each other based on a number of images as shown in Figs. 4.1a-l (for
three input images Fld249, Highway I-170, Highway II-196). For quantitative
comparison, the ground-truth data for true foreground regions should be obtained.
Then, the results of each above approach for combining binary masks should be
compared with the ground-truth results. However, based on the reasons stated in the
following, the results of qualitative comparisons are so clear that the quantitative
measurements surely confirm them. Therefore, quantitative results are not necessary.

Figs. 4.1c, 4.1g, and 4.1k are thresholded images produced using the “OR”

operation. Due to noise and different threshold values for colour channels, a number
of pixels around the foreground regions have also been added to these regions. As a
result, the foreground objects have become bigger than their original sizes and their
shapes have been distorted. Thus, the “OR” operation is not a suitable selection for
combining three binary masks. In contrast, in the thresholded images based on the
“AND” operation (Figs. 4.1b, 4.1f, and 4.1j), many pixels inside foreground objects
have been removed. So foreground objects have been eroded and their outer
boundaries have been distorted as well.

Among three proposed methods for combining three binary masks, the “majority”
operation (i.e. at least two of three) has suitable performance (Figs. 4.1d, 4.1h, and
4.1l). Because in the thresholded images using the “majority” operation, the sizes of
foreground objects have not been changed and minor distortions are found in their
silhouettes. Thus, it is chosen as the appropriate approach for combining the binary
masks to produce the final thresholded difference image. In fact, the PCC, Jackard
and Yule coefficients in Table 4.1 for seven thresholding methods have been
obtained using the “majority” operation. Then, in the resulted binary image, the sizes
of all regions are computed. Meanwhile, by looking at that binary frame, a decision

 68

about each region is made whether that region belongs to which one of TP, FP, TN,
or FN sets. This approach is repeated for all regions in the binary frame. In practice,
regions are shown in different colours based on decreasing sizes for their easier
detection in the binary image. Next, the sum of sizes of regions in TP, FP, TN, and
FN sets of each frame is obtained. This cumbersome process is performed for all
sample frames of Fld video sequence until the sum and average values for the
mentioned sets are computed. In this way, the PCC, Jaccard and Yule coefficients are
obtained for that thresholding method and the video sequence.

 (a) (b)

 (c) (d)

 (e) (f)

 69

 (g) (h)

 (i) (j)

 (k) (l)

Fig. 4.1 – (a), (e), (i) Fld249, Highway I-170, Highway II-196; (b), (f), (j) using AND
thresholding, respectively; (c), (g), (k) using OR, resp.; (d), (h) and (l) using “majority”,
respectively.

Based on the results of Table 4.1, unimodal thresholding has the most appropriate

performance. It is a robust technique when the histogram of the grey-scale image has
one peak (e.g. in the case of difference image). That is, the intensity of the majority
of pixels is very close to the origin. In unimodal thresholding, a straight line is drawn
from the peak to the high end of the histogram of the grey-scale image. More
precisely, the line starts at the largest bin and finishes at the first empty bin of the
histogram following the last filled bin. If the ith entry of the histogram is written as
Hi then the line (xs, ys) → (xf, yf) is defined as (argmaxi Hi, maxi Hi) → (max Hi=0 and

 70

Hi-1≠0 i, 0). The threshold point is selected as the histogram index i that maximises the
perpendicular distance between the line and the point (i, Hi); see Fig. 4.2 (Rosin,
2001).

Fig. 4.2 – The procedure for determining threshold from intensity histogram (Rosin, 2001).

As a systematic approach for binarising a colour image, it is first converted to

a grey-scale intensity image using, for example, the HSI (H: Hue, S: Saturation, I:
Intensity) or YUV (Y: luminance, U: Red-Y, V: Blue-Y) colour models. Then, using
any appropriate thresholding method, the grey-scale image is transformed into binary
(Du et al., 2004).

Therefore, the following two approaches can be adopted:

1. Using unimodal thresholding, each grey-scale image (i.e. red, green and blue)

of the colour difference image is separately converted into binary. Then, these
binary images are combined into the final binary frame using the “majority”
operation as explained above.

2. The colour difference image is first converted into a grey-scale intensity image.

Then, the grey-scale image is transformed into binary using unimodal thresh-
olding (or any other suitable thresholding method).

Which one of the above approaches is more suitable for block number 5 (i.e. grey-
scale converter) of Fig. 2.1? Consider the following example as an answer to this
question.

Fig. 4.3 illustrates a sample colour difference image (4.3a), its grey-scale version
(4.3b), the histogram of the colour difference image (4.3c), and the histogram of its
corresponding grey-scale difference image (4.3d). Fig. 4.3c shows that each colour
channel has only one peak. Similarly, the histogram of Fig. 4.3d has also one peak.
Thus, unimodal thresholding can be utilised for both colour difference image and its
grey-scale version as their results are shown in Fig. 4.4d and Fig. 4.4e, respectively.

For a precise answer to the question mentioned above, both approaches are

applied to a number of colour and grey-scale difference images respectively and their
binarised outputs are compared with each other qualitatively.

 71

 (a) (b)

 (c)

 (e)

 (d)

Fig. 4.3 – (a) Fld_Dif249_colour; (b) Fld_Dif249_Grey; (c) Histogram for (a) with
Red-τ = 12, Green-τ = 10, Blue-τ = 14; (d) Histogram for (b) with Grey-τ = 15.

The Histogram of Grey-scale Difference Image

0

2000

4000

6000

8000

10000

12000

14000

16000

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251

Intensity

N
o

of
 P

ix
el

s

Grey-scale
Channel

Colour Difference Image Histogram

0

2000

4000

6000

8000

10000

12000

14000

16000

0 9 18 27 36 45 54 63 72 81 90 99 10
8

11
7

12
6

13
5

14
4

15
3

16
2

17
1

18
0

18
9

19
8

20
7

21
6

22
5

23
4

24
3

25
2

Intensity

N
o.

 o
f P

ix
el

s

Red Channel
Green Channel
Blue Channel

 72

In Fig. 4.4 the binarised colour and grey-scale difference images are shown with
their almost actual sizes so that their qualitative comparisons are easily possible.
Based on the results of Fig. 4.4, it is observed that binarised colour difference image
using the “majority” operation are more than 95% similar to binarised grey-scale
difference images. The main reason for this is that they seem to be equivalent.

Therefore, either technique can be used. In fact, the grey-scale difference image

has been obtained based on the combination of three colour channels.

 (a) (b) (c)

 (d) (e)

 (f) (g) (h)

 73

 (i) (j)

 (k) (l) (m)

 (n) (o)

Fig. 4.4 – (a) Fld249; (b) Col_Fld_Diff249; (c) Grey_Fld_Diff249; (d) Col_Fld_Thresh249
using “majority” operation; (e) Grey_Fld_Thresh249; (f) HighwayII-170; (g)
Col_HighwayII_Diff170; (h) Grey_ HighwayII_Diff170; (i) Col_ HighwayII_Thresh170; (j)
Grey_ HighwayII_Thresh170; (k) HighwayI-196; (l) Col_HighwayI_Diff196; (m) Grey_
HighwayI_Diff196; (n) Col_ HighwayI_Thresh196; (o) Grey_ HighwayI_Thresh196.

 74

A Pixel-based Approach to Adaptive
Dynamic Background Subtraction

5.1 Introduction

The importance of producing precise dynamic reference images is obvious in
computer vision applications such as video surveillance, traffic monitoring and,
human-machine interaction systems, etc. For this purpose, background subtraction
has often been used as the first step in many moving object detection algorithms (e.g.
Elgammal et al. 1999; Horprasert et al. 1999; Grimson et al. 1998; Kaewtrakulpong
and Bowden, 2001; Cucchira et al. 2000 and 2001). By applying a suitable updating
technique, an adaptive background subtraction method generates a corresponding
reference frame for every input image.

A trivial approach for background estimation is where the reference image is
obtained as the scene is static (i.e. there is no background motion). However, since
there are variations in lighting conditions caused by changes of light level in an
outdoor environment (e.g. due to position changes of the sun, clouds, etc.),
the reference frame gets out of date very soon. Thus, adaptive updating techniques
should be applied to the background image in order to keep it up-to-date (Rosin and
Ellis, 1995).

In a realistic situation, it may sometimes be impractical for a surveillance system
to acquire a background image with no moving object (e.g. for a traffic surveillance
system which monitors a street or a highway) and sometimes stationary objects are
moved away from the scene (e.g. a parked car is moved out or a gate is opened and
then is left opened) (Dawson-Howe, 1996). An adequate dynamic background
generation technique can overcome these problems.

A considerable number of methods concerning adaptive background generation

have been proposed since more than twenty years ago. Several papers suggest back-
ground update based on statistical temporal functions on a sequence of the most
recent frames such as mean (Dagless, et al., 1993), mode (Shio and Slansky, 1991) or

CChhaapptteerr 55

 75

median (Cucchira et al., 2000 and 2001). In a number of other papers, an adaptive
parametric or non-parametric mixture model of k Gaussian distributions has been
used in order to handle small and frequent illumination changes (Elgammal et al.,
1999, Stauffer and Grimson, 1999 and Kaewtrakulpong and Bowden, 2001).

The use of Kalman filtering as an adaptive background estimation method has
also been proposed by some authors (Stauffer and Grimson, 1999). For each pixel,
they use a signal processing system that is controlled by a Kalman filter in order
to track the illumination variations of background images. However, some of these
methods are unable to manage the problem of moving background objects and
foreground objects becoming motionless after a period of time (Koller et al., 1994).

In this chapter, a ‘Pixel-based’ approach is presented. For this approach, three

algorithms called the ‘Selective Update Using Temporal Averaging’, the ‘Selective
Update Using Non-Foreground Pixels of the Input Image’ and the ‘Selective Update
Using Temporal Median’ are offered and then compared.

In the ‘Pixel-based’ approach, after thresholding the difference image, backgro-

und pixels are examined. This check is done to distinguish real background pixels.
Then, these pixels are updated using the mentioned ‘Selective Update’ algorithms.
However, there is no processing for foreground pixels except that their correspond-
ing pixels in the previous background image are copied into the current background
frame.

5.2 Definitions, characteristics and problems with background

generation

The goal of the ‘Pixel-based’ approach is to produce dynamic background (or refer-
ence) images using colour image sequences in unconstrained outdoor and indoor
environments. As in Cucchira et al. (2001), the following assumptions are made:

Stationary-background assumption: The camera and the background are stationary.

The following factors change the background:

Variable-lighting assumption: Gradual variation in lighting conditions (some exc-
eptions are, for example, abrupt changes of light level in an outdoor environment
due to covering and uncovering the sun by clouds or lights switched on or off in
indoor scenes).

Objects-status assumption: The status of objects changes from moving to motion-
less or from stationary to moving.

This work also supports similar definitions for moving objects and background pixels
and the same definition for ghost given in Cucchira et al. (2001) as follows:

Moving-Object-Def: A moving object is a set of connected points in the input
image, which in comparison to the static camera, is currently characterised by

 76

 non-null motion and a different visual appearance from the background.

Ghost-Def: “Ghost: is a set of connected points, detected as in motion but not
corresponding to any real moving object”.

Background-Def: Background is all the pixels in every input image which neither
belong to moving objects nor ghosts or their cast shadows.

Moving objects, ghosts and their cast shadows are defined as foreground objects

(or regions) hereafter. Thus, Background-Def is the definition of a part of a dynamic
background image which is not occluded by any foreground object. Meanwhile,
Objects-status assumption and Ghost-Def introduce two difficult situations that have
important effects on producing dynamic background frames correctly.

5.3 Algorithms for generating dynamic background

There are four groups of pixels that the dynamic background generation system (the
background system for short hereafter) should discriminate:

Background-Grp: The pixels that are not occluded by any foreground object
during a period of time and often their illuminations gradually change from each
input frame to the next. Such pixels usually constitute the majority of the pixels of
each input frame.

Foreground-Grp: The pixels that are temporarily occluded by foreground objects
in a number of frames.

Stopped-Moving-Grp: The pixels of the stopped objects, which have been moving
in previous frames.

Start-Moving-Grp: The pixels of the initial positions of the background objects,
which start moving after a period of time.

The background system generates a background image dynamically for each input

frame. Based on the assumptions and definitions given in Section 5.2, three algorith-
ms are introduced in the next sections. It will be seen that performances of these
algorithms are different only for background pixels (i.e. Background-Grp). However,
the novelty of these algorithms is due to including a ‘Selective Update’ method for
foreground pixels (i.e. Foreground-Grp, Stopped-Moving-Grp and Start-Moving-
Grp).

5.4 The ‘Selective Update Using Temporal Averaging’

Temporal averaging, a simple method for producing the reference image, has two
main difficulties as follows:

1. If the background image is obtained based on a sequence of initial input images
containing no moving objects, it suffers from the problem that it cannot adapt

 77

itself to gradual illumination changes in an outdoor environment. The main
reason is that if moving objects appear in the succeeding input images, the
simple temporal averaging cannot be used for producing the reference image as
is explained below.

2. In addition, temporal averaging produces poor results if the average frame is

generated by taking the mean of a long sequence of images consisting moving
objects (see Fig. 5.1). However, by exploiting a ‘Selective Update’ approach it
can produce good results converting it to a simple but effective technique.

Let us consider the illumination changes of three colour-channels of two pixels

and their corresponding simple temporal averages over several hundred frames. The
first pixel (i.e. Background-Grp-Pixel) belongs to Background-Grp (see Figs. 5.1(b)
and 5.2(a)). For such pixels, time averaging is a suitable representation of back-
ground image because it follows the light levels of the pixels in Background-Grp.

Now consider a pixel from Foreground-Grp, i.e. Foreground-Grp-Pixel, when is

occluded by a foreground object in a number of frames (e.g. from Fld269 to Fld306).
In this case, the illumination of Foreground-Grp-Pixel has been severely affected
(see Figs. 5.1(a) and 5.2(b)).

(a) (b)

 Foreground-Grp-Pixel Background-Grp-Pixel

 (c)

Fig. 5.1 – (a) Input image Fld350 plus the position of Foreground-Grp-Pixel, (b) Input
image Fld420 plus the position of Background-Grp-Pixel, and (c) Temporal Average
Temp_Mean420. ‘Motion blurring’ effect is a result of temporal averaging on a sequence of
images (e.g. Fld350 to Fld420) containing moving objects.

 78

(a) RGB intensities and averages of Background-Grp-Pixel in the Fld sequence in Fig. 5.1(b)

(b) RGB intensities and averages of Foreground-Grp-Pixel in the Fld sequence in Fig. 5.1(a)

Fig. 5.2 – RGB intensities of a pixel from (a) Background-Grp-Pixel and (b) from Fore-
ground-Grp-Pixel in a number of input images (Fld101 to Fld400) and their corresponding
three colour-channel averages.

 79

Based on Fig. 5.2(b), the ‘Selective Update Using Temporal Averaging’ computes
temporal averaging for three colour-channels of a pixel (as the background pixel) as
long as it is not occluded by a moving object (e.g. for the input frames 101 to 268).
Such pixel is a candidate for the background pixels, which are selected for the
background update. When the pixel is occluded (e.g. for the input frames 269 to
306), the intensity of the corresponding background pixel remains unchanged by the
‘Selective Update Using Temporal Averaging’. Once again when the pixel in the
input image is not occluded by any moving object, the intensity of the background
pixel is computed as before the occlusion. So the ‘Selective Update Using Temporal
Averaging’ is able to produce correct background frames even though moving
objects appear in the input images.

5.5 The ‘Selective Update Using Non-Foreground Pixels of the

Input Image’

Based on Variable-lighting assumption and Background-Def, all the pixels of each
input frame, which are currently not occluded by foreground objects, effectively
constitute the dynamic background pixels for the ‘Selective Update Using Non-
Foreground Pixels of the Input Image’. In fact, the illumination of such pixels in the
current input frame differs somewhat from the illumination of the corresponding
pixels in the previous input frame. Some examples of exceptions are when in an
indoor scene, half of the lamps of a lab are switched on or off. Another example of
an exception is when in an outdoor scene the sun is suddenly covered by the clouds
or is revealed from behind the clouds. It will be explained in Section 5.7 that it
is possible to cope with such special conditions systematically. Thus, for the
‘Selective Update Using Non-Foreground Pixels of the Input Image’, the pixels in
Background-Grp of each input frame, are selected as the best possible samples for
the background pixels. Such pixels are directly included in the current background
image.

5.6 The ‘Selective Update Using Temporal Median’

The ‘Selective Update Using Non-Foreground Pixels of the Input Image’ copies the
pixels in Background-Grp of each input frame in the background image. Instead the
‘Selective Update Using Temporal Median’ copies the median of the last M pixels of
Background-Grp of input images in the reference image. If the number of the pixels
in Background-Grp of each input frame is large, finding the median can be time-
consuming. Thus, suitable techniques such as effective utilisation of histograms must
be applied in order to make this method fast enough.

5.7 The ‘Pixel-based’ approach

The pixels in Foreground-Grp, Stopped-Moving-Grp and Start-Moving-Grp plus
the exceptions of Variable-lighting assumption (i.e. the pixels with relatively large
illumination changes) of each input frame, usually greatly differ from the previous

 80

background image. By considering this point, the absolute difference between the
current input frame and the previous background image is computed. Then, the
appropriate threshold levels for three colour-channels are calculated using unimodal
thresholding (Rosin, 2001). If for any pixel in the difference image, two of three
colour-channels are higher than their corresponding threshold levels, that pixel is
marked as a non-background pixel. The remaining pixels are regarded as candidate
background pixels.

The ‘Pixel-based’ approach considers background pixels after thresholding and
updates them using one of the mentioned ‘Selective Update’ methods. The details of
this approach are given below.

After thresholding, the colour features of the candidate background pixels are
examined to check whether they really belong to the background image. This check
is done to avoid foreground pixels included in the reference frame. For this purpose,
the ‘Pixel-based’ approach applies a colour filter which is implemented using an
invariant colour model. In addition, the algorithm is also implemented for the RGB
space so that a comparison can be made between its results and the invariant colour
model. The reason for using an invariant colour model and selecting a suitable colour
space for the background algorithm is explained as follows:

Most background subtraction (or removal) algorithms use colour images. Colour

image sequences usually have RGB format as are produced by frame grabbers.
However, as stated in Section 3.2.3, the RGB colour space has not a good behaviour
with respect to colour perception. Meanwhile, each pixel in the RGB colour space
has both chromaticity and brightness components. The colours of two pixels are
different if either the chromaticity or the brightness of the pixels is different. If the
RGB colour space is selected for background subtraction, shadows, shadings and
highlights are identified as foreground regions even though they only have different
brightness but almost the same chromaticity. Thus, it is difficult to remove these
lighting effects from foreground regions using only the RGB colour space (Hong and
Woo, 2003).

Due to above reasons, some background algorithms transform RGB colour space

to another space such as an invariant colour model (Elgammal et al., 2002, Hong and
Woo, 2003, Kampel et al., 2007). In addition, the selection of a suitable colour model
is an important issue for the background subtraction algorithm. For this purpose,
an invariant colour model should be selected such that it is not only robust against
varying illumination in the scene (i.e. due to multiple light sources) but also is robust
against changes in the geometry of objects and is also robust against object occlusion
and cluttering. Besides, the appropriate colour model should be precise, discrimina-
tory and robust to noise (Gevers and Smeulders, 1999).

A number of invariant colour models have been introduced in the literature

including c1c2c3, normalised rgb, and l1l2l3 whose formulae are given in the following
(Gevers and Smeulders, 1999):

 c1c2c3 model:

 81

c1 = (Eq. 5.1)
c2 = (Eq. 5.2)

c3 = (Eq. 5.3)

 normalised rgb:

 (Eq. 5.4)

 (Eq. 5.5)

 (Eq. 5.6)

Only two of these normalised channels are required since r + g + b = 1 ().

 l1l2l3 model:

 (Eq. 5.7)

 (Eq. 5.8)

 (Eq. 5.9)

By assuming dichromatic reflection and white illumination, it is shown that c1c2c3,

normalised rgb, and l1l2l3 are all invariant with respect to changes in viewing direct-
ion, object geometry and scene illumination (refer to Gevers and Smeulders, 1999).

The algorithm of the ‘Pixel-based’ approach is presented using c1c2c3 colour

model. Obviously for utilising other colour models mentioned above, the same
algorithm is implemented using the components of that model.

The colour filter compares the colour components of the candidate background

pixels in the current input frame with the colour components of the corresponding
pixels in two previous background frames to decide whether those pixels belong to
Background-Grp or not. First of all, the algorithm of the ‘Pixel-based’ approach
should be implemented such that there is no limitation for the first input image
containing moving foreground objects. Thus, at the beginning, the first input image is
considered to be the first background image as well (i.e. Bt-1 ← It). After that, the
invariant colour components (i.e. c1, c2 and c3) of candidate background pixels in the
current input frame (i.e. It+1) are computed using Eqs. 5.1 to 5.3. Then, for generating
the second previous background frame, they are compared with the invariant colour
components of corresponding pixels in a number of preceding input frames. Exam-
ples of this are the ninth and the tenth previous input frames. It is assumed that
in comparison with a number of preceding input frames, objects have made enough
movement and there are no overlaps between their current positions and their
previous positions. If this assumption is not right, those two images should be

arctan ()
max{ , }

B
R G

arctan ()
max{ , }

G
R B

2

1 2 2 2

2

2 2 2 2

2

3 2 2 2

(-) =
(-) + (-) + (-)

(-) =
(-) + (-) + (-)

(-) =
(-) + (-) + (-)

R Gl
R G R B G B

R Bl
R G R B G B

G Bl
R G R B G B

arctan ()
max{ , }

R
G B

 = + +
 = / , = / , = / , if 0
 = = = 0, if = 0

I R G B
r R I g G I b B I I
r g b I

≠

0I ≠

 82

considered from a large number of preceding frames. Once the previous and second
previous background images were obtained, the relative variations (Eq. 5.10) of these
pixels are computed as follows:

|ci - ci
*| / ci

* and |ci - ci
**| / ci

**, for i = 1, 2, 3 (Eq. 5.10)

where ci, ci

*, ci
** are the colour components of the current input frame, the previous

and second previous background frames, respectively. If at least half of them are less
than or equal to Low-Threshold (e.g. 3%) and the remaining ones are less than a
Mid-Threshold (e.g. 5%), then those pixels are considered as background pixels (i.e.
Background-Grp). This is called as the similarity measure of the relative variations
of ci with respect to ci

* and ci
**. Then, every input image is compared with previous

and second previous background images based on the similarity measure for
producing the third and succeeding reference frames.

The next step is classifying non-reference pixels in Foreground-Grp, Stopped-
Moving-Grp or Start-Moving-Grp. In order to check that a pixel is in motion or
remains in a position for a period of time, a good technique is to count the number of
frames that the pixel remains in that state. Thus, a timer is associated with each pixel
in the image. If a pixel of an input image is regarded as a non-reference pixel, its
associated timer is incremented. As in Cucchira et al. (2001), a trade-off between
high responsiveness to changes of input frames and reliability of the background
images computed should be made. For considering a high responsiveness of the
background system, two seconds (equal to 50 frames for a vision system with 25
frames/s) is suggested to be a suitable response time. The selection of the back-
ground system’s response time is an important matter which more information
concerning its selection is given later in this section.

The pseudo code of the ‘Pixel-based’ approach in Fig. 5.3 demonstrates how
dynamic reference images are computed based on the ‘Selective Update Using Non-
Foreground Pixels of the Input Image’ as follows:

// LT = the Lowest upper Threshold; its value is determined based on the suggested
// background system’s response time

LT ← 50;

 // The first input image is regarded as the first reference image.

Bst_index (x, y) ← Ist_index (x, y); // st_index = the start frame number of the sequence
 // en_index = the end frame number of the sequence
 for (t ← st_index + 1; t ≤ en_index; t ← t + 1)
{
 Dt (x, y) ← |It (x, y) - Bt-1 (x, y)|; // Dt = difference image for input frame It

 compute unimodal thresholding (Dt);

 if (two of three colour-channels of a pixel in Dt ≥ corresponding
 threshold levels)

 83

 {
/* The timer of each non-reference pixel is incremented. However, often
the pixels of a moving object (i.e. the pixels in Foreground-Grp) may
occlude the reference pixels for a number of frames. The timers of such
pixels increase but they usually do not become larger than LT. Thus, the
background image retains the last input pixel values and it does not
change. */

 pixel_timer (x, y) ← pixel_timer (x, y) + 1;
 pixel_flag (x, y) ← 0; // 0: a foreground pixel

/* If the pixels of a moving object remain in a position for more than
LT input frames (i.e. Stopped-Moving-Grp, Start-Moving-Grp or excep-
tions of Variable-lighting assumption), those pixels are included in the
background image after LT frames. */

 if (pixel_timer (x, y) ≥ LT)
 {
 pixel_timer (x, y) ← 0;
 pixel_flag (x, y) ← 2; // 2: a possible ghost pixel
 }
 }
 else
 {

/* Most of the pixels of every input frame that somewhat differ from
the pixels in the corresponding positions in the previous frame (i.e.
Background-Grp), constitute the majority of the pixels in the dynamic
background image. However, it should be examined that their colour
components are similar to colour components of the corresponding pixels
in the previous and second previous background frames. */

 compute c1, c2, c3 for the candidate background pixels of the current
 input frame;

 compute c1, c2, c3 for the corresponding pixels in the first previous
 background frame (i.e. prev1_c1, prev1_c2 and prev1_c3);

 compute c1, c2, c3 for the corresponding pixels in the second previous
 background frame (i.e. prev2_c1, prev2_c2 and prev2_c3);

 if (ci has the similarity measure with respect to to prev1_ci and
 prev2_ci) // i = 1, 2, 3
 {
 pixel_timer (x, y) ← 0;
 pixel_flag (x, y) ← 1; // 1: a background pixel
 }
 else
 {
 pixel_timer (x, y) ← pixel_timer (x, y) + 1;
 pixel_flag (x, y) ← 0; // 0: a foreground pixel

 84

 }
 }

 if (pixel_flag (x, y) = 1) // i.e. a background pixel

 Bt (x, y) ← It (x, y); // for the ‘Selective Update Using Non-Foreground
 // Pixels of the Input Image’

 /* the code for the ‘Selective Update Using Temporal Averaging’ or the
‘Selective Update Using Temporal Median’ goes here in place of the
‘Selective Update Using Non-Foreground Pixels of the Input Image’ for
updating the pixels in Background-Grp. */

 else if (pixel_flag (x, y) = 2) // a ghost pixel
 {
 Bt (x, y) ← It (x, y);
 pixel_timer (x, y) ← 0;
 pixel_flag (x, y) ← 1; // i.e. a background pixel
 }
 else
 Bt (x, y) ← Bt-1 (x, y); // a foreground pixel
 } // end of for

Fig. 5.3 – The pseudo code of the ‘Pixel-based’ approach based on the ‘Selective Update
Using Non-Foreground Pixels of the Input Image’.

The ‘Pixel-based’ approach can be evaluated from quantitative and qualitative

points of view as stated in the next section.

5.8 Evaluation of the ‘Pixel-based’ approach

In order to determine the effectiveness of the ‘Pixel-based’ approach, this algorithm
is implemented using four colour models and based on three ‘Selective Update’
methods. Their results are compared in the following subsections.

5.8.1 Quantitative evaluation of the ‘Pixel-based’ approach

For quantitative evaluation, the algorithm in Fig. 5.3 is also implemented based on
the ‘Selective Update Using Temporal Averaging’ and the ‘Selective Update Using
Temporal Median’. In addition, the colour filter of each ‘Selective Update’ method is
implem-ented using c1c2c3, l1l2l3, normalised rgb (Nrgb) and the RGB colour space.
The results of applying three ‘Selective Update’ methods and four colour models to
Fld, Bijan1, Highway I and Lab video sequences are offered in Tables 5.1 to 5.3.
Three ‘Selective Update’ methods of the ‘Pixel-based’ approach are implemented on
a 2.4 GHz Pentium 4 PC with 1 GB of RAM running windows XP professional
edition. Quantitative results are obtained based on the same threshold values for

 85

Low-Threshold, Mid-Threshold, relative variations and the same sequences of
frames. In Tables 5.1 to 5.3, the percentage of recognised background pixels (column
8 in Table 5.1, for example) is calculated by dividing total number of recognised
background pixels (column 7 in Table 5.1) to total number of reference pixels after
thresholding (column 5 in Table 5.1).

Quantitative comparisons are classified based on the colour model and the ‘Select-
ive Update’ method using the data given in Tables 5.1 to 5.3 as follows:

 Based on the colour model:

• In all ‘Selective Update’ methods, l1l2l3 has the worst performance among
the four colour models irrespective of the utilised video sequence, i.e.,
Fld, Bijan1, Highway I and Lab. In addition, the computations of l1l2l3
components are almost time-consuming due to relatively complex compon-
ents (Eqs. 5.7 to 5.9). Meanwhile, among the four colour models, l1l2l3 has
the second slowest average processing time (column 4 in Tables 5.1 to 5.3).
As a result, l1l2l3 model has neither a good performance nor a fast processing
time regardless of the applied video sequence or the utilised ‘Selective
Update’ method. Thus, l1l2l3 is not quantitatively a suitable colour model for
the ‘Pixel-based’ approach.

• RGB has almost the fastest average processing time among four colour

Sequence

Name
(W x H)

Applied
Colour
Model

Utilised
No. of
Frames

Average

Processing
Time
(ms)

Total No.

of Reference
Pixels after

Thresholding

Total No. of
Recognised

Non-
Background

Pixels

Total No. of
Recognised
Background

Pixels

The

Percentage of
Recognised
Background

Pixels

Fld
(384 x 288)

c1c2c3
l1l2l3
Nrgb
RGB

245

210
129
113

99

25038195
25542849
25176427
24265496

3876476
18056729

4177998
6169997

21161719
7486120

20998429
18095499

84.5
29.3
83.4
74.6

Bijan1

(352 x 288)

c1c2c3
l1l2l3
Nrgb
RGB

230

215
130

 108
106

21802015
21516706
21802214
21649056

1939989
19273725

1492019
3753364

19862026
2242981

20310195
17895692

91.1
10.4
93.2
82.7

Highway I
(320 x 240)

c1c2c3
l1l2l3
Nrgb
RGB

255

117
62
50
52

14657239
14816430
14633751
15314984

228574
 9521514

191254
2913323

14428665
 5294916
14442497
12401661

98.4
35.7
98.7
80.1

Lab

(320 x 240)

c1c2c3
l1l2l3
Nrgb
RGB

265

138
89
61
55

17965738
18539663
17996350
17974508

195388
6448229
257506
607813

17770350
12091434
17738844
17366695

98.9
65.2
98.6
96.6

Table 5.1 – The results of applying the ‘Pixel-based’ approach based on the ‘Selective
Update Using Non-Foreground Pixels of the Input Image’ utilising four colour models to
Fld, Bijan1, Highway I, and Lab video sequences.

 86

Sequence

Name

Applied
Colour
Model

Utilised
No. of
Frames

Average

Processing
Time
(ms)

Total No.

of Reference
Pixels after

Thresholding

Total No. of
Recognised

Non-
Background

Pixels

Total No. of
Recognised
Background

Pixels

The

Percentage of
Recognised
Background

Pixels

Fld

c1c2c3
l1l2l3
Nrgb
RGB

245

223
118
101

98

25740115
 25668066

25727703
25727570

3687644
17014466

3709231
7812724

22052471
8653600

22018472
17914846

85.7
33.7
85.6
69.6

Bijan1

c1c2c3
l1l2l3
Nrgb
RGB

230

190
101

87
86

19939697
20206159
19941384
19997173

2475815
17940489

1813412
6014812

17463882
2265670

18127972
13982361

87.6
11.2
90.9
69.9

Highway I

c1c2c3
l1l2l3
Nrgb
RGB

255

132
66
57
60

16133388
14504233
16130117
15272052

335352
11435165

260886
9336630

15798036
3069068

15869231
5935422

97.9
21.2
98.4
38.9

Lab

c1c2c3
l1l2l3
Nrgb
RGB

265

153
98
71
58

18941310
18565924
19015478
19009145

236349
9063777
286310

1039614

18704961
9502147

18729168
 17969531

98.8
51.2
98.5
94.5

Table 5.2 – The results of applying the ‘Pixel-based’ approach based on the ‘Selective
Update Using Temporal Averaging’ utilising four colour models to Fld, Bijan1, Highway I,
and Lab video sequences.

Sequence

Name

Applied
Colour
Model

Utilised
No. of
Frames

Average

Processing
Time
(ms)

Total No.

of Reference
Pixels after

Thresholding

Total No. of
Recognised

Non-
Background

Pixels

Total No. of
Recognised
Background

Pixels

The

Percentage of
Recognised
Background

Pixels

Fld

c1c2c3
l1l2l3
Nrgb
RGB

245

276
156
152
142

25742063
25651678
25727011
25722413

3944640
17569076

4425648
7527995

21797423
8082602

21301363
18194418

84.7
31.5
82.8
70.7

Bijan1

c1c2c3
l1l2l3
Nrgb
RGB

230

225
136
129
120

19262166
19735753
19271146
19136581

3019926
17762336

2217875
4830171

16242240
1973417

17053271
14306410

84.3
10.0
88.5
74.8

Highway I

c1c2c3
l1l2l3
Nrgb
RGB

255

163
94
92
87

15731239
11879520
15732572
15694623

188267
10791442

132721
 2453348

15542972
1088078

15599851
13241275

98.8
9.2

99.2
84.4

Lab

c1c2c3
l1l2l3
Nrgb
RGB

265

193
114
111

96

19024063
18288508
19023479
19001963

358700
12164993

459329
841610

18665363
6123515

18564150
18160353

98.1
33.5
97.6
95.6

Table 5.3 – The results of applying the ‘Pixel-based’ approach based on the ‘Selective
Update Using Temporal Median’ utilising four colour models to Fld, Bijan1, Highway I, and
Lab video sequences.

 87

spaces due to no conversion of its components. However, the invariant
colour models c1c2c3 and normalised rgb often have much higher perform-
ances by recognising more numbers of reference and background pixels
after thresholding and higher percentages of recognised background pixels
(columns 5, 7 and 8 in Tables 5.1 to 5.3). This result is valid for the utilised
video sequences and three ‘Selective Update’ methods. Thus, the data given
in Tables 5.1 to 5.3 confirm superiority of the invariant colour models c1c2c3
and normalised rgb for implementing the ‘Pixel-based’ approach to the RGB
colour space.

• Finally, for all applied video sequences and three ‘Selective Update’

methods, normalised rgb has almost the same or a little bit better perform-
ance to c1c2c3 colour model. However, in comparison with c1c2c3 model,
normalised rgb always has much faster processing time. This is because
trigonometric functions are used for the formulas of the components of
c1c2c3 model (Eqs. 5.1 to 5.3) while the computations of normalised rgb
components require simple divisions (Eqs. 5.4 to 5.6).

As a result, normalised rgb, which has very high performance and fast processing

time in Tables 5.1 to 5.3, is the most appropriate colour model for implementing the
‘Pixel-based’ approach. Therefore, in the following, quantitative comparison based on
the utilised ‘Selective Update’ method is only performed using normalised rgb. For
the simplicity of comparison, the results of applying three ‘Selective Update’ methods
in Tables 5.1 to 5.3 concerning normalised rgb, are summarised in Table 5.4.

 Based on the ‘Selective Update’ method:

• Except for Bijan1 video sequence, the ‘Selective Update Using Temporal
Averaging’ and the ‘Selective Update Using Temporal Median’ recognised
more numbers of reference and background pixels after thresholding than
‘Selective Update using Non-Foreground Pixels of the Input Image’
(columns 4 and 6 in Table 5.4).

• The percentages of recognised background pixels by the ‘Selective Update

Using Non-Foreground Pixels of the Input Image’ are almost the same or
slightly higher than the percentages of the ‘Selective Update Using
Temporal Averaging’ and the ‘Selective Update Using Temporal Median’
for the utilised video sequences (column 7 in Table 5.4).

By considering the above results, the ‘Selective Update Using Non-Foreground

Pixels of the Input Image’ produced slightly higher percentages of recognised
background pixels (column 7 in Table 5.4). On the other hand, the ‘Selective Update
Using Temporal Averaging’ and the ‘Selective Update Using Temporal Median’
often recognised more numbers of reference and background pixels after
thresholding. It shows that they produce more precise background images because
they probably identify fewer numbers of foreground pixels incorrectly as background
pixels. As a result, background frames with better qualities are produced by the latter
methods, which are due to their filtering effects. In total, depending on the applied
video sequence, the ‘Selective Update Using Non-Foreground Pixels of the Input

 88

Image’, the ‘Selective Update Using Temporal Averaging’ or the ‘Selective Update
Using Temporal Median’ utilising norm-alised rgb may have a slightly better
performance. Thus, from quantitative point of view, a deterministic decision cannot
be made regarding which ‘Selective Update’ method has a better performance.
However, it is shown in Section 5.9 that the ‘Selective Update Using Non-
Foreground Pixels of the Input Image’ has some deficiencies which make it an
inappropriate method for ‘Pixel-based’ approach.

5.8.2 Qualitative evaluation of the ‘Pixel-based’ approach

The results of applying each ‘Selective Update’ method and four colour models to
Fld, Bijan1, Highway I, and Lab video sequences are shown in Figs. 5.4 to 5.15. For
each ‘Selective Update’ method, each video sequence (e.g. Fld) and colour model,
thresholded, foreground and background frames corresponding to each input image
are shown, respectively. The qualities of all corresponding thresholded, foreground
and background frames of each video sequence are almost the same. Thus, only
samples of them are offered in Figs. 5.4 to 5.15. Meanwhile, in each foreground
frame, pixels recognised by the utilised algorithm as foreground pixels (shown in

Sequence

Name

Selective
Update
Method

Average

Processing
Time
(ms)

Total No.

of Reference
Pixels after

Thresholding

Total No. of
Recognised

Non-
Background

Pixels

Total No. of
Recognised
Background

Pixels

The

Percentage of
Recognised
Background

Pixels

Fld

SUNFPII 113 25176427 4177998 20998429 83.4

SUTA 101 25727703 3709231 22018472 85.6

SUTM 152 25727011 4425648 21301363 82.8

Bijan1

SUNFPII 108 21802214 1492019 20310195 93.2

SUTA 87 19941384 1813412 18127972 90.9

SUTM 129 19271146 2217875 17053271 88.5

Highway

I

SUNFPII 50 14633751 191254 14442497 98.7

SUTA 57 16130117 260886 15869231 98.4

SUTM 92 15732572 132721 15599851 99.2

Lab

SUNFPII 61 17996350 257506 17738844 98.6

SUTA 71 19015478 286310 18729168 98.5

SUTM 111 19023479 459329 18564150 97.6

Table 5.4 – The summary of the results of applying the ‘Pixel-based’ approach based on the
‘Selective Update Using Non-Foreground Pixels of the Input Image’ (SUNFPII), the
‘Selective Update Using Temporal Averaging’ (SUTA) and the ‘Selective Update Using
Temporal Median’ (SUTM) to four video sequences concerning normalised rgb, which were
already given in Tables 5.1 to 5.3.

 89

white pixels) are superimposed on the corresponding input image. In this way, a
foreground frame is an indication of how much the algorithm has been successful
in recognising foreground and background pixels correctly. In other words, a fore-
ground frame also shows the preciseness and the quality of the corresponding
background image produced by the utilised algorithm. The results are as follows:

 Sample frames of the ‘Pixel-based’ approach based on the ‘Selective Update

Using Non-Foreground Pixels of the Input Image’ (Figs. 5.4 to 5.7):

(a) Input image Fld290

(b) c1c2c3_Thresh_Fld290 (c) c1c2c3_Forgnd_Fld290 (d) c1c2c3_Backgnd_Fld290

4.1

(e) l1l2l3_Thresh_Fld290 (f) l1l2l3_Forgnd_Fld290 (g) l1l2l3_Backgnd_Fld290

(h) Nrgb_Thresh_Fld290 (i) Nrgb_Forgnd_Fld290 (j) Nrgb_Backgnd_Fld290

 90

(k) RGB_Thresh_Fld290 (l) RGB_Forgnd_Fld290 (m) RGB_Backgnd_Fld290

Fig. 5.4 – (a) The input image Fld290; The results of applying of the ‘Pixel-based’ approach
based on the ‘Selective Update Using Non-Foreground Pixels of the Input Image’ to Fld290
using c1c2c3 ((b)-(d)), l1l2l3 ((e)-(g)), normalised rgb (Nrgb) ((h)-(j)), colour models and the
RGB colour space ((k)-(m)).

 (a) Input image Bijan1_262

(b) c1c2c3_Thresh_Bijan1_262 (c) c1c2c3_Forgnd_Bijan1_262 (d) c1c2c3_Backg_Bijan1_262

(e) l1l2l3_Thresh_Bijan1_262 (f) l1l2l3_Forgrnd_Bijan1_262 (g) l1l2l3_Backg_Bijan1_262

 91

(h) Nrgb_Thresh_Bijan1_262 (i) Nrgb_Forgrnd_Bijan1_262 (j) Nrgb_Backg_Bijan1_262

(k) RGB_Thresh_Bijan1_262 (l) RGB_Forgrnd_Bijan1_262 (m) RGB_Backg_Bijan1_262

Fig. 5.5 – (a) The input image Bijan1_262; The results of applying of the ‘Pixel-based’
approach based on the ‘Selective Update Using Non-Foreground Pixels of the Input Image’
to Bijan1_262 using c1c2c3 ((b)-(d)), l1l2l3 ((e)-(g)), normalised rgb (Nrgb) ((h)-(j)), colour
models and the RGB colour space ((k)-(m)).

 (a) Input image Highway I_261

(b) c1c2c3_Thrsh_Highway I_261 (c) c1c2c3_Forg_Highway I_261 (d) c1c2c3_Back_Highway I_261

 92

(e) l1l2l3_Thrsh_Highway I_261 (f) l1l2l3_Forg_Highway I_261 (g) l1l2l3_Back_Highway I_261

(h) Nrgb_Thrsh_Highway I_261 (i) Nrgb_Forg_Highway I_261 (j) Nrgb_Back_Highway I_261

(b) RGB_Thrsh_Highway I_261 (c) RGB_Forg_Highway I_261 (d) RGB_Back_Highway I_261

(k) RGB_Thrsh_Highway I_261 (l) RGB_Forg_Highway I_261 (m) RGB_Back_Highway I_261

(n) Input image Highway I_71 (o) c1c2c3_Forg_Highway I_71 (p) c1c2c3_Forg_Highway I_85

(q) c1c2c3_Forg_Highway I_139 (r) c1c2c3_Forg_Highway I_191 (s) c1c2c3_Forg_Highway I_232

 93

Fig. 5.6 – (a) The input image Highway I_261; The results of applying of the ‘Pixel-based’
approach based on the ‘Selective Update Using Non-Foreground Pixels of the Input Image’
to Highway I_261 using c1c2c3 ((b)-(d)), l1l2l3 ((e)-(g)), normalised rgb (Nrgb) ((h)-(j)),
colour models and the RGB colour space ((k)-(m)). (n) The initial input image Highway I_71
is used as the first image of the sequence and also as the first background image. (o) Its
corresponding foreground image. The ‘Selective Update Using Non-Foreground Pixels of
the Input Image’ considers the moving objects in the first background image as ghosts.
However, occasionally there are some overlaps between ghosts and other objects or their cast
shadows in less than LT frames in succceding images. In this case, it may take a large
number of frames for the algorithm to remove the pixels of a ghoast (Figs. (p) to (s)).
But the ‘Selective Update Using Temporal Averaging’ and the ‘Selective Update Using
Temporal Median’ utilise long buffers (more than LT frames) for their computations. Due to
their filtering effect, there is a little possibility that the pixels of ghosts appear in the first
background image (see Figs. 5.10 and 5.14).

 (a) Input image Lab220

(b) c1c2c3_Thresh_Lab220 (c) c1c2c3_Forgnd_Lab220 (d) c1c2c3_Backgnd_Lab220

(e) l1l2l3_Thresh_Lab220 (f) l1l2l3_Forgnd_Lab220 (g) l1l2l3_Backgnd_Lab220

 94

(h) Nrgb_Thresh_Lab220 (i) Nrgb_Forgnd_Lab220 (j) Nrgb_Backgnd_Lab220

(k) RGB_Thresh_Lab220 (l) RGB_Forgnd_Lab220 (m) RGB_Backgnd_Lab220

Fig. 5.7 – (a) The input image Lab220; The results of applying of the ‘Pixel-based’ approach
based on the ‘Selective Update Using Non-Foreground Pixels of the Input Image’ to Lab220
using c1c2c3 ((b)-(d)), l1l2l3 ((e)-(g)), normalised rgb (Nrgb) ((h)-(j)), colour models and the
RGB colour space ((k)-(m)).

 Sample frames of the ‘Pixel-based’ approach based on the ‘Selective Update

Using Temporal Averaging’ (Figs. 5.8 to 5.11):

(a) c1c2c3_Thresh_Fld290 (b) c1c2c3_Forgnd_Fld290 (c) c1c2c3_Backgnd_Fld290

(d) l1l2l3_Thresh_Fld290 (e) l1l2l3_Forgnd_Fld290 (f) l1l2l3_Backgnd_Fld290

 95

(g) Nrgb_Thresh_Fld290 (h) Nrgb_Forgnd_Fld290 (i) Nrgb_Backgnd_Fld290

(j) RGB_Thresh_Fld290 (k) RGB_Forgnd_Fld290 (l) RGB_Backgnd_Fld290

Fig. 5.8 – The results of applying of the ‘Pixel-based’ approach based on the ‘Selective
Update Using Temporal Averaging’ to Fld290 using c1c2c3 ((a)-(c)), l1l2l3 ((d)-(f)), normal-
ised rgb (Nrgb) ((g)-(i)), colour models and the RGB colour space ((j)-(l)).

(a) c1c2c3_Thresh_Bijan1_262 (b) c1c2c3_Forgnd_Bijan1_262 (c) c1c2c3_Backg_Bijan1_262

(d) l1l2l3_Thresh_Bijan1_262 (e) l1l2l3_Forgrnd_Bijan1_262 (f) l1l2l3_Backg_Bijan1_262

 96

(g) Nrgb_Thresh_Bijan1_262 (h) Nrgb_Forgrnd_Bijan1_262 (i) Nrgb_Backg_Bijan1_262

(j) RGB_Thresh_Bijan1_262 (k) RGB_Forgrnd_Bijan1_262 (l) RGB_Backg_Bijan1_262

Fig. 5.9 – The results of applying of the ‘Pixel-based’ approach based on the ‘Selective
Update Using Temporal Averaging’ to Bijan1_262 using c1c2c3 ((a)-(c)), l1l2l3 ((d)-(f)),
normalised rgb (Nrgb) ((g)-(i)), colour models and the RGB colour space ((j)-(l)).

(a) c1c2c3_Thrsh_Highway I_261 (b) c1c2c3_Forg_Highway I_261 (c) c1c2c3_Back_Highway I_261

(d) l1l2l3_Thrsh_Highway I_261 (e) l1l2l3_Forg_Highway I_261 (f) l1l2l3_Back_Highway I_261

 97

(g) Nrgb_Thrsh_Highway I_261 (h) Nrgb_Forg_Highway I_261 (i) Nrgb_Back_Highway I_261

(j) RGB_Thrsh_Highway I_261 (k) RGB_Forg_Highway I_261 (l) RGB_Back_Highway I_261

Fig. 5.10 – The results of applying of the ‘Pixel-based’ approach based on the ‘Selective
Update Using Temporal Averaging’ to Highway I_261 using c1c2c3 ((a)-(c)), l1l2l3 ((d)-(f)),
normalised rgb (Nrgb) ((g)-(i)), colour models and the RGB colour space ((j)-(l)).

(a) c1c2c3_Thresh_Lab220 (b) c1c2c3_Forgnd_Lab220 (c) c1c2c3_Backgnd_Lab220

(d) l1l2l3_Thresh_Lab220 (e) l1l2l3_Forgnd_Lab220 (f) l1l2l3_Backgnd_Lab220

 98

(g) Nrgb_Thresh_Lab220 (h) Nrgb_Forgnd_Lab220 (i) Nrgb_Backgnd_Lab220

(j) RGB_Thresh_Lab220 (k) RGB_Forgnd_Lab220 (l) RGB_Backgnd_Lab220

Fig. 5.11 – The results of applying of the ‘Pixel-based’ approach based on the ‘Selective
Update Using Temporal Averaging’ to Lab220 using c1c2c3 ((a)-(c)), l1l2l3 ((d)-(f)), normal-
ised rgb (Nrgb) ((g)-(i)), colour models and the RGB colour space ((j)-(l)).

 Sample frames of the ‘Pixel-based’ approach based on the ‘Selective Update

Using Temporal Median’ (Figs. 5.12 to 5.15):

(a) c1c2c3_Thresh_Fld290 (b) c1c2c3_Forgnd_Fld290 (c) c1c2c3_Backgnd_Fld290

(d) l1l2l3_Thresh_Fld290 (e) l1l2l3_Forgnd_Fld290 (f) l1l2l3_Backgnd_Fld290

 99

(g) Nrgb_Thresh_Fld290 (h) Nrgb_Forgnd_Fld290 (i) Nrgb_Backgnd_Fld290

(j) RGB_Thresh_Fld290 (k) RGB_Forgnd_Fld290 (l) RGB_Backgnd_Fld290

Fig. 5.12 – The results of applying of the ‘Pixel-based’ approach based on the ‘Selective
Update Using Temporal Median’ to Fld290 using c1c2c3 ((a)-(c)), l1l2l3 ((d)-(f)), normalised
rgb (Nrgb) ((g)-(i)), colour models and the RGB colour space ((j)-(l)).

(a) c1c2c3_Thresh_Bijan1_262 (b) c1c2c3_Forgnd_Bijan1_262 (c) c1c2c3_Backg_Bijan1_262

(d) l1l2l3_Thresh_Bijan1_262 (e) l1l2l3_Forgrnd_Bijan1_262 (f) l1l2l3_Backg_Bijan1_262

 100

(g) Nrgb_Thresh_Bijan1_262 (h) Nrgb_Forgrnd_Bijan1_262 (i) Nrgb_Backg_Bijan1_262

(j) RGB_Thresh_Bijan1_262 (k) RGB_Forgrnd_Bijan1_262 (l) RGB_Backg_Bijan1_262

Fig. 5.13 – The results of applying of the ‘Pixel-based’ approach based on the ‘Selective
Update Using Temporal Median’ to Bijan1_262 using ((a)-(c)), l1l2l3 ((d)-(f)), normalised
rgb (Nrgb) ((g)-(i)), colour models and the RGB colour space ((j)-(l)).

(a) c1c2c3_Thrsh_Highway I_261 (b) c1c2c3_Forg_Highway I_261 (c) c1c2c3_Back_Highway I_261

(d) l1l2l3_Thrsh_Highway I_261 (e) l1l2l3_Forg_Highway I_261 (f) l1l2l3_Back_Highway I_261

 101

(g) Nrgb_Thrsh_Highway I_261 (h) Nrgb_Forg_Highway I_261 (i) Nrgb_Back_Highway I_261

(j) RGB_Thrsh_Highway I_261 (k) RGB_Forg_Highway I_261 (l) RGB_Back_Highway I_261

Fig. 5.14 – The results of applying of the ‘Pixel-based’ approach based on the ‘Selective
Update Using Temporal Median’ to Highway I_261 using c1c2c3 ((a)-(c)), l1l2l3 ((d)-(f)),
normalised rgb (Nrgb) ((g)-(i)), colour models and the RGB colour space ((j)-(l)).

(a) c1c2c3_Thresh_Lab220 (b) c1c2c3_Forgnd_Lab220 (c) c1c2c3_Backgnd_Lab220

(d) l1l2l3_Thresh_Lab220 (e) l1l2l3_Forgnd_Lab220 (f) l1l2l3_Backgnd_Lab220

 102

(g) Nrgb_Thresh_Lab220 (h) Nrgb_Forgnd_Lab220 (i) Nrgb_Backgnd_Lab220

(j) RGB_Thresh_Lab220 (k) RGB_Forgnd_Lab220 (l) RGB_Backgnd_Lab220

Fig. 5.15 – The results of applying of the ‘Pixel-based’ approach based on the ‘Selective
Update Using Temporal Median’ to Lab220 using c1c2c3 ((a)-(c)), l1l2l3 ((d)-(f)), normalised
rgb (Nrgb) ((g)-(i)), colour models and the RGB colour space ((j)-(l)).

The quality figures, which are assigned based on the visual qualities of foreground
frames to background images in Figs. 5.4 to 5.15, are offered in Table 5.5. The follo-
wing conclusions can be made using the Figs. 5.4 to 5.15 and Table 5.5:

 In many foreground frames produced based on l1l2l3 colour model, in addition

to the pixels of foreground objects, large numbers of background pixels of each
input image are often incorrectly identified as foreground pixels (e.g. see
5.4(f), and 5.5(f), 5.6(f), 5.9(e), 5.10(e), 5.11(e), 5.13(e), 5.14(e), and 5.15(e)).
As a result, their corresponding background frames are not precise since many
pixels are copied from their previous background frames. Besides, sometimes
large residues of foreground regions are visible in background images (e.g. see
5.9(f), 5.10(f), 5.11(f), 5.13(f), 5.14(f), and 5.15(f)). Obviously these residues
degrade the qualities of background frames which make them unusable. Thus,
due to producing inaccurate or low quality background frames, l1l2l3 colour
model was omitted from Table 5.5.

 The qualities of foreground frames based on c1c2c3 and Nrgb colour models are

very similar to each other. In addition, a lower percentage of background pixels
are misclassified as foreground pixels by c1c2c3 and Nrgb colour models than
by the RGB colour space (e.g. see 5.4(c), 5.4(i), 5.4(l), 5.6(c), 5.6(i), 5.6(l),
5.10(b), 5.10(h), and 5.10(k)). Thus, c1c2c3 and Nrgb background frames are
often more precise and have better qualities than their correponding RGB back-
ground frames.

 103

 The ‘Selective Update Using Temporal Averaging’ and the ‘Selective Update
Using Temporal Median’ produce foreground frames with almost the same
qualities as produced by the ‘Selective Update Using Non-Foreground Pixels
of the Input Image’. However, sometimes fewer numbers of background pixels
are incorrectly identified as foreground pixels by the ‘Selective Update Using
Temporal Averaging’ and the ‘Selective Update Using Temporal Median’ than
by the ‘Selective Update Using Non-Foreground Pixels of the Input Image’
(e.g. see 5.7(i), 5.11(h), and 5.15(h)). Thus, a little bit more precise background
frames are produced by the ‘Selective Update Using Temporal Averaging’ and
the ‘Selective Update Using Temporal Median’ than by the ‘Selective Update
Using Non-Foreground Pixels of the Input Image’.

 The ‘Selective Update Using Temporal Averaging’ utilising Nrgb or c1c2c3

colour models produces more precise foreground frames for Fld, Bijan1, and
Lab video sequences than other selective update methods and colour models in
Table 5.5. As a result, it produces background frames with better qualities for
Fld, Bijan1, and Lab video sequences.

 The ‘Selective Update Using Temporal Median’ utilising Nrgb or c1c2c3 colour

models produces more precise foreground frames for Highway I video sequ-
ence than other selective update methods and colour models in Table 5.5. Thus,
it produces better quality background frames for Highway I image sequence.

In total, based on Figs. 5.4 to 5.15 and Table 5.5, the qualities of background

frames produced by ‘Pixel-based’ approach are not satisfactorily acceptable. This is
because background frames are either not precise enough or residues of foreground
regions, although sometimes very slightly (e.g. see 5.7(i), 5.11(h), and 5.15(h)), are
visible in them.

The Name
of Video
Sequence

The ‘Selective Update
using Non-Foreground

Pixels of the Input Image’

The ‘Selective Update
using Temporal

Averaging’

The ‘Selective Update
using Temporal

Median’

c1c2c3 Nrgb RGB c1c2c3 Nrgb RGB c1c2c3 Nrgb RGB

Fld

65 68 67 80 82 57 80 81 55

Bijan1 60 63 58 68 73 55 67 69 55

Highway I 57 60 62 85 85 65 88 89 80

Lab 75 77 72 80 80 75 78 78 73

Table 5.5 – The quality figures assigned based on the visual qualities of foreground frames
to background images in Figs. 5.4 to 5.15.

 104

5.9 The advantages and disadvantages of the ‘Pixel-based’
approach

Based on the pseudo code in Fig. 5.3, the ‘Pixel-based’ approach has the

following advantages:

 The ‘Pixel-based’ approach based on the ‘Selective Update Using Temporal

Averaging’ and the ‘Selective Update Using Temporal Median’ utilising
normalised rgb is capable to compute the background frame with almost good
quality. In addition, it is able to remove the pixels of ghosts after LT frames
from reference images (see Fig. 5.16). Meanwhile, it can enclose those pixels
of moving foreground objects in the background image that have remained
stationary after LT frames (see Fig. 5.17).

The drawbacks of the ‘Pixel-based’ approach are as follows:

 Many background pixels are excluded from the reference frame by applying a

colour filter. Are all excluded pixels really foreground pixels? Can choosing
correct values for the thresholds of the colour filter solve all weaknesses of
the ‘Pixel-based’ approach?

 Whatever value is selected for LT (i.e. low or high), two main problems may

occur. Since not all the pixel timers of a ghost have the value of LT at the
same time, some pixels of background images are replaced sooner than other
ones. Such pixels are substituted with the corresponding pixels in input
frames. This situation may occur as long as there are some overlaps between
the ghost and the current position of the object. As a result, the pixels of a
ghost are not removed at the same time but rather over a number of frames.
Thus, the resulting background images in which a number of pixels of objects
are visible will be invalid for the corresponding input frames (see Fig. 5.16).

 A similar problem occurs when an object becomes motionless. Depending on

the timers of all the pixels of an object have the value of LT or not, some
pixels (or parts) of the object may be visible in the background frames (see
Fig. 5.17). One way to overcome the above problems is to increase LT.
However, if LT is increased (e.g. from 50 to 100), the system response time is
also increased so that it takes more numbers of frames for a ghost to be
removed from the background (see Fig. 5.18). In this case, for more numbers
of frames, background images containing ghosts may not represent precise
background frames. In fact, this situation may occur for a number of frames
in which there are no overlaps between ghosts and the current positions
of objects. In a similar manner, a motionless object needs more numbers of
frames to be stationary to be included in the background image.

 As stated in the pseudo code in Fig. 5.3, the first input image is regarded as

the first background image. Consider the case that the ‘Pixel-based’ approach
produces the first background image where its corresponding input image
contains moving foreground objects. The algorithm considers moving foregr-
ound objects in the first background image as ghosts. Although the algorithm

 105

can remove them after LT frames, including foreground objects in the refer-
ence frame, which should not occur, is regarded as a weakness. Because the
‘Selective Update Using Temporal Averaging’ and the ‘Selective Update
Using Temporal Median’ use a long buffer (more than LT) for updating
background pixels, they can usually remove the pixels of ghosts such that no
ghost is visible in the first background image. Thus, these methods may not
encounter such problem (see Fig. 5.12). On the other hand, if moving objects
exist in the first background frame, the ‘Selective Update Using Non-
Foreground Pixels of the Input Image’, which does not use any buffer, can
remove the pixels of ghost after LT frames. However, if the pixels of moving
objects or their cast shadows overlap with the pixels of ghosts in succeeding
frames, the pixels of ghosts may be removed from background frames after a
large number of frames (see Fig. 5.12). Thus, in both cases, invalid back-
ground frames are produced by the ‘Selective Update Using Non-Foreground
Pixels of the Input Image’.

In total, based on the quantitative and qualitative results in section 5.8.1 and 5.8.2

and above advantages and disadvantages, the ‘Pixel-based’ approach as a ‘selective
update’ algorithm, has not a satisfactory performance. Although the ‘Selective
Update Using Temporal Averaging’ and the ‘Selective Update Using Temporal
Median’ algorithms have slightly better performances than the ‘Selective Update
Using Non-Foreground Pixels of the Input Image’, the ‘Pixel-based’ approach has
fundamental weaknesses, which are not removed by former algorithms. These
disadvantages, which make the ‘Pixel-based’ approach an ineffective method, are
due to the fact that this approach is pixel based. Therefore, a more effective
algorithm should be sought.

(a) Input image Fld223 (b) Input image Fld272 (c) Input image Fld290 (d) Input image Fld320

(e) Fld_Backgnd223 (f) Fld_Backgnd272 (g) Fld_Backgnd290 (h) Fld_Backgnd320

 106

(i) Inp img Bijan1_200 (j) Inp img Bijan1_249 (k) Inp img Bijan1_260 (l) Inp img Bijan1_275

(m)Bijan1_Backgnd200 (n)Bijan1_Backgnd249 (o)Bijan1_Backgnd260 (p)Bijan1_Backgnd275

(q) Input image Lab215 (r) Input image Lab264 (s) Input image Lab267 (t) Input image Lab280

(u) Lab_Backgnd215 (v) Lab_Backgnd264 (w) Lab_Backgnd267 (x) Lab_Backgnd280

Fig. 5.16 – (a) to (d), (i) to (l), and (q) to (t) are Fld, Bijan1, and Lab input images, respect-
ively. Besides, their corresponding background images are (e) to (h), (m) to (p), and (u) to
(x), respectively. The pixels of ghost(s) (i.e. foreground object(s) in the first input image) are
removed after LT=50 frames. It takes a number of frames in which ghost(s) is/are completely
replaced by the pixels of input images.

 107

(a) Input image Fld400 (b) Input image Fld420 (c) Input image Fld425

(d) Fld_Backgnd400 (e) Fld_Backgnd420 (f) Fld_Backgnd425

Fig. 5.17 – (a) to (c) Fld input images, (d) to (f) corresponding background images, respect-
ively. The moving foreground object has not become stationary but is almost at the same
position for many numbers of frames. Because the ‘Pixel-based’ approach treats the pixels of
an object independently and many pixel timers of the object may have the value of LT, those
pixels of the object may be visible in the corresponding background image.

(a) Input image Fld223 (b) Input image Fld322 (c) Input image Fld340 (d) Input image Fld355

(e) Fld_Backgnd223 (f) Fld_Backgnd322 (g) Fld_Backgnd340 (h) Fld_Backgnd355

 108

(i) Inp img Bijan1_200 (j) Inp img Bijan1_299 (k) Inp img Bijan1_310 (l) Inp img Bijan1_330

(m)Bijan1_Backgnd200 (n)Bijan1_Backgnd299 (o)Bijan1_Backgnd310 (p)Bijan1_Backgnd330

(q) Input image Lab215 (r) Input image Lab314 (s) Input image Lab317 (t) Input image Lab330

(u) Lab_Backgnd215 (v) Lab_Backgnd314 (w) Lab_Backgnd317 (x) Lab_Backgnd330

Fig. 5.18 – (a) to (d), (i) to (l), and (q) to (t) are Fld, Bijan1, and Lab input images, respect-
ively. Besides, their corresponding background images are (e) to (h), (m) to (p), and (u) to
(x), respectively. The pixels of ghost(s) (i.e. foreground object(s) in the first input image)
are removed after LT=100 frames. As a result, for many numbers of frames (i.e. LT),
ghost(s) is/are visible in the background frames until finally, in a number of frames, they are
completely replaced by the pixels of input images.

 109

An Object-based Approach to Adaptive
Dynamic Background Subtraction

6.1 Introduction

In the ‘Object-based’ approach (Shoushtarian and Bez, 2005), regions of foreground
pixels are considered. In this regard, a combination of a size filter and a colour
filter distinguishes real foreground objects and adds the remaining regions to the
background image. Then, the total initial and returned background pixels are updated
using ‘Selective Update’ methods.

6.2 Introducing the colour filter of the ‘Object-based’ approach

The pixels in Foreground-Grp, Stopped-Moving-Grp and Start-Moving-Grp plus
the exceptions of Variable-lighting assumption (i.e. the pixels with relatively large
illumination changes) of each input frame usually differ greatly from the correspond-
ing background image. By considering this point, the absolute difference between
the current input frame and the previous background image is computed. Then,
the appropriate threshold levels for three colour-channels of the difference image
are automatically calculated using unimodal thresholding (Rosin, 2001). If for any
pixel in the difference image, two of three colour-channels are higher than their
corresponding threshold levels, that pixel is marked as a foreground pixel. The
remaining pixels are regarded as background pixels (i.e. Background-Grp).

After thresholding, a connected components labelling technique is applied to the
thresholded difference image (Haralick and Shapiro, 1992). Then, a size filter marks
all regions with sizes less than 10 pixels as non-foreground regions (it is assumed
that foreground objects are larger than 10 pixels). The pixels of such small regions
are added to the background pixels. In addition, the remaining regions are sorted
in descending order based on their areas and are assigned area indices (called region-
area-index) accordingly. In this case, suppose there are n remaining regions. Thus,

CChhaapptteerr 66

 110

the region-area-indices of the largest, the second largest ……. up to the smallest
region will be given the values 0, 1, ….., n – 1, respectively.

Next, the pixels of the remaining regions are examined to check whether those

regions are really foreground or background ones. A combination of a second size
filter and a colour filter is used in this regard. The role of the first size filter is
to return very small regions to the background. On the other hand, the second size
filter prevents large foreground regions with the lowest region-area-indices to be
mistakenly marked for deletion by the colour filter. The second size filter compares
the region-area-index of each region with Region-Area-Threshold, which is specified
using a table based on the number of the remaining regions (see Table 6.1 which
specifies Region-Area-Threshold). It is assumed that the largest regions with region-
area-indices less than Region-Area-Threshold are automatically foreground regions.
Thus, they don’t need to be examined by the colour filter. The reason for this is that
thresholding of the difference image behaves well as an intensity filter especially for
the largest regions.

No. of Foreground Regions

Region-Area-Threshold
 1-10 1

11-30 2
31-50 3
> 50 4

Table 6.1 – Region-Area-Threshold is specified based on the number of remaining fore-
ground regions after the first size filter.

Based on the results offered in section 5.8.1, normalised rgb is used for the comp-
arisons of the colour components of the colour filter in this section. This is due to its
better quality and faster computation times in comparison with l1l2l3 and c1c2c3
invariant colour models and the RGB colour space.

The colour filter consists of two parts. The first part considers the pixels of the
current input frame corresponding to the pixels of the remaining foreground regions
(after applying two size filters). Then, the colour components of these pixels in the
current input frame are compared with the colour components of corresponding
pixels in two previous background frames. For each pixel of every remaining fore-
ground region, six relative variations are computed based on equation Eq. 6.1 as
follows:

r1 = | r - r* | / r*, g1 = | g - g* | / g*, b1= | b - b* | / b*,

r2 = | r - r** | / r**, g2 = | g - g** | / g**, b2 = | b - b** | / b** (Eq. 6.1)

where (r, g, b), (r*, g*, b*) and (r**, g**, b**) are normalised rgb colour components of
the above pixels in the current input frame, the first and the second previous
background frames, respectively. These terms are defined as Max-Val (i.e. a defined
maximum value) if their denominators are zero. Then, for every pixel i of each

 111

remaining foreground region k (k = 1,…, m, where m is the total number of the
remaining foreground regions), the following computation is performed:

Total-Relative-Variation of Pixel i = r1i + g1i + b1i + r2i + g2i + b2i (Eq. 6.2)

Since there are six relative variations for each pixel i of a remaining foreground
region k, rgb-Avgk is obtained as follows:

rgb-Avgk (Total-Relative-Variation of Pixel i) / (6 * nk), (Eq. 6.3)

where nk = The number of pixels in the foreground region k

rgb-Avgk shows the average of the difference of the colour components of the pixels
of a foreground region k in the input image and the colour components of the pixels
in the corresponding regions in the previous and the second previous background
images.

In the second part of the colour filter, the pixels of remaining foreground regions
are considered. For each pixel i in such pixels, its total intensities of the pixels in the
current input frame (based on Eq. 5.4) and two previous background frames (i.e. R*,
G*, B*, and R**, G**, B**) are obtained. Then, Intensity-Avgk for a foreground region k
is computed based on equations Eq. 6.4 to Eq. 6.7:

I* R* + G* + B* (Eq. 6.4)
I** R** + G** + B** (Eq. 6.5)
Relative-Intensity1 | I - I* | / I*,

Relative-Intensity2 | I - I** | / I** (Eq. 6.6)

Intensity-Avgk ((Relative-Intensity1i + Relative-Intensity2i)) / (2 * nk)

 (Eq. 6.7)

Intensity-Avgk is similar to rgb-Avgk. However, in this case the average of the relative
variations of the intensities (rather than colour components) of a foreground region k
in the input image in comparison with the corresponding regions in two previous
background frames is obtained.

The pseudo code in Fig. 6.1 determines whether a region is foreground or
background:

// At first it is assumed that a remaining region is background.

Foreground-Region False // i.e. it’s a background region.
Region-Area-Threshold A value based on the number of foreground regions
 // (see Table 6.1)

n

=1

k

i
∑

n

=1

k

i
∑

 112

// Check whether the assumption is false and the region is foreground.
// The following if statement performs the second size filter operation.
// It checks whether the region-area-index of a region is smaller than
// Region-Area-Threshold. In this case, it is automatically considered
// as a foreground region without checking by the colour filter (i.e. in
// the else-block of the if statement).

if (region-area-index of a region ≥ Region-Area-Threshold)
{
 // Check remaining regions by the colour filter as follows:

 Area-index Region-Area / Total-Region-Areas

 if (((rgb-Avg ≥ Low-rgb-Avg) + (Intensity-Avg ≥ Low-Intensity-Avg) +
 (Area-index ≥ High-Area-index) ≥2)
 or
 (((rgb-Avg ≥ High-rgb-Avg) or (Intensity-Avg ≥ High-Intensity-Avg)) and
 (Area-index ≥ Low-Area-index)))

 Foreground-Region True
}
else
 Foreground-Region True

Fig. 6.1 – The pseudo code for a combination of the second size filter and the colour filter

where the values of 0.06, 0.10, 0.14, 0.25, 0.05 and 0.07 have experimentally
been selected for the thresholds Low-rgb-Avg, High-rgb-Avg, Low-Intensity-Avg,
High-Intensity-Avg, Low-Area-index, High-Area-index, respectively.

The rationale for the above pseudo code is as follows:

If the region-area-index, which indicates the size of a region, is less than Region-
Area-Threshold, it is assumed to be a foreground region as it was already explained
in this section. This technique has the advantage that some larger regions are
excluded from checking by the colour filter. These regions sometimes constitute a
large percentage of the remaining foreground regions. Thus, it speeds up the
processes of the colour filter and the background algorithm for each frame. However,
the majority of the remaining foreground regions should be examined by the colour
filter.

If a remaining foreground region in the input frame is very similar to the corres-
ponding regions in the two previous background frames, based on our experiments
on the tolerance of pixels’ rgb colour components, its rgb-Avg should be less than
5%. Low-rgb-Avg is a low threshold because the regions in the input frame have
different colour components than the corresponding regions in the previous back-
ground frames. So 0.06 is an appropriate value for Low-rgb-Avg. If rgb-Avg of
a region in the input frame is higher than High-rgb-Avg, then that region has

 113

relatively different colour components than the corresponding regions in the previous
background frames. The value of 0.10 has been chosen for High-rgb-Avg based on a
number of experiments.

There are similar arguments about the difference of the average intensities of the

remaining foreground regions in the input image with their corresponding regions in
the previous background frames. Thus, the above values have been chosen for Low-
Intensity-Avg and High-Intensity-Avg experimentally.

It is notable that the values of rgb-Avg and Intensity-Avg have been used for the
comparisons of regions. This makes the comparisons independent from the sizes of
foreground regions and thus, it can be applied to any video sequence as well.

The colour filter also uses Area-index, which is an indication of the area (or
implicitly the weight or the importance) of a region among other remaining fore-
ground regions. If a region has an Area-index greater than or equal to Low-Area-
index, it is approximately considered as a big area. However, if its Area-index is
greater than High-Area-index, then that region should be definitely considered as a
big region among all remaining foreground regions.

The colour filter will select a remaining foreground region in the input frame as a
foreground region if at least one of the following conditions is met:

1. Either its average colour components are different from two previous backgro-

und frames by the amount of Low-rgb-Avg
or
its average intensity is different from two previous background frames by the
value of Low- Intensity-Avg
or
its Area-index is considerably high in comparison with other remaining fore-
ground regions.

At least two of the above conditions should simultaneously be true in order

that a region to be selected as a final foreground region.

2. Either its average colour components (i.e. rgb-Avg) or its average intensity (i.e.
Intensity-Avg) should be considerably high and at the same time (for both
conditions) its area should not be smaller than Low-Area-index.

The pixels of rejected foreground regions by the colour filter in the input image

are added to the background. Thus, background pixels after thresholding of the diff-
erence image, the pixels of marked regions for deletion by the first size filter, and the
pixels of rejected foreground regions by the colour filter are selected for background
update. Once all these pixels are updated by one of the ‘Selective Update’ methods
discussed in later sections, they are included in the background image. The pixels in
the input image corresponding to the final foreground regions are excluded from
updating. Instead their corresponding pixels in the previous background frame are
included in the current background image.

 114

6.3 Classification of foreground regions

Once the final foreground regions are identified, the ‘Object-based’ approach still
needs to distinguish these foreground regions as Foreground-Grp, Stopped-Moving-
Grp or Start-Moving-Grp, even though in special situations Stopped-Moving-Grp
and Start-Moving-Grp are treated as background regions. For distinguishing fore-
ground regions, these regions should be tracked in the image sequence. Since many
different situations may occur in practice, the status of motion and the relationship
between foreground regions should be determined in a general manner. Fortunately,
many object tracking algorithms have already been introduced in the literature.

Matching matrices and matching strings were introduced by Fuentes and Velastin

(2006) for object tracking. Besides, ‘Merging’, ‘Splitting’, ‘Entering’, ‘Leaving’ and
‘Correspondence’ states (Fuentes and Velastin, 2006) are situations that may happen
to regions (or blobs) in general. Matching strings, which can specify these states
well, is utilised as a powerful tool for the ‘Object-based’ approach.

The matching matrices algorithm is based on matching the blobs of the current

and the previous input frames. Blob i matches blob j if their bounding boxes overlap
with each other. By comparing the overlap between the bounding boxes of fore-
ground blobs of the current and the previous input images, their matching matrices
and matching strings are easily computed. In addition to the bounding box, other
information such as area, centroid and average colour (Sechidis, et al., 2002) in each
input frame are also kept for blob tracking.

Blobs are assumed to have either ‘Stationary’ or ‘Moving’ status. However, after
merging or splitting states, new blobs may be created for which the moving status
has not been specified. In these cases, they have ‘Unknown’ status.

The state diagram in Fig. 6.2, illustrates the moving status of foreground blobs.

Transitions between states are based on different situations that may happen to a blob
in the current input frame in comparison with its overlapping blob in the previous
input frame (i.e. ‘Merging’, ‘Splitting’, ‘Correspondence’, ‘Entering’ and ‘Leaving’).
The labels on the arrows indicate the starting letter of these states. In addition, it is
assumed that a state similar to ‘Entering’ may also occur. This state is called
‘Appearing’ and occurs when a new blob or object “appears” in the middle of the
current frame (i.e. it does not enter from the image borders). In this case, the new
blob is not similar to its overlapping blob(s) in the previous frame (i.e. its area and
average colours are different such as a ghost).

Based on the state diagram in Fig 6.2, a blob, which has entered or appeared in the
input image, has a moving status (‘Entering’ or ‘Appearing’). A moving blob may
maintain its motion or may become motionless (both ‘correspondence’). A blob,
which was moving in the previous input image, may not be visible in the current
frame (‘Leaving’).

A new blob is visible in the current input frame (i.e. in ‘Unknown’ state), which
is due to merging two or several blobs in the previous frame (‘Merging’) or is due to
splitting of a corresponding blob in the previous frame (‘Splitting’). Then a blob,

 115

which has been in ‘Unknown’ state, may be moving, motionless or invisible in the
current frame.

 Fig. 6.2 – Initial state diagram for blob (or object) moving status.

A previous stationary blob may remain stationary or it may start moving in the
current frame (‘Correspondence’). A stationary object (i.e. a ghost or a completely
stationary object) may be replaced by input image pixels after a certain amount of
time (‘Leaving’).

By looking at the state diagram, it is observed that ‘Unknown’ and ‘Moving’

states have the same outputs. Thus, in the algorithm, there is not much difference in
assuming the blob after merging or splitting to have ‘Unknown’ or ‘Moving’ status
as the next states of these two states are the same. Thus, the state ‘Unknown’ can be
merged into the state ‘Moving’. Fig. 6.3 illustrates the simplified state diagram.
Besides, the resulting moving status of objects is explained in Table 6.2 corres-
pondingly.

In the ‘Stationary’ state in Fig. 6.3, an object may remain motionless for a period
of time until it leaves this state. For this purpose, two timers are necessary. These are
defined as st-timer (stationary timer) and mv-timer (moving timer). The st-timer
counts the number of frames that an object (or a blob) has remained stationary.
A blob in frame t is considered stationary if, in comparison with frame t – 1,
its centroid has changed less than two pixels and its area and average colour have
changed by a small amount (e.g. less than 5%). Similarly, the mv-timer counts
the number of frames that a blob has been in motion. Ghost-Stationary-Limit and
Object-Stationary-Limit are stationary upper limit parameters for st-timer and
Object-Moving-Limit is the moving upper limit parameter for mv-timer.

When a background object starts moving, there will be some overlap between its
initial position (i.e. ghost) and its current position. Finally, when these two blobs
are completely split, the ghost appears as a new blob. The ‘Object-based’ approach
does not remove this new blob instantly because it is not completely sure whether
this blob is an object or a ghost. So it checks this blob to see whether it remains
motionless or it is moving. If it is stationary for Ghost-Stationary-Limit frames, then
the ‘Object-based’ approach becomes sure that this blob is a ghost and should be
replaced by the pixels of the input image. Thus, Ghost-Stationary-Limit depends on
the system reliability and responsiveness.

 Moving

 Unknown

Stationary

 E/A
C

L

C
C C C

L

C

L

 M/S

 116

Fig. 6.3 – The simplified state diagram for object moving status

Ghost-Stationary-Limit should be set as minimum as possible. If the bounding box
of the ghost overlaps the bounding box of a foreground object before st-timer reaches
Ghost-Stationary-Limit, the ghost will not be replaced by the background pixels of
the input image. Instead it is incorrectly detected as a part of a larger foreground
object. In fact, Ghost-Stationary-Limit should be set such that the ‘Object-based’
approach is sure that the blob has remained stationary after splitting and the ghost
is not occluded again by a foreground object. Thus, it can be set with a minimum
number of frames, for example 5 frames.

On the other hand, when an object becomes motionless, the ‘Object-based’

approach does not consider it as a background object until it remains stationary for
a sufficient number of frames (i.e. Object-Stationary-Limit). Once again, Object-
Stationary-Limit depends on the system reliability and responsiveness. In practice, it
can be selected from 1 to 2 minutes (1500 to 3000 frames).

Result

Merging 0 & 1 or 1 & 0 1

1 & 1 1

Splitting
0 1

1 1

Correspondence
0 0 : (*)

0 1 : (+)

1 0 : (*)

 Entering/Appearing X 1

Leaving
0 : (B), (-)

1 : (-)

Table 6.2 – This table shows the resultant moving status of a blob in the current frame in
comparison with the moving status corresponding blob(s) in the previous frame. Meanwhile,
the numbers 0, 1, and X are for: 0: Stationary blob, 1: Moving blob, and X: Unknown-status
blob. In addition, the symbols in the parentheses have the following meanings: (*): The
parameters (including centroid, size and the average colour) are examined to be close. (+):
The parameters are greater than the specified thresholds. (-): The blob information should be
removed. (B): The blob is included in the current background image.

 Moving Stationary

E/A/M/S
C

L

C

C

L

 117

In addition to st-timer and mv-timer, there is another variable for each blob named
st-limit. st-limit is the upper limit variable for st-timer and depending on the moving
status of each blob; it is initialised with either Ghost-Stationary-Limit or Object-
Stationary-Limit.

In ‘Entering’ and ‘Merging’ states, st-limit is set with Object-Stationary-Limit
because the ‘Object-based’ approach knows that it is concerned with real objects.
In ‘Splitting’ state, st-limit is set with Ghost-Stationary-Limit. Thus, if a blob moves
or is occluded by a foreground object within Ghost-Stationary-Limit frames, it will
be considered as a foreground object. In other words, if an object interacts with a
ghost for less than Ghost-Stationary-Limit frames, the ghost will not be replaced with
the input image. In ‘Appearing’ state, st-limit is also set with Ghost-Stationary-Limit.
In ‘Correspondence’ state, st-limit will receive its parent’s st-limit value.

In all states, if the blob is moving, mv-timer and st-timer will be set with one and
zero, respectively. Only in ‘Correspondence’ state, if a blob is stationary in both
frames t - 1 and t, st-timer will be set by its parent’s st-timer plus one and mv-timer
will be reset to zero. However, if the blob was moving in the previous frame
and is also moving in the current frame, st-timer will be reset to zero and mv-timer
is set with its parent’s mv-timer plus one. Then, mv-timer will also be checked
with Object-Moving-Limit and if they are equal, the st-limit is set with Object-
Stationary-Limit. Otherwise, st-limit will be set with its parent’s st-limit. The reason
mv-timer is compared with Object-Moving-Limit is that the ‘Object-based’ approach
needs to check that the blob is not a ghost, which was moving in the past few frames.
In this case, the ‘Object-based’ approach should be sure of the movement of a blob
before it assigns the blob’s st-limit with Object-Stationary-Limit. Like Ghost-
Stationary-Limit, Object-Moving-Limit can be set with a few numbers of frames such
as 5.

After the matching strings 1-t
tS and t

1-tS are computed (Fuentes and Velastin, 2006),
the columns of 1-t

tS will be compared with the columns of t
1-tS . Then, the moving

status of each blob in the current frame is specified based on the moving status of the
corresponding blob in the previous frame and the movement change that has
currently happened to this blob. Besides, the blob’s variables are set accordingly. The
result of such a comparison for each blob is to determine the value of a flag called
BF-flag (background or foreground flag). For all states, this flag is assigned with ‘F’.
This means that this blob is considered as a foreground blob and the ‘Object-based’
approach will replace its pixels with the corresponding pixels of the previous
background image. However, only in ‘Correspondence’ state, if a blob has been
stationary in the previous and the current frame, st-timer will be checked with
st-limit and just when they are equal BF-flag is assigned with ‘B’. In this case, the
pixels of the input image corresponding to the pixels of this blob are copied in the
background image.

It is important to notice that if st-limit has the value of Ghost-Stationary-Limit,
then the blob is a ghost and it will be removed from the background frame. But if
st-limit has the value of Object-Stationary-Limit, it is an object that has been
stationary for a large number of frames. So it will now be considered a part of the

 118

background image. A summary of the moving status, timers and flags of all states in
the ‘Object-based’ approach is given in Table 6.3.

Merging: Entering: Appearing:
Moving-status Moving Moving-status Moving Moving-status Moving
st-timer 0 st-timer 0 st-timer 0
mv-timer 1 mv-timer 1 mv-timer 1

st-limit Object-Stationary st-limit Object-Stationary st-limit Ghost-Stationary
 -Limit -Limit -Limit

BF-Flag ‘F’ BF-Flag ‘F’ BF-Flag ‘F’

Splitting:
Moving-status Moving
st-timer 0
mv-timer 1
if (parent =‘M’ or parent =‘S’ or parent =‘E’)
 st-limit Object-Stationary-Limit
else // if (parent = ‘A’)
 st-limit Ghost-Stationary-Limit

Correspondence & Changing States:

// A stationary object in the // A stationary object is now // A moving object now has
// previous frame is motionless // moving in the current // no movement in the
// in the current frame. // frame. // current frame.

0 0: 0 1: 1 0:
Moving-status Stationary Moving-status Moving Moving-status Stationary
mv-timer 0 mv-timer 1 mv-timer 0
st-timer parent st-timer + 1 st-timer 0 st-timer 1
st-limit parent st-limit st-limit parent st-limit st-limit parent st-limit
if (st-timer = parent st-limit) BF-Flag ‘F’ BF-Flag ‘F’
 BF-Flag ‘B’
else
 BF-Flag ‘F’

// A moving object is still moving in the current frame.

1 1:
Moving-status Moving
st-timer 0
mv-timer parent mv-timer + 1
if (mv-timer = Object-Moving-Limit)
 st-limit Object-Stationary-Limit
else
 st-limit parent st-limit
BF-Flag ‘F’

Table 6.3 – A summary of the moving status, timers and flags of all states in the ‘Object-
based’ approach. ‘B’ and ‘F’ flags mean background and foreground, respectively.

Therefore, by using matching strings, the ‘Object-based’ approach is able to ident-
ify the behaviours of all blobs regardless of their numbers effectively.

 119

6.4 Performances of three ‘Selective Update’ algorithms

In subsection 6.4.1, the performance and the weaknesses of the ‘Selective Update
Using Non-Foreground Pixels of the Input Image’ will be explained. The perform-
ances and the capabilities of the ‘Selective Update Using Temporal Averaging’ and
the ‘Selective Update Using Temporal Median’ for resolving the shortcomings of
the ‘Selective Update Using Non-Foreground Pixels of the Input Image’ will be
demonstrated in subsections 6.4.2 and 6.4.3, respectively. Then, the results of
applying three ‘Selective Update’ algorithms to eight video sequences are illustrated
in subsection 6.4.4.

6.4.1 The performance of the ‘Selective Update Using Non-

Foreground Pixels of the Input Image’ algorithm

One drawback of the ‘Selective Update Using Non-Foreground Pixels of the Input
Image’ is that the pixels in Background-Grp of the input image t are not necessarily
close to the corresponding pixels in the background image t – 1. This situation is
more evident in the outdoor environments where pixels often have relatively high
lighting fluctuations. This may cause the threshold levels for the difference image to
be computed as high levels. Since some objects have soft cast-shadows, a number of
soft shadow pixels may be classified in Background-Grp due to high threshold levels
for the difference image. So the ‘Selective Update Using Non-Foreground Pixels of
the Input Image’ algorithm will copy all Background-Grp pixels of the input frame in
the background frame. Thus, as the objects move in the succeeding input frames,
integrations of soft shadow pixels will be visible in some parts of the corresponding
background frames (see Fig. 6.4c and 6.4d). Lowering the threshold levels for the
difference image can alleviate this problem but can not completely solve it.

As the second drawback, the colour filter of the ‘Object-based’ approach may
incorrectly classify a remaining region very rarely (after conntected components
labelling) as a background area while it must be classified as a foreground region.
For example, the pixels of a region of soft shadow or a combination of a large soft
shadow area and a small piece of a foreground object may be very similar to
the corresponding pixels of the previous background frames. In these cases, the
‘Object-based’ approach may not classify those areas as foreground regions. One
obvious solution for this misidentification is to lower the threshold levels of the
colour filter. However, lowering the threshold levels may cause many background
areas of each input frame to be similarly misidentified as foreground regions. Thus,
the thresholds should be suitably chosen based on various experiments.

Thus, due to the copying feature of the ‘Selective Update Using Non-Foreground
Pixels of the Input Image’ algorithm, it may fail to produce a correct background
image in the above cases. To resolve these problems, let’s consider the ‘Selective
Update Using Temporal Averaging’ and the ‘Selective Update Using Temporal
Median’ algorithms.

 120

6.4.2 The performance of the ‘Selective Update Using Temporal
Averaging’ algorithm

The second weakness of the ‘Selective Update Using Non-Foreground Pixels of the
Input Image’ was explained to be occasionally misidentifying a foreground region,
which in this case is similar to the background. Hence, giving rise to the question
“Will the ‘Selective Update Using Temporal Averaging’ be able to rectify the
‘Selective Update Using Non-Foreground Pixels of the Input Image’ shortcomings”?

The ‘Selective Update Using Temporal Averaging’ adds a weight of 1/M of a
pixel in Background-Grp (for each colour-channel) of the input image to the same
weight of M – 1 corresponding previous background pixels, where M + 1 is the length
of a cyclic buffer which is used for storing the background frames. Thus, as a higher
value is chosen for M, the pixels in Background-Grp of each input frame have
less effect on the background frame. But the ‘Selective Update Using Temporal
Averaging’ cannot completely resolve this effect unless M has a high value. For the
following reasons very high values cannot be chosen for M:

 If the value of M is very high, the same weight is given to very old previous

background frames as is given to the pixels of Background-Grp in the current
input image. In this case, the ‘Selective Update Using Temporal Averaging’
is unable to quickly update and adapt the background image with the latest
changes in recent input images. Thus, the obsolete background image may
lead to failure of later processes such as detection and tracking.

 As the value of M increases, the volume of the cyclic buffer for the back-

ground images increases directly. Thus, an indefinite value for M cannot be
selected.

Therefore, the ‘Selective Update Using Temporal Averaging’ is unable to remove

the second weakness of the ‘Selective Update Using Non-Foreground Pixels of the
Input Image’ effectively. In fact, for example, if a small foreground region is missed
by the colour filter of the ‘Object-based’ approach, a blurring effect of the
foreground region will still be visible in the background image. However, despite
this weakness, if no foreground region is missed by the colour filter of the ‘Object-
based’ approach, then the ‘Selective Update Using Temporal Averaging’ produces
correct background frames in real-time. It also removes the first weakness of the
‘Selective Update Using Non-Foreground Pixels of the Input Image’ as is explained
in subsection 6.4.4.

6.4.3 The performance of the ‘Selective Update Using Temporal

Median’ algorithm

In the ‘Selective Update Using Temporal Median’, each colour-channel of a pixel
in Background-Grp of the input image is read into a histogram, which also contains
M corresponding colour-channels of pixels of the previous background frames.
Consider a foreground region which is mistakenly identified as a background area.

 121

Since the pixels of this region are similar but not exactly the same as the pixels of the
previous background frames, there is a very low probability that each pixel of
the foreground region is selected as the median. Thus, the shortcoming of the
‘Selective Update Using Non-Foreground Pixels of the Input Image’ does not affect
the ‘Selective Update Using Temporal Median’ to compute the correct background
frame effectively. In fact, to resolve both weaknesses of the ‘Selective Update Using
Non-Foreground Pixels of the Input Image’, the length of the cyclic buffer (M + 1)
should be relatively long (e.g. more than 50). However, the ‘Selective Update Using
Temporal Median’ must be implemented such that it can operate as fast as possible.

For fast computation of the ‘Selective Update Using Temporal Median’, a
histogram is built for each colour-channel of a pixel in the background image. For
this purpose, a number of initial background frames are read into histograms and the
median (bin) and the position of median in the median bin (for each colour-channel)
are computed and stored.

When the ‘Selective Update Using Temporal Median’ algorithm operates continu-

ously, a colour-channel of a pixel in Background-Grp of the input image is read into
the histogram and the corresponding colour-channel of a pixel in the Mth previous
background frame is removed from the histogram. In this case, depending on the
relative positions of the values entered and removed from the histogram to the
median bin, the median bin and the position of the median can easily be modified.
However, for the pixels of the foreground regions of the input image, the corres-
ponding histograms are not changed.

Therefore, using the above technique, the ‘Selective Update Using Temporal

Median’ can be implemented effectively.

6.4.4 The results of three ‘Selective Update’ algorithms

Due to filtering effect of the ‘Selective Update Using Temporal Averaging’ and
‘Selective Update Using Temporal Median’ in comparison with the ‘Selective
Update Using Non-Foreground Pixels of the Input Image’, the pixels in the
background frame t are usually closer to the similar pixels in Background-Grp of
the input image t + 1. Hence, more background pixels are correctly identified and
foreground regions are better recognised. This advantage of the ‘Selective Update
Using Temporal Averaging’ and the ‘Selective Update Using Temporal Median’ also
eases the effectivity of ‘connected components labelling’, ‘colour filter’ and other
later processes as well. The results of applying three ‘Selective Update’ algorithms to
eight video sequences, ‘Lab’, ‘Fld’, ‘Cp1’, ‘Cp3’, ‘Cp5’, ‘Highway I’, ‘Highway II’
and ‘Bijan1’ are illustrated in Figs. 6.4, 6.5 and 6.6. The DR and FAR vaues of three
‘Selective Update’ algorithms are also given in Table 6.4.

 122

 (a) (b) (c) (d)

 (e) (f) (g) (h)

 (i) (j) (k)

 (l) (m) (n) (o)

Fig. 6.4 – (a) Input image Lab148, (b) Detected foreground region Non_forg_Lab_Fgnd148,
(c) and (d) The previous and the current background images Non_forg_Lab_back147
and Non_forg_Lab_back148, respectively. The Soft shadow pixels are almost visible
inside the drawn ovals; (e) Foreground region Temp_Avg_Lab_Fgnd148,
(f) Temp_Avg_Lab_back148, (g) Foreground region Temp_Med_Lab_Fgnd148,
(h) Temp_Med_Lab_back148. No soft shadow pixels are visible in the background images
(f) and (h). (i) Input image Fld298, (j) Foreground region Non_forg_Fld_Fgnd298;
(k) Non_forg_Fld_back298. Some residue pixels (or regions) are visible inside
the drawn oval. (l) and (n) Detected foreground regions Temp_Avg_Fld_Fgnd298
and Temp_Med_Fld_Fgnd298; (m) and (o) Corresponding background images
Temp_Avg_Fld_back298 and Temp_Med_Fld_back298, respectively.

 123

 (a) (b) (c)

 (d) (e) (f) (g)

 (h) (i) (j)

Cp3 - 149

 (k) (l) (m) (n)

 (o) (p) (q)

 (r) (s) (t) (u)

 124

Fig. 6.5 – (a), (h) and (o), Input images Cp1_381, Cp3_149 and Cp5_139, respectively;
(b and c), (i and j) and (p and q) are respectively detected foreground regions and their
corresponding background images based on the ‘Selective Update Using Non-Foreground
Pixels of the Input Image’ for the corresponding input images Cp1_381, Cp3_149 and
Cp5_139; (d and e), (k and l) and (r and s) are respectively detected foreground regions and
their corresponding background images based on the ‘Selective Update Using Temporal
Averaging’ for the mentioned input images; (f and g), (m and n) and (t and u) are
respectively detected foreground regions and their corresponding background images based
on the ‘Selective Update Using Temporal Median’ for the mentioned input images.

 (a) (b) (c)

 (d) (e) (f) (g)

 (h) (i) (j)

 (k) (l) (m) (n)

 125

 (o) (p) (q)

 (r) (s) (t) (u)

Fig. 6.6 – (a), (h) and (o), Input images Highway I_268, Highway II_126 and Bijan1_260;
(b and c), (i and j) and (p and q) are detected foreground regions and their corresponding
background images based on the ‘Selective Update Using Non-Foreground Pixels of the
Input Image’ for the corresponding input images Highway I_268, Highway II_126 and
Bijan1_260; (d and e), (k and l) and (r and s) are detected foreground regions and their
corresponding background images based on the ‘Selective Update Using Temporal
Averaging’ for the mentioned input images; (f and g), (m and n) and (t and u) are detected
foreground regions and their corresponding background images based on the ‘Selective
Update Using Temporal Median’ for the mentioned input images. Some foreground objects
and residue regions (including shadow pixels) are visible in (c), (j) and (q) background
images. They indicate the failure of the ‘Selective Update Using Non-Foreground Pixels of
the Input Image’ algorithm in some cases. However, the ‘Selective Update Using Temporal
Averaging’ and the ‘Selective Update Using Temporal Median’ have very good
performances in all these cases as no foreground objects or residue regions are seen in their
corresponding background images.

The average computation times of three ‘Selective Update’ algorithms on the
above video sequences are given in Table 6.5. Three ‘Selective Update’ algorithms
have been implemented on a 2.4 GHz Pentium 4 PC with 1 GB of RAM running
windows XP professional edition. From Table 6.5, it is obvious that both the
‘Selective Update Using Non-Foreground Pixels of the Input Image’ and the
‘Selective Update Using Temporal Averaging’ run in real-time (less than 40 mSec)
for eight image sequences. However, the ‘Selective Update Using Temporal Median’
runs close to real-time for standard images (with resolution 320 x 240, e.g. ‘Lab’,
‘Highway I’ and ‘Highway II’). Fortunately, for faster PCs (with higher CPUs’ and
mother boards’ speeds), the ‘Selective Update Using Temporal Median’ easily runs
in real-time even for image sequences with relatively high resolutions (e.g. 384 x
288).

 126

6.4.5 The advantages of the ‘Selective Update Using Temporal
Median’ method

It was shown in the previous sections that the ‘Selective Update Using Temporal
Median’ has the best performance among the three ‘Object-based Selective Update’
algorithms. Its advantages are as follows:

 It produces a dynamic reference image for each input frame.

 The proposed algorithm is very simple and easy to understand and implement.

Image Sequence

Selective
Update
Using Non-
Foreground
Pixels of the
Input Image

Selective
Update
Using
Temporal
Averaging

Selective
Update
Using
Temporal
Median

Lab

DR

0.976 0.986 0.994

FAR 0.192 0.032 0.017

Fld
DR 0.961 0.995 0.996

FAR 0.067 0.010 0.009

Cp1
DR 0.769 0.975 0.975

FAR 0.001 0.007 0.004

Cp3
DR 0.780 0.989 0.988

FAR 0.015 0.024 0.021

Cp5
DR 0.982 0.986 0.991

FAR 0.137 0.046 0.021

Highway I
DR 0.968 0.983 0.985

FAR 0.003 0.001 0.001

Highway II
DR 0.960 0.985 0.985

FAR 0.013 0.005 0.002

Bijan1
DR 0.944 0.974 0.975

FAR 0.008 0.004 0.003

Table 6.4 – The DRs and FARs of three ‘Selective Update’ methods for ‘Lab’, ‘Fld’, ‘Cp1’ ,
‘Cp3’ ,‘Cp5’, ‘Highway I’, ‘Highway II’, and ‘Bijan1’ video sequences.

 127

 It has been designed to use colour video sequences and is robust since it can
operate in unconstraint outdoor or indoor scenes.

 The three parameters for thresholding every difference image are computed

automatically. The other parameters of the algorithm are fixed and the same set of
parameters is used for different video sequences. Thus, the algorithm does not
require that its parameters are set for each video sequence manually.

 It also removes ghosts and includes stopped moving object in the background

image in one frame effectively. Meanwhile, the total routines of the algorithm run
close to real-time on a 2.4 GHz Pentium 4 for standard image sequences.

6.5 Comparison with related works

In section 6.5.1, the criteria of comparison of background generation algorithms
are offered. Then, ‘Object-based Selective Update using Temporal Median’ is
compared with ‘Pixel-based Selective Update using Temporal Averaging’ and
‘Pixel-based Selective Update Using Temporal Median’ and two other background
generation algorithms in sections 6.5.2 and 6.5.3, respectively.

Image
Sequence
(resolutions in
parentheses)

The ‘Selective
Update Using Non-
Foreground Pixels
of the Input Image’

The ‘Selective
Update Using
Temporal
Averaging’

The ‘Selective
Update Using
Temporal
Median’

Lab (320 x 240) 7.0 14.6 47.4

Fld (384 x 288) 8.7 18.8 64.3

Cp1 (352 x 288) 9.7 17.5 63.0

Cp3 (352 x 288) 9.2 17.6 61.3

Cp5 (352 x 288) 8.4 17.8 61.7

Highway I (320 x 240) 6.9 14.2 42.2

Highway II (320 x 240) 7.2 14.8 47.9

Bijan1 (352 x 288) 8.0 18.0 60.2

Table 6.5 – The average computation times for three ‘Selective Update’ algorithms in mSec.
It is notable that moving objects in ‘Cp1’, ‘Cp3’ and ‘Cp5’ image sequences constitute a
very small percentage of each input frame in comparison with ‘Fld’ video sequence. Thus,
often more than 95% of the pixels are classified as background pixels which should be
updated using the corresponding ‘Selective Update’ method. This is the reason that the
computation times of ‘Cp1’, ‘Cp3’ and ‘Cp5’ are relatively high in comparison with ‘Fld’
sequence which has a higher resolution.

 128

6.5.1 The criteria of comparison

Good performance, correctness and the speed of computations are the criteria of
comparisons in this section. The concept of good performance is defined as follows:

 It can correctly operate in both outdoor and indoor scenes continuously for any

period of time.

 The pixels of foreground objects are not detected as background pixels and

vice versa. In Cucchira et al. (2001) this definition was expressed by two terms
‘Detection Rate – DR’ and ‘False Alarm Rate – FAR’ as follows:

 DR = TP/(TP+FN) and FAR = FP/(TP+FP), where TP is the number of the

pixels of correctly detected moving object, FN is the pixels of the missed
moving object, and FP is the background pixels incorrectly detected as the
pixels of the moving object. Based on the contents of input images, the algori-
thm’s parameters are computed automatically. In other words, the algorithm’s
parameters should not be chosen (or tuned) for each video sequence manually.

The concepts of correctness are defined as follows:

 To identify ghosts and to be able of removing their pixels at the same time in

one frame.

 To identify moving objects which have become stationary for a large number

of frames. Also to be able to include the pixels of a stationary object in the
background image at the same time in one frame and not over a number of
frames.

The other important criterion of comparison is the speed of computations as follows:

 It is desirable and important that the algorithm can finish all its routines in real-

time.

6.5.2 Comparison of the ‘Object-based’ approach and the ‘Pixel-
 based’ approach

It was shown in Chapter 4 that the ‘Selective Update Using Temporal Averaging’ and
the ‘Selective Update using Temporal Median’ utilising normalised rgb were the
most suitable methods for implementing the ‘Pixel-based’ approach. Of course, their
performances were not sufficiently satisfactory. On the other hand, it was shown
in Section 6.4.3 that the ‘Selective Update using Temporal Median’ has the best
performance among three ‘Selective Update’ methods of the ‘Object-based’ appro-
ach. In this section, the ‘Pixel-based Selective Update using Temporal Averaging’
and the ‘Pixel-based Selective Update using Temporal Median’ methods are comp-
ared with the ‘Object-based Selective Update using Temporal Median’ algorithm.
They are compared quantitatively, qualitatively, and also based on the criteria of
comparison given in Section 6.5.1.

 129

 Based on quantitative comparison:

For quantitative comparison, the ‘Pixel-based Selective Update using Temporal
Averaging’, the ‘Pixel-based Selective Update using Temporal Median’ and the
‘Object-based Selective Update using Temporal Median’ methods are applied to
four video sequences Fld, Bijan1, Highway I, and Lab based on normalised rgb.
Then, for corresponding numbers of frames of these video sequences, the details
of quantitative comparisons of the above methods based on DR and FAR values
are offered in Table 6.6.

It is observed from Table 6.6 that the DRs of the ‘Pixel-based Selective Update
using Temporal Averaging’ and the ‘Pixel-based Selective Update using Temporal
Median’ are as high as the DRs of the ‘Object-based Selective Update using
Temporal Median’. But the FARs of the ‘Pixel-based Selective Update using
Temporal Averaging’ and the ‘Pixel-based Selective Update using Temporal
Median’ are much higher than the FARs of the ‘Object-based Selective Update
using Temporal Median’ method. The reason for this is as follows:

Unimodal thresholding is used for thresholding colour difference images of
both the ‘Pixel-based’ and the ‘Object-based’ methods. As explained in Section
4.7 about the ‘Pixel-based Selective Update’ methods, in addition to the pixels of
foreground objects in thresholded images, a large number of background pixels
are incorrectly classified as foreground pixels by the colour filter. In this case,

Image
Sequence

The ‘Pixel-based
Selective
Update Using
Temporal
Averaging’

The ‘Pixel-based
Selective
Update Using
Temporal
Median’

The ‘Object-based
Selective
Update Using
Temporal
Median’

Fld

 DR

0.996 0.996 0.996

 FAR 0.591 0.618 0.009

Bijan1
 DR 0.978 0.975 0.975

 FAR 0.262 0.317 0.003

Highway I
 DR 0.988 0.989 0.985

 FAR 0.032 0.040 0.001

Lab
 DR 0.977 0.975 0.994

 FAR 0.163 0.189 0.017

Table 6.6 - Quantitative comparison of the ‘Pixel-based Selective Update using Temporal
Averaging’ and the ‘Pixel-based Selective Update using Temporal Median’ with the ‘Object-
based Selective Update using Temporal Median’ based on detection rate (DR) and false
alarm rate (FAR) values.

 130

almost all pixels of real foreground objects are identified as foreground pixels.
Thus, the ‘Pixel-based Selective Update’ methods have very high DRs. On the
other hand, misclassifying a large number of background pixels as foreground
pixels causes these methods also have very high FARs. As a result, the ‘Pixel-
based Selective Update’ methods do not produce precise background frames.

In the ‘Object-based Selective Update using Temporal Median’ method, after

connected components labelling process, pixels of very small foreground regions
are removed and added to background pixels by a size filter. In addition, a colour
filter distinguishes real foreground objects and adds the pixels of remaining
regions to the background frame. For example, after thresholding, small back-
ground regions with slight movements are sometimes classified as foreground
regions. But the colour filter may reject them due to their similarities with corres-
ponding regions in previous background frames. In this way, real foreground
regions are identified. Meanwhile, a few background pixels may misclassify as
foreground pixels. Thus, the ‘Object-based Selective Update using Temporal
Median’ has very high DRs and very low FARs (see Table 6.6). Therefore, it
produces high precision background frames.

 Based on qualitative comparison:

The sample frames produced by applying the ‘Pixel-based Selective Update using
Temporal Averaging’ and the ‘Pixel-based Selective Update using Temporal
Median’ to four video sequences Fld, Bijan1, Highway I, and Lab based on norm-
alised rgb were already shown in Figs. 5.8 to 5.15. In addition, the quality figures
of these methods were also given in Table 5.5. Corresponding thresholded,
foreground, and background frames due to applying the ‘Object-based Selective
Update using Temporal Median’ to above video sequences are shown in Fig. 6.7.
Similar to Table 5.5, the quality figures assigned based on the visual qualities
of foreground frames to background images in Fig. 6.7 for the ‘Object-based
Selective Update using Temporal Median’ are given in Table 6.7. For qualitative
comparison, Table 6.7 includes the quality figures of the ‘Pixel-based Selective
Update using Temporal Averaging’ and the ‘Pixel-based Selective Update using
Temporal Median’ from Table 5.5 as well.

By comparing the quality figures of Table 6.7 and Fig. 6.7 with corresponding
Figs. 5.8 to 5.15 the following conclusion can me made:

The ‘Object-based Selective Update using Temporal Median’ detects foregro-

und objects accurately while it may rarely miss few small foreground regions. In
addition, almost all reference pixels are correctly identified as background pixels
(Fig. 6.7 (b), (e), (h), and (k)). Thus, the reference pixels of each input image are
considered in ‘Temporal Median’ process. As a result, precise, up to date, and
very good quality background fames are computed for input images (Fig. 6.7 (c),
(f), (i), and (l)). On the other hand, the ‘Pixel-based Selective Update using
Temporal Averaging’ and the ‘Pixel-based Selective Update using Temporal
Median’ often misclassify a large number of background pixels as foreground
ones (Figs. 5.8(h), 5.9(h), 5.12(h), 5.13(h)). Therefore, a large number of refer-
ence pixels of each input image corresponding to misclassified background pixels

 131

(a) Nrgb_Thresh_Fld290 (b) Nrgb_Forgnd_Fld290 (c) Nrgb_Backgnd_Fld290

(d) Nrgb_Thresh_Bijan1_262 (e) Nrgb_Forgrnd_Bijan1_262 (f) Nrgb_Backg_Bijan1_262

(g) Nrgb_Thrsh_Highway I_261 (h) Nrgb_Forg_Highway I_261 (i) Nrgb_Back_Highway I_261

(j) Nrgb_Thresh_Lab220 (k) Nrgb_Forgnd_Lab220 (l) Nrgb_Backgnd_Lab220

Fig. 6.7 – Thresholded, foreground, and background frames due to applying the ‘Object-
based Selective Update using Temporal Median’ to Fld290 ((a)-(c)), Bijan1_262 ((d)-(f)),
Highway I_261((g)-(i)), and Lab220 ((j)-(l)) all based on normalised rgb (Nrgb).

 132

are not considered in the ‘Temporal Averaging’ or the ‘Temporal Median’ updat-
ing process. Rather they are replaced with corresponding pixels from previous
background frame. As a result, for a large number of reference pixels of each
input frame in the latter methods, computed background pixels are out of date due
to copying from previous frame. However, remaining background pixels are
considered in the updating process and are up to date. In total, the ‘Object-based
Selective Update using Temporal Median’ produces background frames, which
are more precise and have better qualities than produced by the ‘Pixel-based
Selective Update using Temporal Averaging’ and the ‘Pixel-based Selective
Update using Temporal Median’. The quality figures in Table 6.7 confirm this
result.

 Based on the criteria of comparison:

• Good performance:

Both the ‘Pixel-based’ and the ‘Object-based Selective Update’ methods can
operate in outdoor and indoor scenes continuously. The sample frames of each
method were already shown in Figs. 5.8 to 5.15 and Fig. 6.7. The DRs of the
‘Pixel-based Selective Update using Temporal Averaging’ and the ‘Pixel-based
Selective Update using Temporal Median’ are as high as detection rates of the
‘Object-based Selective Update using Temporal Median’. But the former
methods have higher FARs than the latter method. Thus, the latter method has
a better performance than the former ones.

• Correctness:

The ‘Pixel-based Selective Update using Temporal Averaging’ and the ‘Pixel-

The Name of Selective
Update Method

Fld

Bijan1

Highway I

Lab

The Pixel-based
Selective Update using
Temporal Averaging

82 73 85 80

The Pixel-based
Selective Update using
Temporal Median

81 69 89 78

The Object-based
Selective Update using
Temporal Median

97 96 96 93

Table 6.7 – The quality figures from Table 5.5 for the ‘Pixel-based Selective Update using
Temporal Averaging’ and the ‘Pixel-based Selective Update using Temporal Median’. The
quality figures assigned based on the visual qualities of foreground frames to background
images in Fig. 6.7 for the ‘Object-based Selective Update using Temporal Median’. All
results are based on normalised rgb.

 133

based Selective Update using Temporal Median’ use separate timers for the
pixels of a background image. If a moving object becomes motionless, pixel
timers of the object may not have the same value. Thus, not all the parts of the
object may become stationary in one frame. Meanwhile, when a stationary
object starts moving, the above methods remove the ghost after LT frames in a
number of frames (but not in one frame). However, the ‘Object-based Selective
Update using Temporal Median’ utilises an advanced moving status method
(Fig. 6.3 and Table 6.3) for identifying the status of moving or stationary
objects and ghosts. When an object becomes motionless, it is not shown
in the background frame unless Object-Stationary-Limit numbers of frames
are elapsed. Then, the motionless object is shown in a complete form in one
frame (i.e. not gradually in a number of background frames). Meanwhile, the
latter method removes ghosts in one background frame.

Therefore, based on the above discussion, the ‘Object-based Selective Update
using Temporal Median’ produces correct background frames. However,
the ‘Pixel-based Selective Update using Temporal Averaging’ and the ‘Pixel-
based Selective Update using Temporal Median’ methods do not produce
correct background frames when a moving object becomes motionless or a
stationary object starts moving. Because in both cases either parts of an object
are shown or the pixels of a ghost are removed in a number of background
frames.

• The speed of computations:

By comparing the computation times in Tables 5.4 and 6.4 for four video
sequences Fld, Bijan1, Highway I, and Lab, it is obvious that the ‘Object-based
Selective Update using Temporal Median’ is much faster than the ‘Pixel-based
Selective Update using Temporal Averaging’ and the ‘Pixel-based Selective
Update using Temporal Median’ methods as well.

6.5.3 Comparison of the ‘Object-based’ approach with related
 algorithms

The selected algorithms for comparisons are Horprasert et al. (1999) and Kim et al.
(2005) which are shortly described in Appendix A.

6.5.3.1 Comparison of the ‘Object-based’ approach with the

Horprasert’s algorithm

The Horpraset’s algorithm can be compared with the ‘Selective Update Using Temp-
oral Median’ method as follows:

 Based on quantitative comparison:

There is no specific approach in the Horprasert’s algorithm for computing the

 134

parameter ταlo in Eq. A.7. Thus, this parameter should be given to the algorithm as
an input value. Based on Eq. A.7, ταlo has a major role in classifying foreground,
background, shadow, and highlight pixels. However, it is not determined what
value is suitable to be entered for ταlo. After a number of experiments, it was found
that ταlo should be a negative number, for example, between -1.0 to -15.0. Unfort-
unately, by changing ταlo for a video sequence, different results are obtained. In
this regard, their corresponding sample images are given in qualitative comparison
part of this section. Meanwhile, a suitable range of values for ταlo varies for each
video sequence. Therefore, it is impossible to find specific DR and FAR values for
each video sequence as by varying ταlo, the numbers of foreground, background,
shadow, and highlight pixels change considerably. Nevertheless, those values of
ταlo for eight video sequences are chosen where the best classifications of the
pixels of input images are obtained. For such ταlo values, the results of DRs and
FARs of the Horperasert’s algorithm are given in Table 6.8. Meanwhile, the same
sets of frames of eight video sequences, already used for the ‘Object-based
Selective Update using Temporal Median’, were utilised for the Horperasert’s
algorithm. Based on the results of Table 6.8, it is clearly obvious that DRs and
FARs of the Horperasert’s algorithm are respectively almost the same and much

Image

Sequence

The Horpraserts’s Algorithm

TP FP FN DR% FAR%

Fld 945829 171478 46554 95.31 15.35

Bijan1 1278320 405964 79305 94.12 24.10

Highway
I 1388084 192513 309963 81.75 12.18

Highway
II 301279 17190 20328 94.60 5.40

Cp1 209806 7898676 0 100.00 97.41

Cp3 193029 7897676 1618 99.17 97.61

Cp5 229108 7857310 2427 98.85 97.17

Lab 636555 9676764 0 100.0 93.83

Table 6.8 - The DR and FAR values of the Horperasert’s algorithm applied to eight video
sequences.

 135

higher than their corresponding DRs and FARs of the ‘Object-based Selective
Update using Temporal Median’ method. In this case, definitely the ‘Object-based
Selective Update using Temporal Median’ produces much more precise backgro-
und frames than the Horperasert’s algorithm.

 Based on qualitative comparison:

For qualitative comparison, first it is shown that by varying ταlo, different results
are obtained. Sample frames corresponding to three ταlo values for Fld and Bijan1
video sequences are shown in Fig. 6.8 ((a) to (g)). In addition, sample frames for
six other video sequences are shown in Fig. 6.9. These sample frames are obtained
based on those ταlo values that produce the best classifications of the pixels of each
input frame. Their corresponding background frames for eight video sequences
due to the ‘Object-based Selective Update using Temporal Median’ were already
shown in Figs. 6.4 to 6.6.

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

 136

 (j) (k) (l)

 (m)

 (n) (o) (p)

 (q) (r) (s)

Fig. 6.8 – Background, foreground, and highlight frames produced by applying the
Horprasert’s algorithm to Fld290 for ταlo = -9.5 ((a)-(c)), for ταlo = -4.5 ((d)-(f)), for ταlo = -1.5
((g)-(i)) and to Bijan1_262 for ταlo = -10 ((j)-(l), (m) shadow frame), for ταlo = -5 ((n)-(p)),
and for ταlo = -2 ((q)-(s)).

 137

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

 (j) (k) (l)

 138

 (m) (n) (o)

 (p) (q) (r)

Fig. 6.9 – Background, foreground, and highlight frames produced by applying the
Horprasert’s algorithm to Highway I_261 for ταlo = -1 ((a)-(c)), to Lab220 for ταlo = -10
((d)-(f)), to Highway II_126 for ταlo = -1.5 ((g)-(i)) and to Cp1_381 for ταlo = -10 ((j)-(l)),
to Cp3_149 for ταlo = -5 ((m)-(o)), and to Cp5_139 for ταlo = -15 ((p)-(r)).

Total foreground, shadow, and highlight pixels of each input frames in the
Horperasert’s algorithm correspond to foreground pixels (or regions) of each input
frame of the ‘Object-based Selective Update using Temporal Median’ method.
Based on Figs. 6.8 and 6.9, it is obvious that the background frames produced the
Horprasert’s algorithm have very low qualities even for the best ταlo values. On the
other hand, Figs. 6.4 to 6.6 show the superior qulity of the background frames
produced the ‘Selective Update Using Temporal Median’ method.

 Based on the criteria of comparison:

• Good performance:

In an initial background training process, the Horprasert’s algorithm computes
some parameters associated with normalisation (i.e. si, ai and bi) and
thresholding (i.e. τCD, τα1 and τα2) over a number of static background frames
automatically. Except one parameter defined as ταlo, Horprasert’s algorithm has
this good performance that the computations of its parameters are automatic.
However, this approach has the following problem:

 139

Horprasert et al. (1999) claim that their algorithm is robust and reliable in
outdoor scenes. Suppose that in the initial background training process,
normalisation (i.e. si, ai and bi) and thresholding parameters (i.e. τCD, τα1 and
τα2) are computed in the morning. Thus, there is no guarantee that in an outdoor
scene, these thresholds are still valid at noon, in the afternoon or at night. As a
result, many pixels may be misclassified which leads to low DRs and high
FARs in outdoor environments. Our experiments show the algorithm’s DR
decreases as the time passes from the time that the thresholds were computed.
Figs. 6.8 and 6.9 illustrate the low performance of Horprasert’s algorithm for
both indoor and outdoor environments. However, the high performance of the
‘Selective Update Using Temporal Median’ was already shown for eight video
sequences in Figs. 6.4 (h and o), 6.5 (g, n and u) and 6.6 (g, n and u).

• Correctness:

The Horprasert’s algorithm can be compared with the ‘Selective Update Using
Temporal Median’ from the correctness point of view as follows:

Suppose that in the succeeding frames after the training process, a backgro-

und object starts moving. The reference frame and the thresholds are already
computed and are fixed. What happens is that some of the pixels in the initial
position of the object are now replaced with new pixels in the input image.
Those pixels are different from their corresponding pixels in the reference
frame. Thus, the algorithm does not classify them as background pixels. As the
object continues its motion, more such pixels are misclassified and neither the
reference frame nor the thresholds are updated.

A similar difficulty occurs when a moving object becomes stationary. It is

not included in the background image and the thresholds are not updated as
well.

Therefore, Horprasert’s algorithm has major correctness problems. How-

ever, the ‘Selective Update Using Temporal Median’ is able to remove ghosts
and include stationary objects in the background image effectively (see Fig.
6.10).

• The speed of computations:

From the speed of computations’ point of view, Horprasert’s algorithm has the
following advantage:

It runs very fast and is completely real-time. However, the ‘Selective

Update Using Temporal Median’ is not as fast as Horprasert’s algorithm but
still runs close to real-time.

 140

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

Fig. 6.10 – (a), (d) and (g) Input images Lab376, Lab379, Lab380; (b), (e) and (h)
Lab_Fgnd376, Lab_Fgnd379, Lab_Fgnd380; (c), (f) and (i) Corresponding Lab_back376,
Lab_back379, Lab_back380, respectively. The ghost in whole is replaced after the fifth
background frame from Lab_back376 (i.e. Lab_back380) shown in (i) (one of the novelties
of the ‘Object-based’ approach given in Table 6.3).

6.5.3.2 Comparison of the ‘Object-based’ approach with the Kim’s

algorithm

The Kim’s algorithm (2005) can also be compared with the ‘Selective Update Using
Temporal Median’ method as follows:

 Based on quantitative comparison:

The Kim’s algorithm encodes the background on a pixel-by-pixel basis. For each
pixel, it builds a codebook consisting of one or more codewords. In the training
period, input pixels are clustered into the set of codewords based on a colour
distortion metric together with brightness bounds. In oreder to construct
coodbooks for pixels in the training period and to perform background subtraction
in the continuous operation, the Kim’s algorithm uses for parameters ε1, ε2, α, β.
These parameters have essential roles in classifying pixels and should be tuned for
each video sequence manually.

For quantitative comparison, the Kim’s algorithm is applied to eight video
sequences based on the best tuning of its parameters and its DR and FAR results
are given in Table 6.9. Based on the results of Table 6.9, it is clearly obvious that
DRs and FARs of the Kim’s algorithm are respectively lower and much higher
than their corresponding DRs and FARs of the ‘Object-based Selective Update
using Temporal Median’ method. Thus, the ‘Object-based Selective Update using
Temporal Median’ produces much more precise background frames than the
Kim’s algorithm.

 141

Image

Sequence

The Kim’s Algorithm

TP FP FN DR% FAR%

Fld 738285 114561 88702 89.27 13.43

Bijan1 458004 224473 558389 45.06 32.89

Highway
I 1698060 166705 476851 78.07 8.94

Highway
II 97037 45344 30328 76.19 31.85

Cp1 5948 2234 13091 31.24 27.30

Cp3 1128 586 12011 8.59 34.19

Cp5 29253 8236 14205 67.31 21.97

Lab 135936 17837 447036 23.31 11.60

Table 6.9 - The DR and FAR values of the Kim’s algorithm applied to eight video
 sequences.

 Based on qualitative comparison:

For qualitative comparison, the Kim’s is applied to eight video sequences. Their
corresponding Sample frames are shown in Fig. 6.11 ((a) to (g)). These sample
frames are obtained best tuning of four parameters parameters ε1, ε2, α, β. Define

 (a) (b)

 142

 (c) (d)

 (e) (f)

Fig. 6.11 – The Kim’s algorithm foreground regions are shown on background frames.

Based on Figs. 6.11, it is obvious that the background frames produced the Kim’s
algorithm have very low qualities. On the other hand, Figs. 6.4 to 6.6 show the
superior qulity of the background frames produced the ‘Selective Update Using
Temporal Median’ method.

In comparison with the Kim’s algorithm, the parameters of the ‘Selective Update

Using Temporal Median’ are either fixed or automatically computed for all
applications and also has much faster running close to real-time.

 143

Foreground Boundary Smoothing

7.1 Introduction

The goal of this chapter is to present a simple and effective silhouette (boundary)
smoothing method.

7.2 A practical RLE smoothing method

Due to simplicity of processing, binary contours are used to represent and classify
patterns of interest in many computer vision applications. However, after threshold-
ing, the boundaries of foreground regions are often corrupted by noisy pixels, which
makes direct analysis and feature extraction of these regions too complicated.
Obviously smoothing of object boundaries makes a number of their measurements
such as perimeter, area, moments, etc easier and more reliable. As stated in Section
2.2.11.1, smoothing is more effective when is performed on binary contours.

A review of smoothing methods for binary contours was offered in Section
2.2.11.1. It is observed that almost all smoothing methods are appropriate for chain
code applications. Only RLSA is utilised for RLE representation. However, based on
the description of RLSA given in Section 2.2.11.3, it is concluded that RLSA is
actually used as a document segmentation tool. It is not utilised as a general purpose
method for smoothing the boundaries of foreground regions in binary images.
However, the RLE technique has been selected as a more suitable approach for
representing foreground binary regions in this thesis. Thus, the lack of an appropriate
boundary smoothing method which operates using RLE data will be obvious. For this
purpose, a simple RLE smoothing method is proposed in the next subsections.

7.2.1 The general idea of an RLE smoothing method

The idea of a simple smoothing method for RLE data is proposed in this subsection

CChhaapptteerr 77

 144

to represent the foreground regions of a binary image. The goal is to smooth
horizontal, vertical and diagonal one-pixel-width noisy pixels along the boundary
of foreground regions. Such anomalies called out-spikes in this thesis may appear
on the left, on the right, on the top or on the bottom side of a foreground region.
In practice, complex combinations of horizontal, vertical and diagonal out-spike may
occur on the boundaries of foreground regions. In this case, smoothing is simultan-
eously performed as the contour of a foreground region is traced. Once an out-spike
is found on a segment of the contour, it is smoothed. Then tracing is continued by
considering the smoothed segment. This new idea describing how out-spikes will be
removed from a region boundary is as follows:

Suppose there is a horizontal one-pixel-width out-spike on the left side of the
current row whose starting column begins before the starting columns of its previous
and following rows. Thus, the starting column of the current row is set equal to the
starting column of one of the mentioned rows with a smaller starting column.
Otherwise, in the case of no out-spike, the starting column of the current row remains
unchanged.

A similar approach is taken for a horizontal one-pixel-width out-spike, which

occurs on the right end of the current row. That is, the out-spike end column is set
equal to the end column of one of its previous or following rows with a greater end
column. Otherwise, in the case of no out-spike, the end column of the current row
remains unchanged. Thus, each smoothing of either the left or the right sides of the
current row is called “row smoothing” (see Fig. 7.1). If several parts of a foreground
binary region have distinct out-spikes on a row, row smoothing will apply to all of
them, as they are detected by the contour tracing algorithm traversing the region
boundary. Row smoothing can be stated using the following pseudo code:

if (start_col of current_row < start_col of previous_row and
 start_col of current_row < start_col of following_row)

 if (start_col of previous_row < start_col of following_row)
 start_col of current_row start_col of previous_row
 else
 start_col of current_row start_col of following_row

if (end_col of current_row > end_col of previous_row and
 end_col of current_row > end_col of following_row)

 if (end_col of previous_row > end_col of following_row)
 end_col of current_row end_col of previous_row
 else
 end_col of current_row end_col of following_row

This approach is similarly applied to vertical columns. This stage is called

“column smoothing”. By column smoothing, the runs of a vertical out-spike with the
length of one pixel are eliminated from the RLE data structure.

The smoothing of the left and the right sides of the current row is illustrated

 145

in Fig. 7.1a and Fig. 7.1b, respectively. Vertical smoothing of top and bottom sides
can be easily observed by rotating Fig. 7.1a and Fig. 7.1b clockwise.

 Original Segment The Contour Segment
 of a Contour after smoothing start column

 Previous row Previous row

 Following row Following row

 Previous row Previous row

 Following row Following row

 Previous row Previous row

 Following row Following row

 (a)

 Original Segment The Contour Segment
 of a Contour after smoothing end column

Previous row Previous row

Following row Following row

Previous row Previous row

Following row Following row

Previous row Previous row

Following row Following row

 (b)

Fig. 7.1 – (a) The starting column of out-spike row (current row) is set to the starting
column of one of its previous or following rows with smaller starting column after
smoothing. (b) The end column of out-spike row (current row) is set to end column of one of
its previous and following rows with greater end column after smoothing.

 Current row Current row

 Current row Current row

 Current row Current row

Current row

 Current row Current row

Current row

 Current row

 Current row

 146

In addition to the row and column smoothing, it is sometimes possible that a
combination of one or two diagonal pixels may appear on the corners of some hori-
zontal or vertical segments. Thus such pixels may occur diagonally in the directions
of 1, 3, 5, 7 of Freeman codes. This stage, which removes such pixels, is called
“diagonal smoothing”.

 Original Segment The Contour Segment
 of a Contour after diagonal smoothing

Fig. 7.2 – Typical diagonal smoothing of one and two out-spikes in the directions of 3 and 5.

The general idea of RLE smoothing was explained above. However, in order to

implement this idea, some specific codes and structures should be utilised. As a
result, all complex types of out-spikes of region boundaries can be effectively
removed as stated in the next subsections.

7.2.2 A suitable data structure for boundary smoothing

A smoothing method for Quek’s algorithm (2000) will be the proposed RLE smooth-
ing algorithm in this thesis. Obviously the proposed smoothing algorithm should
completely match with it. In Quek’s algorithm, RLE boundary tracing is achieved by

 147

jumping from one run to another. This is performed using the “WALKl” and
“WALKr” functions in which some portions of runs are often traversed.

Fig. 7.3 shows the transition table of Quek’s algorithm for the 4-state finite state
machine to compute region boundaries. In this figure, due to symmetry, tests and
operations of rows 1 and 4 and rows 2 and 3 are the same. Thus, by ignoring rows 3
and 4 only rows 1 and 2 will be considered. Besides, for easily referencing the states
in Fig. 7.3, the states in rows 1 and 2 are numbered from left to right by 1 to 8,
respectively. Meanwhile, the “WALKl” function of state 8 in Fig. 7.3 and the right

Fig. 7.3 – Transition table for the 4-state finite state machine to compute region boundaries
(from Quek (2000)). The states in the first two rows are numbered by 1 to 8 for easier
referencing.

Incorrect Predicate/State

Correct Predicate/State

β ≡ Ir(R(i)r(ψ), λ) β ≡ Ir(R(i) l(ψ), λ)

γ ≡ Il(R(I – 1)r(p), ψ) γ ≡ Il(R(i + 1)r(p), ψ)

In state 8: WALKl (i+1, p, left(ψ)) In state 8: WALKl (i+1, p, right(ψ))

Table 7.1 – The correct forms of Quek’s transition table predicates and state 8.

1 2 3 4

5 6 7 8

 148

sides of the equations for two predicates β and γ on page 1643 contain typing
mistakes which are given in Table 7.1 in accompany with their corrections. However,
the predicate values for β and γ in the “Test” sections of states 5 to 8 in Fig. 7.3 are
correct.

Each state from 1 to 8 in Fig. 7.3 has one or more figures showing the run

configuration. In these states, the solid black run represents the current run ψ. In
addition, the current point p before the transition is marked by the black dot ‘●’ on ψ.
Meanwhile, each state contains a “Test” and an “Operation” section where the latter
consists of a “WALKl” or a “WALKr” function (Quek (2000)). Meanwhile, in
Quek’s boundary tracing, a transition is often done from run i to run j. It is also
possible that runs i and j are the same and the transition is performed from run i’s left
side end to its right end or vice versa.

Although the smoothing rules offered in section 7.2.1 seem quite simple, an

appropriate tool is necessary to implement those rules effectively. In this regard, for
representing the transitions in “WALKl” and “WALKr” functions and for smoothing
a region boundary, a suitable structure is required. For this purpose, a data structure
called boundary code (inspired from Hu et al.’s (1998) paper) is proposed in this
section. A data structure of a boundary code based on 8-connectivity is similar to a
vector with the following parameters:

– st_p_x, // vector start point column (x) value on run i
– st_p_y, // vector start point row (y) value on run i
– en_p_x, // vector end point column (x) value on run j
– en_p_y, // vector end point row (y) value on run j
– st_run, // vector start run i
– en_run, // vector end run j
– direc, // vector Freeman direction from run i to run j
– m, // current row in the present foreground region
– next_st, // next state in the transition table
– cur_run, // current run
– i_val, // array index of the current vector

Based on the proposed data structure, the boundary traversals performed in

“WALKl” and “WALKr” states 1 to 8 in Fig. 7.3 can be expressed using boundary
codes in the following paragraphs. Besides, in addition to black dot ‘●’ stated above,
it is assumed that the white dot ‘○’ shows the end of transition in the “WALKl” and
“WALKr” functions. The column, row, and the run of the black dot ‘●’ are called
here as p_col, p_row, p_run, respectively. The column, row, and the run of the
white dot ‘○’ are also called as end_point_col, end_point_row, end_point_run,
respectively.

In states 1 to 8 of Fig. 7.3, the run configurations and transitions, shown below,

occur as follows:

 State 1: Test: λ = IN (p, R(i–1)) AND ()(() ,)l rI R i ϕ λ
 Operation: i = i – 1; φ = λ; WALKr (i, p, right(φ))

 149

if (end_point_col = p_col) // Fig. 7.4(a)
{

 st_p_x ← p_col; st_p_y ← p_row; en_p_x ← p_col; en_p_y ← end_point_row;
 st_run ← p_run; en_run ← end_point_run; direc ← 2;
 }

else if (end_point_col = p_col + 1) // Fig. 7.4(b)
{

st_p_x ← p_col; st_p_y ← p_row; en_p_x ← p_col + 1;
en_p_y ← end_point_row; st_run ← p_run; en_run ← end_point_run;
direc ← 1;

}
else if (p_row = end_point_row) // Fig. 7.4(c)
{

st_p_x ← p_col; st_p_y ← p_row; en_p_x ← end_point_col;
en_p_y ← end_point_row; st_run ← p_run; en_run ← p_run; direc ← 0;

}
else
{

// Transition 1 shown in Fig. 7.4(d).
st_p_x ← p_col; st_p_y ← p_row; en_p_x ← p_col + 1;
en_p_y ← end_point_row; st_run ← p_run; en_run ← end_point_run;
direc ← 1;

// Transition 2 shown in Fig. 7.4(d).
st_p_x ← p_col + 1; st_p_y ← end_point_row; en_p_x ← end_point_col;
en_p_y ← end_point_row; st_run ← end_point_run; en_run ← end_point_run;
direc ← 0;

}

 (a) (b) (c)

 (d)

Fig. 7.4 – (a) end_point_col = p_col (b) end_point_col = p_col + 1
 (c) p_row = end_point_row (d) none of (a) to (c) conditions

 State 2: Test: (, (1))IN p R i − AND ()((1) ,)r l pI R i ϕ−
 Operation: WALKl (i, p, left (φ))

○

○

○

 ○

1

2

 150

if (p_row = end_point_row) // Fig. 7.5(a)
{

st_p_x ← p_col; st_p_y ← p_row; en_p_x ← end_point_col;
en_p_y ← end_point_row; st_run ← en_run ← p_run; direc ← 4;

}
else if (p_col = end_point_col + 1) // Fig. 7.5(b)
{

st_p_x ← p_col; st_p_y ← p_row; en_p_x ← end_point_col;
en_p_y ← end_point_row; st_run ← p_run; en_run ← end_point_run;
direc ← 5;

}
else
{

// Transition 1 shown in Fig. 7.5(c).
st_p_x ← p_col; st_p_y ← p_row; en_p_x ← end_point_col + 1;
en_p_y ← p_row; st_run ← p_run; en_run ← p_run; direc ← 4;

// Transition 2 shown in Fig. 7.5(c).
st_p_x ← end_point_col + 1; st_p_y ← p_row; en_p_x ← end_point_col;
en_p_y ← end_point_row; st_run ← p_run; en_run ← end_point_run;
direc ← 5;

}

 (a)

 (b)

 ○

 (c)

Fig. 7.5 – (a) p_row = end_point_row (b) p_col = end_point_col + 1
 (c) none of (a) and (b) conditions

 State 3: Test: λ = IN (p, R(i–1)) AND ()(() ,)l rI R i ϕ λ
 Operation: φ = λ= ()(() ,)l rI R i ϕ λ ; WALKr (i –1, p, left(φ))

if (end_point_col = p_col + 2) // Fig. 7.6(a)
{

// Transition 1 shown in Fig. 7.6(a).
st_p_x ← p_col; st_p_y ← p_row; en_p_x ← p_col + 1; en_p_y ← p_row – 1;
st_run ← p_run; en_run ← mid_run; direc ← 1;

// Transition 2 shown in Fig. 7.6(a).
st_p_x ← end_point_col – 1; st_p_y ← p_row – 1; en_p_x ← end_point_col;

 ○

○

2

1

 151

en_p_y ← end_point_row; st_run ← mid_run; en_run ← end_point_run;
direc ← 7;

}
else
{

// Transition 1 shown in Fig. 7.6(b).
st_p_x ← p_col; st_p_y ← p_row; en_p_x ← p_col + 1; en_p_y ← p_row – 1;
st_run ← p_run; en_run ← mid_run; direc ← 1;

// Transition 2 shown in Fig. 7.6(b).
st_p_x ← p_col + 1; st_p_y ← p_row – 1; en_p_x ← end_point_col – 1;
en_p_y ← p_row – 1; st_run ← mid_run; en_run ← mid_run; direc ← 0;

// Transition 3 shown in Fig. 7.6(b).
st_p_x ← end_point_col – 1; st_p_y ← p_row – 1; en_p_x ← end_point_col;
en_p_y ← end_point_row; st_run ← mid_run; en_run ← end_point_run;
direc ← 7;

}

○

 (a) (b)

Fig. 7.6 – (a) end_point_col = p_col + 2 (b) not (a) condition

 State 4: Test: (, (1))IN p R i − AND λ = ()((1) ,)r l pI R i ϕ−
 Operation: WALKl (i, p, right (φ)); i = i – 1; φ = λ;

if (end_point_col = p_col – 1) // Fig. 7.7(a)
{

st_p_x ← p_col; st_p_y ← p_row; en_p_x ← end_point_col;
en_p_y ← end_point_row; st_run ← p_run; en_run ← end_point_run;
direc ← 3;

}
else
{

// Transition 1 shown in Fig. 7.7(b).
st_p_x ← p_col; st_p_y ← p_row; en_p_x ← end_point_col –1;
en_p_y ← p_row; st_run ← en_run ← p_run; direc ← 4;

// Transition 2 shown in Fig. 7.7(b).
st_p_x ← end_point_col – 1; st_p_y ← p_row; en_p_x ← end_point_col;
en_p_y ← end_point_run; st_run ← p_run; en_run ← end_point_run;
direc ← 3;

}

○

1 2 1
2

3

 152

 (a) (b)

Fig. 7.7 – (a) end_point_col = p_col – 1 (b) not (a) condition

 State 5: Test: IN(, (1))p R i + AND ()((1) ,)l r pI R i ϕ+
 Operation: WALKr (i, p, right(φ))

if (p_row = end_point_row) // Fig. 7.8(a)
{

st_p_x ← p_col; st_p_y ← p_row; en_p_x ← end_point_col;
en_p_y ← end_point_row; st_run ← p_run; en_run ← end_point_run;
direc ← 0;

}
else if (end_point_col = p_col + 1) // Fig. 7.8(b)
{

st_p_x ← p_col ; st_p_y ← p_row; en_p_x ← end_point_col;
en_p_y ← end_point_row; st_run ← p_run; en_run ← end_point_run;
direc ← 1;

}
else
{

// Transition 1 shown in Fig. 7.8(c).
st_p_x ← p_col; st_p_y ← p_row; en_p_x ← end_point_col – 1;
en_p_y ← p_row; st_run ← en_run ← p_run; direc ← 0;

// Transition 2 shown in Fig. 7.8(c).
st_p_x ← end_point_col – 1; st_p_y ← p_row; en_p_x ← end_point_col;
en_p_y ← end_point_row; st_run ← p_run; en_run ← end_point_run;
direc ← 1;

}

 (a)

 (b)

 (c)

Fig. 7.8 – (a) p_row = end_point_row (b) p_col = end_point_col + 1
 (c) none of (a) and (b) conditions

○

○

○

○

 ○

2
1

2

1

 153

 State 6: Test: λ = IN (p, R(i+1)) AND ()(() ,)r lI R i ϕ λ
 Operation: i = i + 1; φ = λ; WALKl (i, p, left(φ))

if (end_point_col = p_col) // Fig. 7.9(a)
{

st_p_x ← p_col; st_p_y ← p_row; en_p_x ← end_point_col;
en_p_y ← end_point_row; st_run ← p_run; en_run ← end_point_run;
direc ← 6;

}
else if (end_point_col = p_col – 1) // Fig. 7.9(b)
{

st_p_x ← p_col; st_p_y ← p_row; en_p_x ← end_point_col;
en_p_y ← end_point_row; st_run ← p_run; en_run ← end_point_run;
direc ← 5;

}
else
{
 // Transition 1 shown in Fig. 7.9(c).

st_p_x ← p_col; st_p_y ← p_row; en_p_x ← end_point_col + 1;
en_p_y ← p_row; st_run ← p_run; en_run ← p_run; direc ← 4;

// Transition 2 shown in Fig. 7.9(c).
st_p_x ← end_point_col + 1; st_p_y ← p_row; en_p_x ← end_point_col;
en_p_y ← end_point_row; st_run ← p_run; en_run ← end_point_run;
direc ← 5;

}

 (a) (b) (c)

Fig. 7.9 – (a) p_col = end_point_col (b) end_point_col = p_col – 1
 (c) none of (a) and (b) conditions

 State 7: Test: (, (1))IN p R i + AND λ = ()((1) ,)l r pI R i ϕ+
 Operation: i = i + 1; φ = λ; WALKr (i, p, left (φ));

if (end_point_col = p_col + 1) // Fig. 7.10(a)
{

st_p_x ← p_col; st_p_y ← p_row; en_p_x ← end_point_col;
en_p_y ← end_point_row; st_run ← p_run; en_run ← end_point_run;
direc ← 7;

}
else
{

 ○

○

○ 1
2

 154

// Transition 1 shown in Fig. 7.10(b).
st_p_x ← p_col; st_p_y ← p_row; en_p_x ← end_point_col –1;
en_p_y ← p_row; st_run ← en_run ← p_run; direc ← 0;

// Transition 2 shown in Fig. 7.10(b).
st_p_x ← end_point_col – 1; st_p_y ← p_row; en_p_x ← end_point_col;
en_p_y ← end_point_run; st_run ← p_run; en_run ← end_point_run;
direc ← 7;

}

 (a) (b)

Fig. 7.10 – (a) end_point_col = p_col + 1 (b) not (a) condition

 State 8: Test: λ = IN (p, R(i+1)) AND ()(() ,)r lI R i ϕ λ
 Operation: φ = λ= ()(() ,)r lI R i ϕ λ ; WALKl (i+1, p, right(φ))

if (end_point_col = p_col – 2) // Fig. 7.11(a)
{

// Transition 1 shown in Fig. 7.11(a).
st_p_x ← p_col; st_p_y ← p_row; en_p_x ← p_col – 1; en_p_y ← p_row + 1;
st_run ← p_run; en_run ← mid_run; direc ← 5;

// Transition 2 shown in Fig. 7.11(a).
st_p_x ← end_point_col + 1; st_p_y ← p_row + 1; en_p_x ← end_point_col;
en_p_y ← end_point_row; st_run ← mid_run; en_run ← end_point_run;
direc ← 3;

}
else
{

// Transition 1 shown in Fig. 7.11(b).
st_p_x ← p_col; st_p_y ← p_row; en_p_x ← p_col – 1; en_p_y ← p_row + 1;
st_run ← p_run; en_run ← mid_run; direc ← 5;

// Transition 2 shown in Fig. 7.11(b).
st_p_x ← p_col – 1; st_p_y ← p_row + 1; en_p_x ← end_point_col + 1;
en_p_y ← p_row + 1; st_run ← en_run ← mid_run; direc ← 4;

// Transition 3 shown in Fig. 7.11(b).
st_p_x ← end_point_col + 1; st_p_y ← p_row + 1; en_p_x ← end_point_col;
en_p_y ← end_point_row; st_run ← mid_run; en_run ← end_point_run;
direc ← 3;

}

 ○

 ○

2

1

 155

Fig. 7.11 – (a) end_point_col = p_col – 2 (b) not (a) condition

7.2.3 RLE boundary smoothing forms

The details of RLE boundary traversals performed in the “WALKl” and “WALKr”
functions with the use of the data structure of a boundary code were offered in
section 7.2.2. Once Quek’s algorithm traverses the boundary of a foreground region,
an array of boundary codes is created. Meanwhile, for each array index value, the
other parameters of the data structure of a boundary code including “m”, “next-st”,
“cur-run” and “i-val” are determined.

During contour tracing of a foreground region, a number of out-spikes may occur
around a region boundary. As stated in section 7.2.1, out-spikes usually have
horizontal, vertical or diagonal shapes. Besides, they often have special forms.
Fortunately, each of these out-spikes can be described by a specific code number
which is determined by a sequence of directions of boundary codes.

Sometimes a horizontal out-spike with a specific form occurs on a segment of a

foreground region in a binary image. For example, this might happen when a region
boundary is traced from top to bottom. Suppose the boundary of this region is also
traced from bottom to top. In this case, it is also possible that an up-side down form
of that horizontal out-spike may occur on another segment of this region boundary.
This latter form is obtained by rotating the previous horizontal form in counter
clockwise direction by 180 degrees. These forms are hereafter called “normal” and
“180-rotated horizontal” forms, respectively, for the simplicity of referencing them.
Thus, it is possible that “normal” or “180-rotated” forms of horizontal out-spikes
may occur on different segments of a region boundary. Besides, in similar situations,
“normal” or “180-rotated” forms of vertical or diagonal out-spikes may also appear
on the boundaries of foreground regions. Therefore, a number of “normal” and
“180-rotated” forms are proposed for recognising horizontal, vertical or diagonal
out-spikes. In addition to these out-spike forms, their RLE smoothing forms, based
on the ideas given in section 7.2.1, are also offered in the next sections.

7.2.4 Left side and right side RLE boundary smoothing forms

As stated in section 7.2.3, a “normal” horizontal out-spike can be uniquely described
by a code number consisting of a sequence of directions of boundary codes. Besides,
its “180-rotated” form can also be expressed by another code number. This latter
code number is obtained by finding the dual of its Freeman code digits. The dual of a
Freeman code is defined as:

Dual of a Freeman code = (Freeman code + 4) mod 8 (Eq. 7.1)

○

○

1 2 3 1

2

 156

where a Freeman code = {0, 1, 2, 3, 4, 5, 6, 7} for the 8-connectivity. Thus, if
the form of a normal horizontal out-spike is expressed by the code number 617, its
180-rotated horizontal form is stated by 253 (i.e. 617 dual of each digit→ 253).

Although in section 7.2.3 out-spikes were classified into three groups of
horizontal, vertical and diagonal, however, in practice out-spikes occur in forms
consisting of horizontal, horizontal and diagonal, vertical or vertical and diagonal
pixels. Thus, for a more logical classification, it is better to call them hereafter as
left side, right side, top side and bottom side out-spikes.

In this section, a number of forms for recognising left side (normal horizontal)

out-spikes are proposed which will be specified by their code numbers. In each form
(or shape), the out-spike’s pixels, which should be removed, are depicted as
cross-hatched pixels. The left side forms are illustrated in the left side of a table. In
addition, its right side (i.e. “180-rotated”) form is also illustrated on the right side of
the table. The out-spike’s pixels in the latter form are also depicted as cross-hatched
pixels.

The smoothed RLE form for each shape (i.e. left side and right side forms) is

obtained by removing the cross-hatched pixels. That is, the smoothed RLE boundary
consists of only simple grey pixels. The arrows depicted on each shape represent
the directions in which Quek’s algorithm traces a region boundary. In fact, each out-
spike is uniquely specified by the directions of these boundary codes. The index ‘i’
on each shape indicates the current position (or index) in the array of boundary
codes. Thus bc[i].direc shows the rightmost digit in each out-spike’s code number,
and bc[i-1].direc, bc[i-2].direc, etc also indicate second rightmost, third rightmost
and the other digits in a code number, respectively.

The RLE smoothing method works as follows:

After the process of connected components labelling, the information of foreground
binary regions is stored in an RLE data structure. Small noisy regions with areas
less than a T0 threshold are removed using a size filter. These noisy regions are
eliminated from the binary image and the RLE data structure as well. Then Quek’s
RLE boundary tracing algorithm is performed.

As stated in section 7.2.2, the “WALKl” and “WALKr” functions may consist of
more than one transition. Thus, for each transition, the array index is increased and
the transition’s data structure of the boundary code is filled. After the “WALKl” and
“WALKr” functions finish and when their corresponding data structures of the
boundary codes (at least one) are filled, the RLE smoothing function is called. It will
be an incorrect action to call the RLE smoothing method after each transition in the
“WALKl” and “WALKr” functions. If this happens, Quek’s algorithm will fail to
trace the boundary of a region correctly. Therefore, for detecting an out-spike,
usually a longer sequence of directions of the boundary codes must be considered. So
the direction codes, which specify an out-spike, may appear among the other
direction codes. As a result, special code numbers should be used for recognising
out-spikes.

 157

The proposed left side and right side (i.e. “normal” and “180-rotated”) forms are
illustrated in the following tables. In addition, for a few of them, smoothing pseudo
codes show how out-spike’s pixels are removed from the binary image and the RLE
data structure.

Code 5407:

(a)

(b)

Code 1043:

(c)

(d)

Fig. 7.12 – (a) bc[i].en_p_x < bc[i-3].st_p_x (b) bc[i].en_p_x ≥ bc[i-3].st_p_x
 (c) bc[i].en_p_x≥ bc[i-3].st_p_x (d) bc[i].en_p_x < bc[i-3].st_p_x

A pseudo program for the code number 5407 can be written as follows. The
reader can easily write a similar pseudo program for the code number 1043 as well.

if (bc[i].direc = 7 and bc[i-1].direc = 0 and bc[i-2].direc = 4 and bc[i-3].direc = 5)
{
 if (bc[i-3].st_p_x ≥ bc[i].en_p_x) // i.e. Code 5407(a)
 {
 y1 ← bc[i-1].st_p_y;

 // remove noisy pixels by making them black on the output image

 for (x1 ← bc[i-1].st_p_x; x1≤ bc[i-1].en_p_x; x1 ← x1 + 1)
 output_Image (x1, y1) ← 0;
}
else
{
 // if (bc[i-3].st_p_x < bc[i].en_p_x) // i.e. Code 5407(b)

 y1 ← bc[i-2].st_p_y;

 for (x1 ← bc[i-2].en_p_x; x1≤ bc[i-2].st_p_x; x1 ← x1 + 1)
 output_Image (x1, y1) ← 0;
}

i

i-3

i-3

i

i-3

i

i-3

i

 158

Code 54017:

(a)

(b)

Code 10453:

(c)

(d)

Fig. 7.13 – (a) bc[i].st_p_x = bc[i-4].st_p_x (b) bc[i-4].st_p_x < bc[i].st_p_x
 (c) bc[i].st_p_x = bc[i-4].st_p_x (d) bc[i-4].st_p_x > bc[i].st_p_x

// The smoothing pseudo program for the code number 54017

if (bc[i].direc = 7 and bc[i-1].direc = 1 and bc[i-2].direc = 0 and bc[i-3].direc = 4
 and bc[i-4].direc = 5)
{
 if (bc[i-4].st_p_x = bc[i].st_p_x) // i.e. Code 54017(a)
 {
 y1 ← bc[i-2].st_p_y;
 for (x1 ← bc[i-2].st_p_x; x1≤ bc[i-2].en_p_x; x1 ← x1 + 1)
 output_Image (x1, y1) ← 0;
}
else
{
 // if (bc[i-4].st_p_x < bc[i].st_p_x) // i.e. Code 54017(b)

 y1 ← bc[i-3].st_p_y;
 for (x1 ← bc[i-3].en_p_x; x1≤ bc[i-3].st_p_x; x1 ← x1 + 1)
 output_Image (x1, y1) ← 0;
}

Code 53407:

(a)

(b)

Code 17043:

(c)

(d)

Fig. 7.14 – (a) bc[i].en_p_x = bc[i-4].en_p_x (b) bc[i-4].en_p_x > bc[i].en_p_x
 (c) bc[i].en_p_x = bc[i-4].en_p_x (d) bc[i-4].en_p_x < bc[i].en_p_x

i i-4

i-4 i

i-4 i

i-4 i

i-4 i

i-4 i

i-4 i

i-4
i

 159

 (a)

 (b)

 (c)

Code
540107:

Code
540101:

Code
540102:

 (d)

 (e)

 (f)

 Code 104543:

Code 104545:

Fig. 7.15 – (a), (b), (c) Code numbers 540107(1)(2), figures (a), (b) and (c) have very similar
code numbers so that they only differ in their the rightmost digit shown in the parentheses;
(d), (e), (f) Code numbers 104543(5)(6).

Some out-spikes have very similar code numbers so that they only differ in their

rightmost or leftmost digit. Fig. 7.15 shows an example for this case. In order to
reduce the amount of the required space, the out-spike forms of similar code numbers
are combined into one out-spike form hereafter. In this case, for one of the code
numbers, the arrow corresponding to its rightmost or leftmost digit is shown in full-
line form. For other code numbers, the arrows corresponding to their rightmost or
leftmost digits are shown using dashed lines. As an example, consider three out-spike
forms in Fig. 7.15, which are combined into one out-spike form, as shown in Fig.
7.16.

Code 540107(1)(2):

(a)

Code 104543(5)(6):

(b)

Fig. 7.16 – (a) Code number 540107(1)(2) (b) Code number 104543(5)(6)

Code 104546:

 160

Code (3)(2)543407:

 (a)

Code (7)(6)107043:

 (b)

Fig. 7.17 – (a) Code number (3)(2)543407 (b) Code number (7)(6)107043

Code 547:

(a)

Code 103:

(b)

Fig. 7.18 – (a) Code number 547 (b) Code number 103

Code 507:

(a)

Code 143:

(b)

Fig. 7.19 – (a) Code number 507 (b) Code number 143

Code 501:

(a)

Code 145:

(b)

Fig. 7.20 – (a) Code number 501 (b) Code number 145

Fig. 7.21 – (a) Code number 347 (b) Code number 703

Code 347:

(a)

Code 703:

(b)

 161

// The smoothing pseudo program for the code number 347. bc[i-3].direc ≠ 5 because
// code numbers 5347 is also possible.

if (bc[i].direc = 7 and bc[i-1].direc = 4 and bc[i-2].direc = 3 and bc[i-3].direc ≠ 5)
{
 y1 ← bc[i].st_p_y; x1 ← bc[i].st_p_x;
 output_Image (x1, y1) ← 0;
}

Code 5017:

(a)

Code 1453:

(b)

Fig. 7.22 – (a) Code number 5017 (b) Code number 1453

Code 5347:

(a)

Code 1703:

(b)

Fig. 7.23 – (a) Code number 5347 (b) Code number 1703

Code 57:

(a)

(b)

Code 13:

(c)

(d)

Fig. 7.24 – (a), (b) Code number 57 (c), (d) Code number 13. Smoothing pseudo programs
similar to code numbers 54017 and 10453 should be written for code numbers 57 and 13. For
example in case (a), the starting column of the out-spike’s run is increased by one. However,
in case (b), the out-spike’s run is removed from the RLE data structure and then a new path
on the boundary, shown by a dashed-line arrow, is traversed by the RLE contour tracer.

 162

Code 517:

(a)

Code 153:

(b)

Fig. 7.25 – (a) Code number 517 (b) Code number 153

Code 537:

(a)

Code 173:

(b)

Fig. 7.26 – (a) Code number 537 (b) Code number 173

Code 5107(1)(2):

(a)

Code 1543(5)(6):

(b)

Fig. 7.27 – (a) Code number 5107(1)(2) (b) Code number 1543(5)(6)

Code (3)(2)5437:

(a)

Code (5)(6)1073:

(b)

Fig. 7.28 – (a) Code number (3)(2)5437 (b) Code number (5)(6)1073

Code 53517:

(a)

Code 17153:

(b)

Fig. 7.29 – (a) Code number 53517 (b) Code number 17153

 163

Code 53717:

(a)

Code 17353:

(b)

Fig. 7.30 – (a) Code number 53717 (b) Code number 17353

Code 537107(1)(2):

(a)

Code 173543(5)(6):

(b)

Fig. 7.31 – (a) Code number 537107(1)(2) (b) Code number 173543(5)(6)

Code (3)(2)543517:

(a)

Code (7)(6)107153:

(b)

Fig. 7.32 – (a) Code number (3)(2)543517 (b) Code number (7)(6)107153

Code 5377:

(a)

(b)

Code 1733:

(c)

(d)

Fig. 7.33 – (a), (b) Code number 5377 (c), (d) Code number 1733. Smoothing pseudo
programs similar to code numbers 57 and 15 should be written for code numbers 5377 and
1733, respectively.

 164

Code 5517:

(a)

(b)

Code 1153:

(c)

(d)

Fig. 7.34 – (a), (b) Code number 5517 (c), (d) Code number 1153.

Code 5371:

(a)

Code 1735:

(b)

Fig. 7.35 – (a) Code number 5371 (b) Code number 1735

Code 3517:

(a)

Code 7153:

(b)

Fig. 7.36 – (a) Code number 3517 (b) Code number 7153

Code 5511:

(a)

Code 1155:

(b)

Fig. 7.37 – (a) Code number 5511 (b) Code number 1155

 165

// The smoothing pseudo program for the code number 5511. bc[i].direc ≠ 7 and
// bc[i].direc ≠ 0 because code numbers 55117 and 551107 are also possible.

if ((bc[i].direc ≠ 7 and bc[i].direc ≠ 0) and bc[i-1].direc = 1 and bc[i-2].direc = 1
 and bc[i-3].direc = 5 and bc[i-4].direc = 5)
{
 y1 ← bc[i-3].en_p_y; x1 ← bc[i-3].en_p_x;
 output_Image [y1][x1] ← 0;

 y1 ← bc[i-4].en_p_y; x1 ← bc[i-4].en_p_x;
 output_Image [y1][x1] ← 0;
}

Code 3377:

(a)

Code 7733:

(b)

Fig. 7.38 – (a) Code number 3377 (b) Code number 7733

Code 55117:

(a)

Code 11553:

(b)

Fig. 7.39 – (a) Code number 55117 (b) Code number 11553

Code 53377:

(a)

Code 17733:

(b)

Fig. 7.40 – (a) Code number 53377 (b) Code number 17733

 166

Code 551107(1)(2):

(a)

Code 551143(5)(6):

(b)

Fig. 7.41 – (a) Code number 551107(1)(2) (b) Code number 115543(5)(6)

Code (3)(2)543377:

(a)

Code (7)(6)107733:

(b)

Fig. 7.42 – (a) Code number (3)(2)543377 (b) Code number (7)(6)107733

Code 3157:

(a)

Code 7513:

(b)

Fig. 7.43 – (a) Code number 3157 (b) Code number 7513

Code 5731:

(a)

Code 1375:

(b)

Fig. 7.44 – (a) Code number 5731 (b) Code number 1375

 167

7.2.5 Top side and bottom side RLE boundary smoothing forms

Left side and right out-spike forms were offered in section 7.2.4. In this section,
a number of forms for smoothing top side and bottom side out-spikes are proposed.

One major problem in recognising top side and bottom side out-spikes is that

the data structure of a boundary code is incapable to describe these out-spikes effect-
ively. To explain this problem, for example consider the top side code number
365(!3&!4) which is depicted in Fig. 7.45(a). As is observed in Fig. 7.45(a), it
consists of two or more vertical pixels. The number of vertical pixels appearing in
practice is unknown. The problem which arises is that how the data structure of a
boundary code can describe different number of vertical pixels by only one code
number? In other words, is it possible to recognise all code numbers 365, 3665,
36665, …, 36..65 etc only by code number 365?

Two approaches can be adopted to resolve the above problem:

1. Limit the number of vertical pixels to a maximum value, e.g. three or four

pixels.

2. Select a more complete data structure.

The first approach is restrictive and greatly reduces the generality of the RLE smoo-
thing method. A better approach is to find a solution using a data structure similar to
the data structure of a boundary code. For this purpose, the previous data structure of
a boundary code is extended by adding two extra fields called “first_i” and “last_i”.
Meanwhile, for simplicity of writing RLE smoothing programs, a boundary code and
its extended form are shown by bc[i] and bc1[ii], respectively.

In the “WALKl” and “WALKr” functions, a bc1[ii]’s data structure is filled simul-

taneously, in a similar fashion as a bc[i]’s data structure. For all Freeman directions
except 2 and 6, “first_i” and “last_i” have the same values and both are assigned
with the index ‘i’. Once a vertical pixel is traversed by Quek’s RLE boundary tracing
algorithm, i.e. when the Freeman direction is 2 or 6, the indices ‘i’ and ‘ii’ are
increased and “first_i” and “last_i” are assigned by index ‘i’. If there are more
vertical pixels, the direction is not changed. In this case, the index ‘i’ is increased and
is assigned to “last_i”. However, the index ‘ii’ is not increased and “first_i” is not
changed. In this case, if a Freeman direction except 2 or 6 occurs later, the indices ‘i’
and ‘ii’ are increased again and “first_i” and “last_i” are assigned by index ‘i’. Thus,
the code numbers for top side and bottom side out-spikes, which contain a number of
consecutive Freeman directions 2 and 6, are expressed by just one digit 2 or 6. As a
result, regardless of the number of the vertical pixels, a top side or a bottom side out-
spike form can be represented by a code number that consists of one digit 2 or 6
instead of a repetitive number of 2 or 6. Therefore, the left side and right side out-
spikes are recognised by bc[i] boundary codes while the top side and bottom side
out-spikes are recognised by bc1[ii] boundary codes.

In the following, the graphic forms representing the top side and bottom side
out-spikes are illustrated in the left side tables, respectively. Their corresponding

 168

converted forms (i.e. the bottom side and top side out-spikes) are also depicted in
the right side tables. In addition, the out-spikes’ pixels are shown as cross-hatched
pixels and the smoothed RLE boundaries consist of only simple grey/green/brown
pixels. Meanwhile, for obtaining the bottom side form of a top side out-spike such as
code number 365(!3&!4) (Fig. 7.45(a)), i.e. code number 721(!7&!0), it is easily
obtained by rotating the graphic form of code number 365(!3&!4) in counter
clockwise direction by 180 degrees (Fig. 7.45(b)). These code numbers are suitable
for smoothing the top left corner and bottom right corner of a foreground region.
On the other hand, in order to obtain the smoothing form for the bottom left corner
corresponding to code number 365(!3&!4), it is necessary to turn the graphic form
of code number 365(!3&!4) upside down and then reverse its arrows’ directions (Fig.
7.46(a)). The corresponding top right corner smoothing form is also obtained by
either one of the above mentioned methods (Fig. 7.46(b)).

For recognising code number 365(!3&!4) in Fig. 7.45(a), four consecutive direct-

ion codes are checked where the rightmost digit should not be 3 and 4 because there
are code numbers 3653, 3654(!3) and 36543 which separately recognise these special
cases. Based on the graphic form 7.49(a), 365(!3&!4) is equivalent to code numbers
3650, 3651, 3652, 3655, 3656, 3657 while the code number 3652 is impossible to
occur. If there are extra single-pixel out-spikes except for the cross-hatched one
shown in Fig. 7.45(a), they are not smoothed at this stage. However, they are often
recognised by other code numbers and are smoothed at later stages. Other code num-
bers such as 721(!7&!0) are checked in a similar manner.

The bottom left corner corresponding to code number 365(!3&!4) should be
(!1&!0)761, as stated above. However, a direction code before a code number does
not always show considerable information; since it is not important from what
direction a code number is entered. The direction code(s) which usually occur(s)
after a code number is more valuable. In this regard, the bottom left corner
corresponding to code number 365(!3&!4) will be 761(!7&!0). In other words,
in the upside down transformation of a code number followed by direction codes,

Code 365(!3&!4):

(a)

Code 721(!7&!0):

(b)

 Code 761(!7&!0):

(a)

Code 325(!3&!4):

(b)

Fig. 7.45 – (a) Code number 365(!3 & !4) Fig. 7.46 – (a) Code number 761(!7 & !0)
for top left corner; (b) Code number for bottom left corner; (b) Code number
721(!7 & !0) for bottom right corner. 325(!3 & !4) for top right corner.

 169

converted versions of direction codes may only be maintained after the converted
code number, but not before it. Based on this result, after the up side down
transformation, regardless of whether a code number is followed by a combination of
direction codes or not, the first direction code will be ignored. Then a direction code
(or a combination of direction codes based on the “WALKl” and “WALKr” funct-
ions) is added to the converted code number.

Code 3653:

(a)

Code 7217:

(b)

 Code 7617:

(a)

Code 3253:

(b)

Fig. 7.47 – (a) Code number 3653 Fig. 7.48 – (a) Code number 7617
 (b) Code number 7217 (b) Code number 3253

Code 3654(!3):

(a)

Code 7210(!7):

(b)

 Code 7610(!7):

(a)

Code 3254(!3):

(b)

Fig. 7.49 – (a) Code number 3654(!3) Fig. 7.50 – (a) Code number 7610(!7)
 (b) Code number 7210(!7) (b) Code number 3254(!3)

Code 36543:

(a)

Code 72107:

(b)

Code 76107:

(a)

Code 32543:

(b)

Fig. 7.51 – (a) Code number 36543 Fig. 7.52 – (a) Code number 76107
 (b) Code number 72107 (b) Code number 32543

 170

Code 3265(!3&!4):

 (a)

Code 7621(!7&!0):

(b)

 Code 7621(!7&!0):

 (a)

Code 3265(!3&!4):

(b)

Fig. 7.53 – (a) Code number 3265(!3&!4): Fig. 7.54 – (a) Code number 7621(!7&1!0):
bc1[ii-1].en_p_y < bc1[ii-4].st_p_y bc1[ii-1].en_p_y < bc1[ii-4].st_p_y
(b) Code number 7621(!7&!0): (b) Code number 3265(!3&!4):
bc1[ii-1].en_p_y≥ bc1[ii-4].st_p_y bc1[ii-1].en_p_y≥ bc1[ii-4].st_p_y

Code 32653:

 (a)

Code 76217:

(b)

 Code 76217:

 (a)

Code 32653:

(b)

Fig. 7.55 – (a) Code number 32653: Fig. 7.56 – (a) Code number 76217:
bc1[ii].en_p_y < bc1[ii-4].st_p_y bc1[ii].en_p_y < bc1[ii-4].st_p_y
(b) Code number 76217: (b) Code number 32653:
bc1[ii].en_p_y≥ bc1[ii-4].st_p_y bc1[ii].en_p_y≥ bc1[ii-4].st_p_y

Code 32654(!3):

 (a)

Code 76210(!7):

(b)

 Code 76210(!7):

 (a)

Code 32654(!3):

(b)

Fig. 7.57 – (a) Code number 32654(!3): Fig. 7.58 – (a) Code number 76210(!7):
bc1[ii-1].en_p_y < bc1[ii-5].st_p_y bc1[ii-1].en_p_y < bc1[ii-5].st_p_y
(b) Code number 76210(!7): (b) Code number 32654(!3):
bc1[ii-1].en_p_y≥ bc1[ii-5].st_p_y bc1[ii-1].en_p_y≥ bc1[ii-5].st_p_y

 ii - 1

 ii - 4

 ii - 4

 ii - 1

 ii - 4

 ii - 4

 ii - 4

 ii - 4

 ii - 4

 ii - 4

 ii - 5

 ii - 5

 ii - 5

 ii - 5

ii

ii

ii

ii

 ii - 1

 ii - 1

 ii - 1

 ii - 1

 ii - 1

 ii - 1

 171

Code 326543:

(a)

Code 762107:

(b)

Code 762107:

(a)

Code 326543:

(b)

Fig. 7.59 – (a) Code number 326543: Fig. 7.60 – (a) Code number 762107:
bc1[ii].en_p_y > bc1[ii-5].st_p_y bc1[ii].en_p_y > bc1[ii-5].st_p_y
(b) Code number 762107: (b) Code number 326543:
bc1[ii].en_p_y≤ bc1[ii-5].st_p_y bc1[ii].en_p_y≤ bc1[ii-5].st_p_y

Code 367(!5&!0):

(a)

Code 723(!1&!4):

(b)

 Code 561(!7&!0):

(a)

Code 125(!3&!4):

(b)

Fig. 7.61 – (a) Code number 367(!5&!0) Fig. 7.62 – (a) Code number 561(!7&!0)
 (b) Code number 723(!1&!4) (b) Code number 125(!3&!4)

Code 3675:

(a)

Code 7231:

(b)

 Code 5617:

(a)

Code 1253:

(b)

Fig. 7.63 – (a) Code number 3675 Fig. 7.64 – (a) Code number 5617
 (b) Code number 7231 (b) Code number 1253

 ii - 5

ii

 ii - 5

 ii - 5

 ii - 5

ii

ii

ii

 172

Code 3670(!7):

(a)

Code 7234(!3):

(b)

 Code 5610(!7):

(a)

Code 1254(!3):

(b)

Fig. 7.65 – (a) Code number 3670(!7) Fig. 7.66 – (a) Code number 5610(!7)
 (b) Code number 7234(!3) (b) Code number 1254(!3)

Code 36707:

(a)

Code 72343:

(b)

 Code 56107:

(a)

Code 12543:

(b)

Fig. 7.67 – (a) Code number 36707 Fig. 7.68 – (a) Code number 56107
 (b) Code number 72343 (b) Code number 12543

Code 3267(!5&!0):

(a)

Code 7623(!1&!4):

(b)

 Code 5621(!7&!0):

(a)

Code 1265(!3&!4):

(b)

Fig. 7.69 – (a) Code number 3267(!5&!0) Fig. 7.70 – (a) Code number 5621(!7&!0)
 (b) Code number 7623(!1&!4) (b) Code number 1265(!3&!4)

 173

Code 32675:

(a)

Code 76231:

(b)

 Code 56217:

(a)

Code 12653:

(b)

Fig. 7.71 – (a) Code number 32675 Fig. 7.72 – (a) Code number 56217
 (b) Code number 76231 (b) Code number 12653

Code 32670(!7):

(a)

Code 76234(!3):

(b)

 Code 56210(!7):

(a)

Code 12654(!3):

(b)

Fig. 7.73 – (a) Code number 32670(!7) Fig. 7.74 – (a) Code number 56210(!7)
 (b) Code number 76234(!3) (b) Code number 12654(!3)

Code 326707:

(a)

Code 762343:

(b)

 Code 562107:

(a)

Code 126543:

(b)

Fig. 7.75 – (a) Code number 326707 Fig. 7.76 – (a) Code number 562107
 (b) Code number 762343 (b) Code number 126543

 174

Code 3765(7)(0)(07):

(a)

Code 7321(3)(4)(43):

(b)

Code 76517(4)(47):

(a)

Code 32153(4)(43):

(b)

Fig. 7.77 – (a) Code number 3765(7)(0)(07) Fig. 7.78 – (a) Code number 76517(4)(47)
 (b) Code number 7321(3)(4)(43) (b) Code number 32153(4)(43)

 Code 326725(7)(0)(07):

(a)

 Code 762321(3)(4)(43):

(b)

 Code 7656217(0)(07):

(a)

 Code 3212653(4)(43):

(b)

Fig. 7.79 – (a) Code number 326725(7)(0)(07) Fig. 7.80 – (a) Code number 7656217(0)(07)
 (b) Code number 762321(3)(4)(43) (b) Code number 3212653(4)(43)

Code 35:

(a)

Code 35:

(b)

 Code 71:

(a)

Code 71:

(b)

Fig. 7.81 – (a), (b) Code number 35 Fig. 7.82 – (a), (b) Code number 71

Although a large number of RLE smoothing forms have been offered, there are
still a number of other forms, which for the sake of brevity, have not been depicted.
All the above forms and some other ones have been included in the RLE smoothing
software.

 175

7.2.6 The strategies of applying the RLE smoothing forms

The RLE smoothing forms required for removing left side, right side, top side
and bottom side out-spikes were given in sections 7.2.4. and 7.2.5, respectively.
However, the strategies of applying these RLE smoothing forms are as important as
the smoothing forms. Three strategies are outlined as follows:

1. Once Quek’s boundary tracing algorithm begins from the starting point of a
region boundary, i.e. the top-leftmost unused end of a foreground region’s run,
the RLE min-of-two smoothing method is called after each “WALKl” and
“WALKr” function. Suppose there are two nested out-spikes such that when
the second out-spike is recognised and smoothed sooner, the first out-spike will
appear afterwards. However, using this strategy, only the second out-spike is
smoothed and the first one remains unchanged. In this case, RLE boundary
tracing and smoothing are not finished by reaching to the starting point of
the region. Instead they continue their processes unless no further smoothing
is possible. Based on this strategy, a region boundary may be traced a
number of times so that all out-spikes are removed. Thus, this is obviously a
time-consuming and ineffective strategy.

2. After applying a smoothing form to an out-spike, usually one or more runs in

the RLE data structure are modified (or removed) and one or more pixels are
deleted from the output image. Besides, in the second strategy, bc[i]’s and
bc1[ii]’s data structures should also be re-organised for each code number in
the smoothing function. The goal of re-organising bc[i]’s and bc1[ii]’s data
structures is to show the effect of the removed out-spike(s) in that region
segment. However, this strategy is still not efficient enough due to the
following reasons:

 For re-organising, bc[i]’s and bc1[ii]’s data structures corresponding to the

removed pixels should also be omitted. In this case, bc[i]’s and bc1[ii]’s
data structures corresponding to pixels occurring after the removed pixels
should be shifted back. Thus the programming code for each code number
becomes more difficult and will take a long time for the programmer to
write the whole smoothing program. In addition, shifting a number of bc[i]’s
and bc1[ii]’s data structures at the run-time can be a time-consuming
process. This is especially a lengthy process when only one noisy pixel
occurring at the beginning of a code number should be removed. In this
case, more numbers of the remained bc[i]’s and bc1[ii]’s data structures
should be shifted back.

 Suppose there are two nested out-spikes such that when initially the second

out-spike is recognised and smoothed, the first out-spike will appear as a
result. However, after the re-organising process since Quek’s boundary
tracing algorithm continues, the first out-spike remains unrecognised. Thus,
there is no guarantee that smoothing is finished only by a single traversal of
a region boundary. As a result, similar to strategy one, re-organising
strategy should again be repeated for a number of times so that all the out-
spikes to be removed from a region boundary.

 176

3. In the third strategy, at first, all the pixels of an out-spike are removed from the
output image and the runs in the RLE data structure are modified (or removed).
Then the tracing point of Quek’s algorithm is backtracked to the starting pixel
of the current out-spike form before smoothing. For implementing the
backtracking strategy, all necessary input parameters passed to the “WALKl”
and “WALKr” functions are stored in bc[i]’s and bc1[ii]’s data structures. This
is performed immediately after entering these functions and before they
traverse that segment of the region. Then the smoothing function is called. In
the smoothing function, once a special code number matches with the out-spike
form and the smoothing operation is performed, indices ‘i’ and ‘ii’ are reduced
by the number of digits of that code number. As a result, Quek’s contour tracer
resumes its traversal again from the current boundary segment while in this
case, there is no out-spike in that segment. In this way, when there are nested
out-spikes, by smoothing the second out-spike, the first one will appear later.
However, at this time, the first out-spike is recognised and smoothed by Quek’s
and the min-of-two methods, respectively. Therefore, in the backtracking
strategy, only the values of indices ‘i’ and ‘ii’ are reduced by the number of
digits checked in the smoothing function. Meanwhile, the state of the contour
tracer is restored back to its previous state before the smoothing. Thus, no
shifting of bc[i]’s and bc1[ii]’s data structures will be required and it will be a
fast approach.

The implementation of the backtracking strategy includes storing the necessary

input parameters of the “WALKl” (or “WALKr”) function and reducing indices
‘i’ and ‘ii’. As an example, consider a pseudo code for the code number 5407 as
follows:

// The necessary input parameters of the “WALKl” function, for example in state 4,
// are stored in bc[i]’s and bc1[ii]’s data structures before the boundary traversal is
// performed in this function (the input parameters of the “WALKr” function should
// be stored as well). These operations should be done for all states 1 to 8.

if (end_point_col = p_col – 1) // state (1,4)
{

 i ← i +1; ii ← ii +1;
 bc1[ii].direc ← 3; bc[i].direc ← 3;
 bc1[ii].st_p_x ← p_col; bc[i].st_p_x ← p_col;
 bc1[ii].st_p_y ← p_row; bc[i].st_p_y ← p_row;
 bc1[ii].en_p_x ← end_point_col; bc[i].en_p_x ← end_point_col;
 bc1[ii].en_p_y ← end_point_row; bc[i].en_p_y ← end_point_row;
 bc1[ii].st_run ← p_run; bc[i].st_run ← p_run;
 bc1[ii].en_run ← end_point_run; bc[i].en_run ← end_point_run;
 bc1[ii].last_i ← i; bc1[ii].first_i ← i;
 bc1[ii].cur_run ← end_run; bc[i].cur_run ← end_run;
 bc[i].i_val ← i;
 bc1[ii].i_val ← ii;
 bc1[ii].next_st ← UP; bc[i].next_st ← UP;
 bc1[ii].m ← m; bc[i].m ← m;

}

 177

After “WALKl” (or “WALKr”), the min-of-two smoothing method (function) is
called and suppose an out-spike form matches with code number 5407 as follows:

// Inside min-of-two smoothing method
smooth_flag ← 0;
•
•
if (bc[i].direc = 7 and bc[i-1].direc = 0 and bc[i-2].direc = 4 and bc[i-3].direc = 5)
{
 // The body of smoothing pseudo code given on page 125 goes here

 i ← bc[i-3].i_val; ii ← bc1[ii-3].i_val;
 smooth_flag ← 1;
}
•
•
// At the end of min-of-two smoothing method
if (smooth_flag = 1)
{

p_col ← bc[i].st_p_x;
p_row ← bc[i].st_p_y;
cur_run ← bc[i].st_run;
state ← bc[i].next_st;
m ← bc[i].m;

 }

Then Quek’s contour tracer resumes its traversal again from the current boundary
segment. However, at this time there will be no out-spike in that segment. Therefore,
Quek’s algorithm extracts all boundary pixels by a single traversal of a region bound-
ary as if there were no out-spike(s) around that foreground region at all.

Finally, even if the re-organising strategy is combined with the backtracking

approach, it will still be ineffective. This is due to shifting back a large number of the
remained bc[i]’s and bc1[ii]’s data structures at the run-time. Besides, this strategy
requires a longer program for any code number than its corresponding program for
the third strategy.

7.2.7 The min-of-two versus related methods

Before comparing the min-of-two method with related algorithms, let’s consider the
advantages and disadvantages of this method. The min-of-two smoothing method has
the following advantages:

 The major advantage of the min-of-two multiple-point smoothing method is

that it is complement of an effective RLE boundary tracing method (Quek’s
algorithm) and operates simultaneously with it. As a result, by applying the
combination of Quek’s and the min-of-two algorithms to each foreground
binary region, its smoothed boundary pixels are extracted effectively.

 178

 It is relatively a simple method because it is understandable and can be imple-
mented in a straightforward manner.

 It is very fast due to a few numbers of tests and processing steps for each

out-spike form without requiring any floating point operation.

 If there are n (n≥2) consecutive and nested out-spikes so that when the n-th

out-spike is smoothed, the n – 1-th out-spike appears later, then the min-of-two
method has the capability to smooth n – 1-th, and then n – 2-th, … out-spikes,
respectively (i.e. based on their order of appearances).

 The min-of-two smoothing method can remove all one-pixel-width out-spikes

by a single traversal of a region boundary.

 It operates directly on RLE data. The RLE data structure is used for storing the

information of foreground binary regions and also utilised by a number of
blocks in this thesis.

 Similar to Quek’s algorithm, it can smooth both external and internal region

boundaries.

 After the smoothing operation, the amount of noise in boundary contours

is reduced. Therefore, in comparison with morphological operations, this
method not only smoothes the boundaries of foreground binary regions but it
can also preserve their shapes with no or very little distortion.

However, the min-of-two smoothing method has the following disadvantage:

 A large number of forms have been proposed to remove noisy out-spikes.

Therefore, it is more desirable if many similar patterns can be combined into
more general patterns so that a shorter source code can achieve the same
actions with a greater effectivity.

7.2.7.1 Comparison with chain code smoothing methods

The output of the min-of-two smoothing method may be compared with the
output of chain code algorithms such as Suen et al. (1992), Yu and Yan (1997), and
Hu et al., (1998) on the same number of binary images. For performing this
comparison, first a contour tracing algorithm such as Ren et al. (2002) should be
used to obtain the chain contours of foreground binary regions. Then all the above
smoothing methods should also be implemented. However, since there are no defined
qualitative or quantitative rules for the amount of smoothing of binary regions,
no specific comparison can be made among different contour smoothing methods.
Nevertheless, an approximate comparison between the min-of-two method with Yu
and Yan (1997), and Hu et al., (1998) is given as follows:

 Both Yu and Yan’s and Hu et al.’s algorithms require that a contour tracing

method has already obtained the boundaries of the foreground binary regions.

 179

However, the min-of-two method does not have such prerequisite since it
operates simultaneously with Quek’s RLE boundary tracing algorithm.

 Yu and Yan’s algorithm is a single point smoothing approach but the min-of-

two method can smooth both single and multiple point out-spikes.

 Although Hu et al.’s and the min-of-two algorithms are both multiple-point

smoothing methods, Hu et al. utilise patterns which are designed for binary
contour smoothing using chain codes. On the other hand, the min-of-two
method is designed to apply patterns suitable for smoothing foreground regions
represented by the RLE approach. In addition, it seems that Hu et al.’s patterns
are more suitable for smoothing the images of handwritten numerals. However,
there is no report of applying their method to images of foreground regions in
other fields such as, for example, moving objects segmentation, etc. One
possible reason for this may be too much smoothing and distortion or
inadequacy of their patterns for foreground regions in such applications.
However, the min-of-two smoothing method is a conservative one-pixel-width
approach. It operates such that minimum distortion on the shapes of foreground
objects occurs. It is more suitable for smoothing foreground binary regions
shown using RLE representation in applications such as moving objects detect-
ion, visual surveillance, etc. Thus, these two methods may not correctly be
compared with each other. This is because they are designed for different types
of representations of foreground regions and different types of applications.

In addition to the above algorithms, let’s compare Chan and Hsu’s (2008)

algorithm with the min-of-two method as follows:

 Chan and Hsu’s algorithm, which operates on grey-scale images, uses two

synchronously-running modules PBL and SRP. The PBL module traces the
object’s border pixel-by-pixel using a 3 x 3 sliding window while the SRP
module removes random noisy pixels of the object’s contour. Thus, similar
to Quek’s and the min-of-two algorithms, the PBL and the SRP modules play
the role of boundary tracing and smoothing methods. Chan and Hsu’s
algorithm can be compared with the combination of Quek’s algorithm and the
min-of-two method as follows:

• The decisions of the BPL and the SRP modules are based on the grey-scale

differences between the centre pixel and its surrounding pixels in a 3 x 3
window. However, Quek and min-of-two methods operate on binary imag-
es. Thus, the SRP module and the min-of-two method are not comparable
due to performing their processes on different types of images, i.e. grey-
scale and binary images, respectively.

• Since the boundary pixels of an object are centred in 3 x 3 sliding window

used by the BPL module along the tracing direction, the width of noisy
pixels to be removed by the SRP module is normally ranged from 1 to 3
pixels. As a result, the SRP module can be utilised for limited smoothing
applications. However, the min-of-two method has more capability as it can

 180

remove simple and nested one-pixel-width horizontal, vertical and diagonal
out-spikes of any length.

• Chan and Hsu’s algorithm is designed to work with chain code contours but

has not been designed to operate on foreground binary regions represented
by an RLE structure.

In fact, the BPL and the SRP modules are used for a different purpose, i.e. as a

segmentation tool for grey-scale images (although are utilised for similar operations),
while Quek and the min-of-two methods are utilised to obtain smoothed boundaries
of foreground regions in binary images.

Fig. 7.83 shows three grey-scale images along with extracted contours using two
standard methods and Chan and Hsu’s algorithm (PSCTM). It is observed from the
“actual object mask” of this figure that the contours of objects are almost smoothed
since a few numbers of outliers are visible around the boundaries of those objects.
Thus, a soft and limited smoothing method such as PSCTM is suitable in such cases.
However, Figs. 7.84 to 7.86 show that the min-of-two method can smooth the jagged
boundaries of foreground regions in those images very effectively.

Fig. 7.83 – (a) Original ‘‘Akiyo”, ‘‘Bream” and ‘‘Children” images; (b) original contours;
(c) contours extracted using mathematical morphology method; (d) contours extracted using
the conventional DSP (Digital Signal Processing) method; and (e) contours extracted using
PSCTM (Chan and Hsu, 2008).

7.2.8 The results of applying the min-of-two method

In this section, the application of Quek’s and the min-of-two algorithms on a number
of foreground binary images is demonstrated. In addition, small parts of the output of
the RLE smoothing program for Fld248 are given.

 181

 (a) (b)

 (c)

 (d)

 182

 (e)

Fig. 7.84 – (a) Fld248 (b) Dif248 (c) Thresh248 (d) Sizefilter_Bound248 (e) Smoothed248;
It is the result of applying the min-of-two smoothing method to Sizefilter_Bound248

The RLE smoothing program causes mass amount of output, so it takes a large
number of pages to display all of them in this thesis. Thus, only very short parts of
the output corresponding to Smoothed248 shown in Fig. 7.84 will be offered (the
smoothed out-spike pixels are shown in grey colour):

####### 8-Connected Boundary Extraction and RLE Smoothing Program #######

File name: Thresh248.ppm
The no of regions remained after the size filter: 3

1. Region 11: Area=11195 First_run=17 Last_run=804
2. Region 227: Area=1488 First_run=609 Last_run=716
3. Region 244: Area=17 First_run=805 Last_run=807

The External Boundary of Region: 11

 No. Trans Pcurr WALK Points Added (X, Y)

 1. [2,3] (43, 17) RIGHT (44, 18)
 2. [2,2] (44, 18) LEFT (43, 19)
 3. [2,4] (43, 19) LEFT (42, 20) (41, 19)
 •
 •
 •
 166. [2,2] (36,178) LEFT (36,179)

 183

 167. [2,2] (36,179) LEFT (35,180)
 168. [2,3] (35,180) RIGHT (36,181)
 169. [2,3] (36,181) RIGHT (37,181) (38,182)

 Dn-P15: (5707)
 bc[183]: dir=5 st_x=36 st_y=179 en_x=35 en_y=180 st_rn=552 en_rn=554
 bc[184]: dir=7 st_x=35 st_y=180 en_x=36 en_y=181 st_rn=554 en_rn=558
 bc[185]: dir=0 st_x=36 st_y=181 en_x=37 en_y=181 st_rn=558 en_rn=558
 bc[186]: dir=7 st_x=37 st_y=181 en_x=38 en_y=182 st_rn=558 en_rn=561

 Pixel (35, 180) removed.

 Repeating from step 167 by considering the removed pixel(s)
 ==
 167. [2,3] (36,179) RIGHT (37,179) (38,180)
 168. [2,2] (38,180) LEFT (37,181) (36,181)
 169. [2,3] (36,181) RIGHT (37,181) (38,182)

 Dn-P1: (5407)
 bc[185]: dir=5 st_x=38 st_y=180 en_x=37 en_y=181 st_rn=555 en_rn=558
 bc[186]: dir=4 st_x=37 st_y=181 en_x=36 en_y=181 st_rn=558 en_rn=558
 bc[187]: dir=0 st_x=36 st_y=181 en_x=37 en_y=181 st_rn=558 en_rn=558
 bc[188]: dir=7 st_x=37 st_y=181 en_x=38 en_y=182 st_rn=558 en_rn=561

 Pixels (36, 181) (37, 181) removed.

 Repeating from step 168 by considering the removed pixel(s)
 ==
 168. [2,2] (38,180) LEFT (38,181)
 169. [2,2] (38,181) LEFT (38,182)
 170. [2,2] (38,182) LEFT (37,183)
 171. [2,2] (37,183) LEFT (37,184)
 172. [2,2] (37,184) LEFT (36,185)
 •
 Bm-P9:(5617)
 Pixel (36, 187) removed.
 •
 Dn-P30:(537)
 Pixel (36, 189) removed.
 •
 Dn-P4:(547)
 Pixel (41, 257) removed.
 •
 Up-P20:(073)
 Pixel (44, 259) removed.
 •
 Dn-P1:(5407)
 Pixels (42, 261) (43, 261) (44, 261) (45, 261) removed.
 •

 184

 Tp-P11:(0253)
 Pixel (65, 257) removed.
 •
 TP-P44:(435)
 Pixel (63, 257) removed.
 •
 •
 •
 Bm-P26:(7621)
 Pixels (71, 183) (71, 182) removed.
 •
 •
 Up-P29:(13)
 Pixel (73, 179) removed.
 •
 Up-P29:(13)
 Pixel (72, 180) removed.
 •
 Up-P29:(13)
 Pixel (72, 178) removed.
 •
 •
 •
 Bm-P6:(7243)
 Pixel (75, 161) removed.
 •
 Up-P1:(1043)
 Pixels (75, 160) (74, 160) removed.
 •
 Up-P29:(13)
 Pixel (74, 158) removed.
 •
 Up-P1:(1043)
 Pixels (76, 154) (75, 154) removed.
 •
 Bm-P6:(7243)
 Pixel (78, 153) removed.
 •
 Up-P1:(1043)
 Pixels (78, 152) (77, 152) (76, 152) (75, 152) removed.
 •
 •
 •
 •

Another example of
nested out-spikes

Two examples of
nested out-spikes

 185

 (a) (b)

 (d)

 (e)

 (c)

 (g)

 (h)

 (f)

Fig. 7.85 – (a) Fld275 (b) Thresh275 (c) Sizefilter_Bound275 (d) A small segment of
Sizefilter_Bound275 (e) Another small segment of Sizefilter_Bound275 (d) Smoothed275
(g) The same segment as (d) but from Smoothed275 (h) The same segment as (e) but from
Smoothed275

 186

 (a) (b)

 (d)

 (e)

 (c)

 (g)

 (h)

 (f)

Fig. 7.86 – (a) Highway I-288 (b) Thresh288 (c) Sizefilter_Bound288
(d) A small segment of Sizefilter_Bound288 (e) Another small segment of
Sizefilter_Bound288 (f) Smoothed288 (g) The same segment as (d) but from Smoothed288
(h) The same segment as (e) but from Smoothed288

The attempt has been on selecting only typical images containing large foregr-

 187

ound objects (as large as possible) for this section. Thus, the effectiveness and
efficiency of the min-of-two method will be easily observed in the smoothed images.
For example, compare Fig. 7.84(d) with Fig. 7.84(e), Fig. 7.85(c) with Fig. 7.85(f)
and Fig. 7.86(c) with Fig. 7.86(f). Just to mention, if a number of images consisting
small foreground objects were selected, they may not only contain a few number of
tiny out-spikes, but also the application of the min-of-two method to those out-spikes
is not noticed easily. Although Quek’s and the min-of-two algorithms can be applied
to both external and internal boundaries in Fig. 7.85(c), they have been applied only
to external boundaries. This is due to their more importance as some computations of
foreground regions including the bounding box and the centre of gravity are obtained
based on external boundaries.

7.2.9 The qualitative comparison of the min-of-two method with

standard morphological operators

In this section, the “Closing” morphological operator is applied to the same
thresholded images given in Section 7.2.8. Then the resulted outputs are qualitatively
compared with the corresponding smoothed images resulted by the min-of-two
method.

Based on the results from figures 7.87 to 7.89, it is concluded that the “Closing”
morphological operator has the following disadvantages:

1. Once the “Closing” operator is applied to a thresholded binary image (i.e. after

the size filter), noisy out-spikes are somewhat smoothed. However, the bound-
aries of foreground regions may not be smoothed completely. For example,
figures 7.87(e), 7.88(f), 7.88(h), 7.89(e), and 7.89(f) show that there are still
small out-spikes in the smoothed images. Compare these figures with Figs.
7.87(f), 7.88(g), 7.89(h), and 7.89(i) produced by the min-of-two method.

2. Figures 7.88(f) and 7.89(e) show that the “Closing” operator has distorted the

boundaries of foreground regions so that the shapes of the resulted images are
considerably eroded or even damaged in comparison with their corresponding
thresholded images (i.e. in comparison with 7.88(b) and 7.89(b), respectively.
Also compare those figures with 7.88(g) and 7.89(h)).

3. The erosion of a number of foreground pixels may in some cases cause a

number of foreground regions to split in two or more regions. For example,
Fig. 7.89(f) shows such an issue. As a result, this effect produces severe diffi-
culties for later processing such as tracking and recognition phases. However,
there is no split in its corresponding figure 7.89(i).

4. In addition, the “Closing” operator has eliminated a large number of pixels

from the internal parts of foreground regions. The segments shown inside ovals
in figures 7.87(c) and 7.88(d) are examples of this effect. Compare these
images with corresponding thresholded images in Figs. 7.87(a) and 7.88(a),
respectively. Meanwhile, the segments inside ovals in figures 7.87(d) and
7.88(e) are the same as the internal parts of ovals in figures 7.87(a) and 7.88(a).

 188

Thus, based on the above issues, the min-of-two smoothing method has none of
the above difficulties. It just removes all boundary out-spikes. It does not produce
any undesired changes and has no effect on the other boundary pixels or the internal
parts of the foreground regions. Besides, it is almost imposible for the min-of-two
method to split foreground regions. It produces smoothed regions which have very
similar shapes in comparison with their original regions in the thresholded images.
Meahwhile, other morphological operators including “Opening” or “two erosions
followed by one dilation” produce worse results than the “Closing” operator. There-
fore, this proves the superiority of the min-of-two method over the standard
morphological operators.

 (a) (b)

 (e) (f)

 (c) (d)

Fig. 7.87 – (a) Sizefilter248 (b) A small segment of Sizefilter248
(c) Closing248 (d) Smoothed248 (e) The same small segment as (b) but from Closing248
(f) The same small segment as (b) but from Smoothedg248

 189

 (b)

 (a) (c)

 (d) (e)

 (f) (g)

Fig. 7.88 – (a) Sizefilter275 (b) A small
segment of Sizefilter275 (c) Another small
segment of Sizefilter275 (d) Closing275 (h) (i)
(e) Smoothed275 (f) The same segment as (b)
but from (d) (g) The same segment as (b) but from (e)
(h) The same segment as (c) but from (d) (i) The same segment as (c) but from (e)

2

1

1 1

2 2

 190

 (b)

 (c)

 (a)

 (e)

 (f)
 (d)

 (h)

 (i)

 (g)

Fig. 7.89 – (a) Highway I-Sizefilter288 (b) A segment of Highway I-Sizefilter288
(c) Another segment of Highway I-Sizefilter288 (d) Highway I-Closing288
(e) The same segment as (b) but from (d) (f) The same segment as (c) but from (d)
(g) Highway I-Smoothed288 (h) The same segment as (b) but from (g)
(i) The same segment as (c) but from (g)

 191

7.2.10 The quantitative comparison of the min-of-two method with
a standard morphological operator

The min-of-two method was compared with chain code smoothing algorithms
operating on binary images qualitatively in Section 7.2.7.1. The result was that each
algorithm was in some way different or incomparable with the min-of-two RLE
smoothing method. As a result, a quantitative comparison can be performed only
between the min-of-two method and a standard morphological operator such as the
Closing operator as given in this section. The qualitative comparison results between
the Closing operator and the min-of-two method were offered in Section 7.2.9.

For a quantitative comparison, more than 100 thresholded frames after the size
filter of Fld, Highway I, and Bijan1 image sequences were selected. Then, Quek and
the min-of-two methods and the Closing operator were applied to them separately
and their total processing times were computed as shown in Table 7.2. Compuatation
times were obtained using a 2.4 GHz Pentium 4 PC with 1 GB of RAM running
windows XP professional edition.

Because some parts of the min-of-two method were completed while Quek algori-
thm was operating, thus, the times in Table 7.2 were computed for their combination
and not for the min-of-two method alone.

Based on the information given in Table 7.2, the average time of RLE boundary

tracing and smoothing of each frame is less 0.4 ms. On the other hand, the average
time of smoothing each frame using the Closing operator is at least about 4.9 ms or
more. This shows that Quek and the min-of-two smoothing mthod can not only run
very rapidly but also are at least 12 times faster than the Closing operator.

Therefore, based on the results of Section 7.2.9 and Table 7.2, the superiority and

high effectiveness of Quek and the min-of-two methods in comparison to the Closing
operator from both qualitative and quantitative point of view are confirmed.

Quek and the Min-of-two
Methods

The Closing Operator

Image Sequence No of
Frames

Total Time
(ms)

Average
Time (ms)

Total Time
(ms)

Average
Time (ms)

Fld 110 41.2 0.37 750.0 6.82

Highway I 110 32.9 0.30 545.0 4.95

Bijan1 110 27.5 0.25 717.0 6.52

Table 7.2 – Computation times of Quek and the min-of-two methods and the Closing
operator for three image sequences Fld, Highway I and Bijan1.

 192

Conclusions and Future Work

The main goal of this thesis is to review and offer robust and efficient algorithms
for the detection (or the segmentation) of foreground regions (or objects) in indoor
and outdoor scenes using colour image sequences captured with a stationary camera.
For this purpose, the block diagram of a simple vision system is offered in Chapter 2.
There are two goals for this block diagram (Fig. 2.1). Firstly, it gives the idea of the
precise order of blocks and their tasks, which should be performed to detect moving
foreground objects. Secondly, a check mark () on the top right corner of a block
indicates a relevant research about it.

A number of chapters of this thesis are devoted to dynamic background generation
for colour video sequences. Often a large number of pixels of each input image are
background pixels. In fact, recognition and separation background areas have a key
role in the segmentation of foreground regions. In this work, a review of the
effectiveness of a number of important background algorithms, along with their
major features, are presented. In addition, two background approaches are offered.
The first approach is a pixel-based technique whereas the second one works at object
level. For each approach, three algorithms are presented. They are called the
‘Selective Update Using Non-Foreground Pixels of the Input Image’, the ‘Selective
Update Using Temporal Averaging’ and the ‘Selective Update Using Temporal
Median’, respectively in this thesis. The first approach has some deficiencies, which
makes it incapable to produce correct dynamic background images. Three methods
of the second approach use an invariant colour filter and a suitable motion tracking
technique, which selectively exclude foreground objects (or blobs) from the
background frames. The difference between the three algorithms of the second
approach is in updating method of the background pixels.

It is shown that the third method produces the correct background image for each

input frame. The advantages of this method are as it operates in unconstrained
outdoor and indoor scenes. Also it is able to handle difficult situations such as
removing ghosts and including stationary objects in the background image
effectively. Meanwhile, the algorithm’s parameters are computed automatically or

CChhaapptteerr 88

 193

are fixed. Very good results obtained on a number of image sequences confirm the
effectivity of the new algorithm.

After background subtraction, the colour difference image is binarised by
thresholding. The accurate selection of a thresholding technique as a suitable image
segmentation tool has a major effect on correctly identifying moving foreground
objects. For this purpose, a discussion about an optimum thresholding method for
colour difference image is given in Chapter 4. Then, in the binary image, 1-pixels are
grouped together by a connected components labelling operator in order to identify
the connected foreground regions. Due to emphasis on simplicity in this work, a
sequential method based on run-length encoding (RLE) has been used (Haralick and
Shapiro, 1992, Chapter 2).

Representing foreground regions using their boundaries is also an important task.

Thus, a contour tracing algorithm using RLE data (Quek, 2000) is implemented
successfully to obtain the outer and inner boundaries of the objects. The main reason
for using an RLE contour tracer is that an RLE format already used for representing
internal characteristics of foreground objects. After the thresholding process, the
boundaries of foreground regions often have jagged appearances. Thus, foreground
regions may not correctly be recognised reliably due to their corrupted boundaries.
A very efficient boundary smoothing method based on RLE data is proposed in
Chapter 7. It just smoothes the external and internal boundaries of foreground objects
and does not distort the silhouettes of foreground objects. As a result, it is very fast
and does not blur the image.

As the future work, several achievements may be performed as follows:

1. The proposed background model requires to be extended so that it can also

handle multi-modal background models.

2. Based on the strengths and weaknesses of a number of shadow detection

algorithms given in Chapter 2 (especially the recent ones), a suitable method
should be designed to match with the other blocks of Fig. 2.1.

3. A tracking method based on the algorithm of Fuentes and Velastin (2001) was

already implemented and applied by the proposed background subtraction
method in this thesis. However, an investigation should be performed to check
whether it can handle difficult situations such as occlusion or disocclusion
of foreground objects. If it is not sufficiently capable to manage difficult
situations, a more robust and effective technique should be sought or proposed.

4. After silhouette smoothing (block no. 10 in Fig. 2.1), the required information
about foreground objects is available. Then, based on a predefined scenario for
a specific application and the foreground objects’ information (as suggested in
section 2.2.11), a high-level methodology should be designed so that the
activities and behaviours of foreground objects are understood and interpreted.

 194

Summaries of Two Background
Subtraction Algorithms

In this apendix, summaries of two background subtraction algorithms are given. This
is because those two algorithms are compared with the proposed background method
in Chapter 6.

A.1 Horprasert et al.’s algorithm

Horprasert et al. (1999) presents a pixel-based colour model which separates
the brightness component and the chromaticity component. For each pixel i, Ei =
[ER (i), EG (i), EB (i)] represents the pixel’s expected RGB colour in the background
image and Ii = [IR (i), IG (i), IB (i)] denotes the pixel’s RGB colour value in the input
image. The distortion of Ii is measured with respect to Ei. For a pixel i, this distortion
is decomposed into two components brightness distortion (αi) and chromaticity
distortion (CDi) which are given by the following equations:

αi =
2 2 2

2 2 2

() () () () () ()
() () ()

() () ()
() () ()

R R G G B B

R G B

R G B

R G B

I i i I i i I i i
i i i

i i i
i i i

µ µ µ
σ σ σ

µ µ µ
σ σ σ

+ +

 + +

 (Eq. A.1)

CDi =
2 2 2

() - () () - () () - ()
() () ()

R i R G i G B i B

R G B

I i i I i i I i i
i i i
α µ α µ α µ

σ σ σ

+ +

 (Eq. A.2)

where µR (i), µG (i), and µB (i) are the arithmetic means and σR (i), σG (i), and σB (i) are
the standard deviations of the i th pixel’s red, green, blue values computed over N
background frames. In the background training process, the reference background
image and some parameters associated with normalisation are computed over a
number of static background frames. A pixel is modelled by a 4-tuple < Ei, si, ai, bi>

 AAppppeennddiixx AA

 195

where Ei is the expected color value, si is the standard deviation of colour value, ai is
the variation of the brightness distortion, and bi is the variation of the chromaticity
distortion of the i th pixel, which are given by the following equations:

 ai = RMS (αji) =
2

0
(- 1)N

ji
j

α

N
=∑

, j = frame number, 0 ≤ j ≤ N (Eq. A.3)

 bi = RMS (CDji) =
2

0
()

N
ji

j
CD

N
=∑ (Eq. A.4)

Since different pixels yield different distributions of αi and CDi, in order to use a
single threshold for all the pixels, αi and CDi are rescaled as follows:

 - 1 ji
ji

ia
αα = , j = frame number, 0 ≤ j ≤ N (Eq. A.5)

 CD ji =
i

ji

b
CD (Eq. A.6)

where jiα and CD ji are called normalised brightness distortion and normalised chro-
maticity distortion, respectively.

There might be a case where a pixel from a moving object in current image
contains very low RGB values. This dark pixel will always be misclassified as a
shadow. To avoid this problem, a lower bound (ταlo) is introduced for the normalised
brightness distortion. Based on the above definitions, a pixel is classified into one of
the four categories {B, F, S, H} (i.e. background, foreground, shadow, and highlight)
by the following decision procedure:

 M(i) =

 1 2

: or
:
: 0,
:

ji CD ji lo

ji ji

ji

ˆF CD , else
ˆ ˆB and , else
ˆS else

H

 > <

< >

<

α

α α

τ α τ
α τ α τ
α

, for j ≥ N + 1 as above (Eq. A.7)

 196

 197

References

Agrawal A., Nekludova L., and Lim W., 1987. “A parallel O(logN) algorithm for

finding connected components in planar images”, in Proceedings of
International Conference on Parallel Processing, pp. 783-786.

Agrawala A. K. and Kulkarni A. V., 1977, “A sequential approach to the extraction

of shape features”, Computer Graphics and Image Processing, vol. 6, pp.
538-557.

Anderson C., Burt P., and van der Wal G., 1985, “Change detection and tracking

using pyramid transformation techniques”, In Proc. SPIE Intelligent Robots
and Computer Vision, vol. 579, pp. 72–78.

Bejanin M., Huertas A., Medioni G., and Nevatia R., 1994, “Model validation for

change detection," In Proceedings 2nd Int. IEEE Workshop on Applications
of Computer Vision, pp. 160-167.

Bernsen J., 1986. “Dynamic Thresholding of Grey-level Images”, In Proceedings 8th

International Conference on Pattern Recognition, pp. 1251-1255.

Boult T. and et al., 1999, “Frame-rate omnidirectional surveillance and tracking of

camuaged and occluded targets”, In Proceedings second IEEE workshop on
Visual Surveillance, pp. 48-55.

Brown L. G., 1992. “A survey of image registration techniques”, ACM Computer

Survey, vol. 24, no. 4, pp. 325-376.

Cai Z., 1988, “Restoration of binary images using contour direction chain codes

description”, Computer Vision Graphics and Image Processing, vol. 41, pp.
101–106.

Capson D. W., 1984, “An improved algorithm for the sequential extraction of

boundaries from a raster scan”, Computer Vision, Graphics Image Process,
vol. 28, pp. 109-125.

 198

Carmona E., Martinez-Cantos J., and Mira J., 2008, “A new video segmentation
method of moving objects based on blob-level knowledge”, Pattern
Recognition Letters, vol. 29, pp. 272–285.

Cavallaro A., Salvador E., and Ebrahimi T., 2005, “Shadow-aware object-based

video processing”, IEE Vision, Image and Signal Processing, Vol. 152, no.
4, pp. 14- 22.

Chan D-Y. and Hsu R. C., 2008, “Robust shape-preserving contour tracing with

synchronous redundancy pruning”, Pattern Recognition Letters, vol. 29,
no. 5, pp. 569-579.

Chang L. W. and Leu K. L., 1990, “A fast algorithm for restoration of images based

on chain codes description and its applications”, Computer Vision Graphics
and Image Processing, vol. 50, pp. 296-307.

Chen K, 1999, “A feature preserving adaptive smoothing method for early vision”,

Technical Report, Peking University, China.

Cheng Y., Jensen J. R., Huntsberger T., and Huntsberger B., 1994. “Hypercube

algorithm for image component labeling,” in Proceedings of the Scalable
High-Performance Computing Conference, pp. 259-262.

Cheng J, Yang J., Zhou Y., and Cui Y., 2006, “Flexible background mixture

models for foreground segmentation”, Image and Vision Computing, vol.
24, no. xx, pp. 473-482.

Cheung S. -C. and Kamath C., 2004, “Robust techniques for background subtraction

in urban traffic video”, In Proceedings of SPIE (5308): Visual
Communications and Image Processing, pp. 881-892.

Chia T. -L, Wang K. –B., Chen L. –R., and Chen Z., 2003, “A parallel algorithm for

generating chain code of objects in binary images”, Information Sciences,
vol. 149, no. 4, pp. 219-234.

Choi J., Yoo Y. J., and Choi j. Y., 2010, “Adaptive shadow estimator for removing

shadow of moving object”, Computer Vision and Image Understanding, vol.
114, pp. 1017-1029.

Chow C. K. and Kaneko T, 1972. “Automatic Detection of the Left Ventricle from

Cineangiograms”, in Computers and Biomedical Research, vol. 5, pp.
388-410.

Collins R., Lipton A., Kanade T., Fujiyoshi H., Duggins D., Tsin Y., Tolliver D.,

Enomoto N., and Hasegawa O., 2000, “A system for video surveillance and
monitoring: VSAM final report”, Robotics Inst., Technical Report,
CMU-RI-TR-00-12, Carnegie Mellon University, USA.

 199

Comaniciu D. and Meer P., 2002, “Mean shift: a robust approach toward feature
space analysis, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 5, pp. 603–619.

Cristani M., Bicego M., and Murino V., 2003, “Multi-level background initialization

using Hidden Markov Models”, In First ACM SIGMM Int. workshop on
Video surveillance, pp. 11-20.

Cucchiara, R. Grana, C., Piccardi, M., and Prati A., 2000, “Statistic and knowledge-

based moving object detection in traffic scenes”, In Proc. of Intelligent
Transportation Systems Conference, pp. 27-32.

Cucchiara, R. Grana, C., Piccardi, M., and Prati A., 2001, “Detecting objects,

shadows and ghosts in video streams by exploiting color and motion
information”, In Proc. of 11th International Conference on Image Analysis
and Processing, pp. 360-365.

Cucchiara R., Grana C., Piccardi M., and Prati A., 2003, “Detecting moving objects,

ghosts and shadows in video streams”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 25, no. 10, pp. 1337-1342.

Dagless E. L., Ali A. T., and Bulas Cruz, J., 1993, “Visual road traffic monitoring

and data collection”, In Proc. of IEEE-IEE Vehicle Navigation and Inform-
ation Systems, pp. 146-149.

Dawson-Howe K., 1996, “Active Surveillance using Dynamic Background

Subtraction”, Technical Report No. TCD-CS-96-06, Trinity College of
Dublin, Ireland.

Di Zenzo S., Cinque L., and Levialdi S., 1996, “Run-based algorithms for binary

image analysis and processing”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 18, no. 1, pp. 83-89.

Dorst L. and Smeulders A. W. M., 1987, “Length estimated for digitized contours”,

Computer Graphics and Image Processing, vol. 40, pp. 317-333.

Du Y., Chang C. I., and Thouin P. D., 2004, “Unsupervised approach to color video

thresholding”, Optical Engineering, vol. 43, no. 2, pp. 282-289.

Eikvil L., Taxt T., and Moen K, 1991. “A Fast Adaptive Method for Binarization of

Document Images”, in Proceedings the 1st International Conference on
Document Analysis and Recognition, pp. 453-443.

Elgammal, A., Duraiswami R. ,Harwood, D., and Davis, L.S., 2002, “Background

and foreground modeling using nonparametric kernel density estimation for
visual surveillance”, Proceedings of the IEEE, vol. 90, no. 7, pp. 1151–1163.

 200

Elgammal, A., Harwood, D., and Davis, L.S., 2000, “Non-parametric Model for
Background Subtraction", In Proc. of European Conference on Computer
Vision, vol. 2, 751-767.

Elhabian S., El-Sayed K. and Ahmed S., 2008, “Moving Object Detection in Spatial

Domain using Background Removal Techniques - State-of-Art”, Recent
Patents on Computer Science, vol. 1, no. 1, pp. 32-54.

Eng H., Wang J., Kam A., and Yau W., 2004, “Novel region-based modeling for

Human Detection within High Dynamic Aquatic Environment” In Proc. on
Computer Vision and Pattern Recognition, vol. 2, pp. 390-397.

Fang L., Qiong W., and Sheng Y., 2008, “A method to segment moving vehicle cast

shadow based on wavelet transform”, Pattern Recognition Letters, vol. 29, pp.
2182–2188.

Fejes S. and Davis L. S., 1998, “What can projections of flow fields tell us about the

visual motion”, in Proceedings of International Conference on Computer
Vision, pp. 979-986.

Figueiredo M. and Jain A., 2002, “Unsupervised learning of finite mixture Models”,

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24,
no. 3, pp. 381-396.

Francis K. H. Q., 1990, “On Three-dimensional object recognition and pose

determination: an abstraction based approach”, Ph.D. Thesis, the University
of Michigan, MI.

Freeman H., 1961, “On the encoding of arbitrary geometric configurations”, IRE

Transactions on Electron. and Comput., vol. 10, pp. 260-268.

Fuentes L. M. and Velastin S. A., 2006, “People tracking in surveillance

applications”, Image and Vision Computing, vol. 24, no. 11, pp. 1165-1171.

Garnica C., Boochs F., Twardochlib M., 2000. “A New Approach to Edge-

preserving Smoothing for Edge Extraction and Image Segmentation”, in
Proceedings of International Archives of Photogrammetry and Remote
Sensing, vol. XXXIII, page 1.

Gevers T. and Smeulders A. W. M., 1999, “Colour-based object recognition”,

Pattern Recognition, vol. 32, pp. 453–464.

Gonzalez R. C. and Wintz P., 1987, “Digital Image Processing”, Addison-Wesley

Reading, MA.

Grant G. and Reid A. F., 1981, “An efficient algorithm for the boundary tracing and

feature extraction”, Computer Graphics and Image Processing, vol. 17, pp.
225-237.

 201

Grimson E., Stauffer C., Roman R., and Lee L., 1998, “Using adaptive tracking to
classify and monitoring activities in a site”, in IEEE Conf. on Computer
Vision and Pattern Recognition, pp. 22–29.

Gutchess D., Trajkovic M., Cohen-Sola E., Lyons D., and Jain A. K., 2001, “A

background model initialization algorithm for video surveillance," in
Proceedings Eighth IEEE International Conference on Computer Vision,
vol. 1, pp. 744-750.

Halevy G. and Weinshall D., 1999, “Motion of disturbances: detection and tracking

of multi-body non-rigid motion”, Machine Vision and Applications, vol. 11,
pp. 122-137.

Han B., Comaniciu D., and Davis L., 2004, “Sequential kernel density approximation

through mode propagation: Applications to background modeling”, In Proc.
of Asian Conference on Computer Vision.

Harville M., 2002, “A framework for high-level feedback to adaptive, per-pixel,

mixture-of-Gaussian background models”, In Proceedings of the Seventh
European Conference on Computer Vision, Part III, pp. 543-560.

Haralick R. M., Shapiro L. G., 1992. Computer and Robot Vision, Volume I,

Addison-Wesley Publishing Company.

Haritaoglu I., Harwood D. and Davis L. S., 2000, “W4: Real-time surveillance of

people and their activities”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 22, no. 8, pp. 809-830.

Hildreth E. C., 1983, “The detection of intensity changes by computer and biological

vision systems”, Computer Vision, Graphics and Image Processing, vol. 22,
pp. 1–27.

Hong, D. and Woo, W., 2003, “A background subtraction for a vision-based user

interface”, In Proceedings of ICICS-PCM, Singapore, pp. 1-5.

Horprasert T., Harwood D., and Davis L. S., 1999, “A statistical approach for

real-time robust background subtraction and shadow detection,” In Proc.
IEEE Frame-Rate ApplicationsWorkshop, Greece.

Hou Z. and Han C., 2004, “A background reconstruction algorithm based on pixel

intensity classification in remote video surveillance system”, in Proceedings
of the 7th International Conference on Information Fusion, Sweden, pp.
754-759.

Hu J., Yu D., and Yan H., 1998, “A multiple point boundary smoothing algorithm”,

Pattern Recognition Letters, vol. 19, no. 8, pp. 657-668.

 202

Huang J.-B. and Chen C.-S., 2009, “Moving Cast Shadow Detection using Physics-
based Features”, IEEE Conf. on Computer Vision and Pattern Recognition,
pp. 2310-2317.

Huang L. and Wang M., 1995, “Image thresholding by minimizing the measures of

fuzziness’’, Pattern Recognition, vol. 28, pp. 41–51.

Iannizzotto G. and Vita L., 2000, “Fast and accurate edge-based segmentation with

no contour smoothing in 2-D real images”, IEEE Transactions on Image
processing, vol. 9, no. 7, pp. 1232-1237.

Ibanez L., Schroeder W., Ng L., and Cates J., 2003, “The ITK Software Guide: The

Insight Segmentation and Registration Toolkit (version 1.4)”, Kitware Inc.

Irvin R. and Mckeown D., 1989, “Methods for exploiting the relationship between

buildings and their shadows in aerial imagery”, IEEE Transactions on
Systems, Man, Cybernetics, vol. 19, no. 6, pp. 1564-1575.

Javed O., Shafique K., and Shah M., 2002, “A hierarchical approach to robust

background subtraction using color and gradient information”, In Proceedings
of IEEE Workshop on Motion and Video Computing, pp. 22-27.

Jain R., 1981, “Extraction of motion information from peripheral processes”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 3, pp.
489-503.

Jain R., Kasturi R., and Shunck B., 1995, “Machine Vision”, McGraw-Hill Inc., New

York.

Jiang C. and Ward M. O., 1994, “Shadow Segmentation and Classification in a

Constrained Environment”, CVGIP: Image Understanding, vol. 59, no. 2,
pp. 213-225.

Johansson B., Wiklund J., Forssen P., and Granlund G., 2009, “Combining shadow

detection and simulation for estimation of vehicle size and position”, Pattern
Recognition Letters, vol. 30, pp. 751–759.

Jolly M. -P. D., Lakshmanan S. and Jain A. K., 1996, “Vehicle segmentation and

classification using deformable templates”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 18, no. 3, pp. 293-308.

Joshi A. and Papanikolopoulos N., 2008, “Learning to Detect Moving Shadows in

Dynamic Environments”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 30, no. 11, pp. 2055-2063.

Jung C., 2009, “Efficient Background Subtraction and Shadow Removal for

Monochromatic Video Sequences”, IEEE Transactions on Multimedia, vol.
11, no. 3, pp. 571-577.

 203

Kaewtrakulpong P., and Bowden R., 2001, “An improved adaptive background
mixture model for real-time tracking with shadow detection,” In
Proceedings of 2nd European Workshop on Advanced Video Based
Surveillance Systems.

Kampel M., H. Wildenauer H., Blauensteiner P., and Hanbury A., 2007, “Improved

motion segmentation based on shadow detection”, Electronic Letters on
Computer Vision and Image Analysis, vol. 6, no. 3, pp. 1-12.

Kapur J., Sahoo P., and Wong A., 1985, “A new method for gray-level picture

thresholding using the entropy of the histogram”, Graphical Models and
Image Processing, vol. 29, pp. 273–285.

Karmann K. -P. and von Brandt A., 1990, “Moving object recognition using and

adaptive background memory”, In Time-Varying Image Processing and
Moving Object Recognition, Cappellini V., 2nd ed., pp. 289-307.

Kim K., Chalidabhongse T., Harwood D., and Davis L., 2005, “Real-time

foreground-background segmentation using codebook model”, Real Time
Imaging, vol. 11, no. 3, pp. 172–185.

Kim M., Jeon J. G., Kwak J. S., Lee M. H., and Ahn C., 2001, “Moving object

segmentation in video sequences by user interaction and automatic object
tracking”, Image and Vision Computing, vol. 19, no.5, pp. 245-260.

Kim S. -D., Lee J. -H., and Kim J. -K., 1988, “A new chain-coding algorithm for

binary images using run-lengthy codes”, Computer Vision, Graphics, Image
Processing, vol. 41, pp. 114-128.

Kittler J. and Illingworth J., 1986, “Minimum error thresholding”, Pattern

Recognition, vol. 19, no.1, pp. 41–47.

Klaus B. and Horn P., 1986, “Robot Vision”, MIT Press, Cambridge, MA.

Koller D., Danilidis K., and Nagel H.-H., 1993, “Model-based object tracking in

monocular image sequences of road traffic scenes”, International Journal of
Computer Vision, vol. 10, no. 3, pp. 257-281.

Koller D., Weber J., Huang T., Malik J., Ogasawara G., Rao B., and Russell S.,
1994, “Towards Robust Automatic Traffic Scene Analysis in Real-time”, In
Proc. ICPR’94, pp. 126-131.

Kompatsiaris I., and Strintzis M. G., 2000, “Spatiotemporal segmentation and
tracking of objects for visualization of videoconference image sequences”,
IEEE Transactions on Circuit and Systems for Video Technology, vol. 10,
no. 8, pp. 1388-1403.

 204

Koplpwitz J. and Deleone J., 1996, “Hierarchical representation of chain-encoded
binary image contours”, Computer Vision and Image Understanding vol. 63,
no. 2, pp. 344–352.

Lambert S., de Leau E., and Vuurpijl L., 1999, “Using pen-based outlines for object-

based annotation and image-based queries”, In Proceedings of the Third
International Conference on Visual Information and Information Systems,
pp. 585-592.

Lavallee S., 1995, “Registration for computer-integrated surgery: methodology, state

of the art”, MIT Press.

Legault R. and Suen C. Y., 1997, “optimal local weighted averaging methods in

contour following”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 19, no. 8, pp. 801-817.

Levner I., 2002, “Shape detection, analysis and recognition”, Technical Report,

TR02-18, University of Alberta, Canada.

Li H. F., Jayakumar R., and Youssef R., 1989, “Parallel algorithms for recognizing

handwritten characters using shape features”, Pattern Recognition, vol. 22,
no. 6, pp. 641-652.

Lindley C. A., 1991, “Practical Image Processing in C”, Wiley, New York.

Liow Y. -T., 1991, “A contour tracing algorithm that preserves common boundaries

between regions”, CVGIP: Image Understanding, vol. 53, no. 3, pp.
313-321.

Lynch M., Robinson K., Ghita O., and Whelan P., 2004, “A performance

characterisation in advanced data smoothing techniques”, In Irish Machine
Vision and Image Processing, pp. 123-128.

Maintz J. B. A. and Viergever M. A., 1998, “A survey of medical image

registration”, Medical Image Analysis, vol. 2, no. 1, pp. 1–36.

Maxwell B., Friedhoff R., and Smith C., 2008, “A bi-illuminant dichromatic

reflection model for understanding images”, IEEE Conf. on Computer
Vision and Pattern Recognition, pp. 1-8.

McFarlane N. and Schofield C., 1995, “Segmentation and tracking of piglets in

images”, Machine Vision and Applications, vol. 8, no. 3, pp. 187-193.

Medioni G. G., 1999, “Detecting and Tracking Moving Objects for Video

Surveillance”, In Proc. IEEE Intl. Conf. Computer Vision and Pattern
Recognition, vol. 2, pp. 319-325.

 205

Mittal A. and Paragios N., 2003, “Motion-Based Background Subtraction using
Adaptive Kernel Density Estimation”, In Proc. of CVPR 2004, vol. 2,
pp.302-309.

Miyatake T., Matsushima H., and Ejiri M., 1997, “Contour representation of binary

images using run-type direction codes”, Machine Vision and Applications,
vol. 9, pp. 193-200.

Morse B. S., 2000, “Lecture 12: Local image processing (smoothing)”, Brigham

Young University.

Nadimi S. and Bhanu B., 2002, “Moving shadow detection using a physic-based

approach”, In Proceedings of the 16th International Conference on Pattern
Recognition, vol. 2, pp. 701-704.

Neri A., Colonnese S., Russo G., and Talone P., 1998, “Automatic moving objects

and background separation”, Signal Processing, vol. 66, no. 2, pp. 219-232.

Newman W. M. and Sproull R. F., 1979, “Principles of Interactive Computer

Graphics”, 2nd ed., McGraw-Hill, New York.

Niblack W., 1986, An Introduction to Digital Image Processing, Englewood Cliffs,

N.J. Prentice Hall, pp. 115-116.

Oliver N. M., Rosario B., and Pentland A. P., 2000, “A Bayesian computer vision

system for modeling human interactions”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 22, no. 8, pp. 831–843.

Otsu N., 1979, “A threshold selection method from gray-level histograms”, IEEE

Transactions on Systems, Man and Cybernetics, vol. 9, no. 1, pp. 62-66.

Paul J. B., 1986, “Surfaces in early range image understanding”, Ph.D. Thesis, the

University of Michigan, MI.

Papamarkos N., Tzortzakis J., and Gatos B., 1996, “Determination of run-length

smoothing values for document segmentation”, In the IEEE Proceedings of
International Conference on Electronics, Circuits, and Systems, vol. 2, pp.
684-687.

Parker J. R., 1997, “Algorithms for Image Processing and Computer Vision”, John

Wiley and Sons, New York, USA.

Piccardi M., 2004, “Background subtraction techniques: a review”, In Proc. IEEE

Conference on Computer, http://www-staff.it.uts.edu.au/_massimo.

Porikli F. and Thornton J., 2005, “Shadow Flow: A Recursive Method to Learn

Moving Cast Shadows”, In Proc. of Tenth IEEE International Conference
on Computer Vision, vol. 1, pp. 891-898.

 206

 Prati A., Mikic I., Cucchiara R. and Trivedi M. M., 2003, “Detecting moving
shadows: algorithms and evaluation”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 25, pp. 918-923.

Quek F. K. H., 2000, “An algorithm for the rapid computation of boundaries of run-

length encoded regions”, Pattern Recognition, vol. 33, no.10, pp. 1637-
1649.

Radke R. J. , Andra S., Al-Kofahi O., and Roysam B., 2005, “Image Change

Detection Algorithms: A Systematic Survey”, IEEE Transactions on Image
Processing, vol. 14, no. 3, pp. 294-307.

Ranganathan N., Mehrotra R., and Subramanian S., 1995. “A high speed systolic

architecture for labeling connected components in an image”, IEEE
Transactions on System, Man and Cybernetics, vol. 25, pp. 415-423.

Ren M., Yang J., and Sun H., 2002, “Tracing boundary contours in a binary image”,

Image and Vision Computing, vol. 20, no. 2, pp. 125-131.

Ridder C., Munkelt O., and Kirchner H., 1995, “Adaptive background estimation and

foreground detection using kalman filtering”, In Proceedings of Internat-
ional Conference on recent Advances in Mechatronics, pp. 193–199.

Ridler T. and Calvard S., 1978, “Picture thresholding using an iterative selection

method’’, IEEE Transactions on Systems, Man and Cyberntics, SMC-8, pp.
630–632.

Rosenfeld A., and Kak A. C., 1982, “Digital Picture Processing”, 2nd ed., Academic

Press, New York, 1982.

Rosin, P., 2001, “Unimodal thresholding”, Pattern Recognition, vol. 34, no. 1, pp.

2083-2096.

Rosin P. L. and Ellis T., 1995, “Image difference threshold strategies and shadow

detection”, In Proceedings of the 6th British Machine Vision Conference,
UK, pp. 347-356.

Russell S. and Norvig P., 1995, “AI, ntelligence: A Modern Approach'', Prentice

Hall, Fig. 24.9, pg. 737.

Samet H., 1984, “The quadtree and related hierarchical data structures”, Computing

Surveys, vol. 16, pp. 187-260.

Salvador E., Cavallaro A., and Ebrahimi T., 2003, “Spatio-temporal shadow

segmentation and Tracking”, in Proceeding of SPIE’s Image and Video
Communications and Processing, vol. 5022, pp. 389–400.

 207

Salvador E., Cavallaro A., and Ebrahimi T., 2004, “Cast shadow segmentation using
invariant color features”, Computer Vision and Image Understanding, vol.
95, no. 2, pp. 238-259.

Sechidis L., Patias, P., and Tsioukas, V., 2002, “Low-level tracking of multiple

objects”, In Proc. of Photogrammetric Computer Vision, pp. 237-240.

Sezgin M. and Sankur B., 2004. “Survey over image thresholding techniques and

quantitative performance evaluation”, Journal of Electronic Imaging, vol.
13, no. 1, pp. 146– 165.

Shih F. Y. and Wong W.-T., 1999, “A one-pass algorithm for local symmetry of

contours from chain codes”, Pattern Recognition, vol. 32, no.7, pp. 1203-
1210.

Shio A. and Sklansky J., 1991, “Segmentation of people in motion”, In Proceedings

of IEEE Workshop on Visual Motion, pp. 325-332.

Shoushtarian B. and Bez H. E., 2005, “A practical adaptive approach for dynamic

background subtraction using an invariant colour model and object
tracking”, Pattern Recognition Letters, vol. 26, no. 1, pp. 5-26.

Solihin Y. and Leedham C. G., 1999, “Integral Ratio: A New Class of Global

Thresholding Techniques for Handwriting Images”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 21, no. 8, pp. 761-768.

Sonoda Y. and Ogata T., 1998, “Separation of moving objects and their shadows,

and application to tracking of loci in the monitoring images" In Proceedings
of IEEE Int. Conference on Signal Processing, pp. 1216-1264.

Sneath, P. and Sokal, R., 1973, “Numerical Taxonomy. The principle and practice of

numerical classification, W.H. Freeman.

Spagnolo P., Leo M., Attolico G., and Distante A., 2003, “A supervised approach in

background modelling for visual surveillance”, In Proceedings of the 4th
International Conference on Audio- and Video-Based Biometric Person
Authentication, pp. 592-599.

Spagnolo P., D’Orazio T., Leo M., and Distante A., 2006, “Moving object

segmentation by background subtraction and temporal analysis”, Image and
Vision Computing, vol. 24, no.5, pp. 411-423.

Stauder J., Mech R., and Ostermann J., 1999, “Detection of Moving Cast Shadows

for Object Segentation”, IEEE Transactions on Multimedia, Vol. 1, no. 1,
pp. 65-76.

Stauffer C. and Grimson W.E.L., 1999, “Adaptive background mixture models for

real-time tracking”, In Proceedings of International Conference of
Computer Vision and Pattern Recognition, Vol. 2, pp. 246-252.

 208

Stauffer C. and Grimson W.E.L., 2000, “Learning patterns of activity using real-time

tracking," in IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, pp. 747-757.

Suen C. Y., Nadal C., Legault R., Mai T. A., and Lam L., 1992, “Computer

recognition of unconstrained handwritten numerals”, Proceedings of the
IEEE, vol. 80, no. 7, pp. 1162-1180.

Suzuki S. and Abe K., 1983, “Border following algorithms for analyzing the

topological structure of digitized binary images”, Technical Report of
IEICE, PRL83-2, pp. 9-16.

Taxt T., Flynn P.J., and Jain A.K, 1989. “Segmentation of document images”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 12,
pp. 1322-1329.

Thomas M., and Ngan K. N., 1998, “Automatic segmentation of moving objects for

video object plane generation”, IEEE Transaction on Circuits and Systems
for Video Technology, vol. 8, no. 5, pp. 525-538.

Tian J., Sun J., and Tang Y., 2009, “Tricolor Attenuation Model for Shadow

Detection”, IEEE Transaction on Image Processing, vol. 18, no. 10, pp.
2355-2363.

Tian, Y-L., Lu M., and Hampapur A., 2005, “Robust and efficient foreground

analysis for real-time video surveillance”, in Proceedings of IEEE Conf. on
Computer Vision and Pattern Recognition, vol. 1, pp. 1182-1187.

Toyama K., Krumm J., Brumitt B., and Meyers B., 1999. “Wallflower: Principles

and practice of background maintenance”, In Proc. International Conf. on
Computer Vision, pp. 255–261.

Trimeche M., 2000, “Shape Representation for Image Indexing and Retrieval”,

Master thesis, Tampere University, Finland.

Tsai D., 1995, “A fast thresholding selection procedure for multimodal and unimodal

histograms”, Pattern Recognition Letters, vol. 16, pp. 653-666.

Umbaugh S. E., 1998, "Computer Vision and Image Processing", Prentice-Hall

International.

Wang C., Huang L., and Rosenfeld A., 1991, “Detecting clouds and cloud shadows

on aerial photographs”, Pattern Recognition Letters, vol. 12, no. 1, pp.
55-64.

Wang K., Chia T., ZEN Chen Z., and Lou D., 2003. “Parallel execution of a

connected component labeling operation on a linear array architecture”,
Journal of Information Science and Engineering, vol. 19, pp. 353-370.

 209

Wang D. and Srihari S., 1989, “Classification of newspaper image blocks using

texture analysis”, Computer Vision, Graphics, and Image Processing, vol.
47, pp. 327-352.

Wixen L. and Hansen M., 1999, “Detecting salient motion by accumulating

directional-consistent flow”, in Proceedings of International Conference on
Computer Vision, vol. II, pp. 797-804.

Wong K. Y., Casey R. G., and Wahl F. M., 1982, “Document analysis system”, IBM

Journal of Research Development, vol. 26, no. 6, pp. 647-656.

Wren C., Azarbayejani A. and Darrell T., 1997, “Pfinder: Real-time tracking of the

human body”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 19, no. 7, pp. 780-785.

Xiao Y., Zou J. J., and Yan H., 2001, “An adaptive split-and-merge method for

binary image contour data compression”, Pattern Recognition Letters,
vol. 22, no. 3-4, pp. 299-307.

Xiuwen L., Wang D. L., and Ramirez J. R., 2000, “Boundary detection by contextual

non-linear smoothing”, Pattern Recognition, vol. 33, no.2, pp. 263-280.

Yager R., 1979, “On the measure of fuzziness and negation. Part I: Membership in

the unit interval”, Int. Journal of Gen. Systems, vol. 5, pp. 221-229.

Yang Y-H, Levine M. D., 1992, “The background primal sketch: an approach for

tracking moving objects”, Machine Vision and Applications, vol. 5, pp.
17-34.

Yokoi S., Toriwaki J., and Fukumura A., 1973, “An analysis of topological

properties of digitized binary pictures using local features”, Transactions
of the Institue of Electronics, Information and Communication Engineers,
vol. 11, pp. 662-669.

Yoneyama A., Yeh C. H., and Kuo C. -C. J., 2003, “Moving cast shadow elimination

for robust vehicle extraction based on 2d joint vehicle/shadow models”,
In Proc. of IEEE Conf. on Advanced Video and Signal Based Surveillance,
pp. 229-236.

Yoshinari K., and Michihito M., 1996, “A human motion estimation method using

3-successive video frames”, In Proceedings of Intl. Conference on Virtual
Systems and Multimedia, pp. 135-140.

Yu D. and Yan H., 1997, “An efficient algorithm for smoothing linearization and

detection of structural feature points of binary image contours”, Pattern
Recognition, vol. 30, no. 1, pp. 57-69.

 210

Yuan J. and Suen C. Y., 1995, “An optimal O(n) algorithm for identifying line
segments from a sequence of chain codes”, Pattern Recognition, vol. 28,
no. 5, pp. 635-646.

Zha Y., Yang Y., Zhang M., and Bi D., 2007, “Moving Cast Shadow Detection by

Energy Minimization”, IEEE Conf. on Image and Graphics, pp. 235-240.

Zhang W., Fang X., and Yang X., 2007, “Moving cast shadows detection using ratio

edge,” IEEE Transactions on Multimedia, vol. 9, no. 6, pp. 1202-1214.

Zitova B. and Flusser J., 2003, “Image registration methods: a survey”, Image and

Vision Computing, vol. 21, pp. 977-1000.

Zingaretti P., Gasparroni M., and Vecci L., 1998, “Fast chain coding of region boun-

daries”, IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 20, no. 4, pp. 780-785.

Zivkovic Z. and van der Heijden F., 2006, “Efficient adaptive density estimation per

image pixel for the task of background subtraction”, Pattern Recognition
Letters, vol. 27, no. 7, pp. 773–780.

	CERTIFICATE OF ORIGINALITY
	Table of Contents
	Abstract …………………………………………………………………… …….. 1
	Chapter One – Introduction …………………………………………………… 3
	1.1 Motivations ………………………………………………………………. 3

	Abstract
	Introduction
	An outdoor/ 2
	Fig. 2.1 – A simple block diagram for detecting and tracking objects
	(a) (b)
	Table 4.1 – PCC, Jaccard and Yule coefficients for different threshold methods.
	Binary_frame (x, y) 1
	Binary_frame (x, y) 1
	Binary_frame (x, y) 1
	(a) RGB intensities and averages of Background-Grp-Pixel in the Fld sequence in Fig. 5.1(b)

