268 research outputs found

    Exploiting the spatio-temporal channel properties of multiple antenna systems

    Get PDF
    The spatio-temporal channel properties of multiple antenna systems are exploited to obtain new approaches to localization and channel prediction. It is shown that a mobile station can be localized in multipath environments under the explicit consideration of scatterers. Thus, unlike conventional localization systems, the scatterers are used as an aid in localization. Moreover, it is shown that channel prediction in multiple antenna systems can be performed using linear prediction filters. This result is used to propose optimal and computationally inexpensive suboptimal channel predictors

    Soft information for localization-of-things

    Get PDF
    Location awareness is vital for emerging Internetof- Things applications and opens a new era for Localizationof- Things. This paper first reviews the classical localization techniques based on single-value metrics, such as range and angle estimates, and on fixed measurement models, such as Gaussian distributions with mean equal to the true value of the metric. Then, it presents a new localization approach based on soft information (SI) extracted from intra- and inter-node measurements, as well as from contextual data. In particular, efficient techniques for learning and fusing different kinds of SI are described. Case studies are presented for two scenarios in which sensing measurements are based on: 1) noisy features and non-line-of-sight detector outputs and 2) IEEE 802.15.4a standard. The results show that SI-based localization is highly efficient, can significantly outperform classical techniques, and provides robustness to harsh propagation conditions.RYC-2016-1938

    Estimation of Spatial Fields of Nlos/Los Conditions for Improved Localization in Indoor Environments

    Get PDF
    A major challenge in indoor localization is the presence or absence of line-of-sight (LOS). The absence of LOS, denoted as non-line-of-sight (NLOS), directly affects the accuracy of any localization algorithm because of the induced bias in ranging. The estimation of the spatial distribution of NLOS-induced ranging bias in indoor environments remains a major challenge. In this paper, we propose a novel crowd-based Bayesian learning approach to the estimation of bias fields caused by LOS/NLOS conditions. The proposed method is based on the concept of Gaussian processes and exploits numerous measurements. The performance of the method is demonstrated with extensive experiments

    On the Performance Gain of Harnessing Non-Line-Of-Sight Propagation for Visible Light-Based Positioning

    Get PDF
    In practice, visible light signals undergo non-line-of-sight (NLOS) propagation, and in visible light-based positioning (VLP) methods, the NLOS links are usually treated as disturbance sources to simplify the associated signal processing. However, the impact of NLOS propagation on VLP performance is not fully understood. In this paper, we aim to reveal the performance limits of VLP systems in an NLOS propagation environment via Fisher information analysis. Firstly, the closed-form Cramer-Rao lower bound (CRLB) on the estimation error of user detector (UD) location and orientation is established to shed light on the NLOS-based VLP performance limits. Secondly, the information contribution from the NLOS channel is quantified to gain insights into the effect of the NLOS propagation on the VLP performance. It is shown that VLP can gain additional UD location information from the NLOS channel via leveraging the NLOS propagation knowledge. In other words, the NLOS channel can be exploited to improve VLP performance in addition to the line-of-sight (LOS) channel. The obtained closed-form VLP performance limits can not only provide theoretical foundations for the VLP algorithm design under NLOS propagation, but also provide a performance benchmark for various VLP algorithms

    Autonomous Swarm Navigation

    Get PDF
    Robotic swarm systems attract increasing attention in a wide variety of applications, where a multitude of self-organized robotic entities collectively accomplish sensing or exploration tasks. Compared to a single robot, a swarm system offers advantages in terms of exploration speed, robustness against single point of failures, and collective observations of spatio-temporal processes. Autonomous swarm navigation, including swarm self-localization, the localization of external sources, and swarm control, is essential for the success of an autonomous swarm application. However, as a newly emerging technology, a thorough study of autonomous swarm navigation is still missing. In this thesis, we systematically study swarm navigation systems, particularly emphasizing on their collective performance. The general theory of swarm navigation as well as an in-depth study on a specific swarm navigation system proposed for future Mars exploration missions are covered. Concerning swarm localization, a decentralized algorithm is proposed, which achieves a near-optimal performance with low complexity for a dense swarm network. Regarding swarm control, a position-aware swarm control concept is proposed. The swarm is aware of not only the position estimates and the estimation uncertainties of itself and the sources, but also the potential motions to enrich position information. As a result, the swarm actively adapts its formation to improve localization performance, without losing track of other objectives, such as goal approaching and collision avoidance. The autonomous swarm navigation concept described in this thesis is verified for a specific Mars swarm exploration system. More importantly, this concept is generally adaptable to an extensive range of swarm applications

    Multi-antenna non-line-of-sight identification techniques for target localization in mobile ad-hoc networks

    Get PDF
    Target localization has a wide range of military and civilian applications in wireless mobile networks. Examples include battle-field surveillance, emergency 911 (E911), traffc alert, habitat monitoring, resource allocation, routing, and disaster mitigation. Basic localization techniques include time-of-arrival (TOA), direction-of-arrival (DOA) and received-signal strength (RSS) estimation. Techniques that are proposed based on TOA and DOA are very sensitive to the availability of Line-of-sight (LOS) which is the direct path between the transmitter and the receiver. If LOS is not available, TOA and DOA estimation errors create a large localization error. In order to reduce NLOS localization error, NLOS identifcation, mitigation, and localization techniques have been proposed. This research investigates NLOS identifcation for multiple antennas radio systems. The techniques proposed in the literature mainly use one antenna element to enable NLOS identifcation. When a single antenna is utilized, limited features of the wireless channel can be exploited to identify NLOS situations. However, in DOA-based wireless localization systems, multiple antenna elements are available. In addition, multiple antenna technology has been adopted in many widely used wireless systems such as wireless LAN 802.11n and WiMAX 802.16e which are good candidates for localization based services. In this work, the potential of spatial channel information for high performance NLOS identifcation is investigated. Considering narrowband multiple antenna wireless systems, two xvNLOS identifcation techniques are proposed. Here, the implementation of spatial correlation of channel coeffcients across antenna elements as a metric for NLOS identifcation is proposed. In order to obtain the spatial correlation, a new multi-input multi-output (MIMO) channel model based on rough surface theory is proposed. This model can be used to compute the spatial correlation between the antenna pair separated by any distance. In addition, a new NLOS identifcation technique that exploits the statistics of phase difference across two antenna elements is proposed. This technique assumes the phases received across two antenna elements are uncorrelated. This assumption is validated based on the well-known circular and elliptic scattering models. Next, it is proved that the channel Rician K-factor is a function of the phase difference variance. Exploiting Rician K-factor, techniques to identify NLOS scenarios are proposed. Considering wideband multiple antenna wireless systems which use MIMO-orthogonal frequency division multiplexing (OFDM) signaling, space-time-frequency channel correlation is exploited to attain NLOS identifcation in time-varying, frequency-selective and spaceselective radio channels. Novel NLOS identi?cation measures based on space, time and frequency channel correlation are proposed and their performances are evaluated. These measures represent a better NLOS identifcation performance compared to those that only use space, time or frequency

    Whitepaper on New Localization Methods for 5G Wireless Systems and the Internet-of-Things

    Get PDF

    Hidden Markov models for radio localization in mixed LOS/NLOS conditions

    Get PDF
    Abstract—This paper deals with the problem of radio localization of moving terminals (MTs) for indoor applications with mixed line-of-sight/non-line-of-sight (LOS/NLOS) conditions. To reduce false localizations, a grid-based Bayesian approach is proposed to jointly track the sequence of the positions and the sight conditions of the MT. This method is based on the assumption that both the MT position and the sight condition are Markov chains whose state is hidden in the received signals [hidden Markov model (HMM)]. The observations used for the HMM localization are obtained from the power-delay profile of the received signals. In ultrawideband (UWB) systems, the use of the whole power-delay profile, rather than the total power only, allows to reach higher localization accuracy, as the power-profile is a joint measurement of time of arrival and power. Numerical results show that the proposed HMM method improves the accuracy of localization with respect to conventional ranging methods, especially in mixed LOS/NLOS indoor environments. Index Terms—Bayesian estimation, hidden Markov models (HMM), mobile positioning, source localization, tracking algorithms
    • …
    corecore