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ABSTRACT 

Baichuan Zhang Ph.D., Purdue University, December 2017. Towards Name Dis-
ambiguation: Relational, Streaming, and Privacy-Preserving Text Data. Major 
Professor: Mohammad Al Hasan. 

In the real world, our DNA is unique but many people share names. This phe-

nomenon often causes erroneous aggregation of documents of multiple persons who 

are namesakes of one another. Such mistakes deteriorate the performance of docu-

ment retrieval, web search, and more seriously, cause improper attribution of credit 

or blame in digital forensics. To resolve this issue, the name disambiguation task 1 is 

designed to partition the documents associated with a name reference such that each 

partition contains documents pertaining to a unique real-life person. Existing algo-

rithms for this task mainly suffer from the following drawbacks. First, the majority 

of existing solutions substantially rely on feature engineering, such as biographical 

feature extraction, or construction of auxiliary features from Wikipedia. However, 

for many scenarios, such features may be costly to obtain or unavailable in privacy 

sensitive domains. Instead we solve the name disambiguation task in restricted set-

ting by leveraging only the relational data in the form of anonymized graphs. Second, 

most of the existing works for this task operate in a batch mode, where all records 

to be disambiguated are initially available to the algorithm. However, more realistic 

settings require that the name disambiguation task should be performed in an online 

streaming fashion in order to identify records of new ambiguous entities having no 

preexisting records. Finally, we investigate the potential disclosure risk of textual fea-

tures used in name disambiguation and propose several algorithms to tackle the task 

in a privacy-aware scenario. In summary, in this dissertation, we present a number of 

1In this dissertation, we use the terms “name disambiguation”, “entity disambiguation”, “name 
entity disambiguation”, and “author name disambiguation” interchangeably. 
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novel approaches to address name disambiguation tasks from the above three aspects 

independently, namely relational, streaming, and privacy preserving textual data. 
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1. INTRODUCTION 

Popular names are shared by many people around the world. When such names are 

mentioned in various on-line and off-line documents, more often, ambiguity arises; 

i.e., we cannot easily deduce from the document context which real-life person a given 

mention refers to. Being unable to resolve this ambiguity often leads to erroneous ag-

gregation of documents of multiple persons who are namesakes of one another. Such 

mistakes deteriorate the performance of document retrieval, web search, and biblio-

graphic data analysis. In web search, name disambiguation is important for sanitizing 

search results of ambiguous queries. For example, an online search query for “Michael 

Jordan” may retrieve pages of former US basketball player, the pages of UC Berkeley 

machine learning professor, the pages of former CEO of General Electric (GE), and 

the pages of other persons having that name, and name disambiguation is needed to 

organize those pages in homogeneous groups. For bibliometrics and library sciences, 

many distinct authors in the academic world share the same name. As a result, the 

bibliographic servers that maintain publication data may mistakenly aggregate the 

articles from multiple scholars (sharing the same name) into a unique profile in some 

digital repositories. For an example, the Google scholar profile associated with the 

name “Yang Chen” (GS) 1 is verified as the profile page of a Computer Graphics 

PhD candidate at Purdue University, but based on our labeling, more than 20 dis-

tinct persons’ publications are mixed under that profile mistakenly. Such issues in 

library science over- or under-estimate a researcher’s citation related impact metrics. 

Beyond the academic world, the name ambiguity conundrum also causes misidentifi-

cation during counter-terrorism efforts, leading to severe distress to many individuals 

who happen to share names with wanted suspects. 

1https://scholar.google.com/citations?user=gl26ACAAAAAJ&hl=en 
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The name disambiguation task is used to resolve the name ambiguity problem. 

Formally speaking, given a large collection of records pertaining to a single name 

value, the name disambiguation task partitions the records into groups of records, 

such that each group belongs to a unique real-life person. In the above definition the 

term “record” refers to any form of collective information associated with the mention 

of a given name. For instance, in a digital repository of academic publications, a 

record is simply the citation context (title, co-authors, and venue) of a paper. In case 

of a mention of a name in an online news article, a record may include information 

such as article title, sentence context of the mention, and other associated name 

references within the article. For a social network profile, the record may contain 

publicly available friend-list, and text from the posts in that profile. 

Due to its importance, the name disambiguation task has attracted substantial 

attention from information retrieval and data mining communities. However, the ma-

jority of existing solutions [1–5] for this task use biographical features such as name, 

address, institutional affiliation, email address, and homepage. Also, contextual fea-

tures such as collaborator, community affiliation, and external data source such as 

Wikipedia are used in some works [5,6]. Using the biographical features is acceptable 

for disambiguation of authors in bibliometrics domain, but in many scenarios, for 

example in the national security related applications, biographical features are hard 

to obtain, or they may even be illegal to obtain unless a security analyst has the 

appropriate level of security clearance. Besides, in real-world social networks (e.g., 

Twitter, Facebook, and LinkedIn), some users may choose a strict privacy setting 

that restricts the visibility of their profile information and posts. For such resource 

bounded scenarios, many existing name disambiguation techniques [4, 5, 7–9], which 

compute document similarity using biographical attributes are not applicable. In-

stead, we solve the name disambiguation task by only leveraging the relational data 

in the form of anonymized graphs. Specifically, relational data under our context 

refers to the co-occurrence of two entities in the graphs, and biographical attributes 

of each node in the graph are unavailable in such settings. In this dissertation, de-
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signing an effective name disambiguation solution only utilizing relational data is one 

of our major focuses. 

The majority of the existing approaches to name disambiguation in literature op-

erate in a batch mode, where all the records to be disambiguated are assumed to 

be accessible to the algorithm initially. This assumption requires running a new dis-

ambiguation task every time a record is added to the collection. However, due to 

the fast growth of digital libraries, or streaming data sources (Twitter, Facebook), 

rerunning disambiguation process on the whole data every time a new record is added 

would not be very economical. Instead, it is more practical to perform this task in 

an incremental fashion by considering the streaming nature of records. Designing an 

incremental, i.e., online, name disambiguation is challenging as the method must be 

able to adapt to a non-exhaustive training dataset 2 . In other words, it should be 

able to identify records belonging to new ambiguous persons who do not have any 

historical records in the system. After identification, the learning algorithm must 

re-configure the model (for instance, update the number of classes, k) so that it can 

correctly recover future records of this newly found ambiguous person. This is an im-

portant requirement because in real-life, for a common name, a significant number of 

streaming records belongs to novel (not yet seen) persons sharing that name. Besides 

non-exhaustiveness, online verification is another desirable property for an incremen-

tal name disambiguation system. Such a system asks users to provide feedback on 

the correctness of its prediction. Feedback collection can be automated by using on-

line social networks or crowdsourcing platforms. As an example, consider the online 

digital library platform ResearchGate 3; it performs author name disambiguation by 

asking a potential researcher whether he is the author of a paper before adding that 

paper to that person’s profile. Human feedback significantly improves the accuracy 

of a name disambiguation task; however, to reduce human effort the system should 

consult the human as infrequently as possible, and the consultation should be made 

2A training dataset is called exhaustive if it contains records for all values (classes) of the target 
variable, otherwise it is called non-exhaustive. 
3https://www.researchgate.net/ 

https://3https://www.researchgate.net
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for documents, for which the human feedback would yield the maximum utility for 

reconfiguring the model. Thus, designing an active online name disambiguation sys-

tem that can accommodate streaming non-exhaustive data is another focus of this 

dissertation. 

The majority of works have demonstrated that textual features are one of most 

powerful signals to solve name disambiguation. Such an exercise is quite common in 

homeland security for disambiguating multiple suspects from their digital footprints. 

However, privacy is important in such applications, as a list of key-phrase based 

features can potentially reveal personal identity. The objective of this work is to 

solve the feature selection problem such that the selected textual attributes satisfy 

non-disclosure requirements, at the same time they achieve high name disambiguation 

performance as well. In addition, we present a privacy metric to assess how much 

privacy is preserved for each individual. Therefore, solving name disambiguation in 

a privacy-preserving manner is another focus of this dissertation. 

This dissertation mainly focuses on three aspects of name disambiguation task, 

which is relational, streaming, and privacy-preserving textual data. Note that we do 

not build a single system for performing all these three aspects in a unified manner, 

instead we address each of them independently. We summarize our contribution of 

this dissertation in the following subsection. 

1.1 Contribution of This Dissertation 

We summarize the major contributions of this dissertation as below: 

1. We propose a novel name disambiguation method. Instead of using attributes 

pertaining to a real-life person, our method leverages only relational data in 

the form of anonymized graphs. The proposed approach of using anonymous 

graphs works in the scenario where node attributes are not accessible. Such 

a method is very useful in sensitive data analysis, such as surveillance over 

social network data for anomaly detection. Specifically, the proposed name 
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disambiguation solution consists of two phases: ambiguity identification and 

actual disambiguation. In the ambiguity identification step, we consider an 

anonymized social network. Each node in this network corresponds to a ref-

erence to a named entity, and each edge corresponds to collaboration among 

different named entities. The edges are labeled with time-stamps representing 

the time when a collaboration took place. Our solution uses the timestamped 

network topology around a vertex of the network and by using an unsupervised 

method it produces a real-valued score for that vertex. This score represents the 

degree to which a given anonymized reference (a vertex) is pure. The smaller 

the score, the more likely that the reference may comprise of records of multiple 

real-life entities. For a given vertex, the method provides the desired score in 

a few seconds, so one can always use it as a pre-filter to identify a small set of 

target nodes for which more thorough analysis can be made subsequently. The 

work of name ambiguity identification in anonymized graphs is published in the 

proceedings of Advances in Social Network Analysis and Mining (ASONAM) 

2014 as a research track short paper [10], and the extended version is published 

in Social Network Analysis and Mining (SNAM) [11]. Furthermore, if ambi-

guity of the given name entity is detected, in actual disambiguation stage, we 

utilize a novel representation learning model to embed each of its correspond-

ing document in a low dimensional vector space where actual disambiguation 

can be solved by a hierarchical agglomerative clustering algorithm. The work 

of actual disambiguation using network representation learning is published in 

the proceedings of the Conference of Information and Knowledge Management 

(CIKM) 2017 as a research track full paper [12]. 

2. We propose a Bayesian non-exhaustive classification framework for solving on-

line name disambiguation. The proposed algorithm can not only classify records 

of known persons represented in the training data by their existing records, but 

can also identify records of new ambiguous persons with no existing records in-

cluded in the initial training dataset. In particular, we present a Dirichlet Pro-
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cess Gaussian Mixture Model (DPGMM) as a core engine for the online name 

disambiguation task. Meanwhile, two online inference algorithms, namely one-

pass Gibbs sampler and Sequential Importance Sampling with Resampling (also 

known as particle filtering), are proposed to simultaneously perform online clas-

sification and new class discovery. As a case study we consider bibliographic 

data in a temporal stream format and disambiguate authors by partitioning 

their papers into homogeneous groups. Our experimental results demonstrate 

that the proposed method is significantly better than existing methods for per-

forming online name disambiguation task. We also propose an interactive ver-

sion of our online name disambiguation method designed to leverage user feed-

back to improve prediction accuracy. The work is published in the proceedings 

of CIKM 2016 as a research track full paper [13]. The extended version is 

publicly available in arXiv [14]. 

3. Finally, this dissertation also investigates the potential disclosure risk of textual 

features for the task of name disambiguation. The objective of this work is to 

solve the feature selection problem such that the selected textual attributes sat-

isfy non-disclosure requirements, at the same time they also achieve high name 

disambiguation performance. In particular, inspired by the privacy-preserving 

data publishing (PPDP) research [15–19], we design an anonymization metric, 

named k-anonymity by containment, to quantify the privacy protection of se-

lected textual features. The experimental results demonstrate that our proposed 

anonymization protocol performs better to maintain the data utility in terms of 

name disambiguation task compared to several the-state-of-art privacy metrics, 

such as k-anonymity and differential privacy. For this work, it is published in 

the Transactions on Data Privacy (TDP) [20]. 



7 

Table 1.1.: Various aspects of name disambiguation algorithms presented in this 
dissertation 

Privacy Relational Textual Streaming Anonymous Disambiguate Disambiguate User 
Preserving Data Data Data Graph Author Document Feedback 

Chapter 3 
Chapter 4 
Chapter 5 
Chapter 6 

1.2 Organization of This Dissertation 

The organization of this dissertation is illustrated as follows. In Chapter 2, we 

discuss related works in the topics of name disambiguation and network embedding. 

We also discuss privacy-preserving data publishing, privacy-aware feature selection 

and non-exhaustive classification. In both Chapter 3 and Chapter 4, we discuss name 

disambiguation using relational data. Specifically, name ambiguity identification in 

anonymized graphs is presented in Chapter 3. The discussion is continued in Chapter 

4 for actual disambiguation using network representation learning technique. The 

Bayesian non-exhaustive classification for active online name disambiguation is pre-

sented in Chapter 5, which is relevant to name disambiguation using streaming data. 

The investigation of feature selection for name disambiguation under anonymity pro-

tection is described in Chapter 6, which is linked to the name disambiguation leverag-

ing privacy-preserving textual data. Finally future works and conclusion are discussed 

in Chapter 7. In order to better understand the topics presented in different chap-

ters, we summarize different aspects of name disambiguation algorithms shown in 

Table 1.1. 
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2. RELATED WORK 

In this chapter, we discuss the related work into the following four categories, namely 

name entity disambiguation, neural network embedding, non-exhaustive learning for 

the application of novel class discovery, and privacy-preserving data publishing. 

2.1 Name Disambiguation 

In existing works, name disambiguation task is studied for various entities; exam-

ples include disambiguation on Encyclopedic knowledge or Wikipedia Data [1,3,4,6, 

21,22], citation data [9, 23–28], email data [29], and text documents [5, 30–32]. 

In terms of methodologies, both supervised [1,9] and unsupervised [23] approaches 

are considered. For supervised method, a distinct entity can be considered as a 

class, and the objective is to classify each document to one of the classes. Han 

et al. [23] use such a framework, and propose two supervised methods, one using a 

generative model, and the other using SVM. In another supervised approach, Bunescu 

et al. [1] solve name disambiguation by designing and training a disambiguation SVM 

kernel that exploits the high coverage and rich structure of the knowledge encoded 

in an online encyclopedia. However, the main drawback of supervised methods is the 

unavailability of labeled data for training. 

For unsupervised name disambiguation, the collaboration events are partitioned 

into several clusters with a goal that each cluster contains the events corresponding 

to a unique entity. Han et al. [23] propose one of the earliest unsupervised name 

disambiguation methods, which is based on K-way spectral clustering. They apply 

their method for name disambiguation in an academic citation network. For each 

name dataset, they calculate a Gram matrix representing similarities between different 

citations and apply K-way spectral clustering algorithm on the Gram matrix to obtain 
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the desired clusters of the citations. In another unsupervised approach, Cen et al. 

[2] compute pairwise similarity for publication events that share the same author 

name string (ANS) and then use a novel hierarchical agglomerative clustering with 

adaptive stopping criterion (HACASC) to partition the publications into different 

author clusters. Malin [33] proposes another cluster-based method that uses social 

network structure. 

Probabilistic relational models, specifically graphical models have also been used 

for solving the name disambiguation task. For example, the authors in [28] propose a 

constraint-based probabilistic model for semi-supervised name disambiguation using 

hidden Markov random fields (HMRF). They define six types of constraints and em-

ploy the EM algorithm to learn the HRMF model parameters. In another work, Tang 

et al. [7, 8] present two name disambiguation methods that are based on a pairwise 

factor graph model. They target name disambiguation in academic datasets. In their 

work, the authorship of a paper is modeled as edges between observation variables 

(papers) and hidden variables (author labels). Features of each paper and relation-

ships, such as co-publication-venue and co-author, have impact on the probability of 

each assignment of labels. The similarity between two clusters is encoded in different 

factors (edge potentials) on different features. The clustering process iterates over dif-

ferent author label assignments and selects the one with maximal probability. LDA 

based context-aware topic models has also been used for name disambiguation [30]. 

To build the features for classification, clustering, or probabilistic models, most 

of the existing works use biographical and contextual attributes of the entities or 

external sources such as Wikipedia, web search results and online encyclopedia. In 

almost every work on name disambiguation, person’s name, email address, and in-

stitutional affiliation are used. It is not surprising, because biographical features are 

highly effective for name disambiguation. For instance, a set of recent works [34, 35] 

report around 99% accuracy on a data mining challenge dataset prepared by Mi-

crosoft research. However, the attempt of extracting biographical or external data 

sustains the risk of privacy violation. To address this issue, a few works [33, 36, 37] 
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have considered name disambiguation using anonymized graphs without leveraging 

the node attributes. The central idea of this type of works is to exploit graph topo-

logical features to solve the name disambiguation problem without intruding user 

privacy through the collection of bibliographical attributes. For example, authors 

in [37] characterized the similarity between two nodes based on their local neighbor-

hood structures using graph kernels and solved the name disambiguation problem 

using SVM. However, the major drawback of the proposed method in [37] is that it 

can only detect entities that should be disambiguated, but fails to further partition 

the documents into their corresponding homogeneous groups. In addition to that, 

the authors in [33, 36] formulate the name disambiguation as a graph problem and 

utilize a random walk based approach to tackle the disambiguation task. However, 

both works suffer from a similar issue to that described above. 

Most existing methods tackle disambiguation task in a batch setting, where all 

records to be resolved are initially available to the algorithm, which makes these 

techniques unsuitable for disambiguating a future record. In recent years, online name 

disambiguation was considered in a few works [38–41]. These techniques perform 

name disambiguation incrementally without the need to retrain the system every 

time a new record is received. Specifically, Khabsa et al. [39] use an online variant 

of DBSCAN, a well-known density-based clustering technique, to cluster new records 

incrementally as they become available. Since DBSCAN does not use a fixed number 

of clusters it can adapt to the non-exhaustive scenario by simply assigning a new 

record to a new cluster, as needed. However, DBSCAN is quite susceptible to the 

choice of parameter values, and depending on the specific values chosen, a record 

of an emerging class can be simply labeled as an outlier instance. [38] proposes a 

two stage framework for online name disambiguation. The first stage performs batch 

name disambiguation to disambiguate all the records that appeared no later than a 

given time threshold using hierarchical agglomerative clustering. The second stage 

performs incremental name disambiguation to determine the class membership of a 

newly added record. However, the method uses a heuristic threshold to decide on the 
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cluster assignments of new records which makes the performance of this approach very 

sensitive to the choice of threshold parameter. [40] introduces an association rule 

based approach for detecting unseen authors in test set. The major drawback of their 

proposed solution is that it can only identify records of emerging authors in a binary 

setting but fails to further distinguish among them. Besides, the approach is not very 

robust with respect to the threshold parameter used in the association rule discovery. 

In addition to that, the authors in [42] present the Expectation Maximization based 

approach for the name disambiguation in Twitter streaming data. The authors in [43] 

propose a threshold based method to discover emerging entities with ambiguous names 

in the domain of knowledge base. 

Another line of work approaches name disambiguation from an active learning 

perspective [8,44–46]. For example, the authors in [44] propose a method that queries 

the label information for the most ambiguous records. The authors in [8] present 

a pairwise factor graph model for active name disambiguation, which maximizes the 

utility of user’s corrections for improving the disambiguation performance. Another 

recent work uses crowdsourcing for active name disambiguation [45]. However, all of 

these active name disambiguation techniques are proposed to tackle the offline setting. 

Finally, a survey article is also available, which presents a taxonomy of various name 

disambiguation methods in the existing literature [47]. 

2.2 Neural Network Embedding 

For solving name disambiguation in an anonymized graph (details in chapter 4), 

our proposed solution utilizes a neural network embedding based approach [48–62]— 

a rather recent development in machine learning. Many of these methods are inspired 

by the word2vec based language model [63,64]. Different from traditional graph em-

bedding methods, such as Structure Preserving Embedding (SPE) [65], Local Linear 

Embedding (LLE) [66], and Laplacian Eigenmaps [67], the recently proposed network 

embedding methods, such as DeepWalk [49], LINE [51], PTE [50], and Node2Vec [52], 
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are more scalable and have shown better performance in node classification and link 

prediction tasks. Among these works, LINE [51] finds embedding of documents by 

using document-document similarity matrix, whereas in our work shown in chapter 

4, we use multiple networks and perform a joint learning. PTE [50] performs a joint 

learning of multiple input graphs, but PTE needs labeled data. Finally, the embed-

ding formulation and optimization of our proposed method are different than LINE 

or PTE. Specifically, we use a ranking based loss function as our objective function 

whereas mostly all the existing methods use K-L divergence based objective function. 

2.3 Non-Exhaustive Classification and Novel Class Discovery 

For solving the active online name disambiguation (details in chapter 5), our 

proposed solution utilizes Bayesian non-exhaustive classification technique. [68–72] 

are some of the existing works related to non-exhaustive learning and novel class 

discovery. Specifically, Akova et al. [68] propose a Bayesian approach for detecting 

emerging classes based on posterior probabilities. However, the decision function 

for identifying emerging classes uses a heuristic threshold and does not consider a 

prior model over class parameters; hence the emerging class detection procedure of 

this model is purely data-driven. Miller et al. [70] present a mixture model using 

expectation maximization (EM) for online class discovery. [69] proposes a sampling 

based online inference approach for emerging class discovery and the work is motivated 

by a bio-detection application. Additionally, the authors in [71,72] present ensemble 

based classification methods for novel class detection in concept-drift data streams. 

2.4 Privacy-preserving Data Publishing 

In terms of privacy model [73–80], several privacy metrics have been widely 

used in order to quantify the privacy risk of published data instances, such as k-

anonymity [81], t-closeness [82], `-diversity [83], and differential privacy [84]. Existing 

works on privacy preserving data mining solve a specific data mining problem given a 
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privacy constraint over the data instances, such as classification [17], regression [85], 

clustering [16] and frequent pattern mining [86]. However, the solutions proposed in 

these works are strongly influenced by the specific data mining task and also by the 

specific privacy model. In fact, the majority of the above works consider distributed 

privacy where the dataset is partitioned among multiple participants owning differ-

ent portions of the data, and the goal is to mine shared insights over the global data 

without compromising the privacy of the local portions. A few other works [87, 88] 

consider output privacy by ensuring that the output of a data mining task does not 

reveal sensitive information. 

The k-anonymity privacy metric, due to its simplicity and flexibility, has been 

studied extensively over the years. The authors in [89] present the k-anonymity 

patterns for the application of association rule mining. Samarati [90] proposes formal 

methods of k-anonymity using suppression and generalization techniques. She also 

introduced the concept of minimal generalization. Meyerson et al. [91] prove that 

two definitions of k-optimality are NP-hard: first, to find the minimum number 

of cell values that need to be suppressed; second, to find the minimum number of 

attributes that need to be suppressed. Henceforth, a large number of works have 

explored the approximation of anonymization [91, 92]. However, none of these works 

consider the utility of the dataset along with the privacy requirements. Kifer et al. [93] 

propose methods that inject utility in the form of data distribution information into 

k-anonymous and `-diverse tables. However, the above work does not consider a 

classification dataset. Iyengar [94] proposes a utility metric called CM which is 

explicitly designed for a classification dataset. However, It assigns a generalization 

penalty over the rows of the dataset, and its performance is poor as we have shown 

in this work. 

In recent years differential privacy [95–97] has attracted much attention in pri-

vacy research literatures. The authors in [98] propose a sampling based method for 

releasing high dimensional data with differential privacy guarantees. [99] proposes 

a method of publishing differential private low order marginals for high dimensional 
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data. Even though the authors in [98,99] claim that they deal with high dimensional 

data, the dimensionality of data is at most 60 from the experiments in their works. 

[100] makes use of k-anonymity to enhance data utility in differential privacy. An 

interesting observation of this work is that differential privacy based method, by it-

self, is not a good privacy mechanism, in regards to maintaining data utility. [101] 

proposes a probabilistic top-down partitioning algorithm to publish set-valued data 

via differential privacy. The authors of [102] propose to utilize the exponential mech-

anism to release a decision tree based classifier that satisfies �-differential privacy. 

However, in their work, privacy is embedded in the data mining process, hence they 

are not suitable as a data release mechanism, and more importantly they can only be 

used along with the specific classification model within which the privacy mechanism 

is built-in. 

Our proposed solution for privacy-aware name disambiguation (details in chapter 

6) is also relevant to the topic of privacy-aware feature selection. Empirical study for 

the use of feature selection in Privacy Preserving Data Publishing has been proposed 

in [103] [18]. However, in their work, they use feature selection as an add-on tool 

prior to data anonymization and do not consider privacy during the feature selection 

process. For our work, we consider privacy-aware feature selection with a twin objec-

tive of privacy preservation and utility maintenance. To the best of our knowledge, 

the most similar works to ours for the use of feature selection in privacy preserving 

data publishing are presented in [19, 104] recently. [19] considers privacy as a cost 

metric in a dynamic feature selection process and proposes a greedy based iterative 

approach for solving the task, where the data releaser requests information about one 

feature at a time until a predefined privacy budget is exhausted. However the entropy 

based privacy metric presented in this work is strongly influenced by the specific clas-

sifier. [104] presents a genetic approach for achieving k-anonymity by partitioning 

the original dataset into several projections such that each one of them adheres to k-

anonymity. But the proposed method does not provide optimality guaranty. Finally, 
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a survey paper [105] presents various privacy preserving data publishing algorithms 

in the existing literature. 
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3. NAME DISAMBIGUATION FROM LINK DATA IN A 

ANONYMIZED COLLABORATION GRAPH 

3.1 Introduction 

On January 17, 2014, in his speech regarding the usage of phone surveillance data 

by NSA (National Security Agency), the USA President Barack Obama said, “This 

program does not involve the content of phone calls, or the names of people making 

calls. Instead, it provides a record of phone numbers and the times and lengths 

of calls—metadata that can be queried if and when we have a reasonable suspicion 

that a particular number is linked to a terrorist organization.” In this talk he also 

mentioned the importance of balancing security and privacy in all surveillance works 

of government agencies. However, making this balance is not an easy task; respecting 

privacy does not allow tapping into someone’s non-public biographical records; on the 

other hand, constrained analysis without detailed biographical data leads to numerous 

false identification and entity mixup. In this work, we are concerned with solving the 

task of name disambiguation without using biographical information—the input to 

our solution is link data collected from anonymized collaboration networks, similar 

to the one that Mr. Obama has explained. 

Many research works [106–113] are proposed for solving named entity disambigua-

tion [1, 9, 21, 23, 29, 114–122]. Existing works mostly use biographical features, such 

as name, address, institutional affiliation, email address, and Internet homepage; 

contextual features, such as coauthors/collaborators, and research keywords; and ex-

ternal data such as Wikipedia [21]. From methodological point of view, some of the 

works follow a supervised learning approach [9, 37], while others use unsupervised 

clustering [2, 23, 33, 123]. There exist quite a few solutions that use graphical mod-

els [7, 8, 28, 124]. What is common among all these works is that they use many 
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biographical features including name, and affiliation, so they cannot protect the pri-

vacy of the actors in the dataset. Using biographical features is acceptable for entity 

disambiguation of authors in the field of bibliometrics, but in many scenarios, for 

example in the national security related applications, biographical features are hard 

to obtain, or they may even be illegal to obtain unless a security analyst has the 

appropriate level of security clearance. Besides, in real-world social networks (e.g., 

Twitter, Facebook, and LinkedIn), some users may choose a strict privacy setting 

that restricts the visibility of their profile information and posts. For such privacy-

preserving applications, it is more desirable to use a fast indicator that identifies a 

small list of suspicious data references for which biographical data can be queried 

after the approval of a privacy management officer. 

In this work, we consider an anonymized social network. Each node in this net-

work corresponds to a reference to a named entity, and each edge corresponds to a 

collaboration event among different named entities. The edges are labeled with time-

stamps representing the time when a collaboration took place. As we have discussed 

earlier, we can think of such a network as the anonymized email/communication net-

work that the NSA uses to identify suspects. Our solution to entity disambiguation 

in an anonymized network uses the timestamped network topology around a vertex of 

the network and by using an unsupervised method it produces a real-valued score for 

that vertex. This score represents the degree to which a given anonymized reference 

(a vertex) is pure. The smaller the score, the more likely that the reference may com-

prise of records of multiple real-life entities. For a given vertex, the method provides 

the desired score in a few seconds, so one can always use it as a pre-filter to identify a 

small set of target nodes for which more thorough analysis can be made subsequently. 

Alternative to an unsupervised approach, our method can also be adapted to a super-

vised classification system for predicting the purity status of a node, when a labeled 

dataset is available. 
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We claim the following contributions in this work: 

• We design the task of solving name entity disambiguation using only graph 

topological information. This work is motivated by the growing need of data 

analysis without violating the privacy of the actors in a social network. 

• We propose a simple solution that is robust and it takes only a few seconds to 

disambiguate a given node in real-life academic collaboration networks. The 

proposed method returns a real-valued score to rank the vertices of a network 

based on their likelihood for being an ambiguous node. So the score can be used 

as a pre-filter for identifying a small set of ambiguous references for subsequent 

analysis with a full set of features. Besides, the score can also be used indepen-

dently as a feature for classification based solutions for name disambiguation. 

• We use two real-life datasets for evaluating the performance of our solution. 

The results show that the method performs satisfactorily, considering the fact 

that it uses only the topology of a node in its analysis. 

3.2 Solution Overview 

We assume that a collaboration network G(V, E) is given, where each node u ∈ V 

represents an entity reference which in real-life may be linked to multiple persons. For 

every edge e ∈ E we are also provided with a list T (e) which represents the discrete 

time-point at which the collaboration events between the corresponding nodes have 

taken place. Our objective is to predict how likely it is that the node u is a multi-

node, i.e., it comprises of collaboration records of multiple persons. We use a linear 

model to produce a numeric score s(u), which represents the likelihood that u is a 

pure node. 

To solve the problem in the setup discussed in the last paragraph, we first construct 

the ego network of u, Gu ⊆ G, which is an induced subgraph of G consisting of ego 

node u and all of its direct neighbors (these nodes are called “alters”). Since Gu is 
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an induced subgraph, it preserves the ties between u and the alters and also the ties 

between a pair of alters. We hypothesize that if u is a multi-node, the graph Gu will 

form many disjoint clusters, once the node u and all of its incident edges from Gu are 

removed; each of these clusters corresponds to one of the many real-life entities that 

have been merged together under the reference u. This hypothesis is built from the 

transitivity property of a social network, which states that the friends of your friend 

have high likelihood to be friends themselves [125]. Thus, if v and w are friends of 

u, with high likelihood, there are edges between v and w. However, when u is a 

multi-node corresponding to k different people, the friends of u are partitioned into 

at least k disjoint clusters. 

In Figure 3.1, we illustrate our hypothesis. Assume that the triangle shaped node 

is u, and the graph in this figure corresponds to the ego network of u, Gu. We also 

assume that u is a multi-node consisting of two named entities. So the removal of 

the node u (along with all of its incident edges) from Gu makes two disjoint clusters; 

this phenomenon is illustrated in the lower part of figure 3.1. The vertices of these 

clusters are shown using circles and squares respectively. 

Fig. 3.1.: A toy example of clustering based name entity disambiguation 

However, there are several caveats in the above simplified formulation. Particu-

larly, the above formulation may yield numerous false alarms for various reasons even 

if a node u is not a multi-node. First, if the name entity u participates in multiple 

communities, her neighbors may form disjoint clusters. Second, the neighborhood of 
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the entity u may have several distinct clusters considering the temporal axis, which 

happens if u changes job, institution or affiliation. False negatives also occur, though 

with a lesser likelihood. For a multi-node u, if the significant parts of the collabora-

tion activities of u comprise of only one name entity, the remaining weaker entities 

under u contribute poorly in the score s(u), which may prevent from categorizing u 

as a multi-node. Another challenge is that due to the power-law behavior of a typi-

cal collaboration graph G, the neighborhood graph Gu has varying size and density, 

which affects the comparison of the score value s(·) of various nodes in G. We take 

into consideration each of these problems in our proposed solution, as explained in 

the following sections. 

3.3 Methods 

We assume that a collaboration network G = (V, E) and a ego node u is given, 

where u ∈ V represents an entity reference, which in a real-life scenario may be 

linked to multiple persons. From G and u, we construct the ego network of u, Gu = 

(Vu, Eu) ⊆ G. For each edge in Gu, say eu = (v, w) ∈ Eu, T (eu) represents the set 

of collaboration events between v and w that are captured by Gu; i. e. T (eu) = 

{hni, tii}1≤i≤|T |, here, ni is the number of collaboration events at time ti. From T (eu), 

we compute a similarity value between v and w under Gu using an exponential decay 

function as shown below: 

|T |X −(tmax − ti)
WGu (v, w) = ni × exp 

τ 
i=1 

In the above equation, tmax denotes the most recent time when a collaboration 

event happened between any two vertices in Gu. τ is a tuning parameter that one can 

use to control the rate of the decay. On academic collaboration networks, for which 

the time unit is year, we use τ ranging between 5 to 10. Empirical results on such 

networks also show that the performance of the system is not sensitive to the choice 

of τ . 
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Example: Given Gu = (Vu, Eu); v, w ∈ Vu. Let us assume tmax = 2014, v and w 

have 2 collaboration events in 2014, 3 collaboration events in 2013 and 4 collaboration 

events in 2010; thus, T ((v, w)) = {h2, 2014i, h3, 2013i, h4, 2010i}. By setting τ = 5, we 
−(2014−2014) −(2014−2013) −(2014−2010)get, WGu (v, w) = 2×exp +3×exp +4×exp ≈ 6.25.

5 5 5 

3.3.1 Obtaining Cluster Quality Score 

Given the collaboration network, G and a specific vertex u, the next step of our 

method is to construct Gu—the ego network of u. Then, we cluster the graph Gu \{u} 

using a graph clustering algorithm. The objective of this clustering is to group u’s 

neighbors in different clusters such that the cross-edges between different clusters 

are minimized. The reason of removing u is to find whether the neighbors of u are 

strongly connected by themselves without using u as an intermediate vertex. 

We utilize Markov Clustering (MCL) for the clustering task. MCL uses the graph’s 

natural transition probability matrix to cluster a graph by combining random walks 

with two alternating operations (expansion and inflation) [125]. There are several 

reasons for the choice of MCL. First, MCL is one of the fastest graph clustering 

methods; other competing methods, such as, spectral clustering and its variants [126– 

134] compute eigenvectors of the graph Laplacian, which could be costly for large 

graphs. For our work, we found that for a graph with several thousands vertices, 

MCL finishes with good clustering results within a few seconds. Second, MCL does 

not require the number of clusters as one of the input parameters, which works well for 

our setting as we have no information regarding the number of communities in which 

the node u participates. Finally, MCL is robust against the choice of parameters. It 

has only one parameter, called inflation, which we set to the default value in all of 

our experiments. 
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3.3.1.1 Normalized Cut based Score 

For our task, we are mainly interested in obtaining a score reflecting the quality 

of clustering. There are various evaluation criteria for clustering, including ratio cut, 

normalized cut [125] and modularity [135]. Among these, we choose the normalized 

cut based clustering score as it reflects the ratio of the similarity weight-sum of the 

inter-cluster edges and the same for all the edges in the graph. The equation of 

normalized cut score for a node u is shown below: 

k 
W (Ci, Ci)X 

NC = (3.1) 
i=1 

W (Ci, Ci) + W (Ci, Ci) 

where W (Ci, Ci) denotes the sum of weights of all internal edges, W (Ci, Ci) is the 

sum of weights for all the external edges and k is the number of clusters in the graph. 

We compute NC by independent calculation after we obtain the clusters of Gu using 

the MCL algorithm. 

For a node u, the normalized cut (NC) score denotes the clustering tendency of 

the neighbors of u. If this value is high, then the clustering tendency of u's neighbors 

is poor, so u is less likely to be a multi-node. On the other hand, if this value is small, 

then u's neighbors are well clustered and u has a high probability to be a multi-node. 

For example, in the bibliographic domain, if a multi-node u in a co-authorship network 

represents two researchers who share the same name, with a high likelihood, they will 

have a distinct set of co-authors. After clustering the graph Gu \ {u} using MCL, 

we expect to obtain two dominant clusters that are disconnected (or very sparsely 

connected), each representing the set of co-authors of each of the two researchers. 

One problem with the NC-score is that it is not size invariant, i. e., if a node u has 

many clusters, its NC-score is large, so this score is not that useful when we compare 

the NC-scores of many nodes to find the one which is likely to be a multi-node. In 

order to address this issue, we normalize the score by the number of clusters as shown 

below: 
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NC 
NC-score = (3.2)

k 

where k is the total number of clusters that we obtain using MCL, given the ego 

network of u, Gu. 

3.3.2 Obtaining Temporal Mobility Score 

NC-score is a good metric to represent the degree at which a given anonymized 

entity is pure. However, for many real-life datasets, this score yields many false 

positives. Assume, a vertex in a social network represents one real-life entity, but its 

collaboration network evolves over time because of entity mobility. For such a vertex, 

the NC-score is small due to disjoint clusters of neighbors that are formed as the 

entity moves along with the time; this leads to a false positive prediction that the 

entity is likely to be a multi-node. Since the anonymized collaboration data has the 

time stamp of the collaboration events, we use this information to obtain a second 

score that we call Temporal Mobility (TM) score. This score indicates how likely is 

that the specific entity has moved along with the time. Note that, temporal mobility 

is not a new concept, it has been studied by social scientists earlier; for instance, 

there are works to understand the temporal mobility of academic scientists as they 

change their jobs [136]. 

To compute the likelihood that a given vertex, u, has experienced temporal mo-

bility, we obtain the TM -score (temporal mobility score) of u. This score reflects the 

extent by which the node u collaborates with different neighbor clusters (obtained 

using MCL) at a distinct time range. Below we discuss the process that computes 

the TM -score of a node u. 

Let’s assume that Ci:1≤i≤k are k different clusters that we obtain from MCL during 

the cluster quality computation stage. To model u's collaboration with a cluster Ci, 

we first obtain a vector, Zi of size |T | (the number of distinct time intervals in u's 

collaboration history), in which each entry denotes the total number of collaboration 
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events between u and the members of Ci at that specific time interval. If a collabo-

ration event with u consists of l(≥ 2) actors (besides u), each of the actors in cluster 

Ci contributes 1/l to the appropriate entry in Zi. Say, u publishes a paper with l 

co-authors at year t. After clustering, m of the co-authors out of the l co-authors of 

that paper belong to the cluster Ci, this event additively contributes to Zi vector’s 

t’th position by m/l. Thus for a multi-party events, a collaboration event with u can 

be distributed among different clusters, in case u's accomplices for this event are dis-

tributed among different clusters. Thus, by iterating over all the collaboration events 

of u, we compute k different vectors, Zi : 1 ≤ i ≤ k, each such vector corresponds to 

u's collaboration with the entities in one of the clusters, Ci. Finally, we use centered 

moving average to smooth the Zi vectors. 
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Fig. 3.2.: Temporal mobility example 

For the purpose of illustration, we present an example of temporal mobility of 

an entity in Figure 3.2. In this Figure we can observe 3 histograms; each histogram 

shows the yearly count of collaboration events that this entity has with other entities 

in one of his neighbor-clusters. We also present the same information after smoothing 

with the centered moving average. We draw the histograms in this figure using real-
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life data of a researcher in the DBLP academic collaboration network. In the DBLP 

data, all the authorship records of this researcher point to a single name reference. 

However, when we use MCL clustering, we obtain 3 dominant clusters for this person, 

with almost no inter-cluster edges leading to a small NC-score. This suggests that 

this entity has a high chance to be a multi-node. But, as shown in Figure 3.2, the 

association pattern of this entity with the three different clusters suggests temporal 

mobility. During 2005-2010 time period, the entity has almost dedicated association 

with the entities in Cluster 1; which is followed by a divided association among the 

entities in Cluster 2 and Cluster 3 for the time period 2011-2013. 

The name of the entity that we discuss here is Dr. Honglak Lee. The first cluster 

corresponds to his collaboration with his co-authors when he was a PhD student in 

the Stanford University. The second cluster denotes his collaboration with his PhD 

students at the University of Michigan. The third cluster represents his collaboration 

with his colleagues in the same university. This example illustrates how temporal 

mobility of an entity can lead to a false positive multi-node when only NC-score is 

used for this qualification. 

3.3.2.1 Temporal Mobility Score using KL Divergence 

Our main objective in this step is to obtain the Temporal Mobility (TM) score of 

a node u after we obtain u's cluster-wise collaboration vectors, Zi. For this we convert 

each of the smoothed Zi vectors to a discrete probability distribution by normalizing 

these vectors appropriately. Thus, each of u's neighbor-clusters are represented by 

a discrete probability vector. To compute the temporal divergence of these clusters 

we use Kullback-Leiber (KL) divergence which is a measure of divergence between 

two probability distributions. D(P k Q) denotes the KL divergence between two 

probability distributions P , Q, and it is defined on a finite set χ as below: 

X P (x)
D(P k Q) = P (x) log 

Q(x)
x∈χ 
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This value is large, if the two distributions are different, and vice-versa. Note that, 

D(P k Q) is an asymmetric metric. For our task we use symmetric KL divergence 

which for the distributions P and Q are D(P k Q) + D(Q k P ). Also, to avoid the 

scenario when the discrete distributions of P and Q contain a zero element, we adopt 

Laplace correction that assigns a small probability (0.01) to those entries. 

Now, TM -score of u is simply the weighted average value of the symmetric KL 

divergence of all pairs of Zi (normalized to 1) vectors. For each pair, Zi, and Zj , 

we first compute D(Zi k Zj ) and D(Zj k Zi). The weight of the divergence between 

Zi and Zj , is denoted as w(Zi, Zj ); we use the sum of the number of events in the 

cluster Ci and Cj as this weight. Using such weighting, the KL-divergence between 

dominant clusters contribute more in the TM -score. Similar to the case of NC-score, 

we also normalize TM -score by the number of clusters, so that different nodes with 

diverse number of clusters can be compared. The overall computation can be shown 

using the following equation: 

� �Xk−1 kX 
w(Zi, Zj ) · D(Zi k Zj ) + D(Zj k Zi) 

i=1 j=i+1 
TM -score = (3.3)Pk−1 Pkk × j=i+1 w(Zi, Zj )i=1 

The higher the value of TM -score of an entity, the higher the likelihood that 

the node is not a multi-node. Rather it has experienced the temporal mobility phe-

nomenon along its overall time intervals. 

3.3.3 Linear Model using NC-score and TM-Score 

We can use NC-score and TM -score for unsupervised learning. For an unsuper-

vised case, we simply predict a score s(u) for a node u. The higher the score, the 

more likely that the node is a pure node. For this we use a linear model with only one 

model parameter α, which is positive, because both NC-score and TM -score have 
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larger values for a pure node and smaller value for a multi-node. Thus, the score s(u) 

of a node u is simply: 

s(u) = NC-score(u) + α · TM -score(u) (3.4) 

The model parameter α should be set manually depending on the nature of the 

dataset. In co-authorship networks, a small α value in the range from 0.1 to 0.2 

works well. The benefit of this unsupervised method is that we can simply work on 

a small collection of nodes independently. By sorting the s-score of those nodes in 

increasing order, we can identify the top-ranked nodes that are suspected of being a 

multi-node. 

Algorithm 1 Unsupervised-Disambiguation(G, u) 

Input: G, u 
Output: s(u) 
1: Construct the ego network Gu of u using the similarity weight between vertices 
2: Remove u from Gu and apply MCL to get k clusters {Ci}1≤i≤k 

3: Using Equation 3.1 and Equation 3.2, compute NC-score 
4: For each cluster Ci, compute normalized Zi vector using timestamp of association 
5: Use Equation 3.3 to compute TM -score 
6: return s(u) = NC-score(u) + α · TM -score(u) 

3.4 Pseudo-code and Complexity Analysis 

The pseudo-code of the entire process for the unsupervised setup is given in Algo-

rithm 1. It takes an input graph G and a specific ego node u as input and generates 

the numeric score of u, s(u) as output. Line 1 computes the similarity weights for 

the edges of the ego network of u, Gu. Line 2 removes u from Gu, and applies MCL 

clustering method to cluster the similarity graph Gu. We assume that this clustering 

yields k clusters, {Ci}1≤i≤k. From these clusters, Line 3 obtains the normalized cut 

based score. For each cluster (say, Ci), Line 4 computes the temporal collaboration 

vector Zi of each cluster which represents the association weight between the entities 
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in a cluster and u over the time axis. Line 5 obtains the TM -score using temporal 

mobility model that we discuss in Section 3.3.2. Line 6 returns the desired score for 

the node u. A high value of this score is more likely to represent a pure node and a 

small value makes the node more likely to be a multi-node. Thus our method can be 

used as a pre-filter to identify a small set of nodes that are more likely candidate for 

being a multi-node. 

Given the collaboration network G and a specific vertex u as input, generation of 

ego network Gu(Vu, Eu) takes O(|Vu| + |Eu|) time. The computational complexity of 

MCL algorithm is O(t · |Vu|3) in the worst case, where t is the number of iterations 

until convergence. The steps in Line 3 and Line 4 read the similarity matrix of Gu 

using an adjacency list representation; thus the complexity of these steps is roughly 

O(|Vu| + |Eu|). The KL divergence computation in Line 5 uses Equation 3.3 to 

compute TM -score, which has a cost of O(cK2), where K is the number of clusters 

after MCL clustering. Thus, the overall time complexity of Algorithm 1 is O(|Vu|3). 

However, note that the above complexity bound is over the size of the ego network 

instead of the entire collaboration network G, which makes the proposed method very 

efficient. To verify the efficiency of our method, we also present the running time of 

our method in Section 3.5.6 over a set of real-life networks. 

3.4.1 Supervised Classification Setup 

In a supervised classification setting, we can use the NC-score and the TM -score 

as classification features. For this, we first build a training dataset in which the 

exact labels (positive for a multi-node, negative otherwise) of each of the instances 

are known. Then we can use any of our favorite classification methods to build a 

model, which can later be used for predicting the label for an unknown data instance. 

Supervised classification setup enables adding of more features for the classification 

task. So, in this setup, we also consider centrality-based graph topology features, in 

addition to the NC-score and TM -score. 
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We consider four distinct centrality-based features [125]: degree centrality, be-

tweenness centrality, closeness centrality, and eigenvector centrality. For a given node 

u, one can always compute the centrality values of u considering the entire collabo-

ration network, however such a method is not scalable, so we compute u's centrality 

within its ego-network Gu. In Gu, u is the central node by construction, but more 

so if u is a multi-node. This is because when u is a multi-node, it naturally has a 

higher than usual degree in Gu leading to a high degree centrality value for u. Also, 

when u is a multi node, Gu is composed of many disjoint clusters and shortest paths 

among the nodes in distinct clusters must go through u, leading to a high between-

ness centrality for u. Similar arguments can also be made for other centrality metrics. 

However, one potential issue of computing centrality within Gu is that for different 

nodes, their centrality values in their respective ego networks are not comparable, so 

we normalize u's centrality score over the centrality score of all nodes in Gu as below: 

C(u)
Centrality-Score(u) = P ; (3.5) 

v∈Gu 
C(v) 

where, C(x) is the centrality value of a node x in Gu. We will show in experimental 

results that considering centrality metrics as feature improves the prediction perfor-

mance. 

3.5 Experiments and Results 

A key challenge of working on the name entity disambiguation task is to find a real-

life labeled dataset for evaluating the performance of the proposed solution. There 

exist real-life collaboration datasets, such as email or phone networks, but they are 

anonymized for security concern, so we can’t really obtain the true ambiguity label 

of the nodes in such networks. Hence, these datasets are not useful for evaluating the 

entity disambiguation task. For our experiments, we use two well known bibliographic 

datasets, DBLP and Arnetminer. Both of these datasets are leading repositories for 

bibliographic information of computer science conferences and journals. Also, the 
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ambiguity label of a scientist in any of these networks can be determined by manual 

inspection of the papers published by that scientist. 

From both datasets, we select 150 researchers such that half of them are pure 

nodes (negative cases), and the rest of them are multi-nodes (positive cases). We try 

to make the datasets as representative as possible by choosing a mix of senior and 

early career researchers. To assign the label for a selected researcher, we manually 

examine her bibliographic records and also her webpage profile. Besides, in DBLP, 

name disambiguation ground truth is already available for a few of the high profile 

researchers. We use those ground truths to double-check our manual labeling. The 

final dataset is anonymized by mapping each researcher to a unique id. 

The objective of our experiments with these datasets is to verify whether our 

method can distinguish the set of multi-nodes from the pure nodes. For this valida-

tion we use both supervised and unsupervised methodologies. We also compare our 

method with the existing state-of-the-art to show that our method is superior than 

that both in terms of speed and accuracy. Besides these, we also perform experiments 

to analyze the sensitivity of our method as the parameters vary. 

Our method has only a few parameters, many of which we keep fixed. The first, 

τ , denotes the exponential decay rate, which is used while computing the similarity 

between a pair of entities in the input network before the clustering step. We fix 

the τ value to 5 for all of our experiments since the performance remains stable as 

we vary τ for both the datasets. For the clustering of the collaboration network, we 

use the MCL clustering method. We use the code provided by the inventor of MCL 

and set the inflation value of MCL to 1.4 (as is recommended by the inventor) for 

all of our experiments. For the other data processing, we write our own code using 

Python. The experiments are performed on a 2.1 GHz laptop with 4GB memory 

running Linux operating system. 
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Fig. 3.3.: Unsupervised disambiguation experimental results: (a) on Arnetminer and 
(b) on DBLP 

3.5.1 Evaluation of Unsupervised Disambiguation 

In unsupervised disambiguation, we do not train a model using a training dataset, 

rather we use a linear function (Equation 3.4) to obtain the s-score. For evaluating 

the performance of unsupervised disambiguation, in this experiment we compute the 

s-score of each of the 150 researchers in the DBLP and Arnetminer datasets using 

Equation 3.4. We use an α value of 0.1 for Arnetminer and 0.2 for the DBLP dataset. 

The choice of α is fixed by comparing the performance of our method on a small 

validation dataset by varying α between 0 and 1. We use AUC (the area under the 

ROC curve) as the evaluation metric of this experiment which we obtain as below. 

We sort the s-score of the 150 researchers in an increasing order and use each of 

the s-scores (in that order) as the threshold of our prediction to obtain a sequence 

of TPR (true positive rate) and FPR (false positive rate) pairs. From these (TPR, 

FPR) datapoints, we draw the ROC curve and subsequently compute the AUC value 

of our prediction. In this case, the AUC value is essentially the probability that the 

s-score of a random multi-node (positive data instance) is smaller than the s-score of 

a random negative data instance. The baseline value for the AUC is 0.5 and the best 

value of AUC is 1. The former case happens if the s-scores of positive and negative 

instances are non-distinguishable; on the other hand, the latter case happens when all 

the s-scores of the positive instances are smaller than all the s-scores of the negative 
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instances. For the DBLP dataset and the Arnetminer dataset, the AUC value that 

our method achieves is 0.86 and 0.83 respectively, which, for AUC, are generally 

considered as excellent. 

To show the variance of performance for inputs of different sizes, we construct 2 

additional datasets, which are uniformly chosen random subset of the original dataset. 

These two datasets have 50 and 100 data instances respectively. For these datasets, we 

compute the AUC value as we described above. We repeat the above random dataset 

creation process for ten times and compute the average AUC value for both datasets. 

We show the AUC comparison among these datasets in Figure 3.3(a) and 3.3(b) for 

the cases of Arnetminer and DBLP, respectively. As we can see for the Arnetminer 

case, the AUC value is almost constant (0.83) for all the three datasets with varying 

sizes. For DBLP, the datasets with 50 and 100 instances achieve an AUC value of 

0.87, whereas the entire dataset with 150 instances achieves an AUC value of 0.86. 

Table 3.1.: Comparison between our method and [37] using classification accuracy 
(%) on 10-fold cross-validation 

Method Kernel DBLP Arnetminer 
Our method us- Linear 72.50 65.60 
ing NC and TM Radial basis 72.31 68.82 
features Sigmoid 71.90 66.20 

Our method using Linear 75.60 67.00 
NC, TM and Graph Radial basis 74.71 69.42 
Centrality features Sigmoid 75.30 70.03 

Method pro-
posed in [37] 

GL-3 40.67 43.62 
GL-4 41.33 44.98 
SP 48.22 47.67 

In Figure 3.3(a) and Figure 3.3(b) we also show experimental results that high-

light the contribution of TM -score in our model. For this we compare the AUC value 

that we obtain using TM-score and without using TM-score; the second case can 

be obtained by setting α=0 in Equation 3.4. The AUC value of these two cases for 

datasets of different sizes are shown using green (dotted box) and red (solid box) bar 
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Table 3.2.: Comparison between our method and [37] using AUC on 10-fold cross-
validation 

Method Kernel type DBLP Arnetminer 
Our method us- Linear 0.80 0.76 
ing NC and TM Radial basis 0.79 0.75 
features Sigmoid 0.79 0.75 

Our method using Linear 0.83 0.80 
NC, TM and Graph Radial basis 0.82 0.79 
Centrality features Sigmoid 0.80 0.78 

Method pro-
posed in [37] 

SP 0.62 0.61 
GL-3 0.63 0.62 
GL-4 0.64 0.62 

plots, respectively. As we can see, for both datasets TM-score significantly improves 

the AUC score for the cases of all different sizes. For DBLP, the improvement is par-

ticularly significant; for the entire dataset (150 instances), the AUC without and with 

TM-score is 0.63 and 0.86 respectively. We guess that the reason for such dramatic 

improvement using TM-score is due to the fact that we use academic collaboration 

datasets, in such a domain temporal mobility occurs rather frequently. 

Table 3.3.: Precision of multi-node class @ top-k(%) for DBLP dataset 

Method Kernel Type Prec 
@10% 

Prec 
@15% 

Prec 
@20% 

Using NC and TM fea- Linear 100 100 90 
tures Radial basis 100 100 90 

Using NC, TM and Graph Linear 100 100 90 
Centrality features Radial basis 100 100 90 

Method pro-
posed in [37] 

SP 46.7 51.7 46.7 
GL3 33.3 41.7 36.7 
GL4 46.7 41.7 44.4 

3.5.2 Evaluation of Supervised Disambiguation 

The main objective of our work is to find the s-value of a set of nodes in an un-

supervised learning setup. These values can be used for the purpose of pre-filtering a 
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Table 3.4.: Precision of multi-node class @ top-k(%) for Arnetminer dataset 

Method Kernel Type Prec 
@10% 

Prec 
@15% 

Prec 
@20% 

Using NC and TM fea- Linear 100 100 90 
tures Radial basis 100 100 90 

Using NC, TM and Graph Linear 100 100 90 
Centrality features Radial basis 100 100 90 

Method pro-
posed in [37] 

SP 66.7 54.1 60.0 
GL3 60.0 58.3 56.7 
GL4 46.7 47.5 46.7 

small set of suspicious nodes which can be examined more thoroughly in a subsequent 

stage. However, we can also use our method in a supervised learning setup to pre-

dict whether an entity is a multi-node or not. For this, we use NC-score, TM -score, 

and network centrality based metrics as classification features and use SVM classi-

fication tool for classification. We use the LIBSVM library with default parameter 

setting. During the training phase, we use the -b option of this library to predict 

the probability instead of predicting the class label. This makes it easier to report 

the performance using AUC metric. While reporting accuracy, we simply predict the 

instances with a probability value higher than 0.50 as positive case (a multi-node), 

and the remaining as a negative case. 

In Table 3.1 and 3.2, we show the accuracy and AUC value for both the datasets 

using a 10-fold cross validation for various kernels. As we can see, for both DBLP and 

Arnetminer, using these features, the best classification accuracy is achieved for the 

linear kernel and sigmoid kernel, which are 75.60% and 70.03%, respectively. For the 

case of AUC, all the kernels have almost similar performance, with the best value of 

0.83, and 0.80 for DBLP and Arnetminer, respectively. Considering the fact that the 

method works on an anonymized network, and only use topological features, accuracy 

value around 75% or AUC value around 0.80 are indeed commendable. 

For this setup, we also report the precision@top-k for k values equal to 10%, 

15%, and 20% of the size of the test datasets. We use 3-fold cross validation for this 
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experiment. To compute precision, we simply sort the probability output of SVM in 

descending order and find the precision of the model in its desired range. The results 

are shown in Table 3.3 and Table 3.4 for the two datasets. We see that on DBLP 

dataset, all the top 15% of the probability values are more than 50%, thus they are 

predicted as positive (multi-node) class and in real-life all those instances also belong 

to the true positive (multi-node) class, which yields a precision of 100%. For the case 

of top 20%, this value drops to 90%. The result on the Arnetminer dataset is also 

similar (see Table 3.4). This result shows that our method is able to place most of 

the true multi-nodes at the top part of its ranking table, as is desired. 

For the supervised setting, we also report the results only based on NC and TM 

features in terms of accuracy, AUC and precision@top-k. We can observe that adding 

centrality-based features improves the results in terms of accuracy and AUC. As we 

can see, for both DBLP and Arnetminer, using only these two features, the best 

classification accuracy is achieved for the linear kernel and radial basis kernel, which 

are 72.50% and 68.82%, respectively. For the case of AUC, all the kernels have 

almost similar performance, with the best value of 0.80, and 0.76 for DBLP and 

Arnetminer, respectively. For precision@top-k setup, the results of using NC and TM 

as classification features are almost the same compared with the results of adding 

centrality based graph topological features. Overall, the marginal improvement of 

using centrality based features are not that significant, which confirms that the NC-

score, and the TM -score that we build are strong features for this classification task. 

3.5.3 Comparison with Existing Works 

The work by Hermansson et al. [37] is closely related to our work as they design 

a collection of graph kernels to classify multi-nodes in a supervised learning setup. 

Their kernels use only the graph topology, such as, graphlet counts and shortest paths, 

so they can be used in an anonymized network for entity disambiguation. To compare 

with their method, we run LIBSVM on our dataset using their best performing ker-
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nels, namely, size-3 graphlets (GL3), size-4 graphlets (GL4) and shortest path (SP) 

kernels. The kernel values are obtained by source code supplied by the authors. In Ta-

ble 3.1, Table 3.2, Table 3.3 and Table 3.4, we compare the performance of our method 

that uses NC-score, TM -score, and centrality based graph topology as features with 

their method that uses topology based kernels, on all three performance metrics, ac-

curacy, AUC, and precision@top-k. As we can see our method performs much better 

than their method on these datasets. For instance, their best kernel achieves only 

48.22% accuracy on DBLP and 47.67% accuracy on Arnetminer, whereas our method 

achieves 75.60% and 70.03% accuracy on DBLP, and Arnetminer. Cross-validation 

t-test shows that our method is significantly better (p-value 0.0051 for DBLP, and 

0.0013 for Arnetminer). On AUC measure, our method obtains 0.83 an 0.80 on these 

datasets, whereas their method achieves a value of 0.64, and 0.62, which are much 

lower. 

Besides improved performance, another advantage of our method over the methods 

in [37] is the superior running time. For a given node in the graph, the running time to 

compute the value of our features are only a few seconds, whereas computing graphlet 

kernel values is costly. In our experiments, for some of the nodes, the Matlab code 

provided by the authors of [37] took more than 2 days in a commodity PC. 
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Fig. 3.5.: Bias effect in DBLP and Arnetminer 

3.5.4 Study of Parameter Sensitivity 

In case of unsupervised disambiguation task, our method uses two parameters that 

we set manually, one is the exponential decay rate (τ) for similarity computation, and 

the other is α value in Equation 3.4. In this experiment, we see how the performance 

of the model changes as we vary the value of these parameters. The result of this 

experiment is shown in Figure 3.4(a) and Figure 3.4(b), where we plot the AUC value 

for a range of parameter values. From Figure 3.4(a) we see that the performance is 

very stable as we vary τ . However, the performance degrades for the choice of α but 

not that significantly. 

3.5.5 Study of Dataset Bias 

Both our datasets are balanced, having equal number of positive and negative 

cases. However in real life scenario it would not be the characteristic of a wild 

dataset where the fraction of ambiguous entities is much lower. In this experiment 

we change the ratio of these two cases, to find the effect of dataset bias on the result 
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quality. For this purpose, we change the size of positive instances and always keep the 

negative instances constant which is 75 negative instances during the experiments. 

We randomly select part of positive instances and run the method ten times and 

get the mean AUC as final AUC value. The result of this experiment is shown in 

Figure 3.5; as we can see the performance varies for different ratios but not that 

significantly. 

Table 3.5.: Running time result in DBLP 

Name Number of 
direct neighbors 

Running time 
(seconds) 

Wei Wang 1375 2.85 
Jiawei Han 523 0.55 
Philip S. Yu 488 0.45 
Wen Gao 531 0.50 
Tao Li 603 0.58 

3.5.6 Study of Running Time 

A very desirable feature of our method is its running time. We have only two 

features and both of them can be calculated in a very short time. To compute the 

running time, we run our unsupervised disambiguation method on 5 entities from the 

DBLP datasets that have the largest number of neighbors. The running time on these 

vertices is shown in Table 3.5. The Arnetminer dataset is smaller than the DBLP 

datasets, so running time on the nodes of this dataset is even smaller. 

3.5.7 Real-life Case Study 

In Table 3.6, we show the performance of our method on some of the well-known 

researchers from data mining and information retrieval communities. For each of the 

researchers, we denote the ground truth in the second column of the table. A positive 

sign stands for the fact that in DBLP and Arnetminer datasets the publication records 



39 

Table 3.6.: Real-life case study showing prominent researchers in DBLP and Arnet-
miner datasets. The bold values correspond to the cases for which the prediction of 
our method is wrong 

Name Ground 
Truth 

DBLP 
probability 

Arnetminer 
probability 

Huan Liu + 0.80 0.68 
Tao Li + 0.86 0.75 

Wei Wang + 0.87 0.77 
Tao Xie + 0.83 0.71 
Bin Li + 0.86 0.75 

Robert Allen + 0.37 0.23 
Tim Weninger - 3.2e-07 0.02 
Jianlin Cheng - 5.8e-11 0.00072 
Hector Gonzalez - 7.4e-06 0.02 
Xifeng Yan - 0.38 0.42 

Philip S. Yu - 0.80 0.70 

under their names correspond to more than one real-life entity, and vice-versa. In 

the same table we also show the probability value that we obtain by our supervised 

disambiguation experiment that we discussed in Section 3.5.2. As we can see for many 

well known cases of multi-nodes in DBLP, such as Wei Wang, Huan Liu and Tao Li, 

our method correctly predicts their labels. A significant mistake (the mistaken cases 

are shown in bold fonts) that it makes is that it also predicts Professor Philip S. Yu to 

be a multi-node. This is a case of false positive, which our method is more susceptible. 

The reason for it is that many researchers such as, Professor Yu, have multiple disjoint 

communities that they maintain concurrently, so for such a researcher the NC-score 

is relatively small; also since his clusters do not exhibit temporal mobility, the TM -

score for his case is also small. So, our method tends to predict such a person as 

positive. On the other hand false negative occurs in our method due to the fact that 

the TM -score undesirably improves the overall score of a true positive case, even 

though the NC-score of that case is very small. One such example is Robert Allen 

as we show in this table. 
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3.6 Chapter Summary 

In this chapter, we propose a novel solution to the name disambiguation task in 

an anonymized network. We discuss the motivation of this task and show that our 

solution is useful for solving the name disambiguation task in a constrained setting, 

where biographical features of the actors are not available. We also discuss how our 

solution can be used to find a small set of suspects for whom more detailed analysis 

can be made in a follow-through process. Another key strength of our method is that 

it is robust and it uses a simple model having only two features, normalized-cut score 

and temporal mobility score. Nevertheless, experiments on academic collaboration 

networks show that our method has excellent performance. Interestingly, for these 

datasets, temporal mobility score improves the prediction performance significantly. 

We believe that the dramatic improvement using temporal mobility feature on these 

datasets is due to the fact that in academic domain temporal mobility occurs rather 

frequently. However, due to the unavailability of ground truth datasets, we could 

not study whether this phenomenon presents is other networks, such as Phone call or 

online social networks, like Facebook. So we do acknowledge that the validity of our 

current work is particularly linked to academic collaboration networks and we leave 

the generalization of this work to networks from other domains as a future research 

direction. 
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4. NAME DISAMBIGUATION IN ANONYMIZED 

GRAPHS USING NETWORK EMBEDDING 

4.1 Introduction 

As mentioned before, the method proposed in chapter 3 can be used as a fast 

indicator of which entities (person nodes in the collaboration graph) to inspect more 

closely for ambiguity. However, the proposed approach only considers a binary predic-

tion task, predicting whether a given person-node in the graph is ambiguous or non-

ambiguous. This is far from a traditional name disambiguation task which partitions 

the records pertaining to a given name reference into different groups, each belonging 

to a unique person. Another limitation of the previous work is that it only utilizes 

the person-person collaboration network. However, there are other information, such 

as person-document association information and document-document similarity in-

formation, which can also be exploited for obtaining improved name disambiguation, 

yet preserving the user’s privacy. 

In this chapter, we solve the actual name disambiguation task by using only rela-

tional information. For a given name reference, our proposed method pre-processes 

the input data as three graphs: a person-person graph representing collaboration 

between a pair of persons, a person-document graph representing association of a 

person with a document and a document-document similarity graph. These graphs 

are appropriately anonymized, as such, the vertices of these graphs are represented by 

a unique pseudo-random identifier. Nodal features (such as biographical information 

of a person-node, or keywords of a document-node) of any of the above three graphs 

are not used, which makes the proposed method privacy-preserving. 

In the graph representation, the name disambiguation task becomes a graph clus-

tering task of the document-document graph, with the objective that each cluster 
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contains documents pertained to a unique real-life person. The traditional clustering 

method on a homogeneous network cannot facilitate information exchange among 

the three graphs, so we propose a novel representation learning model, which embeds 

the vertices of these graphs into a shared low dimensional latent space where name 

disambiguation can be solved by a hierarchical agglomerative clustering algorithm. 

The objective function of our representation learning task utilizes pairwise similarity 

ranking which is different from the typical objective functions used in the existing doc-

ument embedding methods, such as LINE [51] and PTE [50]; the latter ones are based 

on K-L divergence between empirical similarity distribution and embedding similarity 

distribution. K-L divergence works over the entire distribution vector and it works 

well for document labeling or topic modeling, but not so for clustering. On the other 

hand, our objective function is better suited for a downstream clustering task because 

it directly optimizes the pairwise distance between similar and dissimilar documents, 

thus making the document vectors disambiguation-aware in the embedded space, as 

such, a traditional hierarchical clustering of the vectors in the embedded space gen-

erates excellent name disambiguation performance. Experimental comparison with 

several state-of-the-art name disambiguation methods—both traditional and network 

embedding-based—show that the proposed method is significantly better than the 

existing methods on multiple real-life name disambiguation datasets. 

The key contributions of this chapter are summarized as below: 

1. We propose a network embedding based solution that leverages linked structures 

of a variety of anonymized networks in order to represent each document into 

a low-dimensional vector space for solving the name disambiguation task. To 

the best of our knowledge, our work is the first one to adopt a representation 

learning framework for name disambiguation in anonymized graphs. 
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Fig. 4.1.: Paper count distribution of name reference “Lei Wang” 

2. For representation learning, we present a novel pairwise ranking based objec-

tive, which is particularly suitable for solving the name disambiguation task by 

clustering. 

3. We use two real-life bibliographic datasets for evaluating the disambiguation 

performance of our solution. The results demonstrate the superiority of our 

proposed method over the state-of-the-art methodologies for name disambigua-

tion in a privacy-preserving setup. 

4.2 Problem Formulation 

We first introduce notations used in this paper. Throughout the paper, a bold 

uppercase letter (e.g., X) denotes a matrix, a bold lowercase letter such as xi denotes 

a column vector, and (·)T denotes vector transpose. kXkF is the Frobenius norm of 

matrix X. A calligraphic uppercase letter (e.g., X ) is used to denote a set and |X | is 

the cardinality of the set X . 
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For a given name reference a, we denote Da = {da, da, ..., da } to be a set of N1 2 N 

documents with which a is associated and Aa = {a1, a2, ..., aM } is the collaborator 

set of a in Da , where a 6∈ Aa . If there is no ambiguity we remove the superscript a 

in the notations of both Da and Aa and refer the terms as D and A, respectively. 

For illustration, in the bibliographic field, D can be the set of scholarly publications 

where a is one of the authors and A is the set of a’s coauthors. In real-life, the given 

name reference a can be associated with multiple persons (say L) all sharing the same 

name. The task of name disambiguation is to partition D into L disjoint sets such 

that each partition contains documents of a unique person entity with name reference 

a. 

Though it may appear as a simple clustering problem, name disambiguation is 

challenging on real-life data. This is due to the fact that it requires solving a highly 

class-imbalanced clustering task, as the number of documents associated with a dis-

tinct person follows a power-law distribution. We demonstrate it through an example 

from the bibliographic domain. In Figure 4.1, we show a histogram of paper counts of 

various real-life persons named “Lei Wang” in Arnetminer.As we can observe, there 

are a few real-life authors (dominant entities) with the name “Lei Wang” to whom 

the majority of the publications belong. Only a few publications belong to each of the 

remaining real-life authors with name “Lei Wang”. Due to this severe class imbalance 

issue, the majority of traditional clustering methods perform poorly on this task. So-

phisticated machine learning models, like the one we propose below are needed for 

solving this task. This example is from the bibliographic domain, but power-law 

distribution of possession is common in every aspect of real-life, so we expect this 

challenge to hold in other domains as well. 

In this study, we investigate the name disambiguation problem in a restricted 

setup, where bibliographical features and information from external sources are not 

considered so that the risk of privacy violation can be reduced. Instead, we formu-

late the problem using graphs in which each node has been assigned an anonymized 

identifier, and network topological structure is the only information available. Specif-

https://Arnetminer.As
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ically, our solution encodes the local neighborhood structures accumulated from three 

different networks into a proposed network embedding model, which generates a k-

dimensional vector representation for each document. The networks are person-person 

network, person-document network, and linked document network, which we formally 

define as below: 

Definition 4.2.1 (Person-Person Network) For a given name reference x, the 

person-person network, denoted as Gpp = (Ax, Epp), captures collaboration between 

a pair of persons within the collection of documents associated with x. Ax is the 

collaborator set, and eij ∈ Epp represents the edge between the persons, ai and aj , 

who collaborated in at least one document. The weight wij of the edge eij is defined 

as the number of distinct documents in which ai and aj have collaborated. 

The person-person network is important because the inter-person acquaintances 

represented by collaboration relation can be used to discriminate the set of documents 

of multiple real-life persons. However, the collaboration network does not account for 

the fact that the documents associated with the same real-life person are inherently 

similar; person-document network and document-document network cover for this 

shortcoming. 

Definition 4.2.2 (Person-Document Network) Person-Document Network, rep-

resented as Gpd = (A ∪D, Epd), is a bipartite network where D is the set of documents 

with which the name reference a is associated and A is the set of collaborators of a 

over all the documents in D. Epd is the set of edges between persons and documents. 

The edge weight wij between a person node ai and document dj is simply defined as 

the number of times ai appears in document dj . For a bibliographic dataset, ai is 

simply an author of the document dj and the weight wij = 1. 

Definition 4.2.3 (Linked Document Network) Document-Document Network, 

represented as Gdd = (D, Edd), where each vertex di ∈ D is a document. If two 

documents di and dj are similar (more discussion is forthcoming), we build an edge 

between them represented as eij ∈ Edd. 
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There are several ways document-document similarity can be captured. For in-

stance, one can find word co-occurrence between different documents to compute this 

similarity. However, we refrained from using word co-occurrence due to the privacy 

concern as sometimes a list of a set of unique words can reveal the identity of a per-

son [15,20]. Instead we define document-document similarity through a combination 

of person-person and person-document relationships. Two documents are similar if 

the intersection of their collaborator-sets is large (by using person-document relation-

ship) or if the intersection of one-hop neighbors of their collaborator-sets is large (by 

using both person-document and person-person relationships). 

The above definition of document similarity captures two important patterns 

which facilitate effective name disambiguation by document clustering. First, there 

is a high chance for two documents to be authored by the same real-life person, if 

they have a large number of overlapping collaborators. Second, even if they do not 

have any overlapping collaborators, large overlap in the neighbors of their collabora-

tors signals that the documents are most likely authored by the same person. For 

both cases, these two documents should be placed in close proximity in the embedded 

space. Mathematically, we denote A1 as the collaborator set of di. Furthermore, A2 
di di 

is the set of collaborators by extending A1 with all neighbors of the persons in A1 ,di di 

namely A2 = A1 ∪ {N BGpp (b)}b∈A1 , where NBGpp (b) is the set of neighbors of node di di di 

b in person-person network Gpp. Then the document similarity between di and dj in 

the graph Gdd is simply defined as wij = |A2 ∩ A2 |.di dj 

Based on our problem formulation, the name disambiguation solution consists of 

two phases: (1) document representation (2) disambiguation. We discuss them below: 

Given a name reference a, its associated document set Da (which we want to 

disambiguate) and the collaborator set Aa , the document representation phase first 

constructs corresponding person-person network Gpp, person-document bipartite net-

work Gpd, and linked document network Gdd. Then our proposed document represen-

tation model combines structural information from these three networks to generate 

a k-dimensional document embedding matrix D = [dT 
1 , ..., dN

T ] ∈ IRN×k . 
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The disambiguation phase takes the document embedding matrix D as input and 

applies the hierarchical agglomerative clustering (HAC) with group average merging 

criteria to partition N documents in Da into L disjoint sets with the expectation 

that each set is composed of documents of a unique person entity sharing the name 

reference a. At this stage, L is a user-defined parameter which we match with the 

ground truth during the evaluation phase. In real-life, a user needs to tune the 

parameter L which can easily be done with HAC, because HAC provides hierarchical 

organization of clusters at all levels starting from a single cluster upto the case of 

single-instance cluster, and a user can recover clustering for any value of L as needed 

without additional cost. Also, across different L values the cluster assignment of HAC 

is consistent (i.e., two instances that are in the same cluster for some L value will 

remain in the same cluster for any smaller L value), which further helps in choosing 

an appropriate L value. 

4.3 Method 

In this section, we discuss our proposed representation learning model for name 

disambiguation. Our goal is to encode the local neighborhood structures captured by 

the three networks (see Definitions 4.2.1 4.2.2 4.2.3) into the k-dimensional document 

embedding matrix with strong name disambiguation ability. 

4.3.1 Model Formulation 

The main intuition of our network embedding model is that neighboring nodes 

in a graph should have more similar vector representation in the embedding space 

than non-neighboring nodes. For instance, in a linked document network, the affinity 

between two neighboring vertices di and dj , i.e., eij ∈ Gdd should be larger than the 

affinity between two non-neighboring vertices di and dt, i.e., eit 6∈ Gdd. The affinity 

score between two nodes di and dj in Gdd can be calculated as the inner product 

of their corresponding embedding representations, denoted as Sdd = dT Moreij i dj . 
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> Sddspecifically, we model the probability of preserving ranking order Sdd using the ij it 

logistic function σ(x) = 
1+
1 
e . Mathematically, −x 

� � � � 
Sdd > Sdd SddP |di, dj , dt = σ (4.1)ij it ijt 

where Sdd 
ijt is defined as below: 

Sdd Sdd − Sdd = ijt ij it 

= di
T dj − dT

i dt 

(4.2) 

As we observe from Equation 4.1, the larger Sdd 
ijt, the more likely ranking order 

Sdd > Sdd is preserved. By assuming all the ranking orders generated from the linked ij it 

document network Gdd to be independent, the probability P (> |D) of all the ranking 

orders being preserved given the document embedding matrix D ∈ IRN×k is defined 

as below: 

Y � � 
Sdd > SddP (> |D) = P |di, dj , dtij it 

(di,dj )∈PGdd 
(di,dt)∈NGddY � � 

Sdd = σ ijt 

(di,dj )∈PGdd 
(di,dt)∈NGddY � � 

Sdd − Sdd = σ ij it 

(di,dj )∈PGdd 
(di,dt)∈NGdd 

(4.3) 

where PGdd and NGdd are positive and negative training sets in linked document 

network, represented as Gdd. 
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From the Equation 4.3, the goal is to seek the document latent representation D 

for all nodes in linked document network Gdd, which maximizes P (> |D). For the 

computational convenience, we minimize the following sum of negative log-likelihood 

objective, which is shown as follows: 

OBJdd = min − ln P (> |D)
D X � � 

Sdd > Sdd = − ln P |di, dj , dtij it 

(di,dj )∈PGdd 
(di,dt)∈NGddX 

= − ln σ(Sdd )ijt 

(di,dj )∈PGdd 
(di,dt)∈NGddX � � 

Sdd − Sdd = − ln σ ij it 

(di,dj )∈PGdd 
(di,dt)∈NGdd 

(4.4) 

The formulation shown in Equation 4.4 constructs a probabilistic framework for 

distinguishing between neighbor nodes and non-neighbor nodes in a linked document 

network by preserving a ranking order objective function. 

Using the identical argument, the objective functions for capturing person-person 

and person-document relations are given as below: 

OBJpp = min − ln P (> |A)
A X 

ln σ(Spp − Spp= − )ij it 

(ai,aj )∈PGpp 
(ai,at)∈NGpp 

(4.5) 
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OBJpd = min − ln P (> |A, D) 
A,D X 

= − − Spdln σ(Spd )ij it 

(di,aj )∈PGpd 
(di,at)∈NGpd 

(4.6) 

where A ∈ IRM×k can be thought as the person embedding matrix and M is the 

Sppnumber of persons in the collaborator set A. ij represents the affinity score between 

two nodes ai and aj in collaboration graph Gpp, and Sij
pd denotes the affinity score 

between two nodes di and aj in heterogeneous bipartite graph Gpd. Finally, PGpp and 

NGpp are positive and negative training sets in Gpp, PGpd and NGpd are positive and 

negative training sets in Gpd respectively. 

The goal of proposed network embedding framework is to unify these three types 

of relations together, where the person and document vertices are shared across these 

three networks. An intuitive manner is to collectively embed these three networks, 

which can be achieved by minimizing the following objective function: 

OBJ = min − OBJpp − OBJpd − OBJdd + λReg(A, D) (4.7)
A,D 

where λReg(A, D) in Equation 4.7 is a l2-norm regularization term to prevent the 

model from overfitting. Here for the computational convenience, we set Reg(A, D) 

as kAk2 
F + kDk2 

F . Such pairwise ranking loss objective is in the similar spirit to 

the Bayesian Personalized Ranking [137–139], which aims to predict the interaction 

between users and items in recommender system domain. 

4.3.2 Model Optimization 

We use stochastic gradient descent (SGD) algorithm for optimizing Equation 4.7. 

Specifically, in each step we sample the training instances involved in person-person, 

person-document, and document-document relations accordingly. The sampling strat-

egy of positive instances is based on edge sampling [50]. Specifically, for example, in 
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linked document network Gdd, given an arbitrary node di, we sample one of its neigh-

bors dj , i.e., (di, dj ) ∈ PGdd , with the probability proportional to the edge weight for 

the model update. On the other hand, for sampling of negative instances, we utilize 

uniform sampling technique. In particular, given the sampled node di, we sample an 

arbitrary negative instance dt uniformly, namely (di, dt) ∈ NGdd . 

Therefore given a sampled triplet (di, dj , dt) with (di, dj ) ∈ PGdd and (di, dt) ∈ 

, using the chain rule and back-propagation, the gradient of the objective functionNGdd 

OBJ in Equation 4.7 w.r.t. di can be computed as below: 

� � 
Sdd − Sdd∂OBJ ∂ ln σ ij it 

= − + 2λdi
∂di ∂di� � � � 

Sdd − Sdd Sdd − Sdd∂ ln σ ∂σ ij it ij it 
= − � � × � � 

Sdd − Sdd Sdd − Sdd∂σ ∂ij it ij it� � 
Sdd − Sdd∂ ij it × + 2λdi

∂di 

1 � � 
Sdd − Sdd = − � � × σ 

Sdd − Sdd ij itσ ij it� � �� 
Sdd − Sdd1 − σ × (dj − dt) + 2λdiij it ! 

−(dT dj −dT 
i i dt)−e 

= (dj − dt) + 2λdi−(dT dj −dT 
i i dt)1 + e 

(4.8) 

Using the similar chain rule derivation, the gradient of the objective function OBJ 

w.r.t. dj and dt can be obtained as follows: 

! 
−(dT dj −dT dt)i i∂OBJ −e 

= × di + 2λdj (4.9)
−(dT dj −dT dt)i i∂dj 1 + e 

! 
−(dT dj −dT 

i i dt)∂OBJ −e 
= × (−di) + 2λdt (4.10)

−(dT dj −dT 
i i dt)∂dt 1 + e 
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Then embedding vectors di, dj , and dt are updated as below: 

∂OBJ 
di = di − α 

∂di 

∂OBJ 
dj = dj − α 

∂dj 

∂OBJ 
dt = dt − α 

∂dt 

(4.11) 

where α is the learning rate. 

Likewise, when the training instances come from person-person network, and 

person-document bipartite network, we update their corresponding gradients accord-

ingly. We omit the detailed derivations here since they are very similar to the afore-

mentioned ones. 

Algorithm 2 Network Embedding based Name Disambiguation in Anonymized 
Graphs 

Input: name reference a, dimension k, λ, α, L 
Output: document embedding matrix D and its clustering membership set C 
1: Given name reference a, construct its associated Da , Aa , Gpp, Gpd, Gdd 

2: Given Gpp, Gpd, Gdd, construct training sample sets PGpp ,, NGpp , PGpd , NGpd , PGdd 

respectively based on edge sampling and uniform sampling techniques NGdd 

3: Initialize A and D as k-dimensional matrices 
4: for each training instance in training sample sets do 
5: Update involved parameters using SGD as described in Section 4.3.2 
6: end for 
7: Given D and L, perform HAC to partition N documents in Da into L disjoint 
sets for name disambiguation 

8: return D, C = {c1, c2, ..., cN } 

4.3.3 Pseudo-code and Complexity Analysis 

The pseudo-code of the proposed network embedding method for name disam-

biguation under anonymized graphs is summarized in Algorithm 4. The entire process 
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consists of two phases: network embedding for document representation and name 

disambiguation by clustering. Specifically, given a name reference a and its associated 

document set Da we aim to disambiguate, we first prepare the training instances in 

Line 1-2. Line 3 initializes the person and document embedding matrices A and D 

by randomly sampling elements from uniform distribution [−0.2, 0.2]. Then we train 

our proposed network embedding model and update A and D using the training sam-

ples based on the SGD optimization in Line 4-6. Then given the obtained document 

embedding matrix D and L, in Line 7, we perform HAC to partition N documents 

in Da into L disjoint sets such that each partition contains documents of a unique 

person entity with name reference a. Finally in Line 8, we return document embed-

ding matrix D and its clustering membership set C = {c1, ..., ci, ..., cN } for evaluation, 

where 1 ≤ ci ≤ L. 

For the time complexity analysis, for the document embedding, when the training 

sample is (di, dj ) ∈ PGdd , as observed from Equations 4.8, 4.9 and 4.11, the cost of 

calculating gradient of OBJ w.r.t. di and dj , and updating di and dj are both O(k). 

Similar analysis can be applied when training instances are from PGpp , NGpp , PGpd , 

NGpd , NGdd . Therefore, the total computational cost is 2 ∗ |PGpp | + 2 ∗ |PGpd | + 2 ∗ � 
|PGdd | O(k). For the name disambiguation, the computational cost of hierarchical 

clustering is O(N2logN) [125]. So the total computational complexity of Algorithm 2 � � 
is 2 ∗ |PGpp | + 2 ∗ |PGpd | + 2 ∗ |PGdd | O(k) + O(N2logN). 

4.3.4 Mining Hard Negative Training Instance 

In the proposed pairwise ranking based embedding framework, we need to con-

struct negative training instances. Since the optimization algorithm we utilize is 

based on SGD, the sampled negative instances may affect the name disambiguation 

performance substantially. Therefore, motivated by existing works [140,141], instead 

of uniformly sampling negative instance in each iteration, we present two extra sam-

pling strategies to select negative training instance, which are listed as below: 
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1. Dynamic negative sampling [140]: this method aims to dynamically choose 

negative training samples from the ranked list produced by current embedding 

model and iteratively update the learning model. Specifically, in each itera-

tion, we first randomly sample a set of negative instances given each of the 

constructed networks, namely Gpp, Gpd, Gdd respectively, then we apply the 

current embedding model on them to get the prediction scores. Finally, we se-

lect the one among the top ranked list based on their corresponding prediction 

scores to update the embedding vectors. 

2. Adaptive sampling [141]: our goal is to use the current prediction model to 

define the sampling distribution and the negative instances are sampled through 

a pre-defined exponential distribution to update the learning model. 

4.4 Experiments and Results 

We perform several experiments to validate the performance of our proposed 

network embedding method for solving the name disambiguation task in a privacy-

preserving setting using only linked data. We also compare our method with various 

other methods to demonstrate its superiority over those methods. 

4.4.1 Datasets 

A key challenge for the evaluation of name disambiguation task is the lack of 

availability of labeled datasets from diverse application domains. In recent years, 

the bibliographic repository sites, Arnetminer and CiteSeerX have published several 

ambiguous author name references along with respective ground truths (paper list of 

each real-life author), which we use for evaluation. From each of these two sources, we 

use 10 highly ambiguous (having a larger number of distinct authors for a given name) 

name references and show the performance of our method on these name references. 

The statistics of name references in Arnetminer and CiteSeerX datasets are shown in 
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Table 4.1.: Arnetminer name disambiguation dataset 

Name Reference # Documents # Distinct Authors 

Jing Zhang 160 33 
Bin Yu 78 8 

Rakesh Kumar 82 5 
Lei Wang 222 48 
Bin Li 135 14 

Yang Wang 134 23 
Bo Liu 93 19 
Yu Zhang 156 26 
David Brown 42 9 
Wei Xu 111 21 

Table 4.2.: CiteSeerX name disambiguation dataset 

Name Reference # Documents # Distinct Authors 

K Tanaka 174 9 
M Jones 191 10 
J Smith 798 26 
Y Chen 848 64 
J Martin 51 13 
A Kumar 149 10 
J Robinson 123 9 
M Brown 118 13 
J Lee 891 93 
S Lee 1091 74 

Table 4.1 and Table 4.2, respectively. In these tables, for each name reference, we 

show the number of documents, and the number of distinct authors associated with 

that name reference. It is important to understand that the name disambiguation 

model is built on a name reference, not on a source dataset such as, Arnetminer 

or CiteSeerX as a whole, so each name reference is a distinct dataset on which the 

evaluation is performed. 
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4.4.2 Competing Methods 

To validate the disambiguation performance of our proposed approach, we com-

pare it against 9 different methods. For a fair comparison, all of these methods 

accommodate the name disambiguation using only relational data. Among all the 

competing methods, Rand, AuthorList, and AuthorList-NNMF are a set of primi-

tive baselines that we have designed. But, the remaining methods are taken from 

recently published works. For instance, GF, DeepWalk, LINE, Node2Vec, and PTE 

are existing state-of-the-art approaches for vertex embedding, which we use for name 

disambiguation by clustering the documents using HAC in the embedding space sim-

ilar to our approach. Graphlet based graph kernel methods (GL3, GL4) are existing 

state-of-the-art approaches for name disambiguation in anonymized graphs. More de-

tails of each of the competing methods are given below. For each method, for a given 

name reference, a list of documents need to be partitioned among L (user defined) 

different clusters. 

(1) Rand: This naive method randomly assigns one of existing classes to the asso-

ciated documents. 

(2) AuthorList: Given the associated documents, we first aggregate the author-list 

of all documents in an author-array, then define a binary feature for each author, 

indicating his presence or absence in the author-list of that document. Finally we use 

HAC with the generated author-list as features for disambiguation task. 

(3) AuthorList-NNMF: We perform Non-Negative Matrix Factorization (NNMF) 

on the generated author-list features the same way described above. Then the latent 

features from NNMF are used in a HAC framework for disambiguation task. 

(4) Graph Factorization (GF) [142]: We first represent co-authorship network 

Gpp and the linked document network Gdd as affinity matrices, and then utilize matrix 

factorization technique to represent each document into low-dimensional vector. Note 

that GF is optimized via a point-wise regression model that minimizes a square loss 

function, which is substantially different from our proposed ranking loss objective. 
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(5) DeepWalk [49]: DeepWalk is an approach recently proposed for network em-

bedding, which is only applicable for homogeneous network with binary edges. Given 

Gpp and Gdd, we use uniform random walk to obtain the contextual information of 

its neighborhood for document embedding 1 . 

(6) LINE [51]: LINE aims to learn the document embedding that preserves both 

the first-order and second-order proximities 2 . Note that LINE can only handle the 

embedding of homogeneous network and the embedding formulation and optimiza-

tion are quite different from the one proposed in our work. 

(7) Node2Vec [52]: Similar to DeepWalk, Node2Vec designs a biased random walk 

procedure for document embedding. 3 . 

(8) PTE [50]: Predictive Text Embedding (PTE) framework aims to capture the 

relations of word-word, word-document, and word-label. However, such keyword and 

label based biographical features are not available in the anonymized setup. Instead 

we utilize local structural information of both Gpp and Gpd networks to learn the 

document embedding. However, this approach is not able to capture the linked in-

formation among documents. 

(9) Graph Kernel [37]: In this work, size-3 graphlets (GL3) and size-4 graphlets 

(GL4) are used to build graph kernels, which measure the similarity between doc-

uments. Then the learned similarity metric is used as features in HAC for name 

disambiguation. As we see, both kernels only use network topological information. 4 

4.4.3 Experimental Setting and Implementation 

For each of the 20 name references, we perform name disambiguation using our 

proposed method and each of the competing methods to demonstrate that our pro-

posed method is superior than the competing methods. For evaluation metric, we use 

Macro-F1 measure [125], which is the unweighted average of F1 measure of each class. 

1Code is available at http://www.perozzi.net/projects/deepwalk/ 
2Implementation Code is available at https://github.com/tangjianpku/LINE 
3We use the code from https://github.com/aditya-grover/node2vec 
4The kernel values are obtained by source code supplied by the original authors 

https://github.com/aditya-grover/node2vec
https://github.com/tangjianpku/LINE
http://www.perozzi.net/projects/deepwalk
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Table 4.3.: Comparison of Macro-F1 values between our proposed method and other 
competing methods for name disambiguation task in Arnetminer dataset (embedding 
dimension = 20). Paired t-test is conducted on all performance comparisons and it 
shows that all improvements are significant at the 0.05 level. 

Name Our Method Rand AuthorList AuthorList- GF [142] DeepWalk [49] LINE [51] Node2Vec [52] PTE [50] GL3 [37] GL4 [37] Improv. 
Reference NNMF 

Jing Zhang 
Bin Yu 

Rakesh Kumar 
Lei Wang 
Bin Li 

Yang Wang 
Bo Liu 
Yu Zhang 
David Brown 
Wei Xu 

0.734 (0.014) 
0.804 (0.009) 
0.834 (0.012) 
0.805 (0.021) 
0.848 (0.016) 
0.798 (0.011) 
0.831 (0.022) 
0.820 (0.031) 
1.00 (0.00) 

0.793 (0.014) 

0.192 
0.201 
0.226 
0.198 
0.172 
0.199 
0.215 
0.186 
0.304 
0.256 

0.327 
0.371 
0.305 
0.502 
0.610 
0.442 
0.482 
0.519 
0.818 
0.527 

0.463 
0.283 
0.404 
0.424 
0.733 
0.532 
0.740 
0.566 
0.583 
0.564 

0.669 
0.610 
0.448 
0.633 
0.761 
0.575 
0.850 
0.565 
0.802 
0.625 

0.654 
0.644 
0.617 
0.419 
0.392 
0.640 
0.788 
0.454 
0.494 
0.228 

0.651 
0.643 
0.641 
0.639 
0.641 
0.623 
0.781 
0.658 
1.00 
0.599 

0.312 
0.531 
0.372 
0.263 
0.186 
0.331 
0.459 
0.196 
0.221 
0.136 

0.458 
0.399 
0.219 
0.447 
0.349 
0.444 
0.373 
0.385 
0.575 
0.236 

0.318 0.329 
0.489 0.504 
0.434 0.407 
0.291 0.321 
0.336 0.418 
0.378 0.512 
0.498 0.347 
0.369 0.305 
0.603 0.698 
0.386 0.428 

9.7% 
24.8% 
30.1% 
26.0% 
11.4% 
24.7% 
-2.2% 
24.6% 
0% 
26.9% 

The range of Macro-F1 measure is between 0 and 1, and a higher value indicates bet-

ter disambiguation performance. Besides comparison with competing methodologies, 

we also perform experiments to show that our method is robust against the variation 

of user defined parameters (specifically, embedding dimension and the number of clus-

ters) over a wide range of parameter values. Experiments are also performed to show 

how the embedding model performs with each of the three types of networks (person-

person, person-document, and document-document) incrementally added. Finally, 

we show the convergence of the learning model while performing the document em-

bedding phase. 

There are a few user defined parameters in our proposed embedding model. The 

first among these is the embedding dimension k, which we set to be 20. For the 

regularization parameter in model inference (see Section 4.3.2), we perform grid search 

on the validation set in the following range: λ = {0.001, 0.005, 0.01, 0.1, 1, 10}. For 

the learning rate, we fix α as 0.02. During the disambiguation stage, we use the actual 

number of classes L of each name reference as input to perform HAC. In addition 

to that, we use uniform sampling to select negative instances for SGD optimization. 

For both data processing and model implementation, we implement our own code in 

Python and use NumPy, SciPy, scikit-learn, and Networkx libraries for linear algebra, 

machine learning, and graph operations. We run all the experiments on a 2.1 GHz 

Machine with 8GB memory running Linux operating system. 
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Table 4.4.: Comparison of Macro-F1 values between our proposed method and other 
competing methods for name disambiguation task in CiteSeerX dataset (embedding 
dimension = 20). Paired t-test is conducted on all performance comparisons and it 
shows that all improvements are significant at the 0.05 level. 

Name Our Method Rand AuthorList AuthorList- GF [142] DeepWalk [49] LINE [51] Node2Vec [52] PTE [50] GL3 [37] GL4 [37] Improv. 
Reference NNMF 

K Tanaka 0.706 (0.018) 0.178 0.202 0.168 0.334 0.450 0.398 0.304 0.173 0.235 0.276 56.9% 
M Jones 0.743 (0.009) 0.184 0.189 0.261 0.529 0.696 0.688 0.513 0.348 0.216 0.398 6.8% 
J Smith 0.503 (0.007) 0.083 0.121 0.280 0.316 0.098 0.104 0.073 0.136 0.201 0.237 59.2% 
Y Chen 0.367 (0.019) 0.069 0.325 0.355 0.439 0.118 0.193 0.058 0.199 0.334 0.385 -16.4% 
S Lee 0.624 (0.015) 0.057 0.214 0.248 0.345 0.194 0.109 0.044 0.256 0.215 0.268 80.9% 
J Martin 0.898 (0.021) 0.310 0.624 0.536 0.755 0.728 0.774 0.629 0.587 0.414 0.431 16.0% 
A Kumar 0.645 (0.006) 0.166 0.251 0.375 0.319 0.407 0.395 0.424 0.247 0.192 0.234 52.1% 
J Robinson 0.796 (0.033) 0.200 0.348 0.438 0.393 0.513 0.603 0.608 0.345 0.271 0.316 30.9% 
M Brown 0.741 (0.028) 0.171 0.306 0.573 0.478 0.481 0.633 0.211 0.269 0.297 0.248 17.1% 
J Lee 0.366 (0.038) 0.089 0.262 0.256 0.231 0.387 0.134 0.181 0.142 0.189 0.205 -5.4% 

4.4.4 Comparison among Various Name Disambiguation Methods 

Table 4.3 and Table 4.4 show the performance comparison of name disambigua-

tion between our proposed method and other competing methods for all 20 name 

references (one table for ArnetMiner names, and the other for CiteSeerX names). In 

both tables, the rows correspond to the name references and the columns (2 to 12) 

stand for various methods. The competing methods are grouped logically. The first 

group includes the baseline methods that we have designed such as random predictor 

(Rand) and methods using low-dimensional factorization of author-list for clustering. 

The second group includes various state-of-the-art network embedding methodologies, 

and the third group includes two methods using graphlet based graph kernels. The 

cell values are the performance of a method using Macro-F1 score for disambiguation 

of documents under a given name reference. The last column shows the overall im-

provement of our proposed method compared with the best competing method. Since 

SGD based optimization technique in our proposed embedding model is a random-

ized method, for each name reference we execute the method 10 times and report the 

average Macro-F1 score. For our method, we also show the standard deviation in the 

parenthesis. 5 For better visual comparison, we highlight the best Macro-F1 score of 

each name reference with bold-face font. 
5Standard deviation for other competing methods are not shown due to the space limit. 
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As we observe, our proposed embedding model performs the best for 9 and 8 name 

references (out of 10) in Table 4.3, and Table 4.4, respectively. Besides, the overall 

percentage improvement that our method delivers over the second best method is 

relatively large. For an example, consider the name “S Lee” shown in the last row 

of Table 4.4. This is a difficult disambiguation task; from Table 4.2, it has 1091 

documents and 74 distinct real-life authors ! A random predictor (Rand) obtains 

a Macro-F1 of only 0.057 due to the large number of classes. Whereas our method 

achieves 0.624 Macro-F1 score for this name reference; the second best method for this 

name (GF) achieves only 0.345, indicating a substantial improvement by our method. 

The relatively good performance of our proposed method across all the name refer-

ences is due to the fact that the method is able to learn document embedding, which 

is particularly suited for the name disambiguation task by facilitating information 

exchange among the three networks (see Section 4.2). 

Among the competing methods, AuthorList based methods perform poorly be-

cause the binary features are not intelligent enough to disambiguate documents, even 

after using traditional low dimensional embedding by non-negative matrix factoriza-

tion. Graph kernel based methods such as GL3 and GL4 also have similar fate; the 

possible reason could be that the size-3 and size-4 graphlet structures are not decisive 

patterns to distinguish documents authored by different persons. On the other hand, 

embedding based methods are much better as they are able to learn effective features, 

which bring the documents authored by the same real-life person in close proximity 

in the feature space. This finding justifies our approach of choosing a document em-

bedding method for solving name disambiguation. Among the competing network 

embedding based approaches, as we can observe from all name references, no single 

method emerges as a clear winner. To be more precise, PTE performs poorly as it 

fails to incorporate linked structural information among the documents. Both GF 

and LINE outperform DeepWalk in the majority of name references. This is because 

DeepWalk ignores the weights of the edges, which is considered to be very important 

in the linked document network. However, neither of embedding based competing 



61 

10 20 30 40 50
Embedding Dimension k

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
ac

ro
-F

1

Arnetminer
CiteSeerX

Fig. 4.2.: The effects of embedding dimension on the name disambiguation perfor-
mance 

methods could encode the document co-occurrence by exploiting the information from 

multiple networks, which is exploited by our proposed model. Besides, as mentioned 

earlier, our similarity ranking based objective function is better suited than the K-L 

divergence based objective functions for placing the nodes in the embedding space 

for facilitating a downstream clustering task. This is possibly a significant reason for 

our method to show superior performance over the existing network embedding based 

methods. 

4.4.5 Parameter Sensitivity of Embedding Dimension 

We also perform experiment to show how the embedding dimension k affects 

the disambiguation performance of our proposed method. Specifically, we vary the 

number of embedding dimension k as {10, 20, 30, 40, 50}. For the sake of space, in 

each of the datasets, we show the average results over all the 10 name references. The 

disambiguation results are given in Figure 4.2. As we observe, for both datasets, as 

the dimension of embeddings increases, the disambiguation performance in terms of 
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Fig. 4.3.: Macro-F1 results of multiple L values on name reference “Lei Wang” using 
our method, GF, and LINE (embedding dimension = 20). 

Macro-F1 first increases and then decreases. The possible explanation could be that 

when the embedding dimension is too small, the embedding representation capability 

is not sufficient. However, when the embedding dimension is too large, the proposed 

embedding model may overfit the data, leading to the unsatisfactory disambiguation 

performance. 

4.4.6 Performance Comparison over the Number of Clusters 

One of the potential problems for name disambiguation is to determine the number 

of real-life persons L under a given name reference, because in real-life L is generally 

unknown a-priori. So a method whose performance is superior over a range of L values 

should be preferred. For this comparison, after learning the document representation, 

we use various L values as input in the HAC for name disambiguation and record 

the Macro-F1 score over different L for the competing methods. In our experiment, 

we compare the Macro-F1 value of our method with the two other best performing 

methods over several names. Specifically, we show this result for one name (“Lei 
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Fig. 4.4.: Component contribution analysis in terms of name disambiguation perfor-
mance using Arnetminer and CiteSeerX as a whole source (embedding dimension = 
20). 

Wang” in Arnetminer) using bar-charts in Figure 4.3. In this figure, we compare the 

performance differences between our method with two other best performing methods 

(GF and LINE) as we vary L as {40, 45, 50, 55, 60}. Note that the actual number of 

distinct authors under “Lei Wang” is 48 as shown in Table 4.1. As we can see, our 

proposed method always outperforms the state-of-the-art with all different L values, 

and the overall improvement of our method over these two methods is statistically 

significant with a p-value of less than 0.01. Because of the robustness of our proposed 

embedding method for name disambiguation regardless of L values, this is a better 

method for the real-life application. 

4.4.7 Component Contribution Analysis 

Our proposed network embedding model is composed of three types of networks, 

namely person-person, person-document, and linked document networks. In this 

section we study the contribution of each of the three components for the task of name 

disambiguation by incrementally adding the components in the network embedding 
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Fig. 4.5.: Convergence analysis in terms of both objective loss and Macro-F1 of 
name reference “Lei Wang” using our proposed network embedding model for name 
disambiguation (embedding dimension = 20). 

Table 4.5.: Negative instance sampling strategy comparison in our proposed network 
embedding model for name disambiguation task (embedding dimension = 20). The 
Macro-F1 results are averaged out over 10 name references in each of the datasets. 

Arnetminer CiteSeerX 

Uniform Sampling 0.817 ± 0.015 0.639 ± 0.019 
Dynamic Negative Sampling 0.832 ± 0.011 0.662 ± 0.024 

Adaptive Sampling 0.809 ± 0.009 0.634 ± 0.018 

model. Specifically, we first rank each individual component by its disambiguation 

performance in terms of Macro-F1, then add the components one by one in the order 

of their disambiguation power. In particular, we first add person-document graph, 

followed by linked document graph, and person-person graph. Figure 4.4 shows the 

name disambiguation performance in terms of Macro-F1 value using our proposed 

network embedding model with different component combinations. As we see from 

the figure, after adding each component, we observe improvements for both datasets, 

in which the results are averaged out over all the 10 name references. 
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4.4.8 Negative Instance Sampling Strategy Analysis 

In Table 4.5, we show the name disambiguation performance in terms of Macro-F1 

using various sampling techniques. As we observe, dynamic negative sampling out-

performs both uniform sampling and adaptive sampling with a relative large margin. 

The possible explanation is due to the fact that updating the embedding vectors of 

“hard” negative instances generated by current prediction model makes the docu-

ment vectors disambiguation-aware in the embedded space, leading to the desirable 

name disambiguation results. In contrast, the pre-defined exponential distribution in 

adaptive sampling fails to capture the true discrete distribution of negative instances 

produced by current embedding model, which causes the worse disambiguation per-

formance compared to both dynamic negative sampling and uniform sampling. 

4.4.9 Convergence Analysis 

We further investigate the convergence of proposed network embedding algorithm 

shown in Section 4.3. Figure 4.5 shows the convergence analysis of our method un-

der the name reference “Lei Wang” from Arnetminer. For each epoch, we sample� � 
|Epp| + |Epd| + |Edd| training instances to update the corresponding model em-

bedding vectors. We can observe that our proposed network embedding approach 

converges approximately within 50 epochs and achieves promising convergence results 

on both pairwise ranking based objective loss and Macro-F1. However, as shown in 

Equation 4.7, the objective function in our proposed embedding model is not convex, 

thus reaching global optimal solution using SGD based optimization technique is a 

fairly challenging task. The possible remedy could be to decrease the learning rate α 

in SGD when number of epochs increases. Another strategy is to try multiple runs 

with different seeds initialization. Similar convergence patterns are observed for other 

name references as well. 
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4.5 Chapter Summary 

To conclude, in this chapter we propose a novel representation learning based 

solution to address the name disambiguation problem. Our proposed representation 

learning model uses a pairwise ranking objective function which clusters the docu-

ments belonging to a single person better than other existing network embedding 

methods. Besides, the proposed solution uses only the relational data, so it is partic-

ularly useful for name disambiguation in anonymized network, where node attributes 

are not available due to the privacy concern. Our experimental results on multi-

ple datasets show that our proposed method significantly outperforms many of the 

existing state-of-the-arts for name disambiguation as de-identified data. 
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5. BAYESIAN NON-EXHAUSTIVE CLASSIFICATION 

FOR ACTIVE ONLINE NAME DISAMBIGUATION 

5.1 Introduction 

A key limitation of most of the existing methods for name disambiguation [2, 3, 

5–7, 9, 26, 32] is that they operate in a batch mode, where all records to be resolved 

are initially accessible to the learning algorithm and a learning model is trained using 

features extracted from these records. Hence, they fail to resolve emerging name 

ambiguities caused from the evolution of digital data, or they fail to utilize emerging 

evidences suggestive of merging of name entities which are separated in the existing 

state. Re-running a batch learning to catch up with the data evolution is not practical 

due to the enormity of the computation on a large digital repository. So, it is more 

practical to perform name entity disambiguation task in an incremental fashion by 

considering the streaming nature of records. We call this online name disambiguation, 

which is the focus of this chapter. 

Designing an incremental, i.e., online, name disambiguation is challenging as the 

method must be able to adapt to a non-exhaustive training dataset. A training dataset 

is called exhaustive if it contains records for all values (classes) of the target variable, 

otherwise it is called non-exhaustive. In other words, it should be able to identify 

records belonging to new ambiguous persons who do not have any historical records in 

the system. After identification, the learning algorithm must re-configure the model 

(for instance, update the number of classes, k) so that it can correctly recover fu-

ture records of this newly found ambiguous person. This is an important requirement 

because in real-life, for a common name, a significant number of streaming records be-

longs to novel (not yet seen) persons sharing that name. As an example, consider the 
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Fig. 5.1.: Name ambiguity evolution for the name “Jing Zhang” 

name reference “Jing Zhang” from Arnetminer. As shown in figure 5.1, the number of 

distinct real-life authors in Arnetminer sharing the name “Jing Zhang” has increased 

from 14 to 85 between the year 2004 and 2009. Evidently, the training dataset of 

online name disambiguation is never exhaustive and any supervised classifier trained 

on the assumption of exhaustive training dataset misclassifies (with certainty) all the 

records belonging to a novel ambiguous person. 

Besides non-exhaustiveness, online verification is another desirable property for 

an incremental name disambiguation system. Such a system asks users to provide 

feedback on the correctness of its prediction. Feedback collection can be automated by 

using online social networks or crowdsourcing platforms. As an example, consider the 

online digital library platform ResearchGate; it performs author name disambiguation 

by asking a potential researcher whether he is the author of a paper before adding that 

paper to that person’s profile. Human feedback significantly improves the accuracy 

of a name disambiguation task; however, to reduce human effort the system should 

consult the human as infrequently as possible, and the consultation should be made 

for documents, for which the human feedback would yield the maximum utility for 
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Fig. 5.2.: Bayesian non-exhaustive classification framework for active online name 
disambiguation 

reconfiguring the model. Thus, designing an active name disambiguation system that 

can accommodate streaming non-exhaustive data is another focus of this work. 

A few works that perform online name disambiguation by considering 

non-exhaustive training dataset have emerged recently. For example, Khabsa et 

al. [39] propose a DBSCAN based density estimation model to classify new records 

while they are being added incrementally. Qian et al. [38] present a probabilistic 

model to determine the class membership of a newly added record. Ariano et al. [40] 

introduce an association rule based approach for detecting unseen authors. Even 

though all these studies are able to adapt to the non-exhaustive scenario, their corre-

sponding online prediction models use heuristically chosen threshold values to decide 

whether a record belongs to a new ambiguous author or not; such approaches are 

highly susceptible to the choice of threshold parameters. 

In this work we propose a new Bayesian non-exhaustive classification framework 

for active online name disambiguation problem. Our method, which is illustrated 

in Figure 5.2, uses a Dirichlet Process Gaussian Mixture Model (DPGMM) as the 

core engine. The DPGMM facilitates online non-exhaustive classification by be-

ing partially-observed, where existing classes are modeled by observed components 

and emerging/future classes by the unobserved ones. The hyperparameters of the 

base distribution of Dirichlet process, which is chosen as a bivariate Normal × In-
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verted Wishart (NIW), enables information sharing across existing as well as emerging 

classes. The hyperparameters are estimated using offline records initially accessible 

in the training set. For prediction (i.e., assigning class label to a test record), we 

propose two independent online inference mechanisms, the first is based on one-pass 

Gibbs sampler and the second is based on particle filtering. For both cases, the infer-

ence process jointly tackles online classification and emerging class discovery i.e., the 

inference process evaluates the probability of assigning a future record to an emerging 

class or to one of the existing ones. It also uses predicted label information to update 

the hyperparameters of our online model and thus adapt the new classification model 

to classify subsequent records. We also extend our method to active online name dis-

ambiguation task where the method systematically selects a small number of records 

and seeks user feedback regarding their true class of origin in an effort to effectively 

reconfigure the model. 

Below we summarize the contributions of this chapter: 

1. We study online name disambiguation problem in a non-exhaustive streaming 

setting and propose a self-adjusting Bayesian non-exhaustive model that is ca-

pable of performing online classification, and novel class discovery at the same 

time. To the best of our knowledge, our work is the first one to adapt Bayesian 

non-exhaustive classification for online name disambiguation task. 

2. We propose two online inference algorithms, namely one-pass Gibbs sampler 

and particle filtering, for Dirichlet Process Gaussian Mixture Model to perform 

online non-exhaustive classification in order to efficiently evaluate the class as-

signment of an online record. 

3. We enhance our proposed online name disambiguation approach by making it 

interactive, so that user guidance can be incorporated to improve the disam-

biguation performance. To the best of our knowledge, our model is the first 

work where active learning is coupled with non-exhaustive online learning for 

name disambiguation. 
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4. We use bibliographic datasets to evaluate the proposed approach against several 

benchmarks. The results demonstrate the superiority of the proposed approach 

over the state-of-the-art in online name disambiguation. 

5.2 Online Name Disambiguation Challenges 

For a given name reference a, assume Rn is a stream of records associated with 

a. The subscript n represents the identifier of the last record in the stream and the 

value of this identifier increases as new records are observed in the stream. Each 

record ri ∈ Rn can be represented by a d-dimensional vector which is the feature 

representation of the record in a metric space. In real-life, the name reference a is 

associated with multiple persons (say k) all sharing the same name, a. The task of 

name disambiguation is to partition Rn into k disjoint sets such that each partition 

contains records of a unique person entity. When k is fixed and known a priori, 

name disambiguation can be solved as a k-class classification task using supervised 

learning methodologies. However, for many domains the number of classes (k) is 

not known, rather with new records being inserted in the stream Rn , the number 

of distinct person entities associated with a may increase. The objective of online 

name disambiguation is to learn a model that assigns each incoming record into an 

appropriate partition containing records of a unique person entity. 

Online name disambiguation is marred by several challenges, which we discuss 

below: 

First, for a given record stream Rn = {r1, · · · , ri, · · · , rn}, the record ri is classified 

with the records leading up to ri−1, i.e. Ri−1 is our training data for this classification 

task. However, the record ri may belong to a new person entity (having name a) with 

no previous records in Ri−1. This happens because for online setting, the number 

of real-life name entities in Rn is not fixed, rather it increases over the time. A 

traditional k-class supervised classification model which is trained with records of 
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known entities mis-classifies the new emerging record with certainty, leading to an ill-

defined classification problem. So, for online name disambiguation, a learning model is 

needed which works in non-exhaustive setting, where instances of some classes are not 

at all available in the training data. In existing works, this challenge is resolved using 

clustering framework where a new cluster is introduced for the emerging record of a 

new person entity, but this solution is not robust because small changes in clustering 

parameters make widely varying clustering outcomes. 

The second challenge is that online name disambiguation, more often, leads to a 

severely imbalanced classification task. This is due to the fact that in most of the real-

life name disambiguation problems, the size of the true partitions of the record set Rn 

follows a power-law distribution. In other words, there are a few persons (dominant 

entities) with the name reference a to whom the majority of the records belong. Only 

a few records (typically one or two) belong to each of the remaining entities (with 

name reference a). Typically, the persons whose records appear at earlier time are 

dominant entities, which makes identifying novel entities an even more challenging 

task. 

The third challenge in online name disambiguation is related to the online learning 

scenario, where the incoming record is not merely a test instance of typical super-

vised learning. Rather, the learning algorithm requires detecting whether the in-

coming record belongs to a novel entity, and if so, the algorithm must adapt itself 

and configure model to identify future records of this novel entity. Overall, this re-

quires a self-adjusting model that updates the number of classes to accurately classify 

incoming records to both new and existing classes. 

The final challenge in our list is related to temporal ordering of the records. In 

traditional classification, records do not have any temporal connotation, so an arbi-

trary train/test split is permitted. But, for online setting the model must respect 

time order of the records, i.e., a future record cannot be used for building a training 

model that classifies older records. 
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Our proposed model overcomes all the above challenges by using a principled 

approach. 

5.3 Online Name Disambiguation on Bibliographic Data 

As we have mentioned earlier, name disambiguation is a severe issue in the digital 

library domain. In many other domains, solving name disambiguation is easier as the 

method may have access to personalized attributes of an entity, such as institution 

affiliation, and email address. But, in digital library, the reference of a paper only 

includes paper title, author name, publication venue, and year of publication, which 

are not sufficient for disambiguation of most of the name references. Besides, in many 

citations the first name of the authors are often replaced by initials, which worsen 

the disambiguation issue. As a result, nearly, all the online bibliographic repositories, 

including DBLP, Google scholar, ArnetMiner, and PubMed, suffer from this issue. 

Nevertheless, these repositories provide timely update of the publication data along 

with their chronological orders, so they provide an ideal setting for evaluating the 

effectiveness of an online name disambiguation method. 

In this work, we use bibliographic data as a case study for online name disam-

biguation. For each name reference a, we build a distinct classification model. The 

record stream Rn for the name reference a is the chronologically ordered stream of 

scholarly publications where a is one of the authors. To build a feature vector for a 

paper in Rn we extract features from its author-list, keywords from its paper title, and 

paper venue (journal/conference). We provide more details of feature construction in 

the following subsection. 
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5.3.1 Feature Matrix Construction and Preprocessing 

For a given name reference a, say we have a record stream containing n papers 

for which the name reference a is in the author-list. We represent each paper with a 

d dimensional feature vector. Then we define a data matrix for a, in which each row 

represents a record and each column corresponds to a feature. In addition, each record 

has a class label li to represent the i-th distinct person sharing the name reference a. 

The name disambiguation task is to partition Rn into k disjoint sets such that each 

partition contains records of a unique person with name reference a. Note that, the 

k value is not fixed, rather it can increase as emerging records appear in the stream 

Rn. 

Following earlier works on name disambiguation in the bibliographic domain [7–9], 

we use coauthor information, publication and venue titles as features for a publication 

ri. For coauthor information, we first partition the coauthor list of each paper (except 

a) into authors, then define a binary feature for each author (indicating existence or 

not). Paper titles are processed using standard NLP tools to remove all numbers, 

special characters as well as stop words. After that, we generate a binary value for 

each of the remaining words in the title as its feature value. Paper venue (name of 

journal or conference) is also a binary feature, getting a value of 0 or 1 depending on 

whether the paper is published in a venue or not. 

To address the sparsity of the generated binary feature representation, we pre-

process the data by using an incremental version of non-negative matrix factorization 

(INNMF), which sequentially embeds the original feature matrix into a low dimen-

sional space denoted as Xn ∈ IRn×h , where h is the latent dimension. Specifically, 

we first perform NNMF [143] in the batch mode using the initially available training 

records. Then for each online record, we represent it as a linear combination of a set 

of basis vectors generated from the training set. The coefficients serve as latent fea-

tures for each online record. In order to learn the coefficients, we solve a constrained 



75 

quadratic programming problem by minimizing a least square loss function under the 

constraint that each coefficient is non-negative. The justification of using INNMF is 

to discover effective latent feature representation for each online record to better fit 

our proposed Normal × Normal × Invert Wishart (NNIW) data model. Considering 

the above feature representation of the records, in subsequent discussion we will use 

Xn to represent the records in Rn. 

5.3.2 Problem Formulation 

The active online name disambiguation problem is formally defined as follows: 

given a temporal partition t0, we consider two types of records. The first type consists 

of a collection of n records Xn = {xi}n whose time-stamp is smaller or equal to t0.i=1 

They serve as the training set with known labels denoted as Yn = {yi}in 
=1, where 

yi ∈ {l1, ..., lk}, and k is the number of distinct classes in the training set. The second 

˜ u 
type of records has time-stamp higher than t0; they are represented as Xnu = {x̃i}n 

i=1, 

nu (u stands for unobserved) is the number of records sequentially observed online. 

The online name disambiguation task is to predict the labels of these records denoted 

˜ u 
as Ynu = {ỹi}in 

=1, where ỹi ∈ {l1, ..., lk+˜ } and k̃ 
nu is the number of emerging classes knu 

associated with nu online records. 

Given an online record x̃i, our proposed model computes its probability for be-

longing to one of the existing classes or an emerging one. Based on the computed 

probability, if the disambiguation result is uncertain, we request the ground-truth 

label information of this particular online record from the user and then re-configure 

the model for classifying subsequent records. Note that, user interactiveness is an 

added feature independent of prediction method. If the user feedback is unavailable, 

the method simply predicts the label of a record based on its computed probability 

and proceeds thereon. 
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5.4 Methodology 

In this section we discuss our proposed Bayesian non-exhaustive online name dis-

ambiguation methodologies. The methodologies discussed in this section are domain 

neutral and can be applied to any domain, once an appropriately constructed feature 

matrix is obtained. 

5.4.1 Dirichlet Process Gaussian Mixture Model 

The Dirichlet Process (DP) [144] is one of the most widely used Bayesian non-

parametric priors, parameterized by a concentration parameter α > 0 and a base 

distribution H over a given space θ ∈ Θ. Although the base distribution H can be 

continuous, a sample G ∼ DP (α, H) drawn from a DP is a discrete distribution. In 

order to represent samples G drawn from a DP, it is a common practice to use stick 

breaking construction [145] as below: 

φi ∼ H 

βi ∼ Beta(1, α) 
i−1Y 

πi = βi (1 − βj ) 
j=1 

(5.1) 

As shown in Equation 5.1, in order to simulate the process of stick breaking 

construction, imagine we have a stick of length 1 to represent total probability. We 

first generate each point φi from base distribution H, which originates from our 

proposed Normal × Invert Wishart data model. Then we sample a random variable 

βi from Beta(1, α) distribution. After that we break off a fraction βi of the remaining 

stick as the weight of parameter φi, denoted as πi. In this way it allows us to represent 
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X 
random discrete probability measure G as a probability mass function in terms of 

infinitely many φ1, ..., φ∞ and their corresponding weights π1, ..., π∞ yielding G = 
∞ 

πiδφi , where δφi is the point mass of φi. 
i=1 

Thanks to the discrete nature of G, DP offers an online clustering/classification 

of the streaming records as a by-product. Specifically, given a set of n records Xn = 

{xi}n parameterized by Θn = {θi}n drawn from G, n records can be classified into i=1 i=1 

k classes based on how they (the records) share parameters in Θn. Then, by using 

the definition of Chinese Restaurant Process (CRP) [144], the class label yn+1 for a 

new record xn+1 can be predicted as follows: 

nj
P (yn+1 = lj |Yn) ∝ 

α + n 
α 

P (yn+1 = lk+1|Yn) ∝ (5.2)
α + n 

where lj is one of the labels for existing classes, j ∈ {1, ..., k}, and lk+1 denotes 

the label of a new class. According to CRP, the probability of assigning a new 

incoming record to an existing class lj is proportional to the size of that class nj , and 

the probability of generating an emerging class is proportional to the concentration 

parameter α. 

A DP Gaussian mixture model is obtained when each record xi ∈ IRh is generated 

from a Gaussian distribution whose parameter θi = {µi, Σi} is drawn from G. Note 

that we assume our collected streaming records generated by INNMF step has the 

property of unimodality. Thus, we use a normally distributed data model, which can 

model unimodal class distributions fairly well. Next, we present the Dirichlet Process 

Gaussian Mixture Model (DPGMM) as below: 
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xi ∼ N(xi|θi) 

θi = {µi, Σi} ∼ G 

G ∼ DP (α, H) (5.3) 

In DPGMM, each class component is modeled using a single Gaussian distribution. 

Due to the discreteness of the distribution G, records sharing the same parameter θ 

are considered as belonging to the same class. The base distribution H in DPGMM 

is a conjugate Normal × Invert Wishart (NIW) prior, which is defined as follows: 

H = NIW(µ0, Σ0, κ, m) 
Σ 

= N (µ|µ0, ) × W −1(Σ|Σ0,m) (5.4)
κ 

where µ0 is the prior mean and κ is a scaling constant that controls the deviation 

of the class conditional mean vectors from the prior mean. The parameter Σ0 is a 

positive definite matrix that encodes our prior belief about the expected Σ. The 

parameter m is a scalar that is negatively correlated with the degrees of freedom. 

For a given record xi, by integrating out its corresponding parameters µi and Σi, its 

posterior predictive distribution for a Gaussian data model and NIW prior can be 

obtained in the form of multivariate student-t distribution [146]: 

p(xi|yi = lj ) = T (xi|µj , Σj , vj ) 

nj µj +κµ0 µj = 
nj +κ � � 

nj +κ+1 nj κΣj = Σ0 + (nj − 1)Sj + (µ0 − µj )(µ0 − µj )
T 

(nj +κ)(nj +m+1−h) nj +κ 

vj = nj + m + 1 − h (5.5) 
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where µj and Sj are sample mean and sample covariance matrix for the class lj . µj 

is a h × 1 mean vector, Σj is a h × h scale matrix, and vj is the degree of freedom of 

the obtained multivariate student-t distribution. 

Algorithm 3 One-Pass Gibbs Sampler for Online Name Disambiguation 

Input: Xn, Yn, nu 

Output: Final label prediction set Ŷ 
pred 

1: Initialize Ỹ 
0 = ∅ 

2: for i = 1 to nu do 
˜3: ỹi ∼ p(ỹi|Ỹ 

i−1, Xi, Yn, Xn) 
˜4: Yi ← Ỹ 

i−1 ∪ {ỹi}
ˆ5: Ypred ← Ŷ 

pred ∪ {ỹi}
6: end for 
7: return Ŷ 

pred 

5.4.2 Online Inference by One-Pass Gibbs Sampler 

Given Xn (initially available records in vector representation using NNMF), Yn 

˜(known labels of records in Xn), Xi−1 (the first (i − 1) records observed online), and 

˜ ˜Yi−1 (the predicted labels of records in Xi−1), our goal is to evaluate the conditional 

posterior probability of class indicator variable of i’th online record x̃i as soon as 

the record appears online. If ỹi is the class indicator variable of x̃i, the conditional 

posterior probability of ỹi can be derived using one-pass Gibbs sampler as below: 

˜p(ỹi = lj |Ỹ 
i−1, Xi, Yn, Xn)⎧ ⎨⎪ nj T (x̃i|µj , Σj , vj ) if j ∈ {1, ..., k + k̃ 

i−1}α+n+i−1∝ (5.6)⎪ α⎩ T (x̃i), if j = k + k̃ 
i−1 + 1 α+n+i−1 

From Equation 5.6, the conditional posterior probability of ỹi depends on the 

posterior predictive likelihood of x̃i in the form of multivariate student-t distribu-
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tion and CRP prior of the corresponding class component. Specifically, the incom-

ing online record x̃i belongs to one of the existing classes with probability propor-

tional to nj T (x̃i|µj , Σj , vj ), and a new class with probability proportional to
α+n+i−1 

α T (x̃i). Note that T (x̃i) is another multivariate student-t distribution by set-
α+n+i−1 

ting all sufficient statistics in Equation 5.5 to empty sets. 

The pseudo-code of the proposed one-pass Gibbs sampler for online name dis-

ambiguation is summarized in Algorithm 3. Given a collection of n records initially 

available in training set Xn, and their corresponding true label information Yn, we 

aim to predict the class indicator variables of nu records sequentially observed online. 

Specifically, from line 2-6, we utilize the conditional posterior probability shown in 

Equation 5.6 to decide the class assignment of each online record, denoted as ỹi. Af-

ter processing all nu online records, we return the predicted class set Ŷ 
pred for final 

evaluation in line 7. 

5.4.3 Online Inference by Particle Filtering 

For the one-pass Gibbs sampler, the accumulated classification error from all mis-

labeled online records is propagated and eventually the model is likely to diverge from 

its true posterior distribution leading to poor online disambiguation performance. To 

address this issue, we develop a Sequential Importance Sampling with Resampling 

(SISR) [147] technique, also known as particle filtering in the literature. In contrast 

to a one-pass Gibbs sampler, particle filtering employs a set of particles, whose weights 

can be incrementally updated as new records appear online. Each particle maintains 

class configurations of all observed online records and the weight of a particle indi-

cates how well the particle fits the data. Resampling ensures that particles with high 

weights are more likely to be replicated and the ones with low weights are more likely 

to be eliminated. By keeping a diverse set of class configurations, particle filtering 
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allows for more effective exploration of the state-space and often generates a better 

local optimum than that would be obtained by a one-pass Gibbs sampler. 

Specifically, in the particle filtering framework, for each online record, we approx-

imate its true class posterior distribution by a discrete distribution defined by a set 

of particles and their weights, which can be incrementally updated without having 

˜access to all past records. Mathematically, we are interested in predicting Yi, i.e., 

˜the class labels for all Xi at the time x̃i appears online. The prediction can be done 

by finding the expectation of the posterior distribution of class indicator variables, h i 
˜ ˜namely E p(Ỹi|Ỹi−1,X̃i,Yn,Xn) Yi . By using an importance function q(Ỹ 

i|Ỹ 
i−1, Xi, Yn, Xn)h i 

˜to sample particles, in which case the E p(Ỹi| ̃  X̃i,Yn,Xn) Yi can be approximated asYi−1, 

below: 

h i 
˜E ˜ Yip(Ỹi|Ỹi−1,Xi,Yn,Xn) R ̃

˜= Yip(Ỹi|Ỹi−1, Xi, Yn, Xn)dỸi � �R ̃
˜ ˜= YiWi Yi q(Ỹi|Ỹi−1, Xi, Yn, Xn)dỸi � �PM Ỹ m Ỹ m≈ i Wi δỸ  m (5.7)m=1 i 

i 

where M is the number of particles, Ỹ 
i
m represents the class configurations of first i� � 

p(Ỹ  m|Ỹ  m X̃i,Yn,Xn)i i−1,˜online records in m-th particle, and Wi Yi
m = 

q(Ỹ  m|Ỹ  m ˜ is the corresponding 
Xi,Yn,Xn)i i−1, 

weight of the m-th particle when i-th online record is observed. Using the chain rule, 

the particle weights can be sequentially updated as follows: 

� � 
p(Ỹ  m|Ỹ  m X̃i,Yn,Xn)

Ỹ m i i−1, =Wi i q(Ỹ  m|Ỹ  m X̃i,Yn,Xn)i i−1,� � 
Y m ˜ Y m 

= Wi−1 i−1 xi|Ỹ  m ˜ yi|Ỹ  m
i− 
˜ 
1 (5.8)Ỹ m p(x̃i| ̃  

i ,Xi−1,Yn,Xn)p(ỹi| ̃  ,Yn) 

p(˜ Xi−1,Yn,Xn)q(˜ Xi,Yn,Xn)i−1, i−1, 

To further simplify the formula, we set importance function to be CRP prior of 

the class indicator variable ỹi, namely q(ỹi|Ỹ m X̃ 
i, Yn, Xn) = p(ỹi|Ỹ m , Yn). Further-i−1, i−1 
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Y m ˜ Y mmore, p(x̃i| ̃  
i−1, Xi−1, Yn, Xn) is constant with respect to ˜ i . Thus the weight update 

formula in Equation 5.8 can be simplified as below: 

� � � � 
˜ Ỹ m ˜Wi Y m ∝ Wi−1 p(x̃i|Ỹ m , Xi−1, Yn, Xn) (5.9)i i−1 i 

Y m ˜In Equation 5.9, p(x̃i| ̃  , Xi−1, Yn, Xn) is a multivariate student-t distributioni 

under the DPGMM. Thus at the time online record x̃i appears, the weights of all� � 
Wi(Ỹ  m)iM particles can be updated and then normalized, namely Wi Ỹ 

i
m = PM 

� � , 
Ỹ  pWip=1 i 

into a discrete probability distribution to approximate the true conditional posterior 

distribution of its class indicator variable ỹi. 

In order to alleviate the problem of particle degeneracy and avoid the situation 

that all but a few particle weights are close to zero, we add a stratified resampling step 

as suggested in [147]. The general philosophy of this resampling step is to replicate 

particles with high weights and eliminate particles with low weights. At the time 

x̃i appears online, we use the weight update formula 5.9 to compute weights of all 

particles. Then we calculate an estimate of the effective number of particles, which 

is defined as ENP = PM 
1 . If this value is less than a given threshold,
[Wi(Ỹ  m)]2 

m=1 i 

we perform resampling. Specifically, we draw M particles from the current particle 

set (with replacement) with probabilities proportional to their weights and then we 

replace the current particle set with the new one. Meanwhile, we reset the weights 

of all particles to a uniform weight, which is 
M 
1 . In summary, in the particle filtering 

framework, after sampling particles using the CRP prior and updating particle weights 

as in Equation 5.9, we either retain weighted particles, in which case the weights are 

accumulated over time, or we resample particles so that they have uniform weights. 

The pseudo-code of the proposed particle filtering algorithm for online name dis-

ambiguation is summarized in Algorithm 4. Specifically, in line 1, we initialize the 

class configurations of all particles as ∅ and their weights as uniform weights. From 

line 2-8, we perform particle sampling and weight update steps. In line 9, if the 

effective number of particles criteria ENP is below a threshold ENPthr, we perform 
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stratified resampling as shown in line 10-14. For the final prediction of class indicator 

variable for online record x̃i, we sum the particle weights based on the particle class 

labels assigned to x̃i and choose the class label with the maximum weights as the 

final class label, denoted as ŷi in line 15. Finally, we return the predicted class set 

Ŷ 
pred for evaluation. In contrast to particle filtering in Algorithm 4, one-pass Gibbs 

sampler shown in Algorithm 3 can be approximately considered as a special but very 

restricted case of particle filtering with only one particle by setting the number of 

particles M = 1. 

Algorithm 4 Particle Filtering Algorithm for Online Name Disambiguation 

Input: Xn, Yn, nu, M , ENPthr 

Output: Final label prediction set Ŷ 
pred 

1: Initialize Ỹ m = ∅ and W0(Ỹ m) = 1 for all m ∈ {1, 2, ..., M}0 0 M 
2: for i = 1 to nu do 
3: for m = 1 to M do 
4: ỹi ∼ p(ỹi|Ỹ m , Yn)i−1 

˜5: Y m ← Ỹ m ∪ {ỹi}i � �i−1 � � 
Ỹ m Ỹ m Y m ˜6: p(x̃i| ̃  , Xi−1, Yn, Xn)Wi i ∝ Wi−1 i−1 i 

7: end for 
8: Normalize particle weights 
9: if ENP ≤ ENPthr then 
10: for m = 1 to M do � � 
11: Resample Ỹ m with probability ∝ Wi Ỹ m � � i i 

Ỹ m 112: Wi i = 
M 

13: end for 
14: end if 
15: Aggregate the particle weights based on all M particle class labels and predict 

the label of x̃i with maximum weights, namely Ŷ 
pred ← Ŷ 

pred ∪ {ŷi}
16: end for 
17: return Ŷ 

pred 
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5.5 Active Online Name Disambiguation 

Based on our developed particle filtering based online inference algorithm, we 

propose an active learning framework for online name disambiguation, which mainly 

consists of the two steps as below: 

Active Selection: The objective of this step is to identify records with the most 

uncertain disambiguation results based on the posterior probability and seek user 

feedback for these cases for true label information. Specifically, for each online record, 

we first estimate its class conditional posterior probability using particle filtering 

(Section 5.4.3), then we use an entropy-based criteria to quantify the confidence of the 

tentative disambiguation result. Let the probability of an online record belonging to 

class lj be pj , and total number of predicted classes among all particle configurations P|J |be |J |. Then the entropy can be calculated as − pj logpj . Note that the range of j=1 

computed entropy values is between 0 and log|J |, where 0 means the disambiguation 

prediction is most confident and log|J | means the disambiguation prediction is least 

confident. If the entropy is larger than a user-defined threshold, i.e., τ ∗ log|J | (0 ≤ 

τ ≤ 1), we consider the disambiguation result as uncertain and seek user feedback to 

obtain true class assignment for this particular record. 

Model Update: The goal of this step is to refine the conditional posterior prob-

ability of class indicator variable of current online record when its true label is offered 

by users. Specifically, we first use this ground-truth label information to update class 

configurations of all particles with respect to this particular online record and then 

refine the weight of each particle using Equation 5.9. 

5.6 Experimental Results 

In the experiment, we consider bibliographic data in a temporal stream format 

and disambiguate authors by partitioning their records (papers) into homogeneous 

groups. Specifically, we compare our proposed Bayesian non-exhaustive classification 
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Table 5.1.: Arnetminer name disambiguation dataset 

Name # Records # Attributes # Distinct 
Reference Authors 

Kai Zhang 66 488 24 
Bo Liu 124 749 47 

Jing Zhang 231 1456 85 
Yong Chen 84 551 25 
Yu Zhang 235 1440 72 
Hao Wang 178 1074 48 
Wei Xu 153 1037 48 
Lei Wang 308 1819 112 
Bin Li 181 1142 60 

Ning Zhang 127 744 33 
Feng Liu 149 919 32 
Lei Chen 196 1052 40 

David Brown 61 437 25 
Yang Wang 195 1227 55 
Gang Chen 178 1049 47 
X. Zhang 62 601 40 
Yun Wang 46 360 19 
Z. Wang 47 498 38 
Bing Liu 182 897 18 
Yang Yu 71 444 19 
Ji Zhang 64 398 16 
Bin Yu 105 600 17 
Lu Liu 58 425 17 
Ke Chen 107 603 16 
Gang Luo 47 270 9 

framework with various existing methods to demonstrate its superiority over those 

methods for performing online name disambiguation. Furthermore, we also demon-

strate the usages of proposed active online name disambiguation on a real-world name 

reference. 

5.6.1 Datasets 

A key challenge for the evaluation of name disambiguation task is the lack of 

availability of labeled datasets from diverse application domains. In recent years, 

the bibliographic repository site, Arnetminer has published several ambiguous author 

name references along with respective ground truths (paper list of each real-life per-

son), which we use for evaluation. Specifically we use 25 highly ambiguous (having 
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a larger number of distinct authors for a given name) name references and show the 

performance of our method on these name references. The statistics of each name 

reference are shown in Table 5.1. In this table, we show the number of records, the 

number of binary attributes (explained in Section 5.3.1) and the number of distinct 

authors associated with that name reference. It is important to understand that 

the online name disambiguation model is built on a name reference, not on a source 

dataset, like Arnetminer as a whole, so each name reference is a distinct dataset on 

which the evaluation is performed. 

5.6.2 Competing Methods 

In order to illustrate the merit of our proposed approach, we compare our model 

with the following benchmark techniques. Among these the first two are existing 

state-of-the- art online name disambiguation methods, and the latter two are baselines 

that we have designed. 

1. Qian’s Method [38] Given the collection of training records initially available, 

for a new record, Qian’s method computes class conditional probabilities for 

existing classes. This approach assumes that all the attributes are independent 

and the procedure of probability computation is based on the occurrence count 

of each attribute in all records of each class. Then the computed probability is 

compared with a pre-defined threshold value to determine whether the newly 

added record should be assigned to an existing class, or to a new class not yet 

included in the previous data. 

2. Khabsa’s Method [39] Given the collection of training records initially avail-

able this approach first computes the �-neighborhood density for each online 

sequentially observed record. The �-neighborhood density of a new record is 

considered as the set of records within � euclidean distance from that record. 

Then if the neighborhood is sparse, the new record is assigned to a new class. 
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Otherwise, it is classified into the existing class that contains the most records 

in the �-neighborhood of the new record. 

3. BernouNaive-HAC: In this baseline, we first model the data with a multi-

variate Bernoulli distribution (features are binary, so Bernoulli distribution is 

used) and train a Naive Bayes classifier. This classifier returns class conditional 

probabilities for each record in the test set which we use as meta features in a 

hierarchical agglomerative clustering (HAC) framework. 

4. NNMF-SVM-HAC: We perform NNMF on our binary feature matrix and 

use the coefficients returned by NNMF to train a linear SVM. Class conditional 

probabilities for each test record are used as meta features in a hierarchical 

agglomerative clustering (HAC) framework the same way described above. 

5.6.3 Experimental Setting and Implementation 

For each of the 25 name references, we aim to build a separate model to classify 

the online records belonging to existing classes represented in the training set, as well 

as identifying records belonging to emerging classes not represented in the training 

set. In particular, we first train the model using the training set initially available, 

then we add the records in the test set one-by-one in order to simulate new incoming 

streaming data. The train and test partition is based on the temporal order of each 

record in the dataset. To be more precise, we put the most recent T0 years’ records 

into the test set and the records from earlier years into the initially available training 

set. Furthermore, we verify how the performance of our proposed model varies as we 

tune the value of T0. In the experiment, we set T0 as 2 and 3. For the evaluation 

metric, we use mean-F1 measure [125], which is unweighted average of F1-measure of 

individual classes. The range of mean-F1 measure is between 0 and 1, and a higher 

value indicates better disambiguation performance. 

Our proposed Bayesian non-exhaustive classification framework has a few tunable 

parameters. Among them, the set of prior parameters (Σ0, µ0, m, κ) in the base 
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distribution of NIW can be learned from the training set. For example, we use the 

mean of training set to estimate µ0, and set Σ0 to be the pooled covariance matrix as 

suggested in [148]. For m and κ, we use vague priors for fixing their values to h + 100 

and 100 respectively. In addition to that, there are three additional user-defined 

parameters in our proposed framework. Specifically, we set latent dimension h in 

INNMF as 10, concentration parameter α in Dirichlet Process as 100, and number 

of particles M to be 100. Finally, in particle filtering, when the effective number of 

particles is below M 
2 as suggested by [147], we perform resampling. 

For all the competing methods, we use identical set of features (before dimen-

sionality reduction). We vary the probability threshold value of Qian’s method and 

� value of Khabsa’s method by cross validation on the training dataset. and select 

the ones that obtain the best disambiguation performance in terms of Mean-F1 score. 

For BernouNaive-HAC and NNMF-SVM-HAC methods, during the hierarchical ag-

glomerative clustering step, we tune the number of clusters in training set by cross 

validation in order to get the best disambiguation result. 

For both data processing and model implementation, we write our own code in 

Python and use NLTK, NumPy, SciPy, scikit-learn, and filterpy libraries for data 

cleaning, linear algebra and machine learning operations. We run all the experiments 

on a 2.1 GHz Machine with 8GB memory running Linux operating system. 

5.6.4 Performance Comparison with Competing Methods 

Table 5.2 and Table 5.3 show the online name disambiguation performance be-

tween our proposed method and other competing methods for all 25 name references. 

In both tables, #train records and #test records columns show the number of training 

and test records. #emerge records column is the number of records in test set with 

their corresponding classes not represented in the initial training set, and #emerge 

classes column denotes the number of emerging classes not represented in the train-

ing set. The columns 6-11 show the performance of a method using mean-F1 score 
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Table 5.2.: Comparison of mean-F1 values using records with most recent 2 years as 
test set. Paired t-test is conducted on all performance comparisons and it shows that 
all improvements are significant at the 0.05 level. 

Name # train # test # emerge # emerge Gibbs Sampler Particle Filter BernouNaive- NNMF- Qian’s Khabsa’s Improv. 
Reference records records records classes HAC SVM-HAC Method [38] Method [39] 

Kai Zhang 42 24 15 8 0.633 (0.041) 0.661 (0.013) 0.605 0.621 0.619 0.518 6.4% 
Bo Liu 99 25 11 8 0.716 (0.033) 0.804 (0.011) 0.733 0.719 0.714 0.559 9.7% 

Jing Zhang 121 110 56 35 0.591 (0.028) 0.639 (0.008) 0.554 0.566 0.590 0.631 1.3% 
Yong Chen 70 14 5 5 0.889 (0.016) 0.807 (0.006) 0.852 0.794 0.848 0.833 4.3% 
Yu Zhang 124 111 62 30 0.535 (0.013) 0.678 (0.008) 0.498 0.516 0.515 0.502 31.4% 
Hao Wang 148 30 9 8 0.747 (0.026) 0.672 (0.009) 0.635 0.639 0.702 0.581 6.4% 
Wei Xu 127 26 11 10 0.844 (0.033) 0.892 (0.012) 0.811 0.750 0.767 0.689 10.0% 
Lei Wang 245 63 28 24 0.705 (0.012) 0.722 (0.007) 0.701 0.708 0.703 0.620 2.0% 
Bin Li 154 27 11 9 0.807 (0.029) 0.865 (0.011) 0.775 0.733 0.775 0.743 11.6% 
Feng Liu 104 45 6 5 0.589 (0.031) 0.719 (0.022) 0.501 0.499 0.399 0.339 43.5% 
Lei Chen 96 100 24 18 0.356 (0.043) 0.438 (0.012) 0.646 0.527 0.430 0.222 -32.2% 
Ning Zhang 97 30 16 12 0.635 (0.021) 0.713 (0.018) 0.669 0.685 0.647 0.608 4.1% 
David Brown 48 13 4 3 0.839 (0.019) 0.937 (0.006) 0.904 0.593 0.816 0.450 3.7% 
Yang Wang 118 77 38 20 0.469 (0.033) 0.698 (0.009) 0.513 0.549 0.325 0.440 27.1% 
Gang Chen 113 65 20 14 0.821 (0.004) 0.816 (0.012) 0.474 0.467 0.451 0.357 73.2% 
X. Zhang 54 8 5 5 0.969 (0.018) 1.0 (0.011) 0.593 0.485 0.952 0.222 5.0% 
Yun Wang 31 15 6 6 0.680 (0.011) 0.762 (0.005) 0.512 0.479 0.644 0.358 18.3% 
Z. Wang 41 6 5 4 0.884 (0.023) 0.906 (0.003) 0.693 0.712 0.889 0.701 1.9% 
Bing Liu 156 26 4 4 0.495 (0.009) 0.727 (0.004) 0.318 0.466 0.356 0.406 56.0% 
Yang Yu 51 20 6 6 0.503 (0.013) 0.648 (0.003) 0.499 0.523 0.684 0.493 -5.3% 
Ji Zhang 46 18 7 5 0.512 (0.024) 0.616 (0.008) 0.412 0.392 0.514 0.545 13.0% 
Bin Yu 87 18 7 4 0.469 (0.011) 0.579 (0.004) 0.488 0.526 0.564 0.540 2.7% 
Lu Liu 24 34 17 9 0.406 (0.012) 0.497 (0.009) 0.417 0.429 0.399 0.346 15.9% 
Ke Chen 70 37 7 6 0.370 (0.012) 0.439 (0.005) 0.401 0.398 0.423 0.501 -12.4% 
Gang Luo 30 17 6 3 0.603 (0.022) 0.865 (0.005) 0.622 0.693 0.744 0.786 10.1% 

Table 5.3.: Comparison of mean-F1 values using records with most recent 3 years as 
test set. Paired t-test is conducted on all performance comparisons and it shows that 
all improvements are significant at the 0.05 level 

Name # train # test # emerging # emerging Gibbs Sampler Particle Filter BernouNaive- NNMF- Qian’s Khabsa’s Improv. 
Reference records records records classes HAC SVM-HAC Method [38] Method [39] 

Kai Zhang 27 39 20 10 0.602 (0.021) 0.632 (0.011) 0.503 0.584 0.520 0.510 8.2% 
Bo Liu 66 58 29 21 0.699 (0.011) 0.767 (0.022) 0.612 0.606 0.612 0.631 21.6% 

Jing Zhang 82 149 77 47 0.568 (0.022) 0.601 (0.009) 0.480 0.446 0.423 0.419 25.2% 
Yong Chen 54 30 12 8 0.775 (0.047) 0.788 (0.021) 0.615 0.701 0.615 0.545 12.4% 
Yu Zhang 87 148 71 38 0.457 (0.013) 0.639 (0.019) 0.445 0.615 0.447 0.412 3.9% 
Hao Wang 115 63 17 12 0.698 (0.031) 0.545 (0.011) 0.513 0.572 0.540 0.512 22.0% 
Wei Xu 101 52 17 14 0.734 (0.051) 0.836 (0.028) 0.683 0.603 0.635 0.586 22.4% 
Lei Wang 173 135 67 45 0.693 (0.044) 0.701 (0.031) 0.560 0.522 0.536 0.428 25.2% 
Bin Li 108 73 37 23 0.777 (0.009) 0.828 (0.004) 0.532 0.574 0.588 0.545 40.8% 
Feng Liu 70 79 9 8 0.545(0.017) 0.618 (0.027) 0.488 0.527 0.379 0.424 17.3% 
Lei Chen 65 131 39 25 0.332 (0.029) 0.382 (0.007) 0.493 0.447 0.398 0.176 -22.5% 
Ning Zhang 76 51 32 19 0.589 (0.034) 0.682 (0.019) 0.744 0.531 0.420 0.378 -8.3% 
David Brown 39 22 17 7 0.734 (0.008) 0.899 (0.002) 0.751 0.631 0.752 0.478 19.5% 
Yang Wang 92 103 46 25 0.436 (0.012) 0.627 (0.011) 0.313 0.298 0.225 0.240 100.3% 
Gang Chen 89 89 27 19 0.799 (0.008) 0.737 (0.012) 0.347 0.407 0.383 0.221 96.3% 
X. Zhang 53 9 6 6 0.959 (0.016) 0.992 (0.005) 0.563 0.445 0.905 0.202 9.6% 
Yun Wang 25 21 17 9 0.535 (0.012) 0.668 (0.006) 0.501 0.438 0.567 0.385 17.8% 
Z. Wang 35 12 10 8 0.842 (0.013) 0.894 (0.011) 0.613 0.652 0.879 0.424 1.7% 
Bing Liu 141 41 9 5 0.415 (0.019) 0.648 (0.006) 0.307 0.481 0.286 0.371 34.7% 
Yang Yu 37 34 10 8 0.471 (0.014) 0.539 (0.007) 0.459 0.508 0.510 0.447 5.7% 
Ji Zhang 41 23 8 6 0.461 (0.017) 0.591 (0.003) 0.402 0.349 0.494 0.483 19.6% 
Bin Yu 80 25 11 47 0.430 (0.012) 0.559 (0.008) 0.461 0.539 0.423 0.463 3.7% 
Lu Liu 10 48 34 13 0.336 (0.013) 0.409 (0.011) 0.401 0.418 0.317 0.426 -4.0% 
Ke Chen 54 53 20 7 0.313 (0.012) 0.339 (0.009) 0.396 0.337 0.404 0.442 -23.3% 
Gang Luo 20 27 8 4 0.627 (0.021) 0.810 (0.009) 0.612 0.674 0.675 0.726 11.6% 

for online disambiguation of records under a given name reference. The last column 

represents the overall improvement of our proposed method compared with the best 

competing method. Since both one-pass gibbs sampler and particle filtering based 
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online inference techniques in our proposed online name disambiguation model are 

randomized algorithms, for each name reference we run the method 30 times and 

report the average mean-F1 score. In addition, for our method, we also show the 

standard deviation in the parenthesis 1 . For better visual comparison, we highlight 

the best mean-F1 score of each name reference with bold-face font. 

If we compare the 25 datasets between the two tables, for higher T0 value, the 

number of training records decreases, the number of test records, emerging records, 

and emerging classes increase. It makes the online name disambiguation task in the 

first setting (2 years test split, i.e., T0 = 2) easier than the second setting (T0 = 3) 

. This is reflected in the mean-F1 values of all the name references across both 

tables. For example, for the first name reference, Kai Zhang, mean-F1 score of particle 

filtering across these two tables are 0.661 and 0.632 respectively. This performance 

reduction is caused by the increasing number of emerging classes; 8 in Table 5.2, 

and 10 in Table 5.3. Another reason is decreasing number of training instances; 

42 in Table 5.2, and 27 in Table 5.3. As can be seen in both tables, our name 

disambiguation dataset contains a large number of emerging records in the test data, 

all of these records will be misclassified with certainty by any traditional exhaustive 

name disambiguation methods. This is our main motivation for designing a non-

exhaustive classification framework for online name disambiguation task. 

Now we compare our method with the four competing methods. As we observe, 

our proposed online name disambiguation model performs best for 22 and 21 name 

references (out of 25) in Table 5.2 and Table 5.3, respectively. Besides, the overall 

percentage improvement that our method delivers over the second best method is 

relatively large. For an example, consider the name reference “Jing Zhang” shown 

in Table 5.3. This is a difficult online name disambiguation task as it contains a 

large number of emerge records in the test set (77 emerge records from 47 emerge 

classes), thus any traditional classifier will misclassify all these emerge records with 

certainty. For our proposed particle filter and one-pass Gibbs sampler, it achieves 

1Standard deviation for other competing methods are not shown due to space limit. 
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0.601 and 0.568 mean-F1 score for this name reference, respectively; whereas the best 

competing method for this name (BernouNaive-HAC) obtains only 0.480, indicating 

a substantial improvement (25.2%) by our method (particle filtering). The relatively 

good performance of the proposed method may be due to our non-exhaustive learning 

methodologies. It also suggests that the base distribution used by the proposed 

Dirichlet process prior model whose parameters are estimated using data from known 

classes can be generalized for the class distributions of unknown classes as well. 

When we compare between our proposed online inference approaches, particle 

filtering performs better than one-pass Gibbs sampler. The possible explanation could 

be that one-pass Gibbs sampler fails to maintain multiple local optimal solutions and 

prevent error propagations effectively during the online execution. In comparison, 

particle filtering offers more accurate approximation of class posterior distribution 

for each online record, which leads to better mean-F1 performance across most of 

name references. 

In contrast, among all the competing methods, Qian’s method and Khabsa’s 

method perform the worst as they fail to incorporate prior information about class 

distribution into the models and the results are very sensitive to the selections of 

threshold parameters. On the other hand both BernouNaive-HAC and NNMF-SVM-

HAC operate in an off-line framework. Although for some name references mean-F1 

scores obtained by these techniques are higher than our proposed method, there is a 

clear trend favoring our proposed method over these methods—latter cannot explic-

itly identify streaming records of new ambiguous classes in an online setting. 

Table 5.4 presents the result of automatic estimation of number of distinct real-life 

persons in test set using both one-pass Gibbs sampler and particle filtering. From the 

table, as we observe, for most of name references, the predicted number of distinct 

persons are slightly larger than the actual ones. The possible explanation could be 

that our name disambiguation datasets contain skewed classes, and DPGMM tends to 

produce multiple components for each class. Despite that, as a remark, our predicted 

results are very close to the actual ones, which demonstrate the effectiveness of our 
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Table 5.4.: Results of number of distinct real-life persons under our proposed Bayesian 
non-exhaustive classification framework using most recent 3 years’ records as test set 

Name # Actual Authors # Predicted Authors # Predicted Authors 
Reference (Gibbs Sampler) (Particle Filter) 

Kai Zhang 
Bo Liu 

Jing Zhang 
Yong Chen 
Yu Zhang 
Hao Wang 
Wei Xu 
Lei Wang 
Bin Li 
Feng Liu 
Lei Chen 
Ning Zhang 
David Brown 
Yang Wang 
Gang Chen 
X. Zhang 
Yun Wang 
Z. Wang 
Bing Liu 
Yang Yu 
Ji Zhang 
Bin Yu 
Lu Liu 
Ke Chen 
Gang Luo 

15 
30 
62 
13 
55 
27 
27 
65 
32 
26 
12 
23 
11 
36 
28 
9 
12 
10 
8 
14 
11 
11 
15 
12 
5 

19.1 ± 3.2 
34.2 ± 2.0 
51.4 ± 4.8 
14.2 ± 1.9 
60.3 ± 4.8 
35.6 ± 2.3 
30.2 ± 1.8 
70.1 ± 4.6 
35.6 ± 4.1 
29.7 ± 3.3 
18.2 ± 2.9 
21.1 ± 1.7 
13.4 ± 3.6 
28.9 ± 4.5 
30.2 ± 1.8 
10.3 ± 3.7 
14.3 ± 3.9 
12.4 ± 3.7 
10.6 ± 1.9 
17.4 ± 5.7 
10.3 ± 6.9 
9.3 ± 2.8 
12.1 ± 3.3 
14.1 ± 2.4 
7.9 ± 2.0 

20.3 ± 3.7 
31.3 ± 2.9 
56.3 ± 5.6 
16.9 ± 2.2 
56.8 ± 4.3 
33.8 ± 3.2 
29.0 ± 2.5 
68.5 ± 3.4 
37.0 ± 3.5 
23.8 ± 2.9 
14.5 ± 4.1 
24.8 ± 2.2 
14.2 ± 1.8 
35.2 ± 2.6 
31.8 ± 2.0 
12.1 ± 2.8 
11.7 ± 0.9 
11.6 ± 1.2 
9.2 ± 2.2 
15.8 ± 2.6 
12.1 ± 2.3 
12.3 ± 1.6 
16.3 ± 1.5 
13.2 ± 1.9 
10.2 ± 2.7 

proposed online name disambiguation framework for estimating the number of actual 

real-life persons accurately under the non-exhaustive setup. 

5.6.5 Feature Contribution Analysis 

We investigate the contribution of each of the defined features (coauthor, keyword, 

venue) for the task of online name disambiguation. Specifically, we first rank the 

individual features by their performance in terms of mean-F1 score, then add the 

features one by one in the order of their disambiguation power. In particular, we 

first use author-list, followed by keywords, and publication venue. In each step, we 

evaluate the performance of our proposed online name disambiguation method using 

the most recent two years’ publication records as test set. Figure 5.3 shows the mean-
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Fig. 5.3.: Feature contribution analysis using most recent 2 years’ publication records 
as test set. The results are averaged out over all 25 name references for better visu-
alization. 

F1 value of our method with different feature combinations. As we can see from this 

figure, for both one-pass Gibbs sampler and particle filtering based online inference 

techniques, after adding each feature group we observe improvements in terms of 

mean-F1 score, in which the results are averaged out over all the 25 name references 

for better visualization. 

5.6.6 Study of Running Time 

A very desirable feature of our proposed Bayesian non-exhaustive classification 

model is its running time. For example, using the most recent two years’ records 

as test set, on the name reference “Kai Zhang” containing 66 papers with 10 latent 

dimensionality, it takes around 0.29 and 1.09 seconds on average to assign the test 

papers to different real-life authors for one-pass Gibbs sampler and particle filtering, 

respectively. For the name reference “Lei Wang” with 308 papers using same number 

of latent dimensionality, it takes around 1.95 and 5.91 seconds on average under the 

same setting. This suggests only a linear increase in computational time with respect 

to the number of records. However in addition to number of records, the computa-
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Fig. 5.4.: The effects of latent dimension h, concentration parameter α in Dirichlet 
process, and number of particles M in particle filtering on the online name disam-
biguation performance using most recent 2 years’ records as test set. The results are 
averaged out over all 25 name references. 

tional time depends on other factors, such as the latent dimensionality, the number of 

particles, and the number of classes generated, which in turn depends on the values of 

the hyperparameters used in the data model and concentration parameter in dirichlet 

process. 

5.6.7 Study of Parameter Sensitivity 

In our proposed Bayesian non-exhaustive classification framework, there are three 

user-defined parameters, namely latent dimension h, concentration parameter α in 

Dirichlet process, and number of particles M in particle filtering. In this section, 

we investigate the classifier performance with respect to these three parameter vari-

ations. The results are shown in Figures 5.4(a), 5.4(b), 5.4(c). Specifically, first 

for latent dimension sensitivity, as we see from Figure 5.4(a), for both online infer-

ence approaches, as the latent dimension increases, the online name disambiguation 

performance in terms of Mean-F1 first increases and then decreases. The possible 

explanation is that when the latent dimension is too small, the representation capa-

bility of the latent feature is not sufficient and we may lose information. However, 

when the latent dimension is too large, the proposed INNMF technique (details in 

Section 5.3.1) is too complex and we may over-fit to the data. The second parameter 
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Fig. 5.5.: Online name disambiguation performance over the number of observed 
online records on name reference “Jing Zhang” using most recent 3 years’ records as 
test set. 

α in the Dirichlet process prior model (Section 5.4.1) controls the probability of as-

signing an incoming record to a new class and it plays a critical role in the number of 

generated classes in the online name disambiguation process. As we can observe from 

Figure 5.4(b), the classifier performance is robust with respect to different α values. 

Finally, Figure 5.4(c) shows that only a few number of particles is sufficient to have 

desirable classifier prediction (details in Section 5.4.3). 

5.6.8 Performance over the Number of Observed Online Records 

We investigate the online name disambiguation performance over the number of 

sequentially observed records. We use the name reference “Jing Zhang” 2 with its 

corresponding most recent 3 years’ records as test set as a case study. Specifically, we 

evaluate the mean-F1 score as we process {30, 60, 90, 120, 149} test records. As we 

see from Figure 5.5, as more records are observed online, the overall disambiguation 

2We choose name reference “Jing Zhang” as a case study due to the fact that it contains the largest 
number of test records (149) among all name references used in the experiment. 
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Fig. 5.6.: Mean-F1 comparison between our proposed active selection and random 
selection with respect to different ratios of queried online records on name reference 
“Jing Zhang” using most recent 3 years’ records as test set. The higher the curve, 
the better the performance. 

performance improves in both one-pass Gibbs sampler and particle filtering based 

online inference techniques. The results demonstrate that our proposed learning 

model has self-adjusting capacity that accurately classify incoming online records to 

both novel and existing classes and effectively prevent error propagation during the 

online execution stage. 

5.6.9 Results of Active Online Name Disambiguation 

Now we compare the results of our proposed particle filtering algorithm for online 

name disambiguation with active selection and random selection (randomly select-

ing a number of sequentially observed records to query the users for ground-truth). 

Specifically, for the user-defined interactiveness threshold parameter τ (defined in 

Section 5.5), we set it to {0.1, 0.2, ..., 0.9, 1, 0}, and run our proposed active online 

name disambiguation method 20 times under each τ . Then we compute the average 

ratio of queried online records for different values of τ . Note that the larger the value 
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of τ , the fewer the number of queried online records. For the random selection, it 

queries an online record with probability 0 < p < 1. In other words, for each online 

record, the method draws a value from a uniform distribution U(0, 1). If the value 

is smaller than p, it queries the label. Otherwise, it does not. For a fair comparison, 

we set p as the ratio of queried online records in our proposed interactive framework. 

The result on name reference “Jing Zhang” is shown in Figure 5.6. 

As we observe, for both active and random selection frameworks, compared to the 

no feedback scenario where τ is set to be 1.0 and we do not query any online records, 

incorporating user feedback helps to improve online name disambiguation perfor-

mance in terms of mean-F1 score. However, our proposed active selection framework 

is better than random selection consistently under different ratios of queried online 

records for performing active online name disambiguation. In particular, our pro-

posed active online name disambiguation framework actively queries those records 

whose label information are uncertain. In contrast, the labels acquired by the ran-

dom selection may be redundant and lead to the waste of labeling effort. Similar 

results are obtained for other name references as well. 

5.7 Chapter Summary 

To conclude, in this chapter we present a Bayesian non-exhaustive classification 

framework for the task of online name disambiguation. Given sequentially observed 

online records, our proposed method classifies the incoming records into existing 

classes, as well as emerging classes by learning posterior probability of a Dirichlet 

process Gaussian mixture model. Our experimental results on bibliographic datasets 

demonstrate that the proposed method significantly outperforms the existing state-of-

the-arts. As a real-life application, we propose an active online name disambiguation 

method to improve the prediction accuracy by exploiting user feedback. 
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6. FEATURE SELECTION FOR CLASSIFICATION 

UNDER ANONYMITY CONSTRAINT 

6.1 Objective and Motivation 

In this chapter, inspired by the research on privacy-preserving data publish-

ing [105, 149–153], we propose a novel privacy metric, called k-anonymity by con-

tainment, to measure the potential disclosure risk of textual features used in name 

disambiguation application. In particular, we propose two privacy-aware feature selec-

tion methods to select a subset of textual features such that on the reduced feature set, 

the data has small disclosure risk, at the same time, the utility of data is maximally 

preserved for performing name disambiguation. Our proposed method is generic, be-

sides name disambiguation task, we also show one extra real-life application, namely 

spam email filtering. 

6.2 Introduction 

Over the last decade, with the proliferation of various online platforms, such as 

web search, eCommerce, social networking, micro-messaging, streaming entertain-

ment and cloud storage, the digital footprint of today’s Internet user has grown at 

an unprecedented rate. At the same time, the availability of sophisticated comput-

ing paradigm and advanced machine learning algorithms have enabled the platform 

owners to mine and analyze tera-bytes of digital footprint data for building various 

predictive analytics and personalization products. For example, search engines and 

social network platforms use search keywords for providing sponsored advertisements 

that are personalized for a user’s information need; e-commerce platforms use visi-

tor’s search history for bolstering their merchandising effort; streaming entertainment 
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providers use people’s rating data for building future product or service recommenda-

tion. However, the impressive personalization of services of various online platforms 

enlighten us as much, as they do make us feel insecure, which stems from knowing 

the fact that individual’s online behaviors are stored within these companies, and an 

individual, more often, is not aware of the specific information about themselves that 

is being stored. 

The key reason for a web user’s insecurity over the digital footprint data (also 

known as microdata) is that such data contain sensitive information. For instance, a 

person’s online search about a disease medication may insinuate that she may be suf-

fering from that disease; a fact that she would rather not disclose. Similarly, people’s 

choice of movies, their recent purchases, etc. reveal enormous information regarding 

their background, preference and lifestyle. Arguably microdata exclude biographical 

information, but due to the sheer size of our digital footprint the identity of a person 

can still be recovered from these data by cross-correlation with other data sources or 

by using publicly available background information. In this sense, these apparently 

non-sensitive attributes can serve as a quasi-identifier. For an example, Narayanan 

et al. [154] have identified a Netflix subscriber from his anonymous movie rating by 

using Internet Movie Database (IMDB) as the source of background information. For 

the case of Netflix, anonymous microdata was released publicly for facilitating Netflix 

prize competition, however even if the data is not released, there is always a concern 

that people’s digital footprint data can be abused within the company by employees 

or by external hackers, who have malicious intents. 

For the case of microdata, the identity disclosure risk is high due to some key prop-

erties of such a dataset—high-dimensionality and sparsity. Sparsity stands for the fact 

that for a given record there is rarely any record that is similar to the given record 

considering full multi-dimensional space. It is also shown that in high-dimensional 

data, the ratio of distance to the nearest neighbor and the farthest neighbor is almost 

one, i.e., all the points are far from each other [155]. Due to this fact, privacy is 

difficult to achieve on such datasets. A widely used privacy metric that quantifies 
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the disclosure risk of a given data instance is k-anonymity [90], which requires that 

for any data instance in a dataset, there are at least k − 1 distinct data instances 

sharing the same feature vector—thus ensuring that unwanted personal information 

cannot be disclosed merely through the feature vector. However, for high dimen-

sional data, k-anonymization is difficult to achieve even for a reasonable value of k 

(say 5); typically, value based generalization or attribute based generalization is ap-

plied so that k-anonymity is achieved, but Aggrawal has proved both theoretically 

and experimentally that for high dimensional data k-anonymity is not a viable so-

lution even for a k value of 2 [155]. He has also shown that as data dimensionality 

increases, entire discriminatory information in the data is lost during the process of 

k-anonymization, which severely limits the data utility. Evidently, finding a good 

balance between a user’s privacy and the utility of high dimensional microdata is an 

unsolved problem—which is the primary focus of this chapter. 

A key observation of a real-life high dimensional dataset is that it exhibits high 

clustering tendency in many sub-spaces of the data, even though over the full dimen-

sion the dataset is very sparse. Thus an alternative technique for protecting identity 

disclosure on such data can be finding a subset of features, such that when project-

ing on these set of features an acceptable level of anonymity can be achieved. One 

can view this as column suppression instead of more commonly used row suppression 

for achieving k-anonymity [90]. Now for the case of feature selection for a given k, 

there may exist many sub-spaces for which a given dataset satisfies k-anonymity, but 

our objective is to obtain a set of features such that projecting on this set offers the 

maximum utility of the dataset in terms of a supervised classification task. 

Consider the toy dataset that is shown in Table 6.1. Each row represents a person, 

and each column (except the first and the last) represents a keyword. If a cell entry 

is ‘1’ then the keyword at the corresponding column is associated with the person at 

the corresponding row. Reader may think this table as a tabular representation of 

the search log of an eCommerce platform, where the ‘1’ under ei column stands for 

the fact that the corresponding user has searched using the keyword xj within a given 
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Table 6.1.: A toy 2-class dataset with binary feature-set 

User x1 x2 x3 x4 x5 Class 

e1 1 0 1 0 1 +1 
e2 1 0 1 0 1 −1 
e3 1 0 0 1 1 +1 
e4 1 0 1 0 1 +1 
e5 1 1 1 0 1 −1 
e6 1 1 0 1 1 −1 

Table 6.2.: Projections of the dataset in table 6.1 on two feature-sets (Feature Set-1 
and Feature Set-2) 

User 
Feature Set-1 

Class 
Feature Set-2 

x1 x2 x5 x3 x4 x5 

e1 1 0 1 +1 1 0 1 
e2 1 0 1 −1 1 0 1 
e3 1 0 1 +1 0 1 1 
e4 1 0 1 +1 1 0 1 
e5 1 1 1 −1 1 0 1 
e6 1 1 1 −1 0 1 1 



102 

period of time, and ‘0’ represents otherwise. The last column represents whether this 

user has made a purchase over the same time period. The platform owner wants to 

solve a classification problem to predict which of the users are more likely to make a 

purchase. 

Say, the platform owner wants to protect the identity of its site visitor by making 

the dataset k-anonymous. Now, for this toy dataset, if he chooses k = 2, this dataset 

is not k-anonymous. For instance, the feature vector of e3, 10011 is unique in this 

dataset. However, the dataset is k-anonymous for the same k under the subspace 

spanned by {x3, x4, x5}. It is also k-anonymous (again for the same k) under the 

subspace spanned by {x1, x2, x5} (See Table 6.2). Among these two choices, the 

latter subspace is probably a better choice, as the features in this set are better 

discriminator than the features in the former set with respect to the class-label. For 

feature set {x1, x2, x5}, if we associate the value ‘101’ with the +1 label, and the 

value ‘111’ with the -1 label, we make only 1 mistake out of 6. On the other hand for 

feature set {x3, x4, x5}, no good correlation exists between the feature values and the 

class labels. 

The research problem in the above task is the selection of optimal binary feature 

set for utility preserving entity anonymization, where the utility is considered with 

respect to the classification performance and the privacy is guaranteed by enforcing 

a k-anonymity like constraint [81]. In existing works, k-anonymity is achieved by 

suppression or generalization of cell values, whereas in this work we consider to achieve 

the same by selecting an optimal subset of features that maximizes the classification 

utility of the dataset. Note that, maximizing the utility of the dataset is the main 

objective of this task, privacy is simply a constraint which a user enforces by setting 

the value of a privacy parameter based on the application domain and the user’s 

judgment. For the privacy model, we define k-anonymity by containment in short, 

k-AC (definition forthcoming), where k is the user-defined privacy parameter, which 

has similar meaning as it has in traditional k-anonymity. 
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Our choice of k-anonymity like metric over more theoretical counterparts, such as, 

differential privacy (DP) is due to the pragmatic reason that all existing privacy laws 

and regulations, such as, HIPAA (Health Information Portability and Accountability 

Act) and PHIPA (Personal Health Information Protection Act) use k-anonymity. 

Also, k-anonymity is flexible and simple, thus enabling people to understand and 

apply it for almost any real-life privacy preserving needs; on the contrary, DP based 

methods use a privacy parameter (�), which has no obvious interpretation and even 

by the admission of original author of DP, choosing an appropriate value for this 

parameter is difficult [95]. Moreover, differential privacy based methods add noise 

to the data entities, but the decision makers in many application domains (such as, 

health care), where privacy is an important issue, are quite uncomfortable to the 

idea of noise imputation [156]. Finally, authors in [157] state that differential privacy 

is not suitable for protecting large sparse tables produced by statistics agencies and 

sampling organizations—this disqualifies differential privacy as a privacy model for 

protecting sparse and very high dimensional user’s microdata from the e-commerce 

and Internet search engines. 

6.2.1 Our Contributions 

In this work, we consider the task of feature selection under privacy constraint. 

This is a challenging task, as it is well-known that privacy is always at odds with the 

utility of a knowledge-based system, and finding the right balance is a difficult task [93, 

158]. Besides, feature selection itself, without considering the privacy constraint, is 

an NP-Hard problem [159]. 

Given a classification dataset with binary features and an integer k, our proposed 

solutions find a subset of features such that after projecting each instance on these 

subsets each entity in the dataset satisfies a privacy constraint, called k-anonymous 

by containment (k-AC). Our proposed privacy constraint k-AC is an adapted version 

of k-anonymity, which strikes the correct balance between disclosure risk and dataset 
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utility, and it is particularly suitable for high dimensional binary data. We also 

propose two algorithms: Maximal and Greedy. The first is a maximal itemset mining 

based method and the second is a greedy incremental approach, both respecting the 

user-defined AC constraints. 

The algorithms that we propose are particularly intended for high dimensional 

sparse microdata where the features are binary. The nature of such data is different 

from a typical dataset that is considered in many of the existing works on privacy 

preserving data disclosure mechanism. The first difference is that existing works con-

sider two kinds of attributes, sensitive and nonsensitive, whereas for our dataset all 

attributes are considered to be sensitive, and any subset of published attributes can 

be used by an attacker to de-anonymize one or more entities in the dataset using 

probabilistic inference methodologies. On the other hand, the unselected attributes 

are not published so they cannot be used by an attacker to de-anonymize an entity. 

Second, we only consider binary attributes, which enable us to provide efficient algo-

rithms and an interesting anonymization model. Considering only binary attributes 

may sound an undue restriction, but in reality binary attributes are adequate (and of-

ten preferred) when modeling online behavior of a person, such as ‘like’ in Facebook, 

‘bought’ in Amazon, and ‘click’ in Google advertisement. Also, collecting explicit 

user feedback in terms of frequency data (say, the number of times a search keyword 

is used ) may be costly in many online platforms. Nevertheless, as shown in [154], 

binary attributes are sufficient for an attacker to de-anonymize a person using high 

dimensional microdata, so safeguarding user privacy before disclosing such dataset is 

important. 

The contributions of our work are outlined below: 

1. We propose a novel method for entity anonymization using feature selection 

over a set of binary attributes from a two-class classification dataset. For this, 

we design a new anonymization model, named k-anonymity by containment 

(k-AC), which is particularly suitable for high-dimensional binary microdata. 
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2. We propose two methods for solving the above task and show experimental 

results to validate the effectiveness of these methods. 

3. We show the utility of the proposed methods with two real-life applications. 

Specifically, we show how the privacy-aware feature selection affects their per-

formance. 

6.3 Privacy Basics 

Given a dataset D, where each row corresponds to a person, and each column 

contains non-public information about that person; examples include disease, medi-

cation, sexual orientation, etc. In the context of online behavior, the search keywords, 

or purchase history of a person may be such information. Privacy preserving data 

publishing methodologies make it difficult for an attacker to re-identify a person who 

is in the dataset. For re-identification, an attacker generally uses a set of attributes 

that act almost like a key and it uniquely identifies some individual in the datasets. 

These attributes are called quasi-identifiers. k-anonymity is a well-known privacy 

metric defined as below. 

Definition 6.3.1 (k-anonymity) A dataset D satisfies k-anonymity if for any row 

entity e ∈ D there exist at least k − 1 other entities that have the same values as e 

for every possible quasi-identifiers. 

The database in Table 6.1 is not 2-anonymous, as the row entity e3 is unique 

considering the entire attribute-set {x1, x2, x3, x4, x5} as quasi-identifier. On the other 

hand, It is 2-anonymous for both the datasets (one with Feature Set-1 and the other 

with Feature Set-2) in Table 6.2. For numerical or categorical attributes, a process, 

called generalization and/or suppression (row or cell value) are used for achieving k-

anonymity. Generalization partitions the values of an attribute into disjoint buckets 

and identifies each bucket with a value. Suppression either hides the entire row 

or some of its cell values, so that the anonymity of that entity can be maintained. 



106 

Generalization and suppression make anonymous group, where all the entities in that 

group have the same value for every possible quasi-identifier, and for a dataset to be 

k-anonymous, the size of each of such groups is at least k. In this work we consider 

binary attributes; each such attribute has only two values, 0 and 1. For binary 

attributes, value based generalization relegates to the process of column suppression, 

which incurs a loss of data utility. In fact, any form of generalization based k-

anonymization incurs a loss in data utility due to the decrement of data variance 

or due to the loss of discernibility. Suppression of a row is also a loss as in this 

case the entire row entity is not discernible for any of the remaining entities in the 

dataset. Unfortunately, most of existing methods for achieving k-anonymity using 

both generalization and suppression operations do not consider an utility measure 

targeting supervised classification task. 

There are some security attacks against which k-anonymity is vulnerable. For 

example, k-anonymity is susceptible to both homogeneity and background knowledge 

based attacks. More importantly, k-anonymity does not provide statistical guaranty 

about anonymity which can be obtained by using �-differential privacy [95]—a method 

which provides strong privacy guarantees independent of an adversary’s background 

knowledge. There are existing methods that adopt differential privacy principle for 

data publishing. Authors in [160,161] propose Laplace mechanism to publish the con-

tingency tables by adding noise generated from a Laplace distribution. However, such 

methods suffer from the utility loss due to the large amount of added noise during 

the sanitization process. To resolve this issue, [162] proposes to utilize exponential 

mechanism for maximizing the trade-off between differential privacy and data utility. 

However, the selection of utility function used in the exponential mechanism based 

approach strongly affects the data utility in subsequent data analysis task. In this 

work, we compare the performance of our proposed privacy model, namely k-AC, 

with both Laplace and exponential based differential privacy frameworks (See Sec-

tion 6.6.2) to show that k-AC better preserves the data utility than the differential 

privacy based methods. 
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A few works [94, 163] exist which consider classification utility together with k-

anonymity based privacy model, but none of them consider feature selection which 

is the main focus of this work. In one of the earliest works, Iyengar [94] solves k-

anonymization through generalization and suppression while minimizing a proposed 

utility metric called CM (Classification Metric) using a genetic algorithm which pro-

vides no optimality guaranty. The CM is defined as below: 

Definition 6.3.2 (Classification Metric [94]) Classification metric (CM) is a 

utility metric for classification dataset, which assigns a penalty of 1 for each sup-

pressed entity, and for each non-suppressed entity it assigns a penalty of 1 if those 

entities belong to the minority class within its anonymous group. CM value is equal 

to the sum of penalties over all the entities. 

In this work, we compare the performance of our work with CM based privacy-

aware utillty metric. 

6.4 Problem Statement 

Given a classification dataset with binary attributes, our objective is to find a 

subset of attributes which increase the non-disclosure protection of the row entities, 

and at the same time maintain the classification utility of the dataset without sup-

pressing any of the row entities. In this section we will provide a formal definition of 

the problem. 

We define a database D(E, I) as a binary relation between a set of entities (E) 

and a set of features (I); thus, D ⊆ E × I, where E = {e1, e2, · · · , en} and I = 

{x1, x2, · · · , xd}; n and d are the number of entities and the number of features, 

respectively. The database D can also be represented as a n × d binary data matrix, 

where the rows correspond to the entities, and the columns correspond to the features. 

For an entity ei ∈ E, and a feature xj ∈ I, if hei, xj i ∈ D, the corresponding data 

matrix entry D(ei, xj ) = 1, otherwise D(ei, xj ) = 0. Thus each row of D is a binary 

vector of size d in which the 1 entries correspond to the set of features with which 
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the corresponding row entity is associated. In a classification dataset, besides the 

attributes, the entities are also associated to a class label which is a category value. 

In this task we assume a binary class label {C1, C2}. A typical supervised learning 

task is to use the features I to predict the class label of an entity. 

We say that an entity ei ∈ E contains a set of features X = {xi1, xi2, · · · , xil}, if 

D(ei, xik) = 1 for all k = 1, 2, · · · , l; set X is also called containment set of the entity 

ei. 

Definition 6.4.1 (Containment Set) Given a binary dataset, D(E, I), the con-

tainment set of a row entity e ∈ E, represented as CSD(e), is the set of attributes 

X ⊆ I such that ∀x ∈ X, D(e, x) = 1, and ∀y ∈ I − X, D(e, y) = 0. 

When the dataset D is clear from the context we will simply write CS(e) instead 

of CSD(e) to represent the containment set of e. 

Definition 6.4.2 (k-anonymity by containment) In a binary dataset D(E, I) 

and for a given positive integer k, an entity e ∈ E satisfies k-anonymity by contain-

ment if there exists a set of entities F ⊆ E, such that e ∈/ F ∧ |F | ≥ k − 1 ∧ ∀f ∈ 

F, CSD(f) ⊇ CSD(e). In other words, their exist at least k − 1 other entities in D 

such that their containment set is the same or a superset of CSD(e). 

By definition, if an entity satisfies k-anonymity by containment, it satisfies the 

same for all integer values from 1 upto k. We use the term AC(e) to denote the 

largest k for which the entity e satisfies k-anonymity by containment. 

Definition 6.4.3 (k-anonymous by Containment Group) For a binary dataset 

D(E, I), if e ∈ E satisfies the k-anonymity by containment, k-anonymous by con-

tainment group with respect to e exists and this is F ∪ {e}, where F is the largest 

possible set as is defined in Definition 6.4.2. 

Definition 6.4.4 (k-anonymous by Containment Dataset) A binary dataset 

D(E, I) is k-anonymous by containment if every entity e ∈ E satisfies k-anonymity 

by containment. 
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We extend the term AC over a dataset as well, thus AC(D) is the smallest k for 

which the dataset D is anonymous. 

Example: For the dataset in Table 6.1, CS(e1) = {x1, x3, x5}. Entity e1 satisfies 

4-anonymity by containment, because for each of the following three entities e2, e4, 

and e5, their containment sets are the same or supersets of CS(e1). But, the entity e6 

only satisfies 1-anonymity by containment, as besides itself no other entity contains 

CS(e6) = {x1, x2, x4, x5}. 4-anonymous by containment group of e2 exists, and it 

is {e1, e2, e4, e5}, but 5-anonymous by selection group for the same entity does not 

exist. The dataset in Table 6.1 is 1-anonymous by containment because there exists 

one entity, namely e6 such that the highest k-value for which e6 satisfies k-anonymity 

by containment is 1; alternatively AC(D) = 1 

k-anonymity by containment (k-AC) is the privacy metric that we use in this work. 

The argument for this metric is that if a large number of other entities contain the 

same or super feature subset which an entity e contains, the disclosure protection of 

the entity e is strong, and vice versa. Thus a higher value of k stands for a higher level 

of privacy for e. k-anonymity by containment (k-AC) is similar to k-anonymity for 

binary feature set except that for k-AC only the ‘1’ value of feature set is considered 

as a privacy risk. It is easy to see that k-anonymity by containment (k-AC) is a 

relaxation of k-anonymity. In fact, the following lemma holds. 

Lemma 1 If a dataset satisfies k-anonymity for a k value, it also satisfies k-AC for 

the same k-value, but the reverse does not hold necessarily. 

Proof Say, the dataset D satisfies k-anonymity; then for any row entity e ∈ D, there 

exists at least k − 1 other row entities with identical row vector as e. Containment 

set of all these k − 1 entities is identical to e, so e satisfies k-AC. Since this holds for 

all e ∈ D, the dataset D satisfies k-AC. 

To prove that the reverse does not hold, we will give a counter-example. As-

sume D has three entities and two features with the following feature values, D = 

{(1, 1), (1, 0), (1, 1)}. D satisfies 2-AC because the smallest anonymity by contain-
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ment value of the entities in the dataset is 2. But, the dataset does not satisfy 

2-anonymity because the entity (1, 0) is unique in the dataset. 

However, the relaxed privacy that k-AC provides is adequate for disclosure pro-

tection in a high dimensional sparse microdata with binary attributes, because k-AC 

conceals the list of the attributes in a containment set of an entity, which could re-

veal sensitive information about the entity. For example, if the dataset is about the 

search keywords that a set of users have used over a given time, for a person having a 

1 value under a keyword potentially reveals sensitive information about the behavior 

or preference of that person. Having a value of 0 for a collection of features merely 

reveals the knowledge that the entity is not associated with that attribute. In the 

online microdata domain, due to the high dimensionality of the data, non-association 

with a set of attributes is not a potential privacy risk. Also note that, in traditional 

datasets, only a few attributes which belong to non-sensitive group are assumed to 

be quasi-identifier, so a privacy metric, like k-anonymity works well for such dataset. 

But, for high-dimensional dataset, k-anonymity is severely restrictive and utility loss 

of data by column suppression is substantial because feature subsets containing very 

small number of features pass k-anonymity criteria. On the other hand, k-AC based 

privacy metric enables selection of sufficient number of features for retaining the 

classification utility of the dataset. In short, k-AC retains the classification utility 

substantially, whereas k-anonymity fails to do so for most high dimensional data. 

Feature selection [159] for a classification task is to select a subset of highly pre-

dictive variables so that classification accuracy possibly improves which happens due 

to the fact that contradictory or noisy attributes are generally ignored during the 

feature selection step. For a dataset D(E, I), and a feature-set S ⊆ I, following rela-

tional algebra notations, we use ΠS (D) to denote the projection of database D over 

the feature set S. Now, given a user-defined integer number k, our goal is to perform 

an optimal feature selection on the dataset D to obtain ΠS(D) which satisfies two 

objectives: first, ΠS(D) is k-anonymous by containment, i.e., AC(ΠS (D)) ≥ k; sec-

ond, ΠS (D) maintains the predictive performance of the classification task as much 
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as possible. Selecting a subset of features is similar to the task of column suppression 

based privacy protection, but the challenge in our task is that we want to suppress 

columns that risk privacy, and at the same time we want to retain columns that have 

good predictive performance for a downstream supervised classification task using 

the sanitized dataset. For denoting the predictive performance of a dataset (or a 

projected dataset) we define a classification utility function f . The higher the value 

of f , the better the dataset for the classification. We consider f to be a filter based 

feature selection criteria which is independent of the classification model that we use. 

The formal research task of this work is as below. Given a binary dataset D(E, I), 

and an integer number k, find S ⊆ I so that f(ΠS (D)) is maximized under the 

constraint that AC(ΠS (D)) ≥ k. Mathematically, 

maximize f(ΠS (D))
S⊆I (6.1) 

subject to AC(ΠS (D)) ≥ k 

Due to the fact that the problem 6.1 is a combinatorial optimization problem 

(optimizing over the space of feature subsets) which is NP-Hard, here we propose two 

effective local optimal solutions for this problem. 

6.5 Methods 

In this section, we describe two algorithms, namely Maximal and Greedy that 

we propose for the task of feature selection under privacy constraint. Maximal is a 

maximal itemset mining based feature selection method, and Greedy is a greedy 

method with privacy constraint based filtering. In the following subsections, we 

discuss them in detail. 
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6.5.1 Maximal Itemset Based Approach 

A key observation regarding k-anonymity by containment (AC) of a dataset is 

that this criteria satisfies the downward-closure property under feature selection. The 

following lemma holds: 

Lemma 2 Say D(E, I) is a binary dataset and X ⊆ I and Y ⊆ I are two feature 

subsets. If X ⊆ Y , then AC(ΠX (D)) ≥ AC(ΠY (D)). 

Proof: Let’s prove by contradiction. Suppose X ⊆ Y and AC(ΠX (D)) < AC(ΠY (D)). 

Then from the definition of AC, there exists at least one entity e ∈ E for which 

AC(ΠX (e)) < AC(ΠY (e)). Now, let’s assume AX and AY are the set of entities which 

make the anonymous by containment group for the entity e in ΠX (D) and ΠY (D), 

respectively. Since AC(ΠX (e)) < AC(ΠY (e)), |AX | < |AY |; so there exists an entity 

p ∈ AY \ AX , for which CSΠY (D)(p) ⊇ CSΠY (D)(e) and CSΠX (D)(p) 6⊇ CSΠX (D)(e); 

But this is impossible, because X ⊆ Y , if CSΠY (D)(p) ⊇ CSΠY (D)(e) holds, then 

CSΠX (D)(p) ⊇ CSΠX D(e) must be true. Thus, the lemma is proved by contradiction. 

Let’s call the collection of feature subsets that satisfy the AC threshold for a given 

k the feasible set, and represent it with Fk. Thus, Fk = {X | X ⊆ I ∧ AC(ΠX (D)) ≥ 

k}. A subset of features X ∈ Fk is called maximal if it has no supersets that are 

feasible. Let Mk be the set of all maximal subset of features. Then Mk = {X | X ∈ 

Fk∧ 6 ∃Y ⊃ X, such that Y ∈ Fk}. As we can observe given an integer k, if there 

exists a maximal feature set Z that satisfies the AC constraint, then any feature set 

X ⊆ Z, also satisfies the same AC constraint, i.e., k ≤ AC(ΠZ (D)) ≤ AC(ΠX (D)) 

if X ⊆ Z ∈Mk based on the Lemma 2. 

Example: For the dataset in Table 6.1, the 2-anonymous by containment feasible 

feature set 1 F2 = {x1, x2, x3, x4, x5, x1x2, x1x3, x1x4, x1x5, x2x5, x3x5, x4x5, x1x2x5, 

x1x3x5, x1x4x5} and M2 = {x1x2x5, x1x3x5, x1x4x5}. In this dataset, the feature-set 

x2x3 ∈/ F2 because in Πx2x3 (D), CS(e5) = {x2, x3} and the size of the k-anonymous 

1To enhance the readability, we write the feature set as string; for example, the set {x1, x2} is written 
as x1x2. 
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by containment group of e5 is 1; thus AC(Πx2x3 (D)) = 1 < 2. On the other hand 

for feature-set x1x2x5, the projected dataset Πx1x2x5 (D) has two k-anonymous by 

containment groups, which are {e1, e2, e3, e4, e5, e6} and {e5, e6}; since each group 

contains at least two entities, AC(Πx1x2x5 (D)) = 2 

Lemma 3 Say, D(E, I) is a binary dataset, and T is its transaction representation 

where each entity e ∈ E is a transaction consisting of the containment set CSD(e). 

Frequent itemset of the dataset T with minimum support threshold k are the feasible 

feature set Fk for the optimization problem 6.1. 

Proof: Say, X is a frequent itemset in the transaction T for support threshold k. 

Then, the support-set of X in T are the transactions (or entities) which contain 

X. Since, X is frequent, the support-set of X consists of at least k entities. In 

the projected dataset ΠX (D), all these entities make a k-anonymous by containment 

group, thus satisfying k-anonymity by containment. For each of the remaining entities 

(say, e), e’s containment set contains some subset of X (say Y ) in ΠX (D). Since, 

X is a frequent itemset and Y ⊂ X, Y is also frequent with a support-set that has at 

least k entities. Then e also belongs to a k-anonymous by containment group. Thus, 

each of the entities in D belongs to some k-anonymous by containment group(s) which 

yields: X is frequent ⇒ X ∈ Fk. Hence proved. 

A consequence of Lemma 2 is that for a given dataset D, an integer k, and a 

feature set S, if AC(ΠS(D)) ≥ k, any subset of S (say, R) satisfies AC(ΠR(D)) ≥ k. 

This is identical to the downward closure property of frequent itemset mining. Also, 

Lemma 3 confirms that any itemset that is frequent in the transaction representation 

of D for a minimum support threshold k is a feasible solution for problem 6.1. Hence, 

an apriori like algorithm for itemset mining can be used for effectively enumerating 

all the feature subsets of D which satisfies the required k-anonymity by containment 

constraint. 
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6.5.1.1 Maximal Feasible Feature Set Generation 

For large datasets, the feasible feature set Fk which consists of feasible solutions 

for the optimization problem 6.1 can be very large. One way to control its size is by 

choosing appropriate k; if k increases, |Fk| decreases, and vice-versa, but choosing a 

large k negatively impacts the classification utility of the dataset, thus reducing the 

optimal value of problem (6.1). A brute force method for finding the optimal feature 

set S is to enumerate all the feature subset in F and find the one that is the best 

given the utility criteria f . However, this can be very slow. So, Maximal generates 

all possible maximal feature sets Mk instead of generating Fk and search for the best 

feature subset within Mk. The idea of enumerating Mk instead of Fk comes from 

the assumption that with more features the classification performance will increase; 

thus, the size of the feature set is its utility function value; i.e., f(ΠS (D)) = |S|, and 

in that case the largest set in Mk is the solution to the problem 6.1. 

An obvious advantage of working only with the maximal feature set is that for 

many datasets, |Mk| << |Fk|, thus finding solution within Mk instead of Fk leads 

to significant savings in computation time. Just like the case for frequent itemset 

mining, maximal frequent itemset mining algorithm can also be used for finding Mk. 

Any off-the-shelf software can be used for this. In Maximalalgorithm we use the 

LCM-Miner package provided in2 which, at present, is the fastest method for finding 

maximal frequent itemsets. 

6.5.1.2 Classification Utility Function 

The simple utility function f(ΠS(D)) = |S| has a few limitations. First, the ties 

are very commonplace, as there are many maximal feature sets that have the same 

size. Second, and more importantly, this function does not take into account the class 

labels of the instances so it cannot find a feature set that maximizes the separation 

between the positive and negative instances. So, we consider another utility function, 

2http://research.nii.ac.jp/~uno/code/lcm.html 
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named as HamDist, which does not succumb as much to the tie situation. It also 

considers the class label for choosing features that provide good separation between 

the positive and negative classes. 

Definition 6.5.1 (Hamming Distance) For a given binary database D(E, I), and 

a subset of features, S ⊆ I, the Hamming distance between ΠS (a) and ΠS (b) is defined 

as below: 
|S|X 

dH (ΠS (a), ΠS (b)) = 1{asj 6= bsj , ∀sj ∈ S} (6.2) 
j=1 

where 1{X} is the indicator function, and asj and bsj are the sj th feature value under 

S for the entities a and b, respectively. 

We can partition the entities in D(E, I) into two disjoint subsets, E1 and E2; 

entities in E1 have a class label value of C1, and entities in E2 have a class label value 

of C2. 

Definition 6.5.2 (HamDist) Given a dataset D(E = E1 ∪ E2, I) where the parti-

tions E1 and E2 are based on class labels, the classification utility function HamDist 

for a feature subset S ⊆ I is the average Hamming distance between all pair of entities 

a and b such that a ∈ E1 and b ∈ E2. 

X1 
HamDist(S) = dH (ΠS (a), ΠS (b)) (6.3)

| E1 || E2 | 
a∈E1,b∈E2 

Example: For the dataset in Table 6.1, for its projection on x1x2x5 (see, Table 2), 

distance of e1 from the negative entities are 0 + 1 + 1 = 2, and the same for the other 

positive entities, e3 and e4 also. So, HamDist(x1x2x5) = ((0+1+1)+(0+1+1)+(0+ 

1 + 1))/9 = 6/9. From the same table we can also see that HamDist(x3x4x5) = 8/9. 

As we can observe from Equations 6.2 and 6.3, the utility function HamDist(S) 

reflects the discriminative power between classes given the feature set S. The larger 

the value of HamDist(S), the better the quality of selected feature set S to distin-

guish between classes. Another separation metric similar to HamDist is DistCnt 

(Distinguish Count), which is defined below. 
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Definition 6.5.3 (DistCnt) For D(E1 ∪E2, I), and S ⊆ I, DistCnt is the number 

of pairs from E1 and E2 which can be distinguished using at least one feature in S. 

Mathematically, 

X1 
DistCnt(S) = 1{ΠS (a) 6= ΠS (b)} (6.4)

| E1 || E2 | 
a∈E1,b∈E2 

DistCnt can also be used instead of HamDist in the Maximal algorithm. Note 

that, we can also use CM criterion (see Definition 6.3.2) instead of HamDist; how-

ever, experimental results show that CM performs much poorer in terms of AUC. 

Besides, both HamDist and DistCnt functions have some good properties (will be 

discussed in Section 6.5.2) which CM does not have. 

The Maximal algorithm utilizes classification utility metrics (HamDist or DistCnt) 

for selecting the best feature set from the maximal set Mk. For some datasets, the 

size of Mk can be large and selecting the best feature set by applying the utility 

metric on each element of Mk can be time-consuming. Then, we can find the best 

feature set among the largest sized element in Mk. Another option is to consider the 

maximal feature sets in Mk in the decreasing order of their size in such a way that at 

most r of the maximal feature sets from set Mk are chosen as candidates for which 

the utility metric computation is performed. In this work we use this second option 

by setting r = 20 for all our experiments. 

6.5.1.3 Maximal Itemset Based Method (Pseudo-code) 

The pseudo-code for Maximal is given in Algorithms 5. Maximal takes privacy 

parameter k and the number of maximal patterns r as input and returns the final 

feature set S which satisfies k-anonymity by containment. Line 1 uses the LCM-Miner 

to generate all the maximal feature sets that satisfy k-anonymity by containment for 

the given k value. Line 2 groups maximal feasible feature sets according to its size 

and selects top r maximal feature sets with the largest size and builds the candidate 

feature sets. Then the algorithm computes the feature selection criteria HamDist of 
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each feature set in the candidate feature sets and returns the best feature set that 

has the maximum value for this criteria. 

Algorithm 5 Maximal Itemset Mining Based Feature Selection Method 

Input: D(E, I), k, r 
Output: S 
1: Calculate maximal feature set Mk which contains the feature-sets satisfying k-AC 
for the given k 

2: Select best feature-set S based on the HamDist criteria by considering r largest-
sized feature set in Mk. 

3: return S 

The complexity of the above algorithm predominantly depends on the complexity 

of the maximal itemset mining step (Line 1), which depends on the input value k. 

For larger k, the privacy is stronger and it reduces Mk making the algorithm run 

faster, but the classification utility of the dataset may suffer. On the other hand, for 

smaller k, Mk can be large making the algorithm slower, but it better retains the 

classification utility of the dataset. 

6.5.2 Greedy with Modular and Sub-Modular Objective Functions 

A potential limitation of Maximal is that for dense datasets this method can be 

slow. So, we propose a second method, called Greedy which runs much faster as it 

greedily adds a new feature to an existing feasible feature-set. For greedy criteria, 

Greedy can use different separation functions which discriminate between positive 

and negative instances. In this work we use HamDist (See Definition 6.5.2) and 

DistCnt (See Definition 6.5.3). Thus Greedy solves the Problem (6.1) by replacing f 

by either of the two functions. Because of the monotone property of these functions, 

Greedy ensures that as we add more features, the objective function value of (6.1) 

monotonically increases. The process stops once no more features are available to 

add to the existing feature set while ensuring the desired AC value of the projected 

dataset. 
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6.5.2.1 Submodularity, and Modularity 

Definition 6.5.4 (Submodular Set Function) Given a finite ground set U , a 

monotone function f that maps subsets of U to a real number f : 2U → R is called 

submodular if 

f(S ∪ {u}) − f(S) ≥ f(T ∪ {u}) − f(T ), ∀S ⊆ T ⊆ U, u ∈ U 

If the above condition is satisfied with equality, the function is called modular. 

Theorem 6.5.1 HamDist is monotone, submodular, and modular. 

Proof For a dataset D(E, I), S ⊆ I, and T ⊆ I are two arbitrary feature-sets, such 

that S ⊆ T . E = E1 ∪ E2, where the partition is based on class label. Consider 

the pair (a, b), such that a ∈ E1 and b ∈ E2. Let, w(·) be a function that sums 

the Hamming distance over all such pairs (a, b) for a given feature subset S. Thus, P 
w(S) = dH (ΠS (a), ΠS (b)), where the function dH is the Hamming distance a∈E1,b∈E2 

between a and b as defined in Equation 6.2. Similarly we can define w(T ), for the 

feature subset T . Using Equation 6.2, dH (ΠS(a), ΠS (b)) is the summation over each 

of the features in S. Since S ⊆ T , dH (ΠT (a), ΠT (b)) includes the sum values for 

the variables in S and possibly includes the sum value of other variables, which is 

non-negative. Summing over all (a, b) pairs yields w(S) ≤ w(T ). So, HamDist is 

monotone. Now, for a feature u ∈/ T , 

X � � 
w(S ∪ {u}) = dH ΠS∪{u}(a), ΠS∪{u}(b) 

a∈E1,b∈E2 X X 
= 1{asj 6= bsj }(using Eq. 6.2) 

a∈E1,b∈E2 sj ∈S∪{u}⎛ ⎞ X X 
= ⎝ 1{asj 6= bsj } + 1{au 6= bu}⎠ 

a∈E1,b∈E2 sj ∈S 

= w(S) + w({u}) 
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Similarly, w(T ∪{u}) = w(T )+w({u}). Then, we have w({u}) = w(S∪{u})−w(S) = 

w(T ∪{u}) − w(T ). Dividing both sides by 1/(|E1| · |E2|) yields HamDist(S ∪{u}) − 

HamDist(S) = HamDist(T ∪{u}) − HamDist(T ). Hence proved with the equality. 

Theorem 6.5.2 DistCnt is monotone, and submodular. 

Proof Given a dataset D(E, I) where E is partitioned as E1 ∪ E2 based on class 

label. Now, consider a bipartite graph, where vertices in one partition (say, V1) 

correspond to features in I, and the vertices of other partition (say, V2) correspond to 

a distinct pair of entities (a, b) such that a ∈ E1, and b ∈ E2; thus, |V2| = |E1| · |E2|. 

If for a feature x ∈ V1, we have ax 6= bx, an edge exists between the corresponding 

vertices x ∈ V1 and (a, b) ∈ V2. Say, S ⊆ V1 and T ⊆ V1 and S ⊆ T . For a set 

of vertices, Γ(·) represents their neighbor-list. Since, the size of neighbor-list of a 

vertex-set is monotone and submodular, for u ∈/ T , we have |Γ(S)| ≤ |Γ(T )|, and 

|Γ(S ∪ {u})| − |Γ(S)| ≥ |Γ(T ∪ {u})| − |Γ(T )|. By construction, for a feature set, S, 

Γ(S) contains the entity-pairs for which at least one feature-value out of S is different. 
|Γ(·)|Thus, DistCnt function is and it is submodular. |V2| 

Algorithm 6 Greedy Algorithm for HamDist 

Input: D(E, I), k 
Output: S 
1: Sort the features in non-increasing order based on their hamDist, denoted as 

Fsorted 

2: S = ∅ 
3: for each feature x ∈ Fsorted do 
4: 

5: 

6: 

if AC(ΠS∪{x}(D)) ≥ k then 
S = S ∪ {x}

else 
7: break 
8: end if 
9: end for 
10: return S 
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Theorem 6.5.3 For monotone submodular function f , let S be a set of size k ob-

tained by selecting elements one at a time, each time choosing an element provides 

the largest marginal increase in the function value. Let S∗ be a set that maximizes 

the value of f over all k-element sets. Then f(S) ≥ (1 − 1 
e )f(S

∗); in other words, S 

provides (1 − 1 
e )-approximation. For modular function f(S) = f(S∗) [164]. 

Algorithm 7 Greedy Algorithm for DistCnt 

Input: D(E, I), k 
Output: S 
1: T = ∅ 
2: repeat 
3: S = T 
4: ΔHmax = 0.0 
5: for u ∈ I \ S do 
6: Compute ΔH = DistCnt(S ∪ {u}) − DistCnt(S) 
7: if ΔH > ΔHmax then 
8: ΔHmax = ΔH 
9: um = u 
10: end if 
11: end for 
12: T = S ∪ {um}
13: until AC(ΠT (D)) ≥ k 
14: return S 

6.5.2.2 Greedy Method (Pseudo-code) 

Using the above theorems we can design two greedy algorithms, one for modular 

function HamDist, and the other for submodular function DistCnt. The pseudo-

codes of these algorithms are shown in Algorithm 6 and Algorithm 7. Both the 

methods take binary dataset D and integer value k as input and generate the selected 

feature set S as output. Initially S = ∅. For modular function, the marginal gain 

of an added feature can be pre-computed, so Algorithm 6 first sorts the features in 

non-increasing order of their HamDist values, and greedily adds features until it 

encounters a feature such that its addition does not satisfy the AC constraint. For 
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Table 6.3.: Statistics of real-world datasets 

Dataset # Entities # Features # Pos # Neg Density 

Name 
Disambiguation 
Email 

148 

1099 

552 

24604 

74 

618 

74 

481 

9.7% 

0.9% 

submodular function DistCnt, margin gain cannot be pre-computed, so Algorithm 7 

selects the new feature by iterating over all the features and finding the best one (Line 

5 -11). The terminating condition of this method is identical to Algorithm 6. Since 

the number of features is finite, both the methods always terminate with a valid S 

which satisfies AC(ΠS (D)) ≥ k. 

Compared to Maximal, both greedy methods are faster. With respect to number 

of features (d), Algorithm 6 runs in O(d lg d) time and Algorithm 7 runs in O(d2) 

time. Also, using Theorem 6.5.3, Algorithm 2 returns the optimal size |S| feature-

set, and Algorithm 3 returns S, for which the objective function value is (1 − 1/e) 

optimal over all possible size-|S| feature sets. 

6.6 Experiments and Results 

In order to evaluate our proposed methods we perform various experiments. Our 

main objective in these experiments is to validate how the performance of the pro-

posed privacy preserving classification varies as we change the value of AC—user-

defined privacy threshold metric. We also compare the performance of our proposed 

utility preserving anonymization methods with other existing anonymization meth-

ods such as k-anonymity and differential privacy. It is important to note that we do 

not claim that our methods provide a better utility with identical privacy protection 

as other methods, rather we claim that our methods provide adequate privacy pro-

tection which is suitable for high dimensional sparse microdata with a much superior 

AUC value—a classification utility metric which we want to maximize in our problem 

setup. We use two real-world datasets for our experiments. Both datasets consist of 
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entities that are labeled with 2 classes. The number of entities, the number of fea-

tures, the distribution of the two classes (#postive and #negative), and the dataset 

density (fraction of non-zero cell values) are shown in Table 6.3. 

6.6.1 Privacy Preserving Classification Tasks 

Below, we discuss the datasets and the privacy preserving classification tasks that 

we solve using our proposed methods. 

Name Disambiguation (ND) [11]. The objective of this classification task is to 

identify whether the name reference at a row in the data matrix maps to multiple real-

life persons or not. Such an exercise is quite common in the Homeland Security for 

disambiguating multiple suspects from their digital footprints [10,37]. Privacy of the 

people in such a dataset is important as many innocent persons can also be listed as a 

suspect. Given a set of keywords that are associated with a name reference, we build a 

binary data matrix for solving the ND task. We use Arnetminer academic publication 

data. In this dataset, each row is a name reference of one or multiple researchers, and 

each column is a research keyword within the computer science research umbrella. A 

‘1’ entry represents that the name reference in the corresponding row has used the 

keyword in her (or their) published works. In our dataset, there are 148 rows which 

are labeled such that half of the people in this dataset are pure entity (a negative 

case), and the rest of them are multi-entity (a positive case). The dataset contains 

552 attributes (keywords). 

To solve the name disambiguation problem we first perform topic modeling over 

the keywords and then compute the distribution of entity u’s keywords across different 

topics. Our hypothesis is that for a pure entity the topic distribution will be concen-

trated on a few related topics, but for an impure entity (which is composed of multiple 

real-life persons) the topic distribution will be distributed over many non-related top-
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ics. We use this idea to build a simple classifier which uses an entropy-based score 

E(u) for an entity u as below: 

|T |X 
E(u) = − P (u | Tk) log P (u | Tk) (6.5) 

k=1 

where P (u | Tk) is the probability of u belonging to topic Tk, and |T | represents 

the pre-defined number of topics for topic modeling. Clearly, for a pure entity the 

entropy-based score E(u) is relatively smaller than the same for a non-pure entity. 

We use this score as our predicted value and compute AUC (area under ROC curve) 

to report the performance of the classifier. 

Email The last dataset, namely Email dataset 3 is a collection of approximately 

1099 personal email messages distributed in 10 different directories. Each directory 

contains both legitimate and spam messages. To respect the privacy issue, each token 

including word, number, and punctuation symbol is encrypted by a unique number. 

The classification task is to distinguish the spam email with nonspam email. We use 

this data to mimic microdata (such as twitter or Facebook messages) classification. 

Privacy is important in such a dataset as keyword based features in a micro-message 

can potentially identify a person. In the dataset, each row is an email message, and 

each column denotes a token. A ‘1’ in a cell represents that the row reference contains 

the token in the email message. 

6.6.2 Experimental Setting 

For our experiments, we vary the k value of the proposed k-anonymity by contain-

ment (AC) metric and run Maximal and different variants of Greedy independently 

for building projected classification datasets for which AC value is at least k. We use 

the names HamDist and DistCnt for the two variants of Greedy (Algorithm 6 and 7), 

which optimize Hamming distance and Distinguish count greedy criteria, respectively. 

3http://www.csmining.org/index.php/pu1-and-pu123a-datasets.html 

https://3http://www.csmining.org/index.php/pu1-and-pu123a-datasets.html
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As we mentioned earlier, k-anonymity based method imposes strong restriction which 

severely affects the utility of the dataset. To demonstrate that, instead of using AC, 

we utilize k-anonymity as our privacy criteria for different variants of Greedy. We call 

these competing methods k-anonymity HamDist, and k-anonymity DistCnt. It is 

important to note that, in our experiments under the same k setting, the k-anonymity 

based competing methods may not provide the same level of privacy. For instance, 

for the same k value, privacy protection of our proposed method HamDist is not the 

same as that of the k-anonymity HamDist, simply because k-AC is a relaxation of 

k-anonymity. 

We also use four other methods for comparing their performance with the perfor-

mance of our proposed methods. We call these competing methods RF [165], CM 

Greedy [94], Laplace-DP, and Exponential-DP. We discuss these methods below. 

RF is a Randomization Flipping based k-anonymization technique presented 

in [165], which randomly flips the feature value such that each instance in the dataset 

satisfies the k-anonymity privacy constraint. RF uses clustering such that after ran-

dom flipping operation, each cluster has at least k entities with the same feature 

values with respect to the entire feature set. 

CM greedy represents another greedy based method which uses Classification Met-

ric utility criterion proposed in [94] as utility metric (See definition 6.3.2). It assigns 

a generalization penalty over the rows of the dataset and uses a genetic algorithm for 

the classification task, but for a fair comparison we use CM criterion in the Greedy 

algorithm and with the selected features we use identical setup for classification. 

Laplace-DP [18] is a method to use feature selection for �-differential private data 

publishing. Authors in [18] utilize Laplace mechanism [161] for �-differential privacy 

guarantee. To compare with their method, we first compute the utility of each feature 

xi ∈ I as its true output using HamDist function in Definition 6.5.2 denoted as H(xi). 

Then we add independently generated noise according to a Laplace distribution with 

Lap(ΔH ) to each of the |I| outputs, and the noisy output for each feature xi is defined 
� 

as H (̂xi) = H(xi)+Lap(
Δ 
�
H ), where ΔH is the sensitivity of HamDist function. After 



125 

that we select top-N features by considering N largest noisy outputs. On the reduced 

dataset, we apply a private data release method which provides �-differential privacy 

guaranty. The general philosophy of this method is to first derive a frequency matrix 

of the reduced dataset over the feature domain and add Laplace noise with Lap(1 
� ) 

to each count (known as marginal) to satisfy the �-differential privacy. Then the 

method adds additional data instances to match the above count. Such an approach 

is discussed in [95] as a private data release mechanism. 

Exponential-DP is another �-differential privacy aware feature selection method. 

Compared to the work presented in [18], we use exponential mechanism [162] based 

�-differential privacy to select features. In particular, we choose each feature xi ∈ I 

with probability proportional to exp(
2Δ 
�
H H(xi)). That is, the feature with a higher 

utility score in terms of HamDist function is exponentially more likely to be chosen. 

The private data release stage of Exponential-DP is as same as the one in Laplace-

DP. Note that, for both Laplace-DP and Exponential-DP, prior feature selection is 

essential for such methods to reduce the data dimensionality, otherwise the number 

of marginals is an intractable number (2|F|, for a binary dataset with F features) and 

adding instances to match count for each such instance is practically impossible. 

For all the algorithms and all the datasets (except ND) we use the LibSVM to 

perform SVM classification using L2 loss with 5-fold cross validation. The only pa-

rameter for libSVM is regularization-loss trade-off C which we tune using a small 

validation set. For each of the algorithms, we report AUC and the selected feature 

count (SFC). For RF method, it selects all the features, so for this method we report 

the percentage of cell values for which the bit is flipped. We use different k-anonymity 

by containment (AC) values in our experiments. For practical k-anonymization, k 

value between 5 and 10 is suggested in the earlier work [81]; we use three different k 

values, which are 5, 8 and 11. For a fair comparison, for both Laplace and Exponen-

tial DP, we use the same number of features as is obtained for the case of HamDist 

Greedy under k = 5. Since k-anonymity and differential privacy use totally different 

parameter setting mechanisms (one based on k, and the other based on �), it is not 
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Table 6.4.: AUC comparison among different privacy methods for the name disam-
biguation task 

AUC (Selected Feature Count) 
Method 

k=5 k=8 k=11 

Maximal 0.82 (61) 0.81 (43) 0.79 (32) 
HamDist 0.88 (27) 0.88 (24) 0.81 (16) 
DistCnt 0.81 (11) 0.81 (11) 0.80 (10) 

CM Greedy [94] 0.68 (2) 0.68 (2) 0.68 (2) 
RF [165] 0.75±0.02 (11.99%) 0.73±0.03 (14.03%) 0.72±0.02 (16.49%) 
k-anonymity HamDist 0.55 (3) 0.55 (2) 0.55 (2) 
k-anonymity DistCnt 0.79 (3) 0.79 (3) 0.77 (2) 

Full-Feature-Set 0.87 (552) 

easy to understand what value of � in DP will make a fair comparison for a k value 

of 5 in k-AC. So, for both Laplace-DP and exponential-DP, we show the differential 

privacy results for different � values: 0.5, 1.0, 1.5, and 2.0 . Note that the original 

work [95] has suggested to use a value of 1.0 for �. While using DP based methods, 

we distribute half of the privacy budget for the feature selection step and the remain-

ing half to add noise into marginals in the private data release step. Moreover, in the 

feature selection procedure, we further equally divide the budget for the selection of 

each feature. 

RF, Laplace-DP, and Exponential-DP are randomized methods, so for each dataset 

we run all of them 10 times and report the average AUC and standard deviation. For 

each result table in the following sections, we also highlight the best results in terms 

of AUC among all methods under same k setting. We run all the experiments on a 

2.1 GHz Machine with 4GB memory running Linux operating system. 

6.6.3 Name Disambiguation 

In Table 6.4 we report the AUC value of anonymized name disambiguation task 

using various privacy methods (in rows) for different k values (in columns). For better 

comparison, our proposed methods, competing methods, and non-private methods 

https://0.72�0.02
https://0.73�0.03
https://0.75�0.02
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are grouped by the horizontal lines: our proposed methods are in the top group, 

the competing methods are in the middle group, and non-private methods are in 

the bottom group. For differential privacy comparison, we show the AUC result in 

Figure 6.1(a) 6.1(b). For each method, we also report the count of selected features 

(SFC). Since RF method uses the full set of features; for this method the value in the 

parenthesis is the percent of cell values that have been flipped. We also report the 

AUC performance using full feature set (last row). As non-private method in bottom 

group has no privacy restriction, thus the result is independent of k. 

For most of the methods increasing k decreases the number of selected features, 

which translates to poorer classification performance; this validates the privacy-utility 

trade-off. However, for a given k, our proposed methods perform better than the com-

peting methods in terms of AUC metric for all different k values. For instance, for 

k = 5, the AUC result of RF and CM Greedy are only 0.75 and 0.68 respectively, 

whereas different versions of proposed Greedy obtain AUC values between 0.81 and 

0.88. Among the competing methods, both Laplace-DP and Exponential-DP per-

form the worst (0.51 AUC under � = 1.0) as shown in the first group of bars in 

Figure 6.1(a) & 6.1(b), and k-anonymity DistCnt performs the best (0.79 for k=5); 

yet all completing methods perform much poorer than our proposed methods. A rea-

son for this may be most of the competing methods are too restrictive, as we can see 

that they are able to select only 2 to 3 features for various k values. In comparison, 

our proposed methods are able to select between 11 and 61 features, which help our 

methods to retain classification utility. The bad performance of differential privacy 

based methods is due to the fact that in such a setting, the added noise is too large 

in both feature selection and private data release steps. In general, the smaller the 

�, the stronger privacy guarantee the differential privacy provides. However, stronger 

privacy protection in terms of � always leads to worse data utility in terms of AUC 

as shown in Figure 6.1(a) 6.1(b). Therefore, even though differential privacy provides 

stronger privacy guarantee, the utility of data targeting supervised classification task 

is significantly destroyed. For this dataset, we observe that the performance of RF 
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Table 6.5.: Comparison among different privacy methods for Email dataset using 
AUC 

AUC (Selected Feature Count) 
Method 

k=5 k=8 k=11 

Maximal 0.94 (121) 0.92 (66) 0.90 (58) 
HamDist 0.91 (11) 0.91 (11) 0.91 (11) 
DistCnt 0.95 (11) 0.93 (7) 0.93 (7) 

CM Greedy [94] 0.86 (3) 0.86 (3) 0.86 (3) 
RF [165] 0.87±0.02 (1.30%) 0.86±0.01 (1.73%) 0.87±0.03 (2.03%) 
k-anonymity HamDist 0.84 (4) 0.84 (4) 0.84 (4) 
k-anonymity DistCnt 0.81 (4) 0.81 (4) 0.81 (4) 

Full-Feature-Set 0.95 (24604) 

is largely dependent on the percentage of flips in the cell-value; if this percentage is 

large, the performance is poor. As k increases, with more privacy requirement, the 

percentage of flips increases, and the AUC drops. 

For a sparse dataset like the one that we use for name disambiguation, feature 

selection helps classification performance. In this dataset, using full set of features 

(no privacy), we obtain only 0.87 AUC value, whereas using less than 10% of features 

we can achieve comparable or better AUC using our proposed methods (when k=5). 

Even for k = 11, our methods retain substantial part of the classification utility of the 

dataset and obtain AUC value of 0.81 (see second row). Also, note that under k = 5 

and 8, our HamDist performs better than using full feature set, which demonstrates 

our proposed privacy-aware feature selection methods not only have the competitive 

AUC performance, but provide strong privacy guarantees as well. 

6.6.4 Spam Email Filtering 

In Table 6.5, we compare AUC value of different methods for spam email filtering 

task. This is very high dimensional data with 24604 features. As we can observe, 

our proposed methods, especially DistCnt and HamDist perform better than the 

competing methods. For example, for k = 5, the classification AUC of RF is 0.87 with 

https://0.87�0.03
https://0.86�0.01
https://0.87�0.02
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Fig. 6.1.: Classification performance of differential privacy based methods for differ-
ent � values on three datasets. Laplace mechanism is on the left and exponential 
mechanism is on the right. Each group of bars belong to one specific dataset, and 
within a group different bars represent different � values. 

flip rate 1.30%, but using less than 0.045% of features DistCnt obtains an AUC value 

of 0.95, which is equal to the AUC value using the full feature set. Again, k-anonymity 

based methods show worse performance as they select less number of features due 

to stronger restriction of this privacy metric. For instance, for k = 5, HamDist 

selects 11 features, but k-anonymity HamDist selects only 4 features. Due to this, 

classification results using k-anonymity constraint are worse compared to those using 

our proposed AC as privacy metric. As shown in Figure 6.1(a) 6.1(b), both Laplace-

DP and Exponential-DP with various privacy budget � setups perform much worse 

than all the competing methods in Table 6.5, which demonstrates that the significant 

amount of added noise during the sanitization process deteriorates the data utility 

and leads to bad classification performance. Among our methods, both DistCnt and 

Maximal are the best as they consistently hold the classification performance for all 

different k settings. 
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6.7 Chapter Summary 

In this chapter, we propose a novel method for entity anonymization using feature 

selection. We define a new anonymity metric called k-anonymity by containment 

which is particularly suitable for high dimensional microdata. We also propose two 

feature selection methods along with two classification utility metrics. These metrics 

satisfy submodular properties, thus they enable effective greedy algorithms. In ex-

periment section we show that both proposed methods select good quality features 

on a variety of datasets for retaining the classification utility yet they satisfy the user 

defined anonymity constraint. 
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7. FUTURE WORK AND CONCLUSION 

Name disambiguation using relational, streaming, and privacy-preserving textual data 

are novel research problems, and our works are just the beginning, thus the oppor-

tunity for the future works is abundant. In this chapter, we discuss a few possible 

future directions to explore. 

For the works presented in Chapter 3 and Chapter 4, the validity of current 

methodologies are particularly linked to academic collaboration networks. However, 

the exploration of ground-truth name disambiguation datasets in security sensitive 

domains, such as email, phone call and online social networks, is an interesting future 

research direction. Another future work is to improve current network embedding 

model presented in Chapter 4. For instance, we can incorporate contextual network 

topological information as a Laplacian regularizer into the optimization framework to 

alleviate the sparseness of networks for further improving the name disambiguation 

performance. In addition, we can also utilize neural network models to capture the 

high-order non-linear relationship between nodes in the graph. 

For the active online name disambiguation presented in Chapter 5, there are rooms 

to improve the method proposed in this work as well. The data model used in this 

study is limited with the Gaussian distribution. The proposed approach can be ex-

tended to problems involving more flexible class distributions by choosing a mixture 

model for each class data and a hierarchical Dirichlet Process Prior model over class 

distributions. Another future work would be to use time-dependent Dirichlet process 

to incorporate temporal information into the prior model. Specifically, for biblio-

graphic data, a clear temporal trend exists; most people in academia start with 1 − 2 

papers per year, and then increase this rate significantly during their career’s peaks 

which diminish as they get closer to retirement. Incorporating such intuition into the 

model may also improve the online name disambiguation performance substantially. 
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For name disambiguation using privacy-preserving textual data presented in Chap-

ter 6, we consider binary and categorical features. An immediate future work is to 

extend this work on datasets with real-valued features. Another one would be to con-

sider the sensitivity level of features. Finally, it will be practical to consider absent 

attributes in the proposed k-anonymity by containment privacy metric. 

To conclude, in this dissertation, we introduce several practical settings for the 

task of name disambiguation. Specifically, we formulate the name disambiguation 

using relational data in the form of anonymized graphs, and designed effective 

disambiguation-aware features to solve the problem. We also developed Bayesian non-

exhaustive classification framework for the task of active online name disambiguation 

by considering the streaming nature of data records. Finally, we designed a novel pri-

vacy metric, called k-anonymity by containment, to measure the potential disclosure 

risk of textual features used in the name disambiguation application. 
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