502 research outputs found

    Parallel programming systems for scalable scientific computing

    Get PDF
    High-performance computing (HPC) systems are more powerful than ever before. However, this rise in performance brings with it greater complexity, presenting significant challenges for researchers who wish to use these systems for their scientific work. This dissertation explores the development of scalable programming solutions for scientific computing. These solutions aim to be effective across a diverse range of computing platforms, from personal desktops to advanced supercomputers.To better understand HPC systems, this dissertation begins with a literature review on exascale supercomputers, massive systems capable of performing 10¹⁸ floating-point operations per second. This review combines both manual and data-driven analyses, revealing that while traditional challenges of exascale computing have largely been addressed, issues like software complexity and data volume remain. Additionally, the dissertation introduces the open-source software tool (called LitStudy) developed for this research.Next, this dissertation introduces two novel programming systems. The first system (called Rocket) is designed to scale all-versus-all algorithms to massive datasets. It features a multi-level software-based cache, a divide-and-conquer approach, hierarchical work-stealing, and asynchronous processing to maximize data reuse, exploit data locality, dynamically balance workloads, and optimize resource utilization. The second system (called Lightning) aims to scale existing single-GPU kernel functions across multiple GPUs, even on different nodes, with minimal code adjustments. Results across eight benchmarks on up to 32 GPUs show excellent scalability.The dissertation concludes by proposing a set of design principles for developing parallel programming systems for scalable scientific computing. These principles, based on lessons from this PhD research, represent significant steps forward in enabling researchers to efficiently utilize HPC systems

    Design of robust scheduling methodologies for high performance computing

    Get PDF
    Scientific applications are often large, complex, computationally-intensive, and irregular. Loops are often an abundant source of parallelism in scientific applications. Due to the ever-increasing computational needs of scientific applications, high performance computing (HPC) systems have become larger and more complex, offering increased parallelism at multiple hardware levels. Load imbalance, caused by irregular computational load per task and unpredictable computing system characteristics (system variability), often degrades the performance of applications. Besides, perturbations, such as reduced computing power, network latency availability, or failures, can severely impact the performance of the applications. System variability and perturbations are only expected to increase in future extreme-scale computing systems. Extrapolating the current failure rate to Exascale would result in a failure every 20 minutes. Such failure rate and perturbations would render the computing systems unusable. This doctoral thesis improves the performance of computationally-intensive scientific applications on HPC systems via robust load balancing. Robust scheduling ensures and maintains improved load balanced execution under unpredictable application and system characteristics. A number of dynamic loop self-scheduling (DLS) techniques have been introduced and successfully used in scientific applications between the 1980s and 2000s. These DLS techniques are not fault-tolerant as they were originally introduced. In this thesis, we identify three major research questions to achieve robust scheduling (1) How to ensure that the DLS techniques employed in scientific applications today adhere to their original design goals and specifications? (2) How to select a DLS technique that will achieve improved performance under perturbations? (3) How to tolerate perturbations during execution and maintain a load balanced execution on HPC systems? To answer the first question, we reproduced the original experiments that introduced the DLS techniques to verify their present implementation. Simulation is used to reproduce experiments on systems from the past. Realistic simulation induces a similar analysis and conclusions to the analysis of the native results. To this end, we devised an approach for bridging the native and simulative executions of parallel applications on HPC systems. This simulation approach is used to reproduce scheduling experiments on past and present systems to verify the implementation of DLS techniques. Given the multiple levels of parallelism offered by the present HPC systems, we analyzed the load imbalance in scientific applications, from computer vision, astrophysics, and mathematical kernels, at both thread and process levels. This analysis revealed a significant interplay between thread level and process level load balancing. We found that dynamic load balancing at the thread level propagates to the process level and vice versa. However, the best application performance is only achieved by two-level dynamic load balancing. Next, we examined the performance of applications under perturbations. We found that the most robust DLS technique does not deliver the best performance under various perturbations. The most efficient DLS technique changes by changing the application, the system, or perturbations during execution. This signifies the algorithm selection problem in the DLS. We leveraged realistic simulations to address the algorithm selection problem of scheduling under perturbations via a simulation assisted approach (SimAS), which answers the second question. SimAS dynamically selects DLS techniques that improve the performance depending on the application, system, and perturbations during the execution. To answer the third question, we introduced a robust dynamic load balancing (rDLB) approach for the robust self-scheduling of scientific applications under failures (question 3). rDLB proactively reschedules already allocated tasks and requires no detection of perturbations. rDLB tolerates up to P −1 processor failures (P is the number of processors allocated to the application) and boosts the flexibility of applications against nonfatal perturbations, such as reduced availability of resources. This thesis is the first to provide insights into the interplay between thread and process level dynamic load balancing in scientific applications. Verified DLS techniques, SimAS, and rDLB are integrated into an MPI-based dynamic load balancing library (DLS4LB), which supports thirteen DLS techniques, for robust dynamic load balancing of scientific applications on HPC systems. Using the methods devised in this thesis, we improved the performance of scientific applications by up to 21% via two-level dynamic load balancing. Under perturbations, we enhanced their performance by a factor of 7 and their flexibility by a factor of 30. This thesis opens up the horizons into understanding the interplay of load balancing between various levels of software parallelism and lays the ground for robust multilevel scheduling for the upcoming Exascale HPC systems and beyond

    Contributions to Desktop Grid Computing : From High Throughput Computing to Data-Intensive Sciences on Hybrid Distributed Computing Infrastructures

    Get PDF
    Since the mid 90’s, Desktop Grid Computing - i.e the idea of using a large number of remote PCs distributed on the Internet to execute large parallel applications - has proved to be an efficient paradigm to provide a large computational power at the fraction of the cost of a dedicated computing infrastructure.This document presents my contributions over the last decade to broaden the scope of Desktop Grid Computing. My research has followed three different directions. The first direction has established new methods to observe and characterize Desktop Grid resources and developed experimental platforms to test and validate our approach in conditions close to reality. The second line of research has focused on integrating Desk- top Grids in e-science Grid infrastructure (e.g. EGI), which requires to address many challenges such as security, scheduling, quality of service, and more. The third direction has investigated how to support large-scale data management and data intensive applica- tions on such infrastructures, including support for the new and emerging data-oriented programming models.This manuscript not only reports on the scientific achievements and the technologies developed to support our objectives, but also on the international collaborations and projects I have been involved in, as well as the scientific mentoring which motivates my candidature for the Habilitation `a Diriger les Recherches

    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016)

    Get PDF
    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016) Timisoara, Romania. February 8-11, 2016.The PhD Symposium was a very good opportunity for the young researchers to share information and knowledge, to present their current research, and to discuss topics with other students in order to look for synergies and common research topics. The idea was very successful and the assessment made by the PhD Student was very good. It also helped to achieve one of the major goals of the NESUS Action: to establish an open European research network targeting sustainable solutions for ultrascale computing aiming at cross fertilization among HPC, large scale distributed systems, and big data management, training, contributing to glue disparate researchers working across different areas and provide a meeting ground for researchers in these separate areas to exchange ideas, to identify synergies, and to pursue common activities in research topics such as sustainable software solutions (applications and system software stack), data management, energy efficiency, and resilience.European Cooperation in Science and Technology. COS

    3rd Many-core Applications Research Community (MARC) Symposium. (KIT Scientific Reports ; 7598)

    Get PDF
    This manuscript includes recent scientific work regarding the Intel Single Chip Cloud computer and describes approaches for novel approaches for programming and run-time organization

    HSP-Wrap: The Design and Evaluation of Reusable Parallelism for a Subclass of Data-Intensive Applications

    Get PDF
    There is an increasing gap between the rate at which data is generated by scientific and non-scientific fields and the rate at which data can be processed by available computing resources. In this paper, we introduce the fields of Bioinformatics and Cheminformatics; two fields where big data has become a problem due to continuing advances in the technologies that drives these fields: such as gene sequencing and small ligand exploration. We introduce high performance computing as a means to process this growing base of data in order to facilitate knowledge discovery. We enumerate goals of the project including reusability, efficiency, reliability, and scalability. We then describe the implementation of a software scheduler which aims to improve input and output performance of a targeted collection of informatics tools, as well as the profiling and optimization needed to tune the software. We evaluate the performance of the software with a scalability study of the Bioinformatics tools BLAST, HMMER, and MUSCLE; as well as the Cheminformatics tool DOCK6

    From the Ground Up: A Complex Systems Approach to Climate Change Adaptation in Agriculture

    Get PDF
    Climate change presents an unprecedented challenge to global agriculture and food security. Small farms are especially vulnerable to the local impacts of large-scale drivers of change. Effective adaptation in agriculture requires working across scales, and geographic, political, and disciplinary boundaries to address barriers. I use elements of case study, agent-based modeling and serious games, to design a model of farmer decision-making using the sociocognitive framework of climate change adaptation. I examine how adaptation functions as a process, how complex dynamics influence farmer behavior, and how individual decisions influence collective behavior in response to climate change. This novel approach to adaptation research in agriculture examines the relationships between the contextual, compositional, and cognitive elements of the sociocognitive theory. The tools developed for this research have broad practical and theoretical future applications in climate adaptation research and policymaking. This dissertation is available in open access at AURA (https://aura.antioch.edu) and OhioLINK ETD Center (https://etd.ohiolink.edu)

    Irrigation improvement projects in the Nile Delta : promises, challenges, surprises

    Get PDF

    Online Modeling and Tuning of Parallel Stream Processing Systems

    Get PDF
    Writing performant computer programs is hard. Code for high performance applications is profiled, tweaked, and re-factored for months specifically for the hardware for which it is to run. Consumer application code doesn\u27t get the benefit of endless massaging that benefits high performance code, even though heterogeneous processor environments are beginning to resemble those in more performance oriented arenas. This thesis offers a path to performant, parallel code (through stream processing) which is tuned online and automatically adapts to the environment it is given. This approach has the potential to reduce the tuning costs associated with high performance code and brings the benefit of performance tuning to consumer applications where otherwise it would be cost prohibitive. This thesis introduces a stream processing library and multiple techniques to enable its online modeling and tuning. Stream processing (also termed data-flow programming) is a compute paradigm that views an application as a set of logical kernels connected via communications links or streams. Stream processing is increasingly used by computational-x and x-informatics fields (e.g., biology, astrophysics) where the focus is on safe and fast parallelization of specific big-data applications. A major advantage of stream processing is that it enables parallelization without necessitating manual end-user management of non-deterministic behavior often characteristic of more traditional parallel processing methods. Many big-data and high performance applications involve high throughput processing, necessitating usage of many parallel compute kernels on several compute cores. Optimizing the orchestration of kernels has been the focus of much theoretical and empirical modeling work. Purely theoretical parallel programming models can fail when the assumptions implicit within the model are mis-matched with reality (i.e., the model is incorrectly applied). Often it is unclear if the assumptions are actually being met, even when verified under controlled conditions. Full empirical optimization solves this problem by extensively searching the range of likely configurations under native operating conditions. This, however, is expensive in both time and energy. For large, massively parallel systems, even deciding which modeling paradigm to use is often prohibitively expensive and unfortunately transient (with workload and hardware). In an ideal world, a parallel run-time will re-optimize an application continuously to match its environment, with little additional overhead. This work presents methods aimed at doing just that through low overhead instrumentation, modeling, and optimization. Online optimization provides a good trade-off between static optimization and online heuristics. To enable online optimization, modeling decisions must be fast and relatively accurate. Online modeling and optimization of a stream processing system first requires the existence of a stream processing framework that is amenable to the intended type of dynamic manipulation. To fill this void, we developed the RaftLib C++ template library, which enables usage of the stream processing paradigm for C++ applications (it is the run-time which is the basis of almost all the work within this dissertation). An application topology is specified by the user, however almost everything else is optimizable by the run-time. RaftLib takes advantage of the knowledge gained during the design of several prior streaming languages (notably Auto-Pipe). The resultant framework enables online migration of tasks, auto-parallelization, online buffer-reallocation, and other useful dynamic behaviors that were not available in many previous stream processing systems. Several benchmark applications have been designed to assess the performance gains through our approaches and compare performance to other leading stream processing frameworks. Information is essential to any modeling task, to that end a low-overhead instrumentation framework has been developed which is both dynamic and adaptive. Discovering a fast and relatively optimal configuration for a stream processing application often necessitates solving for buffer sizes within a finite capacity queueing network. We show that a generalized gain/loss network flow model can bootstrap the process under certain conditions. Any modeling effort, requires that a model be selected; often a highly manual task, involving many expensive operations. This dissertation demonstrates that machine learning methods (such as a support vector machine) can successfully select models at run-time for a streaming application. The full set of approaches are incorporated into the open source RaftLib framework
    corecore