633 research outputs found

    CSP channels for CAN-bus connected embedded control systems

    Get PDF
    Closed loop control system typically contains multitude of sensors and actuators operated simultaneously. So they are parallel and distributed in its essence. But when mapping this parallelism to software, lot of obstacles concerning multithreading communication and synchronization issues arise. To overcome this problem, the CT kernel/library based on CSP algebra has been developed. This project (TES.5410) is about developing communication extension to the CT library to make it applicable in distributed systems. Since the library is tailored for control systems, properties and requirements of control systems are taken into special consideration. Applicability of existing middleware solutions is examined. A comparison of applicable fieldbus protocols is done in order to determine most suitable ones and CAN fieldbus is chosen to be first fieldbus used. Brief overview of CSP and existing CSP based libraries is given. Middleware architecture is proposed along with few novel ideas

    Performance Modelling and Resource Allocation of the Emerging Network Architectures for Future Internet

    Get PDF
    With the rapid development of information and communications technologies, the traditional network architecture has approached to its performance limit, and thus is unable to meet the requirements of various resource-hungry applications. Significant infrastructure improvements to the network domain are urgently needed to guarantee the continuous network evolution and innovation. To address this important challenge, tremendous research efforts have been made to foster the evolution to Future Internet. Long-term Evolution Advanced (LTE-A), Software Defined Networking (SDN) and Network Function Virtualisation (NFV) have been proposed as the key promising network architectures for Future Internet and attract significant attentions in the network and telecom community. This research mainly focuses on the performance modelling and resource allocations of these three architectures. The major contributions are three-fold: 1) LTE-A has been proposed by the 3rd Generation Partnership Project (3GPP) as a promising candidate for the evolution of LTE wireless communication. One of the major features of LTE-A is the concept of Carrier Aggregation (CA). CA enables the network operators to exploit the fragmented spectrum and increase the peak transmission data rate, however, this technical innovation introduces serious unbalanced loads among in the radio resource allocation of LTE-A. To alleviate this problem, a novel QoS-aware resource allocation scheme, termed as Cross-CC User Migration (CUM) scheme, is proposed in this research to support real-time services, taking into consideration the system throughput, user fairness and QoS constraints. 2) SDN is an emerging technology towards next-generation Internet. In order to improve the performance of the SDN network, a preemption-based packet-scheduling scheme is firstly proposed in this research to improve the global fairness and reduce the packet loss rate in SDN data plane. Furthermore, in order to achieve a comprehensive and deeper understanding of the performance behaviour of SDN network, this work develops two analytical models to investigate the performance of SDN in the presence of Poisson Process and Markov Modulated Poisson Process (MMPP) respectively. 3) NFV is regarded as a disruptive technology for telecommunication service providers to reduce the Capital Expenditure (CAPEX) and Operational Expenditure (OPEX) through decoupling individual network functions from the underlying hardware devices. While NFV faces a significant challenging problem of Service-Level-Agreement (SLA) guarantee during service provisioning. In order to bridge this gap, a novel comprehensive analytical model based on stochastic network calculus is proposed in this research to investigate end-to-end performance of NFV network. The resource allocation strategies proposed in this study significantly improve the network performance in terms of packet loss probability, global allocation fairness and throughput per user in LTE-A and SDN networks; the analytical models designed in this study can accurately predict the network performances of SDN and NFV networks. Both theoretical analysis and simulation experiments are conducted to demonstrate the effectiveness of the proposed algorithms and the accuracy of the designed models. In addition, the models are used as practical and cost-effective tools to pinpoint the performance bottlenecks of SDN and NFV networks under various network conditions

    Quarc: an architecture for efficient on-chip communication

    Get PDF
    The exponential downscaling of the feature size has enforced a paradigm shift from computation-based design to communication-based design in system on chip development. Buses, the traditional communication architecture in systems on chip, are incapable of addressing the increasing bandwidth requirements of future large systems. Networks on chip have emerged as an interconnection architecture offering unique solutions to the technological and design issues related to communication in future systems on chip. The transition from buses as a shared medium to networks on chip as a segmented medium has given rise to new challenges in system on chip realm. By leveraging the shared nature of the communication medium, buses have been highly efficient in delivering multicast communication. The segmented nature of networks, however, inhibits the multicast messages to be delivered as efficiently by networks on chip. Relying on extensive research on multicast communication in parallel computers, several network on chip architectures have offered mechanisms to perform the operation, while conforming to resource constraints of the network on chip paradigm. Multicast communication in majority of these networks on chip is implemented by establishing a connection between source and all multicast destinations before the message transmission commences. Establishing the connections incurs an overhead and, therefore, is not desirable; in particular in latency sensitive services such as cache coherence. To address high performance multicast communication, this research presents Quarc, a novel network on chip architecture. The Quarc architecture targets an area-efficient, low power, high performance implementation. The thesis covers a detailed representation of the building blocks of the architecture, including topology, router and network interface. The cost and performance comparison of the Quarc architecture against other network on chip architectures reveals that the Quarc architecture is a highly efficient architecture. Moreover, the thesis introduces novel performance models of complex traffic patterns, including multicast and quality of service-aware communication

    Tester for chosen sub-standard of the IEEE 802.1Q

    Get PDF
    Tato práce se zabývá analyzováním IEEE 802.1Q standardu TSN skupiny a návrhem testovacího modulu. Testovací modul je napsán v jazyku VHDL a je možné jej implementovat do Intel Stratix® V GX FPGA (5SGXEA7N2F45C2) vývojové desky. Standard IEEE 802.1Q (TSN) definuje deterministickou komunikace přes Ethernet sít, v reálném čase, požíváním globálního času a správným rozvrhem vysíláním a příjmem zpráv. Hlavní funkce tohoto standardu jsou: časová synchronizace, plánování provozu a konfigurace sítě. Každá z těchto funkcí je definovaná pomocí více různých podskupin tohoto standardu. Podle definice IEEE 802.1Q standardu je možno tyto podskupiny vzájemně libovolně kombinovat. Některé podskupiny standardu nemohou fungovat nezávisle, musí využívat funkce jiných podskupin standardu. Realizace funkce podskupin standardu je možná softwarově, hardwarově, nebo jejich kombinací. Na základě výše uvedených fakt, implementace podskupin standardu, které jsou softwarově související, byly vyloučené. Taky byly vyloučené podskupiny standardů, které jsou závislé na jiných podskupinách. IEEE 802.1Qbu byl vybrán jako vhodná část pro realizaci hardwarového testu. Různé způsoby testování byly vysvětleny jako DFT, BIST, ATPG a další jiné techniky. Pro hardwarové testování byla vybrána „Protocol Aware (PA)“technika, protože tato technika zrychluje testování, dovoluje opakovanou použitelnost a taky zkracuje dobu uvedení na trh. Testovací modul se skládá ze dvou objektů (generátor a monitor), které mají implementovanou IEEE 802.1Qbu podskupinu standardu. Funkce generátoru je vygenerovat náhodné nebo nenáhodné impulzy a potom je poslat do testovaného zařízeni ve správném definovaném protokolu. Funkce monitoru je přijat ethernet rámce a ověřit jejich správnost. Objekty jsou navrhnuty stejným způsobem na „TOP“úrovni a skládají se ze čtyř modulů: Avalon MM rozhraní, dvou šablon a jednoho portu. Avalon MM rozhraní bylo vytvořeno pro komunikaci softwaru s hardwarem. Tento modul přijme pakety ze softwaru a potom je dekóduje podle definovaného protokolu a „pod-protokolu “. „Pod-protokol“se skládá z příkazu a hodnoty daného příkazu. Podle dekódovaného příkazu a hodnot daných příkazem je kontrolovaný celý objekt. Šablona se používá na generování nebo ověřování náhodných nebo nenáhodných dat. Dvě šablony byly implementovány pro expresní ověřování nebo preempční transakce, definované IEEE 802.1Qbu. Porty byly vytvořené pro komunikaci mezi testovaným zařízením a šablonou podle daného standardu. Port „generátor“má za úkol vybrat a vyslat rámce podle priority a času vysílaní. Port „monitor“přijme rámce do „content-addressable memory”, která ověřuje priority rámce a podle toho je posílá do správné šablony. Výsledky prokázaly, že tato testovací technika dosahuje vysoké rychlosti a rychlé implementace.This master paper is dealing with the analysis of IEEE 802.1Q group of TSN standards and with the design of HW tester. Standard IEEE 802.1Qbu has appeared to be an optimal solution for this paper. Detail explanation of this sub-standard are included in this paper. As HW test the implementation, a protocol aware technique was chosen in order to accelerate testing. Paper further describes architecture of this tester, with detail explanation of the modules. Essential issue of protocol aware controlling objects by SW, have been resolved and described. Result proof that this technique has reached higher speed of testing, reusability, and fast implementation.

    Second year technical report on-board processing for future satellite communications systems

    Get PDF
    Advanced baseband and microwave switching techniques for large domestic communications satellites operating in the 30/20 GHz frequency bands are discussed. The nominal baseband processor throughput is one million packets per second (1.6 Gb/s) from one thousand T1 carrier rate customer premises terminals. A frequency reuse factor of sixteen is assumed by using 16 spot antenna beams with the same 100 MHz bandwidth per beam and a modulation with a one b/s per Hz bandwidth efficiency. Eight of the beams are fixed on major metropolitan areas and eight are scanning beams which periodically cover the remainder of the U.S. under dynamic control. User signals are regenerated (demodulated/remodulated) and message packages are reformatted on board. Frequency division multiple access and time division multiplex are employed on the uplinks and downlinks, respectively, for terminals within the coverage area and dwell interval of a scanning beam. Link establishment and packet routing protocols are defined. Also described is a detailed design of a separate 100 x 100 microwave switch capable of handling nonregenerated signals occupying the remaining 2.4 GHz bandwidth with 60 dB of isolation, at an estimated weight and power consumption of approximately 400 kg and 100 W, respectively

    Schedulability-Driven Frame Packing for Multi-Cluster Distributed Embedded Systems

    Get PDF
    We present an approach to frame packing for multi-cluster distributed embedded systems consisting of time-triggered and event-triggered clusters, interconnected via gateways. In our approach, the application messages are packed into frames such that the application is schedulable. Thus, we have also proposed a schedulability analysis for applications consisting of mixed event-triggered and time-triggered processes and messages, and a worst case queuing delay analysis for the gateways, responsible for routing inter-cluster traffic. Optimization heuristics for frame packing aiming at producing a schedulable system have been proposed. Extensive experiments and a real-life example show the efficiency of our frame-packing approach

    Performance Aspects of Synthesizable Computing Systems

    Get PDF
    • …
    corecore