
PUBLISHED VERSION  

http://hdl.handle.net/2440/95840  

 

Wai Shan Yuen, Julie A. Merriman, Moira K. O’Bryan, Keith T. Jones 
DNA double strand breaks but not interstrand crosslinks prevent progress through meiosis in fully 
grown mouse oocytes 
PLoS One, 2012; 7(8):e43875-1-e43875-9 

© Yuen et al. This is an open-access article distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 

Originally published at: 
http://doi.org/10.1371/journal.pone.0043875  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PERMISSIONS 

  

http://creativecommons.org/licenses/by/4.0/ 

 

 

 

 

 

http://hdl.handle.net/2440/95840
http://doi.org/10.1371/journal.pone.0043875
http://creativecommons.org/licenses/by/4.0/


DNA Double Strand Breaks but Not Interstrand
Crosslinks Prevent Progress through Meiosis in Fully
Grown Mouse Oocytes
Wai Shan Yuen1, Julie A. Merriman1, Moira K. O’Bryan2, Keith T. Jones1*

1 School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia, 2 Department of Anatomy and Developmental Biology,

Monash University, Clayton, Victoria, Australia

Abstract

There is some interest in how mammalian oocytes respond to different types of DNA damage because of the increasing
expectation of fertility preservation in women undergoing chemotherapy. Double strand breaks (DSBs) induced by ionizing
radiation and agents such as neocarzinostatin (NCS), and interstrand crosslinks (ICLs) induced by alkylating agents such as
mitomycin C (MMC), are toxic DNA lesions that need to be repaired for cell survival. Here we examined the effects of NCS
and MMC treatment on oocytes collected from antral follicles in mice, because potentially such oocytes are readily collected
from ovaries and do not need to be in vitro grown to achieve meiotic competency. We found that oocytes were sensitive to
NCS, such that this ionizing radiation mimetic blocked meiosis I and caused fragmented DNA. In contrast, MMC had no
impact on the completion of either meiosis I or II, even at extremely high doses. However, oocytes treated with MMC did
show c-H2AX foci and following their in vitro maturation and parthenogenetic activation the development of the
subsequent embryos was severely compromised. Addition of MMC to 1-cell embryos caused a similarly poor level of
development, demonstrating oocytes have eventual sensitivity to this ICL-inducing agent but this does not occur during
their meiotic division. In oocytes, the association of Fanconi Anemia protein, FANCD2, with sites of ICL lesions was not
apparent until entry into the embryonic cell cycle. In conclusion, meiotic maturation of oocytes is sensitive to DSBs but not
ICLs. The ability of oocytes to tolerate severe ICL damage and yet complete meiosis, means that this type of DNA lesion goes
unrepaired in oocytes but impacts on subsequent embryo quality.
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Introduction

Mammalian oocytes spend most of their lives at the dictyate

stage of meiosis I, in so-called Germinal Vesicle (GV) arrest.

Meiotic resumption is only initiated under a hormonal cue in the

hours preceding ovulation. This unique type of cell arrest however

presents problems in maintaining oocyte health over the months,

and dependent on species, possibly decades of cell cycle arrest. In

part, this problem is solved by a 2-way communication of growth

factors with surrounding granulosa cells within the follicle [1,2,3].

Despite this somatic support, however, female aging still results in

a drop in oocyte quality. Most notably, this is observed by a rise in

mis-segregation of homologous chromosomes in meiosis I [4,5],

possibly caused by a loss in the cohesive proteins holding them

together [6,7,8]. In oocytes, cohesin complexes get loaded onto

replicating chromosomes during fetal life but cannot be repaired in

the adult [9,10]. As such with age, homologous chromosomes

loose attachment with each other.

Given that oocytes spend the majority of their long life in GV

arrest, it is important to resolve what their capacity is to detect and

respond to damage done to the DNA itself, as opposed to the

proteins holding chromosomes together. Especially considering the

increasing expectation for fertility preservation in females of

reproductive age and younger, undergoing cancer treatment

[11,12]. GV oocytes contained with primordial follicles, which

represent the longest stage of meiotic arrest, die in response to

double strand breaks (DSBs) induced by ionising radiation (IR)

[13,14], probably through a c-Abl-p63 mediated apoptotic

pathway, which appears to be most active in non-growing follicles

[15,16,17]. GV bovine oocytes contained within growing or fully

mature follicles have also been suggested to undergo cell death in

response to IR [18], and similarly meiosis stalls in pig oocytes from

mature follicle that are exposed to UV-C light [19].

Interstrand crosslinks (ICLs) are extremely toxic lesions, distinct

from DSBs, formed between 2 strands of DNA. Without repair,

they prevent DNA replication [20]. Around 10 ICLs are believed

to be formed per cell per day in somatic cells [21]. Agents such as

mitomycin C (MMC) that chemically induce ICLs, are an effective

chemotherapeutic agent to help prevent proliferation of cancer

cells and are a useful tool to study the consequences of ICLs on cell

function. The Fanconi Anemia (FA) pathway is thought to play an

important part in ICL detection and repair [22,23,24], and its

activation recruits FANCD2 and FANCI together to form the so-

called ID complex, at discrete nuclear foci of DNA damage. Some
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members of the FA pathway, including the ID complex, load onto

site of ICLs independent of replication [25,26], suggesting that

FANCD2, as part of the ID complex, is involved at an early step in

the sensing of an ICL.

Given the importance of the FA pathway in ICL DNA repair,

and possibly more generally in metabolic-induced DNA damage

through production of acetaldehydes [27] and oxidative stress

[28,29], here we decided to examine the timing of ICL DNA

repair and FA activation in mouse GV oocytes and preimplan-

tation embryos. Specifically, we wanted to examine if oocytes have

the capacity to sense DNA damage induced by MMC, as assessed

by the targeting of FANCD2 to site of ICLs. We thought it

important to examine from this time onwards because clinically

these are the stages used for assisted fertility treatments and it

would be useful to understand how these oocytes respond to

increased ICL DNA damage. The sensitivity of mouse oocytes to

DNA damage brought about by MMC-induced ICLs was

compared to that of DSBs caused by the widely used ionizing

radiation mimetic neocarzinostatin (NCS) [30,31,32,33].

Materials and Methods

HeLa Cell Culture
HeLa cells (ATCC, Cat No. CCL-2) were cultured in DMEM

Low Glucose (Invitrogen) supplemented with 10% FCS (Invitro-

gen) and 1% penicillin-streptomycin (Invitrogen) at 37uC in 5%

CO2. A double thymidine block was performed as described

previously [34].

Ethics Statement
Mice were used in strict accordance with the Australian Code of

Practice for the Care and Use of Animals for Scientific Purposes.

This protocol was approved by the University of Newcastle

Animal Care and Ethics Committee (Ethics approval number A-

2008-1079).

Oocyte Collection and Culture
GV oocytes and mature eggs were collected from hormonally

primed F1 hybrid mice (C57BL6 females 6 CBA males) as

described previously [35,36]. Milrinone (1 mM) was added to

maintain arrest [37]. GV oocytes were allowed to mature in vitro

for 14 hours in M2 media.

Embryo Activation and Culture
Mature eggs were parthenogenetically activated in Ca2+-free

KSOM medium supplemented with 10 mM SrCl2 for 5 hours

[38]. 1 mg/ml of cytochalasin D was added to diploidise embryos.

1-cell embryos were treated at 5 hours post-activation with MMC

for 4 hours. Embryo culture was in KSOMaa [39] at 37uC in 5%

CO2. Pronuclei, 2-cell embryos and blastocysts were scored at 9,

24 and 120 hours post-activation respectively.

Cell, Oocyte and Embryo Treatments
In HeLa cells, 250 ng/ml MMC was added immediately after

thymidine release for 4 hours and cells were fixed either at 4 or

7 hours post release. In oocytes, MMC at specified concentrations

were added immediately after milrinone washout for 4 hours and

cells were fixed either after maturation or at 9 hours post

activation. NCS at specified concentrations was added immedi-

ately after milrinone washout for 1 hour, and oocytes were fixed

following in vitro maturation. In embryos, MMC was added at

5 hours post-activation for 4 hours and embryos were fixed at

9 hours post-activation.

Immunofluorescence
HeLa cells, cultured on coverslips, were fixed in 4% parafor-

maldehyde in PHEM/PVP then permeabilised with 2% Triton X-

100, 30 minutes each at room temperature. Oocytes and embryos

were fixed and permeabilised as described previously [40].

Immunofluorescence was performed as described previously [41]

using a monoclonal anti-tubulin antibody (1:200, Molecular

Probes) and/or polyclonal anti-FANCD2 antibody (1:500, Abcam)

or anti-cH2AX antibody (1:100, Abcam) supplemented with 1%

BSA and 0.2% Tween 20 for 1–2 hours at room temperature.

Secondary antibodies, conjugated with Alexa488 or Alexa633

(1:1000, Molecular Probes), were used for detection by incubating

cells for 1 hour at room temperature. Oocytes or HeLa cells were

briefly stained with Hoechst (20 mg/ml) or propidium iodide

(10 mg/ml) to label chromatin before mounting on glass slides with

Citifluor (Citifluor Ltd, UK).

Imaging and Data analysis
Confocal microscopy was performed using an Olympus FV1000

equipped with a 60x/1.2 NA UPLSAPO oil immersion objective

lens. Z-stacks were captured with an interval of 1–2 mm. Analysis

was performed with FV10-ASW 2.0 Viewer software (Olympus).

For foci counting, images were converted to 8-bit gray images and

foci were counted using ImageJ software (NIH, Bethesda, USA)

following setting their threshold to 1.7 times the average

background. This value of 1.7 was used because it most closely

matched foci counted by users in initial somatic cell experiments.

Statistical analysis
All statistical analysis was performed using Graphpad Prism 5.0

software. Dichotomous data, such as polar body extrusion rates,

were pooled from repeated observations. Comparison between

groups was made using Fisher’s exact test. FANCD2 foci data

were pooled and means between 2 groups compared by Student’s

t-test or by ANOVA for multiple groups. The number of repeats is

stated in each figure legend.

Results

Neocarzinostatin blocks oocyte maturation and
fragments DNA

Mouse GV stage oocytes collected from antral follicles were

treated with the ionizing radiation mimetic NCS for a period of

1 hour before in vitro maturation. They were allowed to mature

through to metaphase II (metII) and first polar body extrusion

(PB1) rates assessed. Maturation rates were normally ,80%,

however significant inhibition of meiosis I was observed at NCS

concentrations of 0.3 mg/ml and greater (Fig 1A). Furthermore,

the rate of PB1 extrusion was exceedingly low at ,7% following a

1 hour incubation of GV oocytes with 1 mg/ml NCS. Examina-

tion of the DNA from meiotically arrested oocytes treated with

NCS showed condensed and varying levels of fragmented

chromatin, with fragmentation high in a number of oocytes

(Fig 1B). The effects of NCS appeared dose dependent, with 35%

of oocytes having such fragmentation at 0.1 mg/ml, rising to 100%

at higher doses (1–3 mg/ml); none of the untreated oocytes

displayed such abnormalities (Fig 1C).

Ataxia Telangiectasia Mutated (ATM) and ATM-and Rad3-

related (ATR), are major regulators of DNA damage, and

phosphorylate the histone H2AX, generating the epitope recog-

nised by anti- cH2AX antibodies [42,43,44]. We therefore

immunoprobed GV oocytes, and found very significant amounts

of cH2AX foci associated with chromatin in all oocytes following

Effects of DNA Damage in Mouse Oocytes
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incubation with NCS; in contrast, all untreated oocytes did not

stain positive for cH2AX (Fig 1D, E).

Mitomycin C-induced ICLs do not block completion of
meiosis I or II in oocytes

In order to begin to understand the effect that ICLs have on

meiosis, GV oocytes were in vitro cultured with MMC added for

the first 4 hours. PB1 extrusion rates were determined 8 hours

later. MMC had no effect on the ability of oocytes to undergo

meiotic maturation, with polar body rates high at about 80% for

all groups (Fig 2A). The highest concentration of MMC tested was

20 mg/ml, which is ,1000-fold higher than reported to be

effective on mitotic cells [45] and this had no statistical significance

on first polar body extrusion rate compared to controls (86% vs

77%, p = 0.13, n.s. Fig 2A).

The effect that MMC has on nuclear maturation of oocytes may

be subtler than simply blocking the process of PB1 extrusion.

Therefore, the chromatin of metII eggs matured from GV oocytes

that had been treated with MMC were examined for meiotic

spindle integrity. However, we observed no difference in the

meiotic spindles from MMC-treated eggs, with small rates of

chromosomal misalignment for all groups (Fig 2B, C). Finally, we

examined their ability to complete meiosis and become 1-cell

embryos by parthenogenetic activation with Sr2+-containing

medium. The rates of second polar body (PB2) extrusion and

pronucleus (PN) formation rates were found to be unaffected by

previous MMC addition (Fig 2D, E). From all these observations

we can conclude that the induction of ICLs during the first 4 hours

of maturation has no inhibitory effect on the ability of oocyte to

complete its meiotic divisions and become a 1-cell embryo.

Mitomycin C-induced ICLs inhibit embryo development
Next, we wanted to establish if the induction of ICLs at the GV

stage has an impact on subsequent embryo development. To

examine this, GV oocytes were treated with the same two doses

used above, 3 or 20 mg/ml MMC for the first 4 hours of

maturation, in vitro matured, parthenogenetically activated, and

preimplantation embryo development to the blastocyst stage

Figure 1. Neocarzinostatin, an ionizing radiation mimetic, fragments DNA and blocks meiosis in oocytes. (A) First polar body (PB1)
extrusion rates following maturation of oocytes treated with NCS. (B) Chromatin in oocytes from (A); (i) depicting a typical metaphase II egg that was
not treated with NCS, (ii, iii) meiotic arrest caused by NCS with varying levels of fragmentation. White dotted line represents egg and polar body
outlines. (C) Percentage of oocytes treated with or without NCS that display fragmented DNA. (D) Nuclear staining of cH2AX in GV oocytes with or
without NCS treatment; asterisks is at center of nucleolus. (E) Percentage of cH2AX positive oocytes treated with or without NCS. (A, C, E) Pooled data
from 2 replicates. In parentheses, total number of oocytes examined. (A) Different letters denote significant difference, p,0.05 (Fisher’s exact test). (B,
D) Scale bar, 10 mm.
doi:10.1371/journal.pone.0043875.g001

Effects of DNA Damage in Mouse Oocytes
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assessed (Fig 3A). For GV oocytes cultured without MMC, we

observed nearly 60% rates of development to the blastocyst stage.

However, less than 7% of embryos developed past the morula

stage if they had been pre-treated with either of the two MMC

concentrations (not shown). In order to observe any development

to the blastocyst stage, the concentration of MMC needed to be

lowered. GV oocytes treated with 0.1 mg/ml MMC were found to

have a significantly reduced blastocyst formation rate compared to

controls (57% vs 44%, p = 0.03, x2 Fisher’s exact test) and 0.3 mg/

ml MMC reduced development to below 20% (Fig 3B).

Finally we thought it would be interesting to determine if

exposure of GV oocytes to MMC was in any way more or less

detrimental than if 1-cell embryos were incubated with this

chemotherapeutic agent. In both groups, GV oocytes were in vitro

matured, parthenogenetically activated and cultured to the

blastocyst stage. However, for those 1-cell embryos treated with

MMC, its incubation followed pronucleus formation at 5 hours

after parthenogenetic activation (Fig 3A). With the two MMC

doses examined, we observed no significant difference in the rate

of blastocyst formation (Fig 3B) between those exposed at the GV

stage and those exposed as 1-cell embryos.

In summary, the above data suggest that induction of ICLs in

GV stage oocytes has no impact on the completion of meiosis but

does impact on subsequent development to the blastocyst stage. It

was interesting that even at doses 200-fold higher than that able to

impair embryogenesis the process of meiosis was unaffected. The

observation that oocytes treated at the GV stage with MMC had

severely impacted embryo development following their in vitro

maturation (Fig 3) also highlights the fact that any lack of effect of

MMC during maturation was not simply a consequence of GV

oocytes being impermeant to this drug. In fact, GV oocytes and 1-

cell embryos are likely to be equally permeant to this ICL-inducing

agent, given rates of embryo development were affected to the

same degree when MMC was added to them. Thus, as judged by

the inhibition of blastocyst formation, the developmental time

point for MMC addition appears unimportant as similar inhibition

rates were observed whether MMC was added at the GV stage or

in 1-cell embryos.

ICL induced FANCD2 nuclear foci in somatic cells but not
in oocytes

ICLs, induced for example by MMC, are repaired by the FA

pathway. It has been reported that in dividing somatic cells,

FANCD2 localises to sites of such DNA damage during S-phase in

the form of discrete nuclear foci [46,47,48], which remain on any

sites of unrepaired damage during the subsequent cell cycle

[49,50]. Using synchronised HeLa cells, we confirmed this pattern

of localisation (Fig 4A) and furthermore showed that FANCD2

foci increased nearly threefold following addition of 0.25 mg/ml

MMC (Fig 4B–D). These observations are consistent with the

ability of MMC to induce ICLs, and the involvement of the FA

pathway in their repair.

In contrast to HeLa cells, GV oocytes showed little or no

FANCD2 nuclear staining even following addition of 20 mg/ml

MMC, which is 80 times the concentration used on HeLa cells

(Fig 5A). This suggests that FANCD2 is not recruited to sites of

DNA damage during GV arrest. Such a finding could simply be

interpreted in terms of an absence of this FA pathway protein in

Figure 2. Interstrand crosslinking has no effect on completion of meiosis in oocytes. (A) First polar body (PB1) extrusion rates in oocyes
treated with MMC after milrinone washout. (B, C) Meiotic spindles from mature metaphase II stage eggs obtained in (A) were imaged (B) and the
sister chromatids on the spindle classified as aligned or mis-aligned (C). Arrow, indicates a non-aligned chromosome. Scale bar, 10 mm. (D, E) Rates of
second polar body extrusion (D) and pronucleus formation (E) in parthenogenetically activated eggs following addition of MMC to GV stage oocytes
that were then in vitro matured. (A, C, D, E) Pooled data from between 4 to 5 replicates; in parentheses, number of eggs examined; n.s., p.0.05
(Fisher’s exact test).
doi:10.1371/journal.pone.0043875.g002
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oocytes, however FANCD2 immunostaining, with the same

antibody used to label HeLa cells, was seen on both spindle

microtubules and at spindle poles during both metaphase I and II

(Fig 5B and 5C). Interestingly, its location was unaffected by prior

treatment at the GV stage with MMC (Fig 5B and 5C).

To determine if GV oocytes can detect these ICLs, cH2AX

immunostaining was performed. Without MMC treatment GV

oocytes show little or no cH2AX foci, however, when GV oocytes

were treated with MMC, discrete cH2AX foci were formed on

chromatin (Fig 6A). Counting these foci revealed a 50-fold

increase following addition of 20 mg/ml MMC (2 foci/oocyte vs

117 foci/oocyte; Fig 6B). Coupled with the FANCD2 localisation

experiments, these observations indicate that oocytes can detect

the ICLs lesions but the FA pathway is not recruited in response at

the GV stage.

FANCD2 foci in 1-cell embryos
As FANCD2 foci did not form during meiosis, we investigated if

the FA pathway was only activated once embryogenesis was

initiated. Parthenogenetically activated 1-cell embryos were

challenged with or without MMC following pronucleus formation

and the number of nuclear FANCD2 foci counted using the same

protocol established for HeLa cells (Fig 4D). In the absence of

MMC, FANCD2 was present as discrete foci on the pronuclei of

the 1-cell embryo (Fig 7A). Further, the number of foci increased

2.5-fold, (110 nuclear foci/embryo vs 272 nuclear foci/embryo,

p = 0.005; Fig 7B) following exposure to 3 mg/ml MMC. We note

that this dose had no effect on foci formation when added to GV

oocytes.

Finally, we examined if FANCD2 foci formed at a higher rate

dependent on the time of MMC addition. Previously we had

shown that MMC treatment at either the GV stage or 1-cell

embryo stage both equally impaired embryo development (Fig 3).

As such we anticipated that MMC addition at either the GV or 1-

cell embryo stages would lead to the similar levels of DNA damage

as defined by FANCD2 foci. Indeed, this proved to be the case

with the same numbers of foci present with MMC independent of

the time of addition (Fig 7B).

Discussion

NCS, often used as an ionizing radiation mimetic to induce

DSBs, was observed to be a potent inhibitor of meiotic maturation

in mouse oocytes. Affected oocytes contained condensed and

fragmented chromatin following just one hour exposure to the

drug at the GV stage. The effects of the drug are presumed similar

to IR, and indeed bovine oocytes demonstrate meiotic arrest

following UV–C light exposure [19]. Based on these findings and

those following treatment of whole ovary, we can surmise that

DSBs profoundly affect GV oocytes at all follicular stages of their

development. In primordial follicles it appears to promote loss

through apoptosis, while in oocytes from fully-grown antral

follicles, NCS-induced DSBs are an effective method of blocking

meiotic maturation. The reason for the selective apoptosis in

oocytes from primordial, but not antral follicles may be readily

explained by the loss of TAp63, an oocyte-specific member of the

p53 family essential for apoptosis, from oocytes following follicle

recruitment [15,16,17].

Earlier studies have shown that IR-induced DSBs are detected

in the newly formed 1-cell embryo [51,52]. Mature sperm are

thought to be incapable of identifying and repairing damaged

DNA, and it is therefore left to the zygote formed immediately

following gamete union to perform these tasks [53,54]. The

findings here, of MMC-induced FANCD2 foci in zygotes are

consistent with the notion that DNA repair is active in early

embryos, suggest that both ICLs and DSBs may be repaired at this

point. Given the high rates of oxidative stress thought to be present

in sperm [55,56], the activation of the FA pathway at this time

may of considerable benefit to the successful development of the

embryo.

Women with FA have premature menopause [57], and

consistent with this mouse knockouts for FA pathway members

have a smaller ovarian reserve, which results in infertility later in

life [58,59,60]. This represents the effect of an absent FA pathway

during the mitotic S phases prior to meiosis, resulting in germ cell

hypoplasia [61,62,63]. Indeed early meiotic functions for FA genes

have recently been described also in zebrafish and C. elegans

[64,65]. However, the role of the FA pathway in oocytes, during

later meiosis, has not been extensively investigated. Our data

suggest that by the time oocytes have reached their fully-grown

size and are arrested in the GV stage, then the FA pathway is not

active. cH2AX foci however did form on treatment with MMC,

consistent with previous observations of its recruitment to ICL

sites. The recruitment of cH2AX but not FANCD2 suggests that

although the FA pathway is not active, oocytes still have the

capacity to recognise DNA damage. Such tagging of DNA at the

GV stage may then be useful for its subsequent repair following

egg activation. Instead, development of FANCD2 foci at sites of

DNA damage does not occur until the 1-cell embryo stage. This

increase in foci upon ICL induction indicates an active FA

pathway in embryos. However, when embryos were treated with

Figure 3. Comparable impaired embryo development follow-
ing ICL induction at either GV or 1-embryo stage. (A) Schematic
showing the experimental design. MMC was either added after
milrinone washout or following parthenogenetic activation with Sr2+.
Blastocyst rates were assessed at 120 hours. (B) Blastocyst rates from
those oocytes treated as in (A) with the MMC concentration stated. In
parentheses, number of eggs examined from 3 pooled replicates;
different letters denote significantly difference (p,0.05; Fisher’s exact
test).
doi:10.1371/journal.pone.0043875.g003
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MMC, this led to decreased blastocyst rates even at low

concentrations. This sensitivity to MMC in spite of increased

FANCD2 foci should not imply an absence of ICL repair, given

decreased cell survival is also observed in HeLa cells treated with

similar MMC dosages [66], and these cells are well recognised to

have a robust FA pathway [50,67,68]. Instead, the decreased

survival of HeLa cells and the lowered blastocyst rates are both

likely due to the severe DNA damage inflicted by MMC that

overwhelms the repair process.

The lack of any effect in meiosis I and II upon MMC treatment,

as well as the consequential defective blastocyst development were

not necessarily unexpected. GV oocytes lack any gene transcrip-

tion and do not replicate their DNA, which possibly explains the

tolerance to high doses of MMC. In contrast, embryos need to

undergo S-phases for proper growth, and it is likely that during

these embryonic S-phases the FA pathway is full engaged. The GV

stage, although being a time in which DNA damage is induced but

not repaired, was not however uniquely vulnerable to ICL induced

damage, given embryo development was equally impaired if 1-cell

embryos were challenged with MMC at the same dose and for the

same duration. Consistent with our observations are previous

experiments on synchronised HeLa cells and fibroblasts where it

was predominantly at S-phase that FANCD2 became recruited to

DNA in an unperturbed cell cycle [45] and that in order for cells

Figure 4. Interstrand crosslinking increases FANCD2 nuclear foci in HeLa cells. (A) FANCD2 immunostaining of synchronised HeLa cells in
S-, G2- and M-phase. (B) FANCD2 nuclear foci during S-phase with or without MMC. (C) Nuclear FANCD2 foci counted per cell (mean 6 standard
deviation) from images in (B). In parentheses, total number of cells examined from 2 pooled replicates, *p,0.0001 (t-test). (D) Nuclear foci were
calculated using a software-based approach. Confocal images were converted from 32-bit RGB to an 8-bit gray scale. ImageJ software was used to
interrogate images, identify and count all nuclear foci of greater than 1.7x the mean nuclear background. In the 3 cells depicted the foci are
numbered. (A, B) Scale bar, 10 mm.
doi:10.1371/journal.pone.0043875.g004

Effects of DNA Damage in Mouse Oocytes
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to become MMC sensitive they had to have undergone an S-phase

[69]. However, severe MMC-induced DNA damage results in the

recruitment of the ID complex, which FANCD2 is part of, to all

nuclei irrespective of cell cycle phase [47]. More directly, others

have demonstrated an ability of MMC to recruit the ID complex

to sites of ICLs independent of replication [25,26]. Furthermore,

other studies point to activation of the FA pathway in response to

DNA damage that might not be entirely the same as that induced

Figure 5. FANCD2 association with spindle microtubules and poles but not nuclear foci in oocytes. (A) FANCD2 immunostaining of the
nuclei in GV oocytes with or without previous MMC addition at the concentrations stated. No FANCD2 foci were observed. (B, C) FANCD2
immunostaining of either meiotic spindles in meiosis I (B) or at metaphase II arrest (C). FANCD2 was present on spindle microtubules and poles, and
its localisation was unaffected by MMC addition. Images are representative of at least 10 oocytes from at least two replicates. Scale bar, 10 mm.
doi:10.1371/journal.pone.0043875.g005

Figure 6. Induction of cH2AX foci in GV oocytes following MMC addition. (A) cH2AX immunostaining shown in GV oocytes treated with or
without 20 mg/ml MMC. Scale bar, 10 mm. (B) cH2AX foci (mean 6 standard deviation) counted per oocyte from images in (A). In parentheses, total
number of oocytes examined, pooled from 2 independent experiments. *p,0.0001 (t-test).
doi:10.1371/journal.pone.0043875.g006

Effects of DNA Damage in Mouse Oocytes
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in S-phase [70]. Therefore, the FA pathway is not exclusively S-

phase based and replication dependent.

FANCD2 localisation to the meiosis I and II oocytes spindle and

poles while initially surprising is similar to that reported previously

for BRCA1 [71]. Indeed, these two proteins have been shown

associated in somatic cells to sites of DNA damage [45,46]. Given

their non-chromosomal localisation in maturing oocytes, other

cellular functions beyond DNA repair are possible. BRCA1 has

been implicated in mitotic spindle integrity and function

independent of repair [72,73]. Consistent with a role for BRCA1

in spindle function, knockdown in mouse oocytes leads to spindle

malformations and aneuploidy [71,74]. It remains possible that

FANCD2 has functions outside of DNA repair, and precedence

for this is set by FANCD1 (BRCA2) which: (i) regulates the

stability of BubR1, a member of the Spindle Assembly Checkpoint

(SAC), that sets the timing of anaphase in mitosis [75] and (ii)

regulates cytokinesis by localising to the central spindle formed

during mitotic exit [68,76,77,78]. Given the possibility of a non-

repair function for FANCD2 suggested by its meiotic spindle

association, future studies should therefore be directed, like for

BRCA1, at its potential role in aneuploidy prevention.
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