9,746 research outputs found

    Acquisition of Relative Interstrand Crosslinker Resistance and PARP Inhibitor Sensitivity in Fanconi Anemia Head and Neck Cancers

    Get PDF
    PURPOSE: Fanconi anemia is an inherited disorder associated with a constitutional defect in the Fanconi anemia DNA repair machinery that is essential for resolution of DNA interstrand crosslinks. Individuals with Fanconi anemia are predisposed to formation of head and neck squamous cell carcinomas (HNSCC) at a young age. Prognosis is poor, partly due to patient intolerance of chemotherapy and radiation requiring dose reduction, which may lead to early recurrence of disease. EXPERIMENTAL DESIGN: Using HNSCC cell lines derived from the tumors of patients with Fanconi anemia, and murine HNSCC cell lines derived from the tumors of wild-type and Fancc(-/-) mice, we sought to define Fanconi anemia-dependent chemosensitivity and DNA repair characteristics. We utilized DNA repair reporter assays to explore the preference of Fanconi anemia HNSCC cells for non-homologous end joining (NHEJ). RESULTS: Surprisingly, interstrand crosslinker (ICL) sensitivity was not necessarily Fanconi anemia-dependent in human or murine cell systems. Our results suggest that the increased Ku-dependent NHEJ that is expected in Fanconi anemia cells did not mediate relative ICL resistance. ICL exposure resulted in increased DNA damage sensing and repair by PARP in Fanconi anemia-deficient cells. Moreover, human and murine Fanconi anemia HNSCC cells were sensitive to PARP inhibition, and sensitivity of human cells was attenuated by Fanconi anemia gene complementation. CONCLUSIONS: The observed reliance upon PARP-mediated mechanisms reveals a means by which Fanconi anemia HNSCCs can acquire relative resistance to the ICL-based chemotherapy that is a foundation of HNSCC treatment, as well as a potential target for overcoming chemoresistance in the chemosensitive individual

    Oral and Dental Manifestations of Fanconi Anemia

    Get PDF
    Fanconi anemia is a rare disease, which is characterized by decreased production of all blood cell types. Fanconi anemia is the most common inherited form of aplastic anemia. Congenital abnormalities of the eyes, ears, and heart, malformed or absent kidney, urogenital system involvement are common. There is a delay in physical development. Intelligence in patients with Fanconi anemia is usually normal. The most serious problems associated with Fanconi anemia include the gradual development of bone marrow disorders. Many patients with Fanconi anemia develop leukemia or myelodysplastic syndrome, as well as other oncological diseases. Oral manifestations in patients with Fanconi anemia can be classified as gingivitis, periodontitis, dental caries, dental anomalies, soft tissue lesions, oral cancer, and lesions of the tongue. Patients with Fanconi anemia have increased predisposition to squamous cell carcinoma of the head and neck and oral cancer. The interdisciplinary team of medical and dental specialists must be included in the medical and dental treatment of patients with Fanconi anemia. For proper dental care of patients with Fanconi anemia, the close cooperation of dental specialists, including orthodontists, pedodontists, prosthetists, oral surgeons, as well as specialists in periodontology and oral diseases, is of particular importance

    Oral human papillomavirus is common in individuals with Fanconi anemia

    Get PDF
    Fanconi anemia is a rare genetic disorder resulting in a loss of function of the Fanconi anemia-related DNA repair pathway. Individuals with Fanconi anemia are predisposed to some cancers, including oropharyngeal and gynecologic cancers, with known associations with human papillomavirus (HPV) in the general population. As individuals with Fanconi anemia respond poorly to chemotherapy and radiation, prevention of cancer is critical. METHODS: To determine whether individuals with Fanconi anemia are particularly susceptible to oral HPV infection, we analyzed survey-based risk factor data and tested DNA isolated from oral rinses from 126 individuals with Fanconi anemia and 162 unaffected first-degree family members for 37 HPV types. RESULTS: Fourteen individuals (11.1%) with Fanconi anemia tested positive, significantly more (P = 0.003) than family members (2.5%). While HPV prevalence was even higher for sexually active individuals with Fanconi anemia (17.7% vs. 2.4% in family; P = 0.003), HPV positivity also tended to be higher in the sexually inactive (8.7% in Fanconi anemia vs. 2.9% in siblings). Indeed, having Fanconi anemia increased HPV positivity 4.9-fold (95% CI, 1.6-15.4) considering age and sexual experience, but did not differ by other potential risk factors. CONCLUSION: Our studies suggest that oral HPV is more common in individuals with Fanconi anemia. It will be essential to continue to explore associations between risk factors and immune dysfunction on HPV incidence and persistence over time. IMPACT: HPV vaccination should be emphasized in those with Fanconi anemia as a first step to prevent oropharyngeal cancers, although additional studies are needed to determine whether the level of protection it offers in this population is adequate

    Preclinical correction of human Fanconi anemia complementation group A bone marrow cells using a safety-modified lentiviral vector.

    Get PDF
    One of the major hurdles for the development of gene therapy for Fanconi anemia (FA) is the increased sensitivity of FA stem cells to free radical-induced DNA damage during ex vivo culture and manipulation. To minimize this damage, we have developed a brief transduction procedure for lentivirus vector-mediated transduction of hematopoietic progenitor cells from patients with Fanconi anemia complementation group A (FANCA). The lentiviral vector FancA-sW contains the phosphoglycerate kinase promoter, the FANCA cDNA, and a synthetic, safety-modified woodchuck post transcriptional regulatory element (sW). Bone marrow mononuclear cells or purified CD34(+) cells from patients with FANCA were transduced in an overnight culture on recombinant fibronectin peptide CH-296, in low (5%) oxygen, with the reducing agent, N-acetyl-L-cysteine (NAC), and a combination of growth factors, granulocyte colony-stimulating factor (G-CSF), Flt3 ligand, stem cell factor, and thrombopoietin. Transduced cells plated in methylcellulose in hypoxia with NAC showed increased colony formation compared with 21% oxygen without NAC (P<0.03), showed increased resistance to mitomycin C compared with green fluorescent protein (GFP) vector-transduced controls (P<0.007), and increased survival. Thus, combining short transduction and reducing oxidative stress may enhance the viability and engraftment of gene-corrected cells in patients with FANCA

    Dose-adapted post-transplant cyclophosphamide for HLA-haploidentical transplantation in Fanconi anemia.

    Get PDF
    We developed a haploidentical transplantation protocol with post-transplant cyclophosphamide (CY) for in vivo T-cell depletion (TCD) using a novel adapted-dosing schedule (25 mg/kg on days +3 and +4) for Fanconi anemia (FA). With median follow-up of 3 years (range, 37 days to 6.2 years), all six patients engrafted. Two patients with multiple pre-transplant comorbidities died, one from sepsis and one from sepsis with associated chronic GVHD. Four patients without preexisting comorbidities and early transplant referrals are alive with 100% donor chimerism and excellent performance status. We conclude that adjusted-dosing post-transplant CY is effective in in vivo TCD to promote full donor engraftment in patients with FA

    Twenty years of the Italian Fanconi Anemia Registry: where we stand and what remains to be learned

    Get PDF
    The natural history of Fanconi anemia remains hard to establish because of its rarity and its heterogeneous clinical presentation; since 1994, the Italian Fanconi Anemia Registry has collected clinical, epidemiological and genetic data of Italian Fanconi Anemia patients. This registry includes 180 patients with a confirmed diagnosis of Fanconi anemia who have either been enrolled prospectively, at diagnosis, or later on. After enrollment, follow-up data were periodically collected to assess the clinical course, possible complications and long-term survival; the median follow up was 15.6 years. The main goal of the study was to describe the natural history of Fanconi anemia, focusing on the following variables: family history, disease presentation, development of hematological manifestations, development of malignancies, occurrence of hematopoietic stem cell transplantation and survival. Typical morphological and/or hematological abnormalities and/or growth retardation were the most common manifestations at diagnosis; the majority of patients (77%) exhibited hematological abnormalities at the initial presentation, and almost all (96%) eventually developed hematological manifestations. More than half of the patients (57%) underwent a bone-marrow transplant. The occurrence of cancer was quite rare at diagnosis, whereas the cumulative incidence of malignancies at 10, 20 and 30 years was 5%, 8% and 22%, respectively, for hematological cancers and 1%, 15% and 32%, respectively, for solid tumors. Overall survival at 10, 20 and 30 years were 88%, 56% and 37%, respectively; the main causes of death were cancer, complications of the hematological presentation and complications of transplantation. These data clearly confirm the detrimental outcome of Fanconi anemia, with no major improvement in the past decades

    Chromosomal integrity after UV irradiation requires FANCD2-mediated repair of double strand breaks

    Get PDF
    Fanconi Anemia (FA) is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs). FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs) generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress.Fil: Federico, Maria Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Vallerga, María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Radl, Daniela Betiana. Autoridad Regulatoria Nuclear; ArgentinaFil: Paviolo, Natalia Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Bocco, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Di Giorgio, Marina. Autoridad Regulatoria Nuclear; ArgentinaFil: Soria, Gastón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Gottifredi, Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin

    Dysfunctional telomeres in primary cells from Fanconi anemia FANCD2 patients

    Get PDF
    © 2012 Joksic et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.Background: Fanconi anemia (FA) is characterized by sensitivity to DNA cross-linking agents, mild cellular, and marked clinical radio sensitivity. In this study we investigated telomeric abnormalities of non-immortalized primary cells (lymphocytes and fibroblasts) derived from FA patients of the FA-D2 complementation group, which provides a more accurate physiological assessment than is possible with transformed cells or animal models. Results: We analyzed telomere length, telomere dysfunction-induced foci (TIFs), sister chromatid exchanges (SCE), telomere sister chromatid exchanges (T-SCE), apoptosis and expression of shelterin components TRF1 and TRF2. FANCD2 lymphocytes exhibited multiple types of telomeric abnormalities, including premature telomere shortening, increase in telomeric recombination and aberrant telomeric structures ranging from fragile to long-string extended telomeres. The baseline incidence of SCE in FANCD2 lymphocytes was reduced when compared to control, but in response to diepoxybutane (DEB) the 2-fold higher rate of SCE was observed. In contrast, control lymphocytes showed decreased SCE incidence in response to DEB treatment. FANCD2 fibroblasts revealed a high percentage of TIFs, decreased expression of TRF1 and invariable expression of TRF2. The percentage of TIFs inversely correlated with telomere length, emphasizing that telomere shortening is the major reason for the loss of telomere capping function. Upon irradiation, a significant decrease of TIFs was observed at all recovery times. Surprisingly, a considerable percentage of TIF positive cells disappeared at the same time when incidence of γ-H2AX foci was maximal. Both FANCD2 leucocytes and fibroblasts appeared to die spontaneously at higher rate than control. This trend was more evident upon irradiation; the percentage of leucocytes underwent apoptosis was 2.59- fold higher than that in control, while fibroblasts exhibited a 2- h delay before entering apoptosis. Conclusion: The results of our study showed that primary cells originating from FA-D2 patients display shorten telomeres, elevated incidence of T-SCEs and high frequency of TIFs. Disappearance of TIFs in early response to irradiation represent distinctive feature of FANCD2 cells that should be examined further.This article is made available through the Brunel Open Access Publishing Fund. This work was supported by the Ministry of Education and Science of the Republic of Serbia (Project No.173046)

    DNA double strand breaks but not interstrand crosslinks prevent progress through meiosis in fully grown mouse oocytes

    Get PDF
    There is some interest in how mammalian oocytes respond to different types of DNA damage because of the increasing expectation of fertility preservation in women undergoing chemotherapy. Double strand breaks (DSBs) induced by ionizing radiation and agents such as neocarzinostatin (NCS), and interstrand crosslinks (ICLs) induced by alkylating agents such as mitomycin C (MMC), are toxic DNA lesions that need to be repaired for cell survival. Here we examined the effects of NCS and MMC treatment on oocytes collected from antral follicles in mice, because potentially such oocytes are readily collected from ovaries and do not need to be in vitro grown to achieve meiotic competency. We found that oocytes were sensitive to NCS, such that this ionizing radiation mimetic blocked meiosis I and caused fragmented DNA. In contrast, MMC had no impact on the completion of either meiosis I or II, even at extremely high doses. However, oocytes treated with MMC did show ?-H2AX foci and following their in vitro maturation and parthenogenetic activation the development of the subsequent embryos was severely compromised. Addition of MMC to 1-cell embryos caused a similarly poor level of development, demonstrating oocytes have eventual sensitivity to this ICL-inducing agent but this does not occur during their meiotic division. In oocytes, the association of Fanconi Anemia protein, FANCD2, with sites of ICL lesions was not apparent until entry into the embryonic cell cycle. In conclusion, meiotic maturation of oocytes is sensitive to DSBs but not ICLs. The ability of oocytes to tolerate severe ICL damage and yet complete meiosis, means that this type of DNA lesion goes unrepaired in oocytes but impacts on subsequent embryo quality

    A theory for the tissue specificity of BRCA1/2 related and other hereditary cancers

    Get PDF
    Women who inherit a defective BRCA1 or BRCA2 gene have risks for breast and ovarian cancer that are so high and seem so selective that many mutation carriers choose to have prophylactic surgery. There has been much conjecture to explain such apparently striking tissue specificity. All these suggestions share the assumption that some disabled function of normal tumor suppressor genes leads to a tissue specific cancer response. Here the idea is proposed and tested that major determinants of where BRCA1/2 hereditary cancers occur are related to tissue specificity of the cancer pathogen, the agent that causes chronic inflammation or the carcinogen. The target tissue may have receptors for the pathogen, become selectively exposed to an inflammatory process or to a carcinogen such as during digestion, metabolism or elimination. An innate genomic deficit in a tumor suppressor gene impairs normal responses to these extrinsic challenges and exacerbates the susceptibility to disease in organ targets. This hypothesis also fits data for several tumor suppressors beyond BRCA1/2. A major advantage of this model is that it suggests there may be some options in addition to prophylactic surgery
    corecore