177 research outputs found

    Utilisation of microsystems technology in radio frequency and microwave applications

    Get PDF
    The market trends of the rapidly growing communication systems require new product architectures and services that are only realisable by utilising technologies beyond that of planar integrated circuits. Microsystems technology (MST) is one such technology which can revolutionise radio frequency (RF) and microwave applications. This article discusses the enabling potential of the MST to meet the stringent requirements of modern communication systems. RF MST fabrication technologies and actuation mechanisms empower conventional processes by alleviating the substrate effects on passive devices and provide product designers with high quality versatile microscale components which can facilitate system integration and lead to novel architectures with enhanced robustness and reduced power consumption. An insight on the variety of components that can be fabricated using the MST is given, emphasizing their excellent electrical performance and versatility. Research issues that need to be addressed are also discussed. Finally, this article discusses the main approaches for integrating MST devices in RF and microwave applications together with the difficulties that need to be overcome in order to make such devices readily available for volume-production.peer-reviewe

    Micro-electromechanical Switched Tunable Inductor

    Get PDF
    Disclosed is an integrated tunable inductor having mutual micromachined inductances fabricated in close proximity to a tunable inductor that is switched in and out by micromechanical ohmic switches to change the inductance of the integrated tunable inductor. To achieve a large tuning range and high quality factor, silver is preferably used as the structural material to co-fabricate the inductors and micromachined switches, and silicon is selectively removed from the backside of the substrate. Using this method, exemplary tuning of 47% at 6 GHz is achievable for a 1.1 nH silver inductor fabricated on a low-loss polymer membrane. The effect of the quality factor on the tuning characteristic of the integrated inductor is evaluated by comparing the measured result of substantially identical inductors fabricated on various substrates. To maintain the quality factor of the silver inductor, the device may be encapsulated using a low-cost wafer-level polymer packaging technique.Georgia Tech Research Corporatio

    The manufacture and characterisation of microscale magnetic components.

    Get PDF
    Abstract unavailable please refer to PD

    Applications of Ferro-Nanofluid on a Micro-Transformer

    Get PDF
    An on-chip transformer with a ferrofluid magnetic core has been developed and tested. The transformer consists of solenoid-type coil and a magnetic core of ferrofluid, with the former fabricated by MEMS technology and the latter by a chemical co-precipitation method. The performance of the MEMS transformer with a ferrofluid magnetic core was measured and simulated with frequencies ranging from 100 kHz to 100 MHz. Experimental results reveal that the presence of the ferrofluid increases the inductance of coils and the coupling coefficient of transformer; however, it also increases the resistance owing to the lag between the external magnetic field and the magnetization of the material

    Manufacture and Characterization of High Q-Factor Inductors Based on CMOS-MEMS Techniques

    Get PDF
    A high Q-factor (quality-factor) spiral inductor fabricated by the CMOS (complementary metal oxide semiconductor) process and a post-process was investigated. The spiral inductor is manufactured on a silicon substrate. A post-process is used to remove the underlying silicon substrate in order to reduce the substrate loss and to enhance the Q-factor of the inductor. The post-process adopts RIE (reactive ion etching) to etch the sacrificial oxide layer, and then TMAH (tetramethylammonium hydroxide) is employed to remove the silicon substrate for obtaining the suspended spiral inductor. The advantage of this post-processing method is its compatibility with the CMOS process. The performance of the spiral inductor is measured by an Agilent 8510C network analyzer and a Cascade probe station. Experimental results show that the Q-factor and inductance of the spiral inductor are 15 at 15 GHz and 1.8 nH at 1 GHz, respectively

    Three-dimensional micromachined on-chip inductors for high frequency applications

    Get PDF
    Demands for wireless communication are ever-escalating for consumer and military communication applications. The requirements of portability, more functionality and lower cost have been driving forces toward smaller, more sophisticated and flexible wireless devices with lower power consumption. To meet these requirements, monolithically integrated passive inductors with high Q-factors and high self-resonant frequencies are desirable. Q-factor and self-resonant frequency of an inductor are significantly degraded at high frequencies due to conductor ohmic loss, magnetically induced eddy current in the conductive substrate, and lower self-resonant frequency from capacitance between conductive substrate and conductors. In this dissertation, novel three-dimensional arch-like solenoid and dome-shaped spiral inductors are designed, fabricated, and characterized. MEMS-based fabrication techniques such as copper electroplating through voids in thick SU-8 photoresist molds and EAGLE2100 conformal photoresist molds on sacrificial arch-like or dome-shape SJR5740 photoresist mounds are utilized. An air gap between the inductor and the silicon substrate is used to reduce the degradations of inductor performance. According to the Sonnet electromagnetic simulations, 30 ÎŒm air-gap suspension over the substrate is an adequate choice for these inductors. Suspended arch-like solenoid copper inductor has flat bottom conductor connected to arch-like top conductor with an air core in between. This design has only 2 contact points per inductor turn to minimize series resistance. Suspended domeshaped spiral copper inductor is fabricated on a sacrificial photoresist dome with the outer end connected to one probe pad, and the inner end connected to the other probe pad through vias and an air-bridge. The sidewalls of spiral turns in this design overlap less with each other thereby reducing inter-turn capacitances. Fabricated inductors are characterized and modeled at high frequencies from Sparameter measurements. ABCD-parameters, derived from the S-parameters are translated into a simplified physical π-model. The resulting arch-like suspended inductors with 2-5 turns have inductances between 0.62 to 0.79 nH, peak Q-factor values between 15.42 to 17 at peak-Q frequencies between 4.7 GHz to 7.0 GHz, and self-resonant frequencies between 47.6 GHz to 88.6 GHz. The 3-turn dome-shaped spiral inductor has inductance of 3.37 nH, peak Q-factor of 35.9 at 1.65 GHz, and self-resonant frequency at 18.74 GHz

    Design and modeling of solenoid inductor integrated with FeNiCo in high frequency

    Get PDF
    In this work, the design and modeling of the solenoid inductor are discussed. The layout of integrated inductors with magnetic cores and their geometrical parameters are developed. The quality factor Q and inductance value L are extracted from the S-parameters and plotted versus frequency. The effect of solenoid inductor geometry on inductance and quality factor are studied via simulation using MATLAB. The solenoid inductor geometry parameters considered are the number of turns, length of the magnetic core, the width of a magnetic core, the gap between turns, the thickness of the magnetic core, the thickness of the coil and oxide thickness of solenoid inductor. The performance of the proposed solenoid inductor integrated with FeNiCo is compared with other solenoid inductors

    Modeling and analysis of thick suspended deep x-ray liga inductors on CMOS/BiCMOS substrate

    Get PDF
    Modeling and simulation results for two types of 150 μm height air suspended inductors proposed for LIGA fabrication are presented. The inductor substrates used model the TSMC 0.18 μm CMOS/BiCMOS substrates. The RF performance between the suspended structure and the unsuspended counterpart are compared and the advantage of the suspended structures is explored. The potential of LIGA for fabricating high suspended inductors with good performance and for combining these with CMOS/BiCMOS is demonstrated

    Radio Frequency Microelectromechanical Systems in Defence and Aerospace

    Get PDF
    For all onboard systems applications, it is important to have very low-loss characteristics and low power consumption coupled with size reduction. The controls and instrumentation in defence and aerospace continually calls for newer technologies and developments. One such technology showing remarkable potential over the years is radio frequency microelectromechanical systems (RF MEMS) which have already made their presence felt prominently by offering replacement in radar and communication systems with high quality factors and precise tunability. The RF MEMS components have emerged as potential candidates for defence and aerospace applications. The core theme of this paper is to drive home the fact that the limitations faced by the current RF devices can be overcome by the flexibility and better device performance characteristics of RF MEMS components, which ultimately propagate the device level benefits to the final system to attain the unprecedented levels of performance.Defence Science Journal, 2009, 59(6), pp.568-567, DOI:http://dx.doi.org/10.14429/dsj.59.156
    • 

    corecore