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Abstract. Human population growth and land use and land cover (LULC) change have always 
developed side by side. Considering selection of a good Machine Learning (ML) classifier algorithm is 
needed considering the high estimation of LULC maps based on remote sensing. This study aims to 
produce a LULC classification of Landsat-8 and Sentinel-2 images by comparing the accuracy 
performance of three ML algorithms, namely: Classification and Regression Tree (CART), Random 
Forest (RF), and Support Vector Machine (SVM). Dataset comparison ratios were also explored to find 
the LULC classification results with the best accuracy. Sentinel-2 is better than Landsat-8 regarding 
Overall Accuracy (OA) and Coefficient Kappa. The comparison ratio of the training and testing datasets 
with a good level of accuracy is 70:30 on both images with the average OA Landsat-8 and Sentinel-2 
being 92.09% and 94.21%, respectively. The RF algorithm outperforms CART and SVM in both types 
of satellite imagery. The mean OA of the CART, RF, and SVM classifiers was 92.03%, 94.74%, 83.54% 
on Landsat-8, 93.14%, 96.15%, and 93.34% on Sentinel-2, respectively. 
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1 INTRODUCTION 

Future studies will be easier to 
understand by understanding Land Use 
and Land Cover (LULC) forms of various 
scales for various global phenomena 
such as drought, flooding, erosion, 
migration, and climate change. 
Continuous and accurate LULC analysis 
is an integral part of sustainable 
development activities carried out in 
certain areas. LULC maps become an 
important component for various 
scientific studies involving the effects of 
climate change on river flows and 
watersheds (Sridhar et al., 2019), 
geomorphology (Sujatha & Sridhar, 
2018), groundwater management 
(Sridhar et al., 2018; Xiao et al., 2021; 
Xiao et al., 2021; Xiao et al., 2022), 
social knowledge for natural resource 
management (Sridhar et al., 2021), and 
monitoring agricultural land (Sridhar et 
al., 2017; Jamali et al., 2019; Rahman 
et al., 2020). A land can use the LULC 
map in determining suitable land for 

agricultural activities so that watershed 
management can be more sustainable 
(Cihlar, 2000, Renschler & Harbor, 
2002).  

Remote sensing is the most 
commonly used method of mapping land 
cover and tracking its changes over time 
(Phan et al., 2020). With an increasing 
population and the need to develop new 
areas to meet the demand for food 
production, energy generation, and 
water security, the hydrological and 
water resource modeling community is 
interested in integrating and evaluating 
land use changes and their effects on 
watershed areas (Kang et al., 2019; Setti 
et al., 2020). 

Limitations in making low-resolution 
land cover maps in a wide area of course 
involve large amounts of data. Hefty 
storage capacity, processing power, and 
flexibility are required to implement a 
diversified approach (Xie et al., 2019). 
This problem has been addressed by the 
new Google Earth Engine (GEE) 
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technology. GEE is a form of integration 
of remote sensing and big data into a 
high-performance cloud-based platform 
and enables fast and easy computing of 
satellite imagery (Gorelick et al., 2017; 
Sidhu et al., 2018; Tamiminia et al., 
2020; Kolli et al., 2020; Aldiansyah et 
al., 2021; Rahmi et al., 2022).  

The GEE platform provides 
independent satellite imagery of various 
spatial resolutions. The platform is built 
in JavaScript and Python in handling 
coding (Shelestov et al., 2017; Mateo- 
García et al., 2018; Pimple et al., 2018) 
using MapReduce architecture for 
parallel processing which is a technique 
for breaking large amounts of data into 
small parts and processing them across 
multiple devices. LULC classification 
results using non-parametric Machine 
Learning (ML) methods such as 
Classification and Regression Trees 
(CART), Support Vector Machine (SVM), 
and Random Forest (RF) have very 
accurate accuracy (Bar et al., 2020; Liu 
et al., 2020; Tassi & Vizzari, 2020). GEE 
was chosen because of its broad 
capabilities in various LULC-based 
research fields. Midekisa et al. (2017) 
showed that GEE was able to produce 
multi-temporal LULC maps on the 
African continent. Kolli et al. (2020) 
demonstrated the ability of GEE in 
analyzing the rate of land use change 
around Lake Kolleru, India by utilizing 
the RF algorithm and obtaining an 
Overall Accuracy (OA) of 95.9 with a 
Kappa Coefficient (k) of 0.94. Rahman et 
al. (2020) also analyzed the performance 
of the RF and SVM algorithms for the 
urban area of Bhola and the rural area 
of Dhaka in Bangladesh with an 
accuracy of 96.9% and 98.3%, 
respectively. The application of GEE has 
also reached agricultural areas for crop 
mapping (Shelestov et al., 2017), 
comparative analysis of algorithms, and 
multi-temporal data sets over a wider 
area (Aguilar et al., 2018). Despite its 
advantages, in some cases, CART often 
experiences overfitting when the model 
fits the training data but fails to 
generalize the invisible test data 

(Lawrence & Wrlght, 2001). RF tends to 
require more time in executing data sets 
to obtain a low Redistribution Error Rate 
(Prajwala, 2015). Whereas SVM is 
limited by the number of data sets 
(Rudrapal & Subhedar, 2015) and class 
targets. In general, GEE often focuses on 
climate change, LULC change analysis, 
and monitoring of water resources with 
time series analysis (Wang et al., 2018; 
Workie & Debella, 2018; Jamei et al., 
2019). However, GEE has computational 
limitations in terms of time, storage and 
memory. Tamiminia et al. (2020) 
describe these limitations in terms of 
large computing and memory 
capabilities; considering the time 
constraints involved, it is better to use a 
batch system. 

The rapid increase in demand for 
LULC data and wide area coverage. An 
understanding of the methods and 
performance of machine learning that 
has been widely used, such as GEE is 
required. The purpose of this study is to 
classify LULC from the Landsat-8 and 
Sentinel-2 multispectral satellites, 
compare the ML algorithm on the GEE 
platform and compare training data and 
testing data for the Landsat-8 and 
Sentinel-2 multispectral satellites to 
produce a classification with the highest 
accuracy. 

 
2 MATERIALS AND METHODOLOGY 
2.1 Study Area 

The Wanggu watershed is a priority 
watershed in Southeast Sulawesi 
Province because of its strategic 
location, namely, in the upstream part 
there are forest areas, ex-transmigration 
of Java, West Java, and Bali as well as 
spontaneous transmigration 
(transmigration carried out by local 
communities themselves). 

This area spans an area of 453.44 
km2 based on the UTM 51S projection. 
This watershed has a strategic function 
and role because it flows through 
Kendari City, downstream, and is the 
center of government, education and 
economy, industrial area, and clean 
water source. 
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Figure 2-1: Location of map the Wanggu Watershed, Sulawesi Tenggara, Indonesia 

 
2.2  Data 

Earth Observation Data (EOD) 
includes satellite imagery from popular 
platforms such as Landsat and Sentinel 
stored on GEE's cloud-based platform. 
Landsat and Sentinel data can be 
accessed via USGS (The United States 
Geological Survey) at GEE. This study 
uses Landsat-8 surface reflectance Tier 
1 data which is atmospherically 
corrected using LASRC (Landsat-8 
Surface Reflectance Code) and Sentinel-
2 level 1C data. The use of this data is 
due to constraints such as cloud cover.  

Each data is selected with a cloud cover 
criterion of <10% for each year and the 
images are combined into a single 
image. Six Bands (Bands 2-7) of 
Landsat-8 with 30 m resolution and 
Nine Bands (Bands 2-8, and 11-12) of 
Sentinel-2 with 10 m resolution were 
used in this study (Table 2-1). The LULC 
class is divided into five main classes: 
forest, water body, built area, open land, 
and vegetation. Agricultural and 
plantation areas are considered 
vegetation, while rivers and ponds are 
considered bodies of water. 

 
Table 2-1: Landsat-8 and Sentinel-2 band information 

Imagery 
Data Layer 

Source Band Used 
Central 

Wavelength 
(µm) 

Band 
Width 
(µm) 

Spatial 
Resolution 

(m) 

Landsat-8 

Operational 

Land Imager 

surface 

reflectance 

Tier 1 

Google 

Earth 

Engine 

(GEE) 

Blue (Band 2) 0.482 0.060 30 

Green (Band 3) 0.561 0.067 30 

Red (Band 4) 0.655 0.038 30 

Near-Infra-Red (Band 5) 0.865 0.028 30 

Short-Wave Infra-Red 1 

(Band 6) 
1.609 0.085 30 

Short-Wave Infra-Red 2 

(Band 7) 
2.200 0.186 30 

Sentinel-2 

MSI: 

MultiSpectral 

Instrument, 

Level-1C 

Google 

Earth 

Engine 

(GEE) 

Blue (Band 2) 0.496 0.066 10 

Green (Band 3) 0.560 0.036 10 

Red (Band 4) 0.664 0.031 10 

Red-Edge 1 (Band 5) 0.704 0.015 20 

Red-Edge 2 (Band 6) 0.740 0.015 20 

Red-Edge 3 (Band 7) 0.782 0.020 20 
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Near-Infra-Red (Band 8) 0.835 0.106 10 

Short-Wave Infra-Red 1 

(Band 11) 
1.610 0.091 20 

Short-Wave Infra-Red 2 

(Band 12) 
2.202 0.175 20 

 
The Orthocrectified image with the 

least amount of initial cover serves as 
the main input for classification. After 
importing satellite data into GEE, the 
next step is to remove cloud shadows 
and cloud cover either because it is 
cloudy or without data using cloud 
masking (Mateo-García et al., 2018). 
This technique is suggested and can be 
optimally performed by GEE (Zurqani et 
al., 2018; Aldiansyah et al., 2021). 

The next satellite image in 
Composites every year becomes one 
image using a median filter. The median 
value is assigned to each pixel in all 

images and results in one image for the 
entire image collection. Each ML 
algorithm uses 50-75 training data. 
Each training data is placed on the 
appropriate land cover type according to 
the interpretation of image data that has 
gone through the median filter 
composite. The generated training data 
is then split randomly into training data 
and testing data using predetermined 
ratios for each LULC map. The LULC 
training data uses a total of 899 and 802 
feature points, respectively on Landsat-8 
and Sentinel-2 images. 

 

 
Figure 2-2: Research Flowchat 

 
2.3  Algorithms 
Classification and Regression Tree 
(CART) 

CART is a binary decision regression 
tree developed by Breiman et al. (2017) 
and used for simple decision-making in 
logical if-then scenarios. CART works 
recursively by separating nodes until 
they reach a terminal node, based on a 
predetermined threshold. The 
"classifier.smileCart" technique in the 

GEE library is used in this study to 
perform CART classification. 

 
Random Forest Classifier (RF) 

RF is one of the most commonly 
used classifiers in constructing an 
ensemble classification (Brieman, 2001) 
by combining many CART trees. Several 
decision trees are generated by RF 
randomly from training data sets and 
variables. The optimal number of 
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calculated trees ranges from 100-500, 
and the optimal number of variables 
calculated is the square of the set of 
variables (Belgiu & Drăguţ, 2016). The 
"classifier.RandomForest" technique in 
the GEE library is used in this study to 
classify RF. 

 
Support Vector Machine (SVM) 

SVM is one of the Supervised 
Machine Learning algorithms used to 
solve regression and classification 
problems. The SVM classifier works by 
creating an ideal hyperplane in the 
training phase to group multiple classes 
with inaccurate pixels. The extreme 
points/vectors are selected to build the 
hyperplane. This extreme point is called 
the support vector. Parameters Cost, 
Gamma, and Kernel function (Adelabu et 
al., 2015) is used in this study. The cost 
value used is 10. A higher cost value 
indicates less incorrect data in the 
classification. The Gamma value used is 
0.5, while the type of Kerney used is 
Radial or RBF. The "classifier.libsvm" 
technique in the GEE library is used in 
this study to classify SVM. 
 
2.4  Accuracy Assessment 

Assessment of accuracy on the 
dataset using training data grouping and 
data testing. A search was conducted on 
the comparison of datasets to find a 
good level of accuracy in classifying 
images. The ratio of accuracy tested is 
50:50, 60:40, 70:30, and 80:20. The 
confusion matrix is used to validate and 
evaluate the accuracy of image 
classification. Overall Accuracy (OA) and 
Coefficient Kappa (k) were also used to 
test the accuracy of the classification 
results. The OA and k are calcalted form 
the following equations: 

 

   (2.1) 

where  is the number of pixels 

classified correctly and  is the total 

number of pixels. 

 (2.2) 

where r = the number of rows and 

columns in the error matrix,  = the 

number of observation in row i and 

column i,  = the marginal total of row 

i, = the marginal total of column i, 

and N = the total number of observation. 
User Accuracy (UA) and Producer 

Accuracy (PA) are also calculated for 
each LULC class in the Confusion 
matrix. Validation with UA is determined 
by the ratio of the correctly categorized 
pixels in that class to the total number 
of pixels classified. Similarly, PA is 
determined by the ratio of properly 
categorized pixels to the total number of 
pixels in the reference data in each 
class. The classifier that has the best 
performance will be selected for further 
image classification for Spatio-temporal 
change analysis 

3   RESULTS AND DISCUSSION 
3.1 LULC Classification Using GEE 

This study examines the 
performance of the ML technique in 
classifying LULC using Landsat-8 
surface reflectance Tier 1 data with a 
resolution of 30 m and Sentinel-2 data 
with a resolution of 10 m. Figure 3-2 
and Figure 3-3 demonstrate ML 
algorithms such as CART, RF, and SVM 
in classifying LULC maps for 2016, 
2018, and 2020 on the GEE platform. 
Orthorectified images with minimal 
cloud cover and pixels that were 
damaged due to cloudy conditions were 
removed from all available images using 
the Cloud Masking algorithm. Gaps in 
cloudy images are filled using temporal 
aggregation methods such as median, 
mean, and minimum/maximum. This 
study uses the median value for the 
collection of Landsat-8 and Sentinel-2 
images for 1 year. 

The results of the study show that 
for a more accurate classification it is 
better to use data from MSI Sentinel-2 
when compared to Landsat-8. 
Explanatory factors that make Sentinel-
2's performance better are the presence 
of additional image channels, especially 
Red-Edge 1 band, and more detailed 
spatial resolution. Down-sampling the 
original spatial resolution of Sentinel-2 
data had an approximately equal 
decreasing effect on the classification 
performance leaving out the Red-Edge 
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bands. With almost the same band and 
by reducing the spatial resolution to 20 
m, classification using Sentinel-2 
performs better than Landsat-8. This 
can be an alternative if using MSI 
Sentinel-2 for mapping with critical 
processing power or limited by storage 
capacity. Whereas Landsat-8 works well 
because it relies more on the ability of 
Band Blue (B2) to classify forests. 
Similar studies have also reported the 
power of the Red-Edge 1 band on the 
classification of plant and tree species 
(Immitzer et al., 2016) and the prediction 
of biophysical variables (Korhonen et al., 
2017). 

Figure 3-2 and Figure 3-3 show that 
the classification algorithm generalizes 
most of the vegetation as open land in 
2016 for CART. In the SVM algorithm, 
most of the open land and water bodies 
were incorrectly classified as vegetation 
areas in 2016 and 2018. This is because 
the type of land cover has a reflection 
that is identical to the vegetation area. 
Nonetheless, SVM is quite good at 
classifying built-up areas and vegetation 
in 2020. 

In Figure 3-1 it can be seen that 
forest land cover classes and vegetated 
areas tend to change from time to time, 
followed by an increase in the built-up 
area in both imagery types. The forest 
area decreased to 7.99 km2 and 45.23 
km2 respectively, while the built-up 
expanded to 35.88 km2 in 2020. 
Vegetation land cover tends to increase 
to 40.62 km2 and 23.6 km2 respectively. 
The open land experienced decline of 
12.48 km2 and 15.07 km2 respectively, 
most of which were closed from forest to 
become built-up. The same thing 
happened to the land cover of water 
bodies which continued to shrink until 
3.5 km2 stopped becoming land. 

Human activities have been shown 
to be responsible for driving these 
changes resulting in landscape changes 
that negatively impact ecosystem 
services and human well-being. (Lambin, 
1997; Shiferaw et al., 2019). Main 
drivers of global environmental change, 
but not limited to, speed of urbanization 
(Sreenivasulu & Bhaskar, 2010), 
increase in population (Hassan & 
Nazem, 2016), other socio-economic 

development activities resulting in 
deforestation (Torbick, 2006), loss of 
biodiversity (Sala et al., 2000), change to 
arable agricultural land (Cihlar, 2000, 
Renschler & Harbor, 2002), and air 
resources. 
 
3.2 Comparison of Classification 
Perfomance 

The performance of the most 
commonly used classifier in evaluating 
the accuracy and effectiveness of all 
classifiers through Overall Accuracy 
(OA). This accuracy represents the 
number of pixel data correctly classified 
by the classifier algorithm into 
percentage form. In addition, the 
Confusion matrix, and UA and PA are 
also used to measure the class 
performance of each classifier. The 
model with the best capability is selected 
based on OA and k. The performances of 
the CART, RF, and SVM classifiers are 
compared in Table 2-2 and Table 2-3 in 
terms of OA and k with different forms of 
dataset division. 

Exploration of training tests and 
data testing was carried out on all 
algorithms in 2016, 2018, and 2020. 
The comparison of training and testing 
datasets with a good level of accuracy 
was 70:30. The average OA on Landsat-8 
and Sentinel-2 was 92.09%, and 
94.21%, respectively, followed by a ratio 
of 60:40, 80:20, and 50:50 on Landsat-
8, and a ratio of 80:20, 50:50, and 60:40 
on Sentinel-2. Another study also 
showed that the ratio of dataset 
comparison in the best RF algorithm 
was 70:30 (Saha et al., 2021; Adelabu et 
al., 2015). 

From Table 2-2 and Table 2-3, it 
is also seen that the classifier using RF 
outperforms the classifier with CART 
and SVM in both types of satellite 
imagery. In OA, the mean CART, RF, and 
SVM classifiers were 92.03%, 94.74%, 
and 83.54% on Landsat-8. Meanwhile, 
the average OA of the CART, RF, and 
SVM classifiers was 93.14%, 96.15%, 
and 93.34% on Sentinel-2. When 
compared with CART and SVM, the RF 
classifier shows the highest producer 
accuracy and user accuracy, as proven 
by other studies (Shetty, 2019). 
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Figure 3-1: LULC changes using RF classifier of Sentinel-2 and Landsat-8 for the years 2016, 2018, 
and 2020. 

Table 2-2: Kappa coefficient and overall accuracy from Landsat-8 for various ratios for comparison of 

training data and testing data 

 

Year Classifier 
50:50 60:40 70:30 80:20 

OA (%) k OA (%) k OA (%) k OA (%) k 

2016 

CART 83.33 0.79 89.58 0.86 92.31 0.90 89.36 0.86 

RF 89.17 0.86 93.75 0.91 93.85 0.92 93.62 0.92 

SVM 89.17 0.85 87.5 0.84 87.88 0.84 85.11 0.81 

2018 

CART 89.47 0.86 88.17 0.84 90.48 0.88 89.13 0.86 

RF 89.47 0.86 93.56 0.92 93.75 0.92 93.49 0.91 

SVM 88.6 0.85 93.55 0.92 93.55 0.92 93.48 0.91 

2020 

CART 90.91 0.88 93.59 0.92 93.22 0.91 89.74 0.85 

RF 89.9 0.87 93.59 0.92 96.61 0.95 89.74 0.87 

SVM 90.91 0.87 91.03 0.88 87.18 0.79 92.86 0.89 

 

Table 2-3: Kappa coefficient and overall accuracy from Sentinel-2 for various ratios for comparison of 

training data and testing data 

 

Year Classifier 
50:50 60:40 70:30 80:20 

OA (%) k OA (%) k OA (%) k OA (%) k 

2016 

CART 83.83 0.73 84.21 0.8 92.54 0.90 90.63 0.87 

RF 90.29 0.79 89.48 0.86 95.59 0.94 93.19 0.91 

SVM 81.81 0.81 89.83 0.79 93.18 0.85 90.48 0.88 

2018 

CART 93.87 0.88 82.24 0.77 93.23 0.91 93.33 0.91 

RF 97.95 0.93 85.98 0.82 96.05 0.96 96.08 0.92 

SVM 96.47 0.92 91.66 0.85 94.2 0.92 92.04 0.89 

2020 

CART 87.73 0.77 83.75 0.78 93.65 87.5 92.41 0.9 

RF 92.62 0.91 90 0.87 96.82 0.95 92.45 0.79 

SVM 90.32 0.87 89.41 0.86 92.64 0.85 91.67 0.89 

 

 

The accuracy of UA and PA in each 
class is presented in Figure 3-4 and 
Figure 3-5. It can be seen that compared 
to other classes, vegetation and water 
body classes have good performance, 
with UA and PA above 80%. In contrast 
to RF, SVM has difficulty identifying 
water bodies efficiently. This is because 

the appearance in the image has very 
few pixels so it is not enough to train 
classification accurately and tends to 
produce poor performance when 
compared to other land uses. In UA and 
PA, the SVM classifier mostly performs 
better than CART on the vegetation 
class. 
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It is very difficult to distinguish 
between vegetation land classes 
(agriculture/plantation) and open land 
in the 30 m resolution Landsat-8 
imagery because of the mixed pixels. 
However, this is not a problem with 
Sentinel-2 imagery. Multiple land use 
classifications are combined at the same 
time and allow superior classification for 
small areas and more land cover types. 
In this study, the Sentinel-2 image 
shows a better and clearer image 
appearance. When compared between 
Landsat-8 and Sentinel-2, Sentinel-2 
produces the highest accuracy results 
due to the more detailed spatial 
resolution and the number of band 
combinations that are applied more than 
Landsat-8. 

Random Forests generally 
incorporate many soft linear boundaries 
on the decision surface. In SVM and 
CART, misclassification occurs between 
several classes, and SVM works best 

when training data is inputted less or 
less frequently. In this study, when the 
number of training data inputs is the 
same as the RF and CART algorithms, 
the SVM class targets will overlap 
because each data point exceeds the 
number of training data specimens that 
can be processed so that SVM must be 
run with separate training samples to 
get optimal results. In line with what 
was explored by Cervantes et al. (2007), 
Rudrapal & Subhedar, (2015), and 
Shetty (2019), that the number of class 
targets that are too large will also 
worsen SVM performance, so that in this 
research the number of suitable classes 
explored by SVM is 5 classes. Whereas 
CART and RF classifier do not show 
significant changes in accuracy if the 
number of training samples is reduced 
(Deng & Wu, 2013). This may be a better 
option if there are less data available 
(Shetty, 2019). 

 

 
Figure 3-2: LULC Maps from Landsat-8 Imagery with CART, RF, and SVM algorithms for 2014, 2018, 

and 2021 
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Each algorithm has advantages and 
disadvantages. RF is more resistant and 
less affected by the presence of 
parameters, whereas SVM is more 
sensitive to hyperparameters (Chang et 
al., 2019). In this study, RF did 
outperform all classifier algorithms in 
terms of UA and PA, regardless of 
training data size, followed by CART, 
then SVM. However, the SVM and CART 
classifiers performed better for water 
bodies and forest land cover. Vegetated 
land cover was partially misclassified as 
forest by the SVM and CART classifiers. 
Some studies claim that SVM 

outperforms CART (Shao & Lunetta, 
2012) or vice versa (Congalton & Green, 
2019). In such study, as suggested by 
Congalton & Green (2019) it is best to 
choose lesser complex and faster 
algorithm of the two for classification. 
The better performance of CART over 
SVM could be favoured due to the 
quality of training samples used. The 
use of multispectral images in GEE can 
simplify the process of classifying large 
study areas. This can make performance 
during image pre-processing more 
efficient with these implemented 
methods and algorithms. 

 
 

 

 
 

Figure 3-3: LULC Maps from Sentinel-2 Imagery with CART, RF, and SVM algorithms for 2014, 2018, 
and 2021 
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(a) (b) 

Figure 3-4: Accuracy of the user for each land class using CART, RF, and SVM classifiers: (a) Landsat-
8, (b) Sentinel-2 
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(a) (b) 

Figure 3-5: Accuracy of the producer for each land class using CART, RF, and SVM classifiers: (a) 
Landsat-8, (b) Sentinel-2. 

 

4  CONCLUSION 
 

The type of classifier affects the 
accuracy of the classification of LULC 
data on satellite images. The comparison 
between training data and testing data is 
good at 70:30 for both types of satellite 
imagery. Overall Accuracy and 
Coefficient Kappa RF classifier 
outperforms CART and SVM on both 
types of satellite imagery. Sentinel-2 
imagery performs better classification 
than Landsat-8 because Sentinel 
imagery has red-edge bands, which 
makes it possible to classify vegetation 
better than Landsat. The high-resolution 
pixel size also makes Sentinel-2 
outperform Landsat-8 in terms of 
accuracy. 
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