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Abstract

With the rapid development of information and communications technologies, the tradi-

tional network architecture has approached to its performance limit, and thus is unable to

meet the requirements of various resource-hungry applications. Significant infrastructure

improvements to the network domain are urgently needed to guarantee the continuous net-

work evolution and innovation. To address this important challenge, tremendous research

efforts have been made to foster the evolution to Future Internet. Long-term Evolution

Advanced (LTE-A), Software Defined Networking (SDN) and Network Function Virtual-

isation (NFV) have been proposed as the key promising network architectures for Future

Internet and attract significant attentions in the network and telecom community. This

research mainly focuses on the performance modelling and resource allocations of these

three architectures. The major contributions are three-fold:

1) LTE-A has been proposed by the 3rd Generation Partnership Project (3GPP) as a

promising candidate for the evolution of LTE wireless communication. One of the major

features of LTE-A is the concept of Carrier Aggregation (CA). CA enables the network

operators to exploit the fragmented spectrum and increase the peak transmission data rate,

however, this technical innovation introduces serious unbalanced loads among in the radio

resource allocation of LTE-A. To alleviate this problem, a novel QoS-aware resource al-

location scheme, termed as Cross-CC User Migration (CUM) scheme, is proposed in this

research to support real-time services, taking into consideration the system throughput,
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user fairness and QoS constraints.

2) SDN is an emerging technology towards next-generation Internet. In order to

improve the performance of the SDN network, a preemption-based packet-scheduling

scheme is firstly proposed in this research to improve the global fairness and reduce the

packet loss rate in SDN data plane. Furthermore, in order to achieve a comprehensive and

deeper understanding of the performance behaviour of SDN network, this work develops

two analytical models to investigate the performance of SDN in the presence of Poisson

Process and Markov Modulated Poisson Process (MMPP) respectively.

3) NFV is regarded as a disruptive technology for telecommunication service providers

to reduce the Capital Expenditure (CAPEX) and Operational Expenditure (OPEX) through

decoupling individual network functions from the underlying hardware devices. While

NFV faces a significant challenging problem of Service-Level-Agreement (SLA) guar-

antee during service provisioning. In order to bridge this gap, a novel comprehensive

analytical model based on stochastic network calculus is proposed in this research to in-

vestigate end-to-end performance of NFV network.

The resource allocation strategies proposed in this study significantly improve the

network performance in terms of packet loss probability, global allocation fairness and

throughput per user in LTE-A and SDN networks; the analytical models designed in this

study can accurately predict the network performances of SDN and NFV networks. Both

theoretical analysis and simulation experiments are conducted to demonstrate the effec-

tiveness of the proposed algorithms and the accuracy of the designed models. In addition,

the models are used as practical and cost-effective tools to pinpoint the performance bot-

tlenecks of SDN and NFV networks under various network conditions.
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Chapter 1

Introduction

With the rapid development of information and communication technologies, such as

Cloud Computing, Social Networks, Network Virtualisation and Content Distribution

Networks, the traditional network architecture has approached to its performance limit,

and thus is unable to meet the requirements of various resource-hungry applications

driven by streaming media, Ultra High Definition Video, enhanced reality, and Internet-

of-Things. Significant infrastructure improvements to the network domain are urgently

needed to guarantee the continuous network evolution and innovation. To address this

important challenge, tremendous research efforts have been made from both academia

and industry to foster the evolution to Future Internet. Recently, Long-Term-Evolution

Advanced (LTE-A), Software Defined Networking (SDN), and Network Function Virtu-

alisation (NFV) have been proposed as promising network architectures for Future Inter-

net and attracted significant research efforts. This research focuses on the performance

improvement of LTE-A, SDN and NFV through deriving the key performance metrics

and optimising the network resources.

This chapter is organised as follows: Section 1.1 points out the motivations and chal-

lenges in this research; The research aims and major contributions of this thesis are pre-

sented in Section 1.2. Finally, the overall organisation of this thesis is introduced in

1



Section 1.3.

1.1 Motivations and Challenges

Analytical modelling and resource allocation, as efficient approaches to optimise the per-

formance of the network system, have been attracted significant interests. Numerous

research results have been reported in the literature to investigate the analytical modelling

and resource allocation in LTE-A [1] [2] [3] [4], SDN [5] [6] [7] [8], and NFV [9] [10]

[11]. However, there are still some practical and open research issues related to resource

optimisation and performance modelling that need to be further tackled. For example,

(1) Carrier Aggregation (CA) is a primary feature for LTE-A architecture to achieve

large virtual carrier bandwidth. By combining multiple separate spectrums through CA,

telecommunication providers are capable of meeting the growing demands for the higher

transmission rate and the lower latency and jitter. While, due to the unique transmission

features such as interference and fading in wireless communication channels [12], CA

poses significant challenges for resource allocation and optimisation in LTE-A networks.

In addition, Quality-of-Service (QoS) is of critical importance for service provisioning

in wireless communication networks [13]. Therefore, how to optimise wireless network

resources to meet the strict user QoS in LTE-A networks with CA is a challenging and

timing issue [14]. There have been some research results appeared in the literature [15]

[16] [17], however, the majority of them mainly focused on independent Carrier Compo-

nent (CC) and did not exploit the statistic multiplexing gain among multiple CCs. This

problem becomes even more challenging in the presence of mobile users with different

requirements in terms of bandwidth, tolerance to delay, and reliability.

(2) Through decoupling the network control from the underlying network infrastruc-

ture in forwarding plane, SDN provides unprecedented network programmability and con-
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trol. A lot of research efforts have been made to leveraging these benefits provided by

SDN to improve the network innovation and performance of Future Internet. However,

most of the existing research sets simple assumption in their study, adopting First-In-

First-Out (FIFO) packet scheduling as the primary approach to process arrival packets.

Although, FIFO has been widely considered as an effective approach in the literatures

[18], it incurs serious issues of low global fairness and performance degradation in SDN

paradigm due to the inherent feature of SDN-feedback control loop between data plane

and control plane. In order to fully release the potential of the SDN architecture, there

is a need to design a more effective packet scheduling algorithm in the SDN network to

improve the overall performance of data forwarding.

(3) Analytical modelling is an efficient approach to quantitatively investigate the per-

formance of network systems [19] [20] [21] [22] [23] [24]. For SDN networks, several

research results of analytical modelling have been recently reported in the literature [5] [6]

[7]. Among those studies, analytical modelling has demonstrated its superiority in terms

of cost-effectiveness in the evaluation of large-scale networks. However, for analytical

tractability and simplification, existing analytical models are derived based on the as-

sumptions that the network traffic follows the Poisson process which is suitable to model

non-bursty text data and the data plane is modelled by one simplified Single Server Single

Queue (SSSQ) system [25] [5] [26]. Recent measurement studies have shown that, due

to the features of heavy volume and high velocity, the multimedia big data generated by

real-world multimedia applications reveals the bursty and correlated nature in the network

transmission [27] [28] [29] [30] [31]. Therefore, in order to achieve a deep understanding

of SDN architecture, there is an urgent need to develop a comprehensive analytical model

to capture the bursty and correlated feature of network traffic.

(4) Through decoupling the network functions from dedicated network devices, NFV
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brings network operators the significant reduction of Operational Expense (OPEX) and

Capital Expense (CAPEX) and the increased flexibility of service design, deployment and

management. There have been research efforts to investigate the performance of service

provisioning [9] [10] [11]. However, the existing work did not fully consider the dynamic

and on-demand features of the NFV service provision. Especially, the service capabilities

of VNFs are different due to their different network functions and also may change over

the whole life-cycle in the manner of on-demand [32]. Furthermore, the network functions

in NFV chain may be added, removed or modified, which form new NFV chain [33] to

continuously offer the satisfied performance. To the best of our knowledge, analytical

modelling and analysis of NFV network with the features of dynamic service and scalable

resource has not been reported in the existing literature. In order to fully harvest the merits

of NFV for network operators, there is a need and opportunity to use the probabilistic

features of stochastic network function to investigate the dynamic features of NFV.

1.2 Research Aims and Contributions

This research focuses on the performance improvement of SDN, NFV and LTE-A sys-

tems through mathematics modelling and resource allocation. The main objectives of this

research are:

• To propose a new resource allocation scheme for LTE-A system with CA with the

aim of providing the QoS guaranteed network service.

• To propose an efficient resource allocation scheme for SDN network to improve the

global fairness and reduce the packet loss probability in SDN data plane.

• To develop a comprehensive analytical model to quantitatively investigate the per-

formance limits of SDN networks under the bursty and correlated network traffic.
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• To develop a new stochastic analytical tool to capture the dynamic and on-demand

features of NFV networks and achieve the end-to-end performance of NFV service

chain.

To achieve the above objectives, this research develops new analytical models and

resource allocation strategies. The effectiveness and accuracy of the proposed models

and algorithms are demonstrated by extensive experimental results with various network

conditions. The original contributions of this research are summarised as follows:

• A novel QoS-aware resource allocation scheme, termed as Cross-CC User Migra-

tion (CUM) scheme, is proposed to support real-time services in LTE-A down-

link transmission with CA by jointly considering the system throughput, QoS con-

straints, and user fairness.

• A Peemption-based packet-scheduling scheme (P2S) is proposed to improve the

global fairness and reduce the packet loss rate in the SDN data plane. Compre-

hensive simulation experiments are conducted to demonstrate that P2S can achieve

better system performance compared to the traditional data plane packet scheduling

in terms of global fairness index and packet loss probability.

• An analytical model is developed to quantitatively evaluate the performance of P2S

scheduling scheme. The developed model can capture the loop control, limited

buffer resource, and preemption features of the P2S scheme. The developed model

is further leveraged to analyse and pinpoint the performance bottleneck of the SDN

architecture.

• A novel analytical model is designed for SDN networks subject to the input of

bursty multimedia traffic. The bursty and correlated nature of the traffic character-
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istics on each link and component of SDN network is captured. The QoS perfor-

mance metrics in terms of the average latency and average network throughput are

derived based on the developed analytical model.

• A versatile method is proposed by extending the Empty Buffer Approximation

(EBA) method to facilitate the decomposition of a Priority Queue (PQ) system

to two Single-Server-Single-Queue (SSSQ) systems. Compared with the EBA,

the proposed method takes the effects of higher priority queue into account and

achieves better analytical performance.

• A new stochastic analytical model based on stochastic network calculus is devel-

oped to investigate the end-to-end performance of NFV networks. Through jointly

exploiting leftover service and stochastic multiplexing technologies, the proposed

analytical model provides an efficient and effective approach to capture the dynamic

and on-demand features of NFV networks with the strict Service Level Agreement

(SLA) requirements.

1.3 Outline of the Thesis

The rest of this thesis is organised as follows.

• Chapter 2 introduces the background knowledge of this thesis, including the ar-

chitectures of SDN, NFV and LTE-A, CA, traffic models and analytical tool. A

detailed literature review on the analytical model and resource allocation of SDN,

NFV, and LTE-A is also presented.

• Chapter 3 designs a QoS-aware resource allocation scheme to support real-time ser-

vices in LTE-A downlink transmission by jointly considering the system through-

put, QoS constraints, and user fairness.
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• Chapter 4 proposes a new packet-forwarding scheme in the SDN data plane and

develops a new analytical model to investigate the performance of the proposal

scheme. The bottleneck of the SDN network is analysed and feasible solutions are

provided based on the developed model.

• Chapter 5 develops an analytical model for SDN networks with priority queue under

bursty traffic. The analytical model is used to investigate the effects of the flow-table

hit probability and resource allocations.

• Chapter 6 develops an analytical model for NFV networks based on stochastic net-

work calculus to investigate the end-to-end performance of NFV networks.

• Finally, Chapter 7 concludes the thesis and presents the future research work.
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Chapter 2

Background and Literature Review

LTE-A, SDN and NFV, as the promising network architectures for Future Internet, have

been attracted significant research interests. This chapter presents the background knowl-

edge and related work of LTE-A, SDN and NFV, with the focuses on the resource alloca-

tion and performance modelling. Firstly, the network architectures of LTE-A, SDN and

NFV will be presented in Sections 2.1. Then, Sections 2.2 and Section 2.3 will intro-

duce the fundamental knowledge and basic ideas of traffic models and analytical tools.

A detailed literature review in the area of resource allocation and analytical modelling of

LTE-A, SDN and NFV will be presented in Section 2.4. Finally, section 2.5 summaries

this chapter.

2.1 Emerging Network Architectures and Technologies

2.1.1 LTE-A Architecture

LTE-A is a promising technology that offers high-data-rate transmission for the fourth-

generation (4G) mobile communication systems [34] [35]. In order to satisfy the strict

technique requirements of International Mobile Telecommunications (IMT), LTE-A in-

herits all the characteristics of LTE, such as Orthogonal Frequency Division Multiple

Access (OFDMA) [36] for the downlink transmission to enable cost-efficient solutions
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for high peak rates and Single-Carrier FDMA (SC-FDMA) for the uplink transmission

to conserve power. Furthermore, several new technologies are proposed for LTE-A, in-

cluding Carrier Aggregation (CA), enhanced Multiple-input and Multiple-output (MIMO)

[37] and Coordinated Multi-Point (CoMP) transmission [38]. For supporting up to 100

MHz bandwidth, 5 Component Carriers (CCs) of 20 MHz are aggregated. The bandwidth

of each CC follows the configurations of LTE systems, including 1.4, 3, 5, 10, 15, and

20 MHz [39]. In addition, the support for CCs with various bandwidths offers significant

flexibility for efficient spectrum utilisation, and gradual re-farming of frequencies previ-

ously being used by other systems such as Global System for Mobile Communications

(GSM) [40] or Code Division Multiple Access (CDMA) [41].

Figure 2.1: LTE-A Systems with Carrier Aggregation Standardised by 3GPP

The structure for allocation of radio resource in LTE-A systems is described in Fig.

2.1 [14]. The eNB firstly carries out the admission control process, and then employs CC

assignment to allocate the users on different CCs [2]. Once all users are allocated by the

CC assignment, the packet scheduling is performed to assign time/frequency resources for

each of users allocated on different CCs, taking into account QoS requirements, system

efficiency and user fairness. According to the LTE specification in [42], radio resources

are divided into Resource Blocks (RBs) spanning over one-time-slot (1ms) in the time

domain and over one sub-channel (180kHz) in the frequency domain, which is the small-

est radio resource that can be assigned to a User Equipment (UE) for data transmission

during resource allocation.
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2.1.2 SDN Architecture

SDN is an approach to allow network administrators to manage network services through

the centralised controller. It was proposed to accelerate network innovation and flexible

deployment by decoupling the logic of the network control from the forwarding plane,

enabling network operators to gain unprecedented programmability, automation, and net-

work control [43] [44]. In order to advance the concept of SDN technology, Open Net-

working Foundation (ONF) published the white-paper for SDN and proposed a practical

network architecture for SDN as shown in Fig. 2.2 [45].

Application Policy

Network Service

Network Device Network Device Network Device

Network Device Network Device

Application Layer

Control Layer

Infrastructure Layer

SDN 
Controller

Northbound Interfaces

Southbound Interfaces

Figure 2.2: Three Layer SDN Architecture Proposed by Open Network Foundation

SDN architecture has three cooperative layers: infrastructure layer, control layer and

application layer [46]: the infrastructure layer provides network forwarding services un-

der the instructions of the control layer. The control layer maintains the network-wide

information to manage and optimise the overall network performance. SDN controller

uses southbound interfaces such as OpenFlow [47], Open vSwitch Database Manage-

ment Protocol (OVSDB) [48] and OpFlex [49] to communicate with the infrastructure

layer, and leverages northbound interfaces, for instance Restful APIs [50] to interact with

the application layer. The application layer creates various services, e.g., network topol-
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ogy discovery, virtual private network provisioning, and path reservations, based on the

received network information from the control layer. With the logically centralised control

of the network infrastructure, SDN enables the software intelligence to program networks

via the well-defined programmatic interfaces, which are highly customisable, scalable,

and agile to meet the requirements of transmission QoS.

OpenFlow is the first standard southbound communication protocol between the SDN

controller and network forwarding devices [51] and has been implemented in various

industry products [43]. In order to identify the network traffic and conduct various net-

work functions, OpenFlow protocol defines three domains in the flow table of network

devices, including match field, action field and statistic filed. The match field uses IP

5-tuple (source IP, source port ID, destination IP, destination port ID and protocol in use)

to match the arrival packets based on the pre-defined rules. The action field stores the

forwarding and routing information for the arrival packets. The statistics field is used to

count the number of the packets that hit the match field. The statistical data would be used

by the up-level application and service to detect or implement certain security process-

ing. With OpenFlow, SDN controller is capable of accessing the flow table, collecting the

statistics data and modifying the flow table to realise the intelligent network management

and service deployment.

2.1.3 NFV Architecture

NFV is an architectural approach that focuses on decoupling network functions such as

Network Address Translation (NAT) [52], Access Control Lists (ACL) [53], Layer 3 rout-

ing [54], Intrusion Prevention and Intrusion Detection Systems (IPS and IDS) [55], and

more from the underlying hardware platform [56]. Allowing such functions to run in-

side virtual machines, on top of standard x86 servers, increases the deployment flexibility
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in the network. With the help of NFV, network functions are released from the specific

underlying network devices and can be installed or re-installed on any general network

servers. This kind of network function migration brings significant benefits for network

operation and maintenance. For instance, in the era of 5G, the condition that services and

applications become more complex, dynamic and resource hungry, poses a huge challenge

for the network service provisioning. NFV provides higher flexibility and programmabil-

ity and faster innovation and enables new opportunity for network operator to enhance

network management. Furthermore, NFV helps network service providers address a criti-

cal issue for their business: high Total Cost of Ownership (TCO) and low revenue. For in-

stance, in order to continuously meet the user requirements for more resource-hungry and

diverse applications, network service providers have to purchase expensive and dedicated

physical network equipment, and train high skilled engineers to operate and manage these

devices, which involve a huge amount of TCO for service provisioning. However, for the

network service providers, these higher CAPEX and OPEX cannot be easily translated

into high subscription fees, as they have learned that due to the high competition, both

among themselves and from services being provided over-the-top on their data channels,

increasing prices only leads to customer losses. Through deploying the network func-

tions on common services rather than purchasing new dedicated devices, NFV provides a

good solution for network service providers to reduce their CAPEX and OPEX [57], as

the common server and network functions can be dynamically re-used in the manner of

on-demand.

In order to realise the ambition of NFV technology, European Telecommunication

Standards Institute (ETSI) proposed an NFV architecture [58] to guide the implementa-

tion and management of NFV, which consists of three main components, NFV Infrastruc-

ture (NFVI), Virtual Network Functions (VNFs) and NFV Management and Orchestration
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(MANO) as shown in Fig. 2.3.

OSS/BSS Orchestrator

VNF Manager

Virtualised
Infrastructure 

Manager (VIM)

EMS EMS

VNF1 VNF2

EMS

VNF3

Virtual
Computing

NFV Infrastructure
Virtual
Storage

Virtual
Networking

Figure 2.3: MANO NFV Architecture Proposed by European Telecommunications Standards In-
stitute

NFVI in the bottom of Fig. 2.3 is the combination of the various virtual and hard-

ware resources, including network, storage and computing resources. It is responsible for

preparing, deploying and adjusting virtual resources to satisfy the operating requirements

of the VNFs [59]. VNFs in the middle of Fig. 2.3 are the software modules of network

functions that can be deployed on the virtual resources provided by NFVI. NFV MANO

in the right side of Fig. 2.3 is the management and orchestration platform for VNFs

and NFVI, consisting of Virtualised Infrastructure Manager (VIM), VNF Manager and

Orchestrator. NFV MANO interacts with the right side of NFV architecture through ref-

erence points for the purpose of managing and orchestrating NFVI and VNFs. Different

interfaces are defined to exchange the information among function blocks. Within NFV

MANO, Orchestrator is responsible for the communication with the OSS/BSS to achieve

the service and SLA information. Orchestrator analyses the received information from

two areas: what kind of VNFs are needed to build the service chain to deploy the network

service, and which kind of resource are needed to support the selected VNFs. Orchestra-

tor sends the analysed information to VNF Manager and Virtual Infrastructure Manager

(VIM). VNF Manager is charging for the VNF configuration to deploy NFV chains, in-

cluding building, maintaining and tearing down the NFV chain; and VIM implements the
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resource virtualisation and allocation to guarantee the Service Level Agreement (SLA) of

NFV chain.

2.2 Traffic Models

In order to comprehensively investigate the performance of future network architecture

under various multimedia traffic, the network traffic entering the network devices will be

modelled by Poisson process and Markov Modulated Poisson Process (MMPP).

2.2.1 Poisson Process

Poisson process is one of the most well-known model to characterise the traffic in net-

work system [60]. It has been widely used to analyse the system performance with the

input of the non-bursty traffic, such as message and email data [61]. For Poisson process,

the inter-arrival time follows the exponential distribution with arrival rate, l , denoted

as P(Ta  t) = 1� e�l t with t � 0. Poisson traffic exhibits a number of important and

convenient properties, for instance, the superposition of multiple independent Poisson

process with arrival rate, li and 1  i  N, results in a new Poisson process characterised

by lt , calculated as lt = ’N
i=1 li; the number of arrivals in disjoint intervals is statisti-

cally independent, which is known as independent increment property [60]. Given a time

interval, t, the number of arrivals, N(t), of Poisson process follows the distribution of

P(N(t) = n) = (l t)n

n! e�l .

2.2.2 Markov Modulated Poisson Process (MMPP)

In order to capture the bursty and correlated feature of network traffic, the traffic entering

SDN switch will be modelled as MMPP in this research, which is a doubly stochastic

Poisson process with the arrival rate varying according to an irreducible continuous-time

Markov chain [62] [63]. Due to the capability of capturing the time-varying arrival rate,
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MMPP is an effective tool for modelling bursty and correlated traffic [64] [65]. In addi-

tion, the superposition and splitting operations of MMMPs generate a new MMPP [66]

[67], facilitating the derivation of the analytical model in the complex network environ-

ment. A two-state MMPP has been widely used to investigate the performance of the net-

work [68] [69] and is parameterised by an infinitesimal generator matrix of the Markov

chain and an arrival rate matrix as follows

Qi =

2

664
�j1i j1i

j2i �j2i

3

775 Li =

2

664
�l1i 0

0 �l 2i

3

775 (2.1)

where j1i is the transition rate from state 1 to 2, and j2i is the rate out of state 2 to 1. l1i

and l2i are the traffic rates when the Markov chain is in states 1 and 2, respectively. The

subscript, i, denotes the type of the queue where the traffic arrives within the SDN archi-

tecture, e.g., low priority queue, high priority queue, Uplink Channel (UC) and Downlink

Channel (DC) queues and the controller queue in SDN networks. Then, the mean arrival

rate, l

m
i , of MMPPi can be given by

l

m
i =

l1ij2i +l2ij1i

j1i +j2i
(2.2)

2.3 Stochastic Network Calculus

The traditional queuing theory focuses on the steady state of the network behaviour, and

is dedicated to achieving the end-to-end average network performance [70]. While, com-

pared with the queueing theory, the stochastic network calculus focuses on achieving the

end-to-end performance bounds and conducting the QoS analysis from the worst case

perspective. The aim of the stochastic network calculus is to probabilistically investigate

the capability of providing a QoS-guaranteed service of the network infrastructure with
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the constraints of network resources [71]. For instance, the QoS guarantee requirements

for a network infrastructure have the following form,

P(Delay > x) e or P(Loss > x) e (2.3)

where x is the targeted delay and loss; e is the permissible violation probability. The aim

of stochastic network calculus is to give the relationship between x and e .

In stochastic network calculus, the time is discrete [72] [73] and t , n , and t are used

to denote the discrete time. During the time interval [0, t], the cumulative traffic generated

by the end user is denoted as A(t); the service available at the system is S(t), and the

cumulative departures from the system is D(t). Assume that the server is a lossless and

work-conserving server, which means there is no packet loss during the service and the

server would not stop until the buffer is empty. It is easy to get that A(t), S(t) and D(t) are

non-negative and non-decreasing functions. At the start of the time 0, A(t), S(t) and D(t)

are assumed to be 0. Further, the notation A(t, t) denotes the cumulative traffic arriving

at time interval [t, t] and is equal to A(t)�A(t). S(t) and D(t) have the similar notations

as S(t, t) and D(t, t). According to dynamic server in [72], the relationship between A(t),

S(t) and D(t) can be expressed as

D(t)� min
t2[0,t]

{A(t)+S(t, t)} (2.4)

The right side of the above inequality achieves its minimum when t is equal to the

beginning time, t

⇤, of the last busy period before t. At time t

⇤, the queueing buffer is

empty and A(t⇤) = D(t⇤). The backlog at time t can be defined as B(t) = A(t)�D(t),

which comprises both the bits in the buffer and in the service. From Eq. (2.4), B(t) can

be described as follows,
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B(t) max
t2[0,t]

A(t)+S(t, t) (2.5)

In [74], the system delay at time t is defined as

W (t) = min{n � 0,A(t) D(t +n)} (2.6)

which defines the time slot between the arrival and departures for bits that arrive at the

system at time t. In network calculus theory, min-plus convolution denoted as operator
N

is introduced to simplify the complex equation derivation.

(A⌦S)(t) = max
t2[0,t]

{A(t)+S(t, t)} (2.7)

Then Eq. (2.4) can be simplified as D(t)� (A⌦S)(t). Min-plus convolution is very useful

for deriving the end-to-end network performance, as it inherits some useful properties

from the classic convolution, such as associativity with the condition of independence.

2.4 Literature Review

There has been a significant amount of work on LTE-A, SDN, and NFV. In this section, the

existing work related to resource allocation and performance modelling of LTE-A, SDN,

and NFV will be surveyed. The contributions of this research will also be discussed.

2.4.1 Resource Allocation in LTE-A

Resource allocation is of utmost importance for LTE-A networks, as the optimal process-

ing of the resource allocation can bring great system performance improvement [1] [3].

Therefore, a lot of research results [75] [76] [77] [78] [79] [80] [81] have been reported

in the literature to find the low complexity, high utilisation and QoS guaranteed resource
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allocation approaches. Within wireless 4G communication networks, such algorithms

should consider the transmission quality of the wireless channel, user mobility, expected

QoS requirements and overall system utilisation.

In [75], a decoupled time and frequency domain packet scheduling algorithm was

proposed to study the performance of the dynamic packet scheduling of 3GPP Universal

Terrestrial Radio Access Network (UTRAN) downlink. The simulation results were col-

lected with different 3GPP macro scenarios and showed that the fairness of the resource

allocation can be improved by adopting the time-frequency resource allocation strategy.

Following [75], Monghal et al. [76] extended the decoupled time and frequency domain

packet scheduling approach by introducing frequency domain metric weighting and Time

Domain Priority Set Priority (TD-PSS) to investigate the throughput fairness of OFDMA

downlink transmission. In [77], a multiuser scheduler with Proportional Fairness (PF)

was proposed for the downlink of LTE cellar communication network with the fairness

among users considered. The simulation results showed that compared with the well-

known maximum rate algorithm [78], the proposed algorithm achieved the better fairness

performance with a slight loss in terms of transmission throughput.

The above research work studied the improvement of throughput and the user fair-

ness in packet scheduling, however, did not pay attention to the QoS requirement of the

packet loss probability and delay. In this context, there have been many studies focusing

on ensuring timely transmission for real-time traffic, providing guarantees on the packet

transmission delay. For instance, for supporting the real-time traffic with multi-level de-

lay constraints, a dynamic packet scheduling scheme was proposed in [79] for OFDMA

system. According to users0 delay constraint level, a mathematical model was developed

in the proposed scheduling scheme to make the resource allocation decision, which de-

termines whether the head-of-the-line packets should be transmitted within the current
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OFMDA Transmit Time Interval (TTI) or the next TTI. Numerical results showed that the

proposed algorithm outperforms the round robin scheme, exponential scheduling scheme

as well as the Modified Largest Weighted Delay First (M-LWDF). To provide the real-

time services, M. Assaad in [82] investigates the similar problem to [79] by deriving the

differentiated behaviours of the diverse average delay constraints. Furthermore, the re-

source allocation with the aim of maximising the total achievable throughput for multiple

users with diverse QoS requirements was investigated in [80] as an optimisation problem.

By intelligently assigning the priorities of different users with multimedia traffic, Chung

et al. [16] studied the problem of enhancing system throughput while guaranteeing the

QoS requirements in terms of average packet delay. Simulation results demonstrated that

compared with the traditional resource allocation schemes, the proposed algorithm pro-

vided the better system performance in terms of throughput and fairness and achieved

the guarantee of QoS requirements with heavy traffic load. Based on the information of

channel state and queue length, a sub-optimal resource allocation algorithm for provid-

ing delay guarantee was proposed in [83]. With the information of user wireless channel

quality and queue state information, the proposed algorithm classified all users into three

categories and allocated the time-frequency resource blocks to three user categories in

turn. Through differentiating the resource allocation, the proposed algorithm was proved

to have the merits of reducing the data rate and improving the resource exploitation rate.

It can be seen that the above research work of resource allocation in 3G/4G networks

focused on the system throughput, allocation fairness and average transmission latency,

while did not consider the guarantee of QoS performance, including packet transmission

delay. For resource-hungry application and service with strict QoS requirements, such

as on-line gaming and interactive social events, it is not sufficient just to provide the

guarantee on average transmission latency, but more necessary to enforce guarantees on
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the upper bound of packet delays. In this area, a unified framework was proposed in

[84] to provide the real-time service through utilising the stochastic approximation tools

and convex optimisation, however, when this strategy is transplanted from LTE system to

LTE-A system, there are some problems needed to be carefully dealt with, such as high-

complexity and backward compatibility. In addition, a two-level downlink scheduling

algorithm was proposed in [81] for real-time multimedia services in LTE networks. The

proposed algorithm provided good performance of user fairness and has overcome the

limitation of many prior works, however, it did not consider the users who has the pending

data approaching to the deadline, and may experience a sudden decrease of the channel

quality. For avoiding the violation of the target delay, the Head-of-Line (HoL) packets

that need to be transmitted in present frame are not fully guaranteed in the design of

[81], which may lead to serious packet loss especially for the edge-cell users, since the

data quota calculated by the upper level frame in [81] is larger than that of HoL flows;

if the arrival traffic becomes heavier due to service fluctuation, more radio resource will

be allocated in [81] to the quota of the users who have good channel condition; in this

case the edge-cell users would be forced in the situation of resource starvation. In order

to address this issue, the performance of the edge-cell should be enhanced by taking into

account of the HoL packet expiration; compared with the flows that sill have chance in

the future TTIs, the flow approaching the deadline should be given a higher priority in the

resource allocation to avoid the packet lost.

In addition, CA is one of the key technologies in LTE-A towards meeting the required

wider bandwidth by aggregating multiple existing LTE carriers together [85]. In CA, LTE

and LTE-A users are assigned into different CCs to maximise the diversity gain from the

resource allocation perspective. However, the operation of user assignment would intro-

duce the serious load unbalance among different CCs that one CC0s load is much heavier
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than that of the other CCs due to the different channel quality experienced by mobile

users. Load unbalance coupled with the issue of the QoS guarantee pose a challenging

problem for resource allocation in LTE-A system. This problem becomes even more chal-

lenging in the presence of mobile users with different requirements in terms of bandwidth,

tolerance to delay, and reliability.

2.4.2 Resource Allocation and Analytical Modelling in SDN

Resource allocation and analytical model are critical for SDN networks. This section

surveys the latest work in the area of resource allocation and analytical modelling in the

literature.

2.4.2.1 Resource Allocation of SDN Networks

SDN allows the underlying network to be programmed by the control plane, which makes

it easier for the network provider to dynamically control and manage network resource

and create value-added services. In this context, several research efforts [86] [87] [88]

[89] [90] [91] [92] have been made in the area of the resource allocation to optimise the

overall operation for SDN networks and leverage the capability of SDN networks to vir-

tualise, deploy and manage emerging applications and services. For instance, in order

to jointly optimise application performance and network utilisation, Wang et al. in [86]

proposed an application-aware network resource allocation through SDN controller and

optical switching. In order to overcome the limited rule space of SDN devices, Dong et al.

in [87] designed a two-level rule space strategy in data plane and a novel cache prefetching

mechanism to increase the utilisation of network resources. The novelty of this work is the

integration of the modification of the flow entries with the prediction of the user mobility

to significantly increase the hit probability of the flow table. Authors in [88] leveraged

the capability of SDN architecture to realise the virtualisation of radio access network and

21



optimise the resource allocation for Internet of Things application. In order to provide re-

configurable networks for social big data analytics, a big data processing system powered

by SDN was designed in [89] through integrating the transmission of SDN networks and

the processing of Hadoop architecture. This work exploited the potential of SDN to build

a high-performance network infrastructure among different processing units to accelerate

the overall data processing; Li et al. [90] proposed an OFScheduler based on OpenFlow

and used as a network optimiser for optimising MapReduce operations in a heterogeneous

cluster. Qin et al. [91] designed a framework that employs SDN elements in Hadoop to

reduce the time taken by data to reach the distributed processing nodes. Within each pro-

cessing nodes, an online deduplication energy approach is developed in [92] to minimise

the energy cost in data centre.

Although existing SDN work has made significant progress in network management

and operation by leveraging SDN centralised controller, little attention is paid to the per-

formance improvement in the data plane. Based on the separation of the control and data

planes, network logics are implemented in a logically centralised controller; most of the

existing work assumed that network switches should become as simple as possible, and

adopted First In First Out (FIFO) scheme in data plane to process the arrival packets.

Although, FIFO has been widely considered an effective approach to allocate network re-

sources [18], it incurs serious issues of low global fairness and performance degradation in

SDN paradigm, due to the inherent feature of SDN - feedback control loop between data

plane and control plane. Therefore, there is an urgent need to develop an efficient packet

scheduling in SDN networks to improve the global fairness and overall performance.
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2.4.2.2 Analytical Modelling of SDN Networks

Due to the explosive growth on the volume of Internet traffic and the ever-increasing QoS

requirements of emerging network applications, there have been timely and pressing de-

mands to study the performance of SDN networks. Currently, the performance of SDN

networks are mainly investigated by simulation experiments and analytical modelling.

For the simulation experiments, Naous et al. [93] firstly implemented the OpenFlow Eth-

ernet switch on the NetFPGA platform to provide high throughput and low complexity

of forwarding switches. Antichi et al. [94] extended Naous work by designing a flexible

OpenFlow based forwarding architecture through regular expression with the aim of sup-

porting more network applications in data plane. The switches in the proposed architec-

ture are capable of storing up to 200K flow information while satisfying the requirement

of line rate processing. Bianco et al. [95] extended the OpenFlow switch implementa-

tion to the Linux platform based on OpenFlow specification, also meeting realistic line

rates. These implementations of OpenFlow switches, however, were only realised on sin-

gle platform, lacking the support for cross-platform implementation. To fill this gap, in

[96], a modular and parameterised implementation of a hardware-based OpenFlow switch

was proposed to implement SDN on three different platforms, i.e., NetFPGA, ML605 and

DE4. Through performance comparison, this study showed that the switch design can be

implemented on different platforms with minor performance variations.

As compared to simulation, analytical modelling has the potential to offer a signif-

icant reduction of the computation resource and time required for achieving the system

performance [97] [98] [99] [100], especially when large-scale Internet with high-volume

big data is considered in [12]. Azodolmolky et al. in [5] analysed the performance of

the SDN architecture through exploiting the network calculus theory and achieved the

boundary condition of the transmission latency and queue length. Based on the mea-
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surements of the switching time in hardware OpenFlow switch, Jarschel et al. in [25]

proposed an analytical model for SDN networks to estimate the packet sojourn time and

packet loss probability. Mahmood et al. in [26] extended the work in [25] to investigate

the performance of the SDN architecture with multi-node condition. In this study, both

the data plane and control plane were simply modelled as M/M/1 queues. Furthermore,

for analytical tractability and simplicity, all these existing models for SDN networks were

primarily developed under the nonbursty Poisson arrivals. For big data transmission, the

traffic patterns typically exhibit bursty and correlated nature. For instance, Beck et al.

[28] revealed that the procedures of the big data analytics lead to the high burstness dur-

ing the data transmission and more dynamic resource allocation are required to meet the

QoS/QoE requirements. The authors in [27] discovered that the traffic behaviour of the

big data exhibits the larger bursty at the range of 10-1000 microsecond. Liu et al. in [30]

analysed the four popular big data applications (Hadoop, Spark, Shark and Impala) run-

ning on the experimental clusters. The real traffic was collected from the communications

among these applications. The experimental results showed that the big data traffic results

in the higher use of the network in a short time and exhibits the high degree of fluctuations

and burstiness. Although the transmission of the big data presents the bursty pattern and

significantly affects the provisioning of the network services, none of the existing analyt-

ical models for the SDN networks is capable of capturing such realistic characteristics.

There is an urgent need to develop an analytical model that could accurately predicts the

performance of SDN networks under the traffic patterns exhibited bursty and correlated

features.
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2.4.3 NFV and Analytical Modelling of Service Chains

Due to its profound impact in the future network, NFV has gained global awareness [101]

[102] [103] and leads to a lot of research results reported in the literatures, for instance,

to tackle the problem of the optimal Virtual Network Function (VNF) placement, Xia

et al. [32] formulated this problem as a binary integer programming for minimising the

overall optical/electronic conversions and designed a heuristic algorithm to achieve high

computation efficiency. Moens et al. [33] addressed the similar problem through formu-

lating the placement problem as an integer linear program with the aim of allocating a

service chain onto the physical network minimising the number of servers used. In order

to improve the performance of the NFV virtualised network to achieve the comparable

performance with that of the network function deployed on the dedicated network device,

Ge et al. [101] firstly conducted the comprehensive research and determine that industry

standard servers may not provide satisfied performance for some network functions, such

as DPI and NAT, and highlighted that hardware acceleration technology is a good alter-

native for improving the performance for VNFs. Yamazaki et al. [104] deployed virtual

DPI on Application Specific Instruction-set Processor (ASIP) and achieved much better

performances. Compared with ASIP solution, Intel [105] proposed a set of Data Plane

Development Kit (DPDK) to accelerate the packet processing speed in the VNFs, which

has been adopted by many vendors during designing their NFV solutions. In the standard-

isation process of NFV architecture, ETSI [106] launched the specification of “Network

Function Virtualisation Performance & Portability Best Practises” to identify the perfor-

mance requirements for Virtual Machines (VMs) and hardwares to assure predictable high

performance. Experimentation tests were conducted in both bare metal and virtualisation

environments for NFV use cases, such as DPI, C-RAN, BRAS, etc. The specification

concluded that the predictable high performance could be achieved through following the
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best practices listed in the specification. In addition, China Mobile conducted extensive

field trails to test the performance of NFV and SDN architectures in C-RAN; the results

from China Mobile report in [107] showed that common hardware can support multi-RAT

technologies and achieve the comparable performance with traditional systems. The ex-

isting research work has achieved a lot of progresses in the performance improvement of

NFV network, however based on the simulation trails, existing study can not accurately

and quantitatively investigate the performance for the NFV architecture, especially with

large scale and complex network configurations.

Modelling and analysis of the network functions and service has been a very chal-

lenging and attracts tremendous research efforts [108] [109] because analytical models

can capture the inherent features of a complex system and yield significant insights into

the system design and performance in a cost-effective way. For performance modelling

and analytics, most of the existing studies appealed to the queueing theory [70], which

is a fundamental mathematical approach to capture the behaviour of the network system.

The classical queueing theory focuses on the average quantities in the equilibrium and

derives the average system performances such as average latency, throughput and packet

loss probability, however, for the QoS guarantee, it can be hardly used to investigate the

performance of the service-guaranteed system due to the dynamic and on-demand fea-

tures of the service provisioning. In this area, stochastic network calculus [73] [72] [74]

has attracted research interests. Instead of giving the average performance metrics, it de-

rives the worst-case of system performance. For instance, in order to achieve the available

bandwidth, Lubben et al. [108] explored the properties of stochastic min-plus linear sys-

tem theory, which expresses bandwidth availability in terms of bounding functions with

defined violation probability, and accurately estimated the available bandwidth with ran-

dom server in wireless communication system. This work, however, is only focusing on
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modelling the service capability of the access network, lacking the support for modelling

the end-to-end service provisioning. As a result, a new model was developed in [109]

for characterising the service capability of the converged networks, from access network,

core network, to datacenter networks. The analysis technique was developed with the

aim of achieving the delay performance of the converged infrastructure and generally ag-

nostic to the specific network implementation. However, this work did not consider the

on-demand feature of the service provision; especially, when the service capabilities of

VNFs are different due to their different network functions and also may change over the

whole life-cycle in the manner of on-demand. Furthermore, the network functions in NFV

chain may be added, removed or modified in order to continuously offer satisfied perfor-

mance and forms new NFV chain. To the best of our knowledge, analytical modelling

and analysis of NFV network with the features of dynamic service and scalable resource

has not been reported in the existing literature.

2.5 Summary and Contribution

This chapter firstly introduced the fundamental knowledge of the network architectures

of LTE-A, SDN and NFV; then the traffic patterns and the analytical tools that will be

used in the derivation of the analytical models, were presented. Finally, a detailed state-

of-the-art was given with focuses on the resource allocation and analytical modelling of

LTE-A, SDN and NFV. In order to bridge the gaps identified in the state-of-the-art of

Section 2.4, four aspects of innovation work are conducted in this study and will be in-

troduced in the rest of this thesis: 1). to address the unbalanced load problem coupled

with the issue of the QoS guarantee in LTE-A, a novel Cross-CC user migrating scheme

is proposed, which consists of three cooperative and complemented schedulers to define,

fulfil and optimise the transmission quotas in each TTI, with the aim of meeting QoS re-
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quirements and optimising the overall resource utilisation; 2). according to the OpenFlow

specification 1.3.3 [110], the queue structure in the forwarding devices is recommended

to be designed with multiple queues, therefore, a PQ based packet scheduling is proposed

in this research to improve the forwarding capability of SDN data plane; 3). in order to

achieve a fundamental understanding of the performance of SDN networks, two analyti-

cal models are developed in this research to comprehensively investigate the performance

of the SDN networks under the inputs of Poisson process and MMPP; and 4). in order

to quantitatively study the dynamic and on-demand features of NFV network, stochastic

network calculus is used in this research to achieve the capability of service guarantee in

NFV network; instead of giving the average QoS metrics, the proposed analytical model

based on stochastic network calculus provides the upper latency bound, which is very

useful for practical network service provisioning and network planning.
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Chapter 3

QoS-Aware Resource Allocation for

LTE-A system with Carrier

Aggregation

3.1 Introduction

Carrier Aggregation (CA) is regarded as a promising technique for LTE-A wireless com-

munications to satisfy the ever-increasing bandwidth requirements [39][111]. However,

this technical innovation puts forward new challenges on radio resource allocation in LTE-

A systems such as serious unbalanced loads among different Component Carriers (CCs).

To alleviate this problem, a Cross-CC user migration packet scheduling algorithm is pro-

posed to provide real-time service in the LTE-A downlink transmission with CA, jointly

considering system throughput, QoS constraints, and user fairness. The proposed scheme

has three cooperative components: the higher level scheduler, the lower level scheduler

and Cross-CC user migration scheme. (1) In the higher level scheduler, an innovative re-

source allocation algorithm defines frame-by-frame the amount of data that each real-time

source should transmit to satisfy its delay constraint. (2) Once the higher level has accom-
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plished its task, the lower level scheduler, every TTI, assigns Resource Blocks (RBs) using

the proportional fair algorithms to fulfil the transmission quotas defined by higher level

scheduler, by virtue of considering user average data rate in Proportional Fair (PF) algo-

rithm, lower level scheduler achieves a higher fairness among users. (3) When the lower

level scheduler finishes its allocation process, the base station will start the Cross-CC user

migration process, it is motivated by decreasing the unbalance degree among the different

CCs and will increase the system efficiency through globally utilising the resource of CCs

that have accomplished their quotas in advance.

The remainder of this chapter is organised as follows. Section 3.2 outlines the radio

resource allocation in LTE-A with focus on the architectural and physical aspects. Section

3.3 presents the proposed QoS-aware resource allocation scheme. The simulation results

are shown and analysed in Section 3.4. Finally, Section 3.5 concludes the chapter.

3.2 Carrier Aggregation in LTE-A System

According to 3GPP Release10 [112], CA is capable of aggregating several LTE CCs (e.g.

up to 5) to achieve a wider bandwidth; therefore, the maximum bandwidth for LTE-A

User Equipments (UEs) can be up to 5 CCs of 20 MHz. In this study, LTE-A user and

LTE-A UE are exchangeable. As CA leverages the existing LTE CCs to achieve the wider

bandwidth, LTE-A system provides seamless backward compatibility to LTE users as

shown in Fig. 3.1. The bandwidth of LTE CC supported by Rel-8 [113] specification is

1.4, 3, 5, 10, 15, and 20 MHz. Therefore, flexibility bandwidth can be achieved through

appropriate CC configurations. The minimum resource that BS could assign is RB as

shown in Fig. 3.2. For high-quality information transmission, the quality of the wireless

channel on all CCs should be firstly estimated by Rel08 and LTE-A users and feedback

to the base station (e.g. eNB); according to the received channel quality information,
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eNB performs various resource allocation strategies to provide network services. While

the mobile devices always have limited power and computation, the number of CCs a

user can support should be allocated as less as possible. While in order to maxmise the

multi-user scheduling diversity, following the work in [81], LTE-A users are assumed

to be allocated on all CCs, while the Rel80 users can only be assigned to one CC. The

optimisation of the number of the CCs is an important research and has been arranged as

future work in Chapter 7.

eNB

LTE UE

LTE UE

LTE-A User

LTE UE

LTE-A User

LTE-A User

Band A Band B
f

1CC lCC

...

Figure 3.1: Network Scenario of LTE-A System with CA
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Figure 3.2: Time-Frequency Resource Block in LTE-A System

According to Release10 [112], there are three CA scenarios that eNB supports in the

specification, including intra-band contiguous CA, intra-band non-contiguous CA and
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inter-band non-contiguous CA, as shown in Fig. 3.3;

• Intra-band contiguous CA: a contiguous bandwidth wider than 20 MHz is used by

CA as shown in Fig. 3.3a. In LTE, it is almost impossible to find such a wide

bandwidth based on existing frequency allocation strategy. While in LTE-A, new

spectrum band such as 3.5 GHz is harvested in the LTE-A scenario.

• Intra-band non-contiguous CA: multiple non-contiguous bandwidths in the same

spectrum band are aggregated by CA as shown in Fig. 3.3b. Different countries

have different spectrum allocation strategies, there are some individual and narrow

bandwidths that are not occupied by other communication system, which could be

utilised by CA in LTE-A system to form CCs and increase the spectrum utilisation.

• Inter-band Non-Contiguous CA: multiple contiguous or non-contiguous bandwidths

in different spectrums bands are aggregated by CA as shown in Fig. 3.3c, for

instance, bandwidths on 2GHz and 800MHz can be aggregated to form a wider

bandwidth [114]; Through exploiting the bandwidths on different spectrum bands,

LTE-A system achieves better performance in system performance and robustness

to user mobility. Low spectrum has good performance on signal penetration and

cell coverage, while high spectrum provides higher data transmission rates.

Band A Band A Band A Band B

f f f

Component 
Carrier

Component 
Carrier

Component 
Carrier

(a) (b) (c)

Figure 3.3: CA Scenarios in LTE-A System

CA provides the LTE-A system the benefit of the wider available bandwidth, how-

ever, it also introduces the additional challenge in radio resource allocation, for instance,
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in the second and three scenarios, the non-contiguous bandwidths in the same or different

spectrum bands may have different radio propagation characteristics; additional complex-

ity in the design of radio frequency components in user devices may be introduced and

advanced resource allocation algorithms are needed.

The support for both contiguous and non-contiguous CA of CCs with different band-

widths offers significant flexibility for efficient spectrum utilisation, and gradual re-farming

of frequencies previously being used by other systems such as e.g. Global System for

Mobile Communications (GSM) or Code Division Multiple Access (CDMA). While, the

non-contiguous CA scenarios have additional implications in the radio network planning

and the design of the Radio Resource Management (RRM) algorithms as shown in Fig.

3.4, for instance, different CCs would exhibit different path loss and Doppler shifts.

User Arrival

LTE-Advanced 
User?

Assign user to 
all CCs

Assign user to 
specific CC

Packet Scheduling 
per CC
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NO

Figure 3.4: Component Carrier Allocation for LTE-A and LTE Users with CA

3.3 Cross-CC User Migration Scheme

In this section, a novel QoS-aware scheme of resource allocation is developed for provi-

sioning real-time services in the downlink transmission of LTE-A. In order to achieve a

good trade-off among the system throughput, user fairness and QoS constraints, the pro-
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posed scheme is composed of three cooperative components as shown in Fig. 3.5. These

three components interact with each other to efficiently and dynamically allocate radio

resources to terminal users. According to the diverse delay requirements and the queue

lengths, the higher level scheduler calculates two types of transmission quotas frame-by-

frame: the transmission quota for Head-of-Line (HOL) packets and the transmission quota

from Long Term Perspective (LTP). The task of the lower level scheduler is to assign RBs

to fulfil two defined transmission quotas. In order to achieve a lower packet loss prob-

ability, the lower scheduler first offers service for HoL packets, since these packets are

more likely facing violation of the delay constraints. The Cross-CC user migration sched-

uler follows the lower level scheduler to assign more resources to the users that cannot

complete their transmission quotas. In this study, the proposed Cross-CC User Migration

(CUM) algorithm mainly improves the performance of the downlink communication and

will be implemented in the BS. In the following parts, these three cooperative components

will be separately investigated in detail.
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Figure 3.5: Structure of the CUM Scheme in LTE-A System
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3.3.1 The Higher Level Scheduler

In order to achieve guarantees on the absolute packet delays, the higher level scheduler

defines two types of transmission quotas as described above. These two quotas are com-

plementary to each other. The quotas for HoL are designed to obtain the lower packet

loss probability for guaranteeing the delay requirements when the quotas from LTP are

not completed by the lower level scheduler. On the other hand, successfully fulfilling the

quotas from LTP enables the systems to define the fewer quotas for HoL packets.

(1). Transmission Quotas for HOL Packets

For the real-time service provisioning, a packet failed to be delivered within its corre-

sponding delay requirement ti, will be considered lost [116]. As shown in Fig. 3.6, the

third packet with ti = 10 ms arrives within the nth frame. It should be transmitted in the

(n+1)th frame. However, due to the transmission impediments of wireless communica-

tions such as path loss and interference, the third packet is blocked and is still in the queue

at the end of the (n+1)th frame. As a result, it is dropped by the eNB. In order to avoid

dropping the HoL packets, in this part the higher level scheduler defines the transmission

quotas for HoL packets to give them the higher priority in resource allocation.

Packet
Arrival

( 1)n th− nth ( 1)n th+

Dropped

Packet 
Departure

Frame Frame Frame

Figure 3.6: Real-time Packets Operation in eNBs

Let xi(n) denote the queue length of the ith user at the nth frame. ai(n) and bi(n),

respectively, denote the numbers of packets that arrive in and depart from the queue during

the nth frame. Then the queue length of the ith user at the beginning of the (n+1)th frame
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can be calculated as follows:

xi(n+1) = xi(n)+ [ai(n)�bi(n)] (3.1)

For real-time services, the packets for the ith user arrive at the eNB during the nth frame,

then the deadlines of these packets are fixed as t(n)+ ti. Let Mi denote the number of

frames that the packets for the ith user should be delivered. Mi can be computed as:

Mi = ceil(ti/T T I) (3.2)

From the perspective of FIFO, in order to satisfy the delay requirement, the number

of packets departing from the queue from the (n+1)th to the (n+Mi�1)th frame should

be larger than those stored in the queue during the nth frame. Thus,

n+Mi�1

Â
z=n

bi(z)� ai(n) (3.3)

Transposing Mi �2 items from the left side of the above inequality, to the right side,

it can be equivalently rewritten as

bi(n+Mi �1)� max[ai(n)�
n+Mi�2

Â
z=n

bi(z),0] (3.4)

By imposing n+Mi �1 = n, the transmission quota for HoL packets can be obtained

and the above inequality becomes

b

s
i (n)� max[xi(n�Mi +1)�

n�1

Â
z=n�Mi+1

bi(z),0] (3.5)

where b

s
i (n) is the number of HoL packets for the ith user that should be transmitted
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during the nth frame so as to avoid packets loss. The higher level scheduler forms a

transmission set G(n), only the users that the corresponding transmission quota b

s
i (n) 6= 0

can be put in this set to receive the service from the lower level scheduler.

(2). The Transmission Quotas from LTP

In order to offer guarantees on the absolute bounds of packet delays, the higher level

scheduler calculates, from the long term perspective, the transmission quotas for each user

to meet delay constraints. Herein the long term perspective means the packets arriving in

the queue during the nth frame are distributed into n+Mi �1 frames for transmission. In

what follows, we will calculate the transmission quotas from LTP in each frame.

As defined in Eq. (3.6), xi(n) is the queue length for the ith user at the beginning of the

nth frame. Let hi(n) denote a pulse response that indicates the relationship between the

queue length and the transmission quota. Then the transmission quota from LTP, b

l
i (n),

can be described as following. The symbol ⇤ represents convolution.

b

l
i (n) = hi(n)⇤ xi(n) (3.6)

where the pulse response is given by:

hi(n) =
Mi�1

Â
z=0

ci(z)d (n� z) (3.7)

where Mi is calculated by Eq. (3.2), and ci(z) is the pulse response coefficients. To satisfy

the actual waiting time smaller than the delay requirements, ci(z) in the above equation is

designed as a strictly decreasing function and calculated as

ci(z) = 0, z = 0

ci(z) = Mi�z
Mi�1 , z = 1, ...,(Mi �1)

(3.8)
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The derivation of the transmission quota from LTP is based on a discrete-time linear

control theory [81].

b

l
i (n) = xi(n)+

Mi�1

Â
z=2

[xi(n� z+1)

�xi(n� z+2)�b

l
i (n� z+1)]ci(z) (3.9)

After obtaining the transmission quotas from LTP, the higher level scheduler estab-

lishes a transmission set G(n). Only the user that the transmission quota b

l
i (n) 6= 0 can

be put in this set and will receive the resources from the lower level scheduler when the

users in set F(n) have finished their transmission quotas.

3.3.2 The Lower Level Scheduler

The performance of the higher level scheduler is determined by the allocation results

from the lower level scheduler, thus the lower level scheduler plays a critical role in the

proposed CUM scheme. For achieving a higher level of fairness among different users,

the lower level scheduler adopts the PF algorithm in resource allocation[14]. The basic

principle is to assign the RBs to users with best metric mPF
i, j,k. To obtain this metric, the

lower level scheduler should have the information of the average transmission rate Ri(k)

and the instantaneous data rate r j
i (k) for the ith user during the kth TTI. The average

transmission rate is updated in every RB by

Ri(k) = eRi(k�1)+(1� e)Ri(k) (3.10)

where Ri(k) is the data rate transmitted by the ith user. The parameter e is used to tune

the trade-off between the spectrum efficiency and fairness. The larger value of e means

the better fairness. The smaller value of e results the worse fairness.
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Then the allocation metric mPF
i, j,k, the ratio of the instantaneous data rate r j

i (k) for the

ith user on the jth RB over the average data rate Ri(k), is calculated as follows:

mPF
i, j,k =

r j
i (k)

Ri(k)
(3.11)

It is worth noting that the proposed scheme is capable of guaranteeing the same

bounded delay by regarding a temporary channel quality drop or a sudden dramatic traffic

increase. It takes into consideration the left pending packets, scheduling them in the next

frame, allocating a greater amount of data to be transmitted and giving higher priorities

during Cross-CC user migration process, which will be discussed in the following part.

3.3.3 The Cross-CC User Migration Scheduler

Due to characteristics of wireless communications, the users achieving good channel qual-

ities may accomplish their transmission quotas in advance compared with their counter-

parts with poor channels, which results in serious unbalanced loads among CCs. In order

to relieve this problem, a Cross-CC user migration scheduler is designed in this part for

decreasing the unbalance degree of loads and assigning extra resources to the users that

are unable to accomplish their transmission quotas timely.

In the proposed scheduler, the users are no longer served by the fixed CC. The domi-

nant CC can be changed if there is any CC that has finished the allocated quotas. And in

order to keep the backward compatibility for LTE systems, the number of CC that LTE

users can communicate with is mandatory to be one. Then the specific procedure of user

allocation for the Cross-CC user migration scheduler presents as follows. When the lower

level scheduler has finished the resource allocation at the kth TTI, the eNB will check the

transmission set G(n) to see whether there is any empty set. If G(n) = Ø in the mth CC,

it is equivalent to the case that the quota in this CC has been finished. Then the eNB will
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select a user to receive the migration process from its dominant CC to the mth CC. In

order to enable the lower level scheduler to accomplish its allocation task timely, herein

the user that has the largest ratio of the remainder of transmission quota over the average

transmission rate will be selected.

Let Li(k) denote the data quota left for the ith user to transmit. ri(k) and ri, j(k) present

the average transmission rate and the instantaneous transmission rate during the kth TTI

on the jth RB, respectively. ri(k) is given by

ri(k) =
1

NRB

NRB

Â
j=1

ri, j(k) (3.12)

where NRB is the number of RBs available for the ith user to occupy. Then, the user

selection criterion is designed as:

i⇤ = argmax
i
(
Li(k)
ri(k)

) (3.13)

The mth CC will serve the selected user i⇤ in the rest of the TTIs during the nth frame.

By allowing users to change their dominant CC during resource allocation, the proposed

scheme improves the resource utilization from two aspects: 1) decreasing the resource

waste in the CC that has not accomplished its data quota, and 2) increasing the resource

utilisation in the CC that has fulfilled its allocated data quota.

3.4 Performance Evaluation

In this section, the performance of the CUM scheme is evaluated through a downlink

multi-cell LTE-A system-level simulator. We will first present the simulation scenarios,

including the cell topology, wireless channel, CC configuration and traffic generation

model. Based on the developed simulator, we will investigate the performance of the pro-
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Table 3.1: LTE-A System Simulation Settings

Parameter Setting/Description

Test scenario 3GPP Macro-cell case #1 (19 sites)

CA pattern 4 CCs at 2.0 GHz frequency, with 10 MHz per
CC

Number of PRBs per CC 50 (12 subcarriers per PRB)

Sub-frame duration 1 ms (11 OFDM data symbols plus 3 control-
symbols)

Modulation and coding
schemes

QPSK (1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4),16-
QAM (2/5, 9/20, 1/2, 11/20, 3/5, 2/3, 3/4, 4/5,
5/6) ,64-QAM (3/5, 5/8, 2/3, 17/24, 4/5, 5/6,
7/8, 9/10)

CQI reporting 1 CQI per 3 PRBs; 1.6 dB quantization step; log
normal error with 1dB standard deviation

Layer 2 PS Proportional-Fair

Transmission Block Error
Rate target

10%

Admission control con-
straint

Maximum 80 users per cell (Mixed user sce-
nario with 20% LTE-Advanced users)

Traffic type Poisson arrival with fixed queue length of 2
Mbits

posed algorithm compared with the well-known Two Level Downlink Scheduling (TLDS)

scheme.

3.4.1 Simulation Scenarios

The simulation environment is set based on 3GPP specification defined in [113]. A sce-

nario of 19 hexagonal cells is conducted with the reference cell surrounded by two ties

cells. The detailed system parameters and settings are listed in Table 3.1 [42] [116] [14].

The wireless channel is modelled in terms of distance-dependent path loss, shadowing

fading and multipath Rayleigh fading with each independent fading path generated by

Jakes Model [15]. The traffic flow for the user is modelled as the Poisson process.

The details of the simulation scenario is described as follows:
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• Multi-cell topology: the network topology in the designed LTE-A simulator con-

sists of 19 hexagonal cell as shown in Fig. 3.7. The centre cell provides the network

service for the UE in the middle; other 18 cells continuously generate the interfer-

ence and noise to the UE for simulating the practical network condition.

UE

Figure 3.7: Multi-cell Topology for LTE-A System Simulator

• CC configuration: 4 CCs are adopted at the spectrum band of 2.0 GHz; each CC

is assigned with the bandwidth of 10 MHz and has 50 Physical Resource Blocks

(PRBs); each PRB has 12 subcarriers; thus each CC has up to 600 subcarriers at

one time slot (1 ms).

Given the network topology and CC configuration, the structure of the LTE-A sim-

ulator is represented in Fig. 3.8, consisting of traffic generator module, user mobility

management module, channel generator module, eNBs and UEs.

• Traffic generator module: the maximum number of user per cell is set to be 80, 20%

of which is LTE-A users. The traffic generator module is used to simulate downlink

traffic from Internet to UEs; the traffic for the ith UE will be generated according to
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Poisson process with the generation rate li, in the unite of the packets per second.

The total traffic eNB received can be described as a Poisson process with arrival

rate lt , calculated by lt = Â80
i=1 li.

Traffic Generator Module

SINRMapping to
Transmission Rate

CUMScheduling
Algorithm

User Mobility
Management Module

Channel Generator
Module

Calculating SINRs and CQIs

eNBs

UEs

Uplink Downlink

Figure 3.8: Component Structure of LTE-A Simulator.

• User mobility management module: user mobility management module is used to

generate and manage UE locations; at the start of each simulation, the UEs will be

randomly positioned in the centre cell with coordinate [x,y], given a random speed

value, v, and a random mobility angle, q . During the simulation, the users will

move a certain distance in the centre cell at each TTI. User mobility management

module will use the following equations to update the UE locations:

xnew
i = xold

i + vi ⇤T T I ⇤ cos(qi) (3.14)

ynew
i = yold

i + vi ⇤T T I ⇤ sin(qi) (3.15)

In order to avoid the user cross the cell edge, user mobility management module will

check the distance between UEs to the eNB at each TTI and change the mobility

direction if the distance is larger than the cell radius. UE locations data generated

by the mobility module will be stored in an excel document in advance. During the
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Table 3.2: Channel Parameters in Hata Model

f (GHz) hB(m) hM(m) d(Km)

2 150 1 5

simulation, eNBs will read the position data from this file to acquire the locations

of UEs, calculate the channel quality and process resource allocation strategy.

• Wireless Channel Model: several factors are considered in the simulator to simulate

wireless channel, including shadow fading [117], multi-path Rayleigh fading [118]

and distance-related path loss [119].

• Pathloss model: Hata model [120] is widely used in wireless communications to

estimate the channel behaviour such as diffraction, reflection and scattering. As the

working spectrum is set to be 2 GHz, COST 231-Hata model [121] is used in the

simulator to estimate the path loss.

PHata = 46.3+33.9⇤ log( f/1MHz)�b(hB/1m)�a(hM/1m)+

(44.9�6.55log(hB/1m))log(d/1Km)+CM

(3.16)

The parameters in Eq. (3.16) are listed in Table 3.2, where f is the carrier frequency,

hB and hM are heights of BS and UE respectively, and d is the distance between BS

and UE.

For the small-medium network size, the value of CM in COST 231 Hata model is

set to be 0; and the values of a(hM), b(hM) are calculated by

a(hM) = (1.1log( f/1MHz)�0.7)⇤hM/1m�1.56log( f/1MHz)+0.8 (3.17)

b(hM) = 13.82log(hB/1m) (3.18)
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• Shadow fading: shadow fading, due to the presence of the large obstruction, ob-

scures the wireless signal between the eNBs and UEs. It is modelled by a log-

normal distribution with 0 mean and 8 dB of standard deviation in the simulator

[122]. Shadow fading for the ith UE on the jth RB at the time t is denoted as

Si, j(t).

• Multi-path Rayleigh Fading: Jake Model [123][124] is adopted in the simulator to

model the multi-path Rayleigh fading, denoted as Mi, j(t). Jake Model has good

characteristic to capture the effect of the user mobility such as Doppler effects.

With the path-loss model, shadow fading and multi-path Rayleigh fading, the overall

channel gain, Gi, j(t), can be calculated as [120]

Gi, j(t) = 10(Pi, j(t)/10) ⇤10(Mi, j(t)/10) ⇤10(Si, j(t)/10) (3.19)

Based on the achieved channel gain, UEs leverage the approach in [120] to calcu-

late the Signal Interference plus Noise Rate (SINR) and forward the SINR together with

Channel Quality Index (CQI) to eNB [125]; Once eNB receives the SINR and CQI infor-

mation, it maps the SINR to transmission rata that UEs can be achieved and conducts the

proposed CUM algorithm.

3.4.2 Performance Analysis

In this section, the performance results of the proposed CUM scheme are compared with

those of the Two-Level Downlink Scheduling (TLDS) scheme [81] which has been shown

to outperform the other existing scheduling strategies [2]. In order to fully evaluate the

performance of the proposed scheme, the performance comparison will be conducted in

three aspects: Packet Loss Probability, Average Queue Length and Throughput per User.
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Figure 3.9: Comparison of Packet Loss Probability.

3.4.2.1 Packet Loss Probability

Regarding real-time applications, the packet loss probability is a standard metric widely

used to evaluate the QoS offered by the system at network layer [81] [116] [2]. The packet

loss probability for the proposed CUM scheme is shown in Fig. 3.9. The performance

results of TLDS are also depicted. It can be seen from the figure that CUM achieves a

significant improvement over the TLDS; the gain is always greater than 40%. The reason

for achieving the improved performance can be explained as follows: for real-time ser-

vice, sudden temporary channel disturbance causes more packets facing the expiration of

deadline, and radio resource is limited in scheduler. As a result more packets are dropped

during data transmission. To alleviate this problem, the proposed scheme defines trans-

mission quotas for HoL packets, offering them extra priority for receiving radio resources,

and thus the lower packet loss probability is achieved.

3.4.2.2 Average Queue Length

The relative gain in the average queue length by adapting the proposed CUM scheme over

the TLDS is depicted in Fig. 3.10, subject to the different requirements for target delays.

It is shown that the proposed method provides the much lower average queue length com-
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pared with the TLDS. This is because, in the radio resource allocation, the transmitter

favors the users that are geographically closer to the eNB, and starves the further users,

which results into the high queue length for poor channel users. To relieve this problem,

the Cross-CC user migration scheduler migrates the users at the less advantageous po-

sitions to receive more radio resource from other CCs and yields good performance in

terms of the lower average queue length.
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Figure 3.10: Comparison of Average Queue Length.
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Figure 3.11: Comparison of Throughput per User.
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3.4.2.3 Throughput per User

Fig. 3.11 shows the throughput per user for both scheduling schemes with different delay

requirements. It can be seen that, when the delay requirement is 40ms, the proposed

CUM scheme outperforms TLDS. However, the gain gradually decreases as the delay

requirement increases. This change can be explained as follows. Adapting transmission

quota for HoL in resource allocation yields the better fairness for poor channel quality

users at the expense of system efficiency. To relieve this drawback, a Cross-CC user

migration scheduler is developed in CUM scheme to achieve high throughput per user.

However, the benefit is reduced with the increase of the target delay requirements, because

the larger value of Mi is defined in Eq. (3.2) for the lower delay demand and it will lead to

the lower transmission quota as calculated in Eq. (3.9). As a consequence, less migration

process will be implemented, which results in the lower throughput per user.

3.5 Summary

This chapter has investigated QoS-aware resource allocation for LTE-A system with CA,

taking into account the system efficiency, user fairness and QoS requirements. We have

proposed a novel resource allocation algorithm that consists of three components to ef-

ficiently and dynamically allocate radio resources to users, enabling LTE-A system to

achieve an improvement in real-time service provisioning and keep backward compatible

to LTE systems. The simulation results have demonstrated that the proposed scheduling

scheme outperformed the well-known Two-Level downlink scheduling scheme in terms

of the packet loss probability, average queue length and throughput per user.
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Chapter 4

Performance Modelling of

Preemption-based Packet Scheduling

for Data Plane in Software Defined

Networks

4.1 Introduction

Software Defined Networking (SDN) is proposed with the aim of simplifying network

management and improving service flexibility and has attracted considerable research

interests [93][94][95][91][90][126]. However, with the migration of the network logic

from data plane to SDN centralised controller, existing studies always assume that net-

work switches should become as simple as possible and adopts First In First Out (FIFO)

scheme in data plane to process the arrival packets. Although, FIFO has been widely

considered an effective approach [18], it incurs serious issues of low global fairness and

performance degradation in SDN paradigm, due to the inherent feature-feedback control

loop between data plane and control plane of SDN networks.
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To address this problem, this chapter presents a Preemption-based Packet-Scheduling

(P2S) scheme to improve the global fairness and reduce the packet loss rate in SDN data

plane. Different from equally processing the feedback packets from SDN controller and

those from other forwarding devices, P2S offers the high priority to the packets arriving

from the SDN controller for resource scheduling in the data plane. In order to quanti-

tatively investigate the performance of P2S, an analytical model is developed to capture

the loop control, limited buffer resource, and preemption features of the P2S scheme.

The developed model is further leveraged to analyse and pinpoint the performance bot-

tleneck of the SDN architecture. Both theoretical analysis and simulation experiments

are conducted to demonstrate that this preemption-based scheduling scheme can achieve

the better system performance compared to the traditional data plane packet scheduling

in terms of global fairness index and packet loss probability.

The rest of this chapter is organised as follows. Section 4.2 presents the details of the

P2S scheme. An analytical model is developed in Section 4.3 to investigate the quantita-

tive performance of P2S scheme. Section 4.4 presents extensive simulation experiments

to evaluate the performance of the P2S scheme and validate the accuracy of the proposed

analytical model. In Section 4.5, the performance analysis of SDN architecture is carried

out and feasible solutions are provided based on the developed model. Finally, Section

4.6 concludes this chapter.

4.2 Preemption-based Packet Scheduling (P2S) in SDN

networks

This section will firstly describe the working mechanism of SDN and then present the

motivation and design details of the P2S scheme. The parameters used in this chapter are

listed in Table 4.1.
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Table 4.1: Key Notations Used in the Derivation of the Model in Chapter 4

Ti The time when the ith packet arrives at the queue

lin The arrival rate of the low priority queue

lup The arrival rate of uplink queue

lctr The arrival rate of SDN controller

ldown The arrival rate of downlink queue

lh The arrival rate of the high priority queue

µs The service rate of SDN switch

µc The service rate of SDN controller

Wtot The end-to-end average waiting time

Wh The average waiting time in the high priority queue

Wl The average waiting time in the low priority queue

Phit The hitting probability of the flow table

Wup The average waiting time in the uplink queue

Wctr The average waiting time in the queue of SDN controller

Wdown The average waiting time in the downlink queue

W P2S
tot The end-to-end average waiting time for PQ scheduling

l

e f f
ctr The effective arrival rate for SDN controller

Pk The probability that there are k packets in the queueing system

wr The residual time of the packets in service

wd The delay experienced by the packets in the low and high priority queue

wa The Additional waiting time caused by the high priority queue for the
packets in the low priority queue
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SDN!Switch!
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Channel!
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Buffer

Figure 4.1: SDN Architecture with FIFO Scheme
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4.2.1 Packet Scheduling in SDN networks

This study focuses on the data plane in SDN architecture, as shown in Figure 4.1. This

architecture operates as follows [45]: When a packet arrives at SDN switch, it will wait in

the queue for service if the switch server is busy. Once the server becomes idle, the first

packet in the buffer is popped out and transferred to switch server. Each server keeps a

flow table to store, retrieve and modify routing information. A flow table consists of mul-

tiple flow entry, each of which has three fields: match, action and statistic. If the server

holds the corresponding flow entry in the flow table, this packet will be served according

to the action field of the matching flow entry. If the packet fails to match any entry in the

flow table, the switch server sends the whole or partial package (i.e., the packet header) to

the SDN controller through the uplink channel, in order to consult how to process the un-

matched packet. When the partial transmission strategy is adopted, the unmatched packet

is stored in the local cache and waits for the reply message from the SDN controller.

Once SDN controller receives the request message from SDN switches, based on a series

of routing and forwarding calculations, it will generate a response message and send it out

through the downlink channel. When the switch receives the response message, it stores

the routing information in the flow table and processes the packet according to the action

field. Herein, during the whole process, a packet that fails to match entries in the flow

table has to traverse the switch server twice.

4.2.2 Preemption-based Packet Scheduling

In the SDN network architecture, due to the existence of feedback control loop, there are

two types of packets arriving at the data plane: the packets from other forwarding devices

and the packets coming from SDN controller. To simplify the forwarding device, most

of the existing studies adopt simple FIFO scheme [18] to forward packets in data plane.
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Figure 4.2: SDN Architecture with P2S Scheme

This can be described as follows:

I = max{t �Ti} (4.1)

where t is the current time and Ti is the time when the ith packet enters into the wait-

ing queue. FIFO scheduling scheme as shown in Fig. 4.1 serves the packet with the

longest waiting time, I, in the queue system. However, the packets coming from the SDN

controller often encounter serious unfairness. As described in the above SDN working

mechanism, the packet miss-matching the flow entry in the flow table is sent to or par-

tially sent to the SDN controller. When the replied package arrives at SDN switch, this

packet has to be buffered in the queue of data plane and competes with the newly arriving

packets for the forwarding service. Therefore, FIFO can hardly provide the global fairness

for packet scheduling in SDN, and thus leads to high packet loss probability. In order to

avoid these performance degradations, the packets from SDN controller should be given

an extra priority in data plane packet processing. Herein, P2S scheme achieves this ob-

jective by differentiating the packets from the neighbouring forwarding devices and SDN
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controller. To this end, two types of queues are designed in the data plane as shown in

Fig. 4.2: high priority queue and low priority queue. Packets coming from the SDN con-

troller enter into the high priority queue. The new packets arriving from the neighbouring

forwarding devices enter into the low priority queue. The packets in the high priority

queue preemptively have the priority for receiving the service and the packets belonging

to the low priority queue can only be served when the high priority queue is empty. As a

result, the packet feedback from SDN controller is served with the strict high priority and

the residual service is provided to the low priority queue. In consideration of the SDN

data plane, uplink channel, SDN control plane and downlink channel as a whole system,

the preemption mechanism achieves the better global fairness for the packets. In order to

obtain the quantitative performance metrics of this preemption-based packet scheduling,

an analytical model will be derived in the next session.

4.3 Analytical modelling

The traffic model plays an important role in analysing the performance of packet schedul-

ing techniques [19]. We therefore consider a dynamic model with Poisson arrivals. The

arrival and departure of packets in the system are modelled as a birth-death process. This

process is a special case of continuous-time Markov process, where the states represent

the current number of packets in the system, and the transitions occur between neighbour-

ing states. The “birth” is the transition towards increasing the number of the packets in the

system by 1, and a “death” is the transition towards decreasing the number of the packets

in the system by 1 [18].

In SDN paradigm, the service modes of data plane, uplink channel and downlink chan-

nel follow M/M/1 process [127], where M means Markov process; the service model in

the control plane follows M/M/1/K process where K represents the maximum number of
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packets that can be accommodated in the SDN controller, which demonstrates the process

of the admission control in SDN networks. The packet arrivals follow a Poisson distri-

bution, and the service time follows a negative exponential distribution. The following

notations are used to derive the analytical model: ll , lup, lctr, ldown and lh denote the

arrival rates of the low priority queue, uplink channel, SDN controller, downlink channel

and the high priority queue; Denote the arrival rate for the SDN switch as ll , as the pack-

ets arriving the SDN switches will enter the low priority queue, therefore ll = lin; µs and

µc denote the service rates of SDN switch and controller respectively. L is the average

number of packets in the queue; Wtot is the average end-to-end latency; Wh and Wl are the

average waiting times of packets in the high and low priority queues, respectively.

In what follows, the end-to-end system performance of SDN architecture with P2S

scheme is investigated. When a packet is served by switch server, it may fail to match the

flow table and need to be cached in the local storage. Therefore, the end-to-end latency,

Wtot , consists of two parts and can be described as follows:

Wtot =Whit ⇤Phit +Wmiss ⇤ (1�Phit) (4.2)

where Whit and Wmiss are the average latency experienced by an arrival packet when it

matches or misses the flow entry. Phit is the probability that a packet finds its correspond-

ing flow entry in the flow table. Within the P2S scheme, the traffic belonging to the low

priority queue can be served only when the high priority queue is empty. Let Wl and Wh

denote the average latency that a packet experiences in the low and high priority queues.

Eq. (4.2) can be re-written as:

W P2S
tot =Wl ⇤Phit +(Wl +Wup +Wctr +Wdown +Wh)⇤ (1�Phit) (4.3)
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According to the working mechanism of SDN, the effective traffic entering the queu-

ing system of the uplink channel is a fraction, 1�Phit , of the traffic generated by the other

SDN switches [19]. Let lin represent the traffic entering the data plane from other SDN

switches; as the splitting of a Poisson process is again a new Poisson process, lup (the

traffic rate entering the uplink channel queue) can be obtained by splitting lin with the

probability 1�Phit and can be written as lup = lin ⇤ (1�Phit) ⇤ (1�Pl). As the buffer

size of the uplink channel is infinite, the rate of traffic, lctr, entering the queue of SDN

controller is equal to lup. The buffer size of the SDN controller is K. The new arrival re-

quests may be dropped when the queue is full. Let Pc denote the probability that a packet

is lost in SDN controller, the effective traffic entering SDN controller queue is indicated

by l

e f f
ctr = lctr ⇤ (1�Pc) [14]. Similar to the uplink case, the traffic rate for the downlink

channel and the high priority queue are denoted as lh = ldown = l

e f f
ctr .

To determine Pc for calculating the effective traffic entering the SDN controller, let us

first calculate the probability that there are k packets in the queue, given by [128]:

Pk =

8
>>>>><

>>>>>:

P0 ’k�1
i=0

li
µi+1

, i f 1  k  K

0, i f K < k

(4.4)

where P0 is the probability that there is no packet in the queue system, and ÂK
i=0 Pi = 1.

Then P0 is calculated by

P0 =

 
1+

K

Â
k=1

k

’
i=1

(
li

µi+1
)

!�1

(4.5)

Inserting Eq. (4.5) into Eq. (4.4) and setting k = K, then the probability Pc that an
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arriving packet finds the finite buffer full can be written as

Pc = PK (4.6)

Given the service rates of the uplink channel, the SDN controller and the downlink

channel, µup, µctr and µdown, the average latency of the uplink channel, the SDN controller

and the downlink channel, Wup, Wctr and Wdown, can be derived through the following

equation [70]:

W = 1/(µ �l ) (4.7)

After obtaining Wup, Wctr and Wdown, the difficulty to derive the end-to-end latency,

W P2S
tot , is transferred to calculate Wh and Wl . Within the P2S scheme, the packets belonging

to the high priority queue have the absolute priority to be served by SDN switch. There-

fore, the service rate for the high priority packet, µh, is equal to that of the SDN switch,

µs. The arrival rate of the high priority queue is lh = lin ⇤ (1�Phit) ⇤ (1�Pc). Wh can

be easily obtained through Eq. (4.7). In order to derive Wl , let us mark an arrival packet

from other SDN switches and calculate the time it has to wait before starting service in the

switch server. The delay can be represented as the sum of three components: the residual

time of the packet found in service, wr; the delay experienced by the packet in the low

and high priority queues, wd; and the additional waiting time caused by the high priority

packets arriving when the marked packet is waiting in the low priority queue, wa. Wl can

be written as

Wl = wr +wd +wa (4.8)
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Based on the utilisation law [70], wr is given by

wr =
lin +lh

µ

2
s

(4.9)

When the tagged packet arrives at the low priority queue, it may see that there are

Ll packets in the low priority and Lh packets in the high priority. Each packet takes an

average time 1/µs to be served. Applying the Little Law, the average waiting time, wd , is

wd =
Wl ⇤lin +Wh ⇤lh

µs
(4.10)

In addition, the number of packets arriving at the high priority queue when the tag

packet is waiting in the low queue for service, is Wl ⇤lh. Then, wa can be described as

wa =
Wl ⇤lh

µs
(4.11)

Inserting Eqs. (4.9)-(4.10) into Eq. (4.11) and after a series of calculation, the average

latency experienced by a packet in the low queue, Wl , is given by

Wl =
lin +lh +lhWhµs

µs(µs �lin �lh)
(4.12)

Inserting Eq. (4.12) into Eq. 4.3, we can obtain the average packet latency with the

P2S scheme.

4.4 Performance Comparison and Model Validation

The performance of the P2S scheme is evaluated through developing and conducting

a discrete-event SDN simulator in Objective Modular Network Testbed in C++ (OM-
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NeT++) [129]. The buffer size at SDN controller, K, is set to be 10 to reflect the access

control in SDN controller. The transmission rates of the uplink and downlink channel,

lup and ldown are set to 100 packets per second. The packets arriving at the data plane

are characterised by a Poisson process. The service time follows a negative exponen-

tial distribution. In the following subsections, we firstly evaluate the performance of the

P2S scheme compared to the traditional FIFO scheme in terms of packet loss probability

and service fairness. Then the accuracy of the developed analytical models is validated

through varying the arrival packet rate, the hit probability of the flow table, and the switch

and controller service rates.

4.4.1 Performance Comparison between P2S and FIFO schemes

4.4.1.1 Global Fairness Index

In this part, the well-known Jain’s fairness index [130] is used to evaluate the global

fairness of the two packet scheduling schemes in the SDN data plane. From Fig. 4.3, we

can see that P2S can improve the fairness index over FIFO. When the heavy traffic arrives

at the SDN controller and switch and if the hit probability is low, the forwarding service

of P2S have the better global fairness. The reason for the poor performance of FIFO as

compared to P2S can be explained as follows: In the FIFO scheduling scheme, the packets

that have failed to match the flow table need enter the same queue for service. Overall,

these packets experience much higher delay because of the feedback loop of the uplink

channel, SDN controller and downlink channel. In FIFO, the switch treats the packets

from the SDN controller equally with the packets from other switches, these packets

from the SDN controller experience the longer overall delay. As a result, FIFO cannot

guarantee the fairness among packets and also result in a serious issue of high packet loss

probability in data plane. P2S scheme offers priority for the packets from SDN controller
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and thus achieves the better better performance in terms of both the global fairness index

and packet loss probability.

In order to elaborate the aforementioned performance improvement clearly, the av-

erage latencies of packets matched and failed in the flow table are both showed in Fig.

4.4. It can be seen that the average latency of both the packets missing the flow entry in

P2S is lower than those in FIFO and the average latency of packets matching in the flow

entry in P2S is higher than those in FIFO. The results demonstrate that P2S sacrifices the

performance of the packets from other SDN switches and can improve the service of the

packets that have experienced serious delay in control plane.
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Figure 4.3: Fairness Index of P2S and FIFO with Different Hit Probabilities in Flow Table

4.4.1.2 Packet Loss Probability

The relative gain in packet loss probability by using P2S over FIFO is shown in Fig. 4.5,

with different packet hit probabilities in the flow table. Phit varies from 0 to 1. When

Phit is set to 1, each newly arrived packet can find the corresponding flow entry in the
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Figure 4.5: Packet Loss Probability of P2S and FIFO with Different Hit Probability of Flow Table

flow table, without the need of the loop communication with control plane. When Phit

is set to be 0, the flow table is empty and SDN is in the initial state. The header of the
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newly arrived packet will be abstracted and sent to controller for requesting the forwarding

policy. When the forwarding policy is replied back to data plane, SDN switch inserts the

forwarding policy into the flow table. So P2S provides these packets the priority in switch

server and achieves the lower packet loss probability. In addition, the average packet loss

probability drops dramatically as the hit probability increases. This is because, increasing

the hit probability results in less packets to be sent back to the SDN controller. More

packets can be directly forwarded to the next hop and experience less packet latency,

leading to the lower packet loss probability. When Phit = 1, all packets can find the flow

entries in the flow table and the packet loss probability reaches the lowest value.

4.4.2 Validation of the Analytical Model

From the above discussion, we have seen that the P2S scheme offers the better perfor-

mance than FIFO. In this part, the developed analytical model is validated by varying the

traffic arrival rate, flow table hit probability and the service rates of the SDN switch.

4.4.2.1 Effects of Flow-entry Hit Probability

In order to achieve a comprehensive and accurate performance comparison, the service

rate of the SDN switch and controller, µc and µs, are considered for three different cases to

investigate the effects of the hit probability on average latency: Case (I) µc > µs (µc = 40,

µs = 20); case (II) µc = µs = 30; and case (III) µc < µs (µc = 20, µs = 40); The figures

reveal a good match between the analytical and simulation results, therefore giving con-

fidence in the accuracy of the proposed model. Fig. 4.6 shows that the analytical results

predicted by the model are very accurate at most cases. However, some discrepancies ex-

ist between the model and simulation results in Case (I). This is because the input of the

uplink channel is a fraction of output process and is modelled as Poisson process. This

approximation is taken in most cases except when most packets are forwarded to the SDN
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Figure 4.6: Average Latency Predicted by the Model and Simulation with Different Hit Probabil-
ity of Flow Table

controller and the arrival rate of the input traffic is approaching to that of the switch. Nev-

ertheless, the extensive comparison between the analytical results and those obtained from

simulation experiments reveals that the model possesses an acceptable level of accuracy,

and its tractability makes it a practical and cost-effective evaluation tool.

4.4.2.2 Effects of Traffic Arrival Rate and Service Rate of SDN Switch

Figs. 4.7 and 4.8 depict the analytical results predicted by the model against those pro-

vided by the simulation experiments in SDN networks. In these figures, the horizontal

axis represents the traffic rate, lin and the service rate of SDN switch, µs, respectively.

The vertical axis denotes the latency obtained from the developed model and simulator.

The figures reveal that the results obtained from the analytical model closely match those

from the simulation experiments.
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4.5 Applications of the Analytical Model

In this section, we will use the developed analytical mode to investigate the performance

of the SDN networks. The traffic feedback to the SDN controller is affected by the flow ta-

ble hit probability, Phit . Increasing Phit from 0 to 1 indicates that more forwarding policies

are inserted into the flow table. Eq. (4.4) can be written as

Wtot =Wmiss +(Whit �Wmiss)⇤Phit (4.13)

From Eq. (4.5), Wmiss > Whit , therefore, the average latency, Wtot is a decreasing func-

tion of the hit probability, Phit . Therefore, the increment of the hit probability results in

the lower average latency. As shown in Fig. 4, the average delay is the highest with

Phit = 0 and lowest with Phit = 1. The above results reveal that SDN centralised control

indeed introduces serious packet forwarding delay compared to the traditional network

architecture.

In order to avoid the negative effects of SDN architecture on scalability [131], accord-

ing to the description in Section 4.3, we should increase the flow table hit probability to

reduce the number of packets feedback to the SDN controller. Therefore, in the practical

deployment of SDN networks, in order to avoid the disruptive degradation in Quality-of-

Service (QoS), the flow table of SDN switches can be filled by the flow entries copied

from traditional network devices through building the communication of the SDN con-

troller and traditional network management platform. Given the quantitative relationship

between the resource provisioning and the performance results, the analytical model can

be used as a useful analytical tool in the SDN network plan and deployment.
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4.6 Summary

In this chapter, we have investigated the working mechanism of SDN architecture and

presented a P2S scheme to enhance the global fairness index and reduce the packet loss

probability. P2S offers the high priority to the packets that fail to match any entry in

the flow table in order to reduce the packet delay, increase the global fairness index, and

reduce the packet loss probability. In addition, a new analytical model for predicting

the packet latency has been developed to achieve quantitative performance evaluation of

the P2S scheme. Extensive simulation experiments have been conducted to validate the

accuracy of the analytical model. The performance results can reveal the quantitative

relationship between the given system resources and the achievable QoS and thus can be

used in the stages of SDN network plan and deployment.
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Chapter 5

Performance Modelling and Analysis of

Software Defined Networking under

Bursty Multimedia Traffic

5.1 Introduction

Software Defined Networking (SDN) is an emerging architecture for the next-generation

Internet, providing unprecedented network programmability to handle the explosive growth

of Big Data driven by the popularisation of smart mobile devices and the pervasive-

ness of content-rich multimedia applications. In order to quantitatively investigate the

performance characteristics of SDN networks, several research efforts from both sim-

ulation experiments and analytical modelling have been reported in the current litera-

ture. Among those studies, analytical modelling has demonstrated its superiority in terms

of cost-effectiveness in the evaluation of large-scale networks. However, for analytical

tractability and simplification, existing analytical models are derived based on the unre-

alistic assumptions that the network traffic follows the Poisson process which is suitable

to model non-bursty text data and the data plane of SDN is modelled by one simplified
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Single-Server-Single-Queue (SSSQ) system. Recent measurement studies have shown

that, due to the features of heavy volume and high velocity, the multimedia big data gen-

erated by real-world multimedia applications reveals the bursty and correlated nature in

the network transmission. With the aim of the capturing such features of realistic traf-

fic patterns and obtaining a comprehensive and deeper understanding of the performance

behaviour of SDN networks, this chapter presents a new analytical model to investigate

the performance of SDN in the presence of the bursty and correlated arrivals modelled

by Markov Modulated Poisson Process (MMPP). The Quality of Service (QoS) perfor-

mance metrics in terms of the average latency and average network throughput of the

SDN networks are derived based on the developed analytical model. To consider realistic

multi-queue system of forwarding elements, Priority Queueing (PQ) system is adopted to

model SDN data plane. To address the challenging problem of obtaining the key perfor-

mance metrics, e.g., queue length distribution of PQ system with a given service capacity,

a versatile methodology extending the Empty Buffer Approximation (EBA) method [132]

is proposed to facilitate the decomposition of such a PQ system to two SSSQ systems. The

validity of the proposed model is demonstrated through extensive simulation experiments.

To illustrate its application, the developed model is then utilised to study the strategy of

the network configuration and resource allocation in SDN networks.

The rest of this chapter is organised as follows: Section 5.2 illustrates the working

principle of the PQ-based SDN architecture. Section 5.3 derives the comprehensive ana-

lytical model to investigate the average latency and network throughput of SDN networks

subject to bursty and correlated traffic. The accuracy of the developed model is validated

in Section 5.4 through extensive simulation experiments. Section 5.5 adopts the devel-

oped model to conduct the performance analysis of SDN architecture. Finally, Section

5.6 concludes this study.
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5.2 Priority-Queue based SDN Architecture

This study focuses on the SDN architecture with the PQ system in the data plane, as illus-

trated in Fig. 5.1. The PQ system consists of two types of queues: the low priority queue

and the high priority queue. The packets transmitted from the SDN controller enter the

high priority queue and those arriving from the neighbouring forwarding devices enter the

low priority queue. During the packet scheduling, the packets in the high priority queue

have the priority for receiving the service and the packets belonging to the low priority

queue can only receive service when there is no packet in the high priority queue. Ac-

cording to the system design in [133], the buffer sizes of the high priority queue, Uplink

Channel (UC) queue and Downlink Channel (DC) queue, are considered to be infinite,

and the buffer sizes of the SDN controller and the low priority queue are set to be finite,

denoted by Kc and Kl , respectively. According to [134], the working mechanism of the

PQ-based SDN system architecture is as follows: when arriving at the SDN switch, the

packet waits in the low priority queue for service if the buffer is not fully occupied and the

Switch Server (SS) is busy. Once the SS becomes idle and there is no packet in the high

priority queue, the first packet in the low priority queue is popped out and transferred to

the SS. If the flow table in the switch holds the corresponding entry, this packet will be

served immediately according to the action field of the matching flow entry. Otherwise,

if the packet does not match any entry in the flow table, the switch needs to send the

whole or partial package (i.e., the packet header) to the SDN controller through the UC to

consult how to process the unmatched packet. When the partial transmission strategy is

adopted, the unmatched packet is stored in the local cache and waits for the response mes-

sage from the SDN controller. Once receiving the request message from SDN switches,

the controller generates a response message based on a series of routing and forwarding

calculations and sends the result out through the DC. When arriving at the SDN switch,
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the packets of the response message enter the high priority queue if the SS is busy. Once

the SS becomes idle, the first packet in the high priority queue is forwarded to the SS.

When receiving the response message, the SDN switch stores the routing information

as the entries of the flow table and leverages the action field of the entry to process the

packet. Herein, during the whole process, the packet that fails to match the entries of the

flow table has to traverse the SS twice. The parameters of the derivation of the analytical

model are listed in Table 5.1.

UC

SDN Switch

High Priority Queue
Output
Process

DC

SDN Controller

Input 
Process

Low Priority Queue

SS

Kl

Kc

Figure 5.1: The PQ-based SDN System Architecture

Table 5.1: Key Notation Used in the Derivation of the Model in Chapter 5

Kc The buffer size of the SDN controller

Kl The buffer size of the low priority queue

Latency The average latency in the SDN architecture

Lathit The average latency for the packets hitting the flow table

Latmiss The average latency for the packets missing the flow table

x The hitting probability of flow table

Dl,Dh The average delay in the low and high priority queues

Du,Dd The average delay in the uplink and downlink channels

Dc The average delay in the SDN controller
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Ta,i
The interarrival time between the ith and (i+1)th packets

arriving at the PQ system

Td,i The interdeparture time between the ith and (i+ 1)th packets arriving
at the PQ system

Ts,i The time of the ith packet spending at the PQ system

µl The service rate of the low priority server

µh The service rate of the high priority server

µs The service rate of the SDN switch

Ll The average number of packets in the SSSQl

Lh The average number of packets in the SSSQh

Lt The average number of packets in the PQ system

Qi,Li The infinitesimal generator matrix and the arrival rate matrix of the
MMPPi input traffic

li The average queue length of SSSQl

l(1)i The first moment of li

z The stop condition of the recursion loop

Pbl The probability that an arriving packet finds MMPPin/M/1/Kl full

MMPPin!e
l The effective traffic entering the low priority queue

Qin!e
l , Lin!e

l The infinitesimal generation and rate matrix of MMPPin!e
l

P The steady-state probability vector of MMPP

min{Z(r,r)} The minimum number in the diagonal line of the matrix Z

Ṗn The probability that an arriving packet observes there are n packets in
the SSSQl system

E
⇥
Td,i
⇤

and E
h
T 3

d,i

i
The first moment and the third moment of the interdeparture time

c2(Td,i) The squared coefficient variation of the interdeparture time

Cov(Td,i,Td,(i+1)) The covariance of two successive interdeparture times

L(s) The Laplace-Stieltjes transform of the service time distribution

xk The stationary probability that the number of the packets in the system
is k

Ã,k(x) The probability that when a departure happens there is at least one
packet in the system

P(k,x) The probability that there are k packets arriving at the system during the
length of x time

P(z,x) The z transformation of P(k,x)

L̃(x) The cumulative distribution function of exponential distribution
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fm The miss probability of the flow table

MMPPout
u The output process of the UC queue

Qin
u and Lin

u The infinitesimal generator and the rate matrix of MMPPin
u

m j The mean arrival rate, E
⇥
Ta, j
⇤

v j The second moment, E
h
T 2

a, j

i

p j The third moment, E
h
T 3

a, j

i

r j(t) The covariance function, Cov(Ta, j,Ta,( j+1))

t, j The time constant of the MMPPj process

MMPP0
t The approximate of the MMPPt

hi and h(2)i The mean and the second moment of the service time

5.3 Derivation of the Analytical Model

The average latency in the SDN architecture can be obtained by the weighted sum of the

packet latencies, Lathit if the packet hits the entry of the flow table, and Latmiss if the

packet misses the flow entry. The packet arriving at the SDN switch can successfully find

the flow entry in the flow table with the probability, x . Then, the average latency, Latency,

can be written as follows:

Latency = x Lathit +(1�x )Latmiss (5.1)

Based on the system description in Section 5.2, Lathit and Latmiss are given by

Lathit = Dl (5.2)

Latmiss = Dl +Du +Dc +Dd +Dh (5.3)

where Dl , Du, Dc, Dd , and Dh are the average delay in the low priority queue, the UC
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queue, the controller queue, the DC queue and the high priority queue, respectively.

High Priority Queue

SDN Switch

Output 
Process

UCDC

Input 
Process

Low Priority Queue

SDN Controller

SSSQh

SSSQl

μh

μl

Figure 5.2: Decomposition of a PQ System to Two SSSQ Systems in SDN Forwarding Devices

Directly deriving these values is intractable under the input of MMPPs because it is

difficult to calculate the additional delay for the packets in the low priority queue due to

the ones in the high priority queue. In order to address this issue, inspired by the well-

known Kleinrock’s independence approximation [29], a novel queueing decomposition

approach is developed in this study to transform a PQ system into two SSSQ systems.

Therefore, instead of directly modelling the complex PQ system subject to bursty traffic,

the task of the performance evaluation of SDN architecture is achieved by analysing the

two but relatively simple systems, SSSQl and SSSQh as shown in Fig. 5.2. There have

been a few publications that appeared in the literature to investigate the queueing decom-

position. For instance, Jin. et al. in [135] proposed a method that can achieve the service

rates of the two queues for the decomposed SSSQ system with the input of fractional

Brownian motion (FBM) traffic. Liu et al. in [24] further extended the decomposition

method from the traffic of FBM to MMPP. These studies adopted EBA method [136] and,

for analytical tractability, assumed that the high priority queue has the negligible impact
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on the overall queue length of the PQ system and concluded that the overall queue length

of the PQ system is almost exclusively formed by the queue length of the low priority

queue. As a result, the queue length distribution of the PQ system can be approximated as

that of the low priority queue. Although high accuracy is achieved by these studies when

the low priority queue is poured by heavy traffic and high priority queue by light traffic,

they can hardly capture the comprehensive performance evaluation of the PQ system un-

der various traffic load conditions, especially for the case of the overloaded traffic in the

high priority queue. In order to bridge this gap, an enhanced EBA approach is proposed

and described in the following section.

5.3.1 Decomposition of the Priority Queue System

In order to successfully decompose a PQ system into two SSSQ systems, let us firstly

analyse the relationship among the interdeparture time, the interarrival time and the so-

journ time. Let Ta,i (the subscript a represents the arrival process) denote the interarrival

time between the ith and (i+ 1)th packets arriving at the PQ system. Let Td,i (the sub-

script d represents the departure process) denote the interdeparture time between ith and

(i+ 1)th packets leaving the PQ system. Let Ts,i and Ts,(i+1) (the subscript s denotes the

sojourn process) be the time of the ith and (i+ 1)th packets spending at the PQ system,

which includes queueing time and serving time. After simple derivation, the relationship

among Ta,i, Td,i and Ts,i can be denoted as Td,i = Ts,(i+1)�Ts,i +Ta,i. From this equation,

it can be seen that Td,i is determined by two parts: Ts,(i+1)�Ts,i and Ta,i. Herein, Ta,i is

only determined by the input process characterised by MMPPin
l (the subscript l represents

the low priority queue and the superscript in denotes the input traffic). As the input traffic

does not change, then if the relationship among Ta,i, Td,i and Ts,i is still valid after the

decomposition of the PQ system, the sojourn time should be kept unchanged during the
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the queueing decomposition.

According to the Little’s law [137], this condition can be equivalently transferred to

keep the average number of packets in the PQ system unchanged. The key issue to satisfy

this condition during the PQ decomposition is to achieve the service capabilities of the

SSSQl and SSSQh, namely, µl and µh respectively. Recall that EBA can only achieve

high accuracy when the low priority queue is poured with heavy traffic and high priority

queue with light traffic, it can hardly capture the comprehensive performance evaluation

of the PQ system under various traffic load conditions. In this study, we extend the EBA

method to derive µl and µh. Since the SS provides the absolute priority for the packets in

the high priority queue, the newly arriving packets in the low priority queue can hardly

have impact on the serving process of the high priority queue. Therefore, the equivalent

service rate of the SSSQh, µh, can be achieved as µh = µs. Then, the main difficulty in

the decomposition of the PQ system transfers to the calculation of the equivalent service

rate of the SSSQl . Inspired by EBA method, the average number of packets in the SSSQl ,

Ll , can be calculated by subtracting the average number of packets in the SSSQh, Lh, from

the average number of packets in the PQ system, Lt . This relationship can be expressed

as follows:

Ll = Lt �Lh (5.4)

The average number of packets in an SSSQi (the subscript i represents different types

of queueing systems) system with MMPPi traffic input can be calculated as follows [66]

[138]:

Li = li(1) + [
1

l

m
i

piLi � li](epi +Qi)
�1Lie (5.5)

where e = (1,1)�1 , pi = (p1i,p2i) = (j1i,j2i)/(j1i+j2i); Qi and Li are the infinitesimal
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generator matrix and the arrival rate matrix of the MMPPi input traffic. li is the average

queue length of the SSSQi system; l(1)i is the first moment of li; li and l(1)i can be calculated

based the method in [66]. For the low priority queue, after achieving the average number

of packets in the SSSQl in Eq. (5.4), the service rate of SSSQl , µl can be calculated based

on Eq. (5.5) through iterative algorithm, which applies a search over feasible region [0,

µs]. The search algorithm recursively calculates the average number of packets Ll
0 until

satisfies |Ll
0 �Ll|< z , where z is a small value, e.g., 10�8 specifying the stop condition

for the recursion loop.

In what follows, we will derive the arrival traffic processes for the SSSQl , the SSSQh,

and the PQ system, respectively.

5.3.2 Input Traffic Process of the Low Priority Queue

Since the buffer size of the MMPPin
l /M/1/Kl (the arrival traffic in low priority queue fol-

lows the MMPP process) queueing system is limited as Kl for modelling the low priority

queue, the packets arriving at the SDN networks will be dropped when the SSSQl is full.

Let Pbl indicate the probability that an arriving packet finds MMPPin
l /M/1/Kl full. The

traffic effectively entering the queueing system is a fraction (1�Pbl) of the total traffic

arrived. As the splitting of an MMPP generates a new MMPP, let MMPPin!e
l represent

the effective traffic entering the queueing system. MMPPin!e
l can be calculated by split-

ting MMPPin
l with the probability (1�Pbl). Based on the principle of MMPP splitting

process [67], the infinitesimal generation Qin!e
l and rate matrix Lin!e

l of MMPPin!e
l can

be given by

Qin!e
l = Qin

l =

2

666664

�j1l j1l

j2l �j2l

3

777775
(5.6)
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Lin!e
l = (1�Pbl)Lin

l =

2

666664

(1�Pbl)⇥l1l 0

0 (1�Pbl)⇥l2l

3

777775
(5.7)

To compute the blocking probability, Pbl , let us first analyse the bivariate Markov

chain of the SSSQl system. The state (s,n) in this Markov chain denotes that the Markov

chain of MMPPin
l is in state s, (s = {0,1}), and there are n packets in the SSSQl , (0 

n  Kl). The transmission rate from the state (0,n) to (1,n) is j1l , and the rate from state

(1,n) to (0,n) is j2l . j1l and j2l are given by Qin
l . The transmission rate from state (0,n)

to (0,n+ 1) is the packet arrival rate, l1l , and from state (1,n) to (1,n+ 1) is l2l . l1l

and l2l can be achieved from Lin
l . The rate out of the state (s,n+1) to state (s,n) is the

service rate of SSSQl , µl . In order to calculate the blocking probability, the transmission

matrix, G, should be built based on the state-transition-rate diagram. Given the number

of the state of the bivariate Markov chain, 2Kl , the dimension of the transmission matrix

should be 2Kl ⇤ 2Kl . Based on the balance equations of the bivariate Markov chain, the

transmission matrix can be expressed by the transmission rates linking different states.

After achieving the transmission matrix, let us calculate the steady-state probability vector

P, where P = (P(0,0),P(0,1), ...,P(0,Kl),P(1,0),P(1,1), ...,P(1,Kl)). Let e represent a

2Kl unit vector. The steady-state probability vector, P, satisfies the following equations:

PZ = 0 Pe = 1 (5.8)

Solving the above equations yields the probability P as

P = u(I�¬+ e)�1 (5.9)

where ¬ = I+Z/min{Z(r,r)} and min{Z(r,r)} represents the minimum number in
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the diagonal line of the matrix Z. u denotes any row vector of the ¬. After achieving

P, the probability that there are n packets in the SSSQl system, Pn, can be calculated as

Pn = Â1
s=0 Ps,n. With Pn, let us calculate, Ṗn, which is the probability that an arriving

packet observes there are n packets in the SSSQl system. Ṗn is given as follows [139]:

Ṗn =

 
Kl

Â
n=0

Pn ⇥Lin
l ⇥ e

!�1

Pn ⇥Lin
l ⇥ e (5.10)

The blocking probability is equal to the probability that a packet arrives at the system and

observes that the queue is full, therefore, Pbl = ṖKl .

5.3.3 Output Traffic Process of the Low Priority Queue

The output process of the PQ system subject to an MMPP arrival process will be partially

fed to SDN controller, playing critical role in deriving the input process of the high priority

queue. Based on the study in [140], the output process of the priority queue no longer

possesses the property of MMPP. In order to address this issue to achieve a tractable

analytical model, a matching method is leveraged in this section to use an MMPP process

characterised by four parameters (l1, l2, j1, and j2), to approximately model the output

process of the low priority queue. We employ the selection method in [140] to choose

the four statistics of the interdeparture process to match the four MMPP parameters: the

first moment and the third moment of the interdeparture time, E
⇥
Td,i
⇤

and E
h
T 3

d,i

i
, the

squared coefficient variation of the interdeparture time c2(Td,i), and the covariance of two

successive interdeparture times Cov(Td,i,Td,(i+1)).

The moments of the inter-departure time, Td,i, can be written as

E
h
T n

d,i

i
= (�1)n

"
n�1

Â
i=0

n!
i!

Li(0)x0U�(n�1)(0)e

#
+(�1)nL(n)(0), (5.11)
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where U(0) = Q�L and L(s) is the Laplace-Stieltjes transform of the service time dis-

tribution, given by L(s) = µ/(s+µ). Let xk denote the stationary probability that the

number of the packets in the system is k once a departure occurs, and x0 and x1 can be

achieved based on the method in [66].Then, the first three moments of the inter-departure

time can be easily achieved from Eq. (5.11) as follows:

E
⇥
Td,i
⇤
= l � x0U�1(0)e (5.12)

E
⇥
T 2

d,i
⇤
= L(2)(0)�2lx0U�1(0)e+2x0U�2(0)e (5.13)

E
h
T 3

d,i

i
=�L3(0)�3L(2)(0)x0U�1(0)e+6lx0U�2(0)e�6x0U�3(0)e (5.14)

The squared coefficient of variation of the interdeparture time c2(Td,i), can be obtained

from Eqs. (5.12)-(5.13), given by c2(Td,i) =
⇣

E
h
T 2

d,i

i
� (E

⇥
Td,i
⇤
)2
⌘
/(E

⇥
Td,i
⇤
)2. The

covariance of two successive interdeparture times is given by

Cov(Td,i,Td,(i+1)) = lx0U (�1)(0)e�
⇣

x0U (�1)(0)e
⌘2

+ x1A
0
0(0)U

(�1)(0)e

+x0U (�1)(0)K(0)A0(0)U (�1)(0)e+ x0K(0)A
0
0(0)U

(�1)(0)e
(5.15)

where l = 1/µ and K(0) = (A�L)�1L. Let Ãk(x) denote the probability that when a

departure happens there is at least one packet in the system and the next departure occurs

no later than x with k arrivals during the service time. Then, the transform matrix of Ãk(x)

can be calculated as follows:

Ak(s) =
Z •

0
e�sxdÃk(x) =

Z •

0
e�sxP(z,x)dL̃(x) =

Z •

0
e�sxe[(Q�L)+zL]xdL̃(x) (5.16)
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where P(z,x) is the z transformation of P(k,x) and is calculated by P(z,x) = e[(Q�L)+zL]x.

P(k,x) is the probability that there are k packets arriving at the system during the length

of x time. Given U(0) = Q�L, the cumulative distribution function of exponential distri-

bution, L̃(x), is achieved by L̃(x) = 1� eµx. A0(0) and A
0
0(0) can be readily derived from

Eq. (5.16), i.e., A0(0) = µ[µI �U(0)]�1 and A
0
0(0) = �A0(0)[µI �U(0)]�1. Then the

four parameters of the output process of the low priority queue can be derived from Eqs.

(5.11)-(5.16) based on the method in [140].

5.3.4 Input Traffic Process of the High Priority Queue

Recall that the packet arriving at SDN switch has the probability, (1�x ), missing the flow

entry in the flow table and a proportional amount of the output traffic will be sent to the

SDN controller through the UC. The traffic arriving at the UC, denoted by MMPPin
u , is a

fraction of output traffic from the SSSQl . This fraction, fm, is equal to the miss probability

as fm = 1� x . Based on Eqs. (5.6)-(5.7), the infinitesimal generator, Qin
u , and the rate

matrix, Lin
u of MMPPin

u can be achieved. Let MMPPout
u be the output process of the UC

queue, which is characterised by the infinitesimal generator, Qout
u , and rate matrix Lout

u .

Given the transmission rate of the UC, µu, the output process of the UC can be achieved

based on the matching approach described in Section 5.3.3. Since there is no packet

dropped in the transmission of the UC [133], the traffic arriving at the SDN controller,

MMPPin
c is equal to the output process, MMPPout

u of the UC. Since the buffer size of

the SDN controller, Kc, is finite, when the packet arrives at the SDN controller, there

is a probability, Pbc, that the arriving packet is dropped when the queue becomes full.

Pbc can be obtained using Eqs. (5.8)-(5.10). The effective traffic entering the queueing

system of SDN controller is a fraction (1�Pbc) of traffic arriving at the controller. As the

splitting of an MMPP is again a new MMPP, let MMPPin!e
c denote the effective traffic
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entering the queueing system. MMPPin!e
c can be obtained by splitting MMPPin

c with the

probability (1�Pbc). Following the matching approach described in Section 5.3.3, the

output process from the MMPPin!e
c /M/1/Kc queue, parameterised by Qout

c and Lout
c can

be readily obtained. Similar to the analysis of the UC, the input and output processes of

the DC, MMPPin
d and MMPPout

d can be obtained. Again, due to infinite DC queue, the

traffic arriving at the high priority queue in SDN architecture, denoted by MMPPin
h , is the

output process from the DC, MMPPout
d .

5.3.5 Total Traffic Process of the Priority Queue System

Since the superposition of multiple MMPPs is again an MMPP [66], let MMPPt denote

the superposition of the MMPPl and MMPPh. The number of states in the MMPPt is the

production of those of the MMPPl and MMPPh, which brings the complex computations

in the iterative process to calculate µl . In order to achieve an efficient analytical model,

inspired by [141], a two-state MMPP0
t is constructed in this study to approximate the

MMPPt . For the clarification, let m j, v j, p j and r j(t) be the mean arrival rate, E
⇥
Ta, j
⇤
,

the second moment, E
h
T 2

a, j

i
, the third moment, E

h
T 3

a, j

i
and the covariance function,

Cov(Ta, j,Ta,( j+1)) of the MMPPj (where j = {l,h}). Let t j denote the time constant

of the MMPPj process, caculated by t j =
1
v j

R •
0 r j(t)dt. Then, the four parameters of

MMPP0
t , m0

t , v0t , p0t and t

0
t , are given by:

m0
t = Â

j2{l,h}
m j v0t = Â

j2{l,h}
v j p0t = Â

j2{l,h}
p j t

0
t = Â

j2{l,h}

v j

v0t
t j (5.17)

After obtaining these four parameters, the infinitesimal generator, Q0
t , and rate matrix

L0
t can be easily obtained based on the matching procedure in [142], which will be used to

approximate the infinitesimal generator, Qt , and rate matrix Lt of MMPPt . The accuracy

of this approximation will be evaluated in Section 5.4. With the MMPPl , MMPPh and
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MMPPt , the service rate of SSSQl can be calculated from the iteration process in Section

5.3.1.

According to [66], the average sojourn time in a MMPPi/M/1 queueing system is

given by

Di =
1
ri

⇢
1

2(1�ri)

h
2ri +l

m
i hi

(2)�2hi((1�ri)gi +hipiLi)(Qi + epi)
�1

li

i
� 1

2
l

m
i hi

(2)
�

(5.18)

where ri is the utilisation rate of the server, given by ri = l

m
i /µi. hi and h(2)i are the

mean and the second moment of the service time, given by hi = 1/µi and hi
(2) = 2/µi

2,

respectively. gi is the steady state vector of the matrix Gi and can be achieved based on

the methods in [66].

The average sojourn time in the low priority queue, the UC queue, the queue in the

SDN controller, the DC queue and the high priority queue, can be computed by Eq. (5.18).

Finally, the average latency can be obtained from Eq. (5.1).

During the whole lifecycle of the packet in the PQ system, packets will be dropped

in the queues of SDN switch and controller once the buffers become full. Therefore, the

average throughput, T hroughput, can be obtained as

T hroughput = l

m
l (1�Pbl)(x +(1�x )(1�Pbc)) (5.19)

5.3.6 Implementation of the Model

In order to implement the developed analytical model, an algorithm is described in this

section for calculating the average latency and the average throughput of PQ-based SDN

networks.
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Algorithm 1: The procedure for calculating the average latency of PQ-based SDN
networks

Input: The service rates of SDN controller, switch, UC, and DC, µc, µs, µu and µd;
the buffer sizes of low priority queue and controller queue, Kl and Kc; the
flow table hit probability, x ; the infinitesimal generator and rate matrix of
MMPPin

l , Qin
l and Lin

l ; the recursive gap, µgap = µs; the service rate of
SSSQl , µl = 0; the recursive stop condition, z = 10�8; and the initial
recursive difference, di f f = 10;

Output: The average latency and the average throughput of the PQ-based SDN
networks, Latency and Throughput.

while |di f |> z do
if di f > 0 then

µl = µl +µgap;
else

µl = µl �µgap ;
end
1. Calculate the blocking probability for the low priority queue, Pbl , using Eq.
(5.10);
2. Compute the infinitesimal generator and rate matrix for effective input
process of the low priority queue, Qin!e

l and Lin!e
l , using Eqs. (5.6)-(5.7);

3. Calculate the four matching parameters, the infinitesimal generator, and the
rate matrix for the output process of the low priority queue, E

⇥
Td,i
⇤
, E
h
T 2

d,i

i
,

E
h
T 3

d,i

i
, Cov(Td,i,Td,(i+1)), Qout

l and Lout
l , using Eqs. (5.11)-(5.16);

4. Calculate the infinitesimal generator and the rate matrix for the input process
of the UC, Qin

u and Lin
u , using Eqs. (5.6)-(5.7);

5. Calculate the infinitesimal generator and the rate matrix for the output
process of the UC, Qout

u and Lout
u , using Eqs. (5.11)-(5.16);

6. Calculate the blocking probability of the controller queue, Pbc, using Eq.
(5.10);
7. Compute the infinitesimal generator and rate matrix for the effective input
process of the controller queue, Qin!e

c and Lin!e
c , using Eqs. (5.6)-(5.7);

8. Calculate the infinitesimal generator and the rate matrix for the output
process of the controller queue, Qout

c and Lout
c , using Eqs. (5.11)-(5.16);

9. Calculate the infinitesimal generator and the rate matrix for the input process
of the DC, Qin

d and Lin
d , using Eqs. (5.6)-(5.7);

10. Calculate the infinitesimal generator and the rate matrix for the output
process of the DC, Qout

d and Lout
d , using Eqs. (5.11)-(5.16);

11. Calculate the infinitesimal generator and the rate matrix for the total traffic
process of the PQ system, Qt and Lt , using Eq. (5.17);
12. Calculate the average queue lengths of the low priority queue, the high
priority queue, and the PQ system, Ll , Lh and Lt , respectively, using Eq. (5.5);
13. Calculate the value of the queue length difference, di f f , using Eq. (5.4);
14. Update the recursive gap, µgap = µgap/2;

end
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15. Calculate the average sojourn times in the low priority queue, the UC, the SDN
controller, the DC, and the high priority queue, Dl , Du, Dc, Dd , and Dh,
respectively, using Eq. (5.18);
16. Calculate the average latency in the PQ-based SDN architecture, Latency,
using Eqs. (5.1)-(5.3);
17. Calculate the average throughput in the PQ-based SDN architecture,
T hroughput, using Eq. (5.19).

5.4 Validation of the Model

To validate the accuracy of the developed analytical model, we have developed a discrete-

event simulator in the Objective Modular Network Testbed in C++ (OMNeT++) simula-

tion environment [129]. 95% confidence intervals is adopted in this study to collect the

simulation results when the simulation experiment reaches the steady state. The traffic

arriving at the SDN switch follows the MMPPin
l process, characterised by the infinitesi-

mal generator Qin
l and the rate matrix Lin

l . Extensive simulation experiments have been

conducted by varying the network parameters, including buffer sizes, switch service rate,

controller service rate, UC and DC capacities, different flow table hit probability, various

MMPP traffic inputs. However, for the sake of specific illustration and without loss of

generality, the result comparisons between the analytical model and simulation experi-

ments are presented in terms of the average latency and average throughput with different

combinations of system parameters, which are set as follows:

* Service rate of SDN switch: µs = 80, 40, 20 packets/second;

* Service rate of SDN controller: µc = 60, 30 packets/second;

* Transmission rates of UC and DC: µu = µd = 5, 10 packets/second;

* Flow table hit probability: x = 0.5;

* Buffer sizes of the low priority queue and the controller queue, Kl = 128 packets

and Kc = 256 packets;
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Table 5.2: System Configuration Parameters for SDN Networks in Performance Evaluation

I II IV IX

Scenarios A B A B A B A B

j1l 0.13 0.13 0.06 0.06 0.008 0.008 0.09 0.09

j2l 0.15 0.15 0.03 0.03 0.004 0.004 0.06 0.06

µu 5, 10 10 5, 10 10 5, 10 10 5, 10 10

µd 5, 10 10 5, 10 10 5, 10 10 5, 10 10

µs 80 40,
20

80 40,
20

80 40,
20

80 40,
20

µc 60 30 60 30 60 30 60 30

x 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Kl 128 128 128 128 128 128 128 128

Kc 256 256 256 256 256 256 256 256

* The infinitesimal generator, Qin
l , of MMPPin

l , representing different degrees of traf-

fic burstiness and correlation.

Qin
l =

2

666664

�0.3 0.3

0.015 �0.015

3

777775
Qin

l =

2

666664

�0.09 0.09

0.06 �0.06

3

777775

Qin
l =

2

666664

�0.06 0.06

0.03 �0.03

3

777775
Qin

l =

2

666664

�0.008 0.008

0.004 �0.004

3

777775

Figs. 5.3-5.6 present the average latency and throughput predicted by the analytical

model and simulation experiments for different network configurations. The system con-

figuration parameters for performance evaluation are listed in Table 5.2. The horizontal

axis represents the traffic rate, l

in
1l , when the Markov chain of MMPP process stays in

state 1. For clarity of the description, the traffic rate, l

in
2l is set to be zero. These figures

show that the developed model provides a good degree of matching with the simulation
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experimental results under different network configurations. In addition, the subfigures

reveal that the average latency and average throughput significantly increase when the

arrival traffic rate goes up (subfigures (a) and (b)). In this case, the uplink and downlink

channels become the bottleneck for the system performance improvement even though

SDN switch and controller have adequate service capacity. When sufficient transmission

capabilities are allocated to the uplink and downlink channels, with the practical con-

figuration of the finite buffer in the forwarding devices, the average latency and average

throughput would reach a stable point once the incoming traffic exceeds the service ca-

pacity that the SDN switch can provide (subfigures (c) and (d)). In this case, packets will

be dropped as the buffer is full and the service capacity of the switch becomes the perfor-

mance bottleneck for SDN networks. Therefore, in order to avoid the service degradation

and Service Level Agreement (SLA) violation, the developed model can be used as a

practical and cost-effective tool to gain insights into the performance of SDN networks in

the presence of bursty and correlated multimedia traffic.

5.5 Performance Analysis

The accuracy of the proposed analytical model has been investigated in the above section.

In this section, the developed model is adopted to conduct the performance evaluation of

the SDN architecture. The system configuration parameters for performance analysis are

listed in Table 5.3.

5.5.1 Effects of the Flow Table Hit Probability

In order to investigate the impact of flow table hit probability on the performance of SDN

networks, Fig. 5.7(a) presents the average latency predicted by the developed analytical

model against varying traffic arrival rate with different flow table hit probabilities (x = 0,

0.5 and 1); the service rates of the SS, DC, SDN controller and UC, µs, µd , µc and µu are
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Figure 5.3: Average Latency and Throughput Predicted by the Model and Simulation in Case I
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Figure 5.4: Average Latency and Throughput Predicted by the Model and Simulation in Case II
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Figure 5.5: Average Latency and Throughput Predicted by the Model and Simulation in Case IV
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Figure 5.6: Average Latency and Throughput Predicted by the Model and Simulation in Case IX
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set to be 20 packets/second, 10 packets/second, 30 packets/second and 10 packets/second,

respectively; and the buffer sizes of the low priority queue and SDN controller queue,

Ks and Kc, are set to be 128 and 256 packets. When x = 1, each new arriving packet

can find the forwarding rule in the flow table, without the loop communication with the

SDN controller. This case can be used to approximate the forwarding mechanism of the

traditional network architecture, where network control resides in the forwarding devices.

When x = 0, no flow entry is stored in the flow table and the SDN networks is in its

initiation stage. For each arriving packet failing to match the entry in the flow table, the

header of the new arrival packet will be forwarded to the controller for requesting the

necessary forwarding rule. x = 0.5 represents the case that 50% of the arriving packets

can match the rules in the flow table. In addition, Fig. 5.7(b) presents the average latency

obtained from the model against varying flow hit probability from 0 to 1 with the fix step

of 0.1. From these two figures, we can see that the average latency of SDN networks

becomes better with the increase in the flow table hit probability and reaches the highest

level when the hit probability is equal to 1. This relationship shows that the analytical

model is very useful for the practical network deployment and management. For instance,

in order to avoid the disruptive QoS degradation of network service in the early stage

of network deployment, network routing information would be cached in the flow table

in advance. During this installation process, the analytical model can be used as a cost-

effective tool to quantitatively calculate the threshold of the flow table to satisfy a required

network latency.

5.5.2 Effects of the Resource Allocation

The efficient resource allocation plays an important role in SDN networks to provide

services with the required QoS guarantee. In what follows, the impact of the resource
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Table 5.3: System Configuration Parameters for SDN Networks in Performance Analysis

j1l j2l µu µd µs µc x Kl Kc l

in
1l l

in
2l

0.09 0.06 10 10 20 30 0, 0.5, 1 128 256 / 0

0.09 0.06 10 10 20 30 / 128 256 25 0

0.09 0.06 20 20 30, 60 30, 60 0.5 128 256 / 0

0.09 0.06 20 20 30 / 0.5 128 256 25 0
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Figure 5.7: Impact of the Flow Table Hit Probability on the Average Latency
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Figure 5.8: Impact of the Service Capacity of SDN Switch on the Average Latency
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allocation on the performance of SDN networks in terms of the average latency will be

investigated. For the sake of illustration, a PQ-based SDN system with two scenarios of

resource allocations is firstly considered: Case (I) µc > µs (e.g., µc = 60, µs = 30) and

Case (II) µc < µs (e.g., µc = 30, µs = 60). The infinitesimal generator of the MMPP

arrivals is set as j1l = 0.09 and j2l = 0.06; the transmission rates of both the UC and

DC, µu, µd , are set to be 20 packets/second; and the buffer sizes of the SDN switch queue

and controller queue, Kl , Kc, are set to be 128 packets and 256 packets, respectively. The

flow table hit probability, x , is set to be 0.5. Fig. 5.8(a) depicts the results of the average

latency under the two cases and shows that Case (II) provides the lower average latency

compared to that by Case (I). From the analytical model, the effective traffic entering the

queue of the SDN controller, MMPPin!e
c , is derived through two splitting procedures of

the MMPPin
l (one splitting is in the queue of SDN switch and the other is in that of SDN

controller) using Eqs. (5.6)-(5.10). The input of the SS is the superposition of the traffic

from the SSSQh and SSSQl , where the input of SSSQh is statistically the output traffic from

the SDN controller as there is no packet lose during the transmission from the controller

to the SSSQh. It is therefore readily to see that the traffic load of the SDN switch is

heavier than that of the SDN controller in the PQ-based SDN system architecture, leading

to the phenomenon shown in the figure that the higher capacity allocated to the SDN

switch could bring the lower average latency of the whole system. Furthermore, in order

to achieve a deeper understanding of the impact of the data plane on the overall system

performance, the quantitative relationship between the service rate of the SDN switch and

the average latency is achieved through the developed model, as presented in Fig. 5.8(b).

It can be seen that the average latency significantly reduces with the increase in the service

rate of the SDN switch from 5 packets/s to 40 packets/s.
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5.6 Summary

This chapter has proposed an analytical model for SDN architecture in the presence of

MMPP arrivals capturing the traffic characteristics of multimedia applications. A PQ

system has been adopted to model SDN data plane to capture the multi-queue nature of

forwarding devices. A versatile method extending the EBA has been proposed to facil-

itate the decomposition of such a PQ system to two SSSQ systems in order to facilitate

the derivation and improve the tractability of the analytical model. The key performance

metrics including average latency and average network throughput have been derived by

the model. The accuracy of the proposed model has been validated through extensive

OMNeT++ simulation experiments. The validation results have revealed that the average

latency and the average throughput predicted by the developed analytical model reason-

ably match those obtained from the simulation experiments. The analytical model has

been adopted as a cost-effective tool to study the impact of flow table hit probability and

the service resource allocation in the SDN controller and the switch on the system perfor-

mance.
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Chapter 6

Stochastic Performance Analysis of

Network Function Virtualisation of

Future Internet

6.1 Introduction

With the explosive increase in demand for wireless broadband services to deliver content-

rich and resource hungry applications, traditional network architecture struggles to pro-

vide the satisfied network performance in terms of flexibility, scalability and reliability,

due to its inherent features such as hardware-based service provision, multiple protocols

co-existence and manual configuration and management. New and flexible networks are

needed to cope more efficiently with the quick pace imposed by the evolution of the digital

world. Future Internet is expected to support a multitude of new services and applications

with very diverse requirements, mainly including higher traffic volume, lower latency,

huge number of devices, etc. Network Function Virtualisation (NFV) has been proposed

as a promising architecture for Future Internet, greatly enhancing the flexibility and Capi-

tal Expense (OPEX) and Operational Expense (OPEX) [143] [144] [103]. In order to fully
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harvest the merits of NFV for network operators, there is an urgent need and opportunity

to use the probabilistic features of stochastic network calculus to investigate the dynamic

features of NFV. To bridge this gap, this work proposes a first novel comprehensive ana-

lytical model based on stochastic network calculus to investigates end-to-end performance

of NFV networks. In detail, it addresses the two related challenges: 1) to characterise and

model the traffic process and service process of NFV networks to capture the dynamic and

on-demand features; and 2) to derive the performance bounds for the end-to-end service

with the input of the required Service Level Agreements (SLAs). Through jointly ex-

ploiting the Exponentially Bounded Burstness (EBB) and Moment Generation Function

(MGF) [71], the Stochastic Arrival Curves (SAC) and Stochastic Service Curves (SSC)

can be achieved with different types of arrival traffic and service model. In addition, the

leftover service technology and statistical multiplexing are also exploited to derive the

end-to-end system performance.

The organisation of this chapter is summarised as follows: Section 6.2 presents the

working mechanism of NFV service chain. Section 3 forms an abstracted mathematical

model for NFV chain. Section 6.4 describes the methodology for deriving the end-to-end

performance of NFV chain. The stochastic arrival and service curves are investigated

based on MGFs; end-to-end latency bound is derived based on convolution feature of

stochastic network calculus. The numerical results of the analytical model are discussed

in Section 6.5. Finally, Section 6.6 concludes this study.

6.2 NFV Service Chain

The network architecture [58] launched by European Telecommunications Standards In-

stitute (ETSI) gives a guide on how to design, implement and manage the NFV including

the underlying physical resources, VNF management and service orchestration and oper-
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ation. The key concept in ETSI NFV architecture is NFV service chain, which defines a

list of individual network functions and the sequence policy and Service Level Agreement

(SLA) requirements among these functions.

In order to demonstrate how the NFV chain is deployed in the practical network, we

exemplify a cloud based service for mobile user to visit web server as shown in Fig. 6.1.

The transmission network covers the LTE-A based access network, service provider net-

work, and datacenter network. Within the network domains, through leveraging NFV

technology, the dedicated network devices have been replaced by the common server;

network functions are implemented and managed through NFV MANO. In Fig. 6.1, the

end user sends a request to base station through access network. Based on service type,

this message may be processed by various Virtual Network Functions (VNFs) within the

base station, including Mobility Management Entity (MME), Authentication, Authorisa-

tion, and Accounting (AAA), Policy and Charging Rules Function (PCRF), Deep Packet

Inspection (DPI), Service Gateway (S-Gateway) and Packet Data Network Gateway (P-

Gateway); when the packet leaves access network and enters the ingress router (Provider

Edger Router (PE router)) of service provider network. One or more network functions,

such as Firewall, Load Balance and WAN Optimiser, would be offered by the service

provider network to the arrival packets for guaranteeing the SLA, reliability and security

requirements. To simplify the packet transmission in the core network, most of the ex-

iting service provider network uses the Multi-protocol Label Switch (MPLS) to replace

TCP/IP forwarding. Herein, Provider Edge (PE) routers A and B reside in the edge of the

service provider network, responsible for label processing. In order to realise the packet

transmission following the sequence of service chain, PE Router A will insert the MPLS

labels of the Firewall, Load Balance and WAN Optimiser in the label stack of the packet.

The label of firewall service will be at the top of the stack, followed by the labels for load

95



balancer service and WAN optimiser. The MPLS devices inside the provider network will

check the top label to route the traffic and add/remove/swap the top label according to the

service required. Therefore, packet will flow through paths according to the label se-

quence in the label stack and will achieve service chaining in sequence. When the packet

leaves the PE Router B and arrives at the datacenter network, VNFs such as Firewall and

Quality of Service (QoS) monitor would be offered before it visits the web server.

For NFV technology, NFV chain is characterised by its dynamic and on-demand fea-

tures. Through implementing the network function in the manner of software, NFV func-

tions can be easily added, removed or modified in the service chain at any time during the

overall life-cycle of the service provision. For instance, a DPI service or an AAA verifi-

cation can be installed in the datacenter network when the packet arrives at the datacenter

network to improve the security. Another important merit of NFV is that the underlying

virtual resource, such as storage space, computing speed and network transmission qual-

ity, can be upgraded to continuously and quickly satisfy the up-level service requirement.

Although NFV chain brings a lot of benefits for service provider and network operator to

manage and deploy network services, the dynamic and on-demand features pose unprece-

dented challenge for the quantitive performance analysis. In the next section, the working

mechanism of service chain will be abstracted into mathematical model for further per-

formance evaluation.

6.3 System Model

In order to quantitatively investigate the performance of the NFV networks, the service

chain in Fig. 6.1 needs to be firstly abstracted and modelled. Based on the stochastic

network calculus presented in Chapter 2, NFV service chain scenario in Fig. 6.1 is mod-

elled as a queueing network in Fig. 6.2. In the abstracted NFV model, the arrival traffic
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Figure 6.1: End-to-End NFV Chain Deployment

for each server consists of two kinds of traffic: through traffic generated by the end user

in Fig. 6.1, and cross traffics that complete the resource with the through traffic. As the

physical server is shared by multiple NFV chain, cross traffics are used to capture the

effects of resource completion. The NFV chain that we are interested is named as through

traffic in this research[74]. Let Athi(t) and Acri(t) denote the through and cross traffic for

the ith server. Within the abstracted NFV model, the through traffic, Athi(t), is generated

by MMPP and the cross traffic, Acri(t), is generated as Poisson Process. The number of

the cross-traffic in the ith server is set to be mi. The first server in the abstracted model is

set to be memory-less on-off server to represent the wireless communication channel; for

the other servers, service process, Si(t) follows the exponential distribution with different

system parameters to model various VNFs in the access, service provider and datacenter

networks. The total number of the VNFs in the service chain is set to be n�1. The depar-

ture process is denoted as D(t). As SLA requirements for service provisioning should be

met by the network operators, this work assumes the transmission bandwidth between two
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VNFs in NFV chain can be guaranteed by the underlying NFV Infrastructure (NFVI). It

is worth noting that the service model in Fig. 6.2 considers the following three important

aspects:

Table 6.1: Key Notation Used in the Derivation of the Model in Chapter 6

Athi(t) The through traffic for the ith server

Acri(t) The cross traffic for the ith server

mi The number of the cross-traffic in the ith server

Si(t) The service process for the ith server

D(t) The departure process of the NFV system

l , j
i The arrival rate for the jth cross traffic in the ith server

Acr j
i
(t) The jth cross traffic in the ith server

Acri The total arrival process of cross traffic in the ith server

W (t) The latency bound of end-to-end latency

e The violation probability

MA(q , t � t) The MGF of an arrival process, A(t)

r The effective bandwidth

q The free parameter

t The time interval

bS The burstness of the service process

bA The burstness of the arrival process

t

⇤ The time interval that the inequality achieves the minimum

1/v The packet size

N j
cri The numbers of the packets arriving at the ith server from the jth cross

source

MN j
cri
(q , t � t) The MGF of N j

cri

j1 The transmission rate from the state 1 to state 2 of MMPP

j2 The transmission rate from the state 2 to state 1 of MMPP

l The arrival rate when MMPP is in state 1

s The free parameter under the constraint of q

AAggi(t) The aggregation arrival process of cross traffic in the ith server

pon The probability that the state of the wireless channel is ’on’
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µi The service rate of the ith server

Mthi(�q , t � t) The MGF of the leftover service for the through traffic

• Cross Traffic

As discussed in the previous paragraph, multiple VNFs may share the same under-

lying physical or virtual servers in order to achieve the higher resource utilisation.

However, this co-existence deployment strategy poses a challenging issue for ser-

vice quality guarantee, for instance, how to consider the negative impact of the

cross traffic that belongs to other NFV chains on the through NFV chain should be

carefully considered.

Within the abstracted model, as shown in Fig. 6.2, the cross traffic is modelled

as Acri(t), and the number of the cross traffic for the ith server is mi. The traffic

rate for the cross traffic in the server is set to be l

j
i . Use Acr j

i
(t) to denote the jth

cross traffic in the ith server; then the total accumulative cross traffic for the ith

server, Acri is equal to AAggi(t) = Âmi
j=1 A j

cri . In section 6.5, we will investigate the

impact of mi and l

j
i on the end-to-end performance bound. Furthermore, in order

to simplify the model derivation, leftover service technique [72] will be used in this

study to calculate the service available for the through VNF in the present of the

cross VNFs.

• Dynamic Feature

The second issue for modelling NFV networks is how to capture the dynamic fea-

ture of the NFV chain, including the processing ability of each VNF and add or

removal of specific NFV during the service provisioning. In Fig. 6.2, the service
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capability of the each VNF in service chain is denoted as Si(t), which is modelled as

a random server during performance derivation. The capacity of the each server can

be modified in the manner of the on-demand. Thanks to the associativity property

of the min-plus convolution, the multiple nodes NFV chain can be abstracted as a

single equivalent system. Let S(t) denote the service process of the overall NFV

chain, by leveraging the associativity property, S(t) can be expressed as the convo-

lution of the individual service process, shown as S(t) = S1⌦S2⌦ · · ·⌦Sn . Let the

number of the VNFs in a service chain be as n, which is a free parameter during

the whole performance derivation. The final end-to-end system performance will

be a function of n. In case that a VNF is removed or added into the service chain,

the analytical model can immediately capture this effect and quickly achieve the

new performance bounds for the modified service chain by uploading the value of

n accordingly. The details of the performance derivation will be studied in Section

6.4.

• SLA Oriented NFV Model

For network operators, the network service is booked and offered in the manner of

SLA constraints. Strict requirement will be applied to the probability of service

violation or availability. In this area, analytical model to be designed is expected

to derive the system performance in term of SLA guarantee not just the basic av-

erage QoS metrics. For this reason, the stochastic network calculus is exploited in

this research to study the performance of NFV networks. Stochastic network cal-

culus is based on the probability theory and defines the mathematical relationship

between the SLA requirement and probability that this demand can be met with a

given network resource. For instance, let w denote the latency bound for end-to-end
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service chain and e be the violation probability that w can not be guaranteed, the

aim of analytical model is to achieve the relation between w and e , to calculate w if

e is given, and vice versa. According to [73], the relation between w and e can be

expressed as,

P(W (t)> w) e (6.1)

Through exploring the useful results of stochastic network calculus, the analytical

model to be developed in this research will be capable of capturing the SLA prop-

erties and thus has the potential value for network operators to conduct the network

plan and management.
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Figure 6.2: Abstracted Model of NFV Chain

6.4 Derivation of the Performance Model

In this section, we will first derive the SACs and SSCs for two types of the arrival traffic

(Poisson Process and MMPP) and two kinds of server model (On-off Wireless Channel

Model and Exponential Service Model). With SACs and SSCs, the leftover service tech-

nology [74] is leveraged in this research to calculate the service resources available for

through traffic in the presence of the cross traffics. After achieving the effective SSCs, a

single equivalent system is envisioned to replace multiple server NFV chain based the as-

sociativity property of the min-plus convolution. Finally, end-to-end performance bound

101



is calculated with the SAC of the through NFV traffic and SSC of the convolution net-

work.

6.4.1 Moment Generating Function (MGF) and Exponentially Bounded

Burstiness (EBB)

In order to achieve the SACs for arrival traffic and SSCs for abstracted servers in Fig. 6.2,

two envelopes named MGF and EBB are utilised in this work to achieve the statistical

bounds. For the simplification, we present the derivation of the statistical performance

bounds for the arrival process. The service statistical performance bounds can be obtained

similarly in [74].

In the statistic [145], the MGF of an arrival process, A(t), is defined as MA(q , t �t) =

E[eqA(t,t)], where q is a free parameter with the constraint of t . Given the affine envelop

of A(t), the MGF of the arrival process is bounded by

E[eqA(t,t)] eq((r(t�t)+s) (6.2)

where r and s are the function of the free parameter q .

EBB is a stochastic envelop for arrival process, A(t). Given the violation probability,

e(b), that A(t,t) is larger than an affine envelop r(t � t)+b, EBB is defined as,

P(A(t,t)> r(t � t)+b) e(b) (6.3)

where e(b) is defined as a exponential function of b, given by e(b) = ae�qb.

In the statistics [145], the generic Chernoff bound for a random variable, X , is defined

as,

P(X > x) = P(eqX > eqx) E[eqX ]

eqx (6.4)
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By applying the Chernoff bound in Eqs. (6.2)-(6.3), the EBB can be rewritten as,

P(A(t,t)> r(t � t)+b) e(b) E[eqA(t,t)]

eq [r(t�t)+b] 
eq [r(t�t)+s ]

eq [r(t�t)+b] = eqs e�qb (6.5)

Compared with EBB in Eq. (6.3), the violation probability, e(b) is equal to eqs e�qb.

6.4.2 Stochastic Arrival Curves

The abstracted NFV model comprises of two types of the traffics, the data traffic served

by the cross NFV chains and the voice traffic served by the through NFV chain. Poisson

process is used for modelling the data traffic and MMPP for voice traffic [146]. In this

part, the SACs of the Poisson process and MMPP are derived respectively; the packet

size is set to be 1/v. The adoption of 1/v is to simplify the mathematical derivation. As

discussed in the Section 6.2, there are mi NFV cross chains existing for the ith server.

In this section, a stochastic multiplexing approach will be presented to calculate the total

accumulative traffic for the individual server.

6.4.2.1 Poisson Traffic

We denote that the numbers of the packets and bits arriving at the ith server from the

jth cross source during the time interval [0, t] are denoted as A j
cri and N j

cri respectively.

Given the packet size 1/v, then A j
cri = N j

cri/v. Assume the MGF of N j
cri , is set to be

MN j
cri
(q , t � t), the MGF of A j

cri , can be calculated as follows,

MA j
cri
(q , t � t) = E[eqA j

cri ] = E[eqN j
cri/v] = MN j

cri
(q/v, t � t) (6.6)

In [145], the distribution of a Poisson process is P[N(t) = k] = e�l t(l t)k/k!, where l
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is the average arriving rate. Correspondingly, then the MGF of N j
cri can be calculated as,

MN j
cri
(q , t � t) = E[eqN j

cri ] =
+•

Â
k=0

[(l j
i t)

k
/k!]e�l

j
i teqk = e�l

j
i t(eq�1) (6.7)

where l

j
i is the arrival rate for the jth NFV cross traffic source at the ith server. Then

A j
cri(t) has the MGF, MA j

cri
(q , t � t), to be e�l

j
i t(eq�1); and the affine envelop model,

E[eqA j
cri(t�t)] eq [r j

i (t�t)+s

j
i ], with the parameters r

j
i =

l

j
i (e

q/v�1)
q

and s

j
i = 0.

6.4.2.2 MMPP Traffic

The through traffic, Ath(t), is modelled by MMPP process with two states. The transmis-

sion rate from the state 1 to state 2 is j1; the transmission rate from the state 2 to state 1 is

j2; when Markov chain is in state 1, the arrival rate for through traffic is l ; when Markov

chain is in state 2, there is no arrival for through traffic.

The MGF of Ath(t) is defined as MAth(q , t � t) = E[eqAth ] According to [72], the

MAth(q , t � t) can be calculated as,

E[eqAth ] =


j2

j1+j2

j1
j1+j2

�
exp

0

BB@

2

664
�j1 +ql j1

j2 �j2

3

775 t

1

CCA

2

664
1

1

3

775 (6.8)

From [147], Eq. (6.8) can be simplified as,

E[eqAth ] eql�j1�j2+
p

(ql+j2�j1)2+4j1j2 (6.9)

The affine envelop of the arrival process, Ath(t), is defined as,

E[eqAth(t,t)] eq(rath(t�t)+sath) (6.10)
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After comparing Eq. (6.10) with Eq. (6.9), rath and sath can be achieved as rath =

1
2q

(ql �j1 �j2 +
p

(ql +j2 �j1)2 +4j1j2) and sath = 0.

6.4.3 Stochastic Multiplexing

For the ith server, there are mi cross traffics served by cross NFV chains. A stochas-

tic multiplexing approach [74] is applied in this part to combine mi cross traffics into

one equivalent aggregation traffic, which avoids the complex model derivation, especially

providing an efficient solution for calculating the leftover service in Section 6.4.4.3. As

denoted in Section 6.2, let A j
cri(t) represent the jth cross traffic for the ith server. For a

lossless system, AAggi(t) is equal to the sum of A j
cri(t), shown as AAggi(t) = Âmi

j=1 A j
cri(t).

Based on this equation, it can be easily seen the relationship between the MGFs of the

individual cross traffic process and the aggregated traffic process.

The MGF of the aggregated traffic, MAAggi
(q , t � t), is given by

MAAggi
(q , t � t) = E[eqAggi(t�t)] = E[eq Âmi

j=1 A j
cri(t�t)] =

mi

’
j=1

eqA j
cri(t�t) (6.11)

Given the affine envelop model of A j
cri(t), E[eqA j

cri(t�t)] eq [r j
i (t�t)+s

j
i ], MAAggi

(q , t�

t) can be rewritten in the following equation,

MAAggi
(q , t � t) eq [rAggi(t�t)+sAggi ] (6.12)

where rAggi = ’mi
j=1 r

j
i and sAggi = ’mi

j=1 s

j
i ;

From the perspective of the ith server, the mi cross traffics can be regarded as an

aggregation traffic, A j
cri(t), with parameters rAggi and sAggi , which are calculated from

individual cross traffic, A j
cri(t).
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6.4.4 Stochastic Service Curves

SSCs give the bound of the least service available in the system for the arrival traffic. Two

kinds of the service models are envisioned in the abstracted NFV model, memoryless

off-on service process and exponential service process. Memoryless off-on process is

used to model the dynamic wireless channel [147] and exponential process is for normal

NFV server [148]. This section investigates how to achieve the SSCs for both the off-on

service process and exponential process. As the cross traffic served by cross NFV chains

exists at each VNF node and competing the network, computing and storage resources

with the through NFV chain, an efficient approach to calculate the leftover service will be

exploited to obtain the effective resource left for the through NFV service chain.

6.4.4.1 On-off Wireless Channel Model

Off-on wireless channel has two states (on and off) during service provisioning. When the

channel is in the ”on” state, it provides a constant transmission at rate r; Once the channel

is in the ”off” state, the wireless channel does not provide any service. Let Pon denote the

probability that the state of the wireless channel is ”on”; and 1�Pon denote the probability

that wireless channel is in ”off” state. Let X(t) be the service available at time interval t,

it is a two states Bernoulli variable, P(X(t) = r) = Pon and P(X(t) = 0) = 1�Pon. MGF

of X(t), MX(�q , t), can be expressed as,

MX(�q , t) = E[e�qX(t)] = Pon ⇤ e�qr +1�Pon (6.13)

Let S1(t, t) denote the cumulative service in time interval [t + 1, t], which is equal

to the sum of the X(t) over time interval [t +1, t], expressed as S1(t, t) = Ât
u=t+1 X(u).
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Then the MGF of S1(t, t), MS(�q , t), can be achieved as,

MS(�q , t) = E[e�qS(t)] = E[e�qÂt
u=1X

u ] (6.14)

As A(t) follows iid Bernoulli distribution, Eq. (6.14) transfers to

MS(�q , t) = {E[e�qX(t)]}t
= {MX(�q , t)}t = (Pon ⇤ e�qr+1�Pon)t = e�q t ln(Pon⇤e�qr+1�Pon)

�q

(6.15)

Therefore, S1(t, t) has the MGF of E[e�qS1(t�t)] e�q [rS1(t�t)�sS1] with the parame-

ter rS1 =
ln(Pon⇤e�qr+1�Pon)

�q

and sS1 = 0.

6.4.4.2 Exponential Service Model

According to [72], the MGF of service process, Si(t, t), is defined as MSi(�q , t � t) =

E[e�qSi(t,t)] with parameter �q for q > 0. Applying the affine service envelop, Si(t, t)�

r(t � t)�bs, to MSi(�q , t � t) achieves the following equation,

E[e�qSi(t,t)] e�q(rsi(t�t)�ssi) (6.16)

The relation between the packets and bits is Si = Nsi/v; then the MGF of service

process, Msi(�q , t � t), is calculated as,

Msi(�q , t � t) = MNsi
(�q/v, t � t) (6.17)

Similar to the derivation process of the SACs, the MGF of service process can be

achieved by,

MNsi
(�q/v, t � t) = e�µit(e�q�1) (6.18)
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where µi is the service rate for the ith server. Then Si(t) has the MGF, MSi(�q , t � t),

to be e�µit(e�q�1); the affine envelop model, E[e�qASi(t�t)]  e�q [rsi(t�t)+ssi ], with the

parameters rsi =
µi(e�q/v�1)

�q

and ssi = 0.

6.4.4.3 Leftover Service

For each server, we are interested in the the service available for the through traffic, not

for the cross traffic. Therefore, the main work for this part is to calculate the amount

of the service offered to the through traffic in the existence of the cross traffic, named

leftover service, which is an important notion in stochastic network calculus. Let Ati(t) be

the total cumulative arrival at the ith server, which consists of through traffic, Athi(t), and

total cross traffic, AAggi(t). Let Dti(t) be the total cumulative departure from the ith server,

which consists of the departures from through traffic, Dthi(t), and the total departures from

cross traffic, DAggi(t). Let Si(t, t) denote the service available at the ith server during the

time interval [t +1, t]. The following inequality holds for Si(t, t), Ati(t, t), and Dti(t, t),

Dti(t)� min
t2[0,t]

(Si(t, t)+Ati(t)) (6.19)

Assume the last busy time is t

⇤, when t = t

⇤, the right side of the inequality achieves

the minimum. Inserting Athi(t), AAggi(t), Dthi(t), and DAggi(t) in Eq. (6.19), it can be

written as

Dthi(t)� Athi(t
⇤)+{Si(t

⇤, t)� [DAggi(t)�AAggi(t
⇤)]}+ (6.20)

where the subscript ”+” means nonnegative value. For the cross traffic, the departure bits

can not be larger than the arrival bits, denoted as DAggi(t)  AAggi(t). Eq. (6.20) can be

further written as

Dthi(t)� Athi(t
⇤)+{Si(t

⇤, t)� [AAggi(t)�AAggi(t
⇤)]}+ (6.21)
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In Eq. (6.21), AAggi(t)�AAggi(t
⇤) = AAggi(t

⇤, t); Since t

⇤ denotes the last busy time

that can be determined in advance, we use minimum operation to generalise t

⇤ as t . Eq.

(6.21) becomes

Dthi(t)� min
t2[0,t]

{[Si(t, t)�AAggi(t, t)]++Athi(t)} (6.22)

For through traffic, the following inequality holds for Athi(t), Sthi(t), and Dthi(t),

Dthi(t)� min
t2[0,t]

{Sthi(t)+Athi(t)} (6.23)

where Sthi(t) is the leftover service for the through traffic in the existence of the cross

traffic. From Eq. (6.22) and Eq. (6.23), the leftover service, Sthi(t), is calculated as

Sthi(t) = {[Si(t, t)�AAggi(t, t)]+.

As Sthi(t) and AAggi(t, t) are stochastically independent, the MGF of the leftover ser-

vice, Mthi(�q , t � t), can be calculated as

Mthi(�q , t � t) = E[e�qSthi(t�t)] = E[e�q [Si(t,t)�AAggi(t,t)]+]

= E[e�qSi(t,t)]E[eqAAggi(t,t)]

 e�q [rSi(t�t)�sSi ]eq [rAggi(t�t)+sAggi ]

= e�q [(rSi�rAggi)(t�t)�(sSi+sAggi)] (6.24)

From Eq. (6.24), the MGF of Sthi(t) can be achieved from E[e�qSthi(t�t)] e�q [rthi(t�t)�sthi ],

with the parameters rthi = rSi �rAggi and sthi = sSi +sAggi .
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6.4.5 End-to-end Latency Bounds

From Sections 6.4.2 and 6.4.4, we achieved the envelop models for the arrival process and

service process. For the through traffic, the envelop is shown as:

Ath(t, t) (rAth +d )(t � t)+bAth (6.25)

where d is used to demonstrate a sample path and the probability for Ath(t, t) to satisfy the

above inequality is equal to e(bAth) = eqsAth e�qbAth/(1� e�qd ). For the service process

of the entire NFV chain, the envelop is shown as:

S(t, t)� (rS �s)(t � t)�bS (6.26)

where the probability for Ath(t, t) to meet the above inequality is equal to e(bS)= enqsS/(1�

e�qs )n.
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Figure 6.3: End-to-End Latency Bound from SSC and SAC

For the NFV system stability, it is required that the service envelop should be always

larger than the arrival envelop, rAth + d < rS � d , and d < (rS � rAth)/2. In order to

simplify the description, we draw two envelops on one 2-dimension figure. From Fig.
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6.3, the stability condition is shown as that the slope of the service envelop is larger than

that of the arrival envelop.

For stochastic network calculus, the end-to-end upper bound lantecy, w, is defined as

W (t) min{w � 0 : max{Ath(t, t)< D(t, t +w)}} (6.27)

where W(t) is the system latency at time t.

With the MGFs of the traffic process and overall service process, the upper bound

latency in Eq. (6.27) can be achieved in the following in [147]

w = in f
q>0

"

in f


t : 1
q

ln
✓

Â•
s=t

MAth(q ,s� t)MS(�q ,s)� lne

◆
 0
�#

(6.28)

Under the First In First Out (FIFO) scheduling strategy, the work in [149] gave the

approach to solve the above inequality.

The end-to-end delay bound, w, can be achieved when t satisfies the following condi-

tion:

1
q

ln
✓

Â•
s=t

MAth(q ,s� t)MS(�q , t � t)� lne

◆
 0 (6.29)

In [149], the geometric series approach is exploited to solve the above inequality.

Under the stability condition, rAth(q) rS(�q), t has the lower bound described as

t � s(q)

rS(�q)
+

n⇤ lng � lne

qrS(�q)
(6.30)

where g is calculated by g = 1+ 1
1�e

�q(rS(�q)�rAth
(q)) ; then the end-to-end lower bound

is achieved as w = in f
q>0[in f [t]]; and the backlog bound is b = in f

q>0[s(q)+ (lng �

lne)/q ].
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6.5 Numerical Results and Analysis

In this section, we first evaluate the accuracy of the developed analytical model; then the

analytical model is used to study the impacts of the number of the NFV nodes, the arrival

rates of cross traffic and violation probability on the end-to-end performance of NFV

networks, with the aim of achieving the fundamental understanding of the NFV networks

in the real network deployment.

6.5.1 Performance Evaluation

Following the apprach to validate the analytical model in [150], the accuracy of the pro-

posed performance model is conducted through the comparisons with the exact queueing

and comprehensive simulations with different network settings [73][147] [151].

6.5.1.1 Comparison of Analytical Model Results with Exact Queueing

Results

In the literature [152], the exact bound of a queueing network is derived based on the

assumption that the arrival packets are served by FIFO scheduling algorithm and M/M/1

queueing theory is used to model the queue behaviour. In order to evaluate the developed

model compared with the exact bound results, this section simplifies the abstracted model

in Section 6.3 as follows: the through traffic and cross traffic for the ith server, Athi(t)

and Acri(t), follow Poisson process with arrival rates: lthand lcri . The servers provide the

independent and exponentially distributed service for arriving packets with service rate:

µi. Then the utilisation rate of the server is rsi =

"

Âmi
i=1 lcri +lth

#

µsi
. In [152], the relation

between the latency bound and violation error rate of the M/M/1 queue is given in the

following equation:

e = evc(1�rsi)w (6.31)
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For the multiple node case, the relation between the upper latency bound and violation

error is given in [153],

P(W > w) =


Ân�1
i=0

µsi(1�rsiw)
i

i!

�
e�µsi(1�rsi)w (6.32)
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Figure 6.4: Comparison of Exact Theory Results with Those Obtained from the Analytical Model
by Varying the Server Utilisation Rates

Next, we use the method in Section 6.4.5 to achieve the end-to-end latency bound for

NFV networks and compare the results with those obtained from the exact bounds in Eq.

(6.31) and Eq. (6.32). As shown in Fig. 6.4, the upper latency bounds are achieved from

both the classical theory and analytical model by varying the server utilisation rates. In

Fig. 6.4, service rate is set to be 1M bits/second; the arrival rates are set from 0 to 1M

bits/second with an interval of 0.1M bits/second; two violation errors setting are adopted

to reflect different SLA requirements: 10�6 and 10�4; the packets size is set to be 1024

bits. NFV node is set to one as described in Eq. (6.31). From Fig. 6.4, the results of
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the analytical model match well with those of the exact theory results. Furthermore, the

smaller value of the violation error brings higher upper latency bound; this means that

strict SLA requirement in terms of the violation error would push up the bound of the

latency with given network resources.
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Figure 6.5: Comparison of Exact Theory Results with These Obtained from the Analytical Model
by Varying the Violation Error

In order to evaluate the accuracy of the proposed analytical model under different

violation error rates, Fig. 6.5 shows the upper latency bounds obtained from the Eq.

(6.32) and analytical model. In Fig. 6.5, the arrival rate is fix at 0.5M bits/second; the

service rate and packets sizes are set to be as same as those in Fig. 6.4; solid line shows

the results obtained from the analytical model and dotted line shows the results of queue

theory in Eq. (6.32). It can be seen that relative error of analytical model is around 15-

20% compared with the exact result. The explanation of the relative error is as follows:

to simplify the derivation process, the approach in Eq. (6.30) to derive the upper latency
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Table 6.2: Network Configuration of OMNET++ Simulator

µs n mi lcr lth1 lth2 j1 j2 1/v e

Case I 1000 1 2 100 / 0 0.5 0.3 1024 10(�4)

Case II 1000 3 0 100 / 0 0.09 0.06 1024 10(�6)

bound adopts larger intervals than the intervals in Eq. (6.27); otherwise it is difficult to

achieve a conservative and close-form upper latency bound. Compared with the results

reported in the existing literatures [147]. 15-20% is acceptable for the least upper latency

bound in stochastic network calculus. In chapter 7, the effort to tight the upper latency

bound will be listed as the next step work.

6.5.1.2 Comparison of Analytical Model Results with Simulation Results

In order to comprehensively evaluate the performance of the proposed analytical model,

a discrete-event simulator is developed in this research in OMNET++ simulation envi-

ronment. The parameters that are used in this section are listed in Table 6.2. Two cases

are designed in this section to evaluate the accuracy of the proposed model with multiple

cross traffic and multiple NFV nodes. As shown in Figs. 6.6 and 6.7, the analytical model

developed in this research matches well with the simulation results when the arrival rates

of through traffic are moderate. From 6.7, it can be seen that the analytical model grad-

ually reaches the saturation when arrival rate is approaching 1000 packets/second, while

simulator could still get the results after saturation point. This is why the range of the

horizontal axis is set as [0, 1100]. In addition, when the servers enter saturated mode,

there are some discrepancies between the analytical model and simulation results. This is

become some approximation are assumed during the derivation of the analytical model,

which would cause the discrepancy when the server is high-loaded.
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Figure 6.6: Comparison of Simulation Results with Those Obtained from the Analytical Model
in Case I
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Figure 6.7: Comparison of Simulation Results with Those Obtained from the Analytical Model
in Case II
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6.5.2 Performance Analysis

In this section, the analytical model developed in Section 6.4 will be leveraged to investi-

gate the impacts of the number of NFV nodes, the arrival rates of cross traffic and violation

error probability on the performance of the through traffic. Different network configura-

tions are exploited to achieve a comprehensive understanding of the performance of NFV

chain in this section.
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Figure 6.8: Impacts of the Number of the NFV Nodes on the Latency Performance of the Through
Traffic

6.5.2.1 Impacts of the Number of NFV Nodes on the Upper Latency

Bound

The number of NFV nodes is an important aspect for the deployment of NFV chain;

adding NFV node to an existing NFV chain is able to introduce another network function

for the end user, however, could result in additional processing latency and performance

degradation. The aim of this section is to study the impact of the number of NFV nodes on
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the upper latency bound with different violation error requirements. The network setting

is described as follows: the arrival traffic is modelled as an Off-on Poisson process, which

has two states (0 and 1); the transmission rate from state 0 to state 1 is set to be 0.5; from

state 1 to state 0 is 0.3. When Markov chain is in state 0, there is no packet for through

traffic. When Markov chain is in state 1, the arrival rate is set to be 0.3M bits/second; the

service rate is fixed as 1M bits/second. The number of the cross traffic is set to be zero, to

avoid the impact of cross traffic on the NFV nodes investigation of upper latency bound.

Fig. 6.8 shows the relation between the number of the NFV nodes, n, and the least upper

latency bound, w. It can be seen that with the increase of the number of NFV nodes, the

least upper latency bound becomes higher. This can be explained from Eq. (6.30). The

upper latency bound is described as a linear function of the number of the NFV nodes.

Through the comparison of the solid line and dotted line, it can be seen that the increase

of the violation error rate brings the drop of the upper latency bound. For instance, let us

fix n as 6, when e = 10�6, the latency bound is equal to 38.4ms; when the e increases

from 10�6 to 10�4, the upper bound latency bound drops from 38.4ms to 28.6ms. The

explanation can be also found from Eq. (6.30); Within Eq. (6.30), it is easily observed that

the upper bound latency bound is an increasing function of the violation error probability.

6.5.2.2 Impacts of Cross Traffic on the Latency Performance of Through

Traffic

NFV brings network operator the benefits of flexible service deployment, scalable net-

work architecture, and lower OPEX and CAPEX, while at the same time it struggles to

provide end-to-end SLA-guaranteed services due to the co-existence feature of NFV chain

deployment. The developed model in this work provides a cost-efficient approach to in-

vestigate the impacts of the cross traffic on the performance of the through traffic, such as
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Figure 6.9: Impacts of the Arrival Rates of the Cross Traffic on the Latency Performance of the
Through Traffic

in what degree the cross NFV traffic poses performance challenges for the through NFV

traffic with given network resources. Network configuration is described as follows: the

through traffic and server are set as same as that in the above subsection. The number

of the NFV chain is set to be 2; the violation error rate is fix as 10�6. The number of

the cross traffic on the ith server, mi is set to be 2 and 4; Fig. 6.9 shows the relationship

between the arrival rates of the cross traffic and upper latency bound when mi is equal to 2

and 4. Fig. 6.9 proves that cross traffic significantly impacts the performance of the NFV

networks. Large number or higher volume of cross traffic brings higher upper latency

bound for through traffic. Because under FIFO scheduling algorithm, the large number

of cross traffic or high volume of cross traffic consumes significant amount of the server

resources, leading to less resource available for through traffic and negative impacts on

the service provisioning for through traffic.
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Figure 6.10: Impacts of Violation Error on the Latency Performance of the Through Traffic

6.5.2.3 Impacts of Violation Error Probability on the Latency Perfor-

mance of Through Traffic

In NFV networks, network service is offered based on SLA agreements between network

operator and service provider. The analytical model developed in this study is SLA-aware

and is capable of providing the relationship between end-to-end latency bound and vio-

lation error probability. In this section, the service rate is set to be 1M bits/second; the

number of the NFV node is set to be 2; the number and arrival rate for cross traffic are

2 and 0.1M bits/second; the arrival rate of the through traffic is set to be 0.3M and 0.5M

bits/second. The transmission rates are set as same as previous sections. Fig. 6.10 gives

the least upper latency bound by varying the violation error rates, e , from 10�7 to 10�1.

It can be seen that the smaller value of e significantly pushes up the upper latency bound;

this means that with the strict violation (10�7), the higher latency bound is needed to

ensure that (1� 10�7)% of the packets are delivered within the defined latency bound.
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Furthermore, heavy volume of through traffic would also result in higher latency bound;

it is not difficult to understand that with the given server resource, more arrivals would in-

crease the server burden and result in the longer waiting time and the higher upper latency

bound. Therefore, in order to reduce the upper latency bound, additional computing, stor-

age and network resource would be needed once the upper latency bound can not meet the

requirements of transmission latency. From the above analysis, the developed analytical

model has practical value in the NFV service deployment and management.

6.6 Summary

NFV is regarded as a disruptive technology for telecommunication service provider to

reduce CAPEX and OPEX through decoupling individual network services from the un-

derlying hardware devices. In this chapter, a novel analytical model based on stochastic

network calculus was proposed to investigate the upper latency bound of the NFV service

chain. Instead of giving the average performance metrics, the developed model derives

the worst-case of system performance with the aim of quantitatively achieving the net-

work performance in term of SLA guarantee. During derivation of the upper latency

bound, MGF and EBB are used to achieve the SACs and SSCs. In order to consider the

cross traffic in the analytical model, leftover service technology was exploited to calcu-

late the service available for through traffic. The end-to-end upper latency bound was

calculated based on the achieved SACs, SSCs, violation error requirements and network

topology settings. The exact theory results are used to validate the accuracy of the analyt-

ical models. The model is then used as practical and cost-effective tools to investigate the

performance of NFV networks under various network configurations.
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Chapter 7

Conclusions and Future Work

With the rapid developments of new emerging service and application, such as social me-

dia, Internet-of-Things, 3D immersive applications and High Definition 4K/8K videos,

new network architectures are urgently needed to drive the evolution of the current net-

work infrastructure to Future Internet to meet the requirements of these emerging appli-

cations and services. LTE-A, SDN and NFV have been regarded as the key technologies

to achieve this ambition. The primary focus of this thesis is to investigate the resource

allocation and analytical modelling technologies for LTE-A, SDN and NFV to enable the

overall optimal operations of Future Internet. In the following, a summary of the research

in this thesis is provided and some future directions are also discussed.

7.1 Conclusions

This thesis has presented new resource allocation algorithms and analytical tools for

LTE-A, SDN and NFV architectures. In detail, we have studied the problems of QoS

guaranteed radio resource allocation for LTE-A system with CA, the data-plane packet

scheduling and performance modelling in SDN networks and the stochastic performance

modelling for NFV networks. In order to achieve an improvement in real-time service

provisioning and keep backward compatibility of LTE-A to LTE systems, we have pro-
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posed a QoS-aware resource allocation algorithm in Chapter 3. In order to improve the

forwarding capability and obtain the performance limitations of SDN network, a packet

scheduling algorithm and two analytical models have been proposed in Sections 4 and

5. For capturing the dynamic and on-demand feature of NFV network in analytical mod-

elling, Section 6 has presented a stochastic analytical model for NFV chain. The main

contributions of this research are summarised as follows:

• A QoS-aware resource allocation algorithm has been proposed for LTE-A systems

with CA, taking into account the system efficiency, user fairness and QoS require-

ments. The proposed resource allocation algorithm consists of three components,

the higher level scheduler, the lower level scheduler and cross-cc user migration

scheduler, which interact with each other to dynamically assign the radio resource

to users. At the higher scheduler, an innovative resource allocation algorithm de-

fines frame by frame the amount of data that each real-time source should transmit

to satisfy its delay constraint. Once the higher level has accomplished its task,

the lower scheduler, assigns resource blocks using the maximum throughput and

proportional fair algorithms. The cross-cc user migration scheduler following the

lower scheduler adjusts the user positions in CCs, with the aim of decreasing the

unbalance degree among different CCs, improving the resource utilisation for CCs

accomplishing their quotas in advance and reducing the flow loss rate for users in

poor wireless channel. The simulation results have demonstrated that the proposed

scheduling scheme outperformed the well-known Two-Level downlink scheduling

scheme in terms of the packet loss probability, average queue length and throughput

per user.

• A P2S packet scheduling algorithm has been proposed to enhance the global fair-
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ness index and reduce the packet loss probability. P2S offers the high priority to

the packets that fail to match any entry in the flow table in order to reduce the

packet delay, increase the global fairness index, and reduce the packet loss proba-

bility. In addition, a new analytical model for predicting the packet latency has been

developed to achieve quantitative performance evaluation of the P2S scheme. Ex-

tensive simulation experiments have been conducted to validate the accuracy of the

analytical model. The performance results can reveal the quantitative relationship

between the given system resources and the achievable QoS and thus can be used

in the stages of SDN network plan and deployment.

• A new analytical model has been developed for SDN architecture in the presence

of MMPP arrivals, which is adopted capturing the traffic characteristics of multi-

media applications. A PQ system has been adopted to model SDN data plane to

capture the multi-queue nature of forwarding devices. A versatile method extend-

ing the EBA has been proposed to facilitate the decomposition of such a PQ system

to two SSSQ systems in order to facilitate the derivation and improve the tractabil-

ity of the analytical model. The key performance metrics including average latency

and average network throughput have been derived by the model. The accuracy

of the proposed model has been validated through extensive OMNeT++ simulation

experiments. The validation results have revealed that the average latency and the

average throughput predicted by the developed analytical model reasonably match

those obtained from the simulation experiments. Furthermore, the analytical model

has been adopted as a cost-effective tool to study the impact of flow table hit prob-

ability and the service resource allocation in the SDN controller and the switch on

the system performance.
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• A novel dynamic analytical model has been proposed for NFV networks, which fo-

cused on the dynamic and on-demand feature of the service provision and achieved

the relationship between packet loss probability and delay bound. Two kind of

the dynamics were considered in the proposed analytical model: service capability

of individual VNF and number of the NFVs in service chain. Technical contribu-

tions of the proposed analytical models include 1) characterising and modelling the

traffic process and service process of NFV networks to capture the dynamic and

on-demand features; (2) deriving the performance bounds for the end-to-end ser-

vice with the input of the required SLAs in terms of the packet loss probability;

and (3) investigating the impacts of the different resource allocations strategies on

the end-to-end performances. The proposed model jointly exploited the EBB and

MGF to achieve the SAC and SSC for different arrival traffic and service models. In

addition, in order to achieve a non-complex analytical model, the leftover service,

statistical multiplexing technologies were adopted in this research. In order to show

the accuracy of the proposed analytical model, the results of the analytical model

with different parameter settings were compared with these obtained from accurate

queueing results.

7.2 Future Work

In this section, we discuss the open issues and problems that require further investigations

in the areas of the resource allocation and performance modelling of LTE-A, SDN and

NFV networks.

• Optimal CC allocation algorithm in LTE-A systems: most of the existing work as-

sumed that LTE-A users are always assigned to access all CCs regardless of their

QoS requirements, channel quality and buffer states, which results in lower system
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performance and unsatisfied service provisioning. To alleviate the performance lost,

more work is needed to investigate the optimal CC allocation strategy to allocation

LTE-A user to different CCs, taking into considerations of QoS parameters such as

the QoS Class Identifier (QCI), Guaranteed Bit Rate (GBR), and the Aggregated

Maximum Bit Rate (AMBR) for non-GBR bearers to provide useful information

for determining the number of required CCs for the user. As an example, users

only having a voice over IP call or a streaming connection with moderate GBR

can be assigned a single CC, while still being able to fulfil the users QoS require-

ments. Assigning a single CC to such user has the advantage that terminal power

consumption is kept lower, as compared to cases where the user is configured with

a CC set larger than one. Secondly, corresponding control signalling overhead is

also reduced by configuring a smaller number of CCs for the user.

• Analytical models of LTE-A systems with least queue length strategy: most of the

scheduling work in LTE-A system adapts least load balancing method to allocate

the new arrival LTE users or new arrival packets; this can achieve better balance load

among different CCs. However, least load strategy would result in serious problem

for analytical work, especially in the case of more than 2 CCs existing in LTE-A

system. Most of the existing analytical work on LTE-A with CC simply addressed

this issue by assuming round robin as the carrier load balancing methods, and did

not capture the key features of the least load allocation algorithms. In this area,

we will investigate how to use least queue length theory in the analytical model to

address the above problem for LTE-A systems.

• Analytical modelling of SDN networks with multi-hop method: most of the ex-

isting research work on SDN network analytical models simply assume that the
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underlying network devices are directly connected with the SDN controller even

in large scale network scenario. However, this assumption does not consider the

case of multi-hop communication between SDN controller and network devices,

as building connections between SDN controller and individual forwarding devices

is neither OPEX-saving for network operators nor practical for network plan and

deployment. Therefore, how to investigate the performance of SDN network with

multi-hop control communications needs further research investigation. Herein, the

topology of the SDN network should be as practical as possible, for instance, in

the data centre, network infrastructure topology including fat-tree, DCell, BCube,

Camcube, FiConn, Jelly fish, and Scafida should be modelled separately for differ-

ent routing and switch strategies.

• Analytical modelling of SDN networks with in-band control: the second research

issue in SDN analytical model that needs further research is how to model the net-

work performance in-band control scheme. The messages between SDN controller

and the switches need to be forwarded by the underlying switches to SDN con-

troller in the manner of hop-by-hop. Therefore, whether the control messages con-

sume the data-plane bandwidth generates two communications strategies, in-band

control and out-band control. In-band control refers to that the control message and

data message use the same transmission channel for information delivery. While

out-band control refers to that the control messages are allocated with specific trans-

mission channel. Most of the existing research only considers the out-band control

in their analytical model, while in-band control has been appeared in some of the

industry products, such as HP 5200 SDN switch. In-band control can benefit for

the resource utilisation and non-real-time application and services. In this area, the

research to investigate the SDN network performance with in-band control has not

127



been reported in the literature and need more research focus and efforts.

• Optimising the performance bounds for analytical models of NFV networks: com-

pared with the queueing theory, stochastic network calculus is capable of investi-

gating the dynamic features of the network architecture, which makes it suitable for

NFV service chain scenario. Stochastic network calculus provides a series of the

techniques to derive the the end-to-end performance bounds. However, the accuracy

of the the performance bounds is restricted to the selection of the free parameters.

A low-complex multiple objective optimisation algorithm that can efficiently tight

the performance bounds for NFV network is urgently needed in NFV stochastic

performance study.
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