6,848 research outputs found

    Climate vulnerability assessment for Pacific salmon and steelhead in the California Current Large Marine Ecosystem.

    Get PDF
    Major ecological realignments are already occurring in response to climate change. To be successful, conservation strategies now need to account for geographical patterns in traits sensitive to climate change, as well as climate threats to species-level diversity. As part of an effort to provide such information, we conducted a climate vulnerability assessment that included all anadromous Pacific salmon and steelhead (Oncorhynchus spp.) population units listed under the U.S. Endangered Species Act. Using an expert-based scoring system, we ranked 20 attributes for the 28 listed units and 5 additional units. Attributes captured biological sensitivity, or the strength of linkages between each listing unit and the present climate; climate exposure, or the magnitude of projected change in local environmental conditions; and adaptive capacity, or the ability to modify phenotypes to cope with new climatic conditions. Each listing unit was then assigned one of four vulnerability categories. Units ranked most vulnerable overall were Chinook (O. tshawytscha) in the California Central Valley, coho (O. kisutch) in California and southern Oregon, sockeye (O. nerka) in the Snake River Basin, and spring-run Chinook in the interior Columbia and Willamette River Basins. We identified units with similar vulnerability profiles using a hierarchical cluster analysis. Life history characteristics, especially freshwater and estuary residence times, interplayed with gradations in exposure from south to north and from coastal to interior regions to generate landscape-level patterns within each species. Nearly all listing units faced high exposures to projected increases in stream temperature, sea surface temperature, and ocean acidification, but other aspects of exposure peaked in particular regions. Anthropogenic factors, especially migration barriers, habitat degradation, and hatchery influence, have reduced the adaptive capacity of most steelhead and salmon populations. Enhancing adaptive capacity is essential to mitigate for the increasing threat of climate change. Collectively, these results provide a framework to support recovery planning that considers climate impacts on the majority of West Coast anadromous salmonids

    Evaluating the Response of Mediterranean-Atlantic Saltmarshes to Sea-Level Rise

    Get PDF
    Saltmarshes provide high-value ecological services and play an important role in coastal ecosystems and populations. As the rate of sea level rise accelerates in response to climate change, saltmarshes and tidal environments and the ecosystem services that they provide could be lost in those areas that lack sediment supply for vertical accretion or space for landward migration. Predictive models could play an important role in foreseeing those impacts, and to guide the implementation of suitable management plans that increase the adaptive capacity of these valuable ecosystems. The SLAMM (sea-level affecting marshes model) has been extensively used to evaluate coastal wetland habitat response to sea-level rise. However, uncertainties in predicted response will also reflect the accuracy and quality of primary inputs such as elevation and habitat coverage. Here, we assessed the potential of SLAMM for investigating the response of Atlantic-Mediterranean saltmarshes to future sea-level rise and its application in managerial schemes. Our findings show that SLAMM is sensitive to elevation and habitat maps resolution and that historical sea-level trend and saltmarsh accretion rates are the predominant input parameters that influence uncertainty in predictions of change in saltmarsh habitats. The understanding of the past evolution of the system, as well as the contemporary situation, is crucial to providing accurate uncertainty distributions and thus to set a robust baseline for future prediction

    Seafloor characterization using airborne hyperspectral co-registration procedures independent from attitude and positioning sensors

    Get PDF
    The advance of remote-sensing technology and data-storage capabilities has progressed in the last decade to commercial multi-sensor data collection. There is a constant need to characterize, quantify and monitor the coastal areas for habitat research and coastal management. In this paper, we present work on seafloor characterization that uses hyperspectral imagery (HSI). The HSI data allows the operator to extend seafloor characterization from multibeam backscatter towards land and thus creates a seamless ocean-to-land characterization of the littoral zone

    Climate scenarios for coastal flood vulnerability assessments: a case study for the Ligurian coastal region

    Get PDF
    Extreme sea levels and coastal flooding are projected to be among the most uncertain and severe consequences of climate change. In response, a wide development of coastal vulnerability assessment methodologies has been observed in research to support societal resilience to future coastal flood risks. This work aims to explore the scope of application of index-based methodologies for coastal vulnerability assessment, in terms of their suitability to convey information on variations in climate variables potentially leading to sea-level changes and inundation. For this purpose, the InVEST Coastal Vulnerability model was coupled for the first time with the ERA5 reanalysis and used to develop a case study assessment of the biophysical exposure component of vulnerability to coastal flooding for Liguria, an Italian coastal region facing the Mediterranean Sea. Different scenarios of wind speed and wave power were created in order to test the sensitivity of this approach to climate data inputs. The results support the applicability of this approach to provide a preliminary grasp of local vulnerability to coastal inundation. Yet, this work also highlights how the method’s data aggregation and indicator computation processes result in its insensitivity to wind and wave variations, and therefore in its unsuitability to reproduce climate scenarios. The implications of these findings for research methodology and regarding the operationalisation of vulnerability assessment results are discussed

    Pristine vs. human-altered Ebro Delta habitats display contrasting resilience to RSLR

    Get PDF
    River deltas are ecologically and economically valuable coastal ecosystems but low elevations make them extremely sensitive to relative sea level rise (RSLR), i.e. the combined effects of sea level rise and subsidence. Most deltas are subjected to extensive human exploitation, which has altered the habitat composition, connectivity and geomorphology of deltaic landscapes. In the Ebro Delta, extensive wetland reclamation for rice cultivation over the last 150 years has resulted in the loss of 65% of the natural habitats. Here, we compare the dynamics of habitat shifts under two departure conditions (a simulated pristine delta vs. the human-altered delta) using the Sea Level Affecting Marshes Model (SLAMM) under the 4.5 and 8.5 RCP (Representative Concentration Pathways) scenarios for evaluating their resilience to RSLR (i.e. resistance to inundation). Results showed lower inundation rates in the human delta (~10 to 22% by the end of the century, depending on RCP conditions), mostly due to ~4.5 times lower initial extension of coastal lagoons compared to the pristine delta. Yet, inundation rates from ~15 to 30% of the total surface represent the worst possible human scenario, assuming no flooding protection measures. Besides, accretion rates within rice fields are disregarded since this option is not available in SLAMM for developed dry land. In the human delta, rice fields were largely shifted to other wetland habitats and experienced the highest reductions, mostly because of their larger surface. In contrast, in the pristine delta most of the habitats showed significant decreases by 2100 (~2 to 32% of the surface). Coastal infrastructures (dykes or flood protection dunes) and reintroduction of riverine sediments through irrigation channels are proposed to minimize impacts of RSLR. In the worst RCP scenarios, promoting preservation of natural habitats by transforming unproductive rice fields into wetlands could be the most sustainable option.info:eu-repo/semantics/acceptedVersio

    California Coastal Commission Sea Level Rise Policy Guidance: Interpretive Guidelines for Addressing Sea Level Rise in Local Coastal Programs and Coastal Development Permits

    Get PDF
    It provides an overview of the best available science on sea level rise for California and recommended methodology for addressing sea level rise in Coastal Commission planning and regulatory actions. It is a guidance document intended to serve as a multi-purpose resource for a variety of audiences. It does not include regulations and is not specific to a particular geographic location or development intensity

    Climate Change and Potential Economic Impacts in Ireland: The Case for Adaptation

    Get PDF
    This thesis explores a number of key economic impacts associated with climate change in Ireland. It begins by examining the idea of climate change as a so called “wicked problem”, and in turn investigates uncertainty, the importance of ethics in economic valuation, and the complexities associated with creating economic assessments, formulating policy and carrying out appropriate action. Drawing on sustainability science the terms resilience, vulnerability and adaptive capacity are also discussed, defined and engaged with. Key results, associated with both potential climate impact and adaptation costs, are presented from global and regional integrated assessment models and in turn vulnerable Irish sectors are uncovered. The following bottom-up approach explores key vulnerabilities in Ireland in the areas of coastal exposure, wetland vulnerability and inland flooding. Digital Terrain Modelling is used in conjunction with a range of datasets to examine vulnerabilities relating to coastal land, commercial and residential property addresses, insurance claim costs, as well as wetland and species vulnerability. It should be noted that the results presented are cognisant of the limitations of monetary evaluation alone as a measure of potential climate impacts. The bottom up approach has the added advantage of providing geographically distributed impacts in discrete sectors as apposed to the often highly aggregated regional Integrated Assessment Modelling approach. Finally, the implications of these results for decision-making in relation to adaptation planning are discussed, along with avenues for potential future work

    Interacting regional-scale regime shifts for biodiversity and ecosystem services

    Get PDF
    Current trajectories of global change may lead to regime shifts at regional scales, driving coupled human–environment systems to highly degraded states in terms of biodiversity, ecosystem services, and human well-being. For business-as-usual socioeconomic development pathways, regime shifts are projected to occur within the next several decades, to be difficult to reverse, and to have regional- to global-scale impacts on human society. We provide an overview of ecosystem, socioeconomic, and biophysical mechanisms mediating regime shifts and illustrate how these interact at regional scales by aggregation, synergy, and spreading processes. We give detailed examples of interactions for terrestrial ecosystems of central South America and for marine and coastal ecosystems of Southeast Asia. This analysis suggests that degradation of biodiversity and ecosystem services over the twenty-first century could be far greater than was previously predicted. We identify key policy and management opportunities at regional to global scales to avoid these shifts

    The State of Adaptation in the United States: An Overview

    Get PDF
    Over the past two decades the adaptation landscape has changed dramatically. From its early days as a vague theoretical concept, which was often viewed as a threat to advocating for the reduction of greenhouse gas emissions, it has developed into a widely, albeit not universally, recognized governmental mandate to reduce societal vulnerability to climate change. While it is important to appreciate the progress that we are making on this issue, it is impossible to ignore the urgent need to do more. Smart investment can be made by reflecting on what is already underway in order to determine where to build on existing efforts and where to innovate new approaches to fill the gaps in the path forward. In this report we provide illustrative examples of the variety of work on climate change adaptation that is underway in the United States. This is by no means an exhaustive survey of the field; however it does provide insight into the dominant focus of work to date, the resultant gaps, and the opportunities available for advancing this essential aspect of sustainability. We focus on four areas of activity -- agriculture, natural resources, human communities, and policy. The general trends relevant to these sectors can be applied more broadly to other sectors and countries. Adaptation can be thought of as a cycle of activities that ultimately -- if successful -- reduces vulnerability to climate change. This process starts with identifying the impacts of climate change to determine the types of problems climate change might pose. This includes all of the research on the causes and the global, regional, and local manifestations of climate change, often referred to as impacts assessments
    • …
    corecore