11 research outputs found

    QUALITY-OF-SERVICE PROVISIONING FOR SMART CITY APPLICATIONS USING SOFTWARE-DEFINED NETWORKING

    Get PDF
    In the current world, most cities have WiFi Access Points (AP) in every nook and corner. Hence upraising these cities to the status of a smart city is a more easily achievable task than before. Internet-of-Things (IoT) connections primarily use WiFi standards to form the veins of a smart city. Unfortunately, this vast potential of WiFi technology in the genesis of smart cities is somehow compromised due to its failure in meeting unique Quality-of-Service (QoS) demands of smart city applications. Out of the following QoS factors; transmission link bandwidth, packet transmission delay, jitter, and packet loss rate, not all applications call for the all of the factors at the same time. Since smart city is a pool of drastically unrelated services, this variable demand can actually be advantageous to optimize the network performance. This thesis work is an attempt to achieve one of those QoS demands, namely packet delivery latency. Three algorithms are developed to alleviate traffic load imbalance at APs so as to reduce packet forwarding delay. Software-Defined Networking (SDN) is making its way in the network world to be of great use and practicality. The algorithms make use of SDN features to control the connections to APs in order to achieve the delay requirements of smart city services. Real hardware devices are used to imitate a real-life scenario of citywide coverage consisting of WiFi devices and APs that are currently available in the market with neither of those having any additional requirements such as support for specific roaming protocol, running a software agent or sending probe packets. Extensive hardware experimentation proves the efficacy of the proposed algorithms

    A dynamic access point allocation algorithm for dense wireless LANs using potential game

    Get PDF
    This work introduces an innovative Access Point (AP) allocation algorithm for dense Wi-Fi networks, which relies on a centralised potential game developed in a Software-Defined Wireless Networking (SDWN)-based framework. The proposed strategy optimises the allocation of the Wi-Fi stations (STAs) to APs and allows their dynamic reallocation according to possible changes in the capacity of the Wi-Fi network. This paper illustrates the design of the proposed framework based on SDWN and the implementation of the potential game-based algorithm, which includes two possible strategies. The main novel contribution of this work is that the algorithm allows us to efficiently reallocate the STAs by considering external interference, which can negatively affect the capacities of the APs handled by the SDWN controller. Moreover, the paper provides a detailed performance analysis of the algorithm, which describes the significant improvements achieved with respect to the state of the art. Specifically, the results have been compared against the AP selection considered by the IEEE 802.11 standards and another centralised algorithm dealing with the same problem, in terms of the data bit rate provided to the STAs, their dissatisfaction and Quality of Experience (QoE). Finally, the paper analyses the trade-off between efficient performance and the computational complexity achieved by the strategies implemented in the proposed algorithm

    Routing for Flying Networks using Software-Defined Networking

    Get PDF
    Nos últimos anos, os Veículos Aéreos Não Tripulados (UAVs) estão a ser usados de forma crescente em inúmeras aplicações, tanto militares como civis. A sua miniaturização e o preço reduzido abriram o caminho para o uso de enxames de UAVs, que permitem melhores resultados na realização de tarefas em relação a UAVs independentes. Contudo, para permitir a cooperação entre UAVs, devem ser asseguradas comunicações contínuas e fiáveis.Além disso, os enxames de UAVs foram identificados pela comunidade científica como meio para permitir o acesso à Internet a utilizadores terrestres em cenários como prestação de socorros e Eventos Temporários Lotados (TCEs), tirando partido da sua capacidade para transportar Pontos de Acesso (APs) Wi-Fi e células Long-Term Evolution (LTE). Soluções que dependem de uma Estação de Controlo (CS) capaz de posicionar os UAVs de acordo com as necessidades de tráfego dos utilizadores demonstraram aumentar a Qualidade de Serviço (QoS) oferecida pela rede. No entanto, estas soluções introduzem desafios importantes no que diz respeito ao encaminhamento do tráfego.Recentemente, foi proposta uma solução que tira partido do conhecimento da CS sobre o estado futuro da rede para atualizar dinamicamente as tabelas de encaminhamento de modo a que as ligações na rede voadora não sejam interrompidas, em vez de se recuperar da sua interrupção, como é o caso na maioria dos protocolos de encaminhamento existentes. Apesar de não considerar o impacto das reconfigurações na rede de acesso, como consequência da mobilidade dos APs, ou o balanceamento da carga na rede, esta abordagem é promissora e merece ser desenvolvida e implementada num sistema real.Esta dissertação tem como foco a implementação de um protocolo de encaminhamento para redes voadoras baseado em Software-Defined Networking (SDN). Especificamente, aborda os problemas de mobilidade e de balanceamento da carga na rede de uma perspetiva centralizada, garantindo simultaneamente comunicações ininterruptas e de banda-larga entre utilizadores terrestres e a Internet, permitindo assim que os UAVs se possam reposicionar e reconfigurar sem interferir com as ligações dos terminais à rede.In recent years, Unmanned Aerial Vehicles (UAVs) are being increasingly used in various applications, both military and civilian. Their miniaturisation and low cost paved the way to the usage of swarms of UAVs, which provide better results when performing tasks compared to single UAVs. However, to enable cooperation between the UAVs, always-on and reliable communications must be ensured.Moreover, swarms of UAVs are being targeted by the scientific community as a way to provide Internet access to ground users in scenarios such as disaster reliefs and Temporary Crowded Events (TCEs), taking advantage of the capability of UAVs to carry Wi-Fi Access Points (APs) or Long-Term Evolution (LTE) cells. Solutions relying on a Control Station (CS) capable of positioning the UAVs according to the users' traffic demands have been shown to improve the Quality of Service (QoS) provided by the network. However, they introduce important challenges regarding network routing.Recently, a solution was proposed to take advantage of the knowledge provided by a CS regarding how the network will change, by dynamically updating the forwarding tables before links in the flying network are disrupted, rather than recovering from link failure, as is the case in most of the existing routing protocols. Although it does not consider the impact of reconfigurations on the access network due to the mobility of the APs, it is a promising approach worthy of being improved and implemented in a real system.This dissertation focuses on implementing a routing solution for flying networks based on Software-Defined Networking (SDN). Specifically, it addresses the mobility management and network load balancing issues from a centralised perspective, while simultaneously enabling uninterruptible and broadband communications between ground users and the Internet, thus allowing UAVs to reposition and reconfigure themselves without interfering with the terminals' connections to the network

    A Dynamic Access Point Allocation Algorithm for Dense Wireless LANs Using Potential Game

    Get PDF
    This work introduces an innovative Access Point (AP) allocation algorithm for dense Wi-Fi networks, which relies on a centralised potential game developed in a Software-Defined Wireless Networking (SDWN)-based framework. The proposed strategy optimises the allocation of the Wi-Fi stations (STAs) to APs and allows their dynamic reallocation according to possible changes in the capacity of the Wi-Fi network. This paper illustrates the design of the proposed framework based on SDWN and the implementation of the potential game-based algorithm, which includes two possible strategies. The main novel contribution of this work is that the algorithm allows us to efficiently reallocate the STAs by considering external interference, which can negatively affect the capacities of the APs handled by the SDWN controller. Moreover, the paper provides a detailed performance analysis of the algorithm, which describes the significant improvements achieved with respect to the state of the art. Specifically, the results have been compared against the AP selection considered by the IEEE 802.11 standards and another centralised algorithm dealing with the same problem, in terms of the data bit rate provided to the STAs, their dissatisfaction and Quality of Experience (QoE). Finally, the paper analyses the trade-off between efficient performance and the computational complexity achieved by the strategies implemented in the proposed algorithm

    사용자 중심의 밀리미터파 통신 시스템을 위한 이동성 인식 분석 프레임워크 및 네트워크 관리 기법

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·정보공학부, 2021. 2. 박세웅.Millimeter wave (mmWave) communication enables high rate transmission, but its network performance may be degraded significantly due to blockages between the transmitter and receiver. There have been two approaches to overcome the blockage effect and enhance link reliability: multi-connectivity and ultra-dense network (UDN). Particularly, multi-connectivity under a UDN environment facilitates user-centric communication. It requires dynamic configuration of serving base station groups so that each user experiences high quality services. This dissertation studies a mathematical framework and network manament schemes for user-centric mmWave communication systems. First, we models user mobility and mobility-aware performance in user-centric mmWave communication systems with multi-connectivity, and proposes a new analytical framework based on the stochastic geometry. To this end, we derive compact mathematical expressions for state transitions and probabilities of various events that each user experiences. Then we investigate mobility-aware performance in terms of network overhead and downlink throughput. This helps us to understand network operation in depth, and impacts of network density and multi-connection capability on the probability of handover related events. Numerical results verify the accuracy of our analysis and illustrate the correlation between mobility-aware performance and user speed. Next, we propose user-oriented configuration rules and price based association algorithms for user-centric mmWave networks with fully/partially wired backhauls. We develop a fair association algorithm by solving the optimization problem that we formulate for mmWave UDNs. The algorithm includes an access price based per-user request decision method and a price adjustment rule for load balancing. Based on insights from the algorithm, we develop path-aware access pricing policy for mmWave integrated access and backhaul networks. Numerical evaluations show that our proposed methods are superior to other comparative schemes. Our findings from analysis and optimization provide useful insights into the design of user-centric mmWave communication systems.밀리미터파 통신은 고속 전송을 가능하게 하지만 송신기와 수신기 사이의 장애물로 인해 네트워크 성능이 크게 저하될 수 있다. 장애물 효과를 극복하고 링크 안정성을 향상시키는 다중 연결 및 네트워크 초고밀화 두가지 접근법이 있다. 특히 각 사용자가 고품질의 서비스를 경험할 수 있도록 서빙 기지국 그룹의 동적 구성이 필요하므로 초고밀도 네트워크 환경에서 다중 연결은 사용자 중심 통신을 용이하게 한다. 본 논문은 사용자 중심의 밀리미터파 통신 시스템을 위한 수학적 프레임워크와 네트워크 관리 체계를 연구한다. 먼저 다중 연결을 사용하여 사용자 중심의 밀리미터파 통신 시스템에서 사용자 이동성과 이동성 인식 성능 지표를 모델링하고 확률기하분석을 기반으로 하는 새로운 분석 프레임워크를 제안한다. 이를 위해 각 사용자가 경험하는 다양한 이벤트의 상태 전이 확률에 대한 수학적 표현을 도출한다. 그런 다음 네트워크 오버헤드 및 다운 링크 수율 측면에서 이동성 인식 성능을 연구한다. 이를 통해 네트워크 운영에 대한 깊이있는 이해와 네트워크 밀도 및 다중 연결 기능이 핸드 오버와 관련된 이벤트의 확률에 미치는 영향을 이해할 수 있다. 시뮬레이션 결과는 분석의 정확성을 검증하고 이동성 인식 성능과 사용자 속도 간의 상관 관계를 보여준다. 다음으로 완전 또는 부분 유선 백홀이 있는 사용자 중심 밀리미터파 네트워크를 위한 사용자 중심 구성 규칙 및 접속 가격 기반 연결 알고리즘을 제안한다. 밀리미터파 초고밀도 네트워크에 대한 최적화 문제를 해결하여 공정한 연결 알고리즘을 개발한다. 이 알고리즘에는 접속 가격 기반 사용자 별 요청 결정 방법과 로드 밸런싱을 위한 가격 조정 규칙이 포함된다. 위 알고리즘 개발을 통해 얻은 통찰력을 기반으로 밀리미터파 통합 액세스 및 백홀 네트워크를 위한 경로 인식 접속 요금 정책을 개발한다. 수치 평가에 따르면 제안된 방법이 다른 비교 기법보다 우수하다. 분석 및 최적화 결과는 사용자 중심의 밀리미터파 통신 시스템 설계에 대한 유용한 통찰력을 제공할 것 이다.Abstract i Contents iii List of Tables vi List of Figures vii 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Mobility-Aware Analysis of MillimeterWave Communication Systems with Blockages 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Connectivity Model . . . . . . . . . . . . . . . . . . . . . . 10 2.2.3 Mobility Model . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Mobility-Aware Analysis . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 Analytical Framework . . . . . . . . . . . . . . . . . . . . . 13 2.3.2 Urban Scenario with Ultra-Densely Deployed BSs . . . . . . 18 2.3.3 Handover Analysis for Macrodiversity . . . . . . . . . . . . . 22 2.3.4 Normalized Network Overhead and Mobility-Aware Downlink Throughput with Greedy User Association . . . . . . . . 24 2.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 Association Control for User-Centric Millimeter Wave Communication Systems 34 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.2 Channel Model and Achievable Rate . . . . . . . . . . . . . . 39 3.2.3 User Centric mmWave Communication Framework . . . . . . 39 3.3 Traffic Load Management . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.1 Optimal Association and Admission Control . . . . . . . . . 45 3.3.2 Outage Analysis . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.4.1 Evaluation Environments . . . . . . . . . . . . . . . . . . . . 53 3.4.2 Performance Comparison . . . . . . . . . . . . . . . . . . . . 55 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4 Path Selection and Path-Aware Access Pricing Policy in Millimeter Wave IAB Networks 60 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.2.1 Geographic and Pathloss Models . . . . . . . . . . . . . . . . 62 4.2.2 IAB Network Model . . . . . . . . . . . . . . . . . . . . . . 63 4.3 Path Selection Strategies . . . . . . . . . . . . . . . . . . . . . . . . 66 4.4 Path-Aware Access Pricing Policy . . . . . . . . . . . . . . . . . . . 69 4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5 Conclusion 80 5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . 82 Abstract (In Korean) 90Docto

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Wireless Backhaul Architectures for 5G Networks

    Get PDF
    This thesis investigates innovative wireless backhaul deployment strategies for dense small cells. In particular, the work focuses on improving the resource utilisation, reliability and energy efficiency of future wireless backhaul networks by increasing and exploiting the flexibility of the network. The wireless backhaul configurations and topology management schemes proposed in this thesis consider a dense urban area scenario with static users as well as an ultra-dense outdoor small cell scenario with vehicular traffic (pedestrians, bus users and car users). Moreover, a diverse range of traffic types such as file transfer, ultra-high definition (UHD) on-demand and real-time video streaming are used. In the first part of this thesis, novel dynamic two-tier Software Defined Networking (SDN) architecture is employed in backhaul network to facilitate complex network management tasks including multi-tenancy resource sharing and energy-aware topology management. The results show the proposed architecture can deliver efficient resource utilisation, and QoS guarantee. The second part of the thesis presents wireless backhaul architectures that serve ultra-dense outdoor small cells installed on street-level fixtures. The characteristics of vehicular communications including diverse mobility patterns and unevenly distributed traffic are investigated. The system-level performance of two key technologies for 5G backhaul are compared: massive MIMO backhaul using sub-6GHz band and millimetre (mm)-wave backhaul in the 71 – 76 GHz band. Finally, innovative wireless backhaul architectures delivered from street fibre cabinets for ultra-dense outdoor small cells with vehicular traffic is proposed, which can effectively minimise the need for additional sites, power and fibre infrastructure. Multi-hop backhaul configurations are presented in order to bring in an extra level of flexibility, and thus, improve the coverage of a street cabinet mm-wave backhaul network as well as distribute traffic loads

    Situation-aware Edge Computing

    Get PDF
    Future wireless networks must cope with an increasing amount of data that needs to be transmitted to or from mobile devices. Furthermore, novel applications, e.g., augmented reality games or autonomous driving, require low latency and high bandwidth at the same time. To address these challenges, the paradigm of edge computing has been proposed. It brings computing closer to the users and takes advantage of the capabilities of telecommunication infrastructures, e.g., cellular base stations or wireless access points, but also of end user devices such as smartphones, wearables, and embedded systems. However, edge computing introduces its own challenges, e.g., economic and business-related questions or device mobility. Being aware of the current situation, i.e., the domain-specific interpretation of environmental information, makes it possible to develop approaches targeting these challenges. In this thesis, the novel concept of situation-aware edge computing is presented. It is divided into three areas: situation-aware infrastructure edge computing, situation-aware device edge computing, and situation-aware embedded edge computing. Therefore, the concepts of situation and situation-awareness are introduced. Furthermore, challenges are identified for each area, and corresponding solutions are presented. In the area of situation-aware infrastructure edge computing, economic and business-related challenges are addressed, since companies offering services and infrastructure edge computing facilities have to find agreements regarding the prices for allowing others to use them. In the area of situation-aware device edge computing, the main challenge is to find suitable nodes that can execute a service and to predict a node’s connection in the near future. Finally, to enable situation-aware embedded edge computing, two novel programming and data analysis approaches are presented that allow programmers to develop situation-aware applications. To show the feasibility, applicability, and importance of situation-aware edge computing, two case studies are presented. The first case study shows how situation-aware edge computing can provide services for emergency response applications, while the second case study presents an approach where network transitions can be implemented in a situation-aware manner

    XIII Jornadas de ingeniería telemática (JITEL 2017)

    Full text link
    Las Jornadas de Ingeniería Telemática (JITEL), organizadas por la Asociación de Telemática (ATEL), constituyen un foro propicio de reunión, debate y divulgación para los grupos que imparten docencia e investigan en temas relacionados con las redes y los servicios telemáticos. Con la organización de este evento se pretende fomentar, por un lado el intercambio de experiencias y resultados, además de la comunicación y cooperación entre los grupos de investigación que trabajan en temas relacionados con la telemática. En paralelo a las tradicionales sesiones que caracterizan los congresos científicos, se desea potenciar actividades más abiertas, que estimulen el intercambio de ideas entre los investigadores experimentados y los noveles, así como la creación de vínculos y puntos de encuentro entre los diferentes grupos o equipos de investigación. Para ello, además de invitar a personas relevantes en los campos correspondientes, se van a incluir sesiones de presentación y debate de las líneas y proyectos activos de los mencionados equiposLloret Mauri, J.; Casares Giner, V. (2018). XIII Jornadas de ingeniería telemática (JITEL 2017). Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/97612EDITORIA
    corecore