

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Performance Aspects of Synthesizable Computing Systems

Schleuniger, Pascal; Karlsson, Sven ; Madsen, Jan

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Schleuniger, P., Karlsson, S., & Madsen, J. (2014). Performance Aspects of Synthesizable Computing Systems.
Kgs. Lyngby: Technical University of Denmark (DTU). (DTU Compute PHD-2014; No. 337).

http://orbit.dtu.dk/en/publications/performance-aspects-of-synthesizable-computing-systems(d24b09d4-949a-48a8-8429-82f4d8a65421).html

Performance Aspects of
Synthesizable Computing Systems

Pascal Schleuniger

Kongens Lyngby 2014

COMPUTE-PHD-2014-337

Technical University of Denmark
DTU Compute
Matematiktorvet, Bygning 303 B, DK-2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

COMPUTE-PHD: ISSN 0909-3192

Summary

Embedded systems are used in a broad range of applications that demand high
performance within severely constrained mechanical, power, and cost require-
ments. Embedded systems implemented in ASIC technology tend to provide
the highest performance, lowest power consumption and lowest unit cost. How-
ever, high setup and design costs make ASICs economically viable only for high
volume production. Therefore, FPGAs are increasingly being used in low and
medium volume markets. The evolution of FPGAs has reached a point where
multiple processor cores, dedicated accelerators, and a large number of interfaces
can be integrated on a single device.

This thesis consists of five parts that address performance aspects of synthe-
sizable computing systems on FPGAs. First, it is evaluated how synthesizable
processor cores can exploit current state-of-the-art FPGA architectures. This
evaluation results in a processor architecture optimized for a high throughput
on modern FPGA architectures. The current hardware implementation, the Ti-
nuso I core, can be clocked as high as 376MHz on a Xilinx Virtex 6 device and
consumes fewer hardware resources than similar commercial processor configu-
rations. The Tinuso architecture leverages predicated execution to circumvent
costly pipeline stalls due to branches and exposes hazards to the compiler to
keep the hardware simple. Second, it is investigated if a production compiler,
GCC, is able to successfully leverage predicated execution and schedule instruc-
tions so as to mitigate the hazards. The third part of this thesis describes the
design and implementation of communication structures for Tinuso multicore
configurations and evaluates the scalability of these systems. Forth, a case study
shows how to map a high performance synthetic aperture radar application to
a synthesizable multicore system. The proposed system includes 64 processor
cores and a 2D mesh interconnect on a single FPGA device and consumes about
10 watt only. Finally, a task based programming model is proposed that allows
for easily expressing parallelism and simplifies memory management.

ii

Resumé

Indlejrede systemer anvendes i dag i en lang række applikationer der kræver høj
ydeevne, men som er underkastet skarpe restriktioner i henhold til mekanisk de-
sign, strømforbrug og pris. Indlejrede systemer der er implementeret ved hjælp
ASIC-teknologi opn̊ar typisk den højeste ydeevne med det laveste strømforbrug
og den laveste enhedspris. En høj indgangspris kombineret med en lav en-
hedspris gør ASIC-teknologi egnet til masseproduktion, men uegnet til sm̊a
produktionsmængder. Derfor bliver FPGA teknologi i stigende grad anvendt
i markeder med sm̊a produktionsmængder. FPGA-teknologien er efterh̊anden
blevet forfinet til et s̊adant niveau, at mange-kernede processor systemer, dedik-
erede acceleratorer og et stort antal interfaces kan implementeres p̊a en enkelt
FPGA enhed.

Denne afhandling best̊ar af fem dele. Afhandlingen behandler og undersøger
ydeevnen for syntetiserebare computersystemer p̊a FPGA-enheder. I første del
af afhandlingen evalueres m̊ader hvorp̊a syntetiserebare processorkerner kan ud-
nytte de nyeste avancerede FPGA-arkitekturer. Denne evaluering resulterer i en
processorarkitektur der er optimeret til at opn̊a høj ydeevne p̊a moderne FPGA-
enheder. Den nuværende implementering af denne processorarkitektur, kaldet
Tinuso-I, kan køres med en taktfrekvens p̊a op til 376MHz p̊a en Xilinx Virtex 6
enhed. Tinuso-I anvender færre hardware ressourcer end andre kommercielle
processorer i sin klasse. Tinuso arkitekturen anvender prædikeret eksekvering
for at undg̊a dyre pipeline stall forsaget af hop i instruktionsstrømmen. Tinuso
arkitekturen eksponerer pipeline hazards til compileren for at holde hardwaren
simpel.

I anden del af afhandlingen unsersøges det hvorvidt en produktionskvali-
ficeret compiler, GCC, er i stand til at anvende prædikerede instruktioner og
tilrettelæggelse af instruktionsstrømmen for at mindske effekten af pipeline haz-
ards.

Tredje del af afhandlingen beskriver design og implementering af kommu-

iv

nikationsstrukturerne for flere Tinuso multikerne konfiguratioer og evaluerer
skalerbarheden af de resulterende systemer.

Fjerde del af afhandlingen er et casestudie der viser hvordan en højtydende
syntetisk apparatur radar applikation kan afvikles p̊a et syntetiserebart multik-
erne system. Det anvendte system best̊ar af 64 processorkerner og et 2D kom-
munikationsnetværk der implementeres p̊a en enkelt FPGA enhed. Systemet
bruger omkring 10 watt.

I sidste del af afhandlingen præsenteres en jobbaseret programmeringsmodel
der simplificerer hukommelsesmanagement og gør det nemt at udtrykke paral-
lelisme.

Preface

This thesis was prepared at DTU Compute, at the Technical University of Den-
mark in partial fulfillment of the requirements for acquiring the Ph.D. degree
in engineering.

The Ph.D.-project was supervised by Associate Professor Sven Karlsson and
Professor Jan Madsen.

Lyngby, April 2014

Pascal Schleuniger

vi

Papers included in the
thesis

I Pascal Schleuniger, Sven Karlsson.A Synthesizable Multicore Platform for
Microwave Imaging. Proceedings of the 10th International Symposium on
Applied Reconfigurable Computing ARC, 2014.Presented and published.

II Pascal Schleuniger, Anders Kusk, Jørgen Dall, Sven Karlsson. Synthetic
Aperture Radar Data Processing on an FPGA Multi-Core System. Pro-
ceedings of the 25th International Conference on Architecture of Comput-
ing Systems ARCS, 2013.Presented and published.

III Pascal Schleuniger, Sally A. McKee, Sven Karlsson.
Design Principles for Synthesizable Processor Cores. Proceedings of the
25th International Conference on Architecture of Computing Systems ARCS,
2012.Presented and published.

IV Pascal Schleuniger, Nicklas Bo Jensen, Sven Karlsson.A Compiler Infras-
tructure for a High Performance Synthesizable Processor Core.Workshop
article, manuscript ready for submission.

V Pascal Schleuniger, Anders Kusk, Jørgen Dall, Sven Karlsson. Synthetic
Aperture Radar Data Processing on an FPGA Multi-Core system.Journal
article, manuscript ready for submission.

viii

Acknowledgments

There is a long list of persons I want to thank for their support during the work
on this thesis. First of all I thank my advisor Sven Karlsson for his guidance,
support, motivation, critic, and many interesting discussions. I thank Professor
Jan Madsen and Michael Reibel Boesen who have introduced me into the world
of research. I thank Professor Thomas Gross who enabled me a research stay
in his group at ETH in Zurich. I thank Karin Tunder for her help in the
administrative jungle. I also thank Nicklas Bo Jensen, Laust Brock-Nannestad,
and Andreas Hindborg for their work on GCC and Binutils. Finally, I thank my
wife Gabi and my two boys, Alexander and Kim, for their mental support and
for their patience whenever I was travelling or mentally absent while writing
this thesis.

x

Contents

Summary i

Resumé iii

Preface v

Papers included in the thesis vii

Acknowledgments ix

1 Introduction 1
1.1 Contributions . 5
1.2 Thesis Outline . 7

2 Terminology 9

3 Processor Core 17
3.1 Introduction . 18
3.2 Related Work . 20
3.3 The Architecture of Tinuso . 22

3.3.1 Memory Hierarchy . 23
3.3.2 Predicated Execution . 24

3.4 Instruction Set Architecture . 25
3.5 Pipeline Architecture . 26
3.6 Hardware Implementation . 28

3.6.1 Register Forwarding . 29
3.6.2 Pipeline Anomalies . 32
3.6.3 First Level Caches . 34

xii CONTENTS

3.6.4 Cache Controller . 35
3.7 Results . 36

3.7.1 Clock Frequency Study 36
3.7.2 Branch Performance Study 37

3.8 Conclusions . 41

4 Tinuso Toolchain 43
4.1 Introduction . 43
4.2 GNU Compiler Collection Overview 45

4.2.1 GCC Intermediate Representation 47
4.2.2 GCC Frontend . 48
4.2.3 GCC Middleend . 48
4.2.4 GCC Backend . 50

4.3 Tinuso GCC . 51
4.3.1 Tinuso Machine Description 54
4.3.2 Memory Access . 56
4.3.3 Predicated Instructions 56
4.3.4 Delay Slot Scheduling . 59
4.3.5 Tinuso GNU Binutils . 60
4.3.6 Tinuso C Library . 61

4.4 Toolchain Evaluation . 61
4.5 Conclusions . 65

5 On-Chip Interconnect 67
5.1 Introduction . 67
5.2 Related Work . 69
5.3 Architecture . 71
5.4 Implementation . 73

5.4.1 Packet Definition . 75
5.5 Results . 76
5.6 Conclusions . 80

6 Multicore Simulation Platform 83
6.1 Introduction . 84
6.2 Related Work . 85
6.3 Implementation of the Communication Interface 86
6.4 Simulation Platform Components and Interfaces 88
6.5 Scalability of Tinuso Multicore Systems 94
6.6 Conclusions . 95

CONTENTS xiii

7 Tinuso Multicore for Synthetic Aperture Radar Data Process-
ing 97
7.1 Introduction . 98
7.2 Synthetic Aperture Radar Application 100

7.2.1 Case Study Application 101
7.2.2 Direct Back-Projection . 102
7.2.3 POLARIS Data Processing 103

7.3 Related Work . 105
7.4 System Architecture . 107

7.4.1 Processing Element . 108
7.4.2 Interconnection Network 111

7.5 Hardware Organization . 112
7.6 Results . 114

7.6.1 Speed and Resources . 115
7.6.2 Performance and Network Traffic 115
7.6.3 Software Pipelined SAR 117

7.7 Conclusions . 119

8 Programming Model and Runtime System 121
8.1 Introduction . 122
8.2 Related Work . 124
8.3 Semantics . 129
8.4 Implementation . 131

8.4.1 Task Scheduling . 133
8.4.2 Cache Coherence . 134

8.5 Code Examples . 137
8.5.1 Parallel Matrix Multiplication 137
8.5.2 SAR Direct Back-Projection Algorithm 141

8.6 Costs . 145
8.7 Conclusions . 146

9 Conclusions 149

A Application Binary Interface 155
A.1 Data Representation . 155
A.2 Register Usage Conventions . 155
A.3 Stack Conventions . 156

A.3.1 Calling Convention . 157
A.3.2 Machine Specific Registers 157

xiv CONTENTS

A.4 ELF File Format . 157
A.4.1 ELF File Sections . 158

B Instruction reference 159

Chapter 1

Introduction

Embedded systems are computing systems that are designed for specific ap-
plications. A broad range of applications demand high performance within
severely constrained mechanical, power, and cost requirements. Embedded sys-
tems may either be composed of discrete processor cores and interface devices
or implemented as dedicated hardware. Systems implemented in application
specific integrated circuits, ASICs, tend to provide the highest performance,
lowest power consumption and lowest unit cost. However, design effort and
setup production costs for ASICs are high and increasing as process technology
evolves. High development costs make ASICs economically viable for high vol-
ume production only. Field programmable gate arrays, FPGAs, on the other
hand, have a higher unit cost but essentially no setup cost. Due to this, FPGAs
are increasingly being used in low and medium volume markets.

The inherently parallel structure of FPGAs allows for an efficient implemen-
tation of parallel algorithms. Sequential algorithms, on the other hand, are
easier to implement on a microprocessor. However, for many applications it is
convenient to have both a microprocessor to execute sequential tasks and an
FPGA to accelerate parallel sections of an algorithm. Of course, one can com-
pose embedded systems of discrete microprocessors and FPGA devices but they
also can be combined in one chip using synthesizable processor cores. Computer
systems with integrated synthesizable processor cores tend to have a simpler
board layout, fewer problems with signal integrity and electromagnetic interfer-
ence, and reduced system costs.

The performance of synthesizable processor cores tends to be significantly
lower than discrete microprocessors. Current synthesizable processor cores are

2 Introduction

primarily designed for configurability rather than for raw performance. Major
FPGA vendors such as Xilinx and Altera offer in-order, single issue processor
cores optimized for their technology but do not exploit current state-of-the-art
FPGA architectures. For example, neither Xilinx MicroBlaze nor Altera Nios II
make use of pipelined memory resources.

One possibility to improve the performance of synthesizable processor cores
is to optimize the hardware for a high clock frequency. Pipelined memory re-
sources found in modern state-of-the-art FPGA architectures allow for a fast
implementation of caches and register file. However, this requires breaking
pipeline stages into smaller stages. While this results in a design with a signifi-
cantly higher clock frequency it breaks the compatibility to existing instruction
set architectures. Moreover, branch instructions become expensive, as branch
address and direction are resolved late in the pipeline. For example, in processor
designs with pipelined caches and register file at least four successive instruc-
tions are fetched until the branch address is computed. These instructions are
called delay slots that the compiler has to attempt to fill with useful indepen-
dent instructions. If unsuccessful, the compiler will have to insert no-operation,
nop, instructions which will reduce performance.

One possibility to reduce branch costs is to leverage predicated instructions.
A predicated instruction is executed if a condition that is specified in the opera-
tion code is true, otherwise the instruction is annulled and has no effect. Apart
from advantages in filling delay slows, predicated instructions allow a compiler
to replace some conditional control-flow sequences with predicated instructions
and hence avoid delay slots. However, leveraging predicated execution increases
the complexity in a compiler.

The performance of a single issue in-order processor might not be sufficient
for many embedded application. Out-of-order and superscalar executions have
proven to be very effective techniques to extract parallelism at instruction level.
Dynamic scheduling with register re-naming effectively reduces data hazards.
This comes at the cost of complex multiported structures that do not perform
well on FPGA architectures. Alternatively it seems more feasible to improve
performance of FPGA computing by extracting parallelism at task level. The
evolution of FPGAs has reached a point where multiple processor cores, ded-
icated accelerators, and a large number of interfaces can be integrated on a
single device. However, efficient communication structures are required to suc-
cessfully extract parallelism in multicore and many core systems. For in-order
processor cores it is difficult to hide memory latency. Therefore an intercom-
munication network has to be optimized for a lowest possible latency and high
clock frequency to attain a high throughput.

3

Considering the logic integration of the newest generation FPGAs it is pos-
sible to integrate hundreds of processor cores into a single device. Such re-
configurable multicore systems open up new possibilities for high performance
applications. For example, active microwave imaging techniques such as radar
and tomography are used in a wide range of medical, industrial, scientific, and
military applications. Microwave imaging systems consists of synchronized radio
transmitters and receivers that emits radio waves and process their reflections
to reconstruct an image of an object. Often a very high number of operations
is required to reconstruct the output image because each pixel must analyze
hundreds of these reflections.

Given the large amount of data and the parallel structure of image recon-
struction applications, graphic processing units, GPUs, are well suited for this
type of data processing. However, many applications come with strict power
requirements, limitations on system size, require the use of industrial and space
grade components, or demand a certain durability and reliability of the sys-
tem. For these applications, off-the-shelve GPUs may not be an appropriate
solution. Instead, a multicore system on FPGA is a convenient alternative. As
many modern microwave imaging system successfully use FPGAs for signal pro-
cessing already it is evident to integrate data processing functionality into the
existing device.

The use of a multicore system raises the abstraction level for the application
programmer without facing the current performance drawbacks of high-level
synthesis. Moreover, mapping an application to multicore system significantly
reduces development effort over a fully custom FPGA implementation.

Finally, there must be found ways to program the system. It may be concep-
tually trivial to imagine multicore systems but it remains a challenge to program
these systems. Researchers aim for programming languages, programming mod-
els, and runtime systems that support the programmer expressing parallelism
and exploiting parallel hardware architectures.

The problem statement of this thesis is to evaluate architectural trade-offs
to improve the performance of synthesizable computing systems on FPGAs. In
particular, this thesis addresses the following research questions:

• Instruction level parallelism: The performance of a computer system can
be improved by exploiting parallelism. In a single processor system in-
struction level parallelism is applied to perform multiple operations simul-
taneously. The internal structure of FPGAs is well suited for pipelining,
i.e., splitting up the critical path of a design into several combinatorial-
flip-flop sections. Superpipelining breaks pipeline stages into smaller stages

4 Introduction

and leverages instruction level parallelism by executing operations par-
tially overlapped. Shorter pipeline stages reduce the clock period and thus
allow for a higher clock rate and instruction throughput. However, super-
pipelining cannot be applied arbitrarily, additional hardware resources and
increasing complexity in the control logic lead to a diminishing return. It
is not evident if superpipelining can pay-off for synthesizable processor
cores on modern FPGA architectures.

• Predicated execution: The performance of a computer system depends
on the implementation of control flow instructions. For example, branch
instructions in highly pipelined systems are costly as branch address and
branch direction are computed late in the pipeline. Implementations that
flush or stall the pipeline reduce the level of instruction level parallelism.
Predicated execution is a technique to eliminate control dependencies and
thus, reduces the number of branch instructions in a program. Predi-
cated instructions have an additional predication operand, called predi-
cate. Depending on the value of the predicate the instruction is executed
or annulled, i.e., has no effect. Predicated instructions can therefore be
used to replace simple if-statements. Moreover, predicated instructions
can be used to fill delay slots. While the concept of predicated execution
is simple, it is a challenge for a compiler to exploit predicated execution.
Moreover, predicated execution takes up space in the instruction word
encoding and increases the hardware complexity. Hence, it is not clear
whether the efforts to implement predicated execution on a synthesizable
processor core will be worth it.

• Scalability: Multicore systems often exploit parallelism at task level. Each
processor executes a different sequence of a program, called task. Tasks
access memory and communicate with each other through an intercom-
munication network. The logic integration of modern FPGAs has reached
a point where hundreds of processor cores can be integrated on a single
device. However, intercommunication network and memory are shared
resources of a system and may therefore limit the scalability. Moreover,
the scarce on-chip memory resources of an FPGA may be a limiting fac-
tor for the memory-system performance in large-scale systems. Hence, it
is highly application dependent to which extent synthesizable computing
systems scale.

• Programmability: A parallel programming model is an abstraction of a
computer system including hardware, compiler, and system software that

1.1 Contributions 5

enables the expression, compilation, and execution of parallel applications.
Programming models aim to provide the programmer with the highest
level of abstraction to express parallelism that yet enables an efficient
mapping of applications to the hardware architecture. Commonly used
functionality of a programming model may be implemented in hardware
to improve performance. For example, hardware primitives may enable
efficient communication or simplify memory resource management. With
the advent of multicore systems, the main bottleneck shifts from com-
putation capabilities to data management. A key point of all multicore
architectures is therefore the memory hierarchy. Minor restrictions in the
programming model may simplify memory consistency and enable more
efficient communication and cache architectures. Work on scalable pro-
gramming models is an active area of research that involves many trade-
offs. As efficient solutions highly depend on the platform, a programming
model optimized for the proposed synthesizable multicore system is re-
quired.

The aim of this thesis is to research these architectural trade-offs and to
apply them in the design of a synthesizable multicore system.

1.1 Contributions

The work leading to this thesis includes the following contributions:

• The main contribution is the design of the Tinuso processor architecture.
Tinuso exploits hardware resources found on modern state-of-the-art FP-
GAs. Superpipelining allows for a significantly higher system clock fre-
quency. The instruction set architecture is designed to enable predicated
execution of all instructions. Predicated instructions are used to reduce
the high branch cost of the deep pipeline. To keep the design simple
all types of hazards are exposed to software. The current prototype can
be clocked as high as 376MHz on a Xilinx Virtex 6 and consumes fewer
hardware resources than similar commercial processor configurations. The
performance is evaluated by running a set of numerical and search-based
assembly-benchmarks where Tinuso achieves an average performance im-
provement of 38% over a similar Xilinx MicroBlaze configuration.

• A GCC compiler backend for the Tinuso architecture was evaluated. This
work includes a number of architecture specific scheduling optimizations

6 Introduction

in the compilation toolchain that allow for resolving hazards in software.
The compiler backend is evaluated by analyzing the code execution time,
instruction mix and the number of executed predicated instructions of a
set of small C benchmarks. Tinuso shows an average performance im-
provement of 56% over a similar Xilinx MicroBlaze configuration for set
of small C benchmarks.

• A generic packet switched, XY routed, 2D mesh on-chip network opti-
mized for FPGA implementation was designed. This work includes opti-
mizations in routing scheme and flow control mechanism to attain high
clock frequency and low latency. The feedback loop to manage contention
is pipelined to reduce the routing delay in the time-critical path of the
design. The network can be clocked with up to 300 MHz with a peak
switching data rate of 9.6 Gbits/s per link on state-of-the-art FPGAs.

• In a case study it was demonstrated how to successfully map data pro-
cessing for the POLARIS synthetic aperture radar to a multicore system
with 64 Tinuso processor cores. The direct back-projection application
provides real-time data processing for a 3000m wide area with a resolu-
tion of 2x2 meters. The multicore fabric consisting of 64 processor cores
and 2D mesh network-on-chip utilizes 60% of the hardware resources of a
Xilinx Virtex-7 device with 550 thousand logic cells and consumes about
10 watt.

• A proposal of a programming model was presented that allows for easily
expressing task level parallelism. The programmer defines parallel tasks
with fork–join primitives that are bound to a group of processor cores,
which execute these tasks concurrently. A work stealing policy is pro-
posed to achieve an optimal load balancing. The programming model
is targeted to heterogeneous multicore systems, hence, it is possible to
bind tasks to specific processor cores. The runtime system includes hard-
ware primitives that implement task queue, which reduces memory traffic
and avoids data races when multiple cores access a task. Moreover, mi-
nor restrictions in the programming model are proposed that enable a
lightweight implementation of a hardware cache coherency mechanism.

• Tinuso hardware structures and toolchain can be used as a cycle accu-
rate system simulator. Tinuso’s VHDL sources are fully synthesizable to
both Altera and Xilinx FPGAs. Hence, there is a broad range of tools
available to simulate Tinuso systems. The work for this thesis includes a

1.2 Thesis Outline 7

memory controller, simple I/O infrastructure, and a performance monitor-
ing framework. Performance counters monitor output network utilization,
cache misses, processor idle time, and the instruction mix of an executed
application. The platform can be synthesized and run on hardware to ob-
tain a high simulation speed. Alternatively, Tinuso multicore systems can
be simulated with a very high level of detail, which is useful for example
for debugging.

1.2 Thesis Outline

The following briefly outlines the structure of the thesis. Background informa-
tion and descriptions of related research is scattered across all chapters of the
thesis.

• Chapter 2 defines some key terms that will be used throughout the rest
of this thesis.

• Chapter 3 introduces the architecture of Tinuso and describes design and
implementation of the synthesizable processor core. An evaluation of the
Tinuso processor core in terms of clock speed, utilized hardware resources
and code execution time of a set of integer micro-benchmark is included
in this chapter.

• Chapter 4 introduces the GNU toolchain that consists of C compiler and
Binutils, a collection of low level programming tools. This chapter de-
scribes the implementation of a GCC compiler toolchain for the Tinuso
architecture including architecture specific scheduling optimizations and
reports how to leverage predicated execution. The compiler backend for
Tinuso is evaluated with a set of small C benchmarks.

• Chapter 5 describes design and implementation of a generic 2D mesh on-
chip interconnect. The network is optimized for a latency of one cycle
per network hop and a high clock frequency. The network is evaluated by
measuring the network latency of random traffic.

• Chapter 6 considers Tinuso multicore systems to be used as simulation
platforms for research on multicore systems and programming models.
The design and implementation of communication interface that allows
for explicit communication with other processing elements is described as
well as the interfaces of Tinuso’s building blocks. Research platforms may

8 Introduction

require a very high number of processor cores. Therefore the hardware
scalability of Tinuso multicore systems is evaluated.

• Chapter 7 includes a case study on how the POLARIS synthetic aperture
radar application can be mapped to a multicore system on FPGA. The
POLARIS SAR application requires real-time data processing for a 3000m
wide area with a resolution of 2x2 meters. 64 Tinuso processor cores are
required for this task. The case study shows that multicore systems on
FPGA deliver a high computing performance at low power budget.

• Chapter 8 presents a proposal for a task based programming model and
runtime system for Tinuso that support the programmer in expressing
parallelism and efficiently executes parallel programs.

• Chapter 9 draws conclusions of the work presented in this thesis and dis-
cusses future work.

• Appendix A describes the Tinuso Application Binary Interface, ABI.

• Appendix B includes a detailed instruction reference.

Chapter 2

Terminology

In this chapter some key terms are defined that will be used throughout the
rest of this thesis. These definitions might be different from those used in other
works.

Microprocessors can be considered as the engine for the digital revolution.
The steadily increasing performance of microprocessors has enabled innovations
such as personal computers, Internet, smart-phones, and satellite navigation
systems.

In the 1970s, the general trend in computer design was to implement more
and more powerful instructions to make life easier for the programmers. It
was a common thought that increasing the complexity of the instruction set
architecture would best exploit the rapidly advancing semiconductor technology.
One example of these complex instruction set computers, CISC, is the VAX 11-
780, which included a total of 280 instructions [109]. However, compilers for
high-level computer languages were not able to exploit complex instruction sets
and rarely utilized these added instructions.

Patterson and Sequin therefore worked on a reduced instruction set com-
puter, RISC, architecture [94]. They aimed to improve performance with a
lightweight hardware design that can easily be optimized. The instruction set
architecture of RISC-I comes with 31 instructions that all are of the same size
and execute in a single cycle. Only load and store instructions access mem-
ory, while other instructions operate on a set of registers, called register file.
Implemented instructions were selected with the perspective that compilers for
high-level computer languages can make best use of it. The concepts of RISC
got widely adopted in a large number of academic and commercial architectures

10 Terminology

such as Alpha, ARM, MIPS, SPARC and PowerPC.
An important contributor for the success of RISC architectures was the abil-

ity to exploit the advancing semiconductor technology. Due to its simplicity,
RISC architectures are easy to implement with an execution pipeline. Each
pipeline stage operates on one instruction at a time. RISC pipelines therefore
leverage instruction level parallelism by executing instructions partially over-
lapped. The performance of a RISC design can be improved by splitting up the
time critical path into several combinatory - flip-flop sections, called pipelining.
This leads to simple pipeline stages that enable a higher system clock frequency.

While a deep pipeline allows for a high system clock frequency, it incurs ad-
ditional complexity in the control logic. For example, forwarding in the pipeline
is a vital technique to limit the number of data-hazards by inherently moving
results from a later pipeline stage to an earlier one. In a deep pipeline more
pipeline stages need to be considered for forwarding. Therefore the forwarding
logic may become large and complex and limit the system clock frequency. In-
stead of resolving hazards in hardware, it is possible to expose the hazards to
software. While this reduces complexity of the hardware, the compiler has to be
aware of the exact pipeline behavior and schedule instructions without hazards.
Thus, this approach moves complexity from hardware to the compiler toolchain.

To improve performance, computer designers added multiple functional units
to the pipeline to execute instructions in parallel. Very Long Instruction Word,
VLIW, is an approach where multiple instructions are encoded in a single in-
struction word. These instructions then execute in parallel on different func-
tional units. However, as there are many dependencies among operations, it is
difficult to schedule instructions to utilize all functional units. This is a problem
for instructions that change the control flow of a program, such as branch in-
structions. Due to data dependencies, most functional units remain idle until a
branch instruction has completed, which makes branch instructions very costly
in VLIW machines.

In computer architecture often branch prediction is used to reduce the costs
of branch instructions. The pipeline does not wait until the branch direction is
computed, instead branches as executed speculatively. If it is later detected that
the prediction was wrong then the speculatively executed instructions have to be
discarded and the pipeline restarts with the branch instruction, which reduces
performance. Another possibility to reduce branch costs is leverage predicated
execution to reduce the number of executed branch instructions [56]. Com-
pilers for architectures with support for predicated execution aim to convert
control dependencies that would usually implemented with a branch instruction
into a data dependence that can be implemented with a predicated instruction.

11

Predicated instructions have an additional predication operand, called predi-
cate. Depending on the value of the predicate, an instruction is executed or
annulled and has no effect. Predicated instructions can therefore be used to
implement simple if-statements without branch instructions. This technique is
called if-conversion.

Modern microprocessors used in personal computers typically take a different
approach to circumvent dependency problems than RISC processors. Instruc-
tions are fetched and register-renaming is performed before an instruction is
placed in a ready queue. Dynamic scheduling and changing register names elim-
inate some data dependencies and allow for a parallel out-of-order execution on
multiple functional units. Out-of-order and superscalar execution have proven
to be very an effective techniques to extract parallelism at instruction level.

As the performance of the memory has not improved at the same rate as pro-
cessor performance, the memory hierarchy has become a very important factor
for the performance of computer systems. The memory hierarchy takes advan-
tage of locality and cost-performance of memory technologies. The principle
of locality states that most programs do not access all code or data uniformly,
locality therefore occurs in time and space. The principle of locality and the
fact that small memory structures can operate at a higher clock frequency led to
memory hierarchies that combine memory of different speed and size. Each level
of memory therefore maps addresses from a slower, larger memory to a smaller
but faster memory higher in the hierarchy. The resulting memory system comes
with cost per byte almost as low as the cheapest level of memory and a speed
almost as fast as the fastest level [53].

However, computer designs have grown very complex and power hungry be-
cause of high clock frequencies. Modern high performance microprocessors have
reached a point where the power density is so high that it is not possible to
obtain more performance by increasing the clock frequency. Therefore, com-
puter designers started to implement systems with multiple processing cores to
increase the performance.

The history and evolution of microprocessors is highly relevant for this thesis
as we faces similar design challenges when we evaluate architectural trade-offs
to improve the performance of computing systems on FPGAs. FPGAs are re-
configurable devices that allow for implementing electronic circuits. The fabric
of an FPGA typically consists of a two-dimensional matrix of configurable logic
blocks, CLBs. A CLB contains small lookup tables, LUT, and successive con-
figurable flip-flops as shown in Figure 2.1. Modern FPGA families typically
come with 6-input lookup tables while previous generation FPGAs implement
lookup tables with fewer inputs. Moreover, the fabric of modern FPGAs con-

12 Terminology

6-Input
LUT

D Flip-
Flop

input

clock

output

Figure 2.1: Simplified view on a configurable logic block

tains memory resources in the form of synchronous static SRAM blocks, block
RAMs, scattered across the matrix. These block RAMs typically can store a few
tens of kilobits of storage organized very flexibly. Designers rarely access FPGA
resources directly. Instead, a synthesis tool is used to optimize and transform
a logic described in a high-level behavioral description language to a low-level
binary representation, which is used to configure all FPGA resources.

Embedded systems are computing systems that typically are designed for
specific applications. Embedded applications may be described as electronic
circuits and mapped to the FPGA or, alternatively, be implemented in software
and execute on a synthesizable processor core. In this thesis we define a synthe-
sizable processor core as a hardware description of a given processor architecture
that can be synthesized for FPGA technology. The internal structure of FP-
GAs constrains hardware designs. Complex structures on an FPGA may easily
become a critical path of the design and lower the performance. We define the
critical path as the combinatory path with the longest delay. This combinatory
path includes both interconnect delay and logic delay. We define interconnect
delay as the propagation delays through the FPGA’s interconnect and the pro-
grammable switches while logic delay are combinational delays in configurable
logic blocks. The critical path limits the maximum clock frequency of a design.
As complex multiported structures cannot be implemented efficiently on FPGA,
we cannot exploit instruction level parallelism with superscalar out-of-order exe-
cution. Hence, the design of an instruction set architecture optimized for FPGA
implementation addresses similar design challenges as RISC implementations in
the 1980’s.

As the computing power of a single processor pipeline is not sufficient for
many applications, multicore systems are required to improve performance.
Such systems include multiple processors that communicate through an inter-
connection network and have access to memory. There are two commonly used

13

Processors & Memory

P0 P1 P2 Pn...

Network

M0 M1 M2 Mn

(a) Message Passing

Processors

P0 P1 P2 Pn...

Memory

(b) Shared Memory

Figure 2.2: High level abstraction of multicore systems

abstractions of multicore systems: message passing and shared memory systems.

Figure 2.2a illustrates a message passing system. Each processor core comes
with a private memory. Processor cores communicate with explicit messages
through an intercommunication network. Shared memory systems, on the other
hand, implement a global shared memory as shown in Figure 2.2b. Communi-
cation between processor cores takes place implicitly via the shared memory.

In multicore systems, where processor cores maintain caches of a shared
memory resource there may arise problems with inconsistent data. Once a
processor core writes a memory location it is only updated in the local cache.
Copies of this memory location that reside in caches of other processor cores
are not updated automatically. Hence, data in the system may become incon-
sistent, which leads to a incorrect execution of a program. Thus, a mechanism
is required, which updates memory locations in the system to keep memory
consistent.

Coherency mechanisms assure that data written by one processor will even-
tually become visible to other processors and multiple writes to a particular
location will be seen in the same order. However, coherence does not specify
when writes will become visible to other processors. Therefore, a consistency
model is required that defines the programmer’s view of the ordering of memory
operations to ensure a correct execution of a program.

In 1979, Lamport described a sequential consistency model to correctly ex-
ecute parallel programs in multicore systems [69]. It requires write operations
to become instantaneously visible globally to all processor cores. While this is
very intuitive for the programmer it is very costly to implement [53]. Instead,

14 Terminology

P0 Pn

Bus

$0 $n

P1

$1

Memory

Figure 2.3: Snoopy cache coherent multicore system

relaxed consistency models have been developed that ease some restrictions of
sequential consistency for most of the program, but enforce them in specific
situations that are important for a correct execution of a program [36,62]. This
can for example be implemented with memory fences or barriers in the program
code that require all previous memory accesses to complete before resuming the
program execution.

Cache coherence protocols are designed to maintain the consistency between
caches in multicore systems. A plethora of cache coherence protocols exist that
can be classified as snoopy or directory based protocols.

Figure 2.3 illustrates the coherence mechanism in a snoopy bus based sys-
tem. When a processor core writes data to main memory, the other processors
in the system “snoop” on the bus and monitor transactions. If one of their
cached memory blocks is involved in a bus transaction they update it. Snoopy
protocols are easy to implement when the communication infrastructure is a
shared medium such as a bus. However, in on-chip networks it becomes more
difficult to implement snoop mechanisms and the scalability is limited.

Alternatively, directory-based cache coherency protocols maintain the state
of memory blocks in a central directory. Figure 2.4 illustrates a multicore system
with directory based cache coherence. A central directory includes a list of
all processors that keep a copy of a cache block. Coherence is maintained as
this directory is included in all memory transactions. However, directory-based
cache coherency protocols are very complex and difficult to scale [5]. Moreover,
cache coherency may incur a large hardware overhead and significantly increase
the power consumption of a system. Hence, it is an active area of research to
improve the scalability and power efficiency of cache coherence protocols [13,
19,86,123,124].

15

P0 P1 P2 Pn...

Network

$0 $1 $2 $n

Main
Memory Directory

data status bits

Figure 2.4: Directory based cache coherent multicore system

Beside memory consistency, parallel programming is a major challenge for
multicore systems. Parallel programming has been studied for decades for high
performance general-purpose computer systems and it is still an active ongoing
area of research. Researchers aim for programming languages, programming
models, and runtime systems that support the programmer expressing paral-
lelism to exploit parallel hardware architectures.

A programming model bridges the gap between the underlying hardware and
the application software. The programming model is an abstraction of the un-
derlying computer system that provides certain operations to the programmer.
In parallel computing, the programming model aim to support a programmer
in expressing parallelism and to enable an efficient mapping of applications to
hardware.

The runtime system includes hardware and software resources that enable
the execution of a program on a computer system. A runtime system implements
a broad range of functions depending on the programming language. For exam-
ple, main objectives of the c runtime are to insert instructions to manage the
processor stack, access memory, and processor interfacing. Additional function-
ality a runtime may implement is type checking, code generation, debugging,
and optimization services. In addition, the runtime of parallel programming
languages manages resources such as tasks and communication on behalf of the
application.

A commonly used abstraction level is to consider parallel applications as a
set of tasks. We define a task as an independent part of a program. Parallel
programs can be divided into a set of tasks that then may execute on different
processor cores.

16 Terminology

Chapter 3

Processor Core

As FPGAs get more competitive, synthesizable processor cores become an at-
tractive choice for embedded computing. The advantage of synthesizable pro-
cessors cores is that they can easily adjust to the needs of an application. The
ability to reconfigure FPGAs allows for adapting the design at any time, also
when the embedded system is already in operation. Moreover, FPGA designs
that include synthesizable processors tend to have a lower hardware complexity
and a lower system cost compared to hardware designs that consist of a discrete
microprocessor and an FPGA device.

However, synthesizable processor cores typically have a lower performance
than discrete microprocessors. This chapter evaluates performance aspects of
synthesizable processor core and examines their impact in the design of new
processor architecture, Tinuso. Tinuso is a processor architecture optimized for
performance when implemented on an FPGA.

This chapter is based on two publications [103,105] and is structured in the
following sections. Section 3.1 motivates the basic ideas of the Tinuso archi-
tecture. Section 3.2 discusses related work and highlights other synthesizable
processor cores. Section 3.3 gives an overview of the Tinuso architecture. The
instruction set architecture is described in Section 3.4 while a detailed descrip-
tion of all instructions can be found in the Appendix B. Section 3.6 describes the
hardware implementation and presents processor internals such as forwarding
mechanism, predication support, and cache implementation. In section 3.7 the
processor core is evaluated by comparing clock speed, hardware resources, and
code execution time with commercial synthesizable processor cores. Section 3.8
summarizes and concludes this chapter.

18 Processor Core

3.1 Introduction

As the power efficiency and logic capacity of FPGAs increases, they become an
attractive technology for use in low and medium volume markets. For example,
Xilinx’s Virtex 7 family comes with devices up to two million logic cells [118].
Their power consumption is 50% lower than previous generation FPGAs. These
devices allow for combining multiple processor cores, dedicated accelerators, and
a large number of interfaces on a single device.

Hardware designers often use synthesizable components to compose systems.
Synthesizable components are descriptions of logic circuits that are converted,
also called synthesized, to a low-level binary representation to configure the
FPGA fabric. There exists a broad range of synthesizable components including
processor cores, arithmetic units, signal and data processing blocks, and all sorts
of interfaces.

Nevertheless, synthesizable processor cores have a significantly lower perfor-
mance than discrete microprocessors because of two reasons. First, the logic
circuit of discrete microprocessors is directly mapped to the chip, which en-
ables an efficient implementation of complex hardware structures. Synthesized
designs on FPGAs, on the other hand, are limited to use the predefined re-
configurable resources. Second, commercial synthesizable processor cores are
primarily designed to be highly configurable than to deliver a highest possible
performance. For example, neither Xilinx MicroBlaze nor Altera Nios II fully
exploit current FPGA architectures as they do not make use of pipelined mem-
ory resources [8, 120]. Open-source processors tend to have a low performance
as they are not optimized for any specific target technology. Most synthesizable
processors available today implement a RISC like pipeline with 3 to 6 pipeline
stages [93].

We research opportunities to exploit current FPGA architectures that im-
prove the performance of synthesizable processor cores. Thus, we have to apply
a technique to exploit instruction level parallelism that maps well to the internal
structures of FPGAs. Out-of-order and superscalar execution have proven to be
very effective techniques to extract parallelism. Multiple instructions execute in
parallel and dynamic scheduling with register renaming effectively reduces data
hazards. However, this comes at the cost of complex multiported structures
that do not perform well on FPGA architectures [42,89].

Very long instruction word, VLIW, refers to a processor architecture where
multiple instructions are executed in parallel on several execution units. In
contrast to superscalar machines, instructions are scheduled statically. Data
hazards are ether eliminated by the compiler or the hardware has to stall until

3.1 Introduction 19

data dependencies are resolved, which lowers the performance. Although VLIW
machines tend to be less complex than superscalar architectures the register file
remains the bottleneck of the design as it requires multiple write ports if multiple
instructions shall complete simultaneously. Purnaprajna and Ienne proposed to
introduce an embedded multiported RAM for register file implementation in
future FPGAs to mitigate this performance bottleneck [97]. Instead, we focus
on single in-order pipelines as they provide the best energy-performance trade-
off for processors of up to 300 million instructions per second [11].

FPGAs typically consist of an array of configurable logic blocks that contains
small lookup tables and successive configurable flip-flops. Thus, pipelining, i.e.,
splitting up the critical path into several combinatorial - flip-flop sections, is
relatively inexpensive in FPGAs [39]. Moreover, modern FPGAs come with
pipelined memory blocks that allow for implementing fast caches and register
file.

Superpipelining breaks pipeline stages into smaller stages and leverage in-
struction level parallelism by executing operations partially overlapped. Shorter
pipeline stages reduce the clock period and thus allow for a higher clock rate
and instruction throughput [60]. Superpipelining may lead to a higher system
clock frequency but adding pipeline stages breaks the compatibility to existing
instruction set architectures. Hence, compilers and operating systems need to
be adapted and all existing software need to be recompiled. Moreover, adding
more pipeline stages increases the hardware costs and complicates the control
logic of a processor core, which may be a limiting factor. We therefore research
if superpipelining is a viable technique to improve the performance of synthe-
sizable processor cores.

Designing an instruction set architecture is therefore connected with a large
workload but it opens up possibilities to remove legacy artifacts and to optimize
the hardware implementation. For example, the performance of a superpipelined
processor heavily depends on how efficient branch instructions are implemented.
Branch instructions become expensive as branch address and direction are re-
solved late in the pipeline. For processors with pipelined caches and register
file there are at least four successive instructions fetched until the branch ad-
dress is computed. These instructions are called delay slots that the compiler
has to attempt to fill with useful independent instructions. If unsuccessful, the
compiler will have to insert no-operation, nop, instructions which will reduce
performance.

One possibility to reduce branch costs is to leverage predicated instruc-
tions. A predicated instruction is executed if a condition that is specified in
the operation code is true, otherwise the instruction is annulled and has no

20 Processor Core

effect. It enables compilers to replace some conditional control-flow sequences
with predicated instructions and hence reduces the frequency of branch instruc-
tions. Moreover, predicated instructions can be used for filling branch delay
slots with instructions from before the branch, from the branch target, and
from fall through.

A processor pipeline requires control logic to prevent situations where hard-
ware would produce wrong results, called hazards. For example, multiple in-
structions may attempt to use the same hardware resources or an instruction
may want to use data before it is available. Adding pipeline stages to a pro-
cessor pipeline design increases the complexity of this control logic, which may
utilize a large number of hardware resources and thus become a limiting factor
for the system clock frequency. We therefore expose hazards to the compiler,
which has to schedule instructions that the processor pipeline can execute them
without stalling. Thus, we obtain a very lightweight design but need to deal
with additional complexity in the compiler.

We examine the impact in the mentioned performance aspects in the design
of new processor architecture, Tinuso. Tinuso is a statically-scheduled, single-
issue, RISC processor architecture that uses a deep pipeline to attain a high
system clock frequency. Predicated instructions help to prevent costly pipeline
stalls due to branches. By letting the compiler take care of all types of hazards
we obtain a lightweight hardware design.

3.2 Related Work

Major FPGA vendors such as Xilinx, Altera and Lattice Semiconductors offer
processor cores optimized for their technology. These cores are highly config-
urable and come with a large number of peripherals and rich tool-chain support.
Xilinx MicroBlaze and Altera Nios II come as optimized netlists of vendor-
specific primitives. Hence, they are bound to the vendor’s hardware and tool-
chains. Lattice Semiconductors LatticeMico32 core is licensed under an open
intellectual property core license. It is available in synthesizable register transfer
language and can be ported to any FPGA family.

Xilinx’s MicroBlaze is a popularly used synthesizable processor that imple-
ments a 32-bit Harvard RISC architecture with a rich instruction set optimized
for embedded applications. A branch target buffer provides dynamic branch
prediction. Xilinx’s Embedded Development Kit, EDK, is used to configure
MicroBlaze. A large amount of peripherals, memory and interface features are
available to adapt the processor to a given application. MicroBlaze utilizes an

3.2 Related Work 21

in-order single issue pipeline with a load-store instruction set. The performance
optimized MicroBlaze configuration utilizes a five-stage pipeline.

Altera’s current equivalent to MicroBlaze is called Nios II [9]. The Nios II
family includes three processors that are optimized for highest performance,
smallest size, and performance and size balanced implementation. In contrast
to MicroBlaze, Nios II processors are not bound to a specific technology. Beside
FPGAs, they can be implemented on Altera’s HardCopy specific integrated
circuits, SICs. NIOS II allow for up to 256 custom instructions.

Ehliar et al. [4] introduce a processor architecture optimized for FPGA imple-
mentation. They implement a deep pipeline with limited register forwarding to
provide a high system clock frequency. DSP functionality in terms of multiply-
and-accumulate is built-in. The processor can be clocked at a frequency as high
as 357 MHz on a Xilinx Virtex 4, FPGA. Lack of cache resources, limited reg-
ister file entries, and limited address spaces make this architecture work well
for DSP-like applications, but prevent their adoption for large-scale multicore
platforms.

There are a number of synthesizable processor cores available as open-source
designs. Examples are LEON3 and OpenRISC 1200. They are not optimized
for any specific target technology and therefore have sub-optimal performance
when implemented on an FPGA [112]. OpenFire is an open-source, binary-
compatible MicroBlaze clone written in Verilog. OpenFire was designed with the
aim to have the entire HDL sources available for research in embedded multicore
architectures [32]. OpenFire attains approximately the same clock frequency as
MicroBlaze. OpenFire comes with a limited system bus and therefore requires
fewer hardware resources than MicroBlaze.

The LatticeMico32 is another open-source processor design provided by Lat-
tice Semiconductors. It is available in synthesizable register transfer language
and can be ported to any FPGA family. LatticMico32 is an in-order single issue
processor with a load-store instruction set. Static branch prediction is supported
only. The pipeline has six stages. Mico System Builder, MSB, implements the
LatticeMico32 processor and attaches peripheral components. LatticeMico32 is
optimized for FPGA implementation and provides the highest clock frequency
among open-source soft-cores.

The mentioned synthesizable processor cores come with 3 to 6 stage pipelines.
All utilize a single execution stage only, which keeps the forwarding logic sim-
ple. While the LM32 implements static branch prediction both MicroBlaze and
Nios II leverage a branch history table to reduce the branch penalty. These
pipelines are able to stall if data dependencies on instructions with delay slots,
such as loads or shifts, are detected. Compilers have to fill at most one branch

22 Processor Core

delay slot and do not need to worry about data hazards when scheduling instruc-
tions. Moreover, none of these architectures supports predicated instructions,
which keeps compiler backends simple.

While there are a plethora of processor architectures that leverage predicated
execution, ARM is the only synthesizable processor architecture that comes with
predicated instructions. ARM processors have an instruction set where the
majority of all instructions are predicated. Instructions are executed depending
on the value of processor flags. Instructions such as compare or subtract can set
the processor flags. ARM provides the ARM Cortex-M1 core, a synthesizable
processor designed specifically for FPGA implementation. It can be clocked at
frequencies as high as 200MHz on Virtex 5 and Stratix III devices [10]. Tinuso’s
predication scheme differs from ARM architectures as predicated instructions
are executed depending on the value of predicate registers. Thus, any arithmetic
or logical instruction can set these registers and its value can be preserved for
a longer period.

Texas Instruments c6x is a digital signal processor platform that supports
predication execution of all instructions [56]. In contrast to Tinuso, c6x is a
very long instruction word, VLIW, machine with eight parallel function units.
As c6x comes with 5 branch delay slots, there may be up to 40 instructions
issued before a branch takes place. Often, control and data dependencies limit
the number of independent instructions that can be used to fill these delay slots.
As a consequence c6x leverages predicated instructions to replace conditional
control flow instructions.

3.3 The Architecture of Tinuso

Tinuso is a statically scheduled, single-issue, RISC processor architecture op-
timized for high throughput when implemented in FPGAs. Register file size,
cache sizes and cache organization are chosen to match the memory resources
found in modern FPGAs. Tinuso applies superpipelining to exploit instruction
level parallelism. Superpipelining breaks pipeline stages into smaller stages to
reduce the instruction cycle time. However, superpipelining cannot be applied
arbitrarily, with increasing pipeline depth, the clock frequency can be increased
until a point where the control hardware gets too complex putting a lower bound
on the delay along the critical path.

To keep the implementation simple, Tinuso executes instructions in-order
and does not support speculation beyond delayed branches. Only a single in-
struction is issued at a time. To further simplify the implementation, there is

3.3 The Architecture of Tinuso 23

only limited support for interrupts and exceptions. The pipeline, with side-
effects, is fully exposed to software. Thus, the software will have to consider
all types of hazards. Register forwarding in the pipeline is a vital technique
to limit the number of data-hazards by inherently moving results from a later
pipeline stage to an earlier one. Missing forwarding logic in a deep integer
pipeline, similar to Tinuso, causes a performance slowdown of almost a factor
of two [7]. Consequently, Tinuso supports full forwarding. Thus, forwarding is
possible from all pipeline stages. Tinuso is a three-operand architecture with a
fixed instruction word length of 32-bits and a large register file with 128 entries.
Hence, there is limited space for instruction encoding. To keep the number of
instructions low, the integer pipeline only supports data types such as signed
and unsigned 32-bit words. The reduced instruction set is designed to support
C and assembly language programming.

Tinuso leverages a single register file that is used for integer and floating
point operations as well as for predicates. A floating point unit may operate on
double precision operands, meaning that two 32bit registers are used to form
one 64bit operand. As a consequence, it takes two clock cycles to load and store
floating point operands. Tinuso comes with optional functionality that can be
configured when the design is synthesized. Currently, optional functionality
includes a multiplier, barrel shift operations, floating point unit, co-processor
interface and communication infrastructure.

3.3.1 Memory Hierarchy

Hierarchically structured memory is a hardware optimization that exploits the
principle of locality. The memory hierarchy includes a large main memory and
small memory blocks, called caches that are tightly integrated with the pipeline.
Caches store copies of frequently used memory blocks with the aim to reduce
the average time to access memory. Hence, if mostly cached memory locations
are accessed, the average memory latency will be closer to the cache latency
than to the latency of main memory. As the access latency to main memory
typically is high, the memory hierarchy is an important performance factor of
a computer system. Modern FPGAs contain memory resources in the form of
synchronous static RAM blocks, block RAMs. These block RAMs can typi-
cally store 9-36 kilobits of data organized very flexibly. Data can normally be
accessed via two memory ports and the data word width of each port is config-
urable. Current state-of-the-art FPGAs can have up to hundreds of these block
RAMs. The Tinuso processor architecture is optimized for FPGA implementa-
tion by balancing speed and hardware resources. Hence register file, instruction

24 Processor Core

and data caches are implemented as block RAMs. Clocking the pipeline at a
frequency that is close to the maximum clock frequency of block RAMs requires
a pipelined implementation. As a consequence, a pipelined cache or register file
access takes two clock cycles. This has a major impact on the processor archi-
tecture. The consequences for instruction scheduling, cache miss handling, and
the implementation of branch instructions are described within this chapter.

3.3.2 Predicated Execution

Superpipelined processors resolve branch address and direction late in the pipeline.
Hence, branch instructions complete with a delay of multiple cycles. In a pro-
cessor design with pipelined instruction cache and register file at least four suc-
cessive instructions are fetched until the branch completes. These instructions
are called delay slots that a compiler attempts to fill with useful independent
instructions. If unsuccessful, the compiler will have to insert no-operation in-
structions, which will reduce performance. Therefore, branch instructions are
expensive in superpipelined processor cores.

Consequently, Tinuso leverages predicated instructions to reduce the number
of dynamically executed branch instructions and to fill delay slots. Predicated
instructions have an additional predication operand, called predicate. Depend-
ing on the value of the predicate instruction is executed or annulled and has no
effect. Tinuso holds predicates in predication registers, which are a subset of the
register file. In total, four bits out of the instruction word are used to encode
predicated execution. Three bits are required to address the eight predication
registers. An additional negation bit N can be used to negate the predication
condition of an instruction. The eight predication registers are Boolean rep-
resentations of the lowest eight registers in the register file. Thus, predication
registers are set by any instruction that writes to the lowest eight registers in
the register file.

In computer architecture, branch delay slots are the pipeline slots that come
after a branch instruction, but before the branch target address has been com-
puted. Instructions in branch delay slots are executed regardless of whether the
branch is taken or not. Compilers try to fill those slots with instructions that
would be executed before the branch if there were no delay slots. Since it is dif-
ficult to fill all branch delay slots with useful instructions often nop instructions
need to be inserted. Tinuso’s predication scheme allow for filling branch delay
slots with instructions from before the branch, from the branch target, and from
fall through. In addition, the use of predicated instructions allows a compiler
to replace some conditional control-flow sequences with predicated instructions

3.4 Instruction Set Architecture 25

and hence reduces the amount of branch instructions and thereby lower the to-
tal amount of branch delay slots of a program. Predicated instructions can also
be used to selectively annul instructions in the branch delay slots.

The Tinuso architecture provides predicated execution for of all instructions
except of the instruction that moves immediate constants into a register. This
move high instruction is not predicated because the large immediate takes up
to much space in the instruction word that there is no space left to encode the
predicate. Instead, a move high to a temporary register and a successive add

immediate instruction can be used to conditionally load 32 bit constants into
a register. Given the relatively large register file, there is limited use of making
move high instructions predicated.

3.4 Instruction Set Architecture

Tinuso implements a load-store instruction set with a fixed 32-bit instruction
word length. Given the large amount of memory resources in modern FPGA’s, a
large register file with 128 entries was selected. Thus, seven bits are required to
encode an operand. Moreover, predication takes up four bits of the instruction
word encoding. Another three bits are used to encode instruction types. Hence
there is limited space for instruction encoding. For that reason only instructions
strictly required to support C and assembly language programming have been
implemented.

Figure 3.1 illustrates the encoding of instruction types. There are up to two
source operands rA,rB and one destination operand rC. The N represents the
negation bit for predicated execution.

Tinuso uses three bits of the instruction word to categorize instructions in
eight instruction types.

One instruction type is used for arithmetic and compare-and-set instruc-
tions. Four bits are used to encode the functionality of 15 three-operand instruc-
tions. The 16th value is used to encode the subtype of arithmetic instructions
with two or one operands. Three operand operations include addition, subtrac-
tion and logic operations. Tinuso supports three compare-and-set instructions
that set a destination register according to the comparison of the two input
operands. In contrast to the MIPS architecture, where five bits out of the in-
struction word are reserved for defining the shift amount, Tinuso supports a
small set of commonly used shift instructions only.

Tinuso only supports memory accesses in 32-bit word length. Loading and
storing byte or half-word data types is accomplished with shift and mask oper-

26 Processor Core

ations. Eleven bits are reserved for offsets, allowing to address memory relative
in the range of +/- four kilo bits.

An immediate can be considered as a constant value that is part of an in-
struction, commonly used to manipulate a register content. To move immediate
values into registers the move high instruction is used. It loads a 22-bit im-
mediate into the upper part of a register. Hence a successional add immediate

instruction is required to load a 32bit constant. The 22-bit immediate of the
move high instruction is split up to simplify the instruction decoding logic hard-
ware.

Tinuso provides branches relative to the program counter. There are two
branch instructions: one that branches if the content of the input operand is
zero and one that branches if it is not zero. Branch instructions come with
a 15-bit offset, which is shifted left two bits, sign extended, and added to the
program counter. Tinuso branch instructions allow for PC relative jumps in the
range of +/- 16 kilo bytes.

The instruction set also includes a jump register instruction. Absolute
jumps can be composed by a move high, an add immediate and a jump register

instruction. Thus, absolute jumps become expensive. Still, we consider this to
be an appropriate compromise given the fact that absolute jumps represent less
than 1% of all executed instructions in typical benchmark applications [53].
To support function calls, the jump register instruction has built-in linking
functionality, which stores the return address in a dedicated link register.

In addition, there is some space left in the ISA to encode optional function-
ality such as multiplier, barrel shift operations, floating point unit, co-processor
interface, and communication infrastructure and additional instructions. A de-
tailed description of all instructions can be found in the Appendix B.

3.5 Pipeline Architecture

The current design consists of eight pipeline stages as shown in Figure 3.2. The
program counter is not considered as a separate pipeline stage. The Tinuso
processor architecture makes use of block RAMs for caches and register file. To
attain a highest possible clock frequency, the block RAM access is pipelined by
adding optional output registers to the block RAM. As a consequence, a cache
or register file access in the Tinuso processor architecture takes two clock cycles.
Hence, the instruction and the corresponding cache tag are not accessible until
the instruction decode stage. Provided there is a tag match, the instruction is
decoded whereas the pipeline invalidates the instruction on a cache miss. When

3.5 Pipeline Architecture 27

• Move High Instruction:

07152331

OP Immediate rC Immediate

• Add-Immediate Instruction:
07152331

OP rA N Pred rC Immediate

• Branch Instructions:
07152331

OP rA N Reserved Offset

• Arithmetic, Compare-and-Set Instructions
with three Operands:

07152331

OP rA N Pred rC rB Funct

• Arithmetic Instructions with two Operands:

07152331

OP rA N Pred rC Function

• Load Instruction:
07152331

OP rA N Pred rC Offset

• Store Instruction:
07152331

OP rA N Pred rB Offset

Figure 3.1: Overview of Tinuso’s instruction word encoding

28 Processor Core

the cache miss is resolved, the program counter is set back to the value it held
before the cache miss occurred.
In the register fetch stage, the register file is accessed and the first portion of
forwarding is performed.

Tinuso implements a unified register file with 128 entries. A single register
file is used for integer and floating point operations and predicated execution.
Hence, the register file has two ordinary read ports that can access any of the
128 entries and one simplified read port to access the eight predication registers.

To let the processor take advantage of fast cache access and register file
access it is necessary to pipeline the execution stage. It is currently split up
into two stages. In the execution stages there is an arithmetic path and a logic
path where instructions are decomposed into two sub-operations. In a deep
pipeline, register forwarding is vital factor for the performance of the processor.
Consequently, the Tinuso architecture supports forwarding from all pipeline
stages.

To compute a branch target address, it is necessary to access the register
file and determine whether a given register value equals zero. According to
Figure 3.2, this cannot be done until the first execution stage. Hence, there are
four branch delay slots.

The data cache is accessed in the memory stage. Again this takes two clock
cycles, meaning that when a cache miss is detected, there might already be a new
instruction in the input register of the block RAM. Similarly to the instruction
cache, this is handled by flushing the pipeline when a data cache miss occurs
and restarting the pipeline once the cache miss is resolved. In the multiplexer
stage the data cache tag check is accomplished and results of the execution
stages and load instructions are multiplexed. Finally, results are written back
to register file in the write-back stage. There is a single write port that is used
by all instructions to write results back to the register file.

In Tinuso, the cache controller is able to control the pipeline by setting the
program counter. This allows for flushing the pipeline on cache misses and
to restart after the miss has been resolved. Moreover it is able to halt the
pipeline on external request. In multicore systems, this is an important feature
to implement a cache coherency protocol in hardware.

3.6 Hardware Implementation

The current VHDL implementation, Tinuso I, is a full implementation of the
Tinuso architecture. It is designed explore the feasibility of the architecture

3.6 Hardware Implementation 29

m
u
x

D$
data

cache

tag & valid
tag & valid

de-
code
logic

pc

cache
tag

check

branch?

cache
tag

check

FW
logic

I$
instruction

cache

RF
register

file

control logic / cache controller / network interface

 ALU

pc i-fetch decode reg-fetch execute 1 execute 2 memory mux write back

FW
logic

Figure 3.2: Pipeline sketch of an 8 stage Tinuso implementation

in terms of speed and required hardware resources. The hardware prototype
includes first level cache controller and a memory interface. Tinuso I’s eight
stage pipeline is shown in Figure 3.2. Pipelined memory resources are provided
by current state-of-the-art FPGAs. Hence, register file and caches are imple-
mented as block RAMs with optional output registers. To let the processor take
advantage of fast cache and register file accesses the execution stage is pipelined
into two stages.

3.6.1 Register Forwarding

Register forwarding in a deeply pipelined processor pipeline is vital for its per-
formance. However, it is a challenge to implement register forwarding in a deep
pipeline without limiting the maximum clock frequency of the system. Tinuso
requires forwarding from a total of six stages. Typically, a large multiplexer,
placed in the execution stage, selects among results from successive pipeline
stages and register file.

Current FPGAs typically utilize six-input LUTs that can be configured to
implement a simple 4:1 multiplexer. Multiplexers with more inputs require a cas-
caded implementation. For example, in Xilinx Virtex 5 FPGAs, 8:1 multiplexers
are composed by a dedicated two-input multiplexer (F7AMUX / F7BMUX) that
selects among the outputs of two LUT based 4:1 multiplexer [122]. Cascading

30 Processor Core

m
u
x

RF
register

file

reg-fetch execute 1 execute 2 muxmemory

m
u
x

R

R

R

m
u
x

R

add
1

log
1

add
2

log
2

m
u
x

m
u
x

R

R

multiply, barrel shift, fpu, etc…

m
u
x

instr.

R

Figure 3.3: The pipelined forwarding mechanism in Tinuso

multiplexers increases the propagation delay through logic gates. Moreover, the
interconnect delay for all multiplexer inputs need to be taken into account when
doing a timing analysis of the design. Considering a cascaded multiplexer and
the interconnect delay for all forwarding paths, this forwarding logic becomes a
limiting factor for the system’s clock frequency. Consequently, Tinuso leverages
a pipelined forwarding logic. Tinuso’s approach for a fast forwarding logic in the
execution stages is twofold. First, only forwarding from adjacent pipeline stages
is permitted to limit the interconnect delays. Second, forwarding multiplexers
in the critical path of the design are limited to a single four-input instance to
keep the levels of logic low.

The proposed solution is illustrated in Figure 3.3. In the register fetch
stage, there is a large multiplexer that selects among results from most pipeline
stages. One input of this large multiplexer is connected to the instruction decode
stage, this is necessary to load immediate constants into the execution stage.
This multiplexer combines several forwarding paths into a single register. A
priority encoder makes sure that this register always carries the value of the
most relevant forwarding source.

There is an arithmetic, add, execution path that implements instructions
such as addition, add immediate, load and store. Logic instructions are com-
puted in a dedicated logic, log, execution path. The arithmetic path is time

3.6 Hardware Implementation 31

critical. Experimental results have shown that we attain the highest clock fre-
quency when 20 bits of the 32-bit data word are computed in the first execution
stage. Logic operations are pipelined in the same way to provide forwarding
from the arithmetic path to the logic path and vice versa. While this approach
increases the number of forwarding sources, it reduces the number of multiplex-
ers in the time critical path.

The operands in the first execution stage can either be taken from the register
file directly, from the result of the arithmetic or logic path, or from the register
that carries the value of the remaining forwarding sources. Thus, there is only
one four-input multiplexer in the first execution stage that handles forwarding.
The same approach applies to the second execution stage. Again, the operand
data can either be taken from the output of the first execution stage, from the
result of the arithmetic or logic path or from the result of the memory stage.
Tinuso’s register forwarding implementation can be characterized by:

• Forwarding from all pipeline stages is possible.

• The forwarding multiplexers in the execution stage connect to adjacent
pipeline stages only to keep routing delays low.

• In the time critical path of the execution stages, forwarding is implemented
with a single four-input multiplexer only.

Optional instructions such as barrel shifts, integer multiplication operations,
or floating point operation only partially use the pipelined ALU and implement
a separated execution path. While it is always possible to forward results to
these instructions, there is limited forwarding in the opposite direction only.

Figure 3.4 illustrates an example of Tinuso’s forwarding mechanism in the
pipelined ALU. In this example, there is an add instruction followed by an
or instruction. The result of the addition is used as an operand of the or

instruction. As these instructions are scheduled right after each other we need to
forward the result from one instruction to the other. Figure 3.4-a shows that the
addition uses the arithmetic execution path of the first execution stage. After
one clock cycle the or instruction enters the logic execution path in the first
execution stage while the add instruction is completed in the second execution
stage. As shown in Figure 3.4-b the first part of the result of the addition is
forwarded to the logic execution path. In a next step the or instruction has
moved to the logic path in the second execution stage as shown in Figure 3.4-c.
The preceding add instruction has now completed and the second part of the
result is forwarded to the logic execution path in the second execution stage.

32 Processor Core

m
u
x

RF
register

file

or r5, r5, r1 add r1, r2, r3 nop mux nop

R

R

R

m
u
x

R

add
1

log
1

add
2

log
2

m
u
x

m
u
x

R

R
instr.

m
u
x

(a)

m
u
x

RF
register

file

nop or r5, r5, r1 add r1, r2, r3 mux nop

m
u
x

R

R

R

m
u
x

R

add
1

log
1

add
2

log
2

m
u
x

m
u
x

R

R
instr.

(b)

m
u
x

RF
register

file

nop nop or r5, r5, r1 muxadd r1, r2, r3

m
u
x

R

R

m
u
x

R

add
1

log
1

add
2

m
u
x

m
u
x

R

R
instr.

log
2R

(c)

Figure 3.4: Example of pipelined forwarding

3.6.2 Pipeline Anomalies

Tinuso’s forwarding mechanism is complex because there are many intermediate
results that need to be forwarded without that the forwarding logic becomes
too complex and limits the maximum clock frequency of the system. Moreover,
also predicate operands need to be considered to avoid forwarding from annulled
instructions. However, there are situations where forwarding in hardware cannot
be implemented efficiently. It is therefore up to the compiler to avoid such
situation.

Listing 3.1 shows a situation where forwarding from a predicated instruction
goes wrong. The difficulty of forwarding from predicated execution is that
there are situation where we do not know whether the predicated instruction is
annulled or not until the second execution stage. This is the case if the result
of the first instruction is used as predicate for instruction. The problem is that
the third instruction is at that point in the execution stage and forwarding
multiplexers are set already. If the result of the first instruction is 0, we forward
the annulled result of second instruction to the third instruction, which results
in a data hazard. Therefore Tinuso requires the compiler to add a nop before
or after the predicated instruction to avoid a data hazard.

3.6 Hardware Implementation 33

Listing 3.1: A Data hazard can be caused by forwarding the result of a predi-
cated instruction from the second to the first execution stage

1 /* add r2 and r3 and save result in r1*/

2 add r1 , r2 , r3

3 /*if r1 is not zero: add r1 and 5 and save result

in r22*/

4 [r1] addi r22 , r1, 5

5 /*add r22 and r1 and save result in r4*/

6 /*data hazard if instruction 2 is annulled!*/

7 add r4 , r22 , r1

Listing 3.2: There is no data hazard in this situation because the value of
register 1 is known when selecting the forwarding sources for the instruction on
line 7

1 /* add r2 and r3 and save result in r1 */

2 add r1 , r2 , r3

3 /* if r1 is not zero: add r1 and 5 and save result

in r22 */

4 [r1] addi r22 , r1, 5

5 [!r1] addi r22 , r1 , 2

6 /* add r22 and r1 and save result in r4 */

7 add r4 , r22 , r1

However, Tinuso’s forwarding logic supports situations as described in List-
ing 3.1. In this example the second instruction and third instruction use the
same predicate but come with a different negate bit. Hence, only one of the in-
structions will be executed. The result of the first instruction determines which
one will be annulled. This is known before the fourth instruction enters the
execution stage. Thus, the forwarding multiplexers are set correctly.

Compare-and-set instructions also require careful scheduling to avoid haz-
ards. Compare-and-set instructions utilize the arithmetic path in the execution
stages where the second operand is subtracted from the first operand. While
this subtraction is performed a number of status bits are set. These status bits
are kept inside the pipeline and are not accessible for the programmer. Instead
they are used to determine whether the instruction will set the destination reg-

34 Processor Core

ister to true or false. This is done in the memory stage. The buffered result of
the memory stage is used to forward results from compare-and-set instructions,
which therefore come with a total of three delay slots. Compare-and-set instruc-
tions are often used in combination with a successive branch instruction. The
hardware is optimized for this instruction sequences and partially computes the
result of the compare-and-set instructions in the second execution stage. The
control logic of the program counter multiplexer then does the final computa-
tion to determine whether the branch is taken or not. Hence, there is only one
delay slot required.

Load instructions compute the memory address in the execution stages. This
address then points out which element of the cache to select. It takes two clock
cycles to load data from the cache, one cycle to analyze the cache tag, and one
cycle to buffer the forwarding result. Hence, load instructions have a total for
four delay slots.

Write instructions compute the memory address in the execution stage. The
memory address is used to load the corresponding cache tag. In the multiplexer
stage the tag is checked for validity. If there is valid data and the cache tag fits,
data is written to the cache during the write back stage. If a successive load
instruction attempts to access the same memory location as the store instruction
that has not completed yet, a read after write hazard occurs. Tinuso implements
the data cache as block ram with a read first policy, as it enables the fastest
implementation [121]. However, this comes at the cost of three instructions that
need to be placed between a store and a load to the same memory location.

Other instructions, such as barrel shift, integer multiplier and floating point
operations that only partially use the logic or arithmetic path of the execution
stage have delay slots as well. However, the number of delay slots depends on
the implementation and it is a trade-off between hardware costs and complexity
on one side and performance and compiler complexity on the other side.

3.6.3 First Level Caches

Tinuso implements a hierarchical memory hierarchy. Instruction and data caches
are implemented as block RAMs. For simplicity, a directly mapped cache orga-
nization was chosen. Directly mapped caches are very fast and can be directly
implemented using the block RAMs. However, they also suffer from a relatively
large number of collision misses. We believe this to be a fair decision given
the actual cache size and the architectural goal to avoid branches by making
use of predicated instructions. The block RAM size in the Xilinx Virtex 5 and
newer FPGA families is 36 kilo bits. These memory blocks can be addressed as

3.6 Hardware Implementation 35

two independent 18 kilo bit block RAMs. Tinuso currently implements cache
size of 4 kilo bytes to ensure that the cache-data fits into a single block RAM.
Typically these block RAMs are placed in a row on the chip, which allows for
implementing a fast cache consisting of multiple block RAMs. Cache sizes and
cache line sizes can be configured when the design is synthesized. The data
cache uses a write back strategy to reduce the memory bandwidth, which is
relevant for multicore platforms.

3.6.4 Cache Controller

The Tinuso hardware prototype includes first level cache controller and a simple
memory interface. The cache controller includes two finite state machines, FSM.
The first FSM is tightly integrated in the pipeline to detect cache misses and to
flush the pipeline. The second FSM then translates cache misses into memory
requests and is responsible for updating the caches. Figure 3.5 illustrates the
state diagram of the cache controller FSM for the pipeline. The cache controller
FSM remains in the idle state until a cache miss is detected. On a cache miss, the
current program counter is saved and the pipeline is flushed. Then the control is
then passed over to the cache controller FSM outside the pipeline, which requests
the missed memory address and writes memory addresses back to main memory
if required. Once the cache controller has received the requested memory data
it updates the cache and passes the control back to the cache controller FSM in
the pipeline to restart the pipeline.

Instruction cache misses are detected early in the pipeline. Hence, it is
possible that there are control flow instructions, such as branches or jumps,
in the pipeline that have not yet completed when an instruction cache miss
occurs. The cache controller detects these branch and jump instructions and
stores its program counter instead of the program counter of the instruction
that caused the instruction cache miss. Once data is available in the instruction
cache, the pipeline restarts with the program counter of the branch and jump
instruction to ensure the correct control flow of the program. Data cache misses
are detected late in the pipeline. Hence there are no outstanding control flow
instructions to detect. Data cache misses are resolved with a higher priority
than instruction cache misses. The advantage of this simple design is that it
only needs to store one program counter value. Nevertheless, there can only
be one outstanding cache miss at a time. Flushing and restarting the pipeline
causes additional delay cycles compared with an implementation that is able
to stall the pipeline. However, the hardware is simpler and allows for a higher
system clock frequency.

36 Processor Core

idle

d$
miss

detect
I$ miss
detect

d$
miss
wait

I$ miss
wait

halt pipeline

D$ tag fail

D$ tag fail

D$ tag fail

I$ tag fail

wait for NIwait for NI

NI request

NI release

I$ cache
updated

D$ cache
updated

wait

trigger NItrigger NI

wait

determine safe
restart instr

determine
restart instr

Figure 3.5: State diagram of the Tinuso cache controller

The cache controller is designed with the perspective that the pipeline can
be halted on a network request. Once the pipeline is halted the cache controller
may update the caches according to the network request.

3.7 Results

This section contains an evaluation of the proposed processor architecture where
the performance of Tinuso I is compared with current state-of-the-art synthesiz-
able processors. First, the maximum clock frequency and the required hardware
resources for various FPGA families are derived and compared to a similar Mi-
croBlaze configuration. Second, Tinuso I’s branch performance is evaluated by
measuring the code execution time of a set of integer micro-benchmarks. The
results are compared to processor cores with different types of branch prediction.

3.7.1 Clock Frequency Study

The results for the Xilinx devices are based on Xilinx ISE 12.4 ”place and route
report”. Likewise, the Quartus II tool-chain version 10.1 was used for Altera
devices. Default synthesis and ”place and route” settings are used for all FPGA
families. In the Xilinx ISE tool-chain the global optimization parameter in
the ”map properties” is set to ”speed”. The frequency measurements of the

3.7 Results 37

Altera devices are based on the Quartus II 85◦C model. Table 4.1a lists the
maximum clock frequencies and the required hardware resources of a Tinuso
I implementation for various FPGA families. The design includes the cache
controller implementation. Table 4.1b lists hardware resource usage and clock
frequency with and without optional multiplier and barrel-shifter of Tinuso I
and similar MicroBlaze configurations.

To allow for an unbiased comparison, the following features for MicroBlaze
are disabled: exceptions, debugging infrastructure, divider, and pattern gener-
ator. The performance-optimized version of MicroBlaze with a 5-stage pipeline
is used. Similar to Tinuso, MicroBlaze uses 4 kilo byte directly mapped caches
implemented as block RAMs with a write-back strategy. Looking at the num-
bers of the minimal configuration in the upper part of the table, we observe
that Tinuso operates at a significantly higher clock frequency than MicroBlaze
while consuming 35% fewer resources.

The lower part of Table 4.1b shows hardware resource usage and clock fre-
quency of a configuration with enabled multiplier and barrel-shifter. We no-
tice that the implementation of multiplier and barrel-shifter lowers Tinuso I’s
clock frequency. Moreover, the costs to add these two functional units in terms
of hardware resources are higher compared to MicroBlaze’s implementation.
These additional hardware costs are mainly caused by the fully pipelined 32-bit
by 32-bit multiplier.

Intermediate results from the multiplier are passed over several pipeline
stages, which is costly in terms of flip-flops. To avoid restrictions regarding
forwarding and instruction scheduling we did not pipeline the barrel shifter.
The large number of cascaded multiplexers that are used to implement the bar-
rel shifter limit the clock frequency of the design. We conclude that the design
principle of aggressive pipelining is very effective for the processor core. Extend-
ing the processor core with fast and complex functional units does not scale well
for deep pipelines in FPGAs.

3.7.2 Branch Performance Study

The clock frequency results in Table 4.1 show that Tinuso takes optimal ad-
vantage of its deep pipeline. Superpipelined architectures where branches are
resolved late in the pipeline have a high branch penalty. The performance of
a processor architecture greatly depends on its ability to reduce the branch
penalty. To evaluate Tinuso’s branch performance we compare the code exe-
cution time of a set of micro-benchmarks to similar processor configurations.
Commonly, there are minor differences in the way synthesizable processors im-

38 Processor Core

Table 3.1: Speed and resource overview of a Tinuso I implementation for various
FPGA families

FPGA family Grade max. Freq. Area
Xilinx Spartan 6 -3 220 MHz 1409 LUT-6
Xilinx Virtex 5 -3 335 MHz 1599 LUT-6
Xilinx Virtex 6 -3 376 MHz 1322 LUT-6
Altera Cyclone IV E C6 206 MHz 1882 LUT-4
Altera Stratix III C2 335 MHz 1332 LUT-6

Table 3.2: Overview of hardware resource usage and clock frequency of Tinuso I
and MicroBlaze

minimal configuration
Tinuso MicroBlaze

376 MHz 1322 LUTs 194 MHz 2024 LUTs
4 BRAM 0 DSP48E 12 BRAM / 0 DSP48E

incl. multiplier & barrel shifter
Tinuso MicroBlaze

349MHz 2145 LUTs 194 MHz 2277 LUTs
4 BRAM 4 DSP48E 12 BRAM 4 DSP48E

plement arithmetic, logic, load, and store instructions. Major differences are
found in the way processors minimize the negative effects of branch instruc-
tions. Hence, we decided to compare Tinuso I with Xilinx MicroBlaze 8.00b,
MB8, and LatticeMico32, LM32. Tinuso uses predicated instructions to circum-
vent costly pipeline stalls due to branches. MicroBlaze utilizes dynamic branch
prediction implemented with a branch target buffer. In the optimal case, it
completely removes the average branch penalty [120]. LatticeMico32 supports
static branch prediction only. Hence, always the same direction for the same
branch is predicted.

The performance of large benchmarks suites, such as SPEC, highly depends
on the performance of the memory hierarchy. To evaluate branch performance,
we instead decided on micro-benchmarks that are independent of the memory
hierarchy and show a high percentage of branch instructions. Hence, program
and data are loaded into the caches in advance and a processor configuration
without multiplier and barrel-shifter was chosen.

We measure the number of clock cycles each processor requires to execute

3.7 Results 39

the benchmarks. To allow a consistent comparison among the three processor
cores, both MB8 and LM32 are configured to match Tinuso I. LM32 has a barrel-
shifter since its configuration tool-chain does not allow to disable it. MB8 and
LM32 toolchains come with a port of GNU Compiler Collection, GCC. The high-
est compiler optimization level is used. At the time these results experiments
were conducted, there is no operational C compiler for the Tinuso architecture
available yet. Hence, we used the assembler output of the Xilinx GCC port
as a starting point and adapted the code to match the Tinuso instruction set
architecture. Loop unrolling optimization is not applied. This method effec-
tively reduces the number of branches. Thus, it is not suited for the intended
evaluation of Tinuso’s approach to avoid branches by making use of predicated
instructions.

The data type of all variables in all benchmarks is set to unsigned 32-bit
integer. Even though Xilinx and Lattice tool-chains both use the same GCC
compiler, in some cases the quality of the generated executable code varies
significantly. For that reason the GCD application for the LM32 is written in
assembler to ensure a consistent evaluation. We added performance counters
to the processor configurations to record the number of clock cycles used to
execute the benchmarks. The overhead to trigger the counter is subtracted
from the results. We use the following micro-benchmarks:

GCD. The algorithm to determine the greatest common divisor, GCD, con-
sists of a while loop, an if-then-else statement and two arithmetic operations
where one operand is subtracted from the other or vice versa. We decided for
an operand pair that leads to a total of 500 iterations. RSA encryption.
The Rivest, Shamir and Adleman, RSA, encryption algorithm includes a mul-
tiplication and a modulo operation. Again, integer multiplier and divider are
disabled on all of the three processors. Hence, the multiplication and the mod-
ulo operation are implemented with loops. A prime number pair of 37 and 3713
was chosen to yield a high number of iterations. Fibonacci. The Fibonacci
algorithm is implemented without recursive function calls. The 40th Fibonacci
number is computed. The structures of Fibonacci and GCD algorithms are
comparable. However, the number of iterations in this benchmark is lower and
there are slightly more arithmetic instructions within the loops. Hence, the im-
pact of dynamic branch prediction is low. Binary search. The binary search
algorithm locates the position of an item in a sorted array. Again, this array
is loaded into the data cache before starting the benchmark to avoid a high
number of data cache misses. An array size of 512 items is used. Hence, the
number of iterations is relatively low, which limits the impact of dynamic branch
prediction.

40 Processor Core

Figure 3.6a illustrates the relative performance of the three processors with
normalized clock frequency. For the GCD benchmark, 50% of the instructions
that MB8 and LM32 execute are branches. Hence, dynamic branch predic-
tion provides a substantial boost in code execution performance. Tinuso lever-
ages predicated instructions to implement if-then-else statements without using
branch instructions. However, the loop iterations do not contain instructions
enough that Tinuso can fill all branch delay slots. The LM32 requires most
clock cycles to execute this benchmark since a taken branch requires four clock
cycles [71]. Again, due to the high number of iterations of the RSA benchmark,
dynamic branch prediction plays a vital role. However, the LM32 performs best
on this benchmark. The fact that the LM32’s configuration includes a barrel
shifter explains this result.

The number of iterations for the Fibonacci benchmark is lower than for
GCD algorithm. Hence, the deviation of the results among the three processors
is lower than for the GCD benchmark. Compared to the previous benchmarks,
the main loop in the binary search algorithm contains more instructions. That
allows Tinuso to fill the branch delay slots and to utilize predicated instructions
effectively. Consequentially, Tinuso reaches the highest performance for this
benchmark.

We observe that MicroBlaze performs best due to dynamic branch predic-
tion. Some loop iterations do not contain instructions enough that Tinuso can
fill all branch delay slots. Hence, Tinuso requires more clock cycles to execute
these benchmarks than MicroBlaze. Nevertheless, Tinuso’s predicated instruc-
tions allow for higher instruction level parallelism than LatticeMico32 where
branches cause pipeline stalls.

To calculate the execution time of each benchmark, we scale the measured
number of clock cycles, used to execute the benchmarks, with the processor’s
maximum clock frequency. We use the clock frequencies from Table 1 for Virtex
6 devices. LatticeMico32’s product brief states a maximum clock frequency of
115 MHz when implemented on a LatticeECP3 FPGA [70]. Since it is difficult
to compare designs on FPGA families from different vendors, we do not include
LM32 in this study.

As seen from Figure 3.6b, Tinuso executes all benchmarks faster than Mi-
croBlaze. Tinuso’s high clock frequency allow for significantly better perfor-
mance. Even on benchmarks where dynamic branch prediction has a big impact
such as GCD, Tinuso performs best. The arithmetic average of the four bench-
marks shows that Tinuso executes the benchmarks 38% faster than MicroBlaze.
We show that our architectural design principles perform well. Tinuso’s predi-
cated instructions are an efficient way to circumvent costly pipeline stalls. This

3.8 Conclusions 41

approach can allow for a higher instruction level parallelism than conventional
approaches where branches cause pipeline stalls.

GCD RSA Fibo. B.Search
0.0

0.5

1.0

1.5

re
la

tiv
e

pe
rf

or
m

an
ce

 w
ith

no
rm

al
iz

ed
 c

lo
ck

 fr
eq

ue
nc

y

Tinuso
MicroBlaze
LatticeMico

(a) Performance with normalized freq.

GCD RSA Fibo. B.Search
0.0

0.5

1.0

1.5

2.0

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

Tinuso [376Mhz]
MicroBlaze [194Mhz]

(b) Execution time relative to Tinuso I

Figure 3.6: Performance results

3.8 Conclusions

In this chapter we described the architecture of Tinuso and evaluated the integer
implementation of one instance of the Tinuso family architecture. Tinuso is
a single-issue, in-order processor that delivers a high performance through a
deep pipeline and uses predicated instructions to effectively circumvent costly
pipeline stalls due to branches. Tinuso makes use of pipelined RAMs found in
modern FPGAs to implement fast caches and register file. To attain highest
clock frequency we pipelined the execution stage and designed a full forwarding
mechanism that effectively minimizes the logic in the time critical path of the
design.

Tinuso takes optimal advantage of its deep pipeline. We measured clock
frequencies as high as 376 MHz on current FPGAs. The logic is well balanced
between pipeline stages and the time critical path of the design includes only 4
successive 6-input lockup tables. Routing delays account for a substantial part
of the critical path. Adding more pipeline stages is not beneficial as additional
hardware resources and increasing complexity in the control logic lead to a
diminishing return.

Tinuso is also effective in terms of hardware resources: A basic Tinuso im-
plementation consumes 35% less area than an equivalent MicroBlaze configura-
tion. We extended Tinuso with a multiplier and barrel-shifter and observed that

42 Processor Core

adding fast and complex functional units is very expensive in terms of resources
for deep pipelines in FPGAs. The high clock frequency of a superpipelined
processor comes at the cost of a high number of branch delay slots. We lever-
age predicated instructions to improve branch performance. We evaluate Ti-
nuso’s performance with a set of numerical and search-based micro-benchmarks
and compared it to current state- of-the-art synthesizable processor cores. We
achieve an average performance improvement of 38% over a similar MicroBlaze
configuration.

We show that a superpipelined processor exploits the FPGAs architecture
better than the classical 5-stage RISC pipeline. We demonstrate that our pred-
icated instruction set architecture allows for higher instruction level parallelism
than conventional approaches where branches cause pipeline stalls. We reach
a higher performance while utilizing fewer resources than current commercial
processor cores. Hence, the proposed design principles allow next-generation
synthesizable processor cores to become more competitive.

Chapter 4

Tinuso Toolchain

This chapter describes a collection of tools to translate programs written in C
programming language to executable binaries for the Tinuso architecture. This
sequence of tools is called toolchain and consists of a C compiler, a collection
of binary tools, and a C library. The architecture of Tinuso implements a deep
pipeline to attain a high system clock frequency. All types of hazards are ex-
posed to software to keep the hardware footprint low and predicated instructions
circumvent costly pipeline stalls due to branches. Therefore, the Tinuso instruc-
tion set architecture requires tools and libraries to be adapted. For example, the
toolchain must be able to resolve hazards, fill delay slots, leverage predicated
execution, and emulate instructions that are not implemented in hardware such
as floating point instructions.

Section 4.1 introduces the toolchain and describes main challenges that come
with Tinuso architecture. Section 4.2 provides an introduction of the GNU GCC
toolchain such as C compiler, Binutils and introduces the Newlib C library.
Section 4.3 describes the GCC backend implementation for Tinuso. Section 4.4
evaluates the backend by measuring the code execution time for a set of small
C benchmarks. Finally, Section 4.5 summarizes and concludes this chapter.

4.1 Introduction

Tinuso is a statically scheduled, pipelined processor architecture optimized for
high throughput when implemented on FPGAs. A three operand, load-store in-
struction set with a fixed 32-bit instruction word length is used. Tinuso supports

44 Tinuso Toolchain

a register file with 128 general purpose registers. To keep the implementation
simple, Tinuso only issues a single instruction at the time and executes instruc-
tions in-order.

Register file size, cache sizes and cache organization are chosen to match the
memory resources found in modern FPGAs. For example, Tinuso uses pipelined
cache and register file accesses, which results in a deep pipeline. Therefore,
branch instructions in Tinuso come with four branch delay slots, which make
these instructions expensive. Predicated execution is a technique, which en-
ables the elimination of branch instructions. A predicated instruction uses a
predication register as an additional operand. Depending on the value of the
predication register the instruction is executed or annulled, i.e., has no effect.
Tinuso comes with eight predication registers that are a subset of the 128 gen-
eral purpose integer registers. The Tinuso architecture leverages predicated
execution for all instructions except of movhi.

Simple if-statements can often be replaced with a sequence of predicated
instructions. This method is called if-conversion. The better a compiler is able
to apply if-conversion, the more branch instructions are removed, which lowers
the total amount of branch delay slots in the program code. Moreover, Tinuso’s
predicated instruction set enables selectively annulling of instructions in delay
slots. Hence, it is possible to fill branch delay slots with instructions from before
the branch, from the branch target and from fall through.

To keep the hardware footprint low, the pipeline is fully exposed to software
where a compiler needs to resolve all types of hazards. The current Tinuso
implementation supports forwarding from all pipeline stages and most instruc-
tions execute without any pipeline hazards. However, the design is optimized
for a high system clock speed, which prevents some instructions to complete the
computation in the second execution stage. This causes additional delay slots
and scheduling restrictions a compiler has to consider. Table 4.1 provides a brief
overview of delay slots of common instructions. Moreover, there is a forwarding
limitation for a certain sequence of predicated instruction as described in Sec-
tion 3.6. The current cache controller implementation also restricts instruction
scheduling as it does not permit load and store instructions to be placed in
branch delay slots.

It is not clear if current production compilers can successfully use predi-
cated execution and schedule instructions so as to mitigate the delay slots. In
this chapter we describe the development a GCC, GNU Compiler Collection,
backend for Tinuso [108]. GCC’s instruction scheduler and its ability to exploit
predicated execution are evaluated for Tinuso’s exposed 8 stage pipeline. We
implement a GCC 4.8.1 compiler toolchain for the Tinuso architecture and de-

4.2 GNU Compiler Collection Overview 45

Table 4.1: Delay slots for a Tinuso 8 stage pipeline

Instruction delay slots

branch / jump 4
load word 4
store word 3
compare-and-set 2,(1)
barrel shift 2

scribe the architecture specific scheduling optimizations and how we leverage
predicated execution. Finally, we run a set of small C benchmarks and compare
the code execution time to a similar Xilinx MicroBlaze configuration.

A GCC compiler toolchain is used because it is an open source compiler
that supports a large number of target platforms and has built-in support for
predicated execution [108]. GCC yields better performance than LLVM on
single issue in-order pipeline [63]. Moreover, GCC is widely used for embedded
systems. For example, companies such as Altera, Lattice, Microchip, TI, and
Xilinx provide GCC based toolchains for their embedded processors. GCC
has a modular structure and has an infrastructure for describing new target
architectures.

4.2 GNU Compiler Collection Overview

A compiler transforms programs written in a programming language into an-
other language. The target language is most often machine code or assembly
code for a target architecture. GCC is a collection of compilations tools that
was initially written by Richard Stallman in 1987 as part of the GNU project.
Meanwhile, GCC supports a total of 7 programming languages and more than
30 target architectures [1,2]. GCC is published under the GNU Public License,
GPL, which allows to freely use, modify and to re-distribute the source code.
GCC is popularly used in embedded computing where most producers of em-
bedded processors provide GCC based toolchains.

Figure 4.1 shows an overview of the Tinuso toolchain. The compiler reads
in program code in C programming language and outputs Tinuso assembler
code. The GNU Binutils are then used to create executable binaries for the
Tinuso architecture. The GNU assembler, gas, translates incoming assembler
code into relocatable binary object code. This object code consists of a sequence

46 Tinuso Toolchain

GNU Compiler Collection

GNU Binutils

Compiler: tinuso-unknown-elf-gcc

preprocessing Compilation
Assembler:

 tinuso-unknown-elf-as
linker:

tinuso-unknown-elf-ld

Hardware Simulator

Output:
executable file output *.elf

Input:
programm code *.c, *.h, *.asm

Output:
object file *.o

Input:
linker script

Figure 4.1: Tinuso toolchain overview

of machine specific instructions and symbolic links to data or objects and object
files of other program code. The C library is compiled with GCC toolchain into
a set of object files that are then copied into a static library file. Finally, the
linker collects object files and libraries, resolves symbolic links and generates
executable binaries for the Tinuso architecture.

Most modern production compilers can be split up in three main parts.
First, the frontend of a compiler scans the program code, parses its syntax and
semantics and translates it into an intermediate representation form. Second,
the middleend performs a number of optimizations passes by rearranging the
code. Third, the backend chooses target instructions to match each instruction
of this intermediate representation. The backend is responsible for low-level
and machine specific optimizations, instruction scheduling, register allocation
and output of assembly code. Therefore implementation details of the target
architecture need to be described in the back-end. This structured architec-
ture allows for adding new programming languages by adapting the frontend
only. The internal representation allows for adding optimization passes that are
independent of programming language and target platform. Additional target
architectures can be supported by extending the backend only.

4.2 GNU Compiler Collection Overview 47

program
code

machine
code

GENERIC RTL

Front-End Middle-End Back-End

High Level
GIMPLE

Low Level
GIMPLE

GIMPLE
SSA GIMPLE RTX

Optimization Passes

Sc
an

ne
r

Pa
rs

er

El
ab

or
at

io
n

In
st

r.
Sc

he
du

lin
g

In
st

r.
Se

le
ct

io
n

R
eg

. A
llo

ca
tio

n

Figure 4.2: Struture of GCC with intermediate representations

4.2.1 GCC Intermediate Representation

Figure 4.2 shows the GCC infrastructure and its intermediate representations.
GCC uses three main intermediate representations during compilation: GENERIC,
GIMPLE and RTL [108]. GENERIC is a language-independent representation
generated in the frontend. It is able to represent programs written in all the
languages supported by GCC. GENERIC is an abstract-syntax tree that serves
as an interface between the frontend and middleend. However, a frontend may
also directly generate GIMPLE as the C and C++ frontends do.

GIMPLE is a language independent, tree based representation. GIMPLE is a
simplified subset of GENERIC that is more restrictive. For example, GIMPLE
does not allow expressions with more than three operands [82]. Target and
language independent optimizations such as inlining, constant propagation, tail
call elimination, and redundancy elimination are done in GIMPLE. Most of the
work of GCC is done on a low-level intermediate representation called register
transfer language, RTL. RTL is inspired by Lisp lists to describe the instructions
to be outputted in an algebraic form. GIMPLE and RTL representations are
used to optimize the program. In total, GCC 4.8.1 comes with more than 250
optimization passes.

In addition to the main intermediate representation GCC uses three subtypes
of GIMPLE. High and low level GIMPLE are produced when the compilers con-
verts the program representation from GENERIC to GIMPLE. This conversion
is called Gimplification. To allow for efficient program analysis, GCC rewrites
the low level GIMPLE in the static single assignment form, SSA. SSA is a prop-
erty of an intermediate representation that strictly requires a unique definition
for each variable. The advantage of intermediate representations in SSA form
is that certain compiler optimizations are more efficient and execute faster.

48 Tinuso Toolchain

4.2.2 GCC Frontend

Figure 4.2 shows the GCC infrastructure including the high level tasks to be
performed in front-, middle-, and backend.

Before a compiler can optimize expressions and translate them into machine
code, it must understand both the programs syntax and its semantics. Hence,
the frontend first determines if the program code is valid and then, in a sec-
ond step, generates a tree based intermediate representation of the program
code. Finally, the tree based intermediate representation is then passed to the
middleend of the compiler.

The input of the compiler frontend is program code written in a specific pro-
gramming language. GCC supports programming languages such as C, C++,
Objective C, Fortran, Java, Ada, and Go [52]. The first step the frontend per-
forms is to scan the program code. The scanner reads a stream of characters
and breaks it down into small atomic units called tokens. Each token is a single
unit of the source programming language, for instance a keyword, identifier or
symbol name. During the lexical analysis a set of rules are applied to determine
whether or not the tokens are legal in the source language. Some programming
languages, such as C, execute a preprocessing phase where macros are substi-
tuted and conditional compilation is resolved. This task is typically performed
before the syntax and semantical analysis.

The parser transforms the sequence of tokens from the lexical analyzer into in
a parse tree according to the syntax rules of the input language. This parse tree
allows for identifying the structure of a program and to check whether or not the
program code fulfills the grammar of the input language. Type checking is also
performed during this stage of the compilation process. After semantic analysis
has completed successfully, these language-specific parse trees are lowered to
the language-independent GENERIC representation. This is done by replacing
high-level, language-specific trees with lower-level equivalents.

4.2.3 GCC Middleend

The middleend of a compiler typically performs optimizations on an interme-
diate representation of a program that is independent both of input language
and target architecture. GCC first runs the Gimplification pass to convert the
intermediate representation of a program from GENERIC into GIMPLE. Then,
GCC performs optimizations on the GIMPLE program representation in SSA
form. The optimized GIMPLE is converted into RTL and some more opti-
mizations passes are executed. Finally, optimized RTL is handed over to the

4.2 GNU Compiler Collection Overview 49

backend.

The input of the GCC middleend is program code in an intermediate repre-
sentation. Depending on the frontend GENERIC or GIMPLE is used. In a first
step GCC runs the Gimplification pass to convert GENERIC into GIMPLE.
In a next step, GCC rewrites the GIMPLE representation into the static single
assignment form, SSA. The SSA form requires that variables are assigned not
more than a single time. As in actual programs variables often are assigned
multiple times GCC creates new versions of these variables. GCC optimization
passes require the SSA form as certain compiler optimizations execute faster,
optimization are more effective, and the SSA form eases the development and
maintenance of optimization passes [3,51]. There are optimization passes that
add new symbols or change the program variables and may invalidate the SSA
property. Hence, the pass that rewrites GIMPLE in the SSA form may be called
multiple times throughout the optimization process.

The following briefly describes some optimizations passes that GCC performs
on the GIMPLE SSA representation. The complete list of optimization passes
can be found in the GCC internals documentation [108].

• The dead code elimination pass scans the program code for statements
that produce unused results. This pass is not able to check whether data
stored in memory are used again later or not, all memory locations are
therefore always considered as used.

• The profiling pass inserts functions into the program code that collect run
time profiling data. This data may be fed back to the compiler on a sub-
sequent run to perform optimizations that consider expected execution
frequencies and access patterns. For example, profiling data may be used
for high level memory optimization to increase the memory hierarchy per-
formance. The analysis of access patterns allows for reorganizing matrices
to improve cache locality. [58].

• GCC performs a high number of loop optimization such as vectorization,
loop-nest optimization, and loop unrolling. To exploit data parallelism,
the vectorization pass transforms loops to operate on vector types instead
of scalar types. Grouping data elements from consecutive iterations into
a vector that allows for computing loop iterations in parallel. Loop-nest
optimizations aim for improving data locality and removing dependencies
that might prevent other optimizations. Loops with few iterations may
be unrolled.

50 Tinuso Toolchain

• The array prefetching pass issues fetch instructions inside loops to prefetch
data for future loop iterations.

Once all optimizations on the GIMPLE representation have completed, the
program code is converted into low-level RTL intermediate representation. This
process is called RTL expansion. The conversion is done in two steps. First
GCC converts the representation back to GENERIC and eliminates as many
temporary variables as possible. Second, the tree representation is converted
into standard named patterns that describe low level operations. These patterns
then are used to generate RTL. The RTL representation is a chain of objects
called insns. Each target architecture must have a number of standard patterns
defined to allow RTL generation. On some target machines such as Tinuso,
some of these standard patterns cannot be expressed with single insn. In such
cases, a define expand pattern can be used to describe a sequence of insns that
form a RTL pattern.

According to Figure 4.2, there are RTL optimizations done both in mid-
dleend and backend. The program representation in RTL at this point is still
independent on the target architecture. Hence, RTL optimizations that are
independent on the target architecture are therefore considered to be part of
the middleend. For example there are optimization passes to remove redundant
computations that are not visible at GIMPLE level. The partially optimized
RTL representation is then handed over to the backend for architecture depen-
dent optimizations and machine code generation.

4.2.4 GCC Backend

The GCC backend receives the RTL representation of the program code and
runs a number optimization passes. The backend is responsible for machine
specific optimizations, instruction scheduling, register allocation, and to output
assembly code. The last step is performed by matching the insn list against
RTL templates to produce assembler code. GCC requires a detailed descrip-
tion of the target architecture for these tasks. This information is located in
the machine description which includes a detailed description all instructions
of the target machine in algebraic form. Moreover, the machine description
contains target specific macro definitions to describe the target architecture.
GCC code is target independent, but may depend on machine parameters such
as addressing conventions. The strict separation between target independent
program code and machine description ensures GCCs portability. If GCC shall
support another target machine, it is sufficient to add a machine description of

4.3 Tinuso GCC 51

this architecture.
The following briefly described the task performed in the backend:

• GCC runs an if-conversion pass that aims to replace conditional branches
with predicated instructions. In a first step, this pass modifies conditional
branches to depend on a Boolean value of a comparison instruction. Then,
predicated instructions are used to replace the conditional branch when
supported by the target architecture.

• The instruction combination pass attempts to combine the simple RTL
patterns of the initially generated representation into more complex pat-
terns and match the result against the machine description.

• There are target architectures where the output of an instruction will not
be available before the next subsequent instructions may need it. For ex-
ample Tinuso has such delay slots for memory loads, compare-and-set
instruction, and barrel-shift and multiply operations. The instruction
scheduling pass attempts to re-order instructions to avoid data hazards.

• Until now, the program representation was allowed to use any number
of registers. The program representation may therefore include registers
that physically exist on the target machine, called hard register, and reg-
isters that do not exist in hardware, called pseudo registers. The register
allocation pass replaces these pseudo register by replacing them with hard
register, pushing them on the stack or replacing them with equivalent
expressions such as constants.

• Architectures with deep pipelines typically have multiple branch delay
slots. Instructions in these delay slots are executed regardless whether
the branch is taken or not. The delayed branch scheduling pass selects
independent instructions that can go into these delay slots.

• The final pass outputs the assembler code. The assembly letters to out-
put are defined in the machine description. The assembly output is then
typically handed over to the GNU Binutils to produce executable machine
code.

4.3 Tinuso GCC

The architecture of Tinuso comes with a high number of delay slots and schedul-
ing restrictions and provides predicated instructions to reduce the branch penalty.

52 Tinuso Toolchain

Hence, the performance highly depends on GCC’s ability to schedule instruc-
tions for an exposed 8 stage pipeline and to leverage predicated execution. We
have developed an optimizing GCC backend for Tinuso. This backend leverages
the GCC infrastructure and can perform all common optimizations such as ag-
gressive register allocation and proper instruction selection including conversion
of expensive operations such as multiplications to less expensive operations such
as additions and shifts.

Although GCC comes with a total of 30 officially supported target archi-
tectures, the architecture of Tinuso is in many ways different from other target
machines, which results in large number of machine specific optimizations. The
following briefly describes properties of the Tinuso architecture and the impli-
cations for the GCC backend.

• Tinuso comes with a very small instruction set. For example, addition is
the only arithmetic or logical operation that includes an immediate field.
Hence, all other operations that include constant operands need to be
composed of instructions to load constants into a register and instructions
to perform the computation. 32 bit constants are loaded with a movhi and
a successive addi instruction. Tinuso implements an asymmetric immedi-
ate split (22 bit/10 bit) to increase the opcode space for operands. GCC
require RTL standard patterns for 32bit, 16bit and 8bit data types in the
machine description. Hence, many 16-bit operations cannot be mapped to
Tinuso instructions directly, instead the backend has to generate instruc-
tion sequences to emulate these operations. Except of RISC-V, all current
instruction set architectures implement a symmetric immediate split [114].

• Except of movhi all instruction of the Tinuso ISA are predicated. Hence
the entire machine description must include definitions for conditional ex-
ecution. Most target machines that support predicated execution work
with predication flags while Tinuso comes with 8 predication registers.
Texas Instruments c6x DSP architecture implements predicated instruc-
tion in a similar way. C6x comes with 2 sub register files of which each
supports 4 predication registers [56]. However, the GCC backend for c6x
makes only limited use of GCC’s infrastructure for predicated execution.
Instead, an architecture specific scheduling algorithm that enables predi-
cated execution, fills the delay slots, and resolves hazards in the program
code is implemented. This results in a very complex compiler implemen-
tation that requires a huge development effort and makes maintenance
costly.

4.3 Tinuso GCC 53

• Tinuso only supports memory operations in word length. The backend
therefore needs to insert shift and mask instructions if shorter data types
are accessed in memory. This is similar to early Alpha implementations
without BWX extension [31]. All other architectures come with memory
operations for data types shorter than word length.

• While most other target machines have hardware mechanisms to resolve
hazards the Tinuso pipeline is fully exposed to software. Hence, the com-
piler has to insert nop instructions to resolve all types of hazards. GCC
infrastructure comes with support to describe delay slots. RTL optimiza-
tion passes such as instruction scheduling and delayed branch scheduling
try to fill these delay slots. However, there are situations where optimiza-
tion passes work against each other and a machine specific pass need to
be implemented to circumvent the problem.

The GCC infrastructure provides a number of optimization passes common
to all architectures. Two are particularly relevant for Tinuso’s delay slots. First,
the instruction scheduling pass arranges instructions according to data depen-
dencies. This pass attempts to re-order instructions globally to avoid data
hazards, based on architecture specific information about delay slots. However,
control-flow instructions are not handled by the instruction scheduling pass.
Control-flow instructions and their delay slots are instead handled by the de-
layed branch scheduling pass, which runs after the instruction scheduling pass.

Tinuso does not require an implementation of instructions such as integer
multiplication, division or floating point operations. Therefore software imple-
mentations of these operations have been implemented using libgcc, a GCC
library for support routines. We manually optimized the assembly routines for
the most commonly used integer operations. To help the scheduling passes we
explicitly make details on register usage on these hand-coded routines available
to the compiler, allowing it to more freely schedule instructions and use more
register across function calls. Moreover, we allow GCC to inline the integer mul-
tiplication routine. This often pays off because costly function calls are omitted
and Tinuso’s predicated ISA enables an efficient multiplication implementation.
GCC comes with built-in support for predicated execution and provides an if-
conversion pass. However, the if-conversion pass is limited in scope and only
simple control flow patterns are handled.

54 Tinuso Toolchain

Listing 4.1: RTL Addition instruction pattern

1 ; ; name
2 (d e f i n e i n s n ” adds i3 ”
3 ; ;RTL template
4 [(s e t (match operand : SI 0 ” p r ed i c a t e ” ” c on s t r a i n t ”)
5 (p lus : SI (match operand : SI 1 ” p r ed i c a t e ” ”

c on s t r a i n t s ”)
6 (match operand : SI 2 ” p r ed i c a t e ” ”

c on s t r a i n t s ”)))]
7 ; ; c ond i t i on
8 ””
9 ; ; output template

10 ”@
11 add \%0,\%1,\%2”
12 addi \%0,\%1,\%2”
13 ; ; a t t r i b u t e s
14 [(s e t a t t r ” type” ” a r i th 3op ”)
15 (s e t a t t r ” l ength ” ”4”)
16 (s e t a t t r ” p r ed i c ab l e ” ” yes ”)])

4.3.1 Tinuso Machine Description

This section describes the Tinuso machine description for the GCC backend.
The machine description consists of a RTL based specification file of the target
instruction patterns and a C header file of macro definitions. Additional target
specific functionality is implemented in a C file. Typically, GCC backends also
include Makefile fragments for target-specific options.

• Tinuso.md is the machine description file that describes each instruction
of the target architecture in algebraic form. It contains a detailed descrip-
tions of all instructions of the target machine and expand patterns that
describe sequence of insns to form standard RTL patterns. Listing 4.1
shows the pattern of an addition instruction in Tinuso. Addsi3 is the
name of this pattern that describes a three operand addition. Machine
modes are used to describe the size of data object and the representation
used for it. For example SImode stands for ”single integer” and typically
represents a four-byte integer [108]. The RTL template defines which in-
sns matches a pattern and how to locate the operands. In this example
the RTL template defines that two operands in SI mode are added and

4.3 Tinuso GCC 55

the result is stored in register. The RTL template includes predicates to
determine whether an insn operand matches the RTL pattern. A pattern
may include machine independent predicates that require the operand to
be present in a register or machine specific predicates that allows the
operand to be a constant value within a certain range. Constraints then
used for fine-tune matching to select a pattern within the set of operands
specified by the predicate. For example, Listing 4.1 constraints are used
to determine whether an addition instruction or an addition immediate
instruction is emitted. A pattern may also include a condition in the form
of a C expression. This is often used to enable and disable target spe-
cific options such as hardware floating point operations [85]. The output
template is used describe the assembler code of a matching insn. In the ex-
ample of Listing 4.1 a addition is emitted. The %x in this string specifies
the operand number. Finally, patterns may include attributes. For ex-
ample Tinuso uses attributes such as instruction length, instruction type,
and predicate which defines whether a certain emitted instruction may be
predicated or not. This information is used for instruction scheduling.

• The predicates.md file includes machine specific predicates that are used
to determine whether a operand matches a RTL patterns.

• The constraints.md file contains machine specific constraints that are used
to match RTL operands to insn patterns. Tinuso only includes target
specific integer constraints for instructions with immediates and offsets.

• Tinuso.h is a header file that contains machine specific Macro definitions
such as register definitions, memory addressing mode, and ABI informa-
tion.

• GCC provides target hooks for machine specific adjustments. These func-
tions may be stored in tinuso.c file as well as advanced functions used in
machine description patterns. The Tinuso backend implements functions
to set up the stack frame, to compose conditional branches, to leverage
predicated execution and for memory accesses of short data types.

• The tinuso-protos.h file contains prototypes for functions in the tinuso.c
file.

• The tinuso.s file contains optimized assembly code for standard RTL pat-
terns. Tinuso uses this for operations such as multiplication, division, and
modulo.

56 Tinuso Toolchain

Listing 4.2: Simple if statement in C programming language

1 if (A == 0)

2 {B++;}

3 else

4 {B--;}

• The t-tinuso file includes Makefile fragments for target-specific options.
For example, in the Tinuso processor architecture operations such as inte-
ger multiplier and floating point unit are optional. Various hardware con-
figurations can be expressed in the t-tinuso file. Based on this information
the compiler knows which processor configurations implement optional op-
eration in hardware. Hence, it emulates the missing optional operations
in software. When a program is compiled, command-line options are set
to produce executable binaries for a given processor configuration.

4.3.2 Memory Access

In 1989 MIPS patented unaligned memory accesses for RISC pipelines [50].
Hence, initial implementations of the Alpha architecture did not include memory
operations of 8 and 16 bit data types. Instead, these data types are accessed
using mask and shift operations. Tinuso implements this functionality with an
expand pattern in the machine description for 8 and 16 bit moves. If there is a
memory operand, the expansion patterns forces the other operand into a register
and calls a C function, which emits a sequence of insn patterns to access the
short data types in memory. This sequence is emitted during the RTL expansion,
hence, successive RTL optimization passes and delay slot scheduling passes can
optimize these memory access sequences respectively insert nops if required.

4.3.3 Predicated Instructions

Tinuso’s predication scheme was designed with the perspective that a future C
compiler can make the best possible use of predicated execution. Consequently
most instructions are predicated, multiple predication registers are available
and the predication condition can be inverted. If-conversion is a method where
simple if-statements are implemented with a sequence of predicated instructions.
Control flow dependencies are converted into data dependencies to avoid costly

4.3 Tinuso GCC 57

Listing 4.3: Assembly code on Tinuso without predicated execution

1 bz rA label1

2 nop

3 nop

4 nop

5 nop

6 addi rB, rB , -1

7 bz r0 label2

8 nop

9 nop

10 nop

11 nop

12 label1:

13 addi rB, rB , 1

14 label2:

Listing 4.4: Assembly code on Tinuso with predicated execution

1 [!rA] addi rB , r0 , 1

2 [rA] addi rB, r0, -1

branch instructions. The following example, Listing 4.2 shows a simple C if-else
construct.

If the compiler does not leverage predicated execution, two branch instruc-
tions are required to implement simple if-else statements. The assembly out-
put for Tinuso without predicated execution is shown in Listing 4.4. When
if-conversion is applied, branches are removed which results in a much more
efficient implementation. Listing 4.4 shows the assembly for Tinuso with pred-
icated execution.

GCC comes with built-in support for predicated execution and provides an
if-conversion pass. GCC infrastructure supports to describe predicated execu-
tions. Tinuso’s RTL implementation to enable predicated execution is shown in
Listing 4.5.

This particular construct enables predicated execution if a predication operand
in a predication register pred operand is not equal, ne , to zero const int 0.
Insn patterns that support predicated execution need to be marked with the

58 Tinuso Toolchain

Listing 4.5: RTL description of predicated execution

1 (define_cond_exec

2 [(ne (match_operand:SI 0"pred_operand" "r")

3 const_int 0))]

4 ""

5 [!%0]")

predicable attribute set to true. The if-conversion pass for Tinuso ensures
that the result of the if-condition, A == 0 from the example above, is copied
into one of the eight predication register. In many cases, the GCC infrastructure
is then able convert simple if statements to straight line code with predicated
instructions. However, this works only if the control flow branches to the sub-
sequent basic block. This is a major limitation as GCC does not perform basic
block scheduling and optimize predicates during if-conversion, which have pre-
viously been shown to be very powerful and make it possible to convert many
forward and backward branches [80,92].

GCC also supports annulled branches where the predicated instructions are
used to annul instructions in branch delay slots depending on whether the branch
is taken or not. However, GCC requires annulling of all instructions in branch
delay slots, which is a major limitation for the Tinuso architecture because two
reasons. First, it can only rarely be applied as it requires that none of the delay
slots is filled. Second, Tinuso does not allow instructions with delay slots to
go into the delay slots of other instructions. Therefore there are only a limited
number of predicated instructions that can be put into delay slots. The compiler
backend therefore currently does not make use of annulled branches. However,
Tinuso would greatly benefit form a annulled branch optimization pass that is
able to fill branch instructions with a mixture of instructions from before the
branch, from the branch target, and from fall through.

The current compiler backend follows a convention that r0 is always set to
0. Thus, for instructions that do not use predication, the assembler inserts r0
as predication operand and sets the negate bit. Hence, these instructions are
always executed. Future work on the compiler may remove this convention to
give the compiler more freedom with predicated instructions. In the header file,
there is an C expression max conditional execute that defines the maximum
number of predicated instructions to execute instead of a branch. For Tinuso
this is set to five, which corresponds to cost of a single branch instruction.

4.3 Tinuso GCC 59

Listing 4.6: RTL description of delay slots

1 (define_insn_reservation

2 "compare -and -set" default_latency: 3)

Listing 4.7: RTL description of branch dealy slots

1 (define_delay branch / jump

2 [delay -1 (nil) (nil)]

3 [delay -2 (nil) (nil)]

4 [delay -3 (nil) (nil)]

5 [delay -4 (nil) (nil)]

4.3.4 Delay Slot Scheduling

The performance of Tinuso highly depends on the instruction scheduler ability
to mitigate the delay slots. The GCC infrastructure provides two optimization
passes that are particularly relevant for Tinuso. First, the instruction scheduling
pass arranges instructions according to data dependencies and inserts nops to
avoid hazards. Second, the delayed branch scheduling pass attempts to fill delay
slots of control flow instructions.

GCC provides infrastructure to describe the pipeline characteristics of an
instructions. Each instruction with a delay slot, except of control flow instruc-
tions, require such an insn reservation that defines the number of clock cycles
until the result of the given instruction is available. Listing 4.6 describes Ti-
nuso’s delay slots of compare-and set instructions.

The instruction scheduling pass arranges instructions according to data de-
pendencies and attempts fill as many delay slots a possible and inserts nops
if necessary. Delay slots of control-flow instructions are handled by the de-
layed branch scheduling, which runs after the instruction scheduling pass. A
define delay with structure as shown in Listing 4.7 is used to describe the
delay slots of control flow instructions in Tinuso.

This construct defines 4 delay slots, that the compiler attempts to fill with
useful independent instructions. It allows for specifying which instruction types
may go into which delay slot. Typically instructions form before the control
flow instruction are used to fill the delay slots. However, it is possible that
the delayed branch scheduling pass picks instructions that were placed by the

60 Tinuso Toolchain

instruction scheduling pass and thus reintroducing hazards. This is obviously
a major limitation to the built-in GCC passes that requires a machine specific
pass need to be implemented to circumvent the problem.

Architectures such as c6x circumvent this problem by not using GCC’s de-
layed branch scheduling pass and implementing architecture specific functions
to fill branch delay slots. As implementing a new scheduling pass is a daunt-
ing task and problems with conflicting passes are relatively rare, we use GCC’s
built-in passes but add a small simple pass in the Binutils that just detect and
resolve problems introduced by the delayed branch scheduling pass by inserting
nop instructions.

4.3.5 Tinuso GNU Binutils

The GNU Binutils are a set of low level programming tools that are typically
used in conjunction with GCC compilers. These tools allow for creating and
managing binary programs, object files, libraries, profile data, and assembly
source code. In particular, Binutils includes the following main components:
support libraries such as BDF and opcodes, the assembler gas to transform
assembly into object code, and the linker ld to group object into executable
binaries. There are tools to auto-generate new targets for GNU Binutils such
as CGEN and ArchC [12,67]. Unfortunately, Tinuso’s syntax for predicated in-
structions is supported neither by CGEN nor ArchC. It was therefore necessary
to port the Binutils manually to support the Tinuso architecture.

• Opcodes is a library of instructions of a given processor architecture. It
describes the assembly syntax and instruction set encoding, which is used
by both assembler and disassembler.

• The Binary File Decriptor library, BFD, contains a set of common routines
to manipulate object files. The binary format of object files consists of
four parts. First, a file header that includes general file information and a
set of pointers to other parts of the object file. The second part contains a
number of sections of raw code data. The third part consists of relocation
tables. Finally, symbol tables are placed in the fourth part.

• The Tinuso assembler has two main functions: it translates assembly code
to machine code and it checks the assembly and inserts no-operation in-
structions to avoid hazards in the pipeline. In principle, GCC is fully
responsible for instruction scheduling, but there are situations where it is
simpler to detect and resolve hazards in the Binutils. This is implemented

4.4 Toolchain Evaluation 61

in Binutils with a buffer that includes the latest four emitted instructions.
However, we aim for a solution where all hazards are resolved in RTL the
compiler backend. GCC performs a large number passes on the RTL rep-
resentation that rearrange instructions to find a global optimum. Hence,
it is difficult for GCC to find a global optimum when afterwards the Binu-
tils insert instructions. For example, GCC is able to align instructions to
improve cache performance, when the Binutils then later add instructions
it might negatively affect the cache performance.

• As a final step in the compilation process, the linker collects object files
and creates an executable binary. The linker is responsible for resolving
memory addresses, called relocations, and symbol references. It parses
object files and libraries and replaces symbolic references or names of
libraries with actual memory addresses. A linker script defines memory
regions where individual sections of the program are placed. For example,
an embedded system may include RAM and ROM, the linker script ensures
that read-only data is placed in the address space of the ROM.

4.3.6 Tinuso C Library

Newlib is an open source C library designed for embedded systems that is main-
tained by Red Hat. Newlib can easily be ported to new processor architectures
and runs with or without operating systems. In Tinuso there is currently no op-
erating system available, hence, the C library cannot make use of system calls.
Instead, Tinuso comes with a board support package for Newlib that implements
basic low level functionality such as basic I/O, timer and file handling [14].

4.4 Toolchain Evaluation

The GCC 4.8.1 based backend for Tinuso is evaluated by compiling and running
a set of small C benchmarks. We compare the execution time on Tinuso with
a similar MicroBlaze configuration. However, for the MicroBlaze configuration
the Xilinx’s most current tool set, which is based on GCC 4.6.4, is used. The
experiments are conducted with a Tinuso configuration where integer operations
such as multiplication, division, and all floating point operations are emulated
in software. This leads to a large number of function calls and costly control flow
instructions. The analysis of the instruction mix then provides an insight into
GCC’s use of predicated execution and the scheduler’s ability fill delay slots.

62 Tinuso Toolchain

The experiments include two Tinuso configurations: First, a single core setup
with the memory controller directly connected to the cache controller is com-
posed. Second, a network-on-chip, NoC, configuration with a packet switched
interconnect between processor core and memory controller as described in
Chapter 5 and Chapter 6 is used. There are different memory latencies for
the two systems as the latter system includes a network interface that composes
and decodes packet messages on cache misses. A cache miss in the setup with
integrated memory controller is resolved within 17 clock cycles while it takes up
to 35 clock cycles to resolve a cache miss in the NoC setup.

A set of applications from the WCET benchmark suite [49] is used. These
benchmarks are applications that operate on small data sets and do not require
OS support. COMP is a data compression program adopted from the SPEC95.
DES is a complex embedded program that includes a lot of bit manipulations.
FIR is a signal processing algorithm, which computes the finite impulse response
on a small data sample. Prime calculates whether two large numbers are prime
numbers. Qsort implements a non-recursive version of the quick sort algorithm.
Minver computes the inverse of a matrix of floating point numbers. FFT is a
fast Fourier transformation on 1024 data points. LU decomposition factors a
floating point array with 50 elements. FFT, LU, Minver, and Qsort benchmarks
include floating point operations.

To evaluate the compiler toolchain we run the same benchmarks on a sim-
ilar MicroBlaze configuration. The results refer to MicroBlaze 8.50.b, which is
part of the most recent Xilinx ISE Design Suite 14.6. The compiler toolchain
for MicroBlaze is based on GCC 4.6.4. To allow an unbiased comparison, the
MicroBlaze is configured similarly to Tinuso with a barrel shifter while hard-
ware multiplication, division, and floating point units are disabled. Tinuso and
MicroBlaze configurations both use a 16 kilo byte directly mapped instruction
cache and a 4 kb data cache with a write-back strategy. Smaller instruction
cache sizes led to collision misses for the benchmarks that use GCC’s double
precision floating point library.

In addition, all benchmarks are run on two additional MicroBlaze configura-
tions. One with hardware integer multiplication enabled and another configura-
tion with additional floating point unit enabled. All MicroBlaze configurations
are synthesized to hardware and the applications are run directly on hardware.
Applications are recompiled to make use of all hardware available in each config-
uration. While Tinuso is fully synthesizable to both Altera and Xilinx FPGAs,
we simulate the Tinuso’s VHDL sources to run and profile the benchmarks for
each Tinuso system.

The MicroBlaze setups make use of DDR2 main memory. For Tinuso, we

4.4 Toolchain Evaluation 63

COMP DES FIR Prime Qsort Minver FFT LU

0

1

2

sp
ee

d
u

p
 r

el
a
ti

v
e

to
 /

 M
ic

ro
B

la
ze MicroBlaze [194Mhz]

MicroBlaze mult. [194Mhz]
MicroBlaze FPU [194Mhz]

Tinuso [194Mhz]
Tinuso [349Mhz]
Tinuso NoC [300Mhz]

6.7x

Figure 4.3: Speedups relative to a MicroBlaze configuration without hardware
support for multiplications or floating point operations

simulate the same memory hierarchy. There is, however, a difference in memory
performance between Tinuso and MicroBlaze. On MicroBlaze cache misses incur
a penalty of about 10 clock cycles only.

For all benchmarks, the optimization level -O3 is used. Figure 4.3 shows the
code execution time relative to the minimal MicroBlaze configuration. Number
of clock cycles, used to execute the benchmarks is measured and scaled the
results with the processor’s maximum clock frequency [105]. We observe that
MicroBlaze’s integer multiplication unit has a positive impact for FIR, Minver,
LU, and FFT benchmarks. The hardware floating point unit only pays-off
for the Qsort benchmark, which executes many single precision floating point
operations. Both FFT and Minver operate on double precision floating point
numbers, which are not supported by MicroBlaze’s single precision only FPU.
Instead, the double precision operations are carried out in software.

Tinuso shows the best performance for FIR. FIR includes a high number of
integer multiplication and divisions. These routines are very efficient on Tinuso
because they exploit predicated execution to remove many branch instructions
and most delay slots are filled. On top of that, our backend implementation
is aware of the register usage on these routines, which results in more efficient

64 Tinuso Toolchain

COMP DES FIR Prime Qsort Minver FFT LU

0

10

20

30

40 nop [1/100]
branch/jmp [1/100]
mem. op [1/100]

I$ miss [1/1000]
D$ miss [1/1000]

0

5

10

15

20

25

30

35

40

ca
ch

e
m

is
se

s
[1

/1
0

0
0

]

in
st

ru
ct

io
n

s
[1

/1
0

0
]

Figure 4.4: Benchmark analysis

register allocation across function calls.

The Tinuso NoC setup executes the benchmarks on average about 22%
faster than the similar MicroBlaze configuration. We observe the lowest perfor-
mance for Prime and Minver. Prime implements a small loop-nest that includes
branches. GCC is not able to apply if-conversion on the control flow patterns of
Prime. The performance for Minver is low because of the high number of cache
misses. The Tinuso setup without NoC reaches an average speedup of 52% over
a similar MicroBlaze configuration.

Figure 4.4 shows the frequency of occurrence of nops, control-flow instruc-
tions and memory operations. We observe a very high percentage of nops in
the COMP and Qsort benchmarks. COMP frequently executes a function that
loads and analyzes the input data in 8-bit portions. This leads to code with
frequent compare and branch related delay slots and there are not enough inde-
pendent instructions to fill the delay slots. Moreover, the control flow patterns
of this function are not handled by GCC’s if-conversion pass.

Qsort executes a high number of calls to floating-point compare functions
where we observe the same behavior as described above. The other benchmarks
include between 7% and 20% nops, which reflects the number of branch instruc-
tions. The FIR benchmark performs well even though it has the highest number
of branch instructions. For FIR we record that 12.7% of all executed instruc-
tions make use of predication. FIR uses more predicated instructions than the

4.5 Conclusions 65

other benchmarks, which leads to a good performance.
The complete instruction mix of all benchmarks is shown in Table 4.2. On

average over all benchmarks only about 6% of all executed instructions make
use of predication. Given the high number of nops in the code and the low per-
centage of predicated instructions, there is room for improvements with respect
to predicated execution.

Our main purpose of the experiments was to analyze instruction performance
rather than cache performance. Thus, we intentionally set up experiments,
which would exercise the instruction path of the memory system rather than
the data path. We see there are fewer data cache misses than instruction cache
misses even though the instruction caches are bigger.

Table 4.2: Instruction mix and cache misses for various benchmarks in percent
of the total number of executed instructions

instruction CMP DES FIR Prime Qsort Minv FFT LU

nop 27.0 22.4 11.0 14.4 39.8 14.3 11.6 9.2
branch,jal 8.2 2.5 15.5 9.4 12.0 10.0 10.8 13.0
load 9.0 9.2 5.5 0 2.1 1.9 1.2 1.5
store 6.7 5.5 0.2 0 1.5 1.8 1.2 1.4
arith 26.2 29.2 38.7 35.8 16.6 32.1 33.2 32.5
logic 5.7 12.6 13.2 19.0 11.2 18.9 19.9 20.2
shift 6.7 8.7 0.5 8.1 3.5 7.5 7.3 5.8
movhi 0.2 1.7 0.4 0.8 1.8 2.3 2.2 2.3
cmps 9.9 7.63 4.0 11.0 11.9 8.9 8.4 5.9
predicated 2.3 6.7 12.7 6.1 0 6.3 7.9 10.5

4.5 Conclusions

This chapter introduced the GCC toolchain described the implemented a C
compiler backend for Tinuso. We evaluated GCC’s instruction scheduler for
Tinuso’s exposed 8 stage pipeline and we analyzed GCC’s ability to exploit
predicated execution. For a set of small C benchmarks Tinuso achieves an
average speedup of 52% compared to a similar MicroBlaze configuration. The
analysis the instruction mix of these benchmarks shows that still a high number
of nop instructions are required to resolve hazards. Hence, we conclude that
the optimization passes addressing delay slots are not adequate and we intend

66 Tinuso Toolchain

as future work to either extend GCC’s existing passes or, similarly to the c6x
GCC backend, develop our own scheduling pass.

As only about 6% of the executed instructions make use of predicated exe-
cution we conclude that GCC’s if-conversion pass is too limited for Tinuso. We
intend to explore and implement our own more advanced pass based on current
state-of-the-art [80,92]. This should improve performance significantly. For ex-
ample, Mahlke et.al report an average speedup of 72% using a fully predicated
instruction set on their 8 issue processor [79].

The encoding of predicated execution in Tinuso is expensive as it takes up
4 bits of each instruction word and leads to a complex forwarding logic. However,
Tinuso’s predication scheme enables very efficient, though hand-coded, assembly
code. Hand-coded assembly was used to implement a highly efficient low-level
library, which give Tinuso a performance advantage.

Overall, GCC and the infrastructure it provides is a good choice for the Ti-
nuso architecture. Describing instructions and architectural details is relatively
straightforward and the quality of generated code is high. There are however
several limitations as described above.

Chapter 5

On-Chip Interconnect

Tinuso is a processor architecture optimized for performance when implemented
on FPGA. It applies superpipelining to exploit instruction level parallelism.
Other techniques, such as superscalar or very long instruction word processors
allow for executing multiple instructions in parallel but complex pipeline struc-
tures lead to a slower hardware implementation and thus, a lower instruction
throughput. Therefore, Tinuso exploits parallelism at task level on multicore
systems to improve performance. The logic integration of FPGAs has reached
a point where large multi-processor designs can be composed. This means that
efficient communication structures for FPGAs are required.

This chapter describes the design and implementation of a generic packet
switched, 2D mesh on-chip network optimized for FPGA implementation. Sec-
tion 5.1 introduces the on-chip interconnect and describes main design chal-
lenges. Related work on synthesizable interconnection networks is presented
in Section 5.2. The architecture of the network and the router is introduced
in Section 5.3. Section 5.4 describes the implementation of the network on the
FPGA. The network is evaluated in Section 5.5. Finally, Section 5.6 summarizes
and concludes this chapter.

5.1 Introduction

Tinuso applies superpipelining to attain a high system clock frequency and sup-
ports predicated execution to mitigate branch penalties. Superpipelining breaks
pipeline stages into smaller stages and leverages instruction level parallelism by

68 On-Chip Interconnect

executing operations partially overlapped. The current hardware implementa-
tion, the Tinuso I core, can be clocked as high as 376MHz on a Xilinx Virtex 6
device. Other techniques to increase instruction level parallelism such as super-
scalar or very long instruction word allow for executing multiple instructions
in parallel. However, complex pipeline structures require a lot of hardware
resources and limit the system clock frequency when implemented on FPGA,
which leads to a lower instruction throughput. Hence, Tinuso applies paral-
lelism at a higher level of abstraction to improve performance. Applications are
split-up in a number of tasks that execute on an array of processor cores.

The evolution of FPGAs has reached a point where multiple processor cores,
dedicated accelerators, and a large number of interfaces can be integrated on
a single device. For example, Xilinx’s Virtex 7 family comes with devices up
to two million logic cells [118]. These devices allow for combining the process-
ing power of hundreds of processor cores on a single FPGA. However, efficient
communication structures optimized for FPGA implementation are required to
successfully extract parallelism in multicore systems. Traditionally, point-to-
point and bus based interconnects were used for system-on-chip, SoC, designs.
These interconnects are simple to implement but do not scale well in systems
with a large number of cores [73] or on FPGAs [64]. Instead, we argue for a 2D
mesh network topology as it maps well to the FPGA fabric [57, 84]. Figure 5.1
shows a typical latency characteristic of an on-chip interconnection network. As
long as few data packets are injected into the network, the latency to transport
packets from source node to a destination node is low. As more packets are in-
jected, contention increases, which leads to a higher network latency. Finally, at
high injection rates the network is congested and latencies become unacceptable
long.

In-order processor cores, such as Tinuso, typically stall while cache misses
are resolved. Therefore, memory latency cannot be hidden, which makes cache
misses expensive. Hence, the intercommunication network for Tinuso has to be
optimized for a lowest possible latency and a high clock frequency to attain a
high throughput. A plethora of synthesizable network designs exist. All apply
design trade-offs to optimize the hardware design for different network properties
such as throughput, latency, or a low hardware resource usage. The network
for Tinuso is optimized for a high clock frequency and a lowest possible latency
at low injection rates as marked with a circle in Figure 5.1. However, these
properties are traded for additional hardware resources and higher latency at
high injection rates.

This chapter describes the design and the implementation of Tinuso’s com-
munication structures and analyzes its scalability.

5.2 Related Work 69

La
te

nc
y

[c
lo

ck
 c

yc
le

s]

Injection rate [flits per cycles]

contentionlow contention congestion

Figure 5.1: Latency vs. network traffic of a state-of-the-art interconnect

5.2 Related Work

Papamichael and Hoe developed a NoC generator, named CONNECT, that
generates synthesizable RTL-level NoC designs [91].The network designs can be
configured with a variable number of ports, virtual channels, flit width, buffer
depth, flow control mechanisms and user defined routing schemes. This NoC
generator is used to produce a multitude of designs and compare them with a
state-of-the-art router for ASICs.

Due to FPGAs reconfigurability, FPGAs typically have a higher relative
number of wires compared with logic and memory than ASICS. Because of
different cost structures of FPGAs, NoCs optimized for ASICS may not be
an optimal solution when synthesized on an FPGA. CONNECT designs are
optimized for implementation on FPGA. The CONNECT router is a single
stage pipeline that uses FPGAs distributed RAM to implement flit buffers and
look-up tables for routing tables.

In experimental results they show that their 4x4 mesh configuration reduces
the hardware resources by 58% over the Open Source Network-on-Chip Router
RTL from Stanford University that is synthesized for FPGA [48]. Alternatively,
they reach a 3-4x better performance for approximately the same hardware
resource usage as the baseline implementation. They reach a maximum clock
frequency of about 180 MHz for their 32-bit mesh implementations on Xilinx
Virtex 6 devices. They conclude that designs with wider channels, fewer buffers,
and less pipelined designs lead to a higher performance when implemented on
an FPGA.

Huan and DeHon introduce a packet-switched NoC using split and merge
primitives and compare the design with the CONNECT 2D mesh implemen-

70 On-Chip Interconnect

tation [54]. Unlike CONNECT routers that come with a single pipeline stage
only, they take a different design approach and construct routers with split and
merge and queue primitives. The queue primitives use the Xilinx FPGAs built-
in shift registers to implement buffers. The advantage of this design is that it
allows for composing networks with different topologies and the decentralized
implementation of routing and arbitration greatly reduces the logic complex-
ity for each primitive. Moreover, routers can be pipelined at the level of the
primitives. They show that adding a second pipeline stage significantly reduces
the wiring delays that allows them to clock the design at clock frequencies of
up to 300 MHz on Xilinx Virtex 6 devices. Just as CONNECT does, they use
a Dimension Ordered Routing scheme, DOR, and a backpressure flow control
mechanism. Experimental results show that the proposed split-merge NoC is
up to 2-3 times faster than an equivalent CONNECT implementation while
consuming about 13-37% more hardware resources. However, each additional
pipeline stage introduces one additional clock cycle latency. In a multicore sys-
tem where data packets have to pass multiple routers, this adds a significant
latency and makes for example memory accesses more costly.

DESA is a distributed elastic switch architecture presented by Roca et.
al. [100]. The interconnect is composed of a collection of independent switch-
ing modules, called AC modules. These switching modules are able to store,
arbitrate and forward incoming flits. A simple lookahead routing algorithm is
used and a backpressure mechanism pauses the transmission of stalled packets.
The design does not have any centralized input buffer. Instead they distribute
the buffers to the output registers in order not to use memory resources on the
FPGA, such as distributed RAM or block RAM. The fine-grained decomposition
of network in AC switching modules has two benefits. Firstly, this architecture
allows for composing various network topologies. Secondly, the authors mention
that the proposed architecture leads to better mapping on the FPGA because a
maximum of flexibility is granted to the CAD tools. The design is evaluated by
comparing to a mesh interconnect that consists of routers with a single pipeline
stage. The evaluation shows that the DESA design increases the clock frequency
by 50% while consuming about the same amount of resources as the baseline
implementation. Nevertheless, the increased clock frequency comes at the cost
of one additional pipeline stage, which increases the latency by one clock cycle
per network hop.

LiPaR is a store-and-forward router optimized for a low hardware utilization
on FPGA. Block RAMs are used to implement the packet buffers [106]. It is
built for 2D mesh networks and supports five simultaneous connections. A XY-
routing scheme and a store-and-forward flow control mechanism are used to

5.3 Architecture 71

keep the decode logic simple and ensure an area-efficient implementation. The
latency per hop of a store-and-forward router is proportional to packet size. The
packet size may vary between 16 and 128 bits, which makes communication over
a large network very costly. The router supports round-robin arbitration and
utilizes 772 4-input LUTs and 10 block RAMs on a Xilinx Virtex 2 device. A
3x3 2D mesh network can be clocked at 32.25 MHz. Moreover, the presented
router architecture also comes with multicast functionality [107].

MoCReS is a router architecture that applies virtual cut-through flow-control
to transfer packets across multiple clock domains [57]. The router uses a FIFO
buffer, implemented as block RAM, to transfer data across clock domains. It
allows for operating multiple routers on independent clock frequencies and pre-
vents the slowest router from restricting the operating frequency of the network.
The use of multiple clock domains is of particular interest for heterogeneous
systems on chips where a multitude of processing elements operate at different
clock frequencies. The basic router design operates at clock frequency as high as
357MHz on a Xilinx Virtex 4 device. However, the performance of this network
design is limited by a latency of at least 7 cycles per hop.

Lu et. al. introduce a generic router architecture optimized for FPGA im-
plementation [78]. It supports network topologies such as ring, 2D mesh, 3D
cube, and hybrid configurations. A low latency of 2 clock cycles per hop is
achieved by using wormhole switching. The router is pipelined to enable high
frequency system clocks. A credit based flow control mechanism is used. A flit
can only be transmitted when buffer space is available. The packet header con-
tains additional auxiliary routing information to support a look-ahead routing
scheme. The look-ahead routing logic computes the output of the next router
in the path and thereby simplifies the decode logic. The router supports arbi-
tration schemes such as round-robin and least-recently-served and uses buffers
implemented as block RAMs. A router with five ports and a 32 bit data-path
width utilizes about 700 LUTs and can be clocked as high as 220MHz on an
Altera Stratix III device.

5.3 Architecture

On cache misses, the Tinuso pipeline stalls. Therefore memory latency cannot
be hidden, which makes cache misses expensive. Hence, the performance of a
Tinuso core highly depends on the latency in the network. We therefore aim for
a network with low latency and high data rate when implemented on FPGAs.
Typically, an FPGA consists of a two-dimensional array of logic elements called

72 On-Chip Interconnect

control-logic
arbiter

crossbar

valid bit backpressure in

backpressure out

reg1 reg2

data outslack buffers

data in

valid bit

valid
 bit ou

tp
ut

 re
gi

st
er

s

Figure 5.2: Block diagram of a wormhole router with pipelined backpressure
flow-control

configurable logic blocks, CLBs, that are interconnected by horizontal and ver-
tical routing channels. We argue for a 2D mesh network topology as it maps
well to the FPGA architecture. The network consists of a number of routers
that are connected through unidirectional links. A router has five bidirectional
ports, namely, North (N), East (E), South (S), West (W), and Home (H). We
have implemented a wormhole router with a backpressure flow-control mecha-
nism and only use flip-flops at the output to attain a latency of one cycle per
hop.

We decided for an XY routing scheme because it is deterministic, deadlock-
free and very simple to implement. Figure 5.2 shows the block diagram of the
router. It consists of crossbar, switch arbiter, slack buffers, output registers,
and a control unit implemented as a finite state machine, FSM. Data packets
are broken into a sequence of flow control digits, flits. The network supports
packets that consist of a header flit and an arbitrary number of data flits. To
keep the communication overhead low, all routing information is encoded in a
single header flit. Each data link includes a status signal that indicates whether
the data is valid or not. Two successive packets must be separated by at least
one invalid flit. This allows the router to detect the header and tail flits of a
packet.

The finite state machine of an input router port is shown in Figure 5.3.
It remains in the idle state until a packet arrives. Then the destination node
address is extracted from the header flit. An output port is selected following
the routing scheme and it is checked whether the desired port is available or not.
If more than one flit arrives at the same time and wants to use the same output

5.4 Implementation 73

resource, the arbiter decides which one will proceed. If the desired output port
is available and the header flit got the permission from the arbiter to proceed,
it is stored in the output register and the router moves to the transmit state.
In cases where the desired output port is not available or the arbiter prioritizes
another packet, the flit is retained in slack buffers and the backpressure signal is
set. The router input port remains in the arbiter state until the desired output
resource is available again. The backpressure signal propagates up-stream to
stall the data flits until the desired output port is available. Hence, routers that
hold the data flits of the packet will remain in the retransmit state until the
backpressure signal is released. The network supports both a fixed priority and
a round-robin arbitration scheme, which is set when the design is synthesized:

• The round-robin arbitration scheme is implemented with a small queue
in the arbiter where the highest scheduling priority is given to the packet
that has waited the longest time.

• The fixed priority scheme is designed for low hardware costs and to reduce
contention in the network. Packets that are routed in the second dimension
(Y direction) are given a higher priority than packets routed in the first
dimension (X direction) because they are likely closer to their destination.
Moreover, packets from the home node are given the lowest priority. Thus,
the arbitration scheme limits the number of packets in the network by
prioritizing packets that are in the network already. Successive packets
are separated by at least one invalid flit. This allows stalled packets of a
port with a low priority to proceed before the next packet at the port with
the high priority arrives. The arbitration scheme provides some fairness
but is not entirely fair.

The arbiter state is not time-critical, hence it is possible to implement an ar-
bitration scheme that prioritizes packets of a certain type. For example, memory
request messages can be routed with a higher priority than other messages.

5.4 Implementation

We implement the router architecture described in Section 5.3 in VHDL. We
decided for a behavior-level description as it is shorter, easier to adapt, and less
error prone than descriptions at a lower level. Moreover, behavioral-level designs
are independent of the technology and can easily be migrated to alternative
platforms.

74 On-Chip Interconnect

idle

reject transmit

retransmit

backpressureport
available

port available

tail flit done

tail
flit done

contention

Figure 5.3: State diagram of router input port FSM

We identified the time-critical path of the design in the decode logic in the
idle state. The decode logic extracts the destination address of the header flit
and determines an output port according to the XY routing scheme. If the
header flit only contains the coordinates of the destination node, costly compar-
ison operations are necessary to determine the route of the packet. Therefore,
we apply look-ahead routing to simplify the time-critical path by computing the
output port in the previous network hops. However, look-ahead routing comes
at the cost of additional complexity in the network interface where auxiliary
routing information is computed and additional bits in the header flit are oc-
cupied. When the home node injects a packet, it needs to determine, which
output direction to take. Following the XY routing scheme the next routers in
the path need to redirect the packet at most once in Y direction. Hence, we use
two bits to encode each routing dimension. These bits are set when a message
is composed in the network interface. An additional bit specifies, which routing
dimension is active. This bit is updated by the routers along the path. Table 5.1
provides an overview over the encoding of auxiliary routing information in the
packet header.

The proposed router architecture requires the ability to retransmit flits if
contention occurs. We use a backpressure flow control mechanism to manage
contention. It was necessary to pipeline the backpressure feedback loop to re-
duce the routing delay in the time-critical path of the design.

As a consequence, a backpressure signal that reports contention arrives with
a delay of two clock cycles. Hence, the slack buffers store the last two trans-
mitted flits and the router re-transmits them when the backpressure signal is
released. This is done in the retransmit state, which is not time-critical. While
this leads to a higher system clock frequency, it slightly increases the network
latency when contention occurs because data needs to be re-transmitted.

The data link-width is configurable. However, it must not be smaller than
the minimal header size, which includes address bits for X and Y coordinates of

5.4 Implementation 75

control-logic
arbiter

crossbar

valid bit

backpressure in

backpressure out

reg1

data out
slack buffer

data in

valid bit

valid
 bit

ou
tp

ut
 re

gi
st

er
s

Figure 5.4: Block diagram of a pipelined wormhole router with backpressure
flow-control

the destination node and 5 bits of auxiliary routing information. Other networks
that are optimized for FPGA implementation typically use buffers implemented
as block RAMs [57, 78, 106]. We do not use block RAMs because the output
delay of block RAMs would slow down the design or lead to a pipelined router
design with an additional clock cycle latency. Moreover and importantly, block
RAMs also restrict the placement when the network is mapped to the FPGA.
Instead, we use the flip-flops of the CLBs to implement buffers.

5.4.1 Packet Definition

The network is designed to support a configurable link-width. To avoid align-
ment problems, the link-width must be a multiple of 16 bit. Figure 5.5 shows
packet headers for various link-widths, which encode of the following items:

• X/Y Coordinates of the destination node. There are 5 bits reserved for
each dimension, which allows for network configurations with up to 1024
nodes.

• 6 bits are used to encode auxiliary routing information to implement looka-
head routing.

• An identifier is used to categorize messages. The category defines the
organization of a given message. In systems with a link-width of at least
32 bits, the identifier is included in the first flit. Thus, a cache controller
can trigger appropriate actions already after reading the first flit.

76 On-Chip Interconnect

Table 5.1: Auxiliary routing information in packet header

Bit Value Description

5,4 direction of first routing dimension
”00” north
”01” east
”10” south
”11” west

3,2,1 direction of second routing dimension
”001” no second routing dimension
”010” west
”100” east

0 routing status
”00” routing packet in first dimension
”00” routing packet in second dimension

When the pipeline detects a cache miss, the cache controller implicitly gener-
ates a memory request message that is sent to the memory controller. Figure 5.6
defines memory request messages that consist of two packet headers, a memory
address and an arbitrary amount of spare data, which can for example be used
for a Cyclic Redundancy Check, CRC, to detect transmission errors. The first
packet header describes the route from a processor to the memory controller.
The second header describes the route from the memory controller back to the
processor core that initiated the memory request.

Some cache misses require to write modified data back to main memory.
The cache controller then composes first a memory write-back message as de-
fined by Figure 5.7, followed by a memory request message. The XY routing
scheme ensures that the memory controller receives first the write-back message
before the memory request message. This is important to maintain memory
consistency.

5.5 Results

To evaluate the proposed network we derive clock speed and hardware resources
of various router configurations and measure the network latency of random
traffic. Table 5.2 lists hardware resources and maximum clock speed of a single
router implementation on various Xilinx FPGA families. The results are based

5.5 Results 77

• 16-bit Packet Header:
0715

X Y Destination Routing

16 bit Identifier

• 32-bit Packet Header:
07152331

16 bit Identifier X Y Destination Routing

• n x 16 bit Packet Header:

n x 16 bit Data 16 bit Identifier X Y Destination Routing

Figure 5.5: Packet headers of various link-width

on Xilinx ISE 14.6 ”place and route reports”. We conclude that the design scales
well with the data link-width. For example, a router with a 16 bit link-width
consumes about 60% of the hardware resources of a design with 32 bit link-
width. The price to implement the round-robin arbitration scheme is relatively
small as it requires few additional LUTs only and does not affect the maximum
clock speed.

To evaluate the network latency we compose two multicore setups consist-
ing of 3x3 and 4x4 nodes and a bit link-width of 32 bits. Figure 5.8 illustrates
the test setup where each network node is equipped with a state machine that

ID: type 01 x y mem cntr. routing
}

Dest. Header

ID: type 02 x y req.node routing
}

Source Header

memory address (e.g. 0X0000FF00)

spare data (e.g. CRC, ...)

Figure 5.6: Memory request message

78 On-Chip Interconnect

ID: type 03 x y dest.node routing
}

Dest. Header

ID: type 04 x y source.node routing
}

Source Header

memory address (e.g. 0X0000FF00)

8 data words
hhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhh

spare data (e.g. CRC, ...)

Figure 5.7: Memory write-back message

FIFO

FSM

H

S

W E

FIFO

FSM

H

S

W E

FIFO

FSM

H

S

W E

FIFO

FSM

H

S

W E

Figure 5.8: Overview of the test setup to measure the network latency

generates random data packets and stores them in a FIFO buffer. All state
machines generate the same number of packets and use a uniform random dis-
tribution to generate the data packets. The packets in the FIFO buffer are then
injected into the network. We use a VHDL simulator to model the complete
network implementation and measure the average network latency of random

5.5 Results 79

FPGA Arbitr. 16 bit link 24 bit link 32 bit link
Family Scheme LUTs MHz LUTs MHz LUTs MHz

Virtex 7 r-robin 683 437 913 428 1121 394
Virtex 7 fixed 659 437 878 428 1077 394
Virtex 6 r-robin 679 412 903 372 1097 347
Virtex 6 fixed 660 412 880 372 1052 347

Spartan 6 r-robin 753 223 1031 208 1299 204
Spartan 6 fixed 686 223 949 208 1204 204

Table 5.2: Overview of hardware resource usage and clock frequency of various
router configurations on Xilinx FPGAs of speed grade -3.

0.01 0.1 0.2 0.4
0

50

100

150

200

250

300

350

400

L
a

te
n

c
y

 [
c

lo
c

k
 c

y
c

le
s

]

Injection Rate [flits per second / node / clock cycle]

8 flits pipelined

8 flits baseline

16 flits pipelined

16 flits baseline

(a) 3x3 2D mesh

0.1 0.2 0.4
0

100

200

300

400

500

L
a

te
n

c
y

 [
c

lo
c

k
 c

y
c

le
s

]

Injection Rate [flits per second / node / clock cycle]

8 flits pipelined

8 flits baseline

16 flits pipelined

16 flits baseline

(b) 4x4 2D mesh

Figure 5.9: Average latency in clock cycles vs. packet injection rate of a 3x3
and a 4x4 2D mesh network.

packets for various injection rates. We define network latency as the number of
clock cycles starting from the cycle a header flit is stored in the FIFO buffer
until the packet has reached its destination.

The injection rate corresponds to the number of packets that are stored in
all FIFO buffers per clock cycle. We run experiments with a fixed packet size
of eight and sixteen flits. To get unbiased results, we warm the network and
run up to 50 iterations per test point. We compare the latency of a Tinuso
network with a baseline router implementation without pipelined feedback loop
to manage contention. The baseline router design is illustrated in Figure 5.4.
It is simpler as it only requires a single slack buffer. However, the backpressure

80 On-Chip Interconnect

0.01 0.1 0.2 0.4
0

100

200

300

400

500

600

700

800

900

L
a
te

n
c
y
 [

u
s
]

Injection Rate [flits per second / node / clock cycle]

8 flits pipelined

8 flits baseline

16 flits pipelined

16 flits baseline

(a) 3x3 2D mesh

0.1 0.2 0.4
0

100

200

300

400

500

600

700

800

L
a

te
n

c
y

 [
u

s
]

Injection Rate [flits per second / node / clock cycle]

8 flits pipelined

8 flits baseline

16 flits pipelined

16 flits baseline

(b) 4x4 2D mesh

Figure 5.10: Absolute average latency in µs vs. packet injection rate of a 3x3
and a 4x4 2D mesh network.

feedback loop restricts the clock frequency of the design. Figure 5.9 shows
the average latencies for various injection rates. The latency of the baseline
implementation is lower when contention occurs because of the smaller slack
buffer fewer flits need to be re-transmitted. We observe a very low latency up
to an injection rate of 0.3 flits per node per cycle. At injection rates higher
than 0.4 flits per node per cycle the network is congested and latencies become
unacceptable long.

In Figure 5.10 we derive the absolute latency in µs. We scale the latency
with the maximum clock frequency. On a network with 16 nodes we measure
a maximum clock frequency of 304 MHz for the Tinuso router while the setup
with the baseline router implementation can be clocked at 164 MHz only. The
maximum frequency of the multicore system is lower than the clock speed of a
single router implementation because it includes the routing delay of the data
links between the routers. The Tinuso network performs better at low injection
rates but there are situations at high contention where the latency in the network
with the baseline router is lower.

5.6 Conclusions

This chapter described the design, implementation and evaluation of commu-
nication structures for Tinuso multicore systems. We argued for a 2D mesh
network topology as it maps well to the structure of FPGAs. The proposed

5.6 Conclusions 81

router architecture uses wormhole switching and a backpressure flow control
mechanism to attain a latency of one clock cycle per hop. Routing scheme and
flow control mechanism were optimized for high system clock frequency. A de-
terministic XY, lookahead routing algorithm was applied to simplify the decode
logic in the routers. Moreover, the feedback loop to manage contention was
pipelined to reduce the routing delay of the time critical path in the design.

The network latency of random traffic is measured and compared to a base-
line router implementation. We measure very low latencies for injection rates
up to 0.3 flits per node per cycle. We show that a pipelined feedback loop to
manage contention leads to a significantly higher clock speed and a lower net-
work latency at low injection rates while consuming moderately more hardware
resources. We conclude that our behavioral-level network implementation de-
livers a high performance, is scalable, and allows for composing large multicore
systems.

82 On-Chip Interconnect

Chapter 6

Multicore Simulation
Platform

Multicore systems have the potential to improve performance, energy, and cost
properties of embedded systems but also require new design methods and tools
to take advantage of new architectures. Due to the limited accuracy and perfor-
mance of pure software simulators cycle accurate hardware simulation platforms
are required for research on embedded multicore systems.

Tinuso processor pipeline and interconnection network are designed with the
perspective of being used in large multicore systems. The design comes with
both instruction and data caches and a cache controller, which implicitly gen-
erates and processes memory requests. However, if all communication between
processor cores has to go through main memory, we obtain a high contention
rate in the interconnection network, which limits the scalability of the system.
Alternatively, extending Tinuso with infrastructure for direct communication
between processor cores offloads main memory and improves the scalability.

As the hardware design is easily extendable and optimized for a high per-
formance when implemented on an FPGA, Tinuso is an attractive hardware
platform for research on multicore systems and parallel programming.

This chapter describes the design and implementation of a communication
interface for efficient communication between processor cores and evaluates the
hardware scalability of the system. Section 6.3 describes the design and im-
plementation of the communication interface. Tinuso system components and
interfaces are described in Section 6.4. Section 6.5 evaluates the scalability of

84 Multicore Simulation Platform

Tinuso multicore systems. Finally, Section 6.6 summarizes and concludes this
chapter.

6.1 Introduction

Parallel computing and multicore architectures have spread into most areas of
digital system designs. While it is conceptually trivial to envision how such
systems are designed by composing processor cores and an interconnection net-
work, the programming of such a multicore system represents a huge challenge.
New approaches for programming languages, programming models, and runtime
systems are required to support the programmer in expressing parallelism and
to efficiently execute parallel programs. To exploit the full potential of such
multicore systems, the hard- and software development has to go hand-in-hand.
However, software simulators do not cover all aspects of multicore systems, suf-
fer from insufficient accuracy and have a limited throughput when simulating
with a large number of processors [116].

We therefore propose the use of Tinuso multicore systems as simulation
platform to capture the behavior of a high number of processor cores, network
interfaces, and the corresponding interconnect at a high clock rate. Multiproces-
sor systems can roughly be classified in two categories. First, there are shared
memory multiprocessors systems, which communicate through a common mem-
ory. Second, message passing systems do not have a shared memory address
space and communicate by sending messages directly from one processor core
to another. Tinuso is a multicore system where all processor cores may share a
common memory address space. However, if all communication between proces-
sor cores has to go through main memory we may end up in situations in which
communication data rates lead to a high contention rate in the interconnection
network or exceed the memory bandwidth.

As Tinuso processor pipelines execute instructions in-order and stalls on
cache misses it is difficult to hide memory latency. Hence, communication be-
tween processors through shared memory may become a major performance
bottleneck and limits the scalability of the system. Therefore, direct commu-
nication between processors must be enabled for Tinuso multicore systems. It
offloads main memory and leads to communication patterns that make better
use of the 2D mesh interconnection network. A communication interface that
allows for efficient communication between processors must be tightly integrated
in the processor cores to keep the overhead for composing messages low. Ti-
nuso comes with instructions to access machine specific registers as described in

6.2 Related Work 85

Appendix B. Hence, these registers can be used to connect the communication
interface with the processor pipeline. A high performance and rich toolchain
support are important factors for the success of a simulation platform for re-
search on multicore systems. Moreover, a simulation platform must be easily
extendable and adaptable.

All Tinuso system components are therefore implemented as hierarchical
behavior-level descriptions in VHDL. Behavior-level designs typically are shorter,
easier to adapt, and less error prone than descriptions at a lower level and
can easily be migrated to alternative platforms. Tinuso multicore system and
toolchain provide the ability for customizations at all levels. For example, it
is possible to add processor cores, define special instructions, and change the
interconnect link-width.

The hierarchical implementation allows for an easy substitution of intercon-
nection networks to explore alternative network topologies or changes in the
memory hierarchy. Moreover, Tinuso systems can be equipped with perfor-
mance counters that capture the instruction mix of an application, monitor
cache misses and network traffic. Therefore, Tinuso multicore systems are an
attractive choice for research on multicore systems and parallel programming.
Finally, Tinuso multicore systems of various size are composed to evaluate the
scalability on current state-of-the-art high-end FPGAs.

6.2 Related Work

ProtoFlex [29] is an FPGA-accelerated cycle accurate hybrid functional sim-
ulator designed for large-scale multiprocessor hardware and software research.
ProtoFlex provides the ability to run stock commercial operating systems with
I/O support. Its transplant technology uses FPGAs to dynamically accelerate
only common simulation cases while relegating infrequent, complex corner cases
to software simulation. By working in concert with existing full-system simu-
lators such as Flexus [27], transplanting avoids the costly construction of the
entire target system in FPGA. Large scale multicore systems can be simulated
by time-multiplexed emulation where multiple processors in the target model
are mapped to a smaller number of physical units [28]. Protoflex uses interleaved
in-order pipelines without data forwarding or stalls to keep the hardware simple
and to ensure multithreading, which is required by the engine to run multiple
processor contexts. ProtoFlex is currently targeting SPARC V9 platforms.

RAMP [115] is a collection of researchers and projects that work on an
FPGA-based emulator of parallel architectures. The RAMP vision provides

86 Multicore Simulation Platform

hardware platforms that allow software developers to start their development on
innovative architectures and programming models. For instance, Ramp BLUE
efficiently emulates a prototyped distributed-memory message-passing architec-
ture [65]. As only 12 MicroBlaze cores fit into a Virtex-II Pro FPGA, a total of
84 devices are required to build a system with 1008 MicroBlaze cores. RAMP
implements a generic crossbar for on-chip communication and makes use of
the FPGA’s fast serial off-chip links to form a system-level 3D mesh network.
RAMP is a message passing architecture with a static memory partitioning
where each core has a total of 256 MB private memory. Tinuso comes with a
global address space, which can be partitioned into private memory sections, if
required.

Both ProtoFlex and RAMP simulation platforms use off-the-shelf processors
with the intention to ease the platform access with a large number of software
components available. Oppositely, we aim for a processor that is easy extendable
to maintain the flexibility required for the research on the hardware/software
interface for programming model support of multicore systems.

US-FAST [24] describes another form of hybrid simulation that uses FPGAs
to accelerate cycle accurate simulation. It is capable of efficiently simulating
general-purpose speculative processors as well as multiprocessors. The sim-
ulation problem is partitioned into two levels to face the complexity of such
systems. A functional model is responsible for simulating at the instruction set
architecture ISA and functional peripheral level, while a timing model imple-
mented in the FPGA is used for modeling micro-architectural structures that
impact timing. Multicore aspects such as packet-switched interconnects are not
covered by this simulator.

6.3 Implementation of the Communication In-
terface

Figure 6.1 shows the internals of the Tinuso network interface. Its primary task
is to connect a processor core to a router. Cache misses are translated into
memory request messages. Outgoing messages are placed in a buffer and sent
out as soon as network resources are available. The pipeline stalls while cache
misses are resolved. Hence, the pipeline does not access the cache. Therefore,
incoming memory data is written directly into the caches without an input
buffer.

The dotted frame in Figure 6.1 illustrates the communication interface.

6.3 Implementation of the Communication Interface 87

H
S

EW

Router

Network Interface

Processor Pipeline

 data
Machine Specific Registers

fifo

pkg in

I$ & D$
Instruction & Data Caches

pkg out
tx fifo

rx fifo

Communication
Interface

N

 status

FSM

Figure 6.1: Implementation of the communication interface

While the cache controller implicitly generates and processes memory requests,
the communication interface allows for explicit communication with other pro-
cessing elements. We define network messages as explicitly generated messages
composed by processor pipeline and communication interface. The pipeline ac-
cesses network messages by reading and writing to machine specific registers.
The communication interface requires a set of buffers for both incoming and
outgoing messages to avoid conflicts with memory request messages. The com-
munication interface is integrated in the cache controller and consists of message
buffers and a control state machine that read and dispatches network messages
and sets status bits. Message buffers are implemented as FIFO queues in block
RAMs. There is a port for the network interface and one for processor pipeline.

Figure 6.2 illustrates how the processor pipeline reads and composes network
messages. Incoming network messages are identified through an ID in the packet
header and put into a buffer in the communication interface. Then the packet
ready and the packet header bits are set. The pipeline periodically polls for
incoming network messages by reading these status bits. Instructions that read
special registers, mfms, are used to read status bits and packet data. Whenever a
packet data is read by the processor core, the buffer index for incoming network
messages is incremented to make the next data flit available. This process is
repeated until complete network message is read. The end of a message is either
detected when the packet ready status bit is reset or a new packet header bit is
read.

The processor pipeline composes network messages by writing data to a spe-
cific register, which feeds data in the outgoing message queue. Instructions that

88 Multicore Simulation Platform

packet ready
packet header

Processor
Pipeline

packet data

packet ready
packet data

next data

Network
Interface

indicate incoming packet,
make header available poll for incoming packets,

read header,

make next data portion
available

 request next data portion

read data

repeat

receive packet

send packet

send packet

packet data
write enable

repeat
write packet data

trigger send packet

put data in fifo,

send packet

stall pipeline on overflow

Figure 6.2: Communication interface

write special registers, mtms, are used for this purpose. Once the message is
complete, the processor pipeline triggers the dispatch of the network message
by setting the send packet status bit. The control state machine in the commu-
nication interface is able to detect overflow situations in the buffer for outgoing
messages and can pause the creation of new messages. Overflow situations for
the incoming messages are more difficult to handle since it is not possible to
pause message creation in remote processor cores. The communication inter-
face therefore drops incoming network messages if the input buffers are full and
set an overflow status bit. It is then up to the software to recover from such
situations.

6.4 Simulation Platform Components and Inter-
faces

Figure 6.3 illustrates the hierarchical design of a Tinuso processor multicore
system, which includes processor pipeline, cache controller, network interface,
router, and memory controller.

Processor Pipeline. The Tinuso processor core is a three operand, load-

6.4 Simulation Platform Components and Interfaces 89

Tinuso Pipeline
I$ D$

Cache Controller

Network Interface

con_cc_if

con_ni_if

con_nw_if

con_nw_if

cc_id

dbg_core

dbg_cc

dbg_ni

dbg_router

dbg_mem

Router

Memory Controller

UART

*.mif

Figure 6.3: System interface overview

store architecture with a fixed instruction word length of 32-bits. The in-order
pipeline has a total of 8 pipeline stages and is optimized for a high instruction
throughput when implemented on an FPGA. The architecture, implementation
and evaluation of the Tinuso processor core is described in Chapter 3.

Cache Controller. The cache controller has four main objectives. Firstly,
it generates memory request messages when the processor pipeline observes
cache misses. Secondly, it updates the cache based on incoming data packets
from the network. Thirdly, it includes special registers that the pipeline can
read and write with mtms and mfms instructions. This infrastructure is used to
implement the communication interface and to read out performance counters.
Finally, the cache controller has to update the status register for load linked, ll,
and store conditional, sc, instructions. The cache controller is tightly connected
to the pipeline and can set program counter, if necessary. Hence, it is able to
stall the pipeline if required. The current implementation includes a finite state
machine for both incoming and outgoing data. There is support only for a
single processor pipeline with corresponding first level caches. The standard
implementation does not support memory consistency in hardware. A suitable
coherency mechanism for Tinuso multicore systems is described in Chapter 8.

90 Multicore Simulation Platform

Network Interface. The network interface is responsible to inject data
packets into the interconnection network and to forward incoming data to the
cache controller. Hence, it implements the backpressure flow-control mechanism
and includes a fifo buffer to store data packets until they are injected into the
network. Incoming data packets from the network are directly forwarded to the
cache controller. Given the low complexity of the network interface, it would be
possible to integrate this functionality into the cache controller. However, it is
designed to work with a plethora of cache controllers. Beside the simple cache
controller that connects to a single core and does not support cache coherency
there will come up implementations of cache controllers for multiple processor
cores with a shared level-two cache and support for cache coherency. Hence, it is
easier to maintain the network interface when it is implemented in a separated
component. Moreover, on a single core implementation there is no need for the
functionality of the network interface.

Router. The five port router is designed to compose generic 2D-mesh on-
chip networks. To attain a high data rate the XY routing scheme, flow control
mechanism and arbitration scheme are optimized for high clock frequency and
low latency. The router can be configured to use a fixed priority scheme or
a round-robin arbitration scheme. The data link-width can be configured to
match the needs of an application. However, it may not be smaller than 16
bits. The router architecture, implementation and evaluation is described in
Chapter 5.

Memory Controller. The memory controller is currently only able to
model SRAM. However, this is sufficient for most applications as the clock fre-
quency of the FPGA multicore system is lower than the data rate of modern
SDRAM memory blocks. The memory controller is directly connected to the
interconnection network. The design is synthesizable but is not suited for hard-
ware implementation because memory is implemented as a large array that does
not fit into the FPGA’s block rams.

There is a fifo buffer at the input of the memory controller pipeline to store
incoming memory requests and write backs. Memory is implemented as a huge
array that is initialized with a *.mif file. Hence, there is no bootloader required.
The Tinuso toolchain includes a script to convert *.elf executable into *.mif files.
At the output of the memory pipeline there is a fifo buffer where output data is
stored until network resources become available. The memory controller imple-
ments the backpressure flow-control mechanism to ensure that data is injected
correctly into the interconnection network. The simple architecture is designed
to run efficiently in the hardware simulation environment.

Simulation Environment. The Tinuso VHDL sources are architecture

6.4 Simulation Platform Components and Interfaces 91

independent. Therefore, all Tinuso components can be simulated with a broad
range of simulation tools. We primarily used GHDL, an open source VHDL
simulator [46] for functional simulation. GHDL does compile VHDL code di-
rectly to machine code rather than synthesizing it. Moreover, GHDL allows for
including subprograms written in programming languages such as C or Ada and
is therefore well suited for hardware software co-simulation. Figure 6.3 shows
how to connect the system components to compose a multicore system. Each
component of the Tinuso architecture comes with a set of interfaces that allow
for an easy composition of multicore systems. Each interface consists of two
records of signals: One for incoming data and one for outgoing data. Grouping
signals to a record in VHDL has two advantages. Firstly, the higher abstraction
allows connecting components with a single signal. Secondly, it is possible to
add or remove signals from the record without all files that use a connection
of this type need to be updated. Each component has a debug record that can
be used within the simulation environment to log the values of all registers of
a component. However, this is a huge data record that slows down the simu-
lation and it needs to be disabled when the design is synthesized for hardware
implementation as it exceeds the I/O capabilities of most FPGA devices.

Table 6.1 shows the interface between the processor pipeline and the cache
controller. There are control signals that allow the cache controller to reset or
halt the pipeline. It is necessary to prevent the pipeline from accessing the caches
while the cache controller updates the caches. The cache controller can therefore
stall the pipeline if necessary. This is relevant for multicore systems when a
hardware cache coherency mechanism is implemented. The cache controller
may be triggered by an event from a remote processor to invalidate or write
back portions of the cache data without interfering with the program execution
in the local processor pipeline. The cache controller interface also includes
control signals for instruction and data cache misses. For example, when the
pipeline observes a data cache miss, it asserts the data cache miss signal,
flushes the pipeline and goes into reset mode. The cache controller checks
whether data needs to be written back and triggers a memory request. Once
it has received the requested memory and the cache is updated it asserts the
data cache miss done signal to restart the pipeline. The cache controller has
a write port to the instruction cache and a read and a write port to the data
cache. Simultaneous read and write operation on the data cache is permitted.

The interface between network interface and cache controller is defined in
Table 6.2. Incoming data packets to the network interface are directly forwarded
to the cache controller. It is up to the cache controller to decode the data pack-
ages. The backpressure flow control mechanism is used to indicate congestion in

92 Multicore Simulation Platform

Table 6.1: Interface between cache controller and processor pipeline

Cache Controller Processor Pipeline

→ core id [8 bit] →
→ reset [bool] →
→ reset pc [30 bit] →
← current pc [30 bit] ←
← instr cache miss [bool] ←
← instr cache miss addr [30 bit] ←
→ instr cache miss done [bool] →
← data cache miss [bool] ←
← data cache miss addr [30 bit] ←
→ data cache miss done [bool] →
→ instr cache w en [bool] →
→ instr cache w addr [10 bit] →
→ instr cache w data [31 bit] →
→ instr cache w tag [21 bit] →
→ data cache r addr [10 bit] →
← data cache r data [32 bit] ←
← data cache r tag [20 bit] ←
→ data cache w en [bool] →
→ data cache w addr [10 bit] →
→ data cache w data [31 bit] →
→ data cache w tag [21 bit] →
→ com if packet ready [bool] →
→ com if packet header [bool] →
→ com if read data [32 bit] →
← com if write en [bool] ←
← com if write data [32 bit] ←
← com if send packet [bool] ←
← com if read en [bool] ←

pipeline control

 instruction cache missdata cache miss instruction cache write

data cache writedata cache read

message passing interface

6.4 Simulation Platform Components and Interfaces 93

Table 6.2: Interface between network interface and cache controller

Network Interface Cache Controller

→ data [≥ 16 bit] →
→ data valid [bool] →
← data [≥ 16 bit] ←
← header [bool] ←
← tail [bool] ←
← write en [bool] ←

}
data from networkdata to network

Table 6.3: Interface between router ports, network interface, or memory con-
troller

Router Ports (N, S, E, W, H), Router Ports (N, S, E, W, H)
Network Interface, Memory

Controller
Network Interface, Memory

Controller

→ data [≥ 16 bit] →
→ data valid [bool] →
→ backpressure [bool] →
← data [≥ 16 bit] ←
← data valid [bool] ←
← backpressure [bool] ←

 out data in data

the network. The interconnection network ensures that incoming data packets
consist of a continuous stream of flits and that data packets are separated by at
least one invalid flit. Hence, a single data valid control signal is sufficient to
determine header and tail flit of a data packet. As there is no fifo for incoming
data, the cache controller must treat incoming data from the network with the
highest priority. Control signals to mark the header flit and the tail flit of a
package are required to ensure that the network interface is able to identify start
and end of a data packet.

Table 6.3 defines the interface to the interconnection network. As both
memory controller and network interface connect to the interconnection network
they use the same interface. For each direction there is a data path with a
configurable link width and corresponding control signals. These control signals
indicate whether data is valid or not and if backpressure flow control is active
or not. A router typically has five of these bidirectional interfaces.

94 Multicore Simulation Platform

1 2 4 8 16 32 48

0

100

200

300

400
m

a
x
im

u
m

 f
re

q
u

en
cy

Xilinx ISE 14.6 Place & Route
Xilinx ISE 14.6 Synthesis

cores

Figure 6.4: Hardware scaling of Tinuso multicore systems

6.5 Scalability of Tinuso Multicore Systems

To evaluate the scalability of Tinuso multicore systems we compose Tinuso
multicore systems with a various number of cores and derive the maximum
clock frequency of the system on a Virtex 7 device. We populate the network
nodes with Tinuso processor cores. Both network and processor cores operate in
the same clock domain. The processor cores include communication interfaces
and instruction and data caches with a size of 4 Kbyte each.

Figure 6.4 shows the results after the synthesis and the placed and routed
design. With increasing system size it becomes more difficult for the tools
to map the design on the FPGA fabric. The single core configuration does
not include a router and is therefore faster than the other designs. Designs
with more than 4 processor cores require floor-planning in Xilinx PlanAhead
to attain an acceptable clock speed. We define local area constraints (Pblocks)
and assign the processor cores to them.

We do not constrain the placement of the network and let the Xilinx toolchain
find a performance-optimized placement. However, for very large systems with
more than 64 processor cores the tools report a high system frequency after
synthesis but the tools are not able to map the design efficiently and report
slow place and route results. Xilinx’s Virtex 7 family comes with devices up to
two million logic cells that allow for Tinuso multicore configurations of up to
480 processor cores. Hence, we currently explore how to automatically gener-
ate fine-grained design constraints to efficiently support the placement for very
large systems.

6.6 Conclusions 95

6.6 Conclusions

This chapter described the design and implementation of a communication in-
terface for Tinuso multicore systems. It allows for sending and receiving network
messages. It is designed with the aim to offload memory traffic. With the advent
of this communication interface, processor cores in a multicore system can either
communicate directly or through shared memory. Tinuso multicore systems can
therefore be used for research on multicore systems and parallel programming.

The hierarchical design of Tinuso system components with simple interfaces
allow for easily composing and adapting multicore setups. Tinuso multicore
system and toolchain allow for customizations at all levels. For example, it is
possible to add processor cores, define special instructions, and change the inter-
connect link-width. Tinuso multicore systems can either be simulated with any
VHDL simulation tool, which is useful for low level debugging, or alternatively
the system can run on hardware to attain a high simulation speed.

However, a high level of detail comes at the cost of simulation speed. A
standard off-the-shelve desktop machine attains a simulation speed of approx-
imately 300Hz for a Tinuso multicore configuration with four processor cores
with all debugging output enabled.

As research platforms with a very high number of processor cores are desir-
able, the hardware scalability of Tinuso multicore systems was evaluated. The
system scales well up a system size of 48 cores. We reached a maximum clock
frequency of 300 MHz on a Xilinx Virtex 7 device, which corresponds to a peak
switching data rate of 9.6 Gbits/s per link. The Xilinx tools have problems to
map larger multicore systems on the FPGA. Substantial floor-planning support
is required to attain a high system clock speed. We conclude that the Tinuso
behavioral-level implementation delivers a high performance, is scalable, allows
for composing large multicore systems and is therefore an attractive multicore
research platform.

96 Multicore Simulation Platform

Chapter 7

Tinuso Multicore for
Synthetic Aperture Radar
Data Processing

When system designers have to decide for an embedded computing platform,
they need to evaluate a plethora of system properties such as development time
and costs, computing performance, unit costs, power, reliability, and mechanical
properties. Discrete embedded processors and systems on chips are typically
cheap and come with a high number of interfaces and rich tool chain support. In
recent years several large multicore platforms have entered the market. However,
this market is very dynamic and it is not clear which architectures will still be
supported in a few years. GPU’s provide a huge computing power per price
unit but these systems require a host system, are power hungry and the GPU
programming model may not fit to the application.

Custom hardware solutions can be optimized for a given application. ASIC
technology typically provides the highest performance, lowest power consump-
tion and lowest unit cost. However, the high setup and development costs make
ASICs only economically viable for high volume production. Alternatively, FP-
GAs have a higher unit cost but no setup costs. The logic integration of FPGAs
has reached a point where multiple processor cores can be integrated in a single
device.

This chapter presents a case study where a SAR data processing application
is successfully mapped to a multicore system on an FPGA. The study analyzes

98 Tinuso Multicore for Synthetic Aperture Radar Data Processing

the parallelization of the data processing algorithm, application specific modi-
fications to the existing Tinuso infrastructure, and the application mapping to
the hardware. This chapter is based on a publication and is structured in the
following sections [104].

Section 7.1 introduces the case study. The radar application and how to
parallelize the algorithm is described in Section 7.2. Related work is discussed
in Section 7.3. Section 7.4 describes the system architecture, which includes
all application specific modifications on the Tinuso processor core. Hardware
organizations and scalability of the system are discussed in Section 7.5. Results
such as computing performance, clock speed, utilized hardware resources, and
network traffic are presented in Section 7.6.

7.1 Introduction

Synthetic aperture radar, SAR, is a form of imaging radar that provides high
quality mapping independent of light and weather conditions. SAR is used
across a wide range of scientific and military applications including environ-
mental monitoring, earth-resource mapping, surveillance, and reconnaissance.
The principle of SAR operation is that a radar antenna is attached to an air-
craft or spacecraft. The antenna transmits electromagnetic pulses to the ground
and records their echoes.

An output image is reconstructed from echoed data that is interpreted as a
set of projections. The direct back-projection algorithm provides the most pre-
cise output image reconstruction and can compensate deviations in the flight
track. A very high number of operations is required to reconstruct the output
image because each pixel must analyze hundreds of these echoes. Therefore,
graphic processing units, GPUs, are often used for this type of SAR data pro-
cessing.

However, for applications with strict space and power requirements GPUs
may not be an appropriate solution. For example, small unmanned aircraft
systems may want to use the direct back-projection algorithm to compensate
for deviations in the flight track but do not provide space and power for a
computing system with a high performance GPU. Moreover, there are many
applications that require the use of industrial and space grade components or
demand a certain durability and reliability, which off-the-shelf GPUs may not
be able to deliver. Hence, custom embedded systems need to be designed.

Although ASICs tend to provide the highest performance and lowest power
consumption, the high setup and development costs make them viable for high

7.1 Introduction 99

volume production only. This is a challenge for radar imaging systems that typi-
cally are both custom and low-volume. Alternatively, FPGAs have a much lower
development cost than ASICs and are therefore increasingly being used in low
and medium volume markets. The reconfigurability of FPGAs enables updates
and modifications on systems that are already in operation. The logic integra-
tion of FPGAs has reached a point where a high number of processor cores,
dedicated accelerators, and a large number of interfaces can be integrated on a
single device. As many modern radar imaging systems successfully use FPGAs
for signal processing already, it is convenient to integrate the data processing
functionality in the same device.

In recent years several large multicore platforms have started to enter the
market [6,61,111]. Although the architecture and the processing power of these
platforms are suitable for radar data processing, a radar system will most prob-
ably still include an FPGA for dedicated signal processing tasks such as filtering
and demodulation.

This case study describes how to map a specific SAR data processing ap-
plication to a multicore system on an FPGA. It includes design of a scalable
multicore system consisting of Tinuso processor cores and a 2D mesh intercon-
nect. Data from the airborne POLARIS SAR is used for this case study [35].
This radar is currently used in the evaluation process of the European Space
Agency’s, ESA, BIOMASS candidate mission [40]. This mission aims for a
P-band SAR satellite that provides global scale estimates for forest biomass.

The proposed system provides a number of advantages including system in-
tegration, power, scalability, customization, and the use of industrial and space
grade components. As the power efficiency and logic capacity of FPGAs in-
creases, they become an attractive technology for low-volume, large-scale sys-
tems. For example, Xilinx’s Virtex-7 family comes with devices up to two million
logic cells. These devices allow for combining the processing power of hundreds
of processor cores on a single FPGA. Moreover, the same device can also host
the digital front-end used for SAR signal processing. FPGAs provide flexible
I/O that allows for connecting a multitude of data links and memory units to a
single device.

We propose and advocate for a multicore system because it raises the ab-
straction level for the application programmer without facing the current per-
formance drawbacks of high-level synthesis [90]. Moreover, mapping an appli-
cation to multicore system significantly reduces development effort over a fully
custom FPGA implementation [72]. The proposed system provides the ability
for customizations at all levels. For example, it is possible to add processor
cores, define special instructions, and change the interconnect link-width. FP-

100 Tinuso Multicore for Synthetic Aperture Radar Data Processing

GAs are available in industrial and space grade, which permits the use in rough
environments and in space.

7.2 Synthetic Aperture Radar Application

Synthetic aperture radar is a form of imaging radar that is operated from a
moving platform, typically an aircraft or satellite. SAR provides high quality
radar mapping independent of light and weather conditions. Therefore, SAR
is an attractive choice for a broad range of scientific and military applications
such as environmental monitoring, earth-resource mapping, surveillance, and
reconnaissance. The principle of SAR operation is that a radar antenna is at-
tached to an aircraft or spacecraft and alternately transmits an electromagnetic
pulse to the ground and receives echoes. As the radar moves along the track, it
records its exact position, the energy level, and round trip delay of the received
echoes. Signal and data processing is then applied to reconstruct an image of
the scanned terrain.

The term synthetic aperture radar derives to the fact that a moving an-
tenna effectively acts as a much larger antenna that can more accurately resolve
distances in the flight direction. In radar technology, the term range refers to
the slanted distance between the radar and a target or a scatterer that echoes
the transmitted signal. Resolution in the range dimension of the image is typi-
cally accomplished by transmitting a pulse with a linearly frequency modulated
pulse, called chirp pulse. A unique property of SAR is that resolution in flight
direction, azimuth, is independent of range. It is therefore possible to obtain
radar maps with a resolution of up to decimeters from very large distances.

Often frequency-domain algorithms are used for SAR image reconstruction
[21]. These algorithms are based on the fast Fourier transform, FFT, technique
and are computationally efficient to implement. A limitation of these algorithms
is the approximations involved and the high sensitivity to non-linear deviations
in the flight track. This is a major problem for low frequency SAR where a
long synthetic aperture is required to obtain high output image quality [113].
Direct back-projection is a time-domain algorithm that can adapt to a general
geometry of the synthetic aperture and therefore compensate for deviations in
the flight track. However, the high image quality of the direct back-projection
algorithm comes at the cost of high computation power.

The received echo of each transmitted radar pulse is stored in a one-dimensional
array, called range line or projection. It contains values that represent the re-
flected energy and propagation delay of all points on the ground swath illumi-

7.2 Synthetic Aperture Radar Application 101

t1

t2
L

3km

azimuth

range
r

ground
swath

h
3km

3km
x

y

Figure 7.1: SAR system overview

nated by this pulse. To reconstruct a projection image, the computation of each
projected pixel must consider all range lines that possibly contain an echo from
the corresponding point on the ground. The energy contribution of each range
line for each pixel is computed and coherently accumulated. As the resolution
of a SAR image depends on the length of the synthetic aperture, the upper limit
of which is the along track length of the footprint illuminated by the antenna,
hundreds up to thousands of range lines contribute to a single output pixel.
Thus, the number of operations required for reconstructing an output image
with NxN pixels and N range lines is proportional to N3.

7.2.1 Case Study Application

This case study considers SAR data processing for the POLARIS system, which
is an ice sounding radar developed at DTU [35]. The radar operates at 435 MHz
with a chirp pulse bandwidth of 85 MHz, which allows for a range resolution
of 2 meters. The radar is mounted on an airplane that flies at an altitude of
3000m. Real-time data processing must be provided for a 3000m wide ground
swath as shown in Figure 7.1. The relatively low radar frequency and the small
antenna cause a long synthetic aperture of 700 up to 1100 meters depending on

102 Tinuso Multicore for Synthetic Aperture Radar Data Processing

for each pixel do
for each range line do

calculate round-trip delay and fetch data samples from memory
reconstruct echo signal and interpolate the energy contribution do
amplitude weighting and phase correction accumulate energy
contributions of each range line

end

end
Algorithm 1: Pseudo code for SAR data processing with direct back-
projection

the slant range. The synthetic aperture, L, is shown in Figure 7.1.
This study assumes an oversampling ratio of 1.25 and considers 50 range lines

per second to avoid aliasing. The length of the synthetic aperture for objects
that are closer to the radar is smaller than for objects further away. Hence, for
each pixel it is necessary to calculate the energy components of 437 up to 688
range lines. 1500 Pixels in range dimension are required to map a 3000m wide
ground swath with a resolution of 2 meters. Given a flight speed of 80 m/s, it is
necessary to compute 60’000 pixels per second to provide real-time processing.
For the given application, the long synthetic aperture length of up to 1100
meters and the relatively low flight speed of 80 m/s require recorded data of up
to 13.75 seconds flight time to reconstruct a single pixel. Hence, it is evident to
use a image reconstruction algorithm that can compensate for deviations in the
flight track. Figure 7.2 shows a SAR image of the Kangerlussuag airport area,
taken by POLARIS P-band SAR in June 2012.

7.2.2 Direct Back-Projection

Direct back-projection is a well-known technique for focusing wide-band SAR
data. All energy components of a point in the scene are coherently accumulated
to reconstruct a projected pixel. The algorithm is described by Equation 7.1
[68,113].

s0(xT , yT) =
∑

|xR−xT |<L
2

si[xR, τrt]exp(j2πfcτrt) (7.1)

S0(xT , yT) is a focused output pixel at a given position. (xR, yR) is the
position of the radar sensor. si[x, τ] represents the input data ordered by the

7.2 Synthetic Aperture Radar Application 103

Figure 7.2: POLARIS P-band SAR image of the Kangerlussuag airport

position in azimuth and time delay. L is the length of the synthetic aperture,
fc is the radars center frequency and τrt defines the round trip delay of the
transmitted signal. Thus, for each output pixel a summation over all input
range lines within the synthetic aperture is required.

7.2.3 POLARIS Data Processing

SAR data processing for POLARIS is described by Algorithm 1. It includes di-
rect back-projection, interpolation, amplitude weighting, and phase correction.

The input of the algorithm includes a number of pixel coordinates that need
to be calculated, plus additional flight track information. In a first step the
round trip delay of the transmitted signal is calculated. This corresponds to
the signals traveling time from the antenna to a point on the ground swath and
back to the receiver. The round trip delay specifies a sample in the range line.

An interpolation step is needed because the round trip delay mostly points
to a value that lies between two samples. Interpolation distributes the energy
components in a range line to the respective pixels. Hence, it is necessary to
reconstruct the received echo signal as accurately as possible to obtain a high
output image quality.

Interpolation kernels based on the sinc function show a very low interpo-
lation error and are well suited for image projection applications [74]. The

104 Tinuso Multicore for Synthetic Aperture Radar Data Processing

1 2 3 4 5 6 7 8
−0,15

−0,1

−0,05

0

0,05

0,1

0,15

samples

sa
m

pl
e

va
lu

e

16 samples
8 samples
4 samples

interpolation
range

Figure 7.3: Sinc interpolation

sinc function is defined as sin(x)/x. We use the sinc interpolation method to
reconstruct the sampled analogue waveform. This allows for interpolating inter-
mediate points between data samples. Equation 7.2 provides the reconstruction
of an equally spaced discrete signal with sinc functions.

x(t) =

∞∑
i=−∞

xn sinc(
π

T
(t− nτ)) (7.2)

In practice the sinc function is truncated. The more samples we consider,
the more accurate the reconstructed waveform gets. For this case study the
sinc function is implemented with a lookup-table with 1024 single precision
floating point entries as it fits well into a block RAM. Figure 7.3 shows sinc
interpolated waveforms with 4, 8, and 16 samples. The interpolated waveform
becomes more accurate the more samples are used. Contrary, as we increase the
range of the sinc function, its accuracy is lowered due to the limited number of
entries in the lookup-table. This trade-off can be seen on the rough waveform
of the interpolation with 16 samples. An interpolation with eight samples is
used as it provides sufficient accuracy and a lookup-table with 1024 entries is
sufficient.

The next step of the algorithm applies phase correction and amplitude
weighting. For this computation, it is necessary to extract the phase and am-
plitude information of the interpolated IQ signal. This is done using sine and
cosine functions. A Hamming window function is used for weighting the ampli-
tude. Finally, the value of the pixel is determined by coherently accumulating
the energy components of all range lines, within the synthetic aperture.

This SAR data processing application provides a high level of parallelism
for reconstructing the output image. To optimize application performance, we
exploit parallelism at task-level. We define a task as the computation of a single
output pixel. According to Algorithm 1, the computation of each range line

7.3 Related Work 105

PE 1 PE 2 PE 3

memory

Input:
pixel coordinates

&
flight track info

for each range line:
calculate

round trip delay

memory
request Output:

pixel value

for each range line:
sinc interpolation

for each range line:
ampl. weighting
phase correction

accumulate

buffer

latency

Figure 7.4: Software pipelined SAR data processing application

includes a memory request. As there is a memory operation in the time-critical
path of the algorithm, the performance greatly depends on memory latency.

We evaluate two implementations of this application. The first implemen-
tation assumes a low memory latency and simultaneously executes Algorithm 1
on a number of parallel processing elements. This implementation is called ho-
mogeneous SAR. The second implementation attempts to hide memory latency
to achieve a higher performance.

GPUs employ hardware multi-threading to successfully hide memory latency.
Hardware multi-threading requires registers and memory to maintain the con-
texts of all threads. Due to the limited hardware resources in FPGAs software
pipelining is applied to tolerate memory latency. The task of computing an
output pixel is split up in three sub-tasks that run on individual processing
elements as shown in Figure 7.4. The first sub-task calculates the round trip
delay for each range line and thereby determines which memory blocks need
to be fetched. These memory blocks are then forwarded to the processor that
runs the second sub-task, which includes interpolation. The interpolated values
are then sent to the core that runs the third sub-task. The advantage of this
technique is twofold: it hides memory latency and simplifies the processing ele-
ments. However, the execution time of the sub-task needs to be balanced. The
sub-task with the longest execution time defines the throughput of the whole
system.

In this software pipelined application there is direct communication between
processing elements. To efficiently run this application, a target platform must
provide a message passing communication scheme.

7.3 Related Work

EMISAR is an airborne SAR developed at the Danish Technical University,
DTU, which provides a resolution of 2x2m [26]. It was mainly used for research

106 Tinuso Multicore for Synthetic Aperture Radar Data Processing

in remote-sensing techniques and to collect high-quality SAR data. EMISAR
operates in the L- and C-band, at 1.25 GHz and 5.3 GHz. A high frequency
and a relatively large antenna lead to a quite short aperture length, which
limits the number of echoes that need to be considered to compute a pixel
of the output image. In the sensor sub system, a real-time processor is able to
produce an output image of a single channel [34]. This was mainly used to check
the data acquisition. An offline system then did the high-quality processing of
the data that was stored on HDDT tapes. Both the real-time processor and the
offline processor are based on the range-Doppler algorithm [117], as the relative
bandwidth is so small that the back-projection algorithm is not required.

POLARIS is an ice sounding radar developed at DTU [35]. It was initially
built to assess the potential and feasibility of a space-based P-band ice sounding
mission. It operates in the P-band at 435MHz. A radar with a low frequency is
used to avoid excessive attenuation of transmitted and reflected signals in the
ice. The on-board signal processing supports real-time visualization at a coarse
resolution only. This is sufficient to calibrate the system. Final data process-
ing is done offline. POLARIS is currently used as a SAR system to support
the evaluation of the ESA’s BIOMASS candidate Earth Explorer mission. The
long wavelength of P-band SAR has a higher saturation threshold to biomass
than radars operating in a higher frequency band. This ESA mission aims for
a P-band SAR satellite that provides global scale estimates for forest biomass.

SAR data processing always has been a challenge due to the huge input data
and large amount of processing per pixel. In the past, dedicated hardware and
large computing clusters were used, e.g. the EMISAR real-time processor is a
pipeline processor including about 20 programmable signal processing elements,
each with 8 digital signal processors, DSPs [34]. Modern systems, however, make
use of accelerators of various forms.

The highly parallel architecture of GPUs is well suited to accelerate SAR
data processing. Fasih and Hartley present a SAR back-projection implemen-
tation in CUDA [43]. The input data array of SAR systems is typically too
large to fit in graphics memory. Their implementation allows for partitioning
the input data matrix in small data blocks that are used to calculate a block
of neighboring pixels. The advantage of this approach is that data blocks are
small enough to be placed in the GPU’s texture memory, which enables a low
access latency. This texture unit also provides hardware-accelerated linear in-
terpolation. Moreover, the algorithm makes use of spatial locality by reusing
input data to compute neighboring pixels. They use two public spotlight SAR
data-sets to evaluate their implementation [102], [22]. The GPU accelerated im-

7.4 System Architecture 107

plementation performs up to 344 times better than on a single threaded desktop
CPU.

GPU accelerated data-processing is also done for lower frequency SARs. The
property of radars with a low frequency is the ability to better characterize the
surface of scanned objects. However, the data that need to be processed is larger
due to the high number of echoes that need to be considered. Some application
produces data arrays that do not fit in the texture memory. Hence, their GPU
implementation only performs up to 4 times better than on a desktop CPU [15].

FPGA accelerated SAR data processing has been proposed previously [30].
They use a host machine and an FPGA accelerator connected over a PCI in-
terface. The host machine provides the FPGA with preprocessed data and
application specific information at run-time. The back-projection algorithm is
then implemented on the FPGA. They reach a speedup of 200x over a pure soft-
ware implementation. However, their system is completely different from our
proposed approach. While our multicore system consists of generic processing
cores and interconnect, they use dedicated hardware blocks only. We provide
interpolation to get a better estimate of the energy contribution of each echo,
which is not done in their system. They use fixed-point arithmetic while we
do all data processing in floating-point arithmetic. Finally, we implement am-
plitude weighting and phase correction, which is not supported in their design
either.

7.4 System Architecture

We aim for a system as shown in Figure 7.5 to integrate SAR signal and data
processing. Signal processing is done partially in an analogue front-end where
the received echo is mixed down to base-band, IQ de-modulated, and A/D
converted. A/D converted antenna signals are fed into the FPGA. The digital
front-end in the FPGA may be used for digital filtering and data preprocessing.
Preprocessed data then may be stored in off-chip memory or directly forwarded
to processing elements. The image reconstruction application is mapped to a
number of parallel processing elements that communicate over an interconnect
with a memory controller. Given the high number of I/Os in modern FPGA’s
several A/D converters and off-chip memories can be connected to a single
device.

Each processing element must provide a broad range of integer and floating-
point operations. Therefore, synthesizable processor cores are well suited to run

108 Tinuso Multicore for Synthetic Aperture Radar Data Processing

NI

procesing
element
network
interface

mem controller

interconnect

NI

PE 1

NI

PE 2

NI

PE 3

NI

PE n

A/D

preprocessing

antenna

of
f-c

hi
p

m
em

or
y

…...

FPGA

PE

Figure 7.5: Block diagram of a SAR signal and data processing system

this algorithm. For the software pipelined application it would be possible to
use dedicated hardware blocks. However, we prefer a processor based solution
because it raises the abstraction level for the application programmer.

7.4.1 Processing Element

We decided to use instances of the Tinuso processor architecture as process-
ing elements. Tinuso is a three operand, load-store architecture with a fixed
instruction word length of 32-bits. It comes with a super-pipelined, single is-
sue, in-order pipeline that is optimized for a high instruction throughput when
implemented on an FPGA. The pipeline is fully exposed to software where all
types of hazards need to be considered. The architecture supports predicated
execution to reduce the branch penalty. Tinuso is a lightweight architecture
with a small instruction set that can easily be extended. Given the high in-
struction throughput, the small hardware footprint, and the ability to extend
the design, Tinuso is an attractive choice for our multicore system. However,
a number of application specific modifications and extensions to the initial de-
sign are required to efficiently run SAR back-projection algorithms. Figure 7.6
shows the modified eight-stage Tinuso pipeline. The design includes function
lookup-tables and a single precision floating-point unit.

Function Lookup-Tables

SAR data processing as described in Section 7.2.3 requires specific mathematical
functions for interpolation and amplitude weighting.

Implementing a mathematical function in an FPGA is a trade-off between ac-
curacy, clock speed and utilized resources. For example, the coordinate rotation
digital computer algorithm, CORDIC is often used to implement trigonometric

7.4 System Architecture 109

blocks in hardware [99]. The Xilinx core generator and various other high level
VHDL code generation tools can be used to easily configure and implement
arithmetic blocks. Depending on the desired system clock frequency and the
available hardware resources, one or more pipeline stages are used. A dedicated
sinc function block is very costly as it includes sine function and division. Thus,
we decided to use function lookup-tables.

Modern FPGAs come with extensive memory resources in the form of syn-
chronous static SRAM blocks, block RAMs. Lookup-tables implemented in
block RAMs are an attractive design choice because they do not occupy config-
urable logic blocks. However, function lookup-tables may suffer form accuracy
and are therefore rarely used in general-purpose high performance processors.
We build application specific processor extensions and know the application ex-
actly. Hence, we are able to limit the range of the functions that are placed in
the lookup-tables and thereby attain a sufficient accuracy.

Current state-of-the-art FPGAs provide pipelined memory resources for fast
designs. Tinuso uses such pipelined block RAM configurations already to im-
plement register file and caches. The block RAM size in Xilinx Virtex-6 FPGAs
is 36 kilobits, which allows for a lookup-table with 1024 data words. We im-
plemented three function lookup-tables for sinc, sine, and a Hamming window
function. The integration in the pipeline is shown in Figure 7.6. The lookup-
tables are placed in the execution stage, parallel to the ALU. Forwarding in the
execution stages is permitted from the ALU to the function lookup-tables only.

Floating-Point Unit, FPU

In this case study, the echoed signal is demodulated in IQ format. Input data
consists of a pair of single precision floating-point numbers. All computation
is done using single precision floating-point arithmetic. FPU functions can be
emulated by a sequence of integer operations, which saves the added hardware
cost of an FPU. As this computation is significantly slower, there is a higher
number of parallel processing elements required to yield the same performance.
However, the hardware cost of an FPU is smaller than the costs for additional
processing elements. Thus, the Tinuso pipeline is extended with a floating-point
unit. The Xilinx floating-point core is used to implement an FPU with the
following operations: addition, subtraction, multiplication, division, and square
root [119]. Tinuso uses lookup-tables to implement arithmetic functions where
an integer index is used to look up floating-point values. Hence, dedicated
function blocks that allow for efficiently converting floating-point numbers to
fixed-point numbers and vice versa are included in the design.

110 Tinuso Multicore for Synthetic Aperture Radar Data Processing

m
u
x

D$
data

cachetag & valid

tag & valid

FW
logic

de-
code
logic

pc

cache
tag

check

branch?

cache
tag

check

FW
logic

I$
instruction

cache

RF
register

file

control logic / cache controller / network interface

 ALU

pc i-fetch decode reg-fetch execute 1 execute 2 memory mux write back

FPU

hamming
sinc
sin m

u
x

Figure 7.6: Pipeline sketch of a Tinuso implementation with FPU and function
lookup-tables

Floating-point blocks built with the Xilinx floating-point operator can be
customized for operation, word length, latency, and interface. Table 7.1 shows
the design parameters for each of the implemented operations. The hardware
costs are listed in terms of CLB lookup-tables, LUTs and DSP-slices. Latency
specifies the number of clock cycles to perform a given operation. The latency
corresponds to the number of pipeline stages used to implement the operation.
Increasing the number of pipeline stages leads to a faster design at the cost of
a larger hardware footprint. For all FPU operations, the number of pipeline-
stages is adjusted to attain a system clock frequency of 330 MHz on a Xilinx
Virtex-7 device. The term cycles per operation describes the minimum number
of cycles that must elapse between instructions of the same operation. If the
number of cycles per operations is increased, the hardware footprint is lowered.

Some operations, such as division and square root, are used infrequently.
Hence, no performance is lost when these operations are optimized for a low
area footprint. Forwarding is not supported for any floating-point instruction.

7.4 System Architecture 111

Table 7.1: Floating-point operation configuration

Function LUTs DSP latency cycles

floating-point add / sub 266 2 8 1
floating-point multiply 178 2 6 1
floating-point division 313 0 28 26
floating-point sqrt 174 0 28 25
float-to-int 178 0 6 1
int-to-float 201 0 6 1

Operations such as addition, subtraction, and multiplication are configured to
use DSP slices to minimize the CLB utilization. A FPU based on the Xilinx
Floating-Point core complies with most of the IEEE-754 Standard [88]. In
particular, Tinuso’s FPU does not support de-normalized numbers and always
uses the round to nearest rounding mode.

Memory Architecture and Network Interface

For this case study, the network interface is modified for the given applica-
tion. To keep the hardware footprint low, it only implements functionality
strictly required by the application. For example, the implementation of the
back-projection algorithm transfers data explicitly. Hence, the data caching
mechanism is not used. Instead, message passing communication is required
to support efficient communication between processing elements. The network
interface contains a small FIFO buffer for outgoing messages. The processor
core is writing to that FIFO and triggers a message transfer. The data cache
is modified that the state machine in the network interface places the incoming
data packets directly in the data cache. Tag and tag check logic of the data
cache are removed, which also simplifies the cache controller state machine. An
identifier in the packet header specifies where data is placed. Once the complete
incoming package is written to the data cache, a status register is set. The pro-
cessor core is polling this status register to check whether a packet has arrived
or not.

7.4.2 Interconnection Network

The interconnection network plays a vital role in the performance of applica-
tions with a high communication to computation ratio. The SAR data pro-

112 Tinuso Multicore for Synthetic Aperture Radar Data Processing

Figure 7.7: Performance scaling and network traffic of the SAR application

cessing application requires a high throughput, low latency, and deadlock free
network-on-chip. We use the wormhole-switched router with five bidirectional
ports for a 2D mesh interconnect as described in Chapter 5. As processor cores
and interconnect operate in the same clock domain, we decided for the pipelined
router implementation to obtain a highest possible system clock frequency. Pro-
filing the network traffic showed that the regular traffic pattern of the SAR data
processing application does not benefit from the round-robin arbitration logic.
We therefore have disabled this feature to keep the hardware footprint low.

Given the regular traffic patterns of this case study application it would
have been possible to implement an application optimized network topology
rather than a regular 2D mesh. As most traffic goes to memory, a star network
topology with a central memory would probably have required fewer hardware
resources to implement. However, a star network topology with a high number
of nodes does not fit well on the FPGA fabric and therefore would require a
high number of buffers to obtain a high system clock frequency. We decided
for a regular 2D mesh because it maps well to the FPGA fabric and because it
scales better.

7.5 Hardware Organization

We have now introduced processing elements, interconnect, and described how
to map the application to hardware. At this point, we do not yet know how
many parallel processing elements to employ in the final system. We therefore
measure the scalability of the SAR data processing algorithm. In a massively

7.5 Hardware Organization 113

parallel system typically memory access bandwidth is the limiting factor.
We measure the scalability by running a number of parallel instances of the

algorithm and record the total performance of the system. We use a network
with 25 nodes whereas one node is used for the memory controller. We run a
set of experiments where we populate 1 up to 24 nodes with processor cores. All
memory requests go to a memory controller that is connected to a corner node
of the interconnect. As our implementation is sensitive to memory latency, we
simulate a memory controller using fast synchronous SRAM.

We argue for such a design as in recent years quad data rate SRAMS, QDR,
started to penetrate the market. In QDR, data transfers use both rising and
falling clock edges. For example, data can be read on the rising clock edge while
writing is done on the falling clock edge. This allows for simultaneous read
and write burst accesses. This is an important feature for SAR data processing
because it allows for storing incoming data at run-time. Xilinx provides an
application note, where implementation and timing details of a QDR SRAM
interface are described [33].

The upper part of Figure 7.7 shows the performance of the system for a
variable number of parallel instances. For this test setup, we define perfor-
mance as the number of pixels calculated per 1 million clock cycles, whereas
each pixel includes data of 500 range lines. We observe an almost linear perfor-
mance increase until a system size of 19 processor cores. We measure an evenly
distributed workload among the processing elements.

A static arbitration scheme may lead to a lower network throughput and
some processor cores getting isolated [87]. We observe this behavior when the
application runs on 20 or more parallel processors. Our static arbitration scheme
prioritizes packets that are in the network over packets that the home node tries
to inject. With increasing network traffic it becomes more difficult for proces-
sor cores to inject packets into the network. Thus, some cores get completely
isolated and run idle as they cannot inject their memory requests.

The lower part of Figure 7.7 shows the number of flits in the network and the
percentage of flits that are blocked due to backpressure signaling. We observe a
significant increase in blocked flits when 18 cores run the application in parallel.
Since real-time data processing is required we do not want to push the system
to the limit and decided for 16 processing cores per memory controller. A setup
consisting of 16 processing cores and one memory controller is considered as a
sub-system.

One of the advantages of FPGAs is the flexible I/O capabilities that allows
for connecting a multitude of memory blocks to a single device. We compose a
multicore consisting of four sub-systems to provide sufficient computing power

114 Tinuso Multicore for Synthetic Aperture Radar Data Processing

R R R

R R R

R R R R R R

R R R R R R

R R R

R R R

R R R R R R

R R R R R R

R R R

R R R

R R R R R R

R R R R R R

R R R R R R R R R

R R R R R R R R R

MC4 MC3

MC2MC1

C12

C13

C14

C15

C16

C12

C28 C38 C48 C58 C68 C78 C88

C21 C31 C41 C51 C61 C71 C81

O54

C42

C43

C44C34C24

C23 C33

C22 C32 C52 C62 C72 C82 C92

C93

C94C84

C83C73

C74

C63

C64

C65 C95

C96

C97C87

C86

C85

C66

C67 C77

C76

C75O55

O56

C57C47C37C27C17

C36C26 C46

C25 C45C35

O53

M3

M2M1

M4

R
C
O
M
MC

Router
Core
Output

Memory-
Controller

Memory

Figure 7.8: Overview of the complete multicore system

for the case study application. The final system comes with 64 processor cores
and 4 memory controllers. We use a NoC with 72 nodes as shown in Figure 7.8.
Processing elements are depicted in different gray tones to mark the four sub-
systems. In this experimental setup there are four nodes in the center of the
network that are not included in the image reconstruction. In the final system,
these processors can be used to implement control and monitoring functionality.

7.6 Results

We evaluate the proposed multi-core system by running the SAR data processing
application. First, we derive the system’s maximum clock frequency and the
required hardware resources for various FPGA families. Second, we evaluate

7.6 Results 115

Table 7.2: Overview of hardware resource usage and clock frequency

FPGA Family Grade F.Max Device Utilization
[MHz] [%]

Xilinx Virtex-7 -3 300 xc7vx550t 60
Xilinx Virtex-7 -2 260 xc7vx550t 60
Xilinx Virtex-6 -2 250 xc6vhx550t 60

the processing performance, network traffic, and application mapping.

7.6.1 Speed and Resources

Table 7.2 shows the speed and resource results of a multi-core system as shown
in Figure 7.8. Memory controllers were simulated only, therefore they are not
included in these results. Each of the 64 processing cores is equipped with a
FPU that supports all operations listed in table 7.1. We utilize about 60% of an
FPGA with 550’000 logic cells. We measure a maximal system clock frequency
of 300 MHz on Virtex-7 device of the fastest speed grade. The speed and
resource results are based on Xilinx ISE 13.4 ”place and route” report. We use
Xilinx SmartXplorer to run multiple implementation flows using varying sets of
implementation properties and strategies until timing closure is achieved.

7.6.2 Performance and Network Traffic

In this subsection, we evaluate the performance of the homogeneous SAR ap-
plication. As the complete hardware is implemented in VHDL we use the open-
source simulator GHDL for our functional experiments. All 64 parallel processor
cores in the system implement Algorithm 1 to compute pixels of the output im-
age.

The Tinuso architecture comes with a total of 128 registers. To speed up
the application, we use many of these registers to store pre-computed constants,
packet headers, and intermediate results. We used assembly language program-
ming to optimize instruction scheduling. This allows for computing the energy
content of a range line in 350 clock cycles. The memory controllers are inte-
grated in a test bench that simulates synchronous SRAM memory. Memory
controllers are connected to regular network nodes. As they receive a memory
request message, memory address and destination node is decoded. Then, the

116 Tinuso Multicore for Synthetic Aperture Radar Data Processing

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

contention network traffic

Figure 7.9: Network traffic and stalled flits of a homogeneous SAR application

desired data is fetched from memory and then sent to the destination node. We
assign a fixed latency of 5 clock cycles to this memory model.

Network traffic includes memory requests and the input and output messages
of the algorithm. The left part of Figure 7.9 illustrates the network traffic of
a system configuration as described in Figure 7.8. We obtain this data by
counting the number of flits in the network while we run the application. We
extend the router ports with counters to record the network traffic. When the
GHDL simulation has completed these counter values are stored in a file. We
then use MATLAB to plot the data of the hardware simulation. Network traffic
of the initial instruction fetching sequence is not included in this data.

Each network node contributes with an array of 3x3 pixels to the graph.
Routers are represented in this array with five pixels that form a cross shape.
The four outermost pixels correspond to the number of flits passing through the
N,E,S,W ports. The center point pixel represents all flits that pass through the
router. The right part of Figure 7.9 illustrates the number of clock cycles where
backpressure is applied. Hence, it marks stalled flits in the network. Light colors
in graph indicate high network traffic respectively a high number of stalled flits.

We observe the highest traffic in the corners of the system where the memory
controllers are located. It is visible that an XY-routing scheme is used given the
high traffic at the outer edges of the system. We see stalled flits in almost all

7.6 Results 117

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

contention network traffic

Figure 7.10: Network traffic and stalled flits of a software pipelined SAR appli-
cation

network nodes in the system whereas the frequency of occurrence is increasing
towards the memory cores. In the simulation, all processor cores start the
application simultaneously and therefore inject their memory requests in the
network at the same time. Memory controllers allow only one request at the
time, therefore parallel memory requests have to execute sequentially. This leads
to stalled flits all over the network, as illustrated in Figure 7.9. Once the initial
memory requests are serialized, the applications in the individual processing
elements execute time-shifted and fewer simultaneous parallel memory requests
occur.

7.6.3 Software Pipelined SAR

An application mapping as described in Section 7.6.2 is prone to memory latency
as processor cores remain idle until memory requests are resolved. This is a
limitation when memory with higher latencies is used. We therefore proposed
a software pipelined implantation as shown in Figure 7.4. We split the tasks of
computing an output pixel up in three sub-tasks that execute on three different
processing elements. We run five parallel instances of the software pipelined
application on each sub-system. Hence, one processing core per sub-system is

118 Tinuso Multicore for Synthetic Aperture Radar Data Processing

not used.
In the software pipelined approach, memory latency can be hidden because

the processor elements do not wait until memory requests are executed. More-
over, this approach allows for simplifying the individual processing elements.
For example, the floating-point square root operation is only used in the pro-
cessor core that computes the round trip delay. Thus, this operation is omitted
in the processing elements that run the other sub-tasks. The hardware utiliza-
tion of the homogeneous and the pipelined approach are listed in table 7.4. The
software pipelined approach leads to significant hardware savings of 20%. How-
ever, the software pipelined implementation includes 15 processing elements per
sub system only. If we also populate the 16th core, we achieve a reduction of
the hardware footprint by 14%.

The network traffic of the pipelined application is illustrated in the left part
of Figure 7.10. We observe a significant difference to the homogeneous imple-
mentation because the network traffic is heavily dependent on the application
mapping. The sub-figure at the right side shows the stalled flits in the net-
work. In the pipelined SAR application, there are only 5 processor cores per
sub-system that send requests to the memory controller. Hence packet collisions
occur at fewer places.

Table 7.3 lists the performance of two homogeneous SARs and the software
pipelined SAR implementation. For this experiment, we define performance
as the number of pixels calculated per million clock cycles, whereas each pixel
includes data of 500 range lines. We compare homogeneous SAR applications
that use 4 and 8 samples for sinc interpolation. The reduction from 8 to 4
samples lowers the network traffic by 20% but only leads to performance increase
of less than 1%. This can be explained, as the number of memory request is
the same for both implementations. Requesting fewer samples leads to shorter
reply messages sent by the memory controller. However, the communication
overhead remains the same and no significant speedup is achieved. The software
pipelined SAR application provides a slightly lower performance than the other
implementations because it employs 15 processing cores per sub-system only.

For the pipelined application, we measure a significantly higher number of
flits that are stalled due to backpressure flow control. In the homogeneous
implementation, the initial serialization of parallel memory requests leads to
a time-shifted execution, which results in a low number of stalled flits for the
successive memory requests. The five instances of the application execute si-
multaneously at any time because the processor cores do not wait for memory
requests to be resolved. Hence, the serialization of simultaneous parallel mem-
ory request needs to be done again and again, which causes a high number of

7.7 Conclusions 119

Table 7.3: Overview of performance and network traffic of various SAR imple-
mentations

Implementation Performance Traffic Backpressure
[px / 10e6 clk] [flits / clk] [%]

Homogeneous SAR 8-sample 310 16,40 19,75
Homogeneous SAR 4-sample 312 13,12 13,45
Pipelined SAR 8-sample 290 16,99 27,07

Table 7.4: Overview of hardware resource usage of the homogeneous and
pipelined SAR implementations

Hardware resource Homogeneous SAR Pipelined SAR Diff
Number of Slice Registers 200k 190k -5%

Number of Slice LUTs 209k 167k -20%
Number of RAMB18E1 896 600 -33%
Number of DSP48E1s 256 240 -6%

stalled flits.
According to Section 7.2.1, we provide real-time data processing for the case

study application when we are able to calculate 60’000 pixels per second. Each
pixel has to consider 437 up to 688 range lines, depending on the length of the
synthetic aperture. We measure an execution time of 905 ms to compute 60’000
pixels using the pipelined SAR application on a Virtex-7 device of a medium
speed grade. The Xilinx Pocket Power Estimator computes a power dissipation
of about 10 watts for the complete multicore fabric.

7.7 Conclusions

This chapter described how to map a SAR data processing application on a
multicore on an FPGA. We implemented a multicore system consisting of 64
Tinuso processor cores and a 2D mesh based network-on-chip. The design is
optimized for a high data throughput and low network latency and utilizes 60%
of the hardware resources of a Xilinx Virtex-7 device with 550 thousand logic
cells and consumes about 10 watt.

We evaluate the system by simulating data processing for the airborne PO-
LARIS P-Band SAR. The computationally heavy direct back-projection algo-

120 Tinuso Multicore for Synthetic Aperture Radar Data Processing

rithm is used to reconstruct a high quality output image. The proposed system
provides real-time data processing for a 3000m wide swath with a resolution of
2x2 meters. Software pipelining is a method to achieve certain insensitivity to
memory latency and reduces the hardware footprint by 14%.

We show that real-time data processing for the POLARIS SAR can be done
on a multicore system on an FPGA. FPGAs are often used to implement the
digital front-end of a radar system. Hence, it is possible to combine SAR signal
and data processing in a single device. The use of synthesizable processor cores
raises the abstraction level for the application programmer. This is of particular
interest when the application needs to adapt quickly to flight and scene proper-
ties. We conclude that multicore systems on FPGA are an attractive choice for
application with strictly constrained space and power budgets.

The device cost of large scale high performance FPGAs is very high. De-
pending on the application, large embedded multicore platforms from Tilera,
Kalray or Adapteva might be viable alternatives as they provide a highly paral-
lel architectures with a large processing power at a low power budget. However,
the market of embedded multicore architectures is very dynamic and market
shares might change quickly when one of the major hardware producers comes
up with a commercial embedded multicore architecture. Hence, it is not clear
which architectures will still be on the market in a few years. This is a problem
for systems that require a long product lifetime. The advantage of synthesizable
multicore systems is that they can easily be ported to new FPGA architectures
to ensure a very long lifetime of a product.

Chapter 8

Programming Model and
Runtime System

In the previous chapters Tinuso multicore systems were introduced. It was de-
scribed how to optimize the processor pipeline and network for high performance
on FPGA and how to map an imaging radar application on a system with 64
processor cores. However, the programmer needs to be aware of many architec-
tural details to successfully exploit the parallel architecture, which is a difficult
task. We therefore need a programming language, a programming model, and
a runtime system to provide the programmer with a suitable abstraction of the
underlying computer system, which allows for easily expressing parallelism and
an efficient execution of parallel programs.

Section 8.1 introduces and motivates programming language, programming
model, and runtime system for Tinuso multicore systems. Section 8.2 discusses
related work on parallel programming models and runtime systems. Section 8.3
presents basic semantics for creating tasks and scheduling. Section 8.4 describes
the envisioned implementation of the runtime system and considers memory co-
herency. Section 8.5 provides example programs that describe how to map and
optimize a parallel matrix multiplication and the direct back-projection algo-
rithm to Tinuso multicore systems. Section 8.6 considers costs of the proposed
runtime system and the coherency mechanism. Section 8.7 concludes this chap-
ter with some final remarks.

122 Programming Model and Runtime System

8.1 Introduction

Tinuso is a scalable multicore architecture that is optimized for high perfor-
mance when implemented on FPGA. For example, Xilinx’s Virtex 7 family
comes with devices up to two million logic cells that allow for multicore systems
with up to 480 Tinuso processor cores [118]. When the entire multicore system
operates at a clock frequency of 300 MHz and all processor cores execute one
instruction each clock cycle, we obtain a total performance of 144 Giga integer
operations executed in one second, GIPS.

The cache controller implicitly generates and processes memory requests and
a lightweight communication interface allows for explicit communication with
other processing elements. However, it remains a challenge to program these
systems mainly because of two reasons. First, all processing elements share a
global shared memory address space, but there is no hardware mechanism im-
plemented that keeps memory consistent. Data written by one processor core
will not automatically be visible to the other cores. Thus, the programmer has
to manually ensure that the program operates on the correct copy of a data,
which is a daunting task. Second, Tinuso’s communication hardware primitives
are designed to enable a high performance communication management. How-
ever, using these low-level send and receive primitives results in a complicated
programming process [47].

We therefore need a suitable programming language and programming model
to support the programmer expressing and exploiting parallelism. We research
opportunities on how to implement a runtime system and hardware primitives
that allow for an efficient execution of parallel programs. Moreover, a mecha-
nism must be developed, which maintains memory coherency while not limiting
the scalability of the system.

A programming language for Tinuso multicore systems has to support the
programmers in expressing parallelism. Tinuso multicore systems may be het-
erogeneous and certain processing elements might be more suitable to execute a
given part of an application than others. For example, as double precision float-
ing point operations are costly to implement in hardware, only a few processor
cores in a multicore system may be equipped with this functionality. Hence,
a programming language has to allow for binding program code with frequent
double precision floating point operations to dedicated processing cores.

A plethora of parallel programming languages exist and we do not want
to introduce another one. Preferably, we want to use the existing GCC based
compiler infrastructure for Tinuso. A widely adopted approach is to extend
standard programming languages with specific keywords to express parallelism.

8.1 Introduction 123

We therefore use C programming languages and adopt some OpenMP directives
to express parallelism. However, at this point we do not aim for a complete im-
plementation of OpenMP nor to be fully compliant with the OpenMP standard.
Instead, we focus on research in programming models and memory hierarchy
for embedded multicore systems.

The programming model must be able to exploit the parallelism of the un-
derlying platform and support the programmer to easily express parallelism to
enable a high productivity. A commonly used abstraction level is to consider
parallel applications as a set of tasks. On a single processor system, tasks are
executed sequentially. As there are more processor cores available, the pro-
gramming model aims to exploit the parallel architecture by executing tasks
concurrently. Thus, there will be processor cores that create tasks, which then
may be executed on a different processor core. The task scheduler distributes
parallel tasks to processor cores or puts them in a queue and let idle processor
cores steal these tasks, this is referred as work-stealing. Work-stealing is applied
to achieve an optimal load balance in a multicore system.

The runtime system implements functionality of programming language and
programming model. As we have access to all of Tinuso’s VHDL sources, it
is possible to improve performance by implementing commonly used and per-
formance critical functionality in hardware while corner cases are handled in
software. For example, hardware primitives may allow for efficient communica-
tion or manage memory resources.

In multicore systems, where processor cores maintain caches of a shared
memory resource there may arise problems with inconsistent data. In Tinuso,
there is no restriction on memory addresses in the hardware. The global ad-
dress space is shared among all processing elements of which each can access the
entire address space. The current implementation of Tinuso comes with both
instruction and data caches. Once a processor core writes a memory location it
is only updated in the local cache. Hence, data in the system become inconsis-
tent, which leads to an incorrect execution of a program. Thus, a mechanism
is required, which updates memory locations in the system to keep memory
consistent.

Coherency protocols are used to maintain memory coherency according to a
given consistency model. Cache coherency may be maintained by hardware or
software or a combination of the two. Tinuso currently does not implement a co-
herency mechanism in hardware, which makes it difficult to write programs and
may limit the performance. There exist a plethora of protocols to implement
cache coherent multicore systems. However, they are very difficult to imple-
ment, costly in hardware, and hard to scale [5]. In this chapter, we therefore

124 Programming Model and Runtime System

cilk2ccilk2c GCC ld
*.c *.o *.elf*.cilk

Cilk run-time library
*.a

executableCilk sources C sources object files

Figure 8.1: Cilk toolchain overview

consider simple restrictions in the programming model that allow for a simpler
consistency model and enable a lightweight cache coherency mechanism.

8.2 Related Work

The need for simple and efficient parallel programming models has led to recent
research interest in task-based models. Task-based programming models have
been existing for a long time. For example, Cilk is a parallel multithreaded
parallel programming language that has been developed since 1994 at the Mas-
sachusetts Institute of Technology, MIT. Several iterations on the language and
the implementation of the runtime system have been developed and published
until today [59]. Cilk is available as Open Source software whereas Cilk Plus
is a commercial implementation by Intel [45]. The Cilk language is based on
ANSI C and a few specific keywords to express task and data parallelism. Cilk is
implemented as a source-to-source translator, cilk2c, which translates Cilk code
into regular C code. The C code is then compiled with GCC and linked with
the Cilk system runtime library to generate binary executables. The complete
Cilk toolchain is illustrated in Figure 8.1.

The programmer expresses parallelism with Cilk-specific keywords such as
spawn to create parallel tasks and sync to join parallel tasks [44]. The runtime-
system decides which task is executed on which processor core. In Cilk, each pro-
cessor core, or hardware thread, maintains a double-ended ready queue, deque,
to store tasks that need to be processed. Processor cores, referred as workers,
use the deque as a stack to push and pop tasks on to the end of the queue.
When workers have an empty task queue, they become thieves and attempt to
steal tasks from the top of another worker’s deque, called victim. Cilk applies
a work first principle where whenever a task is created, the parent task is sus-
pended and the child task is executed. Suspended tasks are put on the deque
and might get stolen by another processor core. Workers always operate on the

8.2 Related Work 125

most recent created task to exploit locality. If the number of parallel tasks is
much higher than the available processor cores, Cilk’s work-stealing scheduling
algorithm leads to an optimal load balance.

Cilk implements two versions of program code for each task: a fast clone,
and a slow clone. The fast clone is used when a task is executed locally, hence it
does not include overhead to support parallelism. The slow clone is used when
a task is stolen and therefore requires full support for parallelism.

As workers and thieves operate on the same deque race conditions where
thieves and the victim try to access the same task frame must be avoided. As
the implementation of the work-stealing is performance critical, Cilk attempts
to keep costs for the local worker as low as possible. Therefore Cilk only uses
hardware locking primitives to arbitrate among different thieves and uses a
protocol to detect situations where a thief and a victim access the same task.
This is implemented with indices to the head and the tail of the deque. As
thieves and workers access the deque, these indices are updated. The protocol
is referred as THE protocol that allows for easily detecting deque anomalies if
the head index is larger than the tail index. Once a race condition is detected,
worker and thief roll-back the task execution and the local worker restart the
task. Hence, the THE protocol removes overhead in the common case where
there is no conflict. It is therefore 25% faster than an implementation with
hardware locking primitives [45]. However, as these indices are stored in shared
memory a sequential consistency or memory fence is required for the correct
execution of the protocol.

Blumofe et. al. introduced a relaxed consistency model for Cilk-3 on the
Connection Machine CM5 [16, 75]. The proposed model applies consistency at
high-level of abstraction that corresponds to the task tree of a program, referred
as directed acyclic graph, DAG. Cilk’s implementation of DAG consistency is
applied in software, using a page level granularity to minimize the overhead of
managing shared objects.

There have been attempts to improve the scalability of Cilk with architec-
tural support. Lont et. al. propose a solution where the programmer annotates
shared memory addresses and architectural support is used for efficient memory
consistency [77]. They use a consistency model with regions, which need to be
annotated [55].

Just as Cilk, we aim for a fork-join task model for Tinuso to easily express
parallelism and a runtime system to efficiently execute parallel programs. Cilk
performs well on symmetric shared memory systems with a few processor cores.
In contrast to Cilk, a programming language for Tinuso has to support heteroge-
neous multicore architectures. There have been extensions proposed to operate

126 Programming Model and Runtime System

Cilk on heterogeneous multicore platforms such as the Cell BE [98]. However,
Tinuso systems may include a high number of heterogeneous cores and a global
shared memory. Therefore, these proposed extension are not suitable for Tinuso
systems.

OpenMP is a programming model defined by a group of major computer
hardware and software vendors to support parallel programming in C/C++
and Fortran on shared-memory systems. OpenMP uses directives and associ-
ated clauses inserted into the source code to express the program’s parallelism
and data sharing. OpenMP directives use the #pragma mechanism provided by
the C and C++ standards. Moreover, OpenMP provides a set of environment
variables and library routines to interact with the runtime system. Production
compilers such as GCC, and Intel Fortran and C/C++ compilers can be used to
compile OpenMP programs. OpenMP is designed in a way that a program with
all directives removed behaves as a valid sequential program. OpenMP was ini-
tially designed for developing parallel applications on platforms such as desktop
computers and super-computers. Chapman et. al. identified limitations that
prevent OpenMP to be used on embedded multicore systems [23]. For example,
overheads for synchronization, task management, and memory consistency may
be too high for embedded systems. Moreover, OpenMP v3.0 is targeted towards
homogeneous multicore architectures with a global address space [17]. However,
to support heterogeneous systems it is required that parts of a program can be
bound to dedicated processor cores.

Recently, several OpenMP implementations for heterogeneous and embedded
multicore systems have been proposed [23,81]. In July 2013, updated OpenMP
specifications got published that include support for heterogeneous systems [18].
For example, OpenMP 4.0 implements a new memory model and adds mecha-
nisms to describe code sections where data and computation should be bound
to specific computing devices. This new version of OpenMP also comes with
enhancements in the task model that allow for aborting executing tasks, which
is useful in search algorithms. Moreover, task dependencies can be expressed to
synchronize tasks in streaming applications. However, OpenMP 4.0 needs to be
implemented first. At the time compilers do not support OpenMP 4.0 yet.

OpenMP is emerging as a viable high-level programming model for paral-
lel embedded systems. Different attempts have been made to map OpenMP
directly to hardware, which enables offloading of tasks to reconfigurable de-
vices [20,76].

StarSs is another task-based programming model [95, 96]. It consists of few
OpenMP-like pragmas that allow the programmer to express code segments
that can be executed as parallel tasks. In contrast to Cilk, the programmer also

8.2 Related Work 127

needs to identify inputs and outputs of tasks. This data is used by the runtime
system to resolve dependencies and to schedule tasks to processor cores.

Etison et. al. take advantage of the input and output declaration used in
StarSs to track task dependencies in hardware for determining when a task can
be executed [41]. Task SuperScalar, is an abstraction of an out-of-order pipeline
that operates at the task level. In the proposed out-of-order task pipeline, pro-
cessor cores are considered as execution units and centralized memory struc-
tures implement reservation stations and renaming tables. Tasks are decoded
and buffered in reservation stations. Once all operands are ready, a task is
executed. Whenever a task finishes, all its data consumers in the reservation
stations obtain a data ready signal to continue task execution. The proposed
design efficiently uncovers task-level parallelism among tasks and achieves sig-
nificant speedups over the StarSs software runtime.

Schedulers implemented in software can implement various scheduling al-
gorithms that are optimized for the characteristics of a given application and
programming model. For fine-grained task level parallelism, software scheduling
implies significant overheads to synchronize and communicate task information.
As this can be a limiting factor for the scalability of a multicore system, hard-
ware scheduling has been proposed.

Carbon is a hardware technique to accelerate dynamic task scheduling [66].
Carbon implements hardware queues and a custom messaging protocol sched-
ule tasks. A distributed task stealing scheduling scheme is applied to obtain
a good cache performance. A set of extensions to the instruction set architec-
ture is introduced to enable communication between processor pipeline and task
queues. Carbon implements a global task unit to hold enqueued tasks in hard-
ware queues for each thread. The advantage of this centralized design is that
work stealing can be implemented efficiently by moving tasks between queues.
Small local task units prefetch tasks to hide access latencies from the global
task unit. Carbon’s task stealing scheduler implements an efficient load balance
algorithm, which leads to a speedup of 2.2x over software schedulers on a system
with 128 threads.

Although Carbon enables significant speedups over software schedulers, it
comes with the disadvantage of a fixed scheduling scheme. For example, it
is not possible to adjust the stealing policy to improve locality. Sanchez et.
al. therefore proposed a combined hardware-software approach to build fine-
grained schedulers [101]. Simple architectural extensions allow for exchanging
asynchronous messages between threads. This communication infrastructure
provides a simple and flexible support to accelerate software schedulers for fine-
grained parallelism. In contrast to Carbon, they implement task queues in soft-

128 Programming Model and Runtime System

ware. Their task queues perform efficiently only a single thread accesses them.
Asynchronous direct messages, ADM, are used to implement task stealing with-
out coherence traffic or synchronization overhead. This flexible approach allows
for adapting scheduling to the characteristics of an application. Thus, ADM en-
ables performance improvements of up to 70% over a Carbon implementation.

Hardware support to implement efficient fine-grained task scheduling is highly
relevant for Tinuso. Computing systems on FPGA are very well suited to imple-
ment dedicated hardware primitives to accelerate the program execution because
both hardware and software can be optimized for a given application.

Cache coherence protocols are designed to maintain the consistency between
caches in multicore systems. A plethora of cache coherence protocols exist that
can be classified as snoopy or directory based protocols. Snoopy protocols, main-
tain the shared status of each cache block. Cache controllers typically ”snoop”
on the bus and monitor transactions. If one of the cached blocks is involved
in a bus transaction, it updates the local state information. Snoopy proto-
cols are easy to implement when the communication infrastructure is a shared
medium such as a bus. However, in on-chip networks it becomes more difficult
to implement snoop mechanisms and the scalability is limited. Alternatively,
directory-based cache coherency protocols maintain the state of memory blocks
in a central directory. This directory includes a list of all processors that keep a
copy of a cache block. Coherence is maintained as this directory is included in
all memory transactions. However, directory-based cache coherency protocols
are very complex and difficult to scale [5]. Moreover, cache coherency may incur
a large hardware overhead and significantly increase the power consumption of
a system. Hence, it is an active area of research to improve the scalability and
power efficiency of cache coherence protocols [13,19,86,123,124].

Martin et. al. have investigated the hardware cache coherency as used in the
Intel I7 processor [83]. They created a model to research scaling issues for net-
work traffic, storage, energy consumption, maintaining inclusion, and latency.
They conclude that the price for hardware cache coherency is marginal and does
not justify to move complexity over to software. However, their network model
is based on point-to-point connection and therefore their conclusions may not
be applicable systems with a high number of cores. Multicore systems with a
high number of cores are likely to employ a mesh based interconnect that infers
additional latency per network hop. Hence the communication cost depends on
the number of cores in the system.

DeNovo is a hardware-software co-design that seeks to simplify the hardware
by enforcing disciplined parallel programming [25]. Denovo shows that using a
deterministic programming model greatly simplifies the memory consistency

8.3 Semantics 129

and enables more efficient communication and cache architectures. Denovo uses
the Deterministic Parallel Java language, DJP, which is an extension of Java
that adds deterministic parallel constructs. DJP enforces a deterministic pro-
gramming model via compile-time type checking, which guarantees that parallel
tasks are not interfering. The fact that parallel tasks do not have conflicting ad-
dresses allows DeNovo to reduce the number of states in the coherency protocol.
The DeNovo protocol shows 15x fewer reachable states than a state-of-the-art
implementation of the MESI protocol. The three stages of the protocol are:
registered, valid, and invalid. While current state-of-the-art coherency pro-
tocols, such as MESI, require invalidation and acknowledge messages DeNovo
implements a self-invalidation mechanism. The DeNovo compiler summarizes
program regions into hardware regions and adds self-invalidation instructions.
Hence, the software ensures that outdated data is invalidated. The evaluation
of DeNovo shows better cache hit rates and network traffic than the MESI
implementation, which translates to a better performance and energy savings.

Although deterministic programming is desirable for many applications, pro-
grams that contain non-deterministic parts are widespread, e.g. to implement
synchronization locks. DeNovoND adds little overhead to DeNovo to support
non-deterministic program code in the form of synchronization locks [110]. De-
NovoND requires a signature per core, a bloom filter, and a LockQ state imple-
ment the memory consistency for locks. The evaluation of 11 benchmarks from
SPLASH-2, PARSEC, and STAMP show that DeNovoND reduces the network
traffic by 33% over a state-of-the-art MESI implementation.

Although Denovo greatly simplifies the cache coherency protocol there is
still a directory required to maintain the status of cache blocks. If a central
directory is coupled to the memory controller we can end up in situations where
coherency traffic leads to contention in the network and reduces performance.

8.3 Semantics

A programming language for Tinuso multicore systems has to support task
based programming to express parallelism in a simple way. As Tinuso multicore
systems may be heterogeneous, a programming language has to allow for binding
tasks to dedicated processing elements. Ideally, the programming language can
make use of the existing GCC based Tinuso compiler infrastructure. As all these
features are covered by the OpenMP specification 4.0, we decided to adopt some
OpenMP directives for Tinuso to express parallel execution of programs.

In a first step, the programmer needs to define the available hardware. The

130 Programming Model and Runtime System

Listing 8.1: Simple example of an OpenMP task

1 /* export OMP_PLACES =(1,2,3,4,5,6,7,8);*/

2
3 void main(void)

4 {

5 #pragma omp task

6 printf ("Hello World");

7 }

OPM PLACES environment variable is used to list identifiers of available processor
cores in the system. Tinuso multicore systems are defined when the design
is synthesized. When the proposed 2D mesh interconnect is used, processing
elements are numbered with x and y coordinates. These hardware identifiers
based on grid coordinates are used to implement lookahead routing. Hence,
identifiers used to encode processing elements in OpenMP need to be mapped
to the hardware identifiers to allow the runtime system to schedule tasks to the
intended processing elements. This can be implemented in a system specification
file. Listing 8.1 shows a simple example of a task being executed on a multicore
system with eight processing elements. By default, the main function executes
on the first processing element on the list. We define a task as an independent
part of a program, which often is a call to C function. The main function spawns
a task that prints ”hello world”. As nothing else is specified, this child task also
runs on the same processing element as the parent task.

The programmer has the possibility to express parallelism by spawning tasks.
To support heterogeneous architectures, the programmer can assign tasks to
dedicated processing elements. Listing 8.2 illustrates an example where the
set default device directive is used to bind a task, which computes the square
root of a double precision floating point number to the processing element with
the identifier 2. This is useful when some processor cores are equipped with ded-
icated floating point arithmetic hardware while others are not. Hence, it makes
no sense that a core without hardware support for floating point arithmetic
executes a task with a high number of floating point operations. We make the
assumption that the programmer configures the system and therefore is aware of
which processor cores are equipped with which functional units. The taskwait

directive is used to wait for all children tasks to complete before execution on
the parent task is continued.

8.4 Implementation 131

Listing 8.2: Bind an OpenMP task to dedicated processing element

1 /* export OMP_PLACES =(1 ,2);*/

2
3 void foo(double a)

4 {

5 double x;

6 #pragma omp_set_default_device (2){

7 #pragma omp task

8 x = sqrt(a);

9 }

10 #pragma omp taskwait

11 ...

12 }

OpenMP allows for explicitly expressing tasks using the task directive. Al-
ternatively, tasks may also be created implicitly with a parallel directive,
which is described in Section 8.5.

8.4 Implementation

In large multicore systems memory bandwidth and latency are limiting factors.
As we have seen in Chapter 7, the bandwidth of the memory controller limited
the scalability of the direct back-projection algorithm on the Tinuso multicore
system. In Chapter 4 we examined the impact of the memory latency where we
compared the execution time of Tinuso core systems with and without on-chip
interconnect. Moreover, we observed costly collision misses as functions become
too large to fit into the instruction cache. For Tinuso, where on-chip memory is
small, only a small fraction of a program can be held in caches. Hence we aim
for a light-weight implementation of a runtime system, which attempts to keep
the number of memory accesses as low as possible.

One performance critical part of the runtime system is the task queue. Cilk
successfully implements a work-stealing algorithm to achieve a good load bal-
ancing in the system. However, when we implement the task queues in shared
memory, we generate a lot of memory requests because processor cores execute
tasks concurrently. Moreover, locking primitives or a protocol must be provided
to handle race conditions where tasks are stolen from multiple processing ele-

132 Programming Model and Runtime System

Task ID

XTask ID
Memory address
Arguments 0 - n

XTask ID
Memory address
Arguments 0 - n

XTask ID
Memory address
Arguments 0 - n

head of deque

most recent
spawned task

tail of deque

oldest
spawned task

push new tasks

steal task

locally
pop task

Figure 8.2: Overview of double ended task queue

ments. We therefore propose to implement the task queue in hardware. Block
RAMs in FPGAs are well suited to implement queues. Each processing ele-
ment shall maintain a doubly ended queue of ready tasks just as implemented
in Cilk [45]. When tasks are spawned a task frame is put on the bottom of this
queue. Tasks that are bound to a specific processor core do not go into this task
queue. Instead, a task message is composed and sent to the destination core.
A task message contains a task frame. For Tinuso, we define a task frame to
consist of a task ID, a memory reference to the program code of the function
and a list of function arguments. When a task is requested from another core, a
frame is translated into a task message and transferred to the destination node
and put on the bottom of the queue. Processor cores operate on the bottom
of the local deque, pushing and popping tasks. Tasks are stolen from the head
of the queue. Hence, the oldest tasks are stolen that likely exploit less locality
than the newest tasks. When a task completes a return message is sent to the
parent task. For Tinuso we limit it to include a single data type result only.
It is up to the programmer to assure this. We avoid function arguments to be
passed from one processing element to the other through the stack to attain
lower memory traffic and to simplify the coherence mechanism. In contrast to
Cilk we do not allow parent tasks to be stolen. This makes it easier for a child
task to send the return message without the need of a broadcast.

8.4 Implementation 133

07152331

parent ID coherence ID task number

Figure 8.3: Overview of task ID

Figure 8.3 shows the encoding of the task ID. 10 bits are used to encode the
processing element that spawns the task. 8 Bit of the 32 bit word are used to
encode the coherence level while 14 bits are reserved for a task number.

8.4.1 Task Scheduling

OpenMP defines tasks as a specific instance of executable code and its data envi-
ronment generated explicitly with a task directive or implicitly with a parallel

directive [18]. However, it is the runtime system that takes scheduling decisions
of how and when to execute a task. Commonly used task scheduling policies
are breadth-first and work-first.

In breadth-first scheduling created tasks are put into a task queue while the
parent task continues to create new tasks. Idle processor cores can grap tasks
from the task queue and execute them. Contrary, in work-first scheduling, as
implemented in Cilk, the parent task is suspended once a child task is created
and the executing processor switches to child task. Suspended tasks are placed
in a local task queue. Processor cores are working on tasks on their local queue,
once it is empty they start looking for tasks to execute in the task queues of
other processor cores. Work-first scheduling policy aims to follow the serial
execution path of the algorithm to make better use of data locality.

Duran et. al. have investigated various scheduling policies for OpenMP
tasks [37]. They obtain a better performance with work-first schedulers than
with breadth-first schedulers. However, due to scheduling restrictions in OpenMP,
they advocate for a breadth-first default scheduling policy. When a task com-
pletes it has to return to its parent task where tasks of a parallel region are
joined. The proposed implementation of the runtime system envisions a local
hardware task queue in each processing element. We do not want suspended
parent tasks to be stolen, because it would result in costly broadcast messages
when tasks have completed and have to return to their parent task. Hence, we
cannot implement the work-first principle of Cilk. Instead we have to adopt the
breadth-first scheduling.

In situations where a group of processor cores is assigned to execute a given
parallel code region, the scheduler of the runtime system distributes a first set

134 Programming Model and Runtime System

of tasks to the available processor cores. Once completed tasks return, idle
processor cores perform work-stealing until all tasks of a parallel code region
are executed.

The task scheduling scheme is illustrated in Figure 8.5. On a system with
four processor cores a program with two parallel regions is executed. It is
assumed that the programmer did not assign tasks to dedicated processor cores.
Hence, it is up to the scheduler in the runtime system to distribute the tasks
among the four processor cores. For the first parallel region the parent task
that runs on core 1, creates according to the breadth-first scheduling policy
eight parallel tasks. The scheduler assigns the first three tasks to the other
available processor cores in the system. The remaining five tasks of the first
parallel region are put on the local task queue of core 1. Once the task on
core 2 completes the result is sent back to core 1 and a task from the top of
the queue is stolen. Core 3 and core 4 apply the same work-stealing policy,
which is repeated until the task queue of core 1 is empty. While work-stealing is
performed, the local core works on the bottom of the queue and executes tasks
seven and eight.

As each task frame takes up space in the queue to encode the task ID, a
memory reference to the program code and a list of arguments, it is possible that
the queue overflows. Hence a mechanism is required that pauses task creation
until there is space in the task queue again. We believe this to be a fair decision
given the fact that breadth-first enables simple hardware implementation of
the task queue, which reduces the number of memory access and avoids race
conditions where multiple processing elements attempt to execute the same task.

8.4.2 Cache Coherence

The costs to implement a sequential consistency model are too high for a Tinuso
system with a high number of processing elements. Instead, we aim to restrict
the programming model and implement a very relaxed consistency model where
memory becomes consistent only at the end of a parallel region. Between paral-
lel tasks, memory is not kept coherent to reduce the number of data transfers.
Instead, the system only triggers coherency actions when a task completes and
writes modified data back to the memory controller. This implementation is
scalable as no directory needs to be maintained and no invalidation messages
need to be sent. While this implementation simplifies the cache coherency pro-
tocol, it also restricts the programmer in expressing parallelism. In a set of
parallel tasks, there can only be either a single reader or writer of a memory lo-
cation or multiple readers. It is up to the programmer to assure this. Figure 8.5

8.4 Implementation 135

core 1 stack
core 2 stack
core 3 stack
core 4 stack

write back
 data section

.text
.rodata
.data

Figure 8.4: Memory sections overview.

shows a task graph with 2 parallel regions, memory only becomes consistent
at the end of a parallel region. Each recursive function call is considered as a
new parallel region and memory is updated after each iteration. The taskwait

directive is used to mark the end of a parallel region where parallel tasks are
joined. Before the program continues it must wait for the coherency actions to
complete. Memory consistency can also be enforced manually with the flush

directive, which triggers a write-back. To keep the number of write-backs low,
each processor core only writes data located in a specific memory section back
to main memory. This memory section is called auto write-back memory
section. The programmer assigns data to this memory section with the shared

directive. Figure 8.4 illustrates the envisioned memory space. The global shared
memory space includes a text section for program code, a read only rodata sec-
tion for constants and a section for data that will be modified during execution.
The auto write-back data section is used to implement the described consistency
model. Only modified data that resides in this section will be written back to
main memory when a task completes and will be updated between parallel re-
gions. Each processor maintains a private stack to store information about its
active subroutines.

Figure 8.6 illustrates how the cache coherence is implemented. Whenever,
data is fetched from the auto write-back memory section an ID consisting of
an task ID of its parent and a coherence ID is stored. Cache tags in Tinuso
implementation typically reside in block RAMs. The tag for a cache size of 4
kilo bytes with a burst length of 8 words with valid and dirty bit, takes up 20
bits.

As block RAMs come with a width of 36 bits, there are 16 bits left to
encode an ID to maintain the coherency. This identifier may include parent

136 Programming Model and Runtime System

task 1
task 2
task 3
task 4
task 5
task 6
task 7
task 8

task 1
task 2
task 3
task 4

core 1
core 2
core 3
core 4

task 2

task 2
task 2

parallel region 1 parallel region 2

Figure 8.5: Task graph of a parallel multiplication on a Tinuso multicore system
with 4 cores.

ID and the coherence ID. When data is in the cache is accessed, the ID of
the current task is compared with the ID of the corresponding cache tag. If it
matches, data is valid otherwise it needs to be re-fetched from main memory.
This implementation ensures that within a parallel region data is not updated to
avoid costly memory accesses while between successive parallel regions memory
consistency is ensured. Modified data that resides in the auto write-back data
section is marked with a modified bit and written back once a task finishes.
Hence, each of the processor cores needs to know the upper and lower bound
of the auto-write-back memory section and tag memory locations for automatic
write-back.

It is intended to maintain cache coherency at cache line granularity, which
requires alignment support in the compilation toolchain. However, cache co-
herency can be maintained at data word length with low overhead in hardware.
An auto write-back status bit for each cached data word can be included in
the block RAM that implements the data cache. When data is written back
to main memory, a memory update message only includes the modified data
words of a cache line. While this reduces memory traffic in some situations and
does not require special memory alignment, it slightly increases the complexity
of the memory controller, which has to ensure that the individual data words
are written back to the correct memory address.

8.5 Code Examples 137

031331

Address

V Tag IDData
0

index

1
2

4
5
6
7

=

WB

=

Current taskCoher. ID Task Nr.Parent ID

hit / miss

Figure 8.6: Tinuso extensions in the cache

8.5 Code Examples

To illustrate how to express parallelism, the following two subsections describe
how to map a parallel matrix multiplication and the direct back-projection
algorithm to Tinuso multicore systems, using OpenMP directives.

8.5.1 Parallel Matrix Multiplication

Figure 8.7 illustrates a parallel matrix multiplication [16]. The input matrices
A and B are divided into four sub-matrices. The matrix multiplication is done
by first computing products of the sub-matrices and second adding the results.
As each of the eight multiplications is independent they can be executed in
parallel. This leads to two intermediate result matrices, which need to be added
to obtain the result of the matrix multiplication.

138 Programming Model and Runtime System

+
DI

=>x
C D
E F

G H
I J

CG CH
EG EH

DJ
FI FJ

A x B => tmp R =>

=>

R

CH+DJCG+DI
EG+FI EH+FJ

+

Figure 8.7: Matrix multiplication divide and conquer

The program code in Listing 8.3 shows how to express parallelism for a par-
allel matrix multiplication. Pointers to the input and result matrix are passed
to the matrix multiplication function. Within this function, pointers to all of
the sub-matrices are defined and assigned. For the given example we assume
that input and result matrices are assigned to a shared memory section with
automatic write-back functionality. Also the tmp matrix, which hold intermedi-
ate results is located in this memory section using the shared directive. When
a task writes a memory location within this section, a coherency mechanism
is triggered when the task completes that writes modified data back to main
memory. In this example 8 processor cores are available. To execute the compu-
tation of the sub-matrices in parallel, the parallel directive is used. It creates,
according to the clause, num threads(8), 8 parallel tasks. The workshare di-
rective then divides the work among the available processor cores. Once, the
sub-matrices are computed, four tasks are spawned, that perform the addition.
When these four tasks are spawned, the affinity(close) clause is used to
schedule these subtasks to processor cores that are close to the parent task.
The implicit task creation with parallel and workshare directives gives the
runtime system more freedom to map task to processing elements.

The algorithm in Figure 8.3 has one major drawback. When submatrices
are computed, all results need to be written back to main memory to make
sure that successive tasks perform the addition with the correct data. These
successive tasks then need to re-fetch all data from memory, which is inefficient.
Hence, if we can control, which task is executed on which core we can avoid this
inefficiency and exploit locality. However, it requires that the tmp variable and
the result matrix are not part of the shared memory section where automatic
write-back is performed. The updated algorithm is shown in Listing 8.4. Bind-
ing tasks to dedicated processor cores may be beneficial to exploit locality but
it may limit load balancing in the system. Hence, it depends on the application
if this approach pays off.

8.5 Code Examples 139

Listing 8.3: Parallel matrix multiplication algorithm

1 /* export OMP_PLACES =(1,2,3,4,5,6,7,8);*/

2
3 void matmul(int *A, int *B, int *R)

4 { /* assume result matrix R is shared */

5 int *C, *D, *E, *F, *G, *H, *I, *J;

6 int *CG , *CH , *EH , *EG , *DI , *DJ , *FI , *FJ;

7 int tmp [n*n];

8 #pragma omp shared (tmp)

9
10 /*get pointers to submatrices */

11
12 /* parallel computation of submatrices */

13 #pragma omp parallel num_threads (8){

14 #pragma omp workshare{

15 matrixmul(n, C, G, CG);

16 matrixmul(n, C, H, CH);

17 matrixmul(n, E, G, EG);

18 matrixmul(n, E, H, EH);

19 matrixmul(n, D, I, DI);

20 matrixmul(n, D, J, DJ);

21 matrixmul(n, F, I, FI);

22 matrixmul(n, F, J, FJ);}

23 }

24
25 /* parallel computation of result matrix */

26 #pragma omp parallel num_threads (4)

27 affinity(close){

28 #pragma omp workshare{

29 matrixadd(n, CG, DI, R);

30 matrixadd(n, CH, DJ, R);

31 matrixadd(n, EG, FI, R);

32 matrixadd(n, EH, FJ, R);}

33 }

34 return;

35 }

140 Programming Model and Runtime System

Listing 8.4: Parallel matrix multiplication algorithm with dedicated processor
cores assigned to each task to exploit locality

1 /* export OMP_PLACES =(1,2,3,4);*/

2 void matmul(int *A, int *B, int *R)

3 { /* assume result matrix is not shared */

4 int *C, *D, *E, *F, *G, *H, *I, *J;

5 int *CG , *CH , *EH , *EG , *DI , *DJ , *FI , *FJ;

6 int tmp [n*n];

7
8 /*get pointers to submatrices */

9
10 /* parallel computation of submatrices */

11 #pragma omp_set_default_device (2){

12 #pragma omp task matrixmul(n, C, G, CG);

13 #pragma omp task matrixmul(n, D, I, DI);}

14 #pragma omp_set_default_device (3){

15 #pragma omp task matrixmul(n, C, H, CH);

16 #pragma omp task matrixmul(n, D, J, DJ);}

17 #pragma omp_set_default_device (4){

18 #pragma omp task matrixmul(n, E, G, EG);

19 #pragma omp task matrixmul(n, F, I, FI);}

20 #pragma omp_set_default_device (1){

21 #pragma omp task matrixmul(n, E, H, EH);

22 #pragma omp task matrixmul(n, F, J, FJ);}

23 }

24 /* parallel computation of result matrix */

25 #pragma omp_set_default_device (2)

26 #pragma omp task matrixadd(n, CG, DI, R);

27 #pragma omp_set_default_device (3)

28 #pragma omp task matrixadd(n, CH, DJ, R);

29 #pragma omp_set_default_device (4)

30 #pragma omp task matrixadd(n, EG, FI, R);

31 #pragma omp_set_default_device (1)

32 #pragma omp task matrixadd(n, EH, FJ, R);

33 #pragma omp taskwait

34 return;

35 }

8.5 Code Examples 141

main()
core 1

compute pixel()
core 5

compute pixel()
core 1

range line (1)
range line (2)
range line (n)

range line (1)
range line (2)
range line (n)

core 6 core 7 core 8 core 2 core 3 core 4

Figure 8.8: Example of work-stealing and push task scheduling

main()
core 1

compute pixel()
core 2

compute pixel()
core 6

fetch data ()
core 3

interpolate ()
core 4

calc energy ()
core 5

fetch data ()
core 7

interpolate ()
core 8

calc energy ()
core 9

Figure 8.9: Example of pipelined task scheduling

8.5.2 SAR Direct Back-Projection Algorithm

The following examples implement the SAR direct back-projection algorithm
described in Chapter 7. In the first example as shown in Figure 8.8, the task
of computing a pixel is split up into two child tasks, which are bound to ded-
icated processor cores. These two child tasks then create three subtasks that
each computes range line components. As shown in Listing 8.5 a parallel

for directive is used to implicitly create tasks for each loop iteration. The
clause num threads(3) limits the runtime to create only 3 parallel subtasks at
a time, while the clause affinity(close) ensures that these subtasks execute
on processing cores close to the parent task.

As shown in the case study in Chapter 7, software pipelining can lead to a
reduction in hardware resource usage. Tasks are split up in a number of subtasks
that execute on dedicated processing elements, which are optimized for a given
task.

142 Programming Model and Runtime System

Listing 8.5: Direct back-projection algorithm

1 /* export OMP_PLACES =(1,2,3,4,5,6,7,8);*/

2
3 int compute_range_line(i, j, n){

4 /*do computation */

5 return result;

6 }

7
8 int compute_pixel(int i, int j){

9 /*500 range lines to compute a single pixel*/

10 #pragma omp parallel for num_threads (3)

11 affinity(close){

12 for (int n = 0; n < 500; n++) {

13 result += compute_range_line(i, j, n)

14 }

15 }

16 /*save or send pixel value*/

17 return 1;

18 }

19
20 void main(){

21 do {

22 /* calculate 1 pixel row*/

23 for (int i = 0; i < 1000; i++) {

24 /* calculate 1 pixel row*/

25 #pragma omp parallel num_threads (2)

26 affinity(spread){

27 for (int j = 0; j < 500; j++) {

28 compute_pixel(i, j);

29 compute_pixel(i, j+500);

30 }

31 }

32 }

33 /*save image and sync with input data*/

34 }

35 while (0);

36 }

8.5 Code Examples 143

Figure 8.9 shows a task graph of a software pipelined SAR back-projection.
In a first step, two tasks are spawned that each compute half of the pixels of an
image. The computation of a pixel is decomposed into three subtasks. First, the
addresses of the relevant data for a given pixel are calculated and data is fetched.
Second, an interpolation approximates the energy level for a given point on the
ground. Third, amplitude and phase correction is applied. Listing 8.6 shows
the source code of this algorithm. In this example the get default device

function is used to determine on which processing element a certain task is
executed. This is used to bind child tasks to neighboring processing elements.
Software pipelining is achieved, as the taskwait directive is only applied to the
first tasks. Thus the program waits only for the child tasks to complete, it does
not wait for all descendants to finish. Hence, a new set of tasks is spawned as
soon as the first subtask completes.

However, this may be a risky way to implement an application since task
creation is synchronized with the first subtask only. If the subtasks later in the
pipeline have a longer execution time than the first one, their task queue may
overflow.

Listing 8.6: Software pipelined direct back-projection algorithm

1 /* export OMP_PLACES =(1,2,3,4,5,6,7,8,9);*/

2
3 calc_range_line(i, j, n, data){

4 /* calc_energy component and save result */

5 return;

6 }

7
8 int interp_range_line(i, j, n, data){

9 int core = omp_get_default_device ()

10 /* interpolate data*/

11 #pragma omp_set_default_device (core +1)

12 #pragma omp task calc_range_line(i,j,n,data);

13 return;

14 }

15
16 int fetch_range_line(int i, int j, int n){

17 int core = omp_get_default_device ()

18 /* compute memory addresses and fetch data*/

19 #pragma omp_set_default_device (core +1)

20 #pragma omp task

144 Programming Model and Runtime System

21 interp_range_line(i,j,n,data);

22 return;

23 }

24
25 int compute_pixel(int i, int j){

26 int core = omp_get_default_device ()

27 /*500 range lines to compute a single pixel*/

28 for (int n = 0; n < 500; n++) {

29 #pragma omp_set_default_device (core +1)

30 #pragma omp task{fetch_range_line(i,j,n)}

31 #pragma taskwait

32 }

33 /*save or send pixel value*/

34 return;

35 }

36
37 int main(){

38 do {

39 /* calculate 1 pixel row*/

40 for (int i = 0; i < 1000; i++) {

41 /* calculate 1 pixel row*/

42 for (int j = 0; j < 500; j++) {

43 #pragma omp_set_default_device (2)

44 #pragma omp task

45 compute_pixel(i, j);

46 #pragma omp_set_default_device (6)

47 #pragma omp task

48 compute_pixel(i, j+500);

49 #pragma omp taskwait}

50 }

51 /*save image and sync with input data*/

52 }

53 while (0);

54 }

8.6 Costs 145

8.6 Costs

We aim for a lightweight cache coherency mechanism and efficiently use hard-
ware primitives to implement the runtime system. The costs for implementing
the cache coherency mechanism are very low, identifiers to mark parallel regions
are included in the block RAM that maintain cache tags. The additional status
bits that mark modified data words can be included in the block RAMs that im-
plement the data cache. Additional costs occur in registers to store the current
task ID, the upper and the lower bound of the auto write-back memory section
and the compare logic that comes with it. Moreover, the cache controller state
machine needs to be extended to support the automatic write-back functional-
ity. This functionality can either be implemented entirely in hardware or in a
hardware-software co-design. The final implementation will show if it pays off
to invest in hardware resources to reduce the penalty of a software routine that
controls the automatic write back of modified data.

Tinuso provides infrastructure to maintain a relaxed memory consistency
model. It is up to the programmer to keep the costs of the proposed coherency
mechanism low. By storing as few data as possible in the automatic write-back
data section the programmer avoids unnecessary data transfers. On the other
hand, a conservative approach where a large portion of the data is put in the
automatic write-back data section may execute slower but can be beneficial for
debugging as it enforces a stronger memory consistency.

The hardware costs for implementing the task queue include a block RAM
and logic elements for a state machine. This state machine has to handle incom-
ing requests from the network that attempt to steal tasks and it has to allow
the local processor core to push and pop tasks to the queue. Moreover, it has
to arbitrate in case of simultaneous requests from the network and the local
processor core and it has to detect overflow situations and pause task creation
until there is space in the task queue again.

The processor core communicates with the task queue through the special
memory space using mtfs and mtms instructions. As a task frame consists of
a task ID, a memory reference, and function arguments only, it is very simple
to create tasks and push them on the queue or to create a task message and
send them dedicated processing elements. The existing network interface in-
frastructure is used to dispatch these task messages and to capture the results
of returning task frames. Hence, the overhead to bind a task to a remote pro-
cessing element is kept low. For example, a task message that calculates the
square root of a double precision floating point number may consist of 4 data
words only. One word is used for the task ID, one word encodes the memory

146 Programming Model and Runtime System

location of the program code and 2 data words are used for the double precision
floating point argument. Task ID and memory address are constants that each
are loaded with a move-high and add-immediate instruction pair and stored
in the message buffer with a mtms instruction. Hence the overhead to create
and dispatch a task message is about 10 clock cycles only if there are no cache
misses. If we assume 10 clock cycles to transmit the task message to the des-
tination core, 20 clock cycles overhead in the destination core to read in the
task message and to create the result message, 10 clock cycles to transmit the
result message and 10 clock cycles to read the result in, we obtain a total over-
head of about 60 clock cycles. A hardware implementation of a double precision
floating point operation may take up to 50 clock cycles while a pure software
implementation of the same operation may take several hundreds of clock cycles.
Hence, it pays off to bind fine-grained tasks to processing elements that include
dedicated hardware support.

In a heterogeneous system, processing elements may be equipped with ac-
celerators. Hence, a given software routine that benefits from these accelerators
and is allowed to run on various processor cores may require multiple binary
executables. Multiple implementations of a single software routine, runtime
implementation, and task overheads leads to a larger program code. However,
given the performance benefits and the low memory costs we believe this to be
a fair decision.

8.7 Conclusions

Tinuso is a multicore system that may consist of hundreds of processor cores
integrated in a single device. So far, the programmer had to be aware of many
architectural details to successfully exploit the parallel architecture and orches-
trate memory transfers, which is a difficult task. Therefore, a programming
language, programming model, and runtime system are required to provide the
programmer with a suitable abstraction of the underlying computer system and
efficiently execute parallel programs. A fork-join task programming model was
proposed to express parallelism and to enable a simple memory consistency
model. We proposed to use OpenMP directives to annotate parallel regions
of an application. Parallel tasks then are distributed among parallel processor
cores. As Tinuso multicore systems may be heterogeneous, it must be possible
to bind task to dedicated processor cores. It is also possible to bind tasks of a
parallel region to a group of processor cores. The runtime system then performs
a work-stealing scheduling policy to achieve an optimal load balance.

8.7 Conclusions 147

As a sequential memory consistency in large multicore systems is costly,
Tinuso implements a relaxed consistency model where memory between parallel
tasks is not kept coherent. Once a task finishes, coherency actions are triggered.
Memory therefore only becomes consistent at the end of a parallel region. A
simple restriction in the programming model ensures the correct execution of
the program: within a parallel region there may only be one writer or multiple
readers of a memory location.

Hardware support to implement a cache coherency mechanism was proposed.
Cache lines are annotated with a coherency identifier, which ensures data to be
updated between two parallel regions. Moreover, an automatic write-back of
modified data was proposed to keep memory consistent. To keep the overhead
of these coherency actions low, they only consider data that is manually placed
in a dedicated shared memory section. Thus, the programmer is responsible for
avoiding unnecessary data transfers.

Hardware primitives were proposed to support commonly used functional-
ity of a programming model. As memory bandwidth is a critical resource in
large multicore systems, we proposed to implement task queues in hardware. It
reduces memory traffic and avoids data races when multiple cores access a task.

In a next step, the proposed runtime system and hardware primitives need to
be implemented. There exists a benchmark suite that exploits OpenMP tasks,
which can be used to evaluate the performance the proposed programming model
and runtime system [38]. However, benchmarks need to be adapted to Tinuso’s
simplified memory consistency model.

148 Programming Model and Runtime System

Chapter 9

Conclusions

This thesis has addressed performance aspects of synthesizable computing sys-
tems. As the power efficiency and logic capacity of FPGAs increases, synthesiz-
able computing systems become an attractive choice for embedded computing.
However, a broad range of embedded applications demand high performance
within severely constrained mechanical, power, and cost requirements. This
thesis therefore researched architectural trade-offs to improve performance and
programmability of synthesizable computing systems. A holistic approach was
taken to optimize processor architecture, interconnection network, programming
model, and runtime system for implementation on an FPGA. Addressing these
design challenges has lead to four main research questions: 1) How to exploit in-
struction level parallelism that maps well on the internal structure of FPGAs. 2)
To what extent are compilers able to leverage predicated execution and can this
technique pay-off for synthesizable processors cores. 3) How to design scalable
multicore systems and communication structures. 4) Define a runtime system
and an abstraction of the computer system that allows the programmer to easily
express parallelism and efficiently executes parallel programs.

• Instruction level parallelism: FPGAs consists of an array of config-
urable logic blocks that include lookup tables and successive flip-flops.
Therefore the internal structure of an FPGA is well suited for pipelining.
Complex multiported memory structures as used in superscalar machines,
on the other hand, do not perform well on FPGA architectures. There-
fore superpipelining was applied, which breaks pipeline stages into smaller
stages and leverages instruction level parallelism by executing operations

150 Conclusions

partially overlapped. Results showed that pipelined caches, register file,
and execution stage enable a significantly higher clock frequency but break
the compatibility to existing instruction set architectures. Therefore, a
new processor architecture, Tinuso, was designed to exploit current FPGA
architectures. Tinuso is a lightweight architecture with a small instruc-
tion set that can easily be extended. Tinuso makes use of pipelined RAMs
found in modern FPGAs to implement fast caches and register file. To
keep the hardware design small, the pipeline is fully exposed to software
where all types of hazards need to be considered. The architecture sup-
ports predicated execution to reduce the branch penalty. Tinuso takes
advantage of its 8 stage pipeline that enables clock frequencies as high as
376 MHz on current state-of-the-art FPGAs. Tinuso optimally balances
the logic between pipeline stages. The time critical path of the design
includes only 4 successive 6-input lockup tables. Routing delays account
for a substantial part of the critical path. Adding more pipeline stages is
not beneficial as additional hardware resources and increasing complexity
in the control logic lead to a diminishing return. The design was evaluated
by running a set of numerical and search-based micro-benchmarks. Tinuso
shows an average performance improvement of 38% over a similar Xilinx
MicroBlaze configuration. Tinuso achieves a higher performance and con-
sumes fewer hardware resources than commercial synthesizable processor
cores.

• Predicated execution: The performance of a computer system highly
depends on its efficiency to process control flow instructions. In a long
processor pipeline where branch address and direction are resolved late in
the pipeline branch instructions become costly. Tinuso therefore leverages
predicated instructions to circumvent costly pipeline stalls. Predicated
instructions allow for transforming control dependencies into data depen-
dencies. Predicated instructions can therefore be used to replace simple
if-statements. Moreover, Tinuso’s predicated instructions can be used to
fill delay slots. While predicated execution is conceptually simple, it is a
challenge for a compiler to leverage predicated execution. We researched
GCC’s ability to exploit predicated execution. We concluded that GCC’s
if-conversion pass is too limited for Tinuso’s predication scheme as only
about 6% of the executed instructions make use of predicated execution.
However, GCC successfully resolved hazards and was able to fill a large
portion of Tinuso’s delay slots. For a set of small C benchmarks Tinuso
achieves an average speedup of 52% compared to a similar MicroBlaze

151

configuration. The encoding of predicated execution takes up 4 bits of
each instruction word and leads to a complex forwarding logic. However,
Tinuso’s predication scheme enables very efficient, though hand-coded,
assembly code. It allows for implementing highly efficient low-level li-
braries, which give Tinuso a performance advantage. Once the compiler
makes better use of predicated execution the performance of Tinuso will
be even higher.

• Scalability: The logic integration of modern FPGA’s has reached a point
where hundreds of Tinuso processor cores can be integrated on a single
device. While it is conceptually trivial to compose multicore systems it re-
mains a challenge to design a scalable system. The scalability of a system
highly depends on the communication structures and the memory hierar-
chy. As there are limited on-chip memory resources on an FPGA processor
cores often need to fetch data from main memory. It is therefore highly
application dependent to which extent synthesizable computing systems
scale. Efficient communication structures for Tinuso multicore systems
were designed. A 2D mesh network topology was chosen as it maps well
to the structure of FPGAs. The router architecture uses wormhole switch-
ing and a backpressure flow control mechanism to attain a latency of one
clock cycle per hop. Routing scheme and flow control mechanism are op-
timized for high system clock frequency. Results showed that a pipelined
feedback loop to manage contention leads to significantly higher clock
speed and lower network latency at low injection rates. The scalability of
Tinuso multicore systems was evaluated in terms of clock frequency. For a
system with 48 cores, a maximum clock frequency of 300 MHz on a Xilinx
Virtex 7 device was measured. Although synthesis tools reported a con-
sistently high clock frequency for large-scale multicore system, tools that
map multicore system to an FPGA have problems to efficiently map large
multicore systems, which results in low system clock frequencies. Hence,
substantial floor-planning support is required to attain a high system clock
speed for large-scale systems. To demonstrate the scalable performance
of Tinuso multicore systems a high performance radar data processing
application was mapped to a system with 64 cores. This case study is
based on the POLARIS synthetic aperture radar application, which re-
quires real-time data processing for a 3000m wide area with a resolution
of 2x2 meters. The multicore fabric consisting of 64 processor cores and
2D mesh network-on-chip utilizes 60% of the hardware resources of a Xil-
inx Virtex-7 device with 550 thousand logic cells and consumes about 10

152 Conclusions

watt only.

• Programmability: The radar data processing case study has shown that
Tinuso multicore systems scale and deliver a high performance. However,
the programmer needs to be aware of many architectural details to suc-
cessfully exploit the parallel architecture and orchestrate memory accesses.
This is a limiting factor for the productivity of a programmer. Therefore
a runtime system and an abstraction of the computer system is required
that allows the programmer to easily express parallelism and efficiently
executes parallel programs. A fork-join task programming model was
proposed to express parallelism. OpenMP directives are used to anno-
tate parallel regions of an application. Parallel tasks then are distributed
among available processor cores. As Tinuso multicore systems may be
heterogeneous, it is supported to bind tasks to dedicated processor cores.
As memory consistency in large multicore systems is costly, Tinuso imple-
ments a relaxed consistency model where memory between parallel tasks
is not kept coherent. Once a task finishes, coherency actions are triggered.
Main memory therefore only becomes consistent at the end of a parallel
region. A simple restriction in the programming model, where there may
only be a single writer or multiple readers to a memory location in a paral-
lel region, ensures the correct execution of the program. Hardware support
to implement a cache coherency mechanism was proposed. Cache lines are
annotated with a coherency identifier, which ensures data to be updated
between successive parallel regions. Moreover, an automatic write-back
of modified data was proposed to keep memory consistent. To keep the
overhead low these coherency actions only apply to data that are manu-
ally placed in a dedicated shared memory section. Hardware primitives
were proposed to support commonly used functionality of a programming
model. For example, a hardware implementation of task queues reduces
memory traffic and avoids data races when multiple cores access a task.

The research for this thesis has led to the design of a synthesizable multi-
core system including compilation toolchain and a proposal for a programming
model. In a next step, the proposed runtime system and hardware primitives
need to be implemented. Existing OpenMP task benchmark suites can be used
to evaluate the performance the proposed programming model. However, bench-
marks need to be adapted to Tinuso’s simplified memory consistency model. It
is also intended to improve the if-conversion pass in the compiler to make better
use of predicated execution.

153

We conclude Tinuso multicore systems are scalable and deliver a high per-
formance. Multicore systems raise the abstraction level for the application
programmer without facing the current performance drawbacks of high-level
synthesis. The proposed programming model enables a high programming pro-
ductivity while the hardware primitives in the runtime system lead to an efficient
execution of parallel programs.

We therefore see several markets where synthesizable multicore systems are
beneficial. As the radar case study has shown, Tinuso is an attractive choice
for embedded applications, which demand a high performance within severely
constrained mechanical, power, and cost requirements. As FPGAs are recon-
figurable, synthesizable multicore systems can be modified and updated during
product lifetime, which gives these systems a major benefit over embedded sys-
tems consisting of discrete devices. Moreover, synthesizable multicore systems
are an attractive choice for products with a long lifetime, for example medical
equipment. The production of discrete microcontrollers is often discontinued
after a few years, which makes it difficult for companies to provide maintenance
services for their systems. Synthesizable computing systems do not face this
problem in the same way. If the production of a certain FPGA device is discon-
tinued, a synthesizable multicore system can be mapped to a device of another
FPGA family.

The research described in this thesis is also highly relevant for discrete multi-
core designs. Although ASIC technology enables faster processor pipelines and
router designs than on FPGAs, off-chip memory access latency, and memory
bandwidth remain the same. Hardware designers therefore have to deal with
similar scaling problems as described in this work. Tinuso multicore systems are
an attractive platform for research on multicore systems and parallel program-
ming and the proposed runtime system and coherency mechanism are technology
independent approaches to improve the scalability of multicore systems.

154 Conclusions

Appendix A

Application Binary
Interface

This chapter describes the Tinuso Application Binary Interface, ABI. The Ti-
nuso GNU toolchain follows the conventions described in this document.

A.1 Data Representation

The architecture of Tinuso uses the big-endian byte ordering scheme and sup-
ports 8-bit byte, 16-bit half-word, 32-bit word, and 64-bit double-word data
types as listed in Table A.1. The address space is limited to 32 bits. No virtual
Memory Management Unit, MMU, is implemented at the time. There is no
support for Position-Independent Code, PIC.

A.2 Register Usage Conventions

The Tinuso architecture comes with a register file with 128 registers. These
registers are used for predicate registers, integer and float registers. There are
special registers available that can be accessed by mtms and mfms operations.

156 Application Binary Interface

Table A.1: ANSI C data types

C type Size (bits)
char 8

short 16
int 32

long int 32
long long int 64

pointer 32
float 32

double 64
long double 64

Table A.2: Tinuso register overview

register software name use saver
r0-r7 r0-r7 predicate register caller-saved

r8-r15 r8-r15 return register caller-saved
r16-r31 r16-r31 argument register caller-saved
r32-r63 r32-r63 general purpose callee-saved

r64-r120 r32-r63 general purpose caller-saved
r121 r121 defines i/o port caller-saved
r122 rtmp temporary register caller-saved

r123 -124 r123-r124 reserved caller-saved
r125 fp hard frame pointer callee-saved
r126 sp stack pointer callee-saved
r127 r127 return address register caller-saved

A.3 Stack Conventions

Each function has a frame on the run-time stack. This stack grows downward
from stack-start address as defined in the linker script. The stack conventions
used by the Tinuso tools are shown in Table A.3. The stack pointer always
holds the value of the end of the latest allocated stack frame.

A.4 ELF File Format 157

Table A.3: Stack frame

Position Contents Frame

fp + 4n parameter n
... ... previous
fp + 0 parameter 0

fp - 4
fp - 8 function variables
fp - 16 current
sp + 4 value of previous fp
sp + 0 return address

sp - 4
... for use by leaf function future
sp - 4n

A.3.1 Calling Convention

The caller function passes parameters to the callee function using either the ar-
gument registers (r16-r31) or on the stack frame allocated for the caller function.
Arguments of structures and unions are passed as pointers. Functions return
results in the return registers (r8-r15). The GCC backend currently only uses
r8 to return single word values. Double words values are returned in r8 and r9.

A.3.2 Machine Specific Registers

Tinuso may be configured to use machine specific registers. These registers
are used for a broad range of applications such as communication to interfaces,
capturing profiling data, and to readout processor specific information. An 32-
bit indirect addressing scheme is used to access machine specific registers. Move
To Machine Specific,mtms, and Move from Machine Specific,mfms, instructions
move data from the register file to machine specific registers and vice versa.
Table A.4 lists a number of registers used for this thesis.

A.4 ELF File Format

Executables are created by concatenating sections from the object files together
and resolving symbolic references in these files. The Tinuso toolchain generates

158 Application Binary Interface

Table A.4: Overview of Machine Specific Registers

Reg. Address purpose
0x00000000 core id
0x00000100 profile control signals
0x0000101
... performance counters
0x000010F
0x00008000 uart tx
0x00008001 uart rx

communication interface
0x00008000 read packet ready
0x00008001 read packet header
0x00008002 read packet data
0x00008003 write packet data
0x00008004 sent packet

executables in ELF object file format. Executables for the Tinuso architecture
are marked with the unofficial machine number 0x1701 in the ELF header.

A.4.1 ELF File Sections

The compiler creates code that is split up in sections. Sections are marked
with a number of flags that for example indicate whether the data in a section
can be overwritten or not. According to these flags it is possible identify read-
only sections of an executable and place them in a read only memory. Tinuso
currently supports standard sections of object files as shown in Table A.5.

Table A.5: Section overview of an object or executable files

.text text section
.rodata read only data section
.data read write data section
.bss uninitialized data section

Appendix B

Instruction reference

160 Instruction reference

add Arithmetic Addition

[(!)rP] add rC,rA,rB

012345678910111213141516171819202122232425262728293031

OP rA N Pred rC rB Funct

000 rA N Pred rC rB 0000

Description
Arithmetic addition of the register contents rA and rB; storing the result in
register rC.

Pseudo-code
(rC) ← (rA) + (rB)

161

addi Arithmetic Addition Immediate

[(!)rP] addi rC,rA,Imm

012345678910111213141516171819202122232425262728293031

OP rA N Pred rC Immediate

001 rA N Pred rC Immediate

Description
Arithmetic addition of the register content rA and a 11-bit signed immediate;
storing the result in register rC.

Pseudo-code
(rC) ← (rA) + Imm

162 Instruction reference

and Logical AND

[(!)rP] and rC,rA,rB

012345678910111213141516171819202122232425262728293031

OP rA N Pred rC rB Funct

000 rA N Pred rC rB 1000

Description
Bitwise AND of the register contents rA and rB; storing the result in register rC.

Pseudo-code
(rC) ← (rA) ∧ (rB)

163

bnz Branch on Not Zero

bnz rA, offset

012345678910111213141516171819202122232425262728293031

OP rA N Reserved Offset

010 rA 0 Reserved Offset

Description
The offset value is shifted left two bits, sign-extended to program counter width,
and then added to the PC of the branch instruction. The result is the effective
branch address. If the content of register rA is not zero the program branches
to target address with a delay of four instructions.

Pseudo-code
If (rA) 6= 0 then

PC ← PC + exts(offset � 2)
else

PC ← PC + 4

Scheduling Restrictions
bnz has 4 branch delay slots.

164 Instruction reference

bsll Barrel Shift Left Logical

[(!)rP] bsll rC, rA, rB

012345678910111213141516171819202122232425262728293031

OP rA N rP rC rB Funct

111 rA N rP rC rB 0000

Description
Logically left shifts the content of register rA by the amount specified in register
rB. The result stored in the register rC.

Pseudo-code
(rC) ← (rA) � (rB)[0:6]

Scheduling Restrictions
bsll has 3 delay slots.

Comments
bsll is an optional instruction and only valid if the target architecture has the
barrel shift primitives enabled.

165

bsra Barrel Shift Right Arithmetic

[(!)rP] bsra rC, rA, rB

012345678910111213141516171819202122232425262728293031

OP rA N rP rC rB Funct

111 rA N rP rC rB 0001

Description
Arithmetically right shifts the content of register rA by the amount specified in
register rB. The result stored in the register rC.

Pseudo-code
if ((rB)[0:6]) 6= 0 then

(rC)[32-(rB)[0:6]:31] ← (rA)[31]
(rC)[0:31-(rB)[0:6]] ← (rA) � (rB)[0:6]

else

Scheduling Restrictions
bsra has 3 delay slots.

166 Instruction reference

bsrl Barrel Shift Right Logic

[(!)rP] bsrl rC, rA, rB

012345678910111213141516171819202122232425262728293031

OP rA N rP rC rB Funct

111 rA N rP rC rB 0010

Description
Logically right shifts the content of register rA by the amount specified in reg-
ister rB. The result stored in the register rC.

Pseudo-code
(rC) ← (rA) � (rB)[0:6]

Scheduling Restrictions
bsrl has 3 delay slots.

Comments
bsrl is an optional instruction and only valid if the target architecture has the
barrel shift primitives enabled.

167

bz Branch on Zero

bz rA, offset

012345678910111213141516171819202122232425262728293031

OP rA N Reserved Offset

010 rA 1 Reserved Offset

Description
The offset value is shifted left two bits, sign-extended to program counter width,
and then added to the PC of the branch instruction. The result is the effective
branch address. If the content of register rA is zero, the program branches to
target address with a delay of four instructions.

Pseudo-code
if (rA) = 0 then

PC ← PC + exts(offset � 2)
else

PC ← PC + 4

Scheduling Restrictions
bnz has 4 branch delay slots.

168 Instruction reference

cmpseq Compare And Set Equal

[(!)rP] cmpseq rC, rA, rB

012345678910111213141516171819202122232425262728293031

OP rA N rP rC rB Funct

000 rA N rP rC rB 0010

Description
If the contents of register rA and rB are equal rC is set to 1. Otherwise register
rC is set to 0.

Pseudo-code
if (rA) = (rB) then

(rC) ← 1
else

(rC) ← 0

Scheduling Restrictions
cmpseq has 2 delay slots.
If the result of a cmpseq instruction is used for a branch instruction, there is
1 delay slot only.

169

cmpslt Compare And Set Less Than

[(!)rP] cmpseq rC, rA, rB

012345678910111213141516171819202122232425262728293031

OP rA N rP rC rB Funct

000 rA N rP rC rB 0011

Description
Register rC is set to 1 if the content of register rA is less than the content of
register rB. Otherwise register rC is set to 0.

Pseudo-code
if (rA) < (rB) then

(rC) ← 1
else

(rC) ← 0

Scheduling Restrictions
cmpseq has 2 delay slots.
If the result of a cmpseq instruction is used for a branch instruction, there is
1 delay slot only.

170 Instruction reference

cmpsltu Compare And Set Less Than Unsigned

[(!)rP] cmpseq rC, rA, rB

012345678910111213141516171819202122232425262728293031

OP rA N rP rC rB Funct

000 rA N rP rC rB 0100

Description
Register rC is set to 1 if the unsigned content of register rA is less than the
unsigned content of register rB. Otherwise register rC is set to 0.

Pseudo-code
if (rA) < (rB) then

(rC) ← 1
else

(rC) ← 0

Scheduling Restrictions
cmpsltu has 2 delay slots.
If the result of a cmpsltu instruction is used for a branch instruction, there is
1 delay slot only.

171

jalr Jump And Link Register

jalr rC,rA

012345678910111213141516171819202122232425262728293031

OP rA N rP rC Function

000 rA N rP rC —’0001’1111

Description
The JALR instruction is an indirect absolute jump to a target address stored
in rA with a delay of 4 clock cycles. The address of the instruction after the
four delay slots is placed in rC (return address register).

Pseudo-code
PC ← rA
return addr, PC ← rC + 20

Scheduling Restrictions
jalr has 4 delay slots.

172 Instruction reference

ll Load Linked

[(!)rP] ll rC,rA

012345678910111213141516171819202122232425262728293031

OP rA N rP rC Function

000 rA N rP rC —’0111’1111

Description
Loads a word from the word aligned memory location of registers rA and places
the data in register rC. The memory location of a load-linked instruction is
stored in the cache controller to track updates to this memory location. Load-
linked is used in combination with a store-conditional instruction for synchro-
nization in multithreaded programs.

Pseudo-code
Addr ← (rA) + offset
(rC) ← Mem(Addr)

Scheduling Restrictions
ll has 4 delay slots.

Comments
ll is an optional instruction and only valid if the target architecture has syn-
chronization primitives enabled.

173

lw Load Word

[(!)rP] lw rC,rA,offset

012345678910111213141516171819202122232425262728293031

OP rA N rP rC Offset

100 rA N rP rC Offset

Description
Loads a word (32 bits) from the word aligned memory location that results from
adding the contents of registers rA and the signed offset. The data is placed in
register rC.

Pseudo-code
Addr ← (rM) + offset
(rC) ← Mem(Addr)

Scheduling Restrictions
lw has 4 delay slots.

174 Instruction reference

mfms Move From Machine Specific

[(!)rP] mfms rC,rA

012345678910111213141516171819202122232425262728293031

OP rA N rP rC Function

000 rA N rP rC 00000101111

Description
Loads a word (32 bits) from the special memory location where the content of
register rA points to. The data is placed in register rC.

Pseudo-code
(rC) ← Special-Mem(rA)

Scheduling Restrictions
mfms has 2 delay slots.

175

movhi Move High Immediate

movhi rC,Imm

012345678910111213141516171819202122232425262728293031

OP Immediate rC Immediate

011 Immediate rC Immediate

Description
The signed 22-bit immediate value is shifted left by 10 bits, concatenated with
zeros and stored in the register rC.

Pseudo-code
(rC) ← (imm � 10)

176 Instruction reference

mtms Move To Machine Specific

[(!)rP] mtms rB, rA

012345678910111213141516171819202122232425262728293031

OP rA N rP rB Func.

101 rA N rP rB 11000000000

Description
Stores the contents of register rB, into the special memory location where the
content of register rA points to.

Pseudo-code
Mem(rA) ← (rB)[31:0]

Scheduling Restrictions
mtms has 4 delay slots.

177

mul Multiply

[(!)rP] mul rC,rA,rB

012345678910111213141516171819202122232425262728293031

OP rA N Pred rC rB Funct

111 rA N Pred rC rB 0011

Description
Multiplies the register contents rA and rB and stored the result in register rC.
This 32-bit by 32-bit multiplication leads to a 64-bit result. The least significant
word of the result is placed in rC, whereas the most significant word is discarded.

Pseudo-code
(rC) ← LSW((rA) x (rB))

Scheduling Restrictions
mul has 4 delay slots.

Comments
mul is an optional instruction and only valid if the target architecture has the
multiplier primitive enabled.

178 Instruction reference

or Logical OR

[(!)rP] or rC,rA,rB

012345678910111213141516171819202122232425262728293031

OP rA N Pred rC rA Funct

000 rA N Pred rC rA 1001

Description
Bitwise OR of the register contents rA and rB; storing the result in register rC.

Pseudo-code
(rC) ← (rA) ∨ (rB)

179

sra Shift Right Arithmetic

[(!)rP] sra rC,rA

012345678910111213141516171819202122232425262728293031

OP rA N Pred rC Function

010 rA N Pred rC —’1000’1111

Description
Shifts the register content rA to the right by one bit, storing the result in reg-
ister rC. The empty position in the most significant bit is filled with a copy of
the original MSB of rA.

Pseudo-code
(rC)[30:0] ← (rA)[31:1]
(rC)[31] ← (rA)[31]

180 Instruction reference

srl Shift Right Logical

[(!)rP] srl rC,rA

012345678910111213141516171819202122232425262728293031

OP rA N Pred rC Function

010 rA N Pred rC xxx’1001’1111

Description
Shifts the register content rA logically to the right by one bit, storing the result
in register rC. A zero is placed in the most significant bit of rA.

Pseudo-code
(rC)[30:0] ← (rA)[31:1]
(rC)[31] ← 0

181

ll Store Conditional

[(!)rP] ll rC,rA

012345678910111213141516171819202122232425262728293031

OP rA N rP rC Function

000 rA N rP rC —’0111’1111

Description
Store-conditional is used in combination with a load-link instruction. The store-
conditional stores the content of register rB into the word aligned memory lo-
cation of registers rA only if the memory location has not been updated since
the load-link instruction. Load-link and store-conditional ll/sc are a pair of
instructions used for synchronization in multithreaded programs.

Pseudo-code
Addr ← (rA) + offset
(rC) ← Mem(Addr)

Scheduling Restrictions
sc has 3 delay slots for load instructions to the same memory location (read-
after-write hazard).

Comments
sc is an optional instruction and only valid if the target architecture has syn-
chronization primitives enabled.

182 Instruction reference

sw Store Word

[(!)rP] sw rB, rA, offset

012345678910111213141516171819202122232425262728293031

OP rA N rP rB Offset

101 rA N rP rB Offset

Description
Stores the contents of register rB, into the word aligned memory location that
results from adding the content of registers rA and the signed offset.

Pseudo-code
Addr ← (rA) + offset
Mem(Addr) ← (rB)[31:0]

Scheduling Restrictions
sw has 3 delay slots for load instructions to the same memory location (read-
after-write hazard).

183

sub Arithmetic Subtraction

[(!)rP] sub rC,rA,rB

012345678910111213141516171819202122232425262728293031

OP rA N Pred rC rB Funct

000 rA N Pred rC rB 0001

Description
Arithmetic subtraction of the register contents rA and rB; storing the result in
register rC.

Pseudo-code
(rC) ← (rA) - (rB)

184 Instruction reference

xor Logical XOR

[(!)rP] xor rC,rA,rB

012345678910111213141516171819202122232425262728293031

OP rA N Pred rC rA Funct

010 rA N Pred rC rA 1010

Description
Bitwise XOR of the register contents rA and rB; storing the result in register rC.

Pseudo-code
(rC) ← (rA) ⊗ (rB)

Bibliography

[1] GCC back-end architecture listing. informational web page.
gcc.gnu.org/backends.html. Retrieved on 16-August-2013.

[2] GCC front-end language listing. informational web page.
gcc.gnu.org/frontends.html. Retrieved on 16-August-2013.

[3] Static single assignment book, working draft. ssa-
book.gforge.inria.fr/latest/book.pdf, 2013. Retrieved on 16-August-2013.

[4] Ehliar A, P. Karlstrom, and D. Liu. A high performance microprocessor
with DSP extensions optimized for the Virtex-4 FPGA. In Proceedings
of the 19th International Conference on Field Programmable Logic and
Applications, FPL, 2008.

[5] D. Abts, S. Scott, and D. Lilja. So many states, so little time: Verifying
memory coherence in the cray x1. In Proceedings of the International
Parallel and Distributed Processing Symposium, IPDPS, 2003.

[6] Adapteva. Adapteva E64G401 EPIPHANY 64-CORE
MICROPROCESSOR Flyer. www.adapteva.com/wp-
content/uploads/2013/06/e64g401 datasheet 4.13.6.14.pdf, 2013. Re-
trieved on 25-November-2013.

[7] Pritpal S. Ahuja, Pritpal S., Douglas W. Clark, and Anne Rogers. The
performance impact of incomplete bypassing in processor pipelines. In
Proceedings of the 28th IEEE/ACM Annual International Symposium on
Microarchitecture, MICRO, 1995.

[8] Altera. Nios II processor reference handbook v10.1.
www.altera.com/literature/hb/nios2/n2cpu nii5v1.pdf, 2010. Retrieved
on 25-March-2011.

186 BIBLIOGRAPHY

[9] Altera. Handbook, v11.0. www.altera.com/literature/hb/nios2/n2cpu nii,
2011. 5v1.pdf Retrieved on 8-August-2012.

[10] ARM. ARM Cortex-M1 Frequency and Area.
www.arm.com/products/processors/cortex-m/cortex-m1.php. Retrieved
on 5-October-2011.

[11] O. Azizi, A.Mahesri, B. Lee, S. Patel, and M. Horowitz. Energy-
performance tradeoffs in processor architecture and circuit design: A
marginal cost analysis. In Proceedings of the 37th annual International
Symposium on Computer Architecture, ISCA, 2010.

[12] A. Baldassin, P. Centoducatte, and S. Rigo. An open-source binary util-
ity generator. In Journal ACM Transactions on Design Automation of
Electronic Systems, 2008.

[13] C. Ballapuram, A. Sharif, and H. Lee. Exploiting access semantics and
program behavior to reduce snoop power in chip multiprocessors. In Pro-
ceedings of the 13th international conference on Architectural support for
programming languages and operating systems ASPLOS, 2008.

[14] J. Bennet. Howto: Porting newlib, a simple guide, application note 9,
issue 1, 2010.

[15] M. Blom and P. Follo. VHF SAR image formation implemented on a gpu.
In Proceedings of the 25th IEEE International Geoscience and Remote
Sensing Symposium, IGARSS’05, 2005.

[16] R. Blumofe, M. Frigo, C. Joerg, C. Leiserson, and K. Randall. Dag-
consistent distributed shared memory. In Proceedings of the 10th Inter-
nationalarallel Parallel Processing Symposium, IPPS, 1996.

[17] OpenMP Architecture Review Board. Openmp application program in-
terface specification. In Specification Version 3.0, 2008.

[18] OpenMP Architecture Review Board. Openmp application program in-
terface specification. In Specification Version 4.0, 2013.

[19] I. Burcea, J. Zebchuk, and A.Moshovos. Teaching old caches new tricks:
Regiontracker and predictor virtualization. In IEEE Conference on Com-
munications, Computers and Signal Processing, 2009.

BIBLIOGRAPHY 187

[20] D. Cabrera, X. Martorell, G. Gaydadjiev, E. Ayguade, and D. Jimenez-
Gonzalez. Openmp extensions for fpga accelerators. In Proceedings of
the International Symposium on Systems, Architectures, Modeling, and
Simulation SAMOS, 2009.

[21] W. Carrara, R. Goodman, and R. Majewski. Spotlight Synthetic Aperture
Radar: Signal Processing Algorithms. Artech House, 1995.

[22] C. Casteel, J. Gorham, M. Minardi, S. Scarborough, K. Naidu, and U. Ma-
jumder. A challenge problem for 2d/3d imaging of targets from a volu-
metric data set in an urban environment. In Proceedings of Algorithms
for Synthetic Aperture Radar Imagery XIV, 2007.

[23] B. Chapman, L. Huang, E. Biscondi, E. Stotzer, A. Shrivastava, and
A. Gatherer. Implementing openmp on a high performance embedded
multicore mpsoc. In Proceedings of the IEEE International Symposium
on Parallel and Distributed ProcessingIPDPS, 2009.

[24] Derek Chiou, Huzefa Sunjeliwala, Dam Sunwoo, John Xu, and Nikhil
Patil. FPGA-based Fast, cycle-accurate, full-system simulators. In
IEEE/ACM international conference on Computer-aided design, ICCAD,
2007.

[25] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. Adve,
V. Adve, N. Carter, and C. Chou. DeNovo: Rethinking the memory
hierarchy for disciplined parallelism. In Proceedings of the 18th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems ASPLOS, 2013.

[26] E. Christensen, N. Skou, J. Dall, K. Woelders, J. Jøorgensen, J. Granholm,
and S. Madsen. EMISAR: an absolutely calibrated polarimetric l- and c-
band SAR. 1998.

[27] Eric S. Chung, James C. Hoe, and Babak Falsafi. Protoflex: Co-simulation
for component-wise fpga emulator development.

[28] Eric S. Chung, E. Nurvitadhi, James C. Hoe, Babak Falsafi, and Ken
Mai. Virtualized full-system emulation of multiprocessors using FPGAs.
Workshop on Architectural Research Prototyping held in conjunction with
the 34th International Symposium on Computer Architecture, 2007.

188 BIBLIOGRAPHY

[29] Eric S. Chung, E. Nurvitadhi, James C. Hoe, Babak Falsafi, and Ken
Mai. A complexity-effective architecture for accelerating full-system mul-
tiprocessor simulations using FPGAs. 16th international ACM/SIGDA
symposium on Field programmable gate arrays, FPGA, 2008.

[30] B. Cordes and M. Leeser. Parallel backprojection: A case study in
high-performance reconfigurable computing. In Proceedings of the 14th
IEEE Symposium on Field-Programmable Custom Computing Machines,
FCCM, 2009.

[31] Compaq Computer Corporation. Compaq Computer Corpora-
tion Alpha Architecture Reference Manual 4th edition. down-
load.majix.org/dec/alpha arch ref.pdf, 2002. Retrieved on 5-December-
2013.

[32] S. Craven, C. Patterson, and P. Athanas. Configurable soft processor ar-
rays using the openfire processor. In Proceedings of the 8th Annual Con-
ference on Military and Aerospace Programmable Logic Devices MAPLD,
2005.

[33] D. Curd. Qdr ii sram interface for virtex-4 devices, v.2.4, xapp703.
www.xilinx.com/support/documentation/application notes/xapp703.pdf,
2008. Retrieved on 9-June-2012.

[34] J. Dall, J. Joergensen, E. Christensen, and S. Madsen. Real-time processor
for the danish airborne SAR. In IEE Proceedings-F, vol. 139, 1992.

[35] J. Dall, S. Kristensen, V. Krozer, C. Hernandez, J. Vidkjær, A. Kusk,
J. Balling, N. Skou, S. Søbjrg, and E. Christensen. ESA’s polarimetric
airborne radar ice sounder (POLARIS): design and first results. In Journal
on Radar, Sonar Navigation, IET, vol. 4, 2010.

[36] M. Dubois, C. Scheurich, and F. Briggs. Memory access buffering in mul-
tiprocessors. In Proceedings of the 25th annual International Symposium
on Computer Architecture, ISCA, 1998.

[37] A. Duran, J. Corbalan, and E. Ayguade. Evaluation of openmp task
scheduling strategies. In Proceedings of the 4th international conference
on OpenMP in a new era of parallelism IWOMP, 2008.

[38] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade. Barcelona
openmp tasks suite: A set of benchmarks targeting the exploitation of task

BIBLIOGRAPHY 189

parallelism in openmp. In Proceedings of the International Conference on
Parallel Processing, ICPP, 2009.

[39] A. Ehliar and D. Liu. An ASIC perspective on fpga optimizations. In
Proceedings of the 20th International Conference on Field Programmable
Logic and Applications FPL, 2009.

[40] European Space Agency ESA. Measuring forest biomass
from space - esa campaign tests biomass mission. In
www.esa.int/esaLP/SEMFCJ9RR1F index 0.html. Retrieved on 5-
May 2012.

[41] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. Badia, E. Ayguade,
J. Labarta, and M. Valero. Task superscalar: An out-of-order task
pipeline. In Proceedings of the 43th IEEE/ACM Annual International
Symposium on Microarchitecture, MICRO, 2010.

[42] F. Mesa-Martinez et al. SCOORE santa cruz out-of-order RISC engine,
FPGA design issues. In Proceedings of Workshop on Architectural Re-
search Prototyping WARP, held in conjunction with ISCA-33, 2006.

[43] A. Fasih and T. Hartley. Gpu-accelerated synthetic aperture radar back-
projection in cuda. In Proceedings of the IEEE International Radar Con-
ference, 2010.

[44] Supercomputing Technologies Group MIT Laboratory for Computer Sci-
ence. Cilk 5.4.6 reference manual. 1998.

[45] M. Frigo, C. Lerserson, and K. Randall. The implementation of the cilk-
5 multithreaded language. In Proceedings of the 19th ACM SIGPLAN
Conference on Programming Language Design and Implementation PLDI,
1998.

[46] T. Gingold. Ghdl, a vhdl compiler, v0.22. attila.kinali.ch/ghdl.pdf, 2006.
Retrieved on 16-August-2013.

[47] S. Gorlatch. Send-receive considered harmful: Myths and realities of mes-
sage passing. In ACM Journal on Transactions on Programming Lan-
guages and Systems, vol. 26, issue 1, 2004.

[48] Stanford Concurrent VLSI Architecture Group. Open
source network-on-chip router RTL. In nocs.stanford.edu/cgi-
bin/trac.cgi/wiki/Resources/Router. Retrieved on 26-May 2013.

190 BIBLIOGRAPHY

[49] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The Mälardalen
WCET benchmarks – past, present and future. In Proceedings of the 10th
International Workshop on Worst-Case Execution Time Analysis WCET,
2010.

[50] C. Hansen and T. Riordan. Risc computer with unaligned reference han-
dling and method for the same, US Patent 4814976, 1989.

[51] R. Hasti and S. Horwitz. Using static single assignment form to improve
flow-insensitive pointer analysis. In Proceedings of the ACM SIGPLAN
1998 conference on Programming language design and implementation
PLDI, 1998.

[52] A. Hellmund. GCC frontend internals, v0.1. blog.lxgcc.net/wp-
content/uploads/2011/03/GCC frontend.pdf, 2011. Retrieved on 16-
August-2013.

[53] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative
Approach, 4th ed. Morgan Kaufmann Publishers, 2006.

[54] Y. Huan and A. DeHon. Fpga optimized packet-switched noc using split
and merge primitives. In Proceedings of International Conference on Field-
Programmable Technology FPT, 2012.

[55] L. Iftode, J. Singh, and K. Li. Scope consistency: a bridge between release
consistency and entry consistency. In Proceedings of the eighth annual
ACM symposium on Parallel algorithms and architectures, SPAA, 1996.

[56] Texas Instruments. TMS320C62x DSP CPU and Instruction Set Ref-
erence Guide, SPRU731A. www.ti.com/lit/ug/spru731a/spru731a.pdf,
2010. Retrieved on 8-October-2013.

[57] A. Janarthanan, V. Swaminathan, and K. Tomko. MoCReS: an Area-
Efficient Multi-Clock On-Chip Network for Reconfigurable Systems. In
Proceedings of IEEE Computer Society Annual Symposium on VLSI,
ISVLSI, 2007.

[58] N. Jensen, P. Larsen, R. Ladelsky, A.Zaks, and S. Karlsson. Guiding pro-
grammers to higher memory performance. In Proceedings of 5th Workshop
on Programmability Issues for Heterogeneous Multicores MULTIPROG,
2012.

BIBLIOGRAPHY 191

[59] C. Joerg. The cilk system for parallel multi-threaded computing. In
PhD thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 1996.

[60] N. Jouppi and D. Wall. Available instruction-level parallelism for super-
scalar and superpipelined machines. In Proceedings of the 3rd Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems ASPLOS, 1989.

[61] Kalray. Kalray MPPA Flyer. www.kalray.eu/IMG/pdf/FLYER MPPA M,
2012. ANYCORE-3.pdf Retrieved on 25-November-2013.

[62] K.Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, and J. Hennessy.
Memory consistency and event ordering in scalable shared-memory mul-
tiprocessors. In Proceedings of the 17th annual International Symposium
on Computer Architecture, ISCA, 1990.

[63] J. Kim, S. Lee, S. Moon, and S. Kim. Comparison of llvm and gcc on
the arm platform. In Proceedings of the 5th International Conference on
Embedded and Multimedia Computing EMC, 2010.

[64] D. Koch, C. Haubelt, and J. Teich. Efficient reconfigurable on-chip buses
for FPGAs. In Proceedings of the 2008 16th International Symposium on
Field-Programmable Custom Computing Machines, FCCM’08, 2008.

[65] A. Krasnov, A. Schultz, J. Wawrzynek, G. Gibeling, and P. Droz. Ramp
blue: a message-passing manycore system in fpgas. In Proceedings of the
International Conference on Field Programmable Logic and Applications,
FPL, 2007.

[66] S. Kumar, C. Hughes, and A. Nguyen. Carbon: architectural support
for fine-grained parallelism on chip multiprocessors. In Proceedings of the
34th annual International Symposium on Computer Architecture, ISCA,
2007.

[67] T. Kumura, S. Taga, N. Ishiura, Y. Takeuchi, and M. Imai. Automatic
generation of gnu binutils and gdb for custom processors based on plug-
in method. In Proceedings of the Workshop on Synthesis And System
Integration of Mixed Information TechnologiesSASIMI, 2012.

[68] A. Kusk and J. Dall. SAR focusing of p-band ice sounding data using back-
projection. In Proceedings of the 30th IEEE International Geoscience and
Remote Sensing Symposium, IGARSS’10, 2010.

192 BIBLIOGRAPHY

[69] L. Lamport. How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. In IEEE Transactions on Computers, 1979.

[70] Lattice. LatticeMico32 Product Brief I0186.
www.latticesemi.com/documents/I0186.pdf, 2007. Retrieved on 25-
March-2011.

[71] Lattice. Latticemico32 processor reference manual volume 8.1.
www.latticesemi.com/documents/lm32 archman.pdf, 2010. Retrieved on
25-March-2011.

[72] I. Lebedev, C. Shaoyi, A. Doupnik, J. Martin, C.Fletcher, D.Burke,
L. Mingjie, and J. Wawrzynek. MARC: A many-core approach to re-
configurable computing. In Proceedings of the International Conference
on Reconfigurable Computing and FPGAs, ReConFig, 2010.

[73] H. Lee, N. Chang, U. Ogras, and R. Marculescu. On-chip communication
architecture exploration: A quantitative evaluation of point-to-point, bus,
and network-on-chip approaches. volume 12, 2008.

[74] T. Lehmann, C. Goenner, and K. Spitzer. Survey: Interpolation methods
in medical image processing. In IEEE Journal on Transactions on Medical
Imaging, vol. 18, volume 18, 1999.

[75] C. Leiserson, Z. Abuhamdeh, D. Douglas, C. Feynman, M. Ganmukhi,
J. Hill, D. Hillis, B. Kuszmaul, M. St. Pierre, D. Wells, M. Wong, S. Yang,
and R. Zak. The network architecture of the connection machine cm-5. In
Proceedings of the fourth annual ACM symposium on Parallel algorithms
and architectures, SPAA, 1992.

[76] Y. Leow, C. Ng, and W. Wong. Generating hardware from openmp pro-
grams. In Proceedings of the IEEE International Conference on Field
Programmable Technology,FPT, 2006.

[77] G. Long, D. Fan, and J. Zhang. Architectural support for cilk compu-
tations on many-core architectures. In ACM SIGPLAN Notices, vol.44,
2009.

[78] Y. Lu, J. McCanny, and S.Sezer. Generic Low-Latency NoC Router Archi-
tecture for FPGA Computing Systems. In Proceedings of the 21th Inter-
national Conference on Field Programmable Logic and Applications, FPL,
2011.

BIBLIOGRAPHY 193

[79] S. Mahlke, R. Hank, J. McCormick, D. August, and W. Hwu. A compar-
ison of full and partial predicated execution support for ilp processors. In
Proceedings of the 22th International Symposiom on Computer Architec-
ture ISCA, 1995.

[80] S. Mahlke, D. Lin, W. Chen, R. Hank, and R. Bringmann. Effective
compiler support for predicated execution using the hyperblock, 1992.

[81] A. Marongiu, P. Burgio, and L. Benini. Supporting openmp on a multi-
cluster embedded mpsoc. In Journal Microprocessors and Microsystems,
vol. 35, issue. 8, 2011.

[82] J. Marrill. GENERIC and GIMPLE: A
new tree representation for entire function.
ftp://gcc.gnu.org/pub/gcc/summit/2003/GENERIC and GIMPLE.pdf,
2003. Retrieved on 16-August-2013.

[83] M. Martin, M. Hill, and D. Sorin. Why on-chip cache coherence is here
to stay. In Magazine on Communications of the ACM, vol. 55, 2012.

[84] P. Minev and V. Stoianova Kukenska. The Virtex-5 Routing and Logic
Architecture. In Annual Journal of Electronics, ISSN 1313-1842, 2009.

[85] H. Nilsson. Porting gcc for dunces.
ftp.axis.com/pub/users/hp/pgccfd/pgccfd.pdf, 2000. Retrieved on
16-August-2013.

[86] J. Nilsson, A. Landin, and P. Stenström. The coherence predictor cache: A
resource-efficient and accurate coherence prediction infrastructure. In Pro-
ceedings of the 17th International Symposium on Parallel and Distributed
Processing IPDPS, 2003.

[87] G. Nychis, C. Fallin, T. Moscibroda, and O. Mutlu. Next generation
on-chip networks: what kind of congestion control do we need? In Pro-
ceedings of the Ninth ACM SIGCOMM Workshop on Hot Topics in Net-
works,HOTNETS’10, 2010.

[88] IEEE Task P754. ANSI/IEEE 754-1985, standard for binary floating-point
arithmetic. pages 1–18, 1985.

[89] S. Palacharla, N. Jouppi, and J. Smith. Complexity-effective superscalar
processors. In Proceedings of International Symposium on Computer Ar-
chitecture ISCA-24, 1997.

194 BIBLIOGRAPHY

[90] A. Papakonstantinou, Y. Liang, J. Stratton, K. Gururaj, D. Chen,
W. Hwu, and J. Cong. Multilevel granularity parallelism synthesis on fp-
gas. In Proceedings of the 19th IEEE Symposium on Field-Programmable
Custom Computing Machines, FCCM, 2011.

[91] M. Papamichael and J. Hoe. Connect: Re-examining conventional wisdom
for designing nocs in the context of fpgas. In Proceedings of International
Symposium on Field-Programmable Gate Arrays FPGA, 2012.

[92] J. Park and M. Schlansker. On predicated execution, 1991.

[93] D. Patterson. Reduced Instruction Set Computers. ACM Journal Com-
munication, vol. 28, no. 1, 1985.

[94] D. Patterson and C. Sequin. A vlsi risc. In Journal Computer, vol. 15,
issue 9, 1982.

[95] J. Perez, R. Badia, and J. Labarta. A dependency-aware task-based pro-
gramming environment for multi-core architectures. In Proceedings of the
International Conference on Cluster Computing CLUSTER, 2008.

[96] J. Planas, R. Badia, E. Ayguadé, and J. Labarta. Hierarchical task-based
programming with starss. In International Journal of High Performance
Computing Applications IJHPCA, vol. 23, no. 3, 2009.

[97] M. Purnaprajna and P. Ienne. Making wide-issue VLIW processors vi-
able on FPGAs. ACM Journal Transactions on Architecture and Code
Optimization (TACO), vol. 8, no. 33, 2012.

[98] S. Rajopadhye and M. Strout. Cellcilk: Extending cilk for heterogeneous
multicore platforms. In Lecture Notes in Computer Science Languages
and Compilers for Parallel Computing, vol. 7146, 2013.

[99] J. Raygoza-Panduro, S. Ortega-Cisneros, J. Rivera, and A. de la Mora.
Design of a mathematical unit in FPGA for the implementation of the
control of a magnetic levitation system. In International Journal of Re-
configurable Computing, 2008.

[100] A. Roca, J. Flich, and G. Dimitrakopoulos. Desa: Distributed elastic
switch architecture for efficient networks-on-fpgas. In Proceedings of the
22nd International Conference on Field Programmable Logic and Appli-
cations FPL, 2012.

BIBLIOGRAPHY 195

[101] D. Sanchez, R. Yoo, and C. Kozyrakis. Flexible architectural support for
fine-grain scheduling. In Proceedings of the 15th international conference
on Architectural support for programming languages and operating systems
ASPLOS, 2010.

[102] S. Scarborough, C. Casteel, J. Gorham, M. Minardi, U. Majumder,
M. Judge, E. Zelnio, and M. Bryant. A challenge problem for sar-based
gmti in urban environments. In Proceedings of Algorithms for Synthetic
Aperture Radar Imagery XVI, 2009.

[103] P. Schleuniger and S. Karlsson. Tinuso: A processor architecture for a
multi-core hardware simulation platform. In Proceedings of third swedish
workshop on Multi-Core Computing MCC, 2010.

[104] P. Schleuniger, A. Kusk, J. Dall, and S. Karlsson. Synthetic aperture
radar data processing on an fpga multi-core system. In Proceedings of
the 26th International Conference on Architecture of Computing Systems
ARCS, 2013.

[105] P. Schleuniger, S. A. McKee, and S. Karlsson. Design principles for syn-
thesizable processor cores. In Proceedings of the 25th International Con-
ference on Architecture of Computing Systems ARCS, 2012.

[106] B. Sethuraman, P. Bhattacharya, J. Khan, and R. Vemuri. LiPaR: A light-
weight parallel router for FPGA-based networks-on-chip. In Proceedings
of the 15th ACM Great Lakes symposium on VLSI, GLSVLSI, 2005.

[107] B. Sethuraman and R. Vemuri. Multi2 Router: A Novel Multi Lo-
cal Port Router Architecture with Broadcast Facility for FPGA-Based
Networks-on-Chip. In Proceedings of International Conference on Field
Programmable Logic and Applications FPL, 2006.

[108] R. Stallman and the GCC Developer Community. GNU com-
piler collection internals, for gcc version 4.9.0 (pre-release).
gcc.gnu.org/onlinedocs/gccint.pdf, 2013. Retrieved on 16-August-2013.

[109] W. Strecker. Vax-11/780: A virtual address extension to the dec pdp-11
family. In Proceedings of the National Computer Conference, 1978.

[110] H. Sung, R. Komuravelli, and V. Adve. DeNovoND: Efficient hardware
support for disciplined non-determinism. In Proceedings of the Interna-
tional Conference on Parallel Architectures and Compilation Techniques
PACT, 2011.

196 BIBLIOGRAPHY

[111] Tilera. TILEPro64 Product Brief I0186.
www.tilera.com/sites/default/files/productbriefs/TILEPro64 Processor ,
2011. PB019 v4.pdf Retrieved on 25-November-2013.

[112] J. Tong, I.Anderson, and M. Khalid. Soft-core processors for embedded
systems. Proceedings of the International Conference on Microelectronics,
ICM06, 2006.

[113] L. Ulander, H. Hellsten, and G. Stenstroem. Synthetic-aperture radar pro-
cessing using fast factorized back-projection. In IEEE Journal on Trans-
actions on Aerospace and Electronic Systems, vol. 39, 2003.

[114] A. Waterman, Y. Lee, D. Patterson, and K. Asanovic.
The RISC-V Instruction Set Manual version 1.0.
inst.eecs.berkeley.edu/ cs152/sp12/handouts/riscv-spec.pdf, 2012.
Retrieved on 5-December-2013.

[115] J. Wawrzynek, D. Patterson, M. Oskin, Shin-Lien Lu, C. Kozyrakin, J.C.
Hoe, D. Chiou, and K. Asanovic. RAMP: Research accelerator for multiple
processors. 2007.

[116] V. Weaver and S. A. McKee. Are cycle accurate simulations a waste of
time? In Proceedings of the 7th Workshop on Duplicating, Deconstructing,
and Debunking, 2008.

[117] C. Wu, K. Liu, and M. Jin. Modeling and a correlation algorithm for
spaceborne sar signals. In IEEE Journal on Transactions on Aerospace
and Electronic Systems, vol. 18, 1982.

[118] Xilinx. 7 series FPGAs overview DS180 v1.5.
www.xilinx.com/support/documentation/data sheets/ds180 7Series
Overview.pdf, 2011. Retrieved on 25-March-2011.

[119] Xilinx. LogiCORE IP floating-point operator v5.0 ds335.
www.xilinx.com/support/documentation/ip d, 2011. ocumentation/float-
ing point ds335.pdf Retrieved on 7-June-2012.

[120] Xilinx. MicroBlaze Processor Reference Guide UG081 volume
12.0. www.xilinx.com/support/documentation/sw manuals/xilinx13 1/
mb ref guide.pdf, 2011. Retrieved on 25-March-2011.

BIBLIOGRAPHY 197

[121] Xilinx. LogiCORE IP block memory generator PG190, v7.3.
www.xilinx.com/support/documentation/ip documentation/blk mem ge,
2012. n/v7 3/pg058-blk-mem-gen.pdf Retrieved on 10-September-2013.

[122] Xilinx. Virtex-5 FPGA user guide UG190, v5.4.
www.xilinx.com/support/documentation/user guides/ug190.pdf, 2012.
Retrieved on 5-August-2013.

[123] J. Zebchuk, M.Qureshi, V.Srinivasan, and A.Moshovos. A tagless coher-
ence directory. In Proceedings of the 42nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO, 2009.

[124] H. Zhao, A. Shriraman, and S. Dwarkadas. Space: sharing pattern-based
directory coherence for multicore scalability. In Proceedings of the 19th
international conference on Parallel architectures and compilation tech-
niques , PACT, 2010.

	Summary
	Resumé
	Preface
	Papers included in the thesis
	Acknowledgments
	1 Introduction
	1.1 Contributions
	1.2 Thesis Outline

	2 Terminology
	3 Processor Core
	3.1 Introduction
	3.2 Related Work
	3.3 The Architecture of Tinuso
	3.3.1 Memory Hierarchy
	3.3.2 Predicated Execution

	3.4 Instruction Set Architecture
	3.5 Pipeline Architecture
	3.6 Hardware Implementation
	3.6.1 Register Forwarding
	3.6.2 Pipeline Anomalies
	3.6.3 First Level Caches
	3.6.4 Cache Controller

	3.7 Results
	3.7.1 Clock Frequency Study
	3.7.2 Branch Performance Study

	3.8 Conclusions

	4 Tinuso Toolchain
	4.1 Introduction
	4.2 GNU Compiler Collection Overview
	4.2.1 GCC Intermediate Representation
	4.2.2 GCC Frontend
	4.2.3 GCC Middleend
	4.2.4 GCC Backend

	4.3 Tinuso GCC
	4.3.1 Tinuso Machine Description
	4.3.2 Memory Access
	4.3.3 Predicated Instructions
	4.3.4 Delay Slot Scheduling
	4.3.5 Tinuso GNU Binutils
	4.3.6 Tinuso C Library

	4.4 Toolchain Evaluation
	4.5 Conclusions

	5 On-Chip Interconnect
	5.1 Introduction
	5.2 Related Work
	5.3 Architecture
	5.4 Implementation
	5.4.1 Packet Definition

	5.5 Results
	5.6 Conclusions

	6 Multicore Simulation Platform
	6.1 Introduction
	6.2 Related Work
	6.3 Implementation of the Communication Interface
	6.4 Simulation Platform Components and Interfaces
	6.5 Scalability of Tinuso Multicore Systems
	6.6 Conclusions

	7 Tinuso Multicore for Synthetic Aperture Radar Data Processing
	7.1 Introduction
	7.2 Synthetic Aperture Radar Application
	7.2.1 Case Study Application
	7.2.2 Direct Back-Projection
	7.2.3 POLARIS Data Processing

	7.3 Related Work
	7.4 System Architecture
	7.4.1 Processing Element
	7.4.2 Interconnection Network

	7.5 Hardware Organization
	7.6 Results
	7.6.1 Speed and Resources
	7.6.2 Performance and Network Traffic
	7.6.3 Software Pipelined SAR

	7.7 Conclusions

	8 Programming Model and Runtime System
	8.1 Introduction
	8.2 Related Work
	8.3 Semantics
	8.4 Implementation
	8.4.1 Task Scheduling
	8.4.2 Cache Coherence

	8.5 Code Examples
	8.5.1 Parallel Matrix Multiplication
	8.5.2 SAR Direct Back-Projection Algorithm

	8.6 Costs
	8.7 Conclusions

	9 Conclusions
	A Application Binary Interface
	A.1 Data Representation
	A.2 Register Usage Conventions
	A.3 Stack Conventions
	A.3.1 Calling Convention
	A.3.2 Machine Specific Registers

	A.4 ELF File Format
	A.4.1 ELF File Sections

	B Instruction reference

