309 research outputs found

    Applying Wikipedia to Interactive Information Retrieval

    Get PDF
    There are many opportunities to improve the interactivity of information retrieval systems beyond the ubiquitous search box. One idea is to use knowledge bases—e.g. controlled vocabularies, classification schemes, thesauri and ontologies—to organize, describe and navigate the information space. These resources are popular in libraries and specialist collections, but have proven too expensive and narrow to be applied to everyday webscale search. Wikipedia has the potential to bring structured knowledge into more widespread use. This online, collaboratively generated encyclopaedia is one of the largest and most consulted reference works in existence. It is broader, deeper and more agile than the knowledge bases put forward to assist retrieval in the past. Rendering this resource machine-readable is a challenging task that has captured the interest of many researchers. Many see it as a key step required to break the knowledge acquisition bottleneck that crippled previous efforts. This thesis claims that the roadblock can be sidestepped: Wikipedia can be applied effectively to open-domain information retrieval with minimal natural language processing or information extraction. The key is to focus on gathering and applying human-readable rather than machine-readable knowledge. To demonstrate this claim, the thesis tackles three separate problems: extracting knowledge from Wikipedia; connecting it to textual documents; and applying it to the retrieval process. First, we demonstrate that a large thesaurus-like structure can be obtained directly from Wikipedia, and that accurate measures of semantic relatedness can be efficiently mined from it. Second, we show that Wikipedia provides the necessary features and training data for existing data mining techniques to accurately detect and disambiguate topics when they are mentioned in plain text. Third, we provide two systems and user studies that demonstrate the utility of the Wikipedia-derived knowledge base for interactive information retrieval

    Unsupervised entity linking using graph-based semantic similarity

    Get PDF
    Nowadays, the human textual data constitutes a great proportion of the shared information resources such as World Wide Web (WWW). Social networks, news and learning resources as well as Knowledge Bases (KBs) are just the small examples that widely contain the textual data which is used by both human and machine readers. The nature of human languages is highly ambiguous, means that a short portion of a textual context (such as words or phrases) can semantically be interpreted in different ways. A language processor should detect the best interpretation depending on the context in which each word or phrase appears. In case of human readers, the brain is quite proficient in interfering textual data. Human language developed in a way that reflects the innate ability provided by the brain’s neural networks. However, there still exist the moments that the text disambiguation task would remain a hard challenge for the human readers. In case of machine readers, it has been a long-term challenge to develop the ability to do natural language processing and machine learning. Different interpretation can change the broad range of topics and targets. The different in interpretation can cause serious impacts when it is used in critical domains that need high precision. Thus, the correctly inferring the ambiguous words would be highly crucial. To tackle it, two tasks have been developed: Word Sense Disambiguation (WSD) to infer the sense (i.e. meaning) of ambiguous words, when the word has multiple meanings, and Entity Linking (EL) (also called, Named Entity Disambiguation–NED, Named Entity Recognition and Disambiguation–NERD, or Named Entity Normalization–NEN) which is used to explore the correct reference of Named Entity (NE) mentions occurring in documents. The solution to these problems impacts other computer-related writing, such as discourse, improving relevance of search engines, anaphora resolution, coherence, and inference. This document summarizes the works towards developing an unsupervised Entity Linking (EL) system using graph-based semantic similarity aiming to disambiguate Named Entity (NE) mentions occurring in a target document. The EL task is highly challenging since each entity can usually be referred to by several NE mentions (synonymy). In addition, a NE mention may be used to indicate distinct entities (polysemy). Thus, much effort is necessary to tackle these challenges. Our EL system disambiguates the NE mentions in several steps. For each step, we have proposed, implemented, and evaluated several approaches. We evaluated our EL system in TAC-KBP4 English EL evaluation framework in which the system input consists of a set of queries, each containing a query name (target NE mention) along with start and end offsets of that mention in the target document. The output is either a NE entry id in a reference Knowledge Base (KB) or a Not-in-KB (NIL) id in the case that system could not find any appropriate entry for that query. At the end, we have analyzed our result in different aspects. To disambiguate query name we apply a graph-based semantic similarity approach to extract the network of the semantic knowledge existing in the content of target document.Este documento es un resumen del trabajo realizado para la construccion de un sistema de Entity Linking (EL) destinado a desambiguar menciones de Entidades Nombradas (Named Entities, NE) que aparecen en un documento de referencia. La tarea de EL presenta una gran dificultad ya que cada entidad puede ser mencionada de varias maneras (sinonimia). Ademas cada mencion puede referirse a mas de una entidad (polisemia). Asi pues, se debe realizar un gran esfuerzo para hacer frente a estos retos. Nuestro sistema de EL lleva a cabo la desambiguacion de las menciones de NE en varias etapas. Para cada etapa hemos propuesto, implementado y evaluado varias aproximaciones. Hemos evaluado nuestro sistema de EL en el marco del TAC-KBP English EL evaluation framework. En este marco la evaluacion se realiza a partir de una entrada que consiste en un conjunto de consultas cada una de las cuales consta de un nombre (query name) que corresponde a una mencion objetivo cuya posicion en un documento de referencia se indica. La salida debe indicar a que entidad en una base de conocimiento (Knowledge Base, KB) corresponde la mencion. En caso de no existir un referente apropiado la respuesta sera Not-in-KB (NIL). La tesis concluye con un analisis pormenorizado de los resultados obtenidos en la evaluacion.Postprint (published version

    Concept and entity grounding using indirect supervision

    Get PDF
    Extracting and disambiguating entities and concepts is a crucial step toward understanding natural language text. In this thesis, we consider the problem of grounding concepts and entities mentioned in text to one or more knowledge bases (KBs). A well-studied scenario of this problem is the one in which documents are given in English and the goal is to identify concept and entity mentions, and find the corresponding entries the mentions refer to in Wikipedia. We extend this problem in two directions: First, we study identifying and grounding entities written in any language to the English Wikipedia. Second, we investigate using multiple KBs which do not contain rich textual and structural information Wikipedia does. These more involved settings pose a few additional challenges beyond those addressed in the standard English Wikification problem. Key among them is that no supervision is available to facilitate training machine learning models. The first extension, cross-lingual Wikification, introduces problems such as recognizing multilingual named entities mentioned in text, translating non-English names into English, and computing word similarity across languages. Since it is impossible to acquire manually annotated examples for all languages, building models for all languages in Wikipedia requires exploring indirect or incidental supervision signals which already exist in Wikipedia. For the second setting, we need to deal with the fact that most KBs do not contain the rich information Wikipedia has; consequently, the main supervision signal used to train Wikification rankers does not exist anymore. In this thesis, we show that supervision signals can be obtained by carefully examining the redundancy and relations between multiple KBs. By developing algorithms and models which harvest these incidental signals, we can achieve better performance on these tasks

    Joint Discourse-aware Concept Disambiguation and Clustering

    Get PDF
    This thesis addresses the tasks of concept disambiguation and clustering. Concept disambiguation is the task of linking common nouns and proper names in a text – henceforth called mentions – to their corresponding concepts in a predefined inventory. Concept clustering is the task of clustering mentions, so that all mentions in one cluster denote the same concept. In this thesis, we investigate concept disambiguation and clustering from a discourse perspective and propose a discourse-aware approach for joint concept disambiguation and clustering in the framework of Markov logic. The contributions of this thesis are fourfold: Joint Concept Disambiguation and Clustering. In previous approaches, concept disambiguation and concept clustering have been considered as two separate tasks (Schütze, 1998; Ji & Grishman, 2011). We analyze the relationship between concept disambiguation and concept clustering and argue that these two tasks can mutually support each other. We propose the – to our knowledge – first joint approach for concept disambiguation and clustering. Discourse-Aware Concept Disambiguation. One of the determining factors for concept disambiguation and clustering is the context definition. Most previous approaches use the same context definition for all mentions (Milne & Witten, 2008b; Kulkarni et al., 2009; Ratinov et al., 2011, inter alia). We approach the question which context is relevant to disambiguate a mention from a discourse perspective and state that different mentions require different notions of contexts. We state that the context that is relevant to disambiguate a mention depends on its embedding into discourse. However, how a mention is embedded into discourse depends on its denoted concept. Hence, the identification of the denoted concept and the relevant concept mutually depend on each other. We propose a binwise approach with three different context definitions and model the selection of the context definition and the disambiguation jointly. Modeling Interdependencies with Markov Logic. To model the interdependencies between concept disambiguation and concept clustering as well as the interdependencies between the context definition and the disambiguation, we use Markov logic (Domingos & Lowd, 2009). Markov logic combines first order logic with probabilities and allows us to concisely formalize these interdependencies. We investigate how we can balance between linguistic appropriateness and time efficiency and propose a hybrid approach that combines joint inference with aggregation techniques. Concept Disambiguation and Clustering beyond English: Multi- and Cross-linguality. Given the vast amount of texts written in different languages, the capability to extend an approach to cope with other languages than English is essential. We thus analyze how our approach copes with other languages than English and show that our approach largely scales across languages, even without retraining. Our approach is evaluated on multiple data sets originating from different sources (e.g. news, web) and across multiple languages. As an inventory, we use Wikipedia. We compare our approach to other approaches and show that it achieves state-of-the-art results. Furthermore, we show that joint concept disambiguating and clustering as well as joint context selection and disambiguation leads to significant improvements ceteris paribus

    Knowledge-driven entity recognition and disambiguation in biomedical text

    Get PDF
    Entity recognition and disambiguation (ERD) for the biomedical domain are notoriously difficult problems due to the variety of entities and their often long names in many variations. Existing works focus heavily on the molecular level in two ways. First, they target scientific literature as the input text genre. Second, they target single, highly specialized entity types such as chemicals, genes, and proteins. However, a wealth of biomedical information is also buried in the vast universe of Web content. In order to fully utilize all the information available, there is a need to tap into Web content as an additional input. Moreover, there is a need to cater for other entity types such as symptoms and risk factors since Web content focuses on consumer health. The goal of this thesis is to investigate ERD methods that are applicable to all entity types in scientific literature as well as Web content. In addition, we focus on under-explored aspects of the biomedical ERD problems -- scalability, long noun phrases, and out-of-knowledge base (OOKB) entities. This thesis makes four main contributions, all of which leverage knowledge in UMLS (Unified Medical Language System), the largest and most authoritative knowledge base (KB) of the biomedical domain. The first contribution is a fast dictionary lookup method for entity recognition that maximizes throughput while balancing the loss of precision and recall. The second contribution is a semantic type classification method targeting common words in long noun phrases. We develop a custom set of semantic types to capture word usages; besides biomedical usage, these types also cope with non-biomedical usage and the case of generic, non-informative usage. The third contribution is a fast heuristics method for entity disambiguation in MEDLINE abstracts, again maximizing throughput but this time maintaining accuracy. The fourth contribution is a corpus-driven entity disambiguation method that addresses OOKB entities. The method first captures the entities expressed in a corpus as latent representations that comprise in-KB and OOKB entities alike before performing entity disambiguation.Die Erkennung und Disambiguierung von Entitäten für den biomedizinischen Bereich stellen, wegen der vielfältigen Arten von biomedizinischen Entitäten sowie deren oft langen und variantenreichen Namen, große Herausforderungen dar. Vorhergehende Arbeiten konzentrieren sich in zweierlei Hinsicht fast ausschließlich auf molekulare Entitäten. Erstens fokussieren sie sich auf wissenschaftliche Publikationen als Genre der Eingabetexte. Zweitens fokussieren sie sich auf einzelne, sehr spezialisierte Entitätstypen wie Chemikalien, Gene und Proteine. Allerdings bietet das Internet neben diesen Quellen eine Vielzahl an Inhalten biomedizinischen Wissens, das vernachlässigt wird. Um alle verfügbaren Informationen auszunutzen besteht der Bedarf weitere Internet-Inhalte als zusätzliche Quellen zu erschließen. Außerdem ist es auch erforderlich andere Entitätstypen wie Symptome und Risikofaktoren in Betracht zu ziehen, da diese für zahlreiche Inhalte im Internet, wie zum Beispiel Verbraucherinformationen im Gesundheitssektor, relevant sind. Das Ziel dieser Dissertation ist es, Methoden zur Erkennung und Disambiguierung von Entitäten zu erforschen, die alle Entitätstypen in Betracht ziehen und sowohl auf wissenschaftliche Publikationen als auch auf andere Internet-Inhalte anwendbar sind. Darüber hinaus setzen wir Schwerpunkte auf oft vernachlässigte Aspekte der biomedizinischen Erkennung und Disambiguierung von Entitäten, nämlich Skalierbarkeit, lange Nominalphrasen und fehlende Entitäten in einer Wissensbank. In dieser Hinsicht leistet diese Dissertation vier Hauptbeiträge, denen allen das Wissen von UMLS (Unified Medical Language System), der größten und wichtigsten Wissensbank im biomedizinischen Bereich, zu Grunde liegt. Der erste Beitrag ist eine schnelle Methode zur Erkennung von Entitäten mittels Lexikonabgleich, welche den Durchsatz maximiert und gleichzeitig den Verlust in Genauigkeit und Trefferquote (precision and recall) balanciert. Der zweite Beitrag ist eine Methode zur Klassifizierung der semantischen Typen von Nomen, die sich auf gebräuchliche Nomen von langen Nominalphrasen richtet und auf einer selbstentwickelten Sammlung von semantischen Typen beruht, die die Verwendung der Nomen erfasst. Neben biomedizinischen können diese Typen auch nicht-biomedizinische und allgemeine, informationsarme Verwendungen behandeln. Der dritte Beitrag ist eine schnelle Heuristikmethode zur Disambiguierung von Entitäten in MEDLINE Kurzfassungen, welche den Durchsatz maximiert, aber auch die Genauigkeit erhält. Der vierte Beitrag ist eine korpusgetriebene Methode zur Disambiguierung von Entitäten, die speziell fehlende Entitäten in einer Wissensbank behandelt. Die Methode wandelt erst die Entitäten, die in einem Textkorpus ausgedrückt aber nicht notwendigerweise in einer Wissensbank sind, in latente Darstellungen um und führt anschließend die Disambiguierung durch

    Linking named entities to Wikipedia

    Get PDF
    Natural language is fraught with problems of ambiguity, including name reference. A name in text can refer to multiple entities just as an entity can be known by different names. This thesis examines how a mention in text can be linked to an external knowledge base (KB), in our case, Wikipedia. The named entity linking (NEL) task requires systems to identify the KB entry, or Wikipedia article, that a mention refers to; or, if the KB does not contain the correct entry, return NIL. Entity linking systems can be complex and we present a framework for analysing their different components, which we use to analyse three seminal systems which are evaluated on a common dataset and we show the importance of precise search for linking. The Text Analysis Conference (TAC) is a major venue for NEL research. We report on our submissions to the entity linking shared task in 2010, 2011 and 2012. The information required to disambiguate entities is often found in the text, close to the mention. We explore apposition, a common way for authors to provide information about entities. We model syntactic and semantic restrictions with a joint model that achieves state-of-the-art apposition extraction performance. We generalise from apposition to examine local descriptions specified close to the mention. We add local description to our state-of-the-art linker by using patterns to extract the descriptions and matching against this restricted context. Not only does this make for a more precise match, we are also able to model failure to match. Local descriptions help disambiguate entities, further improving our state-of-the-art linker. The work in this thesis seeks to link textual entity mentions to knowledge bases. Linking is important for any task where external world knowledge is used and resolving ambiguity is fundamental to advancing research into these problems

    Exploiting Cross-Lingual Representations For Natural Language Processing

    Get PDF
    Traditional approaches to supervised learning require a generous amount of labeled data for good generalization. While such annotation-heavy approaches have proven useful for some Natural Language Processing (NLP) tasks in high-resource languages (like English), they are unlikely to scale to languages where collecting labeled data is di cult and time-consuming. Translating supervision available in English is also not a viable solution, because developing a good machine translation system requires expensive to annotate resources which are not available for most languages. In this thesis, I argue that cross-lingual representations are an effective means of extending NLP tools to languages beyond English without resorting to generous amounts of annotated data or expensive machine translation. These representations can be learned in an inexpensive manner, often from signals completely unrelated to the task of interest. I begin with a review of different ways of inducing such representations using a variety of cross-lingual signals and study algorithmic approaches of using them in a diverse set of downstream tasks. Examples of such tasks covered in this thesis include learning representations to transfer a trained model across languages for document classification, assist in monolingual lexical semantics like word sense induction, identify asymmetric lexical relationships like hypernymy between words in different languages, or combining supervision across languages through a shared feature space for cross-lingual entity linking. In all these applications, the representations make information expressed in other languages available in English, while requiring minimal additional supervision in the language of interest

    Towards Name Disambiguation: Relational, Streaming, and Privacy-Preserving Text Data

    Get PDF
    In the real world, our DNA is unique but many people share names. This phenomenon often causes erroneous aggregation of documents of multiple persons who are namesakes of one another. Such mistakes deteriorate the performance of document retrieval, web search, and more seriously, cause improper attribution of credit or blame in digital forensics. To resolve this issue, the name disambiguation task 1 is designed to partition the documents associated with a name reference such that each partition contains documents pertaining to a unique real-life person. Existing algorithms for this task mainly suffer from the following drawbacks. First, the majority of existing solutions substantially rely on feature engineering, such as biographical feature extraction, or construction of auxiliary features from Wikipedia. However, for many scenarios, such features may be costly to obtain or unavailable in privacy sensitive domains. Instead we solve the name disambiguation task in restricted setting by leveraging only the relational data in the form of anonymized graphs. Second, most of the existing works for this task operate in a batch mode, where all records to be disambiguated are initially available to the algorithm. However, more realistic settings require that the name disambiguation task should be performed in an online streaming fashion in order to identify records of new ambiguous entities having no preexisting records. Finally, we investigate the potential disclosure risk of textual features used in name disambiguation and propose several algorithms to tackle the task in a privacy-aware scenario. In summary, in this dissertation, we present a number of novel approaches to address name disambiguation tasks from the above three aspects independently, namely relational, streaming, and privacy preserving textual data
    corecore