99 research outputs found

    COMPARISON OF MACHINE LEARNING ALGORITHMS FOR LAND USE AND LAND COVER ANALYSIS USING GOOGLE EARTH ENGINE (CASE STUDY: WANGGU WATERSHED)

    Get PDF
    Human population growth and land use and land cover (LULC) change have always developed side by side. Considering selection of a good Machine Learning (ML) classifier algorithm is needed considering the high estimation of LULC maps based on remote sensing. This study aims to produce a LULC classification of Landsat-8 and Sentinel-2 images by comparing the accuracy performance of three ML algorithms, namely: Classification and Regression Tree (CART), Random Forest (RF), and Support Vector Machine (SVM). Dataset comparison ratios were also explored to find the LULC classification results with the best accuracy. Sentinel-2 is better than Landsat-8 regarding Overall Accuracy (OA) and Coefficient Kappa. The comparison ratio of the training and testing datasets with a good level of accuracy is 70:30 on both images with the average OA Landsat-8 and Sentinel-2 being 92.09% and 94.21%, respectively. The RF algorithm outperforms CART and SVM in both types of satellite imagery. The mean OA of the CART, RF, and SVM classifiers was 92.03%, 94.74%, 83.54% on Landsat-8, 93.14%, 96.15%, and 93.34% on Sentinel-2, respectively

    Machine Learning Classification of Mediterranean Forest Habitats in Google Earth Engine Based on Seasonal Sentinel-2 Time-Series and Input Image Composition Optimisation

    Get PDF
    The sustainable management of natural heritage is presently considered a global strategic issue. Owing to the ever-growing availability of free data and software, remote sensing (RS) techniques have been primarily used to map, analyse, and monitor natural resources for conservation purposes. The need to adopt multi-scale and multi-temporal approaches to detect different phenological aspects of different vegetation types and species has also emerged. The time-series composite image approach allows for capturing much of the spectral variability, but presents some criticalities (e.g., time-consuming research, downloading data, and the required storage space). To overcome these issues, the Google Earth engine (GEE) has been proposed, a free cloud-based computational platform that allows users to access and process remotely sensed data at petabyte scales. The application was tested in a natural protected area in Calabria (South Italy), which is particularly representative of the Mediterranean mountain forest environment. In the research, random forest (RF), support vector machine (SVM), and classification and regression tree (CART) algorithms were used to perform supervised pixel-based classification based on the use of Sentinel-2 images. A process to select the best input image (seasonal composition strategies, statistical operators, band composition, and derived vegetation indices (VIs) information) for classification was implemented. A set of accuracy indicators, including overall accuracy (OA) and multi-class F-score (Fm), were computed to assess the results of the different classifications. GEE proved to be a reliable and powerful tool for the classification process. The best results (OA = 0.88 and Fm = 0.88) were achieved using RF with the summer image composite, adding three VIs (NDVI, EVI, and NBR) to the Sentinel-2 bands. SVM and RF produced OAs of 0.83 and 0.80, respectively

    Mapping mangrove forest distribution on Banten, Jakarta, and West Java Ecotone Zone from Sentinel-2-derived indices using cloud computing based Random Forest

    Get PDF
    Mangrove ecosystem is a very potential area, generally located in ecoton areas (a combination of intertidal and supratidal areas), where there is interaction between waters (sea, brackish water, and rivers) with land areas. Indonesia, especially the Banten and West Java regions, have vast mangrove areas and are currently under threat of land conversion. Moreover, mapping the distribution of mangrove forests using the Google Earth Engine platform based on Cloud Computing is less published. Therefore, this research was conducted by introducing the distribution of mangrove forests which involved the Random Forest (RF) classification algorithm method, and looking for the best modification of the index. The combination test was carried out by involving the NDVI, EVI, ARVI, SLAVI, IRECI, RVI, DVI, SAVI, IBI, GNDVI, NDWI, MNDWI, and LSWI indexes. There is a distribution of mangroves in three provinces (West Java, Banten, and Jakarta) which are 933.54 ha (8.372%), 1,537.89 ha (18.231%), and 8,184.82 ha (73.397%). Of the 70 combination tests, the LSWI index (K13, Type-A) is the combination with the lowest accuracy rate of 58.45% (Overal Accuracy) and 39.59 (Kappa statistic), and the combination of K23 (SAVI-MNDWI-IBI) is a combination the best are 96.48% and 92.79. The results and recommendations in this study are expected to be used as a reference in determining policies for the protection of mangrove areas and a reference for further researchEkosistem mangrove merupakan kawasan yang sangat potensial, umumnya berada di kawasan ekoton (kombinasi kawasan intertidal dan supratidal), dimana terdapat interaksi antara perairan (laut, air payau, dan sungai) dengan kawasan daratan. Indonesia khususnya wilayah Banten dan Jawa Barat memiliki kawasan mangrove yang sangat luas dan saat ini terancam alih fungsi lahan. Apalagi pemetaan sebaran hutan bakau menggunakan platform Google Earth Engine berbasis Cloud Computing kurang dipublikasikan. Oleh karena itu, penelitian ini dilakukan dengan memperkenalkan sebaran hutan mangrove yang melibatkan metode algoritma klasifikasi Random Forest (RF), dan mencari modifikasi indeks yang terbaik. Uji kombinasi dilakukan dengan melibatkan indeks NDVI, EVI, ARVI, SLAVI, IRECI, RVI, DVI, SAVI, IBI, GNDVI, NDWI, MNDWI, dan LSWI. Sebaran mangrove terdapat di tiga provinsi (Jawa Barat, Banten, dan DKI Jakarta) yaitu seluas 933,54 ha (8,372%), 1.537,89 ha (18,231%), dan 8.184,82 ha (73,397%). Dari 70 pengujian kombinasi, indeks LSWI (K13, Type-A) merupakan kombinasi dengan tingkat akurasi terendah sebesar 58,45% (Overal Accuracy) dan 39,59 (Kappa statistik), dan kombinasi K23 (SAVI-MNDWI-IBI) merupakan kombinasi yang terbaik yaitu 96,48% dan 92,79. Hasil dan rekomendasi dalam penelitian ini diharapkan dapat digunakan sebagai acuan dalam menentukan kebijakan perlindungan kawasan mangrove dan referensi untuk penelitian selanjutnya

    Satellite-based Machine Learning modelling of Ecosystem Services indicators: A review and meta-analysis

    Get PDF
    Satellite-based Machine Learning (ML) modelling has emerged as a powerful tool to understand and quantify spatial relationships between landscape dynamics, biophysical variables and natural stocks. Ecosystem Services indicators (ESi) provide qualitative and quantitative information aiding the assessment of ecosystems’ status. Through a systematic meta-analysis following the PRISMA guidelines, studies from one decade (2012–2022) were analyzed and synthesized. The results indicated that Random Forest emerged as the most frequently utilized ML algorithm, while Landsat missions stood out as the primary source of Satellite Earth Observation (SEO) data. Nonetheless, authors favoured Sentinel-2 due to its superior spatial, spectral, and temporal resolution. While 30% of the examined studies focused on modelling proxies of climate regulation services, assessments of natural stocks such as biomass, water, food production, and raw materials were also frequently applied. Meta-analysis illustrated the utilization of classification and regression tasks in estimating measurements of ecosystems' extent and conditions and findings underscored the connections between established methods and their replication. This study offers current perspectives on existing satellite-based approaches, contributing to the ongoing efforts to employ ML and artificial intelligence for unveiling the potential of SEO data and technologies in modelling ESi.info:eu-repo/semantics/publishedVersio

    Remote Sensing in Mangroves

    Get PDF
    The book highlights recent advancements in the mapping and monitoring of mangrove forests using earth observation satellite data. New and historical satellite data and aerial photographs have been used to map the extent, change and bio-physical parameters, such as phenology and biomass. Research was conducted in different parts of the world. Knowledge and understanding gained from this book can be used for the sustainable management of mangrove forests of the worl

    Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass

    Get PDF
    This Special Issue (SI), entitled "Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass”, resulted from 13 peer-reviewed papers dedicated to Forestry and Biomass mapping, characterization and accounting. The papers' authors presented improvements in Remote Sensing processing techniques on satellite images, drone-acquired images and LiDAR images, both aerial and terrestrial. Regarding the images’ classification models, all authors presented supervised methods, such as Random Forest, complemented by GIS routines and biophysical variables measured on the field, which were properly georeferenced. The achieved results enable the statement that remote imagery could be successfully used as a data source for regression analysis and formulation and, in this way, used in forestry actions such as canopy structure analysis and mapping, or to estimate biomass. This collection of papers, presented in the form of a book, brings together 13 articles covering various forest issues and issues in forest biomass calculation, constituting an important work manual for those who use mixed GIS and RS techniques

    Operationalization of Remote Sensing Solutions for Sustainable Forest Management

    Get PDF
    The great potential of remote sensing technologies for operational use in sustainable forest management is addressed in this book, which is the reprint of papers published in the Remote Sensing Special Issue “Operationalization of Remote Sensing Solutions for Sustainable Forest Management”. The studies come from three continents and cover multiple remote sensing systems (including terrestrial mobile laser scanning, unmanned aerial vehicles, airborne laser scanning, and satellite data acquisition) and a diversity of data processing algorithms, with a focus on machine learning approaches. The focus of the studies ranges from identification and characterization of individual trees to deriving national- or even continental-level forest attributes and maps. There are studies carefully describing exercises on the case study level, and there are also studies introducing new methodologies for transdisciplinary remote sensing applications. Even though most of the authors look forward to continuing their research, nearly all studies introduced are ready for operational use or have already been implemented in practical forestry

    Deep neural network for complex open-water wetland mapping using high-resolution WorldView-3 and airborne LiDAR data

    Get PDF
    Wetland inventory maps are essential information for the conservation and management of natural wetland areas. The classification framework is crucial for successful mapping of complex wetlands, including the model selection, input variables and training procedures. In this context, deep neural network (DNN) is a powerful technique for remote sensing image classification, but this model application for wetland mapping has not been discussed in the previous literature, especially using commercial WorldView-3 data. This study developed a new framework for wetland mapping using DNN algorithm and WorldView-3 image in the Millrace Flats Wildlife Management Area, Iowa, USA. The study area has several wetlands with a variety of shapes and sizes, and the minimum mapping unit was defined as 20 m2 (0.002 ha). A set of potential variables was derived from WorldView-3 and auxiliary LiDAR data, and a feature selection procedure using principal components analysis (PCA) was used to identify the most important variables for wetland classification. Furthermore, traditional machine learning methods (support vector machine, random forest and k-nearest neighbor) were also implemented for the comparison of results. In general, the results show that DNN achieved satisfactory results in the study area (overall accuracy = 93.33 %), and we observed a high spatial overlap between reference and classified wetland polygons (Jaccard index ∼0.8). Our results confirm that PCA-based feature selection was effective in the optimization of DNN performance, and vegetation and textural indices were the most informative variables. In addition, the comparison of results indicated that DNN classification achieved relatively similar accuracies to other methods. The total classification errors vary from 0.104 to 0.111 among the methods, and the overlapped areas between reference and classified polygons range between 87.93 and 93.33 %. Finally, the findings of this study have three main implications. First, the integration of DNN model and WorldView-3 image is useful for wetland mapping at 1.2-m, but DNN results did not outperform other methods in this study area. Second, the feature selection was important for model performance, and the combination of most relevant input parameters contributes to the success of all tested models. Third, the spatial resolution of WorldView-3 is appropriate to preserve the shape and extent of small wetlands, while the application of medium resolution image (30-m) has a negative impact on the accurate delineation of these areas. Since commercial satellite data are becoming more affordable for remote sensing users, this study provides a framework that can be utilized to integrate very high-resolution imagery and deep learning in the classification of complex wetland areas
    corecore