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A B S T R A C T   

Satellite-based Machine Learning (ML) modelling has emerged as a powerful tool to understand and quantify 
spatial relationships between landscape dynamics, biophysical variables and natural stocks. Ecosystem Services 
indicators (ESi) provide qualitative and quantitative information aiding the assessment of ecosystems’ status. 
Through a systematic meta-analysis following the PRISMA guidelines, studies from one decade (2012–2022) 
were analyzed and synthesized. The results indicated that Random Forest emerged as the most frequently utilized 
ML algorithm, while Landsat missions stood out as the primary source of Satellite Earth Observation (SEO) data. 
Nonetheless, authors favoured Sentinel-2 due to its superior spatial, spectral, and temporal resolution. While 
30% of the examined studies focused on modelling proxies of climate regulation services, assessments of natural 
stocks such as biomass, water, food production, and raw materials were also frequently applied. Meta-analysis 
illustrated the utilization of classification and regression tasks in estimating measurements of ecosystems’ 
extent and conditions and findings underscored the connections between established methods and their repli
cation. This study offers current perspectives on existing satellite-based approaches, contributing to the ongoing 
efforts to employ ML and artificial intelligence for unveiling the potential of SEO data and technologies in 
modelling ESi.   

1. Introduction 

Nature offers society a diverse array of services and resources 
through Ecosystem Services (ES) (Costanza et al., 1997). Natural eco
systems, recognized for their ability to deliver a multitude of ES, are 
appraised as assets through physical and monetary evaluations recorded 
as stock and flow accounts (Vallecillo et al., 2019). The physical ac
counts involve quantifying ecosystem extent, measuring the total 
occupied area, and assessing indicators that reflect the conditions of 
ecosystems and their services (Edens et al., 2022). ES indicators (ESi) are 
measurable parameters that provide insights into the status and trends 
of the diverse benefits ecosystems offer to humanity, spanning ecolog
ical, economic, and social dimensions, as well as for making policy and 

management decisions (Olander et al., 2018). The aboveground and 
belowground biomass in forests play a crucial role in supporting water 
filtration services by collecting and filtering rainfall before it reaches 
streams and rivers. ESi, such as tree cover density, water and wetness 
probability index, and soil depth, serve as proxies to describe the status 
of the water filtration service, contributing to providing cleaner water 
and reducing water treatment costs (United Nations et al., 2021). 

Therefore, assessing ESi is still a challenge due to the intricate re
lationships within ecological dynamic systems, which involve numerous 
processes and components that interact nonlinearly (Haines-Young & 
Potschin, 2012). Besides, traditional approaches relying on simplistic 
spatial surrogates, often lead to incomplete representations of biophys
ical variables, and extensive ground surveys for spatially explicit 
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mapping encounter limitations such as high costs and scale restrictions 
(Zergaw Ayanu et al., 2012). 

The literature proposes various methods to quantify ESi and natural 
stocks (Boyd & Banzhaf, 2007; De Groot et al., 2002; Fisher et al., 2009; 
Kienast et al., 2009; Syrbe & Walz, 2012). These studies have empha
sized the importance of taking a comprehensive and integrated 
approach to developing and implementing ESi. A frequently employed 
approach involves extrapolating measurements of landscape ability 
provisioning through the utilization of land use and land cover (LULC) 
maps (Bolliger & Kienast, 2010; Costanza et al., 1997). Previous reviews 
(Andrew et al., 2014; de Araujo Barbosa et al., 2015; Feng et al., 2010; 
Malinga et al., 2015; Martínez-Harms & Balvanera, 2012; Zergaw Ayanu 
et al., 2012) have remarked that the main proxies for mapping ES, 
monitoring environmental status, and assessing ecosystems’ extent and 
conditions often involve LULC variables. 

However, limitations persist in accurately quantifying the in
terconnections among ecosystem functions, services, and the benefits to 
human well-being (Cord et al., 2017; Lausch et al., 2016). Ramir
ez-Reyes et al. (2019) emphasized the importance of shifting from cat
egorical to continuous conceptualization in modelling ESi, as parameter 
coefficients are generally derived from field research or literature re
views. An alternative approach extending beyond mapping the pre
sence/absence of ecosystems or relying on lookup tables for analysis is to 
use statistical regression to connect in-situ information with remotely 
sensed data to quantify ecosystem structure and functional traits (Lobert 
et al., 2021). 

Remote Sensing (RS) offers a distinctive opportunity to systemati
cally assess ecosystems’ status across diverse spatial and temporal scales 
(Skidmore et al., 2021), holding promise for robust monitoring mecha
nisms within the framework of global sustainability policies and 
governance (Braun et al., 2018). Particularly Satellite Earth Observation 
(SEO) emerges as a cost-effective solution, providing data for quanti
fying and mapping ESi (Vyvlečka & Pechanec, 2023). ESi derived from 
SEO data models are spatial proxies aiding in the ES assessments 
through measurements of ecosystem extent and conditions (Czúcz et al., 
2021). 

Recently, Schirpke et al. (2023) conducted a review of studies 
exploring the use of emerging technologies in ES assessments, revealing 
the increased application of passive Earth observation sensors and ML 
algorithms among other technologies. Their study pointed out that in the 
last decade, ES modelling based on open-access satellite data predomi
nantly involved high and middle spatial resolution sensors (ranging 
from 10 m to 1 km), such as those on board the Landsat, Sentinel, and 
Terra/Aqua MODIS satellites. In their review, Vyvlečka and Pechanec 
(2023) showcased a preference for Sentinel-2 over Landsat 8, especially 
in larger scales and vegetated areas, highlighting the relevance of 
spatial, temporal, and spectral resolutions in influencing modelling ac
curacy. They emphasized that additional factors like imagery process
ing, algorithm selection, and validation data also played crucial roles, 
and these should be further explored to enhance the potential of 
applications. 

The integration of SEO data and ML stands as a powerful approach 
for ES assessment across multiple scales (Liang & Wang, 2019; Y. Wang, 
Zhang, & Peng, 2021; Willcock et al., 2018). ML has become crucial in 
environmental and landscape modelling, particularly in leveraging sat
ellite data to precisely map diverse landscape properties (Ez-zahouani 
et al., 2023). They serve as a powerful tool for addressing challenges 
related to data-sparse locations, providing efficient estimations, and 
accounting for uncertainties in modelling ESi (Scowen et al., 2021). ML 
algorithms, such as Support Vector Machine (SVM) and Random Forest 
(RF), are widely used in RS applications (Maxwell et al., 2018), whereas 
Deep Learning (DL) has emerged as an advanced technique excelling at 
discriminating complex and nonlinear data structures (Goodfellow 
et al., 2016; LeCun et al., 2015) with great potential to fostering envi
ronmental modelling based on RS data (Ma et al., 2019; Pritt & Chern, 
2018). 

Various methods, including SVM, Decision Trees (DT), RF, Artificial 
Neural Networks (ANN), and k-Nearest Neighbours (k-NN), are widely 
utilized to predict complex LULC classes (Maxwell et al., 2018). Addi
tionally, ensemble methods like Gradient Boosting, CatBoost, and Sto
chastic Gradient Boosting are adopted to enhance predictions 
(Friedman, 2001; Prokhorenkova et al., 2017). Thus, ML offers a feasible 
means to assess ecosystems’ status, handling large and multidimensional 
datasets without relying only on oversimplified approaches or algo
rithms (Willcock et al., 2018). Despite the potential benefits, the 
implementation of SEO data and ML in ES research remains limited, 
posing some constraints (Czúcz et al., 2021). Challenges persist in 
refining methods, such as model settings, conceptualization, and 
knowledge of ecosystem influentional factors, underscoring the need for 
ongoing research development (Kubiszewski et al., 2022). 

Recent literature reviews were focused on unveiling technologies for 
overcoming limitations encountered in ES assessments: Manley et al. 
(2022) showcased the current application of ML and Big Data to tackle 
gaps related to data availability, uncertainty understanding, and 
socio-environmental connections. Scowen et al. (2021) conducted a 
review to investigate the utilization of ML in ES research and identify 
trends in ML approaches. Their findings revealed that ML techniques are 
applied in data description and predictive modelling in a variety of 
datasets, including RS data from satellites and aerial vehicles. Other 
studies have contributed to the field of ES mapping and monitoring 
through RS, such as Feng et al. (2010), exploring the role of RS in ES 
assessments. Zergaw Ayanu et al. (2012) reviewed RS systems, sensor 
types, and methodologies relevant to quantifying provisioning and 
regulatory ESi. Andrew et al. (2014) explored the capabilities of RS in 
describing biodiversity, plant traits, and various ecological variables, 
emphasizing their contributions to ES assessments. Lausch et al. (2016) 
highlighted the affordability and repeatability of Earth Observation 
methods for measuring taxonomic, functional, and structural diversity. 
They called for a systematic approach to cross-case comparisons and 
methods development. Pettorelli et al. (2018) addressed the lack of 
consensus on defining and tracking ecosystem functions beyond the site 
level, proposing a framework for worldwide monitoring using satellite 
RS. C. Ramirez-Reyes et al. (2019) organized a workshop with re
searchers and decision-makers to outline stages in the assessment pro
cess where SEO could be applied. Their findings stressed that the 
widespread adoption of SEO data and technologies in ES assessments 
requires addressing conceptual barriers, including adapting existing 
products and models to accommodate continuous data. 

Regardless of existing studies researching ES assessments through RS 
and ML, there is a gap in understanding the satellite-based ML modelling 
components, such as instruments, data integration, type of analysis and 
assessments, modelling conceptualization, development, and imple
mentation. In this review article, we aim to offer a comprehensive 
overview of the current state of research in this domain, providing a 
synthesis of key methodologies, and answering the following research 
questions: i. Which SEO data are used for modelling ESi? ii. Which ESi 
are assessed using SEO and ML techniques? iii. Which ML models are 
implemented? iv. What is the relationship between ML tasks and ESi? v. 
Is there a rule for model development within ESi? 

To address these questions, a systematic literature review and meta- 
analysis are conducted following the PRISMA 2020 (Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses) (Page et al., 2021) 
guidelines covering the literature from 2012 to 2022, and applying 
content analysis to formulate assumptions tested through statistical 
analysis. The review process utilizes a meta-analytical approach to un
derstand the ML tasks applied to model ESi, providing a further under
standing of the satellite-based ML modelling components such as SEO 
technologies, instruments, data integration, and type of analysis and 
assessments. Major outcomes incorporate insights into the application of 
SEO data and ML in ESi modelling, contributing to advancing the 
knowledge of the latest approaches developed by researchers 
worldwide. 
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2. Material and methods 

Systematic reviews play a role for scholars and decision-makers, 
offering a structured approach to navigate through the vast volume of 
research and providing a solid foundation for informed decision-making 
(Greco et al., 2013). A systematic review process requires adhering to a 
set of baselines to identify, select, and synthesize data from the litera
ture, enabling users to evaluate, reproduce, or update the findings 
(Higgins & Thompson, 2002). Our study follows the methodology 
schema presented in Fig. 1. The process includes conceptualization and 
research design, search strategy and data collection, data processing, 
content analysis, synthesis of results, and discussion. 

2.1. Research design 

A top-down strategy was used in the problem conceptualization to 
break down the study into keywords, associated terms, and synonyms, 
considering the different ways of spelling. This step is crucial for 
defining the research concepts and constructing the search query. 

The research design followed the building blocks of theory devel
opment proposed by (Whetten, 1989), including the essential elements 
for a phenomena explanation: what, how, why, when, who and where. 
Individual components of the problem are specified in detail at this step, 
and composition takes place. What and how questions helped to bring 
out the keywords and associated terms related to ESi, SEO data (checked 
for Sentinel, and all missions of Landsat), and ML techniques. The why 
asks for the purpose of developing such models, when asks for the tem
poral scale of studies to be analyzed, who identifies the authors, and 
where flags the study’s location. The building blocks for the research 
design and for building the search query are detailed in Table S1, in the 
Supplementary Materials. 

2.2. Search strategy and data collection 

An objective search strategy was implemented to identify the most 
relevant studies in the research scope. The Scopus scientific database 
(Elsevier B.V, 2023) was the source of the scientific literature and was 
last queried on 30/09/2022. The data collection process comprises four 

main phases. 
Phase one, identification, starts with the application of the search 

query to identify studies. As the search terms must be logically con
nected, the search mechanism applied advanced techniques to the 
query-building process such as Boolean operators, quotes, stop words, 
wildcards, and nesting. The OR operator is used to aggregate similar 
concepts (synonyms or associated words), while the AND operator is 
applied to narrow the results. To search for specific phrases, the terms 
must be enclosed in double quotes ("") or, for an exact match inside 
braces ({}). In Scopus, the operator OR has precedence to AND, i.e., first, 
the Scopus searching algorithm processes the OR connector by looking 
for documents containing the specified words, and last processes the 
AND operator, by returning any documents it finds. Besides, the 
following assumptions were considered: 1) The stage of publication 
should be set to Final; 2) The types of documents are limited to articles 
published in a scientific peer-reviewed journal; 3) The publication must 
be written in English language; and 4) The search is within article title, 
abstract and keyword (TITLE-ABS-KEY). These assumptions are 
expressed by reserved words from the Scopus search, i.e., LIMIT-TO 
(limits the search to the assumptions), DOCTYPE (refers to the type of 
document that can be an article, a review, or a book), PUBSTAGE 
(publication stage that can be final or article in press), PUBYEAR (is the 
year of publication), and SRCTYPE (refers to the publishing source). The 
search strategy implemented in Scopus is detailed in Table 1. The query 
identified a total of 151 studies. 

Phase 2, screening, consisted of analysing the abstracts of 151 re
cords. In this phase, we assessed if the identified studies developed a 
model that is: 1. addressing one or more ESi; 2. using Sentinel-2 and/or 
Landsat imagery; and 3. applying ML techniques. In the end, 67 records 
were selected to be full-text analyzed. In phase 3, eligibility, the studies 
were excluded if their content did not fulfil requirements 1, 2, and 3, 
which led to the exclusion of 12 records. In the fourth phase, inclusion, a 
total of 55 articles were included in the systematic review process. A 
complete list of the selected studies is provided in the Supplementary 
Materials (Table S2). 

Fig. 1. Diagram flow of the meta-analytic reviewing process. “n” refers to the number of studies selected in each phase.  
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2.3. Content analysis and synthesis 

The process of acquiring information began with content analysis 
and a summary of findings. Qualitative data were synthesized and 
processed for statistical analysis. The content examination included: 1) 
presenting where the selected studies were implemented and when they 
were published; 2) confirming the use of Sentinel-2 and Landsat mis
sions within studies; 3) summarizing Biomes, ecosystems categories, and 
services; 4) identifying the ML algorithms (learners) employed, the tasks 
(classification or regression) carried out, and the evaluation metrics 
used to assess models uncertainties; 5) synthesizing modelling purposes, 
common limitations, and opportunities argued in the studies. To 
exemplify these key points and establish connections between them, we 
referred to specific examples from the selected literature. 

Table 2 depicts current operational Landsat and Sentinel missions 
most applied to Earth monitoring services. NASA’s Earth Observing 
System (NASA’s EOS, 2022) comprises a coordinated constellation of 
satellites encompassing more than 20 missions. Notably, the Landsat 
satellites, operated jointly by NASA and the U.S. Geological Survey, 
represent the initial and most enduring terrestrial observation program 

focused on monitoring natural resources. Since 2009, all Landsat images 
have been made accessible to the public at no cost, contributing to open 
and widespread access to valuable SEO data (NASA, 2023). 

The Landsat 1 was launched in 1972 and was the first satellite of this 
program, which has been continuously improved over the last four de
cades, Landsat 9 was the last one launched (2021). Landsat 7 mission 
started in 1999 carrying the ETM+ (Enhanced Thematic Mapper Plus) 
sensor, which includes a thermal infrared band (TIR) with a spatial 
resolution of 60m. While Landsat 7 is still operational, it is in end-of-life 
activities. Landsat 8 was launched in 2013 and was equipped with two 
sensors: the OLI (Operational Land Imager) and the TIRS (Thermal 
Infrared Sensor). The OLI sensor produces images with 30m spatial 
resolution in the Visible (VIS), Near Infrared (NIR), and Short-Wave 
Infrared (SWIR) bands (in 8 distinct bands), and a panchromatic 
image with a resolution of 15m, the TIRS sensor records thermal images 
with a resolution of 100m. The enhancements introduced in Landsat 9 
encompass higher radiometric resolution for OLI-2, enabling sensors to 
discern more nuanced differences, particularly in darker areas like water 
bodies or dense forests. Furthermore, TIRS-2 has substantially mini
mized stray light in comparison to its predecessor facilitating improved 
atmospheric correction and surface temperature measurements. 

The European Space Agency (ESA, 2022) has successfully deployed 
over 70 Earth observation satellites into space. Among them, the 
Sentinel-1 and Sentinel-2 pairs are integral components of the Coper
nicus mission. This program is structured to encompass seven genera
tions of Sentinel satellites equipped with specific technologies tailored 
for monitoring terrestrial, oceanic, and atmospheric processes. The 
Sentinel missions operate in both radar and multispectral wavebands, 
providing data for a range of Earth observation applications. Sentinel-1 
and Sentinel-2A have been operational since 2014 and 2015 respec
tively, the first of which collects information through a Synthetic- 
aperture radar (SAR) sensor, and the second has a multi-spectral in
strument (MSI) capturing optical information. Sentinel-2A/2B missions 
record information in 13 bands: VIS with 4 bands, NIR with 6 bands, and 
SWIR with 3 bands. The spatial resolution is 10, 20, and 60m, respec
tively, depending on the band, with a temporal resolution of 5 days. As 
many studies did not distinguish between Sentinel-2A and 2B data, this 
review grouped Sentinel-2A and 2B into Sentinel-2. The same happened 
for Sentinel-1. 

In satellite-based applications, ML techniques are frequently 
employed for classification and regression problems (Ma et al., 2019). 
The targets are the response variables, also known as dependent vari
ables; if the values are continuous, it is a regression problem that will fit 
the data as closely as possible to predict continuous values. Such as the 
prediction of tree cover density and leaf area index, as proxies for timber 
production included in the provision of raw materials service (Cilek 
et al., 2022; Mallinis et al., 2020), or the predictions of water and 
wetness probability index as a proxy for water provision and wetlands 
(Almeida & Cabral, 2023; Ludwig et al., 2019). If the values are discrete, 
it is a classification problem that will find the discriminant between 
discrete classes. 

As many studies performed classification tasks without considering a 
recognized nomenclature to categorize ESi, we adopted the grouping 
system proposed by The Economics of Ecosystems and Biodiversity 
(TEEB) valuation database (McVittie & Hussain, 2013). TEEB provides a 

Table 1 
Data Collection: Scopus searching query.  

Scopus searching query 

TITLE-ABS-KEY (({ecosystem service} OR {ecosystem services} OR (ecosystem-service*) OR (ecosystem* AND (demand* OR suppl* OR account* OR bundl* OR flow* OR value* OR 
function*)) OR {natural capital}) AND ((remote AND sens*) OR satellite* OR {earth observation} OR {big earth data} OR sentinel* OR sensor* OR {landsat} OR {imagery} OR 
{remotely sensed} OR {big-data}) AND (monitor* OR map* OR observ* OR detect* OR predic* OR classif*) AND (landscape* OR inland OR terrestr* OR natur* OR biophysi* OR 
socio-ecological) AND (metric* OR indic* OR index* OR prox* OR tradeoff* OR trade-off* OR footprint* OR parameter* OR variable*) AND ({spatiotemporal} OR {spatiotemporal} 
OR {spatiotemporal} OR {spacetime scales} OR {spatiotemporal scales} OR {spatiotemporal} OR spati* OR temp* OR time*) AND (*machine* OR (machine-learning) OR (artificial- 
intelligence) OR *learning*)) AND (PUBYEAR >2012) AND (LIMIT-TO (SRCTYPE, “j")) AND (LIMIT-TO (PUBSTAGE, “final")) AND (LIMIT-TO (DOCTYPE, “ar") OR LIMIT-TO 
(DOCTYPE, “re")) AND (LIMIT-TO (LANGUAGE, “English"))  

Table 2 
Most operational Landsat and Sentinel missions applied to Earth monitoring 
services.  

Mission 
Name 

Mission 
Agencies 

Launch 
Year 

End- 
Of-Life 
Year 

Applications Instruments 

Landsat 
7 

USGS, 
NASA 

1999 2024 Earth resources, 
land surface, 
environmental 
monitoring, 
agriculture and 
forestry, disaster 
monitoring and 
assessment, ice and 
snow cover. 

ETM+

Landsat 
8 

USGS, 
NASA 

2013 2028 OLI, TIRS 

Landsat 
9 

USGS, 
NASA 

2021 2031 OLI-2, 
TIRS-2 

Sentinel- 
1 A; 2B 

ESA 2014; 
2016 

2024; 
2026 

Monitoring of sea, 
ice zones, and the 
arctic 
environment, 
surveillance of 
marine 
environment, 
monitoring of land 
surface motion 
risks, and mapping 
in support of 
humanitarian aid 
in crises. 

C-Band SAR 

Sentinel- 
2 A; 2B 

ESA 2015; 
2017 

2025; 
2027 

Land monitoring- 
related services: 
generation of land 
cover maps, risk 
mapping, and 
disaster relief, 
generation of leaf 
coverage, leaf 
chlorophyll 
content, and leaf 
water content. 

MSI 
(Sentinel-2)  
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valuation framework to assist decision-makers in examining the impacts 
of international and national policies on biodiversity and ecosystems. 
Compared with other ES categorization systems, TEEB puts together 
habitat and supporting services to avoid the double-counting problem 
(Mustajoki et al., 2020). 

ESi were categorized into four main functioning groups: (1) pro
duction functions, contributing to provisioning services; (2) regulation 
functions, involved in supplying regulating services; (3) habitat func
tions, essential for preserving ecological structures and processes, 
thereby offering supporting services; (4) cultural functions, delivering 
cultural and amenity services (Kienast et al., 2009). 

ESi was employed, acknowledging their varied names under 
different categorization systems. Indicators were renamed and grouped 
as ESi based on the parameters or proxies mapped, not just the terms 
used in the original papers, as they varied considerably. We expand our 
typology to encompass biodiversity, recognizing its frequent treatment 
as an ES in the literature review. Since many records considered biodi
versity in terms of genetic, functional, or habitat diversity, we follow this 
rationale, placing it in the habitat/supporting category. For instance, 
leaf coverage and leaf chlorophyll content act as indicators for climate 
regulating services (Egoh et al., 2012), the assessment of genetic re
sources serves as a measure of biodiversity (King et al., 2021), soil 
organic matter content functions as a proxy for soil formation and 
nutrient cycling (Vasenev et al., 2018), and water yield serves as an 
indicator for water provisioning service (Ludwig et al., 2019). 

Meta-analysis uses statistical techniques to synthesize findings in a 
systematic review (Copas & Shi, 2000). Most meta-analysis methods are 
developed to measure variations across studies, improve research con
fidence, answer explicit questions, assess controversies in studies, and 
generate new hypotheses (Higgins et al., 2022). The log response ratio 
(logRR) (Hedges et al., 1999) was used to calculate the effect size of 
studies that developed ML models to assess ESi. Response ratio in
vestigates weighted variance within groups, and the effect size estimates 
the change in the means in each ES (Durlak, 2009). The Q-test for het
erogeneity (τ2) (Cochran, 1954) and the I2 statistic (Higgins & Thomp
son, 2002) were calculated to quantify variation across studies. Overall, 
this meta-analysis aimed to build evidence on the use of ML models by 
each group of ES. The main outcome is to evaluate the general 

applicability of employing hybrid models including classification and 
regression tasks instead of just one of them. The analysis was carried out 
using the R Studio software (R Core Team, 2022), through the “metafor” 
package version 4.0.0 (Viechtbauer, 2010). 

3. Results 

3.1. Location of studies 

One of the reviewed studies had a global scope, while other studies 
covered 26 different countries within the selected literature. Studies 
locations were grouped into six categories according to the number of 
studies carried out in each country (Fig. 2). China and the United States 
of America (USA) gathered the highest number of studies with seven and 
ten studies, respectively. Bangladesh and India contributed with four 
and five studies, respectively. Brazil, Germany, Greece, and Spain had 
three selected studies, followed by other countries including, Italy, 
Kenya, Peru, Portugal, and South Africa, contributing two studies each. 
The remaining countries had one study each. 

The global scale research of Sanderman et al. (2018) includes an ML 
model to map mangrove forest soil carbon at 30m spatial resolution. Six 
other studies were applied to more than one country as they were 
assessing transboundary ecosystems. All countries reported in the 
reviewed literature were taken into consideration when producing the 
above global map. Boutsoukis et al. (2019) developed an ML model to 
estimate the canopy in temperate forests of Germany and the Czech 
Republic; Guio Blanco et al. (2018) estimated soil water retention in 
Venezuela and Peru; Koskikala et al. (2020) mapped natural forest 
remnants in Tanzania and Kenya; Kundu et al. (2022) predicted induced 
wetland fragmentation and water richness in dams of India and 
Bangladesh; Mpakairi, Dube, Dondofema, and Dalu (2022a, 2022b) 
estimated vegetation heterogeneity within arid environments in 
Botswana and South Africa, and Sannigrahi, Joshi, et al. (2019) assessed 
coastal resources values in India and Bangladesh. 

Among the selected studies, the earliest publishing dates go back to 
2015. It relates to a work carried out in Alaska-USA proposing an ML 
model to estimate a spatial proxy for climate regulation services 
assessing carbon stored and sequestered in near-surface permafrost 

Fig. 2. Global representation of the studies included in the review.  
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(Pastick et al., 2015). The authors, used Landsat imagery as predictors in 
a decision tree model, advancing the application of multitemporal SEO 
data and benchmarking a transition between methods and technologies. 
For the years 2012, 2013, 2014, and 2016, none of the records fulfilled 
the proposed eligibility criteria to be included in this review. 

3.2. Satellite Earth Observation data: Sentinel-2 and Landsat missions 

The SEO data and technologies investigated in this research are 
publicly available and recognized as high spatial resolution sensors 
(5–100 m/pixel) (Liang & Wang, 2019) on board the Landsat (4, 5, 7 and 
8) and Sentinel-2 (including 2A/2B) satellites. The following chart 
(Fig. 3) synthesizes the use of data from Landsat instruments and 
Sentinel-2, depicting also studies that used data from multiple sensors 
represented in the “Other” category. 

Since 2017, at least one study has used data from Landsat 4 and 5, 
whereas in 2019 there were eight. Within studies, Landsat 8 was first 
used in 2017, and it was used 30 times until 2022. Sentinel-2 has been 
used 24 times since 2018. Implemented together, they are a powerful 
source of spatiotemporal information for ESi monitoring purposes 
(Vyvlečka & Pechanec, 2023). Mo et al. (2018) is the only study that 
used data from all Landsat sensors as well as the Sentinel-2. About 53% 
of reviewed studies used SEO data from more than one instrument, such 
as developing research combining data from MSI and OLI-TIRS sensors 
(Koskikala et al., 2020; Lobert et al., 2021; Mallinis et al., 2020; Pastick 
et al., 2018). 

The “Other” category represents studies that included data from 
different satellites and instruments, such as combining Sentinel-2 and/ 
or Landsat with radar imagery from Sentinel-1 (DeLancey et al., 2019; 
Hoffmann et al., 2022; Koskikala et al., 2020; Lobert et al., 2021) and 
other RS technologies such as manned and unmanned aerial vehicles 
(Hasan et al., 2021; Morell-Monzó et al., 2020; Sharma et al., 2018). 
DeLancey et al. (2019) highlighted that the combination of optical and 
radar data provides the highest potential for accurate and comprehen
sive landscape assessments through satellite-based modelling. 

Many other studies combined drone imagery with data from other 
satellites such as Aqua/Terra MODIS (Moderate Resolution Imaging 
Spectroradiometer) (Arruda et al., 2021; Mo et al., 2018; Osborne & 
Alvares-Sanches, 2019; Pastick et al., 2018; Wang et al., 2017; J. Zhang, 
Du, et al., 2019), TripleSat (Cilek et al., 2022), IceSat-2 (Ice, Cloud and 
land Elevation Satellite) (Narine et al., 2019), SPOT-6 (Satellite pour 
l’Observation de la Terre) (Sharma et al., 2018), PlanetScope (Leroux 
et al., 2020), Rapid Eye (Hasan et al., 2021; Leroux et al., 2020; Mallinis 
et al., 2020), and WorldView-2 (Hasan et al., 2021; Mallinis et al., 2020). 
Additionally, spectral bands, derived indices, and a wide array of 
socio-biophysical variables (i.e., climatic, topographic, population 

density, road network information, census data, soil type, and geology) 
were considered as features by a few studies (Agrillo et al., 2021; Fitts 
et al., 2021; Hauser et al., 2021; Hudak et al., 2020; Kudzai S. Mpakairi 
et al., 2022a, 2022b; Mallinis et al., 2014; Mouta et al., 2021; Nzuza 
et al., 2021; Pipia et al., 2021; Pizarro et al., 2022; Vidal-Macua et al., 
2020). 

3.3. Which ESi are assessed using ML techniques? 

A considerable number of the studies that performed classification 
tasks did not use any recognized system to classify ecosystems. Hence 
before the statistical analysis, we standardized all the classes following 
the TEEB database framework which recognizes 12 biomes, Marine/ 
Open Ocean, Coastal systems, Wetlands, Rivers and Lakes, Forests, 
Woodland and shrubland, Grassland, Cultivated, Desert, Tundra, Ice, 
Rock and Polar, and Urban areas; and 22 ES grouped into 4 main cate
gories: provisioning, regulating, habitat/support and cultural services. 
The most classified ecosystems were Forests (22), followed by Cultivated 
lands (13), Urban areas (12), Woodland and shrubland (10), Grass/ 
Rangeland (9), Rivers and lakes, and Wetlands (8) (Fig. 4a). 

Rivers, lakes, and Wetlands were mostly assessed regarding anthro
pogenic pressures affecting aquatic ecosystems. Kundu et al. (2022) 
estimated hydro-period, water depth, and water presence consistency, 
after classifying lakes, rivers and wetlands. Sannigrahi, Chakraborti, 
et al. (2019) developed a model to assess mangrove ecosystems, based 
on the LULC dynamics. Alqadhi et al. (2022) assessed the impact on ES 
valuation of future landslide events, from detecting changes in Grass/
Rangeland, Urban, Cultivated, Ice/Rock/Polar, Desert, and Rivers and 
Lakes; Mpakairi et al. (2022a, 2022b) implemented a model to classify 
the presence of woodland as a proxy for timber production. Gwal et al. 
(2020) classified natural forests to estimate biomass density; Han et al. 
(2022) estimated carbon storage through the spatiotemporal dynamics 
of vegetation, classifying land use into six types: Cultivated, Woodland 
and shrubland, Grass/Rangeland, Urban, Rivers and Lakes and Wet
lands. Morell-Monzó et al. (2020) assessed crop yield for monitoring 
cultivated lands and maximizing food production and water use. The ES 
categories with more ML models developed were regulation (35%), 
followed by provision (29%), habitat/support (25%), and Cultural 
(12%) (Fig. 4b). 

A total of 16 ESi were identified in the review (biological control, 
climate regulation, cultural heritage, flood regulation, food production, 
genetic resources, habitat, inland wetlands, natural hazard regulation, 
nutrient cycling, public health, raw materials, recreation, soil formation, 
water provision, water regulation). Within the regulation category, 
climate regulation is the most representative (32) service, followed by 
genetic resources (28) from the provisioning category, and from the 

Fig. 3. Frequency of SEO data source identified in the literature review. The “Other” category refers to other satellites and instruments combined with any Landsat 
missions or Sentinel-2. 
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habitat/support category, the habitat service is the most modelled in
dicator (18 studies). These top three ESi were mostly identified in 
research that developed models to estimate carbon storage and 
sequestration, biomass density, water yield, and raw materials supply. 
The habitat service is responsible for the maintenance of genetic di
versity, and its condition directly affects productivity within the service 
(McVittie & Hussain, 2013). Cultural ecosystem services (CES) are 
represented by social-environmental services that support human 
well-being (Karasov et al., 2020). Within all the studies, the public 
health service from the cultural category was the least assessed (7). The 
reviewed studies were organized into ES categories and are presented in 
Table S3 in the Supplementary Materials. 

3.4. Which ML models are implemented? 

Among the reviewed studies, 37 implemented classification models 
to discriminate or delineate ecosystems, 31 modelled ESi through 
regression, and 12 built both models. All ML models were implemented 
based on supervised learning (SL), in which the training data are 
labelled, allowing the improvement of the learner’s performance 
directly. In unsupervised learning (UL) all data are unlabelled, and the 
machine learns to find structure and new features in the data. UL has the 
advantage that does not require training samples, but its accuracy can be 
lower when compared to SL, which relies on training samples to estab
lish the relationships between inputs and results (Shao & Lunetta, 2012). 

Fig. 5a) presents ML algorithms by task (classification and regression) 
employed more than once in each study. 

Six studies built two different classification models (Alqadhi et al., 
2022b; DeLancey et al., 2019; Leroux et al., 2020; Matsala et al., 2020; 
Tarantino et al., 2021; Yang et al., 2021). The most employed algorithms 
were RF, applied in approximately 50% of the studies, followed by SVM 
(25%), Gradient Boosting (GB) (20%), Classification and Regression 
Trees (CART), and Maximum Likelihood (MLC) (more than 10%). Seven 
studies compared the performance between two to five algorithms 
(Alqadhi et al., 2022b; Boutsoukis et al., 2019; Fitts et al., 2021; Hunter 
et al., 2020; Mo et al., 2018; X. Wang, Zhang, & Peng, 2021; Wang et al., 
2017). Five other studies tested more than five learners to compare 
performance between models (Mouta et al., 2021; Pizarro et al., 2022; S. 
Sannigrahi, Chakraborti, et al., 2019; L. , 2019b, Zhang, Sharma, et al., 
2022). 

Sannigrahi, Chakraborti, et al. (2019) and Sannigrahi, Joshi, et al. 
(2019) tested 10 ML algorithms to assess ES values and provisioning 
status based on the classification of ecosystem units. The authors 
concluded that SVM and RF produced the best classification predictions 
to assess 9 ESi including spatial proxies of climate regulation, water 
regulation, soil formation, nutrient cycling, biological control, food 
production, raw materials, recreation, and cultural services. 

Hoffmann et al. (2022) demonstrated in their research the capability 
of DL to assess the status and functions of habitat and raw materials 
provisioning services of forest ecosystems. Tarantino et al. (2021) 

Fig. 4. a) Ecosystems and b) Ecosystems services indicators (ESi) modelled by the reviewed studies.  
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argued that compared to DL algorithms, the SVM classifier was preferred 
since DL requires larger datasets and more computational resources. 
Even if it demands higher computational resources, these costs are being 
overcome with computing power improvements, efficiently allocating 
computing resources, and cloud computing (Mohanty et al., 2020). The 
authors used proprietary and/or open-source software to build their 
models and to compute performance comparisons between algorithms 
and models. Within records, two commercial software were used in ML 
modelling: See5/C5.0 was used in the classification task and the Cubist 
(RuleQuest Research, 2022) was used in the regression model. Cilek 
et al. (2022) classified forest ecosystems and predicted tree cover density 
as a proxy to estimate carbon storage in coniferous and broadleaf trees, 
using both software. Google Earth Engine (GEE) (Google, 2023), Weka 
(Waikato Environment for Knowledge Analysis) (Hall et al., 2008) and 
biomod2 (Ensemble Platform for Species Distribution Modeling) 
(Thuiller et al., 2022) were the open-source programs, used to support 
models’ implementation and performance evaluation. 

Mouta et al. (2021) employed biomod2 to perform a classification 
task fusion through eight ML algorithms mapping species’ abundance as 
a proxy of genetic resources service. Boutsoukis et al. (2019) used Weka 
for modelling habitat service based on estimations of temperate forest 
canopy height. Around 60% of the studies published after 2019, used the 
GEE platform as a source of satellite data and/or for imagery and geo
spatial processing. Open-source platforms and libraries including DL 
algorithms were also employed by a few studies, such as TensorFlow 
(Martín Abadi et al., 2015), Keras (Chollet et al., 2015) and scikit-learn 
(Pedregosa et al., 2011). 

Fig. 5b) depicts the use of ML algorithms through the publication 
years. Regarding the evolution in ML modelling applications, DT was the 
first algorithm identified in the literature (2015). In 2017, LR, RF and 
SVM were the algorithms identified; in 2018 GB was first observed, and 
RF increased their occurrence; in 2019 were identified modelling ap
plications for all referred algorithms, except for CART, CNN, and LR. 
This year is coincident with the increased use of GEE for environmental 
modelling (Arruda et al., 2021; DeLancey et al., 2019; Fitts et al., 2021; 
Hoffmann et al., 2022; Hunter et al., 2020; Koskikala et al., 2020; 
Mallinis et al., 2020; Kudzai S. Mpakairi et al., 2022a, 2022b; Nawrocki 

et al., 2020; Pipia et al., 2021; Pizarro et al., 2022; Wall et al., 2021; J. 
Zhang, Du, et al., 2019; L. Zhang, Sharma, et al., 2022). Since 2019, 
there has been an increasing number of publications that performed 
algorithm comparisons, and hyperparameter tuning as computation 
power developed, and the use of cloud computing and other platforms 
and software became more attractive and spread (de Brito et al., 2021). 
Table S4 in the Supplementary Materials lists all ML algorithms 
employed by the examined papers. 

Hyperparameter tuning was neglected or not reported in 83% of the 
studies. Selecting appropriate parameters is crucial as improper choices 
may lead to overfitting or underfitting issues. Table 3 summarizes the 
literature within reviewed studies that have carried out and reported 
hyperparameters tuning. L. Zhang, Hu, and Tang (2022) conducted 
hyperparameter tuning to identify the most effective model by 
comparing validation results across different models with varied 
hyperparameters. In RF models, the optimal model was determined by 
testing different numbers of decision trees (n_estimators). SVM models 
underwent tuning with various kernel settings and other hyper
parameters to find the optimal SVM model for classification. NB models 
were compared based on different lambda values. GB models varied in 
the number of trees for hyperparameter optimization. 

Ha et al. (2021) developed an ML model utilizing the CatBoost al
gorithm, which requires setting up a few hyperparameters, such as depth 

Fig. 5. a) ML algorithms used for modelling ESi. b) Evolution in the use of ML algorithms through publication years. Legend: ANN - Artificial Neural Networks; CART 
- Classification and Regression Trees; CNN - Convolutional Neural Networks; DT - Decision Trees; GB - Gradient Boosting; KNN - k-Nearest Neighbours; LDA - Linear 
Discriminant Analysis; LR - Logistic Regression; MLC - Maximum Likelihood Classifier; MLPN - Multi-Layer Perceptrons; NB - Naive Bayes; RF - Random Forest; SVM - 
Support Vector Machines. 

Table 3 
ML algorithm hyperparameters tuning.  

ML task ML algorithm and hyperparameter tuning 
method 

Literature 

Classification RF (n_estimators), SVM (kernel), NB 
(lambda), GB (n_estimators) 

L. Zhang, Hu, and 
Tang (2022) 

Classification CGB (learning_rate, depth, l2_leaf_reg, 
iterations) 

Ha et al. (2021) 

Regression KNN (k), GB (n.trees, interaction.depth, 
shrinkage, bag.fraction, n.minobsinnode) 

Matsala et al. 
(2020) 

Regression GB (n.trees, interaction.depth, shrinkage, 
bag.fraction, n.minobsinnode) 

Leroux et al. (2020) 

Regression SVM (c, kernel, gamma) X. Wang, Zhang, 
and Peng (2021)  
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of trees (depth), number of trees (iterations), learning rate (learnin
g_rate), and L2 leaf regression (l2_leaf_reg) identified as the four most 
crucial ones. The optimization process employed the GridSearchCV li
brary with five-fold cross-validation. Matsala et al. (2020) and Leroux 
et al. (2020) tuned GB hyperparameters through a grid search, exploring 
potential combinations of parameters: shrinkage, interaction depth, 
number of trees (n.trees), number of observations in the terminal nodes, 
and bagging fraction. X. Wang, Zhang, and Peng (2021) performed a 
regression task utilizing SVM. The process involved selecting an 
appropriate kernel function and determining the (c) cost and gamma (g) 
parameters. 

Spatial analysis and visualization were implemented in Quantum GIS 
(QGIS) (QGIS Association, 2022), System for Automated Geoscientific 
Analyses (SAGA), ArcGIS (ESRI, 2023), GEODA1.6.7 (Anselin & et al., 
2016), FRAGSTATS (McGarigal & Marks, 1995), and an R package, 
named “spdep: Spatial Dependence: Weighting Schemes, Statistics”, 
(Bivand & Wong, 2018). Ten studies employed spatial techniques to 
evaluate spatial autocorrelation and neighbouring dependency (Han 
et al., 2022; Hauser et al., 2021; Hoffmann et al., 2022; Mallinis et al., 
2020; Mpakairi et al., 2022a, 2022b; Nzuza et al., 2021; Osborne & 
Alvares-Sanches, 2019; Pizarro et al., 2022; S. Sannigrahi, Joshi, et al., 
2019; Y. Zhang, Sharma, et al., 2022). Commonly utilized statistics 

methods were Spearman and Pearson’s Correlations, Lee’s L statistic, the 
Global Moran’s I, and the Local Moran’s I indices. These methods were 
applied to identify spatial autocorrelations, and correlated variables, 
reduce instability during modelling, mitigate the impact of noisy pre
dictors and redundant data (Nzuza et al., 2021), enhance the efficiency 
of predictions, and improve the interpretability of final models (Hoff
mann et al., 2022). 

Applying metrics that do not align with the goals or characteristics of 
the problem may result in inaccurate evaluations of model performance 
(Astola et al., 2019). To validate the predictions’ power of the classifi
cation tasks, the following metrics were commonly employed: Producer 
Accuracy (PA) (a total of 14 studies), User Accuracy (UA) (14), Overall 
Accuracy (OA) (13), and Kappa coefficient (K) (12), as shown in Fig. 6a). 
The ROC-AUC (Receiver Operating Characteristic - Area Under the 
Curve), Precision, and F1-score were used to assess prediction perfor
mance also between models in five studies. For imbalanced classification 
problems, the F1-score was reported to be the best option to measure 
model quality. Olofsson et al. (2013) do not recommend using just K to 
assess the accuracy of land use change maps, and Koskikala et al. (2020) 
evaluated their results with the True Skill Statistic (TSS) arguing that 
TSS is independent of prevalence, and superior reliability compared to 
K. The top four classification metrics were UA, PA, OA, and K. 

Fig. 6. Frequency of evaluation metrics used to assess models’ quality. a) Legend (classification models): CE-Commission Error, OE-Omission Error, K-Kappa co
efficient, OA-Overall Accuracy, PA-Producer Accuracy, TSS-True Skill Statistics, ROC-AUC- Receiver Operating Characteristic - Area Under the Curve, UA-User 
accuracy, SE-Sensitivity. b) Legend (regression models): MAE-Mean Absolute Error, MBE-Mean Bias Error, ME-Mean Error, R2 -Coefficient of determination, 
rMAE-relative Mean Absolute Error, RMSE-Root Mean Square Error, RRMSE-Relative RMSE, SD-Standard Deviation. The number in parenthesis refers to the number 
of studies. 
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Around 75% of the studies that performed regression tasks used Root 
Mean Square Error (RMSE) as the primary evaluation metric for 
assessing the accuracy of predictions (Fig. 6b). The assessment of the 
agreement between actual and predicted values frequently employed 
RMSE (24), Mean Absolute Error (MAE) (10), Coefficient of determi
nation (R2) (6), and Relative RMSE (RRMSE) (5). Wang et al. (2017), 
Mouta et al. (2021), and Hauser et al. (2021) combined RMSE and R2 
metrics with Pearson’s R and Spearman Correlation to measure corre
lations between predicted values and observed values. Hauser et al. 
(2021), and Hoffmann et al. (2022) added Moran’s I index to measure 
the spatial dependence of the residuals’ neighbouring points, and Zhu 
et al. (2022), Pastick et al. (2015), Leroux et al. (2020), and Hudak et al. 
(2020) measured average model bias through MBE and RMBE. 

3.5. What is the relationship between ML tasks and ESi? 

The plot in Fig. 7 relates ESi with ML tasks, highlighting their cor
respondence. The classification was the most performed task within ES 
categories, habitat/supporting (21), regulating (19), provisioning (13), 
and cultural (4), against seven, nine, five, and one, respectively, for 
regression tasks. 

Among classification tasks, 44% of studies were multiclass problems 
and 28% were binary classifications employed to create presence/ 
absence maps. Binary classifications were mostly implemented in 
studies assessing habitat (10) and climate regulation (4). In a multiclass 
scenario where many values are discriminated into many classes, 
climate regulation (7), genetic resources (5), and habitat (4) were the 
most modelled indicators within studies. The classification tasks per
formed for taxonomic mapping or habitat discrimination were done in 
two steps. First, a map delineating the ecosystem was created, and then 
its output was used as a mask to discriminate species and habitats. 
Tarantino et al. (2021) first extracted the grassland layer by performing 
binary classification and then used this as an input for the second step, 
which was a multiclass problem to classify four grassland habitats. 

Matsala et al. (2020) first predicted land cover classes to produce a forest 
cover mask and then used the predicted map to classify dominant tree 
species. 

Predicting continuous values through regression tasks was mostly 
performed by climate regulation (7), genetic resources (5), and habitat 
(4) indicators. Nearly 55% of studies that performed a regression task 
predicted carbon storage in forests, woodlands, grasslands, croplands, 
and tundra ecosystems, as a proxy of climate regulation services. Other 
representative dependent variables were tree cover density, leaf area 
index, and leaf mass area, estimated as spatial proxies for timber pro
duction within raw materials provisioning services, as well as modelling 
crop production as a proxy for food provisioning, and the prediction of 
dissolved inorganic nitrogen (DIN) and reactive phosphate (PO4-P) 
levels, to assess nutrient cycling, water quality regulation, and water 
provision services. 

3.6. Is there a rule for model development within ESi? 

Approximately 24% of the studies built their models by applying 
both, classification and regression tasks (Table S5 – Supplementary 
Materials). Classification tasks were mostly employed to create land 
cover maps or discriminate ecosystems as the first step of nearly a 
quarter of the developed ML models. These maps sometimes combined 
with other variables were used as input for further regression models. 

Meta-analysis was carried out by grouping reviewed studies within 
the 16 ESi identified. We found that 69% of estimates had negative log 
response ratios (log [RR]) varying from − 0.92 to 0.41. With a 95% 
confidence interval (CI) (− 0.80 to − 0.05), the estimated average log 
[RR] based on the random-effects model was μ = -0.42. As a result, the 
average outcome differed significantly from zero (z = -2.2194, p =
0.0265), and the Q-test supports the hypothesis that the outcomes were 
not statistically heterogeneous (Q = 2.0623, p = 1.0000, τ2 = 0.0000, I2 

= 0.0000 %). A forest plot with the estimated results grouped by in
dicators and based on the random-effects model is depicted in Fig. 8. 

Fig. 7. Correspondence plot relating ML tasks within ESi.  
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Results indicate that, on average, there is a 65% likelihood of uti
lizing classification and regression for assessing ESi. Biological control, 
cultural heritage, flood regulation, food production, inland wetlands, 
public health, raw materials, recreation, and water provision were the 
indicators likely not to employ a classification as a first step in the 
models. On the other hand, studies assessing climate regulation, genetic 
resources, habitat, natural hazard regulation, nutrient cycling, soil for
mation, and water regulation were all investigated employing both 
tasks. 

Analyzing the percentage of weights given to each indicator during 
the model fitting evidence indicators influence (Fig. 9a). Climate regu
lation (1), genetic resources (6), and habitat (7) had a relatively high 
weight compared to the other indicators, being influential indicators, 
but not outliers. The radial graph evaluates the consistency of the results 
considering standard errors and variances of samples (Fig. 9b). The 
value of the log [RR] is represented by the line projected from (0,0) 
through the corresponding value in the arc (− 0.42). The graph indicates 
good consistency of results clustering the three influential indicators 
(climate regulation, genetic resources, and habitat). 

4. Discussion 

In this comprehensive literature review, we investigated the evolu
tion of ML models for evaluating ESi using satellite data from Sentinel-2 

and Landsat missions. The review synthesized the prevalent algorithms, 
tasks, and evaluation metrics employed in satellite-based ML modelling 
of ESi. It provided a benchmark for the conceptualization, imple
mentation, and development of models across diverse indicators, while 
also shedding light on potential directions for future research. 

4.1. Summary of results 

Modelling spatial proxies of ES based on high spatial and spectral 
resolution satellites enables a more consistent characterization of ESi 
components that are essential to sustainably managing natural resources 
(Guirado et al., 2019). It facilitates rapid, frequent, and continuous 
observations, thereby enhancing monitoring capabilities (del Río-Mena 
et al., 2023). 

High spatial resolution sensors capture more detailed and accurate 
information about an object when compared to medium spatial resolu
tion satellites (Liang & Wang, 2019). Multispectral sensors can detect 
small differences in spectral signatures, as they have contiguous bands 
with small bandwidths (<20 nm), consequently, producing more accu
rate classifications (Hunter et al., 2020). Nevertheless, the utility of 
optical sensors is constrained by limitations such as daytime image 
acquisition and vulnerability to cloud cover, atmospheric haze, or dense 
vegetation canopies (X. Wang, Zhang, & Peng, 2021). 

Data fusion integrating observations from different instruments 

Fig. 8. Forest plot with the log [RR] estimates using 95% of CI.  

Fig. 9. a) Percentage weights plot for the 16 ESi examining the use of classification tasks in regression models. b) Radial graph. Legend Indicators id: 1-Biological 
control, 2-Climate regulation, 3-Cultural heritage, 4-Flood regulation, 5-Food production, 6-Genetic resources, 7-Habitat, 8-Inland wetlands, 9- Natural hazard 
regulation, 10-Nutrient cycling, 11-Public health, 12-Raw materials, 13- Recreation, 14-Soil formation, 15-Water provision, 16-Water regulation. Radial graph of the 
model fitted. 
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provides advanced knowledge of the relationship between landscape 
dynamics, ESi, and human activities (C. Ramirez-Reyes et al., 2019). The 
approach is becoming more frequent in ES-related research and was 
employed in 53% of the reviewed studies, including integration of 
Sentinel-2 and/or any Landsat missions with Sentinel-1, Rapid Eye, 
MODIS, World View-2, IceSat-2, Planet Scope, SPOT-6, and manned and 
unmanned aerial vehicles. This observation agreed with Schirpke et al. 
(2023), emphasizing the increased adoption of the data fusion approach, 
as well as the inclusion of a wide variety of ancillary data, such as cli
matic and topographic variables, population density, census data, road 
networks, number of trees, soil type, and geology. Vyvlečka and 
Pechanec (2023) demonstrated in their review a preference for 
Sentinel-2 over Landsat 8, with spatial and spectral resolutions being a 
crucial factor affecting accuracy. Our results are also aligned with these 
statements, and some reviewed papers clearly state that (Koskikala 
et al., 2020; Lobert et al., 2021; Pastick et al., 2018). 

A total of 16 ESi were identified (i.e., biological control, climate 
regulation, cultural heritage, flood regulation, food production, genetic 
resources, habitat, inland wetlands, natural hazard regulation, nutrient 
cycling, public health, raw materials, recreation, soil formation, water 
provision, and water regulation). These indicators derived from 
satellite-based ML modelling, enable the assessment of ecosystem 
structure, configuration, and patterns of changes that influence nature’s 
ability to provide goods and services (Olander et al., 2018). 

The identified ESi aid in informed decision-making through extrap
olating measurements of ecosystems’ extent and conditions. These 
outcomes provide valuable support for landscape planning and man
agement through physical measurements, enabling tracking changes in 
ecosystem assets, species distribution, and ecosystem health (King et al., 
2024). When integrated into socio-economic data, ESi can contribute to 
the design of ecosystem accounting, providing information on natural 
stocks and aiding in the development of national accounts and public 
policies, enabling better-informed and sustainable management prac
tices (Fleming et al., 2022). Nevertheless, ecosystem monetary ac
counting and monitoring still require direct measurements, and ESi 
would not be enough. 

Within the reviewed studies, only 10% evaluated monetary accounts 
of ES calculating the benefits generated by each service or category of 
services (Alqadhi et al., 2022b; Han et al., 2022; Kundu et al., 2022; 
Mugiraneza et al., 2019; S. Sannigrahi, Chakraborti, et al., 2019; San
nigrahi, Joshi, et al., 2019). 

Approximately, 80% of studies assessed 20% of the ESi identified. 
The ESi categories with the most frequently developed ML models and 
applications were regulating (with climate regulation), provisioning 
(with the provision of genetic resources and raw materials), and habitat 
(with habitat service providing maintenance of genetic diversity). The 
condition of the habitat providing the service directly affects the avail
ability of many other ecosystem functions and services (McVittie & 
Hussain, 2013). Natural habitats are crucial to maintaining genetic re
sources, and biodiversity (Reddy, 2021). Mapping tree-species distri
bution, canopy height, and tree cover density allowed for measuring the 
ability functions of climate regulating services such as carbon storage 
and sequestration, and raw materials provisioning, such as timber, 
biomass, and other tree-derived products (Hudak et al., 2020). 

ML serves as a powerful complement to current methods rather than 
a substitute (Scowen et al., 2021). Assessing ESi using ML models is a 
good decision when one follows a set of good practices and has well 
conceptualized the study’s purposes (Willcock et al., 2018). When one 
chooses an algorithm just because it is trending or easier to implement, it 
is quite dangerous, because it can be effective in solving certain prob
lems, but not for a specific problem and/or dataset (Craven et al., 2023). 
A good practice is to test performances between models and learners and 
monitor the results through a wide range of evaluation metrics (Domi
ngos, 2012). 

ML tasks are demanding in terms of computing, particularly when 
modelling big earth data (Ma et al., 2019). Nowadays, there is a wide 

variety of algorithms, and most of them do not have many requirements 
to implement, unlikely most of them are highly sensitive to the quality of 
the training data, as well as to hyperparameter configurations (Maxwell 
et al., 2018). Inevitably, before building ML models, it is essential to 
understand the algorithms’ drawbacks and limitations, such as lack of 
transparency, hyperparameter sensitivity, generalizability through 
overfitting and underfitting, power computing needed and 
time-consuming (Scowen et al., 2021). 

Biases, inaccuracies, or missing data can significantly impact model 
performance, as ML models require sufficiently large, representative, 
and diverse data to capture the underlying patterns, and generalize well 
to new, unseen instances (Bishop, 2006). The low accuracy of models 
often stems from inadequate training data, regarding insufficient 
quantity and quality, and imbalances in the distribution of classes or 
features (Hastie et al., 2009). To improve the robustness and reliability 
of ML models, data preprocessing, cleaning, augmentation, and over
sampling techniques lead to better accuracy and more trustworthy re
sults (Craven et al., 2023). 

A lack of transparency can be a significant barrier to understanding 
how the model arrives at its predictions and contributes to the black box 
problem, making it challenging to decipher the reasoning behind the 
results (Schirpke et al., 2023). Nonetheless, learners can be transparent 
and repeatable, and algorithm development is calling for advances that 
better link inputs, outputs, and intermediary steps (Nikparvar & Thill, 
2021). 

RF was the most implemented algorithm, followed by SVM. The 
advantages of using RF instead of CART are the robustness to overfitting 
and the predictors’ value range aggregation (Breiman, 1984). The 
number of hyperparameters required by the RF classifier is less than the 
number required for SVM and other algorithms (Boser et al., 1992). In 
contrast to many algorithms, including SVM, RF might face challenges 
when dealing with imbalanced data. On the other hand, SVM tends to 
perform better under such circumstances, thanks to its generalization 
capability, overall robustness, high accuracy, and suitability for situa
tions involving limited training data (Pizarro et al., 2022). Choosing an 
algorithm that fulfils the requirements of each model is quite chal
lenging. Making use of tools that compare algorithms and models is a 
better option, as they also commonly offer various elements of data 
handling, processing, and performance evaluation. 

The primary result of the meta-analysis was to assess the overall 
feasibility of using hybrid models, which involve completing both 
classification and regression tasks. Measuring the effects of imple
menting hybrid models instead of a single application provides a better 
understanding of researchers’ decisions and the applicability of 
combining tasks in the assessment of ESi. 

Classification tasks were mostly employed to identify and delineate 
ecosystem assets, such as forests, and estimate their extent, while 
regression tasks were modelled to evaluate ecosystem conditions by 
predicting specific characteristics (e.g. tree cover density). Besides, 
some studies implemented a two-step modelling strategy, integrating 
both classification and regression tasks. This synergistic method allows 
for a comprehensive and optimized use and analysis of satellite-based 
ML techniques to assess ESi, as well as contributes to more robust and 
accurate modelling outcomes in ES assessments. 

4.2. Common challenges and opportunities 

Many studies highlighted opportunities for leveraging SEO in ESi 
assessments and stressed the need for addressing challenges through 
innovative funding and partnerships to enhance global ES assessments 
(Lobert et al., 2021). Challenges related to variable and model accuracy, 
data accessibility, technology availability, and ethical considerations 
were pointed out as topics that require attention to ensure inclusive and 
meaningful technology use (Narine et al., 2019). Few records suggest 
that integrating different technologies, fostering transdisciplinary 
collaboration, and exploring advancements in related research fields 
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could provide further insights into ES research (Alqadhi et al., 2022b; 
Kundu et al., 2022; Mpakairi et al., 2022a, 2022b; Vidal-Macua et al., 
2020). 

Limitations have been overcome through methodological and tech
nical advancements in cloud computing, efficient resource allocation, 
algorithm improvements, and quantum information technologies (Eu
ropean Spatial Agency, 2023; Willcock et al., 2023). These de
velopments have been fast-evolving and fostered by institutions and 
agencies, such as NASA, USGS, and ESA (Vyvlečka & Pechanec, 2023), 
as well as, satellite data streams, e.g. GEE and the Open Data Cube (ODC, 
2018), facilitating access, management, and analysis of SEO data. 
Coupled with advances in open-source data science algorithms and 
packages, cloud-based technologies are facilitating the modelling 
workflow for a broad spectrum of ecosystem functions and services 
(DeLancey et al., 2019). Furthermore, fostering the applicability of such 
models and technologies in landscape planning, governance, and poli
cymaking (King et al., 2024). 

The rapid technological evolution in RS is calling for the develop
ment of approaches and techniques that can be used on SEO-based 
monitoring strategies of ESi. However, fieldwork remains crucial for 
some ES assessments, as RS is not a substitute for field surveys, ground- 
based sensors and sensor networks, and measurements derived from 
SEO may need to be validated through field observations (Jullian et al., 
2021). The constraints imposed by the available ground-based datasets 
were one of the main limitations reported in the studies. Matsala et al. 
(2020) stated the need for a national statistical inventory in Ukraine, as 
a barrier met in implementing their research. M. Zhang, Okin, and Zhou 
(2019) pointed out that the temporal misalignment between SEO and 
field survey data caused by the absence of cloud-free Landsat scenes that 
precisely match ground observation times introduces errors in result 
estimations. Sharma et al. (2018) emphasized the crucial role of 
extensive ground data in calibrating and validating classification out
puts and the need for a robust methodology capable of accurately 
quantifying crop production at the field scale. Therefore, integrating 
ground sensor data helps validate the quantification of ecosystem 
functions, complementing the central role of satellite data (Vyvlečka & 
Pechanec, 2023). 

Achieving accurate predictions of ESi from remotely sensed data 
requires a profound understanding of the intricate relationship between 
spectral information and each proxy (Ørka et al., 2022). This task is 
particularly challenging due to the unobservability, or measurement 
difficulties associated with many ES (del Río-Mena et al., 2023). 
Furthermore, adapting locally derived ES models to new locations or 
different scales faces limitations due to the need for parameterization, 
calibration, and validation, often impeded by the absence of ground 
truth data (Cord et al., 2017). 

Leveraging a diverse range of SEO instruments and measurements, 
suitable datasets can be chosen or developed for estimating specific ESi. 
This approach is expected to accelerate progress in spatially character
izing ESi, thereby contributing to ecological conservation, management, 
and integrated land-use planning (Andrew et al., 2014). 

Despite the growing application of ML in ESi modelling, a substantial 
number of studies lack a dedicated focus on research commitments to 
ensure the replicability of methods and reproducibility of existent 
datasets. To address this gap, an easily understandable and transparent 
framework capable of reliably modelling unstructured data, such as 
images, video, time-series data, and text is required. As these diverse 
data types are increasingly integrated into ESi modelling throughout 
data fusion approaches, effectively handling and reproducing them may 
need domain expertise and the application of reverse engineering 
techniques. 

The development of automated functions, akin to those found in ML 
Operations (MLOps) (Kreuzberger et al., 2023), is essential to streamline 
the process of taking ML models to production and subsequently 
maintaining and monitoring them in the context of satellite-based ESi 
modelling (Urbanowicz et al., 2022). These automated functions play a 

key role in optimizing modelling performance, capturing complex as
sociations in data, enhancing interpretability and reproducibility, and 
preventing and detecting common sources of errors throughout the 
model’s life cycle (Poleshchuk et al., 2022). 

To ensure the robustness of the chosen model, resampling techniques 
must be employed for model tuning and predictor selection (Guio Blanco 
et al., 2018). Accordingly, there is a growing need for wider reporting of 
the specific tuning, predictor selection, and resampling methods uti
lized, given their substantial impact on prediction uncertainty and the 
identification of crucial predictor variables. 

The ongoing advancements in cloud computing, open-access data, 
and ML technologies are expected to propel the development of large- 
scale ecosystem inventories (DeLancey et al., 2019). These advance
ments will not only expand the user base for geospatial data but also 
foster collaboration, addressing both existing and emerging challenges 
in large-area mapping and monitoring. 

Developing models that can be scalable and replicable must consider 
uncertainties related to each phenomenon and spatial scale and a well- 
developed proof of concept of its applicability (Kubiszewski et al., 
2022). Therefore, the scalability of models is achievable due to their 
rapid and cost-effective development (Scowen et al., 2021). The utili
zation of open-source tools and models plays a crucial role in fostering 
the widespread adoption of ML techniques, particularly for 
high-dimensional and multi-modal data. Additionally, the automation of 
data analysis is a key requirement underlying the efficiency and effec
tiveness of these models (Nikparvar & Thill, 2021). 

4.3. Research limitations, contributions, and directions for future studies 

Synthesizing the review of the included studies through meta- 
analysis helped in building knowledge of the SEO data-based ML ap
plications. However, biases can lead to underestimations or over
estimations in any review conclusions (Sterne & Egger, 2005). Many 
types of systematic errors might affect a review, but selection biases are 
the internal biases more frequently recognized as causes of reviews’ 
conclusions deviations (Nakagawa et al., 2022). The selection bias oc
curs when the selected studies represent a small population of all 
research, and the absence of specific studies could increase biases (Greco 
et al., 2013). We are aware of the consequences of limiting the research 
to the English language, as this excludes worldwide outstanding studies 
reported for example in Chinese, Spanish or Portuguese. Some biases can 
also exist due to our decision to focus the review on studies that 
employed Landsat (4, 5, 7 and 8) and/or Sentinel-2A/2B. We also 
acknowledge that many other studies not included in this review would 
develop ML models to assess ESi using data from Sentinel-1A/2B, 
MODIS, Lidar, or other RS technologies; as well as other studies that 
model ESi, but did not choose to use “ecosystem services" in their title, 
keywords, and abstract. The methodology implemented allows users to 
assess, replicate, or update the review’s findings. These results 
contribute to a better understanding of the use of SEO data and tech
nologies, and the applicability of ML models to assess ESi. 

As the assessment and monitoring of changes in ESi are helping 
decision-makers to achieve sustainable development and management 
at multiscale (Guirado et al., 2019), the outcomes of this review are 
relevant information for society and the scientific community, high
lighting the latest approaches that significant researchers have produced 
worldwide. 

Meta-analysis built the evidence that even when a problem is to 
predict continuous values, a classification task is commonly taken first, 
confirming ES-related researchers’ adherence to ML techniques. Studies 
applied hybrid models when there were no available data identifying 
and delineating the target ecosystem, and further implemented a 
regression task to estimate ESi. 

In future studies, ES researchers may adopt standardized methods to 
present the intricate steps related to data collection and processing, 
analysis, visualization, and interpretation of results, as suggested by 
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Scowen et al. (2021). But for that, a conceptual framework that guides 
model replicability needs to be developed and disseminated through the 
scientific community and stakeholders to enhance the applicability and 
understanding of ESi modelling. Additionally, future research may 
provide the required background to advance beyond what can be done 
and what can yet be enhanced when applying ML to estimate ES con
ditions. As this study did not analyze the predictors used in the various 
models, this is one of the topics that needs further knowledge and dis
cussion, addressing this and other gaps including reviewing the use of 
spectral indices, and other landscape metrics as predictors, and handling 
the increasing volume of data developing tools that lower the costs 
associated with ES modelling. 

5. Conclusions 

The purpose of this systematic review was to summarize studies that 
developed satellite-based ML models to assess ESi and analyze their 
relationship, adopting a methodology that enables users to evaluate, 
repeat or revise the review’s findings. Results show that there are no 
rules regarding the selection of ML tasks, algorithms, or evaluation 
metrics, but meta-analysis indicates the likelihood of applying classifi
cation and regression tasks, specifically when assessing climate regula
tion, habitat, and genetic resources. ML models based on SEO data are a 
promising method to assess ESi, with increased potential if combined 
with ground truth data of monitoring campaigns. Advances in auto
mated methods for ES valuation are cost-effective and allow for better 
management of natural capital. However, further effort is needed to 
establish a robust and user-friendly framework for ML applications in ES 
modelling, ensuring not only the reliability of results but also facilitating 
the integration of diverse data sources and the deployment of models 
into operational settings. This includes the development of automated 
processes, inspired by MLOps, to efficiently manage the lifecycle of ML 
models within satellite-based ES applications. The main subjects of the 
reviewed studies related to environment protection, ES assessment and 
evaluation, nature conservation, natural capital management, policy
making, and land use and landscape planning. Modelling climate regu
lation services, such as carbon storage and sequestration, remained the 
overarching goal of 30% out from the reviewed studies. Additionally, 
measurements of nature stocks, such as biomass, freshwater, food pro
duction, and raw materials, have shown to be important at a global 
scale. The outcomes of this review add value to the present state-of-the- 
art on the applicability of ML models to assess ES through ESi. It further 
identifies the most relevant techniques and applications that support 
environmental problems. 
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Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830. 

Pettorelli, N., to Bühne, H., Tulloch, A., Dubois, G., Macinnis-Ng, C., Queirós, A. M., 
Keith, D. A., Wegmann, M., Schrodt, F., Stellmes, M., Sonnenschein, R., Geller, G. N., 
Roy, S., Somers, B., Murray, N., Bland, L., Geijzendorffer, I., Kerr, J. T., Broszeit, S., 
… Nicholson, E. (2018). Satellite remote sensing of ecosystem functions: 
Opportunities, challenges and way forward. Remote Sens Ecol Conserv, 4, 71–93. 
https://doi.org/10.1002/rse2.59 

Pipia, L., Amin, E., Belda, S., Salinero-Delgado, M., & Verrelst, J. (2021). Green LAI 
mapping and cloud gap-filling using Gaussian process regression in google earth 
engine. Remote Sensing, 13, 403. https://doi.org/10.3390/rs13030403 

Pizarro, S. E., Pricope, N. G., Vargas-Machuca, D., Huanca, O., & Ñaupari, J. (2022). 
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