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Chapter 1

Introduction

1.1 Motivation

Multiple antenna wireless communication systems, herein called multiple-input

multiple-output (MIMO) systems, offer dramatic improvements in bit rate [FG98,

Tel99] and error rate [Ala98, TSC98] over single antenna wireless communication sys-

tems, herein called single-input single-output (SISO) systems, by exploiting the spatio-

temporal channel properties of MIMO systems. In this thesis, the spatio-temporal

channel properties of MIMO systems are exploited to yield valuable insights and new

approaches to localization and channel prediction in MIMO systems. Localization and

channel prediction may seem to be different problems at first glance. However, both

problems are related in that radio localization is achieved by exploiting the proper-

ties of the radio channel, spatial and/or temporal. Consequently, though not within

the scope of this thesis, joint estimation of the location and the channel of a mobile

radio user can yield an improved localization and channel estimation performance as

compared to independent estimation. In [DAB+13, Slo12], it has been shown that sig-

nificant reduction in signaling overhead can be obtained in cellular networks, mobile ad

hoc networks and cognitive radio by exploiting the location information of the users.

For example, the user’s position can be used to get information about the channel

statistics from a location based channel statistics database, which in turn can be used

to improve channel estimation [Slo12].

Location information is integral to advanced cellular and sensor network applications.

The direct implication of MIMO systems for localization is the ability to estimate the

angle of departure (AOD) and the angle-of-arrival (AOA) at the transmitter and re-

ceiver, respectively using antenna array processing techniques [VT02]. The AOD and

the AOA measurements can be augmented with the conventionally used time-of-arrival

(TOA) or time-difference-of-arrival (TDOA) measurements to get a more precise posi-

tion estimate. A rather more systematic approach, studying the spatio-temporal chan-

nel properties of MIMO systems, reveals that there is a lot more to be gained from the

estimates of the AOD and the AOA than a mere extra information in the spatial dimen-

sion. It will be shown that, by systematic spatio-temporal channel modeling, MIMO

localization systems can deliver satisfactory performance in multipath environments,

e.g., in terrestrial and indoor scenarios, where satellite based navigation systems often
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show abysmal performance. The interesting result is that, just as in the case of MIMO

communication systems where the multipath fading effect yields an increase in capac-

ity, it will be shown that in MIMO localization systems the multipath propagations

can be exploited to yield an improved localization performance. This result contrasts

with localization in SISO systems where the detrimental multipath propagations are

to be identified and mitigated. Consequently, unlike SISO localization systems which

require at least three base stations (BSs) of known positions to estimate the unknown

positions of a mobile station (MS), it will be shown that in MIMO localization systems

a single BS is sufficient to estimate the position of a MS.

Reliable transmitter side channel state information, which in some cases can only be

obtained by channel prediction, is required to achieve the potential high performance

of transmission techniques like transmitter beamforming, precoding, adaptive modula-

tion and coding. The straightforward approach to MIMO channel prediction would be

the application of the typical SISO channel prediction algorithms to predict the SISO

subchannels of the MIMO channel. However, this approach leaves the spatial prop-

erties of the MIMO channel unexploited. By exploiting the spatio-temporal channel

properties of MIMO systems, it will be shown that the MIMO channel can be predicted

satisfactorily using outdated MIMO channel estimates. Analysis of the spatio-temporal

channel properties reveals that prediction of the MIMO channel coefficients can be per-

formed using a linear and time and frequency independent filter with a dimension at

least equal to the number of propagation paths in the MIMO channel. This result has

crucial importance in the design of optimal channel predictors.

Currently, antenna arrays are conveniently implemented in fixed stations, such as base

stations and WiFi access points, or mobile stations that are fixed on vehicles [MSL+09].

Due to physical space constraints, it has been so far difficult to implement antenna

arrays in hand-held devices. Nevertheless, it has been shown that integration of antenna

arrays in hand-held devices is feasible [KBF+05]. It is expected that future wireless

communication systems will employ antenna arrays in hand-held devices fabricated

by microstrip technology [MSL+09]. Thus it is not too optimistic to envisage MIMO

systems being ubiquitous in the near future. The ideas presented in thesis will be of

paramount importance in practice as they yield elegant solutions to localization and

channel prediction in MIMO systems.
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1.2 State of the art and open problems

1.2.1 Localization

Radio localization, which uses radio signals to obtain information about the position of

a user, is an essential radio technology which has applications in many areas. In cellular

networks, localization enables location based services such as localization of emergency

callers, navigational service, location based advertising, location based billing, etc. In

sensor networks, which monitor and record physical or environmental conditions, lo-

calization provides information about the positions of the sensors which is essential to

make a meaningful interpretation of the sensed data. The importance of localization

is not limited to cellular and sensor networks; there are a number of wireless commu-

nication services which rely on the accurate location information of the users. These

include context-aware services, augmented reality, guided tour of museums, etc. Of

course, the issue of user’s privacy is a cause for concern in location based services. It

is imperative that the user shall have complete control over the acquisition, storage,

retrieval and exchange of location data.

There are several radio localization techniques which yield satisfactory performance

for scenarios where the transmitted signals propagate directly from the transmitter

to the receiver. The two major localization techniques are the range based and the

bearing based localization techniques. There also exist hybrid localization algorithms

which jointly employ the range and bearing localization techniques to get an improved

localization performance.

In range based localization, the distance between the BS and the MS is estimated

from either the time-of-arrival (TOA) or the received signal strength measurements.

The TOA can be estimated from the cross-correlation of the received signal with a

locally generated replica of the transmitted signal, preferably a wide-band transmitted

signal [SY03]. Moreover, super-resolution spectral estimation algorithms, e.g., the

MUSIC (MUltiple SIgnal Classification) algorithm [Sch86], can also be used to obtain

improved TOA estimates. The aforementioned approaches to estimating the TOA

require synchronized transmitter and receiver clocks. The TOA can also be estimated

without synchronized transmitter and receiver clocks from the round trip delay time

taken of a signal being sent to the receiver and the acknowledgment being sent back

to the transmitter. Alternatively, the distance between the BS and the MS can be

estimated from the received signal strength using either an empirical path loss formula

which has been determined for different environments [OOF68, Hat80] or theoretical

path loss formula from radio propagation models.
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If the distance between a MS and at least three BSs is known, then the position of the

MS can be determined using trilateration. Given the distance between the BS and the

MS, the possible positions of the MS are found on the perimeter of a circle with the

BS at the center and a radius equal to the distance between the MS and the BS. Given

at least three BSs, the position of the MS can be found at the intersection point of

the three circles. Since the distance equation is nonlinear in the position of the MS, it

is difficult to find the maximum likelihood estimate of the position of the MS. Hence,

an iterative least squares algorithm based on linearizing the distance equation using a

Taylor series expansion can be used to estimate the position of the MS. In [CSMC04],

the distance equation is linearized by introducing a nuisance variable and the method

of least squares is used to determine the position of the MS.

If the transmitter and the receiver clocks are not synchronized, then the time-difference-

of-arrival (TDOA) of the signals from the different BSs to the MS can be measured.

However, the clocks of the BSs need to be synchronized. Thus the distance differences

between the different BSs to the MS are available. The position of the MS is estimated

from the distance differences by multilateration. The distance difference between two

BSs to the MS defines a hyperbola as the possible positions of the MS. Given at least

four BSs, the position of the MS can be found at the intersection point of the three

hyperbolas. Mathematically, the linearized least squares algorithm can be used to

determine the position of the MS. A closed form solution, using the method of least

squares, is given in [CH94] by reducing the distance difference equation to a linear form

by introducing a nuisance variable.

In bearing based localization techniques, the bearings between the BSs and the MS

are used to estimate the position of the MS by triangulation [SAK+92]. The bearing

between the BS and the MS defines a straight line of possible positions of the MS.

Given at least two bearings from two BSs, the position of the MS can be found at the

intersection point of the straight lines. Mathematically, the nonlinear equations of the

bearings can easily be reduced to a linear form in the position of the MS and the least

squares method can be used to estimate the position of the MS.

In the discussion of the aforementioned localization techniques, it has been assumed

that the transmitted signal propagates directly from the transmitter to the receiver.

However, in indoor scenarios, e.g., shopping malls, museums, airports, and terrestrial

outdoor scenarios, e.g., mountainous, urban and metropolitan areas, the transmitted

signal may experience reflection, scattering and diffraction before arriving at the re-

ceiver [Mol05]. This results in multipath propagation where several copies of the trans-

mitted signal superpose at the receiver with different delays, attenuations and phases.

Furthermore, the line-of-sight (LOS) path between the transmitter and the receiver
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might be obstructed and transmission is possible only via the non-line-of-sight (NLOS)

multipath propagations.

If the LOS paths between the BSs and the MS are not obstructed, then satisfactory

localization performance can still be obtained by identifying the LOS paths and simply

discarding the multipath propagations. In such cases, the LOS path between a BS and

a MS can be simply identified as the first arriving signal. However, localization of a

MS becomes complicated if some or all of the LOS paths between the BSs and the MS

are obstructed. Consequently, localization of a MS in NLOS multipath environments

has been a hot research topic.

Signature based localization techniques are alternative localization techniques to range

and bearing based localization techniques which can be used in both LOS and NLOS

multipath environments. Signature based localization techniques estimate the position

of a MS by finding the best match of the position dependent signatures of the received

signal, e.g., received signal strength, path loss, power delay profile, etc. or a combi-

nation thereof, with the entries of position dependent signatures stored in a database

[BP00, LJ05]. The database can be developed either from measurement campaigns or

from radio propagation models. Signature based localization techniques yield a satis-

factory performance also in NLOS multipath propagation environments as the actual

channel information is already collected in the database. However, signature based lo-

calization techniques have the downside that they involve an arduous task of creating

the database and maintaining the database as the environment changes.

There have been several research works on range based localization [GC09], bearing

based localization [Xio98, GAMD04, AM08] and hybrid localization [CZ04, TQ08] in

NLOS multipath environments. It has been assumed that the LOS propagation paths

between some of the BSs and the MS are obstructed, whereas there are unobstructed

LOS propagation paths between the remaining BSs and the MS. A straightforward

approach to localization in NLOS multipath environments is to treat the estimated

ranges and/or bearings as erroneous measurements and “average out” the influence

of the NLOS multipath propagations by considering more measurements from several

BSs. However, the localization accuracy of this approach would be susceptible to the

number of BSs with NLOS propagation links to the MS and the deviations of the NLOS

propagation paths from the LOS propagation paths. A more subtle approach would be

to identify and discard the measurements from the BSs with NLOS propagation links

to the MS. Localization of the MS would be possible as long as there are a sufficient

number of BSs with LOS propagation links to the MS. However, since the BSs with

NLOS propagation links to the MS are not known a priori, there is a possibility to

misidentify a BS with NLOS propagation link as having a LOS propagation link and
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a BS with LOS propagation link as having a NLOS propagation link [GC09]. This of

course leads to performance degradation of the localization accuracy.

Systematic approaches to localization in NLOS multipath environments employ models

to describe the influence of the NLOS multipath propagations and propose different

algorithms to mitigate the influence of the NLOS multipath propagations. For range

measurements, the effect of the NLOS multipath propagations on the measured dis-

tance between a BS and a MS is described by a positive distance bias. The positive

distance bias has been modelled by different distributions using theoretical models

and empirical models from measurements [GC09]. The variance of the measured dis-

tances for the NLOS propagation paths is assumed to be significantly higher than the

variance of the measured distances for the LOS propagation paths. Likewise for bear-

ing measurements, the effect of the NLOS multipath propagations on the measured

bearing between a BS and a MS is modelled by an angular dispersion factor. Differ-

ent distributions from geometrical models and empirical models from measurements

have been proposed for the angular spread statistics [SJJS00, ECS+98]. Using the

aforementioned models for range and bearing measurements in NLOS multipath envi-

ronments, several classes of NLOS multipath mitigation techniques have been proposed

[GC09, Xio98, GAMD04, AM08, CZ04, TQ08]:

• Least squares estimation techniques where the measurements are weighted in

such a way that the NLOS multipath bias is suppressed.

• Constrained localization techniques which employ convex optimization techniques

to localize a MS by utilizing the NLOS multipath measurements to define a

constraint on the feasible region of the MS location.

• Robust estimation techniques which suppress the impact of the NLOS multipath

propagations while maintaining a high estimation efficiency, i.e., low estimation

variance regardless of the NLOS multipath propagation scenario.

The aforementioned approaches to localization in NLOS multipath environments rely

on mitigating the influence of the NLOS multipath propagations on localizing a MS. In

this thesis, an alternative approach to localization in NLOS multipath environments

is considered by exploiting the spatio-temporal channel properties of MIMO systems.

The alternative approach enables localization of a MS under the explicit consideration

of scatterers based on the assumption that the propagation paths which are consid-

ered for localization contain a maximum of one scattering. The explicit consideration

of scatterers enables exploitation of multipath propagations which yields a significant
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improvement in localization performance. This approach contrasts with the NLOS mul-

tipath identification and mitigation approaches where NLOS multipath propagations

are to be mitigated rather than exploited. Furthermore, unlike the NLOS multipath

identification and mitigation approaches, there is no requirement for an unobstructed

LOS path between some of the BSs and the MS. Owing to the explicit consideration

of scatterers, satisfactory localization performance can be obtained in multipath envi-

ronments even when all the propagation paths are NLOS.

The basic idea of MS localization in NLOS multipath environments under the explicit

consideration of scatterers has already been considered. In [TCL01, PS09], the time-of-

arrival, the angle-of-departure and the Doppler shift measurements have been used to

localize a MS in NLOS multipath environments under the explicit consideration of scat-

terers. In [MYJ07, ST08, WPW11], the time-of-arrival, the angle-of-departure and the

angle-of-arrival measurements have been used to localize a MS in NLOS multipath envi-

ronments under the explicit consideration of scatterers. Furthermore, performance as-

sessments using real world measurements have been performed [ST08, WPW11]. How-

ever, the idea of MS localization in NLOS multipath environments under the explicit

consideration of scatterers has not been extensively researched. In this thesis, a com-

prehensive study of localization in NLOS multipath environments under the explicit

consideration of scatterers is presented. Furthermore, the following open problems are

addressed:

• How to exploit the spatio-temporal channel properties of MIMO systems to lo-

calize a MS in NLOS multipath environments under the explicit consideration

of scatterers with incomplete measurements, e.g., owing to a MS which is unsyn-

chronized with the BSs,

• How to exploit the spatio-temporal channel properties of MIMO systems to track

a MS in NLOS multipath environments under the explicit consideration of scat-

terers and

• How to exploit the spatio-temporal channel properties of MIMO systems to lo-

calize MSs in network localization scenarios with NLOS multipath environments.

1.2.2 Channel prediction

The availability of channel state information (CSI) at the transmitter and receiver is

essential in many mobile radio systems. Differential transmission techniques, which
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require no channel state information at the transmitter and receiver, can be used

in the absence of any channel state information under the assumption of constant

channel state during at least two transmit symbol durations. However, similar to the

case in SISO systems, differential transmission techniques with differential detection at

the receiver incur a performance loss of approximately 3 dB as compared to coherent

transmission techniques in MIMO systems [MSL+09]. Thus channel state information

is necessary to achieve high performance in mobile radio systems. The CSI can be

the instantaneous CSI or the statistical CSI such as the channel’s correlation, average

channel gain, etc. In this thesis, acquiring the instantaneous CSI is of interest. The

receiver side CSI can be obtained by transmission of a priori known pilot symbols

which are multiplexed with the useful data symbols [Cav91]. The receiver exploits

the received a priori known pilot symbols to estimate the channel at the pilot symbol

locations. The channels at other locations can then be interpolated using optimal

Wiener filtering, for example [Cav91]. However, advanced transmission techniques like

adaptive modulation and coding, adaptive power control, bit-loading and interference

alignment require transmitter side CSI. Furthermore, MIMO transmission techniques

such as network MIMO (coordinated multi-point transmission), pre-coders for spatial

multiplexing, transmit antenna diversity, etc., also require transmitter side CSI. In

practice, the receiver side CSI is used as transmitter side CSI under the assumption

that the receiver side CSI is not outdated when used as a transmitter side CSI. In time-

division-duplex (TDD) systems, the receiver side CSI is merely used as transmitter

side CSI in the next transmission instant, whereas in frequency-division-duplex (FDD)

systems, the receiver side CSI is fed back to the transmitter to be used as transmitter

side CSI.

In time-varying frequency-selective mobile radio channels, the channel changes contin-

ually in time and frequency. Thus the receiver side CSI can be potentially outdated

when used as a transmitter side CSI. Hence, in both TDD and FDD systems, readily

using the receiver side CSI as transmitter side CSI can result in significant performance

degradation. Furthermore, in FDD systems, feedback of the receiver side CSI reduces

spectral efficiency as resources which could otherwise be used for transmission of useful

data are used to transmit the estimated receiver side CSI. The reduction in spectral ef-

ficiency owing to feedback of the receiver side CSI is significantly pronounced in MIMO

systems as the feedback requirements of a MIMO channel, i.e., the number of SISO

subchannels of a MIMO channel, generally grow with the product of the number of

the transmit antennas and the receive antennas [LHSH04]. Thus it is imperative that

the receiver side CSI be used to obtain the transmitter side CSI by performing channel

prediction.

Before discussing the approaches to channel prediction, it is worthwhile to discuss the
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system function that shall be used to represent the mobile radio channel. The time-

variant mobile radio channel can be characterized by four system functions [Bel63].

The choice of the system function has no influence on the performance of the channel

prediction algorithms. However, among the four system functions, the time-variant

channel transfer function, herein simply referred to as the channel transfer function, is

advantageous in that it can easily be measured using a network analyzer or estimated

from transmission of a priori known pilot symbols as it is the only non-sparse system

function. Furthermore, the channel transfer function is usually easier to analyse than

the other system functions. Hence, in this thesis, the channel transfer function is used

to represent the mobile radio channel.

There are two major approaches to predicting the mobile radio channel. The first

approach is based on modeling the channel transfer function using an autoregressive

(AR) model, whereas the second approach is based on modeling the channel transfer

function using the parameters of the radio wave propagations. In the AR model based

channel prediction approach, the channel coefficient to be predicted is represented

as a linear combination of past channel coefficients [EDHH98, HHDH99, DHHH00,

Ekm02, SM05, Aro11, AVWS12]. If long range channel prediction is required, then an

iterative multi-step prediction can be performed where each of the required channel

coefficients are predicted one after the other iteratively [DH07]. It is assumed that

the AR model parameters do not change or change slowly compared with the rate of

channel fading within the time duration and frequency band under consideration. The

AR model parameters can be estimated by the method of least squares using either

true channel coefficients, if available, or empirical autocorrelation functions computed

from measured channel coefficients [Mak75, Hay02]. In the case of time-varying AR

model parameters, adaptive filters can be used to track the AR model parameters

[HHDH99, SM05, DH07]. In the absence of estimates of the channel coefficients or the

channel autocorrelation function, the WSSUS (Wide-Sense Stationary Uncorrelated

Scattering) models can be used to estimate the channel autocorrelation function. A

commonly used statistical model for the temporal correlations is the Jakes’ model

[Jak74]. For wideband channels the spectral correlations are considered which are often

assumed to result from the one-sided exponential power delay profile [Gol05]. Thus

the AR model parameters can be calculated from the Jakes’ model and the one-sided

exponential power delay profile given the maximum Doppler shift and the multipath

spread of the channel.

In the parametric model based prediction approach, which is inspired by the geometry

of the radio propagation paths, the channel transfer function is approximated as a

superposition of a finite number of plane waves which represent the discrete propaga-

tions paths [HW98, AJJF99, VTR00, TV01, SK02, WE05, WE06b, CEV07, PW09b].
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Each of the propagation paths is defined by a complex weight, delay and Doppler shift.

It is assumed that the propagation path parameters do not change or change slowly

compared with the rate of channel fading within the time duration and frequency band

under consideration. This assumption implies that the mobile radio environment does

not change or changes slowly compared with the rate of channel fading within the

time duration and frequency band under consideration. The assumption holds very

well when the receiver is moving with a constant velocity and the positions of the

scatterers remain unchanged. In such a case the path parameters remain constant for

a much longer duration than the coherence time of the channel [GS04, Pal11]. If this

assumption holds, then given estimates of the path parameters the channel prediction

task is a mere computation of the value of the channel transfer function, calculated

using the estimated propagation path parameters, at the desired time and frequency.

The path parameters are commonly estimated using subspace estimation methods such

as the MUSIC (MUltiple SIgnal Classification) algorithm [Sch86], the ESPRIT (Esti-

mation of Signal Parameters via Rotational Invariance Techniques) algorithm [RK89]

or maximum likelihood methods such as the SAGE (Space-alternating Generalized

Expectation-maximization) algorithm [FH94]. It must be noted that even though the

approaches are different, the parametric model based approach is a special case of the

AR model approach where all the poles of the AR filter lie on the unit circle.

A simple approach to MIMO channel prediction is to consider the SISO subchannels

of a MIMO channel independently and perform SISO channel prediction for each SISO

subchannel of a MIMO channel using the AR model based predictor [ZG04, LGLG04,

TO05, Aro11]. In [Aro11], measured SISO subchannels of a MIMO channel are jointly

exploited to estimate the AR model parameters, whereas in [ZG04, LGLG04, TO05] the

AR parameters are estimated from the temporal autocorrelation function calculated

using the Jakes’ model. This is a reasonable approach in cases where there is no

dependency between the SISO subchannels of a MIMO channel. However, in practice

the SISO subchannels of a MIMO channel are not independent [WE06a]. There is a

spatial correlation between the SISO subchannels of a MIMO channel which could be

exploited to improve performance of MIMO channel prediction. In [WE06a], an AR

model based MIMO channel prediction algorithm is proposed which exploits both the

temporal and the spatial correlations in MIMO correlated fading channels. It has been

shown that the proposed MIMO channel predictor achieves a superior performance, at a

cost of a slight increase in complexity owing to consideration of the spatial correlations,

over the SISO channel predictor.

A study of the Cramér-Rao lower bound for MIMO channel prediction compared with

the SISO channel prediction for the parametric model based prediction approach shows

that independently predicting the SISO subchannels of the MIMO channel results in
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a significant performance loss for all considered prediction widths [SS06]. In the para-

metric model based MIMO channel predictor, the angle-of-departure and the angle-

of-arrival of each path are considered for describing the spatial channel property. Ex-

ploitation of the spatial channel property, in addition to the temporal channel property,

accounts for the performance gain in MIMO channel prediction. Furthermore, the per-

formance gain in MIMO channel prediction can be attributed to the increase in the

number of measurements compared with the SISO case with only a modest increase in

the number of unknowns, i.e., the angle-of-departure and the angle-of-arrival of each

path. Similar results are obtained for an extension of the study to MIMO-OFDM sys-

tems in [LSS09]. The interesting result is that a MIMO-OFDM system can operate

with a lower time and frequency pilot density than a corresponding SISO implementa-

tion, even when considering the fact that more pilot symbols are required for estimating

the MIMO channel.

Parametric model based MIMO channel prediction algorithms have been proposed

in [GS04, ONJ+08, Pal11, ATD14a, ATD14b]. The MIMO channel prediction in

[ONJ+08, Pal11, ATD14a, ATD14b] is performed by merely extrapolating the com-

puted MIMO channel transfer function at the desired prediction width. In [GS04],

a short-term MIMO channel prediction, without estimating the MIMO channel path

parameters, is proposed by separating the spatial and temporal components of the

MIMO channel variation using the singular value decomposition (SVD). Afterwards,

short-term prediction of the temporal components of the MIMO channel variations is

performed using an AR model. The method of least squares is used to estimate the

AR parameters from the true MIMO channel coefficients.

Parametric model based MIMO channel prediction using the double directional channel

model has been studied in detail in [Pal11]. Based on the investigation of the equiva-

lence of the double directional channel model to the linear filter based channel model,

it has been claimed that a linear and time and frequency independent prediction filter,

with a filter dimension at least equal to the number of paths in the MIMO channel, can

be used to predict any channel coefficient of the MIMO channel. A similar result, yet

unfurnished with the detailed analysis presented in [Pal11], has been claimed in [GS04].

In this thesis, the result in [GS04, Pal11] is proved and extended. Furthermore, the

following open problems in MIMO channel prediction are addressed:

• How to exploit the spatio-temporal channel properties of MIMO systems to track

MIMO channels for performance gains in MIMO channel prediction and

• How to exploit the spatio-temporal channel properties of MIMO systems to ex-

ploit side information for MIMO channel prediction.
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1.3 Structure of the thesis

In this section, the organization of the remainder of this thesis is given.

In Chapter 2, a MIMO channel model for studying the spatio-temporal channel prop-

erties of MIMO systems is presented. Furthermore, a simplified channel model for

localization of a MS in MIMO systems is also presented.

In Chapter 3, localization of a MS in NLOS multipath environments under the explicit

consideration of scatterers is presented. The case where the MS is unsynchronized with

the BSs is considered. It will be shown how the spatio-temporal channel properties of

MIMO systems can be exploited to yield satisfactory performance in NLOS multipath

environments. In Chapter 4, performance gains from tracking a MS in NLOS mul-

tipath environments under the explicit consideration of the scatterers are presented.

Owing to the nonlinearity of the tracking problem, a suboptimal approach to tracking

a MS is presented. In Chapter 5, the problem of network localization in NLOS mul-

tipath environments is studied. A cooperative localization algorithm for localization

of MSs in NLOS multipath environments under the explicit consideration of scatterers

is presented. Furthermore, using techniques from robust estimation theory, a robust

cooperative localization algorithm for network localization in NLOS multipath environ-

ments without the explicit consideration of scatterers is presented.

In Chapter 6, prediction of the MIMO channel is presented. Furthermore, the time and

frequency dynamics of the proposed MIMO channel model are studied. In this chapter,

it will be proved that a linear and time and frequency independent prediction filter,

with a filter dimension at least equal to the number of propagation paths, can be used

to predict any channel coefficient of the MIMO channel. In Chapter 7, performance

gains from tracking the MIMO channel are presented. It will be shown that tracking

the MIMO channel in TDD systems can be used to improve the receiver side channel

estimation and also channel prediction. In Chapter 8, exploiting side information for

improving the MIMO channel prediction performance is presented. As a demonstrative

example, exploiting the feedback channel in FDD systems for improving MIMO channel

prediction performance is presented.

Finally, a summary of this thesis is given in Chapter 9.
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Chapter 2

Modeling the spatio-temporal channel
properties of MIMO systems

2.1 Double directional channel model

In this chapter, a MIMO channel model is presented which will be used to assess the

potential gains from exploitation of the spatio-temporal channel properties of MIMO

systems. The simplest MIMO channel model is a statistical narrowband MIMO channel

model where the entries of the MIMO channel matrix are assumed to be independent

and identically distributed (i.i.d.) complex Gaussian random variables. This MIMO

channel model is often used to model rich scattering environments characterized by

independent multipath propagations uniformly distributed in all directions [ABB+07].

However, for practical MIMO systems the channels between the different antennas are

often correlated owing to the limited scattering in the environment [YO02]. Conse-

quently, other advanced MIMO channel models have been proposed which consider the

spatial dimension of MIMO channels. A different approach to MIMO channel modeling

is to explicitly consider physical parameters of the electromagnetic wave propagations

to describe a MIMO propagation channel. These parameters include the path complex

amplitude, the delay, the Doppler shift, the angle-of-departure and the angle-of-arrival.

The complex amplitude describes the effect of path attenuation and phase shift. In

this thesis, the double directional channel model which characterizes MIMO channels

from a propagation point of view is considered.

Fig. 2.1 shows a MIMO system with N transmit antennas and M receive antennas.

Communication between the transmitter and the receiver antennas of the MIMO sys-

tem is accomplished through the wireless propagation medium. As mentioned in Sec-

tion 1.2.1, in mobile radio systems the emitted electromagnetic (EM) waves generally

do not propagate directly from the transmitter to the receiver via a line-of-sight path.

Rather, the emitted EM waves interact with different objects such as windows, walls,

buildings, cars, trees, mountains, etc., before reaching the receiver. Fig. 2.2 shows

the result of the interaction of EM waves with different objects. Reflection of an EM

wave occurs when an EM wave interacts with an object which has a smooth surface of

infinite extent, whereas scattering of an EM wave occurs when an EM wave interacts

with an object which has a rough surface. On the other hand, diffraction of an EM

wave occurs at the edges of an interacting object. Consequently, the received signal
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Figure 2.2. Interaction of EM waves with different objects

consists of a superposition of replicas of the transmitted signal with different complex

amplitudes, delays, Doppler shifts, angles-of-departure and angles-of-arrival [Pät02].

This phenomenon is called multipath propagation. As is often done in literature all

the objects with which the EM wave interacts are herein referred to as scatterers.

The multipath propagations result in the variation of the received signal power. In

general, the impact of the propagation medium on the variation of the channel over

distance is described using two scales: the large-scale variations and the small-scale

variations [Mol05, Gol05]. The large scale variations, which are caused by path loss

and shadowing, occur typically on a scale of few hundred wavelengths. Path loss is

caused by the dissipation of transmit power as it radiates in space, whereas shadowing is

caused by obstacles between the transmitter and the receiver. The small scale variations

are caused by the interference of the multipath propagations and occur typically on

a scale that is comparable with one wavelength [Mol05, Gol05]. Since the impact of
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large scale variations of MIMO channels can be mitigated by power control [Mol05],

the focus of this thesis is on modeling the small-scale variations of MIMO channels.

It is assumed that the base station (BS) is stationary, whereas the mobile station (MS)

is moving. Without loss of generality, the downlink case where the BS is transmit-

ting and the MS is receiving is considered in the following discussions. In general,

the propagation path parameters of MIMO channels are time and frequency variant.

Furthermore, the number of scatterers might change in a given time duration owing

to the appearance and disappearance of scatterers. However, assuming small scale MS

mobility, the geometry and the characteristics of the scatterers can be safely assumed

to be constant or varying slowly for a much longer duration than the coherence time

of the channel. It can also be assumed that the scatterers do not disappear and there

are no new emerging scatterers. Furthermore, the scatterers can be assumed to be sta-

tionary. Consequently, the propagation path parameters are assumed to be constant

within the transmission time duration and the frequency bands under consideration.

For modeling simplicity, a discrete scatterer is chosen to represent the effect of a cluster

of scatterers or one large scatterer within an area. These discrete scatterers are often

referred to as effective scatterers [ECS+98, LR99]. Moreover, the propagation paths

with gains being so small such that the received signal power from the paths is smaller

than the noise power can be safely neglected. Consequently, only a finite number of

discrete paths need to be considered. Assuming that the scatterers are located in the

far-field of the antennas, a finite number of plane waves each of which is described

by a complex amplitude, delay, Doppler shift, angle-of-departure and angle-of-arrival

superpose at the receiver antennas. If the dimensions of the antenna arrays at the

transmitter and the receiver are small enough, then it can be assumed that the complex

amplitudes, Doppler shifts, angles-of-departure and angles-of-arrival of the plane waves

do not change over the size of the array [Mol04]. Thus the MIMO channel can be

characterized by the propagation medium between two reference points (RP) at the

transmitter and the receiver. The transmitter and the receiver RPs can be set at the

center of the antenna arrays at the transmitter and the receiver, respectively.

The aforementioned discussions result in the double directional channel model which is

a generic physical MIMO channel model which characterizes the spatio-temporal chan-

nel properties of MIMO systems using the complex amplitudes, delays, Doppler shifts,

angles-of-departure and angles-of-arrival of the propagation paths [Ste01, SMB01,

Mol04]. Fig. 2.3 shows the double directional channel model of MIMO systems. Each

propagation path between the transmitter RP and the receiver RP is characterized by

a complex amplitude αp, delay τp, Doppler shift νp, azimuth angle-of-departure φbs,p

and azimuth angle-of-arrival φms,p, p = 1, . . . , P . In the case of a three-dimensional
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Figure 2.3. The two-dimensional double directional channel model

propagation path the solid angles Ωbs,p and Ωms,p can be used to describe the angle-of-

departure and the angle-of-arrival of the pth path, respectively. The solid angle Ω is

a two-dimensional angle in a three-dimensional space representing the azimuth angle

φ and the elevation angle θ. The double directional channel transfer function is thus

defined as

H(f, t,Ωbs,Ωms) =
P∑

p=1

αpe
−j2π(f+f0)τpe−j2πνptδ(Ωbs − Ωbs,p)δ(Ωms − Ωms,p), (2.1)

where f0 is the carrier frequency, f ∈ [−B
2
, B
2
] and B is the bandwidth of the MIMO

channel.

The channel transfer function of the channel between the nth, n = 1, . . . , N transmit-

ter antenna and the mth, m = 1, . . . ,M receiver antenna is computed by considering

the constellation of the antenna arrays. Let the vectors rTx,n = (xTx,n, yTx,n, zTx,n)
T

and rRx,m = (xRx,m, yRx,m, zRx,m)
T denote the position vectors of the nth transmitter

antenna and the mth receiver antenna measured from their respective antenna array

RPs, respectively. Furthermore, let the vectors kTx,p and kRx,p denote the wave number

vectors of the pth path at the transmitter and receiver, respectively. The wave number

vectors of the pth path at the transmitter and the receiver are defined as

kTx,p =
2π

λ

(
sin (θbs,p) cos (φbs,p) , sin (θbs,p) sin (φbs,p) , cos (θbs,p)

)T
(2.2a)

kRx,p =
2π

λ

(
sin (θms,p) cos (φms,p) , sin (θms,p) sin (φms,p) , cos (θms,p)

)T
. (2.2b)
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Assuming a unit antenna gain in all directions, i.e., an omnidirectional antenna, the

channel transfer function of the channel between the nth transmitter antenna and the

mth receiver antenna is then calculated as

Hm,n(f, t) =
P∑

p=1

αpe
−j2π(f+f0)τpej2πνpte−jkT

Tx,prTx,ne−jkT
Rx,prRx,m. (2.3)

The phase shift kT
Tx,prTx,n of the pth path at the nth transmitter antenna in (2.3) repre-

sents the phase shift owing to the path delay from the nth transmitter antenna to the

transmitter antenna array RP. Likewise the phase shift kT
Rx,prRx,m of the pth path at the

mth receiver antenna in (2.3) represents the phase shift owing to the path delay from

the mth receiver antenna to the receiver antenna array RP. Fig. 2.4 shows the phase

shifts of the plane waves between the mth receiver antenna and the receiver antenna

array RP.

The phase shift kT
Tx,prTx,n can be simplified as

kT
Tx,prTx,n =

2π

λ
(xTx,nsin (θbs,p) cos (φbs,p) + yTx,nsin (θbs,p) sin (φbs,p) + zTx,ncos (θbs,p))

= 2π(f + f0)

·
xTx,nsin (θbs,p) cos (φbs,p) + yTx,nsin (θbs,p) sin (φbs,p) + zTx,ncos (θbs,p)

c0

= 2π(f + f0)τ
(n,p)
Tx , (2.4)

where c0 is the speed of light and τ
(n,p)
Tx is the delay of the pth propagation path from

the transmitter antenna array RP to the nth transmitter antenna. Likewise the phase
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shift kT
Rx,prRx,m can be simplified as

kT
Rx,prRx,m = 2π(f + f0)τ

(m,p)
Rx , (2.5)

where τ
(m,p)
Rx is the delay of the pth propagation path from the receiver antenna array

RP to the mth receiver antenna. Using (2.4) and (2.5), (2.3) can be simplified as

Hm,n(f, t) =

P∑

p=1

αpe
−j2π(f+f0)τpej2πνpte−j2π(f+f0)τ

(n,p)
Tx e−j2π(f+f0)τ

(m,p)
Rx . (2.6)

In array signal processing, it is commonly assumed that the bandwidth B of the signal

is small as compared to the center frequency f0 and the antenna array dimensions are

small enough so that
∣
∣
∣f · τ (n,p)Tx

∣
∣
∣ and

∣
∣
∣f · τ (m,p)

Rx

∣
∣
∣ are close to zero. This assumption is

called the narrowband assumption for array signal processing [God97]. The narrowband

assumption yields

e−j2π(f+f0)τ
(n,p)
Tx ≈ e−j2πf0τ

(n,p)
Tx (2.7a)

e−j2π(f+f0)τ
(m,p)
Rx ≈ e−j2πf0τ

(m,p)
Rx . (2.7b)

The variables e−j2πf0τ
(n,p)
Tx and e−j2πf0τ

(m,p)
Rx are referred to as steering factors in array

signal processing. Using the result of the narrowband assumption in (2.7) to simplify

(2.6) results in

Hm,n(f, t) =
P∑

p=1

αpe
−j2π(f+f0)τpej2πνpte−j2πf0τ

(n,p)
Tx e−j2πf0τ

(m,p)
Rx . (2.8)

The double directional channel model presented here is rather generic. Adaptation

of the double directional channel model to different scenarios can be performed by

determining the typical values of the propagation path parameters as discussed in

[ECS+98, YO02]. Furthermore, large-scale variations of MIMO channels can be mod-

eled using the double directional channel model by allowing for the path parameters

to change over the range of movement of the MS [Mol04]. In this case, the number of

propagation paths is time-variant, i.e., P (t).

It must be noted that the double directional channel is reciprocal, i.e., exchanging the

positions of the transmitter and the receiver results in the same path parameters with

the angle-of-arrival now being the angle-of-departure and vice versa [Ste01, Mol04].

Furthermore, the double directional channel model models not only the multipath

propagations but also the line-of-sight path. The line-of-sight path is implicitly modeled

in the double directional channel model. In the line-of-sight path case, virtual scatterers

can be assumed to be located on the line joining the RPs at the transmitter and the

receiver and the emitted EM wave propagates through the virtual scatterers without

attenuation or phase shift.
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2.2 Single bounce scattering model

The double directional channel model presented in the previous section is comprehen-

sive and can be used to study channel prediction in MIMO systems. However, the

comprehensive feature of the double directional channel model, which is essential for

channel prediction, is rather too detailed to systematically exploit the spatio-temporal

channel properties of MIMO systems for localization. Thus in this section, the single

bounce scattering model is introduced which contains a level of detail that is sufficient

for localization in MIMO systems.

The double directional channel model considers, in addition to the line-of-sight path,

multipath propagations which are possibly scattered by several scatterers before arriv-

ing at the receiver. In the single bounce scattering model, it is assumed that the first

few arriving signals propagate from the transmitter to the receiver after being scattered

by a maximum of one scatterer. The multiple bounce signals have low power as com-

pared to the single bounce signals owing to the severe attenuations and scattering loss

as they bounce off several scatterers. Furthermore, multiple bounce signals often have

longer delays which results in a signal with low power due to path attenuation. Thus

the multiple bounce signals can be safely neglected by considering only the first few

arriving signals. In practice, the two step proximity detection algorithm presented in

[ST08] can be applied to detect and discard multiple bounce scattering propagations.

Fig. 2.5 shows the single bounce scattering model where the pth propagation path

is the path from the BS to the MS via the pth scatterer. The propagation path

parameters of the single bounce scattering model can be described as a function

of the position of the BS pbs = (xbs, ybs, zbs)
T, the position of the pth scatterer

psc,p = (xsc,p, ysc,p, zsc,p)
T, the position of the MS pms = (xms, yms, zms)

T and the velocity

of the MS vms = (vms,x, vms,y, vms,z)
T as

dp = τp · c

= ‖pbs − psc,p‖+ ‖psc,p − pms‖ (2.9a)

νp =
f0
c

vT
ms(psc,p − pms)

‖psc,p − pms‖
(2.9b)

φbs,p =
π

2
(1− sgn(xsc,p − xbs)) + tan−1

(
ysc,p − ybs
xsc,p − xbs

)

(2.9c)

φms,p =
π

2
(1− sgn(xsc,p − xms)) + tan−1

(
ysc,p − yms

xsc,p − xms

)

(2.9d)

θbs,p =
π

2
− tan−1

(

zsc,p − zbs
√

(xsc,p − xbs)2 + (ysc,p − ybs)2

)

(2.9e)
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Figure 2.5. The single bounce scattering model

θms,p =
π

2
− tan−1

(

zsc,p − zms
√

(xsc,p − xms)2 + (ysc,p − yms)2

)

, (2.9f)

where dp is the length of the pth propagation path.

The propagation path parameters can be estimated using antenna array processing

techniques. Owing to erroneous channel estimates, modeling imperfections, receiver

noise, etc., the estimated path parameters are noisy versions of the true path param-

eters. Several measurement campaigns have been performed to model the estimated

path parameters. For instance, the Gaussian distribution has been proposed for the

angle-of-arrival statistics in rural and suburban environments [ECS+98], whereas the

Laplacian distribution has been proposed for the angle-of-departure and angle-of-arrival

statistics in indoor environments [YO02]. In this thesis, for the sake of clearer exposi-

tion and analysis, it is assumed that the estimated propagation path parameters, d̂p,

ν̂p, φ̂bs,p, φ̂ms,p, θ̂bs,p, and θ̂ms,p , are i.i.d. Gaussian random variables, i.e.,

d̂p ∼ N (dp, σ
2
d) (2.10a)

ν̂p ∼ N (νp, σ
2
ν) (2.10b)

φ̂bs,p ∼ N (φbs,p, σ
2
φbs

) (2.10c)

φ̂ms,p ∼ N (φms,p, σ
2
φms

) (2.10d)

θ̂bs,p ∼ N (θbs,p, σ
2
θbs
) (2.10e)

θ̂ms,p ∼ N (θms,p, σ
2
θms

). (2.10f)
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Chapter 3

Localization in NLOS multipath
environments under the explicit
consideration of scatterers

3.1 Localization with incomplete measurement

data

In this chapter, localization in NLOS multipath environments under the explicit consid-

eration of scatterers is considered. The explicit consideration of scatterers is enabled

by the single bounce scattering model. The propagation path parameters, i.e., the

complex amplitudes, the delays, the Doppler shifts, the angles-of-departure and the

angles-of-arrival can be exploited using the single bounce scattering model to local-

ize a MS in NLOS multipath environments. However, in this thesis, only the delays,

the angles-of-departure and the angles-of-arrival are exploited for localization of a MS

in NLOS multipath environments under the explicit consideration of scatterers. As

mentioned in Section 1.2.1, information about the propagation path length can be es-

timated from the propagation path’s complex amplitude using theoretical or empirical

path loss formula. The path loss formula have to include, in addition to the free space

path loss, the loss caused by scatterers as they scatter some of the transmitted signal

energy into all directions. Developing a theoretical path loss formula which accounts

for the scattered energy is rather a difficult task. However, empirical path loss formula

which account for the scattered energy, in addition to the free space path loss, can

be obtained from measurement campaigns. However, since such measurement cam-

paigns are site specific, they have not been considered in this thesis for the sake of

maintaining the generality of the ideas presented. Furthermore, performing the mea-

surement campaigns is an arduous task and requires a concerted effort of specialists in

measurement techniques. Thus the complex amplitudes of the propagation paths have

not been explicitly exploited for localization in this thesis. Nevertheless, the complex

amplitudes can be used as an aid in selecting single bounce propagation paths based

on the assumption that the single bounce propagation paths are less attenuated than

the multiple bounce propagation paths. In addition to the propagation paths complex

amplitudes, the Doppler shifts of the propagation paths have also not been explicitly

exploited for localization in this thesis. The Doppler shifts of the propagation paths

are mainly exploited in tracking a MS as shown in [PS09, SW14a].
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of scatterers

Localization in NLOS multipath environments under the explicit consideration of scat-

terers with complete measurement data has already been considered in [MYJ07, ST08,

WPW11]. The case with complete measurement data requires that the delay, the angle-

of-departure and the angle-of-arrival are estimated for synchronized clocks at the BSs

and the MS with the orientation of the BSs and the MS assumed to be known. How-

ever, in real world localization scenarios, the aforementioned assumptions might not

be fulfilled, i.e., the BSs and the MS might be unsynchronized and/or the orientation

of the BSs and the MS might be unknown. If there are unsynchronized BSs and MS,

then the time-differences-of-arrival of the propagation paths can be measured rather

than the times-of-arrival of the propagation paths between the BSs and the MS. More-

over, if the orientations of the BSs and the MS are unknown, then only the relative

angles-of-departure and angles-of-arrival of the propagation paths can be estimated. In

some cases, a MS may have only a single antenna and the angles-of-arrival of the prop-

agation paths cannot be estimated. These cases are herein referred to as cases with

incomplete measurement data. Localization of a MS with incomplete measurement

data is obviously trickier than localization with complete measurement data.

The case where the orientations of the BSs and the MS are unknown is actually of

little practical importance as it can be easily solved by employing a compass at both

the BSs and the MS to establish a reference that can be used to measure the absolute

angles-of-departure and angles-of-arrival. Furthermore, for a MS with a single antenna,

it has been shown that the Doppler shifts of the propagation paths can be used instead

of the angles-of-arrival of the propagation paths with only a minor performance lose,

i.e., the Doppler shifts of the propagation paths which can easily be measured at

a MS with a single antenna contain comparable information about the position of

a MS as the angles-of-arrival of the propagation paths [SW13]. In [PS09, SW14a],

algorithms for estimating the position of a MS based on the delays, the angles-of-

departure and the Doppler shifts of the propagation paths have been proposed. In this

thesis, the most crucial case where there are unsynchronized BSs and MS is considered

in detail. Since the MS’s clock is unsynchronized with the BSs’, the times-of-arrival

of the propagation paths and hence the path lengths of the propagation paths cannot

be estimated. Nevertheless, since the BSs are assumed to have synchronized clocks, it

is possible to measure the time-differences-of-arrival of the propagation paths between

the BSs and the MS. If there is only a single BS, then the time-differences-of-arrival of

the propagation paths between the BS and the MS can be estimated. The path length

differences between the propagation paths can be estimated from the time-differences-

of-arrival of the propagation paths.

In this thesis, the estimated time-differences-of-arrival of the propagation paths are

assumed to be obtained from the differences of biased estimates of the times-of-arrival
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with a reference biased estimate of time-of-arrival. As it can be seen from (2.10),

the estimated times-of-arrival are assumed to be i.i.d. Gaussian random variables.

Thus the estimated time-differences-of-arrival form a multivariate Gaussian random

variable with a non-diagonal covariance matrix [QKS06]. The covariance matrix is

non-diagonal owing the correlation stemming from the reference biased estimate of

time-of-arrival. Nevertheless, in the following, a diagonal covariance matrix is assumed

for the estimated time-differences-of-arrival without loss of generality.

The single bounce scattering model presented in Section 2.2 considers the three di-

mensional propagation paths from the transmitter to the receiver. The necessity of

consideration of a two dimensional or a three dimensional localization of a MS de-

pends on the scenario under consideration. Owing to the relative dimensions of the

localization scenarios, three dimensional localization is required in indoor localization

scenarios, whereas two dimensional localization is sufficient for most outdoor localiza-

tion scenarios. The localization principle and the localization algorithms presented

in this thesis can be applied to both the two dimensional and the three dimensional

localization scenarios without extra BSs or any other additional requirements. Thus

for the sake of clearer exposition, the two dimensional localization is considered in this

thesis. An extension of the presented two dimensional localization ideas to the three

dimensional localization is straightforward.

3.2 Localization principle

In this section, the localization principle for localization of a MS in NLOS multipath

environments with unsynchronized BSs and MS is presented. The localization of a MS

is carried out under the explicit consideration of scatterers whose positions are also

unknown. Hence the positions of the scatterers are implicitly estimated along with the

position of the MS. As is often the case, the localization principle is described pictorially.

Mathematical formulation of the localization principle is given in the next section.

Furthermore, the true values of the propagation path parameters are considered here.

Mitigation of the estimation noise of the propagation path parameters is considered in

the next section.

Fig. 3.1 shows how the path length differences, the angles-of-departure and the angles-

of-arrival of two propagation paths from two BSs to a MS can be exploited to obtain

the possible positions of the MS in a NLOS multipath environment. Let’s consider the

propagation path parameters corresponding to the propagation path from the first BS

to the MS via the first scatterer. From the angle-of-departure of the propagation path
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from the first BS to the MS, it can be concluded that the first scatterer is located on a

line extending from the first BS at an angle equal to the angle-of-departure. Since the

path length of the propagation path from the first BS to the MS is unknown, the length

of the line extending from the first BS, on which the first scatterer is possibly located,

cannot be determined. Nevertheless, let’s consider a set of possible path lengths of

the propagation path from the first BS to the MS. These sets of possible path lengths

of the propagation path from the first BS to the MS yield sets of line segments on

which the first scatterer is possibly located. From each of these line segments on

which the first scatterer is possibly located, a curve of the possible positions of the

MS can be determined by considering the angle-of-arrival of the first propagation path.

For each possible position of the first scatterer, the corresponding possible position of

the MS is determined by drawing a line segment from the first scatterer at an angle

which corresponds with the angle-of-arrival of the first propagation path and with a

distance such that the assumed propagation path length is maintained. Performing

this operation results in a line segment on which the MS is possibly located as shown

in Fig. 3.1. For different possible path lengths of the propagation path from the first

BS to the MS, parallel line segments of possible positions of the MS can be obtained

as shown in Fig. 3.1.

The different possible path lengths of the propagation paths from the first BS to the

MS and from the second BS to the MS are constrained by the path length differences,

i.e., for a given path length of the propagation path from the first BS to the MS, there

is a corresponding possible path length of the propagation path from the second BS

to the MS defined by the path length difference of the propagation paths from the

two BSs to the MS. Thus considering the path length difference of the propagation

paths from the BSs to the MS, the line segment of possible MS positions from the first

BS intersects with the corresponding line segment of possible MS positions from the

second BS. Fig. 3.1 shows the intersection points of three line segments from the first

and the second BSs. The intersection of all line segments of possible MS positions from

the first and the second BSs results in a line of possible MS positions. Another line

of possible MS positions can be obtained by considering a third BS. The intersection

point of the two lines of possible MS positions yields the unknown position of the MS.

It must be noted that the LOS localization is a special case of the NLOS localization

depicted in Fig. 3.1. If there are LOS propagation paths between the BSs and the

MS, then the line in Fig. 3.1 denoting the possible MS positions collapses to a point

denoting the position of the MS. The LOS localization scenario is actually a LOS hybrid

localization where the bearing and the path length differences of the LOS propagation

paths are used to estimate the position of the MS. However, the bearings from the BSs

to the MS are adequate for localizing the MS.
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BS1

scatterer 1

BS2

scatterer 2

MS

possible MS positions

considering both BSs

possible MS positions

considering BS2

possible MS positions
considering BS1

Figure 3.1. Possible positions of the MS using path parameter estimates from unsyn-
chronized BSs and MS

In the preceding discussion, three propagation paths from three BSs are considered

only for the sake of simpler exposition. Localization of the MS is also possible if three

propagation paths are considered from a single BS. Consideration of multiple BSs and

more than three propagation paths from a single BS or multiple BSs can be used

to improve performance of the MS localization accuracy. Furthermore, an extension

of the presented localization principle to a three dimensional localization scenario is

straightforward. The required number of BSs or number of propagation paths remain

the same in the three dimensional localization scenario.

3.3 Localization algorithm

In this section, the mathematical formulation of the localization principle discussed

in the previous section is presented. In the previous section, it has been shown that



26
Chapter 3: Localization in NLOS multipath environments under the explicit consideration

of scatterers

BS

pth scatterer

MS
dbs,pφms,p

φbs,p

dp

Figure 3.2. The two dimensional single bounce scattering model

there is a linear relation between the positions of the BS, the scatterer and the MS.

This linear relation will be used to derive the position of the MS as a function of the

position of the BS and the path parameters.

In the following, a MS which is unsynchronized with a BS is considered for simplicity.

Fig. 3.2 shows the two dimensional single bounce scattering model. From Fig. 3.2 the

linear relation between the position of the MS and the position of the pth scatterer can

be determined as

xms = xsc,p − (dp − dbs,p)cos (φms,p) (3.1)

yms = ysc,p − (dp − dbs,p)sin (φms,p) , (3.2)

where dbs,p is the distance between the BS and the pth scatterer. As the BS and the

MS are unsynchronized, the path length dp is not available. Rather the propagation

path length difference dp,q between the pth and the qth paths is available, i.e.,

dp,q = dp − dq. (3.3)

Using (3.3) to find an expression for dp and substituting it in (3.1) and (3.2) results in

xms = xsc,p − (dq + dp,q − dbs,p)cos (φms,p) (3.4)
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yms = ysc,p − (dq + dp,q − dbs,p)sin (φms,p) . (3.5)

Furthermore, the linear relation between the position of the BS and the position of the

pth scatterer can be determined as

xsc,p = xbs + dbs,pcos (φbs,p) , (3.6)

ysc,p = ybs + dbs,psin (φbs,p) . (3.7)

Using (3.6) and (3.7) to substitute the corresponding scatterer position in (3.4) and

(3.5) results in

xms = xbs + dbs,p(cos (φbs,p) + cos (φms,p))− (dq + dp,q)cos (φms,p) , (3.8)

yms = ybs + dbs,p(sin (φbs,p) + sin (φms,p))− (dq + dp,q)sin (φms,p) . (3.9)

Finding the expression for dbs,p from (3.8) results in

dbs,p =
xms − xbs + (dq + dp,q)cos (φms,p)

(cos (φbs,p) + cos (φms,p))
. (3.10)

Using (3.10) to substitute dbs,p in (3.9) results in

(dq + dp,q)sin (φbs,p − φms,p) = −(sin (φbs,p) + sin (φms,p))(xms − xbs)

+ (cos (φbs,p) + cos (φms,p))(yms − ybs). (3.11)

Equation (3.11) shows that by considering a single propagation path, a linear relation

between the position of the MS and the position of the BS with the path parameters

as coefficients can be obtained. The path length dq of the qth propagation path is a

nuisance variable. Hence by considering the measurements from the P single scattering

propagation paths, a system of P linear equations can be set up as follows

A0 · r = b0, (3.12)

where

A0 =






−sin (φbs,1)− sin (φms,1) cos (φbs,1) + cos (φms,1) −sin (φbs,1 − φms,1)
...

...
...

−sin (φbs,P )− sin (φms,P ) cos (φbs,P ) + cos (φms,P ) −sin (φbs,P − φms,P )




 ,

(3.13)

b0 =






−sin (φbs,1)− sin (φms,1) cos (φbs,1) + cos (φms,1)
...

...
−sin (φbs,P )− sin (φms,P ) cos (φbs,P ) + cos (φms,P )






(
xbs
ybs

)

+






d1,qsin (φbs,1 − φms,1)
...

dP,qsin (φbs,P − φms,P )




 , (3.14)



28
Chapter 3: Localization in NLOS multipath environments under the explicit consideration

of scatterers

r = (xms, yms, dq)
T. (3.15)

If A0 has full column rank, then the position of the MS can be estimated from (3.12)

using the pseudo-inverse of the matrix A0 as

r̂ =
(
AT

0 ·A0

)−1
·AT

0 · b0. (3.16)

It must be noted that if there is a LOS propagation path, then

|φbs,LOS − φms,LOS| = π. (3.17)

For a LOS propagation path (3.10) is not defined and hence (3.11), which is derived

using (3.10), does not hold. A LOS propagation path can easily be identified using the

relation of (3.17). For a LOS propagation path, a linear relation in the position of the

MS can be easily obtained using the path length difference dLOS,q between the LOS

path and the qth propagation path as

xms = xbs + (dq + dLOS,q)cos (φbs,LOS) , (3.18)

yms = ybs + (dq + dLOS,q)sin (φbs,LOS) , (3.19)

Equations (3.18) and (3.19) can be combined with other NLOS propagation paths to

obtain the position of the MS. However, as mentioned in the previous section, for

the LOS propagation case the angle-of-departure and the angle-of-arrival of the LOS

propagation paths from two BSs are sufficient to localize a MS.

The matrix A0 and the vector b0 are constructed using the true values of the path

length differences, the angles-of-departure and the angles-of-arrival of the propagation

paths. However, in practice, the estimated path length differences, angles-of-departure

and angles-of-arrival are noisy versions of the true path length differences, angles-of-

departure and angles-of-arrival, respectively. Thus the position of the MS is estimated

based on the noisy versions of the matrix A0 and vector b0 which are denoted by A

and b, respectively. The system of P linear equations in (3.12) is rewritten for the

noisy measurements as

A · r ≈ b. (3.20)

An estimator which minimizes the Euclidean distance ‖b−A · r‖2 is required, i.e.,

r̂ = arg min
r

‖b−A · r‖2 . (3.21)

Given that A has full column rank, the least squares solution of (3.21) can be deter-

mined as

r̂LS =
(
AT ·A

)−1
·AT · b. (3.22)
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The downside of the least squares estimator in (3.22) is that it assumes that the matrix

A is error free. The explicit formulation of the least squares problem of (3.21) is given

as
{r̂,∆b̂} = arg min

r,∆b

‖∆b‖2

subject to A · r = b+∆b.
(3.23)

Thus a correction, as little as possible in the Euclidean norm sense, is made only to

the vector b. However, since both A and b are perturbed, an appropriate estimator is

the one which makes corrections to both A and b. This can be achieved by using the

total least squares estimator [MVH07, GVL13]. In the total least squares estimation,

the MS position estimation problem is given as

{r̂,∆Â,∆b̂} = arg min
r,∆A,∆b

‖(∆A |∆b)‖F

subject to (A+∆A) · r = b+∆b.
(3.24)

where ‖ · ‖F denotes the Frobenius norm of a matrix. The total least squares estimator

makes as little as possible corrections in the Frobenius norm sense to both A and b.

As shown in Section 3.2, in order to estimate the position of the MS, P ≥ 3 propagation

paths are required. In order to obtain reliable estimates of the MS position, it is

assumed that the system of linear equations in (3.20) is overdetermined. Consequently,

for the P × 3 matrix A, it is assumed, in the following, that P ≥ 4.

The constraint of the total least squares problem in (3.24) can be written in the ho-

mogenous form as

(A+∆A |b+∆b) ·

(
r̂
−1

)

= 0

((A |b) + (∆A |∆b)) ·

(
r̂
−1

)

= 0. (3.25)

The above equation has a solution if the augmented vector (r̂T ,−1)T lies in the

nullspace of ((A |b) + (∆A |∆b)). Furthermore, the solution is nontrivial if the per-

turbation (∆A |∆b) is such that ((A |b) + (∆A |∆b)) is rank deficient. Thus the

total least squares solution finds the matrix (∆A |∆b) with the smallest norm that

makes the matrix ((A |b) + (∆A |∆b)) rank deficient [MS00].

The solution to the total least squares problem can be obtained by using the singular

value decomposition (SVD) [GVL13]. The SVD of (A |b) is a decomposition

(A |b) = U ·Σ ·VT, (3.26)
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where U and V are matrices with orthonormal columns and Σ = diag (σ1, σ2, σ3, σ4)

with σ1 ≥ σ2 ≥ σ3 ≥ σ4. The SVD of (A |b) can be partitioned as

(A |b) =
(
UA ub

)
·

(
ΣA 0
0 σb

)

·

(
VAA vAb

vbA vbb

)T

, (3.27)

where the subscripts A and b refer to partitions corresponding to A and b, respectively.

The reduced-rank matrix (A+∆A |b+∆b) closest to (A |b) is [MS00]

(A+∆A |b+∆b) =
(
UA ub

)
·

(
ΣA 0
0 0

)

·

(
VAA vAb

vbA vbb

)T

(3.28)

and hence the perturbation is of the form

(∆A |∆b) = −
(
UA ub

)
·

(
0 0
0 σb

)

·

(
VAA vAb

vbA vbb

)T

. (3.29)

The perturbation (∆A |∆b) can be simplified to

(∆A |∆b) = −σb · ub ·

(
vAb

vbb

)T

= −
(
A b

)
·

(
vAb

vbb

)

·

(
vAb

vbb

)T

, (3.30)

where the property V−1 = VT has been used in the above simplification. Thus the

span (A+∆A |b+∆b) does not contain the vector (vT
Ab, vbb)

T, i.e.,

(A+∆A |b+∆b) ·

(
vAb

vbb

)

= 0. (3.31)

Thus if vbb is non-zero, then

(A+∆A |b+∆b) ·

(
−vAb

vbb

−1

)

= (A+∆A |b+∆b) ·

(
r̂
−1

)

= 0. (3.32)

Thus the total least squares solution is given by

r̂TLS = −
vAb

vbb
. (3.33)

It has been proved in [GVL80, GVL13] that if σ̃3 > σ4, where σ̃3 is the smallest singular

value of A, then vbb is non-zero and (3.33) yields a unique solution.

It has been proved in [GVL80] that the condition of the total least squares problem

is always worse than the condition of the corresponding least squares problem. Thus

significant improvements in performance by the total least squares algorithm over the

least squares algorithm can be obtained for well-conditioned problems, i.e., for cases
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where A has full rank with a significant gap in the singular values of A. Furthermore,

the total least squares problem is unstable whenever the smallest singular value σ̃3 of

A is close to the smallest singular value σ4 of (A |b), i.e., (σ̃3 − σ4)
−1 measures the

sensitivity of the total least squares problem [GVL80]. This happens especially for

cases where there are similar propagation paths. If the propagation paths are similar,

then it is highly likely that A is nearly rank deficient with a small gap in the singular

values. In such cases, just as in the case of the least squares problem, the total least

squares solution can be stabilized by adding a quadratic penalty to the total least

squares objective function or by imposing a quadratic constraint bounding the size

of the total least squares solution [SVHG04, BBT06]. In this thesis, a rather simple

approach is considered where the least squares solution is used instead of the total least

squares solution for cases where σ̃3 − σ4 < 0.1. The threshold value of 0.1 is chosen

from empirical studies.

Thus using (3.33) it is possible to estimate the position of a MS in NLOS multipath

environments using the path length differences, the angles-of-departure and the angles-

of-arrival of the propagation paths. An extension of the algorithm of (3.33) to the

case where there are multiple BSs and/or to a three dimensional localization scenario

is straightforward.

It must be noted that the localization algorithms proposed in [MYJ07, ST08, WPW11,

SW14c] have considered the least squares solution even though the coefficient matrix

and the observation vector are contaminated by noise. Hence significant performance

improvement would be obtained if the total least squares algorithm is employed as

presented in this thesis.

3.4 Performance analysis

3.4.1 Cramér-Rao lower bound

The performance of the estimation accuracy is one of the essential features which

determines the practicability of any estimator. Thus having a performance benchmark

to which the performance of the accuracy of estimators can be compared against is of

paramount importance in assessing the efficiency of estimators. The Cramér-Rao lower

bound (CRLB) is one such performance benchmark which determines the lower bound

of the mean square error of any unbiased estimator of a non-random parameter.
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Let the 2(P + 1) × 1 vector psm = (pT
sc,1, . . . ,p

T
sc,P ,p

T
ms)

T denote the unknown non-

random two dimensional positions of the MS and the scatterers. Furthermore, let the

3P×1 vector-valued function g(psm) = (d1,q, . . . , dP,q, φbs,1, . . . , φbs,P , φms,1, . . . , φms,P )
T

denote the path length differences, the angles-of-departure and the angles-of-arrival

of the P propagation paths and let the 3P × 1 vector z denote the measured path

parameters. As mentioned in Section 2.2, the measured path parameters are assumed

to be i.i.d. Gaussian random variables. Thus the relation between the measured path

parameters z and the unknown non-random vector parameter psm is given as

z = g(psm) +w, (3.34)

where w is the measurement noise which is assumed to be multivariate zero-mean

Gaussian distributed with covariance matrix Rww, i.e.,

w ∼ N (0,Rww). (3.35)

Thus the conditional probability density function (pdf) of z given psm is given as

p (z|psm) =
1

√

(2π)3Pdet(Rww)
exp

(

−
1

2
(z− g(psm))

TR−1
ww (z− g(psm))

)

. (3.36)

The CRLB relates the likelihood function p (z|psm) to the minimum mean square error

of an unbiased estimator p̂sm(z) of psm, under some regularity conditions on the pdf

p (z|psm) [Kay93]. Mathematically, for an unbiased estimator p̂sm(z), i.e., E{p̂sm(z)} =

psm, the covariance matrix is bounded from below as

Ez|psm{(p̂sm(z)− psm)(p̂sm(z)− psm)
T} − J−1(psm) � 0, (3.37)

where J(psm) is the Fisher information matrix defined as

J(psm) = −Ez|psm

{(
∂2ln (p(z|psm))

∂psm∂pT
sm

)}

= Ez|psm

{(
∂ln (p (z|psm))

∂psm

)(
∂ln (p (z|psm))

∂psm

)T
}

. (3.38)

The symbol � in (3.37) denotes that the difference of the two matrices is positive

semi-definite and Ez|psm{·} denotes the expectation with respect to the pdf p (z|psm).

Substituting (3.36) in (3.38) and computing the gradients [PP12] results in

J(psm) =

Ez|psm

{((
∂g(psm)
∂psm

)T

·R−1
ww · (z− g(psm))

)((
∂g(psm)
∂psm

)T

·R−1
ww · (z− g(psm))

)T
}

.

(3.39)
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Re-arranging the above equation results in

J(psm) =

(
∂g(psm)

∂psm

)T

·R−1
ww ·Ez|psm

{
(z− g(psm))(z− g(psm))

T
}
·R−1

ww ·

(
∂g(psm)

∂psm

)T

.

(3.40)

The expectation in the above equation is nothing but the covariance matrix Rww of

the measurement noise. Substituting Rww in place of the expectation results in

J(psm) =

(
∂g(psm)

∂psm

)T

·R−1
ww ·

(
∂g(psm)

∂psm

)

. (3.41)

Thus the CRLB for the conditional pdf p (z|psm) given in (3.36) is given as

Ez|psm{(p̂sm(z)− psm)(p̂sm(z)− psm)
T} �

((
∂g(psm)

∂psm

)T

·R−1
ww ·

(
∂g(psm)

∂psm

))−1

.

(3.42)

The Jacobian matrix ∂g(psm)
∂psm

can be calculated using the expressions given in Appendix

A.

The Fisher information matrix J(psm) can be interpreted as a matrix quantifying the

amount of information [BSKL01] contained in the measured path parameters z about

the unknown vector parameter psm. Hence (3.37) is intuitive in that the lower bound

of the covariance matrix of an unbiased estimator is inversely related with the amount

of information available about the unknown parameter. Consequently, an estimator is

said to be efficient if the covariance matrix of the estimator is equal to the CRLB.

From the discussion of the localization principle in Section 3.2, it is known that at

least three NLOS propagation paths are required to localize a MS, and implicitly the

scatterers. This result can also be confirmed from the CRLB. The vector parameter

psm is identifiable if the Fisher information matrix J(psm) derived from the likelihood

function in (3.36) is nonsingular [Rot71]. As it can be inferred from (3.41), J(psm) is

nonsingular if ∂g(psm)
∂psm

has full column rank. The 3P×2(P +1) matrix ∂g(psm)
∂psm

has a zero

row vector owing to the zero path length difference of the qth path as it can be inferred

from (3.3). Considering the zero row vector in the matrix ∂g(psm)
∂psm

, the matrix ∂g(psm)
∂psm

can have a full column rank of 2(P + 1) only for P ≥ 3. Consequently, the position

of the MS is identifiable for P ≥ 3 if the matrix ∂g(psm)
∂psm

has full column rank. For

random positions of MS and scatterers, the matrix ∂g(psm)
∂psm

can be considered to have

full column rank for P ≥ 3. Simulation results have shown that the matrix ∂g(psm)
∂psm

can indeed be considered to have full column rank for random positions of MS and

scatterers for P ≥ 3.

The vector parameter psm = (pT
sc,1, . . . ,p

T
sc,P ,p

T
ms)

T contains the unknown position of

the MS and the scatterers. Since only the position of the MS is of interest, the CRLB of
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the estimate of the position of the MS is required. This can be obtained by partitioning

the Fisher information matrix J(psm) into block matrices

J(psm) =

(
J11(psm) J12(psm)
J21(psm) J22(psm)

)

, (3.43)

where J11(psm) is equal to the Fisher information matrix with the position of the MS

as the unknown non-random parameter, i.e., J11(psm) = J(pms). The inverse of the

submatrix J11(psm) can be obtained from the inverse of the Schur complement of the

submatrix J22(psm) [PP12]. Since J11(psm) = J(pms), the inverse of the submatrix

J11(psm) yields the CRLB of the covariance matrix of an unbiased MS position estima-

tor p̂ms(z), i.e.,

Ez|pms{(p̂ms(z)− pms)(p̂ms(z)− pms)
T} �

(
J11(psm)− J12(psm) · J

−1
22 (psm) · J21(psm)

)−1
. (3.44)

As it can be seen from (3.42), the CRLB of an unbiased MS and scatterers position es-

timator is related to the error in the path parameter estimation appropriately weighted

using the Jacobian matrix ∂g(psm)
∂psm

which relates the errors in the path parameter esti-

mates to the errors in the estimates of the position of the MS and the scatterers. Thus

the estimation error of the position of the MS and scatterers depends not only the path

parameter estimation error but also on the relative geometry of the BSs, the MS and

the scatterers. This can be explained quite intuitively by considering the impact of

the same path parameter estimation error on two localization scenarios with different

geometries between a BS, a MS and two scatterers as shown in Fig. 3.3. For the sake

of simpler exposition, only the position of the second scatterer is changed to obtain

a different localization geometry. Furthermore, it is assumed that the clocks of the

BS and MS are synchronized and hence estimates of the propagation path lengths are

available. The two line segments of possible positions of the MS are shown pursuant

to the propagation paths via the two scatterers for both localization scenarios. For the

sake of simplicity, only errors in the estimation of the path lengths shall be considered.

Consequently, two error bounds on the line segments of the possible positions of the

MS arising from error bounds on the two propagation path lengths are shown by dotted

line segments for both localization scenarios. The error bounds are the same for the

two propagation paths for both localization scenarios. The areas of possible position

estimates of the MS for the error bounds on the estimates of the two propagation path

lengths are shown by the shaded areas in Fig. 3.3. It is clear that for the localization

scenario shown in Fig. 3.3a, the shaded area is considerably smaller than for the local-

ization scenario shown in Fig. 3.3b. Thus for the same error bound, different accuracies

on the estimated positions of the MS are obtained owing to the difference of the rela-

tive geometry between the BSs, MS and scatterers. This property has been studied in
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scatterer 1 scatterer 2

(a)

BS MS

scatterer 1
scatterer 2

(b)

Figure 3.3. Influence of the relative geometry of a BS, a MS and two scatterers on the
accuracy of the MS position estimate given the same error on path parameters esti-
mates: (a) localization scenario with good relative geometry, (b) localization scenario
with bad relative geometry

satellite navigation systems and it is referred to as dilution of precision [KH06]. Thus

the localization geometry shown in Fig. 3.3a has a smaller dilution of precision than

the localization geometry shown in Fig. 3.3b.

The CRLB determines the lower bound of the mean square error of any unbiased es-

timator of a non-random parameter. As it can be seen from (3.11), the measured

propagation path parameters are processed nonlinearly to obtain a linear relation be-

tween the position of the MS and the position of the BS. Furthermore, the propagation

path parameters are nonlinearly related with the position of the MS. Thus a bias should

be expected in the proposed localization algorithm. Consequently, the derived CRLB

is not tight.
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MS

scatterer

BS

Figure 3.4. One possible scatterer position and NLOS propagation path according to
the single bounce elliptical model

3.4.2 Simulation results

In this section, the performance of the proposed localization algorithm is analysed

considering a picocell localization scenario using Monte Carlo simulations with 105

independent trials. It is assumed that the radius of the cell is 100 m and it is served

by a single BS. Furthermore, the probability distribution of the position of the MS is

assumed to be uniform within the cell. The positions of the scatterers are generated

randomly using the single bounce elliptical model [LR99]. In the single bounce elliptical

model, each propagation path with delay τp is assumed to be a result of a single

reflection. Consequently, the pth scatterer lies on the perimeter of an ellipse with

the BS and the MS located at the focal points of the ellipse. Fig. 3.4 shows one

possible scatterer position on the perimeter of an ellipse and the corresponding NLOS

propagation path. If a limit on the maximum propagation path delay τmax is set, then

all the propagation paths have a delay between the LOS path delay τLOS and the

maximum path delay τmax. Furthermore, scatterers corresponding to the propagation

path delays τLOS ≤ τp < τmax are located within the ellipse defined by the maximum

path delay τmax. In the simulations, the positions of scatterers are assumed to be

uniformly distributed within an ellipse defined by τmax. The simulations were performed

using a normalized maximum path delay τmax

τLOS
= 2.5. It must be noted that even

though the LOS path exists between the BS and the MS, the probability of generating

a scatterer located at the LOS path is zero.

The performance metric is the root mean square error rmse(p̂ms) of the estimated

position p̂ms of the MS which is calculated as

rmse(p̂ms) =
√

Ez,pms {(p̂ms − pms)T(p̂ms − pms)}, (3.45)

where pms is the true position of the MS and Ez,pms{·} denotes the expectation with re-

spect to the pdf p (z,pms). In the simulations, the expectations in (3.45) are computed



3.4 Performance analysis 37

using averages. Since the localization scenarios are randomly generated, the averaged

CRLB of the randomly generated localization scenarios is considered as a performance

bound of the proposed localization algorithm.

In the following, the performances of the least squares (LS) and the total least squares

(TLS) localization algorithms will be studied. The LS localization algorithm is pre-

sented to assess the performance improvement brought about by the TLS localization

algorithm.

Fig. 3.5 shows the performances of the LS and the TLS localization algorithms versus

the standard deviation σφ = σφbs,p = σφms,p of the angles-of-departure and angles-

of-arrival measurement noise for different numbers of propagation paths P . In the

simulations, the standard deviation σdd of the path length differences measurement

noise was set to 5 m. It can be seen from Fig. 3.5 that the performances of the LS

and the TLS localization algorithms are bounded by the CRLB. Furthermore, there

are significant performance improvements by both the LS and the TLS localization

algorithms as the number of propagation paths P is increased owing to the extra

information brought about the position of the MS from the extra propagation paths.

This shows that the NLOS multipath propagations are exploited for localization of the

MS.

It can be seen from Fig. 3.5 that the TLS localization algorithm results in a significant

performance improvement over the LS localization algorithm as the number of prop-

agation paths P is increased. As mentioned in Section 3.3, the condition of the TLS

problem is always worse than the condition of the corresponding LS problem. Con-

sequently, a significant improvement in performance by the TLS algorithm over the

LS algorithm is achieved for well-conditioned problems. For the randomly generated

localization scenario, the probability of obtaining a well-conditioned problem increases

as the number of propagation paths increases. This explains for the improvement in

performance by the TLS localization algorithm over the LS localization algorithm as

the number of paths is increased.

It can also be seen from Fig. 3.5 that the performance improvement brought about by

the TLS localization algorithm over the LS localization algorithm is more pronounced

as the standard deviation σφ of the angles-of-departure and angles-of-arrival measure-

ment noise is increased. This result happens owing to the fact that the performance

degradation of the LS localization algorithm for the assumption of error-free matrix A

increases as the perturbation in A increases.

Fig. 3.6 shows the performances of the LS and the TLS localization algorithms ver-

sus the standard deviation σdd of the path length differences measurement noise for



38
Chapter 3: Localization in NLOS multipath environments under the explicit consideration

of scatterers

different numbers of propagation paths P . In the simulations, the standard devia-

tions σφbs
and σφms of the angles-of-departure and angles-of-arrival measurement noise

were set to 5◦. It can be seen from Fig. 3.6 that the performances of the LS and

the TLS localization algorithms are bounded by the CRLB. Furthermore, confirming

the exploitation of the NLOS propagation paths for localization, there are significant

performance improvements by both the LS and the TLS localization algorithms as the

number of propagation paths P is increased. Moreover, similar to the simulation results

shown in Fig. 3.5, the TLS localization algorithm results in a significant performance

improvement over the LS localization algorithm as the number of propagation paths

P is increased.

In contrast to the simulation results shown in Fig. 3.5, the performance improvement

brought about by the TLS localization algorithm over the LS localization algorithm

diminishes as the standard deviation σdd of the path length differences measurement

noise is increased. This result happens owing to the differences in perturbations of A

and b. As it can be inferred from the non-perturbed versions of A and b in (3.13)

and (3.14), respectively the perturbation in A comes solely from the noises in the

measured angles-of-departure and angles-of-arrival of the propagation paths, whereas

the perturbation in b comes from the noises in the measured path length differences,

angles-of-departure and angles-of-arrival of the propagation paths. Since the simulation

result in Fig. 3.6 is shown for a fixed standard deviation σφ of the angles-of-departure

and angles-of-arrival measurement noise and varying standard deviation σdd of the

path length differences measurement noise, the perturbation power in A is fixed and

varying in b. As σdd is increased, the perturbation in b becomes more dominant than

the perturbation in A. Consequently, the performance improvement from considering

the perturbation in A by using the total least squares estimator over the least squares

estimator diminishes as σdd is increased.

The differences of perturbations in A and b also explains for the rather similar perfor-

mances by both the LS and the TLS localization algorithms in Fig. 3.5 when σφ ≤ 2◦.

Since the perturbations in A are low at low values of σφ, the LS and the TLS problems

are essentially similar. The small performance differences in Fig. 3.5 for such cases are

caused by the rather simple approach taken for mitigating cases where the total least

squares problem is unstable.
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Figure 3.5. Influence of the number of paths and the standard deviation of the angles-
of-departure and angles-of-arrival measurement noise on the proposed localization al-
gorithms, σdd = 5 m
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Chapter 4

Performance gains from tracking a mobile
station

4.1 The mobile station tracking problem

In the previous chapter, localization of a MS in NLOS multipath environments under

the explicit consideration of scatterers was discussed. The position of the MS was

estimated by exploiting the position dependent parameters of the radio propagation

paths using the single bounce scattering model. Owing to the mobility of MSs, the

position of a MS can change with time. Consequently, tracking a MS is of interest in

many applications. A straightforward approach to tracking a MS would be to make

successive independent position estimates for each position constituting the trajectory

of a MS using the localization algorithm discussed in the previous chapter. However,

the straightforward successive independent MS position estimation approach does not

exploit the possible statistical dependency between the consecutive positions constitut-

ing the trajectory of a MS. Owing to the physical mobility constraints of MSs, there is

a strong statistical dependency between the consecutive positions of a MS. By proper

modeling of the mobility of a MS, significant performance gains over the successive

independent MS position estimation approach can be obtained by exploiting the sta-

tistical dependency between successive positions of the MS [SFW12, SW12, SW14a].

It has been shown in [WM05] that even post processing of the MS positions estimates

obtained from successive independent position estimation by using a proper mobility

model of a MS can result in improved MS positions estimates. In this chapter, the per-

formance improvements brought about by considering the mobility of a MS for tracking

a MS in NLOS multipath environments under the explicit consideration of scatterers

are presented.

Before discussing the approach to tracking a MS in NLOS multipath environments

under the explicit consideration of scatterers, it is essential to discuss the MS tracking

problem first. In practice, tracking a MS in discrete-time domain is of interest. Thus the

trajectory of a MS is tracked using noisy estimates of the propagation path parameters

available at discrete times ℓ. The evolution of the positions of a MS with time can

well be described using a discrete time dynamical model. Owing to its convenience

for handling multivariate data and nonlinear functions, the state-space approach to

modeling dynamical systems is considered for the MS tracking problem. Furthermore,
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the state-space approach gives an intuitive system description which is close to the

physical reality [GKN+74]. The state-space model describes a dynamical system using a

state transition model and a measurement model. The state transition model describes

the change of the state of the system with time, whereas the measurement model

describes the relation between the measurements and the state of the system.

The state vector θ(ℓ) represents the state of the system at discrete time ℓ. Consequently,

for the considered tracking problem, i.e., tracking a MS under the explicit consideration

of scatterers, the state vector shall contain the positions of the MS and scatterers.

Furthermore, as the position of the MS is changing with time, the derivatives of the

position of the MS with time, e.g., velocity and acceleration, shall also be included in

the state vector. As mentioned in Section 2.1, stationary scatterers are considered and

hence the derivatives of the positions of the scatterers with time are not included in

the state vector.

For the MS tracking problem, since stationary scatterers are considered, the state tran-

sition model is essentially defined by the mobility model of the MS. Owing to the

physical mobility constraints of MSs, a MS cannot move in a totally random way. Fur-

thermore, a MS to be tracked seldom moves in a totally deterministic way. In practice,

the MS tracking problem involves a MS trajectory with some statistical dependency

between the successive positions and some randomness accounting for manoeuvering

operations by the MS. Thus the positions of the MS can be considered as realizations of

a random process with some statistical dependency between the consecutive positions

of the MS. The dependency between the successive positions of the MS precludes the

MS from moving in a totally random way, whereas the randomness precludes the MS

from moving in a totally deterministic way. A general mobility model would consider

the statistical dependency between all the positions of the MS constituting the trajec-

tory of the MS, i.e., the joint pdf of the positions of the MS. However, modeling and

analysing such a mobility model is a formidable task and computationally demanding.

Hence in this thesis a rather simple approach is considered where the statistical depen-

dency between the positions of the MS is described using a first-order Markov model.

Thus ignoring the randomness in the positions of the MS, the future positions of the

MS would only depend on the current position of the MS and the current non-zero

derivatives of the position of the MS with time. The random change in the position of

the MS is modeled using Gaussian noise. Hence the mobility of the MS is described

using a first-order Gauss-Markov process [Kay93]. Using the first-order Gauss-Markov

mobility model, the state transition equation can be defined as

θ(ℓ) = B · θ(ℓ− 1) + u(ℓ), (4.1)
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where the matrix B is the state transition matrix which is determined by the depen-

dency between the consecutive state vectors and u(ℓ) is the state transition noise. The

state vector θ(ℓ − 1) summarizes the effect of all past inputs to the system. Further-

more, together with the state transition noise at time ℓ and beyond, the state vector

θ(ℓ− 1) determines the future outputs of the system [Kay93].

There are different classes of mobility models derived from basic equations of motion,

viz. constant velocity and constant acceleration models [BSKL01]. In order to account

for adjustments to disturbances, the constant velocity and constant acceleration models

model the second- and third-order derivatives of the position of a MS by a zero mean

random process, respectively. In this thesis, a simplified mobility model of a MS is

considered. The MS is assumed to move with a constant velocity vms(ℓ) during the

tracking interval ∆t. In order to account for some manoeuvering operations made by

the MS, random changes in the velocity of the MS are considered in every tracking

interval ∆t. The random changes in the velocity of the MS are modeled by a white

Gaussian noise, i.e., white noise acceleration. Thus the position pms(ℓ) and the velocity

vms(ℓ) of the MS evolve as follows

vms(ℓ) = vms(ℓ− 1) + ums(ℓ) (4.2)

pms(ℓ) = pms(ℓ− 1) + ∆t · vms(ℓ), (4.3)

where the 2× 1 vector ums(ℓ) is a multivariate white Gaussian noise, i.e.,

ums(ℓ) ∼ N (0,Ruu). (4.4)

Thus the state vector includes the positions of the MS and scatterers and the velocity

of the MS, i.e., the 2(P + 2)× 1 vector θ(ℓ) = (pT
ms(ℓ),v

T
ms(ℓ),p

T
sc,1, . . . ,p

T
sc,P )

T defines

the state vector. Based on the above mobility model of the MS, the first order Gauss-

Markov mobility model of (4.1) can be re-defined as

θ(ℓ) = B · θ(ℓ− 1) + Γ · ums(ℓ), (4.5)

where the 2(P + 2)× 2(P + 2) state transition matrix B is defined as

B =





I2 ∆t · I2 02×2P

02 I2 02×2P

02P×2 02P×2 I2P



 (4.6)

and the matrix Γ is defined, considering the stationary scatterers, as

Γ =









∆t 0
0 ∆t
1 0
0 1

02P×1 02P×1









. (4.7)
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For the sake of simplicity, the initial state vector θ(0) is modeled as multivariate

Gaussian distributed random vector, i.e.,

θ(0) ∼ N (0,Rθθ(0)). (4.8)

Thus given the initial state vector θ(0), the state transition equation (4.5) models the

movement of a MS by making random changes to the velocity of the MS which is

assumed to be constant within the tracking interval ∆t.

The measurement vector z(ℓ) contains noisy estimates of the propagation path param-

eters. In the previous chapter, localization of a MS for unsynchronized BS and MS was

considered. In this chapter, tracking a MS for synchronized BS and MS is considered.

Hence the path lengths of the propagation paths are considered for tracking the MS

rather than the path length differences of the propagation paths. Needless to say, the

angles-of-departure and angles-of-arrivals of the propagation paths are also considered

for tracking the MS. As given in (2.10), the measured path parameters are assumed

to be i.i.d. Gaussian random variables. Thus the relation between the measured path

parameters z(ℓ) and the state vector θ(ℓ) is defined as

z(ℓ) = g(θ(ℓ)) +w(ℓ), (4.9)

where g(θ(ℓ)) = (d1(ℓ), . . . , dP (ℓ), φbs,1(ℓ), . . . , φbs,P (ℓ), φms,1(ℓ), . . . , φms,P (ℓ))
T is the

measurement vector-valued function and w(ℓ) is the measurement noise, which is as-

sumed to be multivariate zero-mean white Gaussian distributed, i.e.,

w(ℓ) ∼ N (0,Rww). (4.10)

It must be noted that the initial state vector θ(0) and the noises ums(ℓ) and w(ℓ) are

assumed to be independent of each other.

Since both the state vector θ(ℓ) and the measurement vector z(ℓ) are realizations of

random processes, the Bayesian approach is appropriate for tracking the MS. The

state transition equation in (4.5) characterizes the probability density function (pdf)

p (θ(ℓ)|θ(ℓ− 1)), whereas the measurement equation in (4.9) characterizes the condi-

tional pdf p (z(ℓ)|θ(ℓ)) of the measured propagation path parameters z(ℓ) given the

state vector θ(ℓ).

The objective of an estimator which tracks a MS is to estimate the optimal state vector

at discrete time ℓ based on measurements Z(ℓ) = (z(1) · · ·z(ℓ))) up to time instant ℓ,

i.e., the optimal state vector is estimated from the posterior pdf p (θ(ℓ)|Z(ℓ)). Using the

Bayesian approach, the posterior pdf p (θ(ℓ)|Z(ℓ)) can be recursively computed using
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the prediction and update steps given the initial prior p (θ(0), z(0)) = p (θ(0)), the tran-

sition pdf p (θ(ℓ)|θ(ℓ− 1)) and the likelihood p (θ(ℓ)|z(ℓ)) [Che03, AMGC02]. In the

prediction step, the pdf p (θ(ℓ)|Z(ℓ− 1)) is predicted from the pdf p (θ(ℓ− 1)|Z(ℓ− 1))

using the Chapman-Kolmogorov equation

p (θ(ℓ)|Z(ℓ− 1)) =

∫

p (θ(ℓ), θ(ℓ− 1)|Z(ℓ− 1)) dθ(ℓ− 1)

=

∫

p (θ(ℓ)|θ(ℓ− 1),Z(ℓ− 1)) · p (θ(ℓ− 1)|Z(ℓ− 1)) dθ(ℓ− 1)

=

∫

p (θ(ℓ)|θ(ℓ− 1)) · p (θ(ℓ− 1)|Z(ℓ− 1)) dθ(ℓ− 1). (4.11)

The simplification p (θ(ℓ)|θ(ℓ− 1),Z(ℓ− 1)) = p (θ(ℓ)|θ(ℓ− 1)) above is made using

the state transition equation in (4.5). In the update step, the posterior pdf p (θ(ℓ)|Z(ℓ))

is computed from the predicted pdf p (θ(ℓ)|Z(ℓ− 1)) using Bayes’ rule

p (θ(ℓ)|Z(ℓ)) =
p (θ(ℓ),Z(ℓ))

p (Z(ℓ))

=
p (z(ℓ)|θ(ℓ),Z(ℓ− 1)) · p (θ(ℓ),Z(ℓ− 1))

p (z(ℓ)|Z(ℓ− 1)) · p (Z(ℓ− 1))

=
p (z(ℓ)|θ(ℓ)) · p (θ(ℓ)|Z(ℓ− 1)) · p (Z(ℓ− 1))

p (z(ℓ)|Z(ℓ− 1)) p (Z(ℓ− 1))

=
p (z(ℓ)|θ(ℓ)) · p (θ(ℓ)|Z(ℓ− 1))

p (z(ℓ)|Z(ℓ− 1))
, (4.12)

where p (z(ℓ)|Z(ℓ− 1)) is a normalizing constant calculated as

p (z(ℓ)|Z(ℓ− 1)) =

∫

p (z(ℓ)|θ(ℓ)) · p (θ(ℓ)|Z(ℓ− 1)) dθ(ℓ). (4.13)

The simplification p (z(ℓ)|θ(ℓ),Z(ℓ− 1)) = p (z(ℓ)|θ(ℓ)) above is made using the mea-

surement equation in (4.9). The normalizing constant p (z(ℓ)|Z(ℓ− 1)) is derived fol-

lowing similar steps as in (4.11).

The posterior pdf p (θ(ℓ)|Z(ℓ)) can be determined by recursively solving (4.11) and

(4.12). However, owing to the noisy measurements that are nonlinearly related to

the state vector, the analytic solution of the posterior pdf p (θ(ℓ)|Z(ℓ)) is intractable.

Several algorithms, including the recently developed particle filters, have been proposed

for solving such problems [AMGC02, Che03]. Particle filters are more appropriate for

nonlinear and non-Gaussian Bayesian tracking problems. In this thesis, the posterior

pdf p (θ(ℓ)|Z(ℓ)) is approximately computed by linearizing the nonlinear measurement

equation using a first order Taylor series and subsequently applying the Kalman filter.
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4.2 Mobile station tracking algorithm

The nonlinear measurement equation given in (4.9) can be linearized using a first order

Taylor series. The linear approximation of the vector function g(θ(ℓ)) at a reference

point θ0(ℓ), which shall be close to the true value of the vector θ(ℓ) to yield a reliable

linear approximation, is given as

g(θ(ℓ)) ≈ g(θ0(ℓ)) +G0(ℓ) · (θ(ℓ)− θ0(ℓ)), (4.14)

where the matrix G0(ℓ) is defined as

G0(ℓ) =
∂g(θ(ℓ))

∂θ(ℓ)

∣
∣
∣
∣
θ0(ℓ)

. (4.15)

The matrix G0(ℓ) can be calculated using the expressions given in Appendix A. Sub-

stituting (4.14) in (4.9) results in the linearized measurement equation

z(ℓ) = G0(ℓ) · θ(ℓ) + g(θ0(ℓ))−G0(ℓ) · θ0(ℓ) +w(ℓ). (4.16)

It must be noted that the linearization of the measurement equation is to be performed

at every tracking interval.

For a tracking problem with a linear Gaussian state transition and measurement equa-

tions, the posterior pdf of the current state vector given the current and past measure-

ment vectors is Gaussian. Thus the posterior pdf is parameterized by its mean and

covariance matrix. Furthermore, the mean and the covariance matrix of the posterior

pdf constitute estimates of the state vector and the covariance matrix of the estimation

error, respectively [BSKL01]. The Kalman filter calculates estimates of the state vector

and the covariance matrix of the estimation error using the prediction and update steps

[Kal60]. In the prediction step, one time unit prediction of the estimates of the state

vector and the covariance matrix of the estimation error is performed using the state

transition model, whereas in the update step, an update of the predicted estimates of

the state vector and the covariance matrix of the estimation error is made using the cur-

rent measurement vector. However, for the MS tracking problem under consideration,

the noisy measurements are nonlinearly related to the state vector. Thus the posterior

pdf p (θ(ℓ)|Z(ℓ)) is not Gaussian. Nevertheless, by linearization of the measurement

equation using a first order Taylor series, the posterior pdf p (θ(ℓ)|Z(ℓ)) is approxi-

mated by a Gaussian distribution. Estimates of the mean and the covariance matrix of

the approximately Gaussian posterior pdf p (θ(ℓ)|Z(ℓ)) are recursively computed using

the prediction and update steps of the Kalman filter. The Kalman filter when applied

to filtering problems with linearized state transition and/or measurement equations is

commonly referred to as the extended Kalman filter [Kay93, AMGC02, Che03].
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Needless to say, it is imperative that the linearization of the measurement equation be

performed sufficiently close to the true value of the state vector so that the error in

performing the linearization can be ignored. Consequently, in the extended Kalman

filter, the predicted state vector at time ℓ based on measurements up to ℓ− 1 denoted

by θ̂(ℓ|ℓ− 1) is used to linearize the measurement function, i.e.,

G(ℓ) =
∂g(θ(ℓ))

∂θ(ℓ)

∣
∣
∣
∣
θ(ℓ)=θ̂(ℓ|ℓ−1)

. (4.17)

The extended Kalman filter starts with an initial estimate θ̂(0) of the state vector

θ(0) and an initial covariance matrix M(0|0) of the estimation error and recursively

computes estimates θ̂(ℓ|ℓ) of the state vector θ(ℓ) and the covariance matrix M(ℓ|ℓ) of

the estimation error using the following equations

• prediction step:

θ̂(ℓ|ℓ− 1) = B · θ̂(ℓ− 1|ℓ− 1) (4.18)

M(ℓ|ℓ− 1) = B ·M(ℓ− 1|ℓ− 1) ·BT + Γ ·Ruu · Γ
T (4.19)

• update step:

K(ℓ) =
M(ℓ|ℓ− 1) ·GT(ℓ)

G(ℓ) ·M(ℓ|ℓ− 1) ·GT(ℓ) +Rww
(4.20)

θ̂(ℓ|ℓ) = θ̂(ℓ|ℓ− 1) +K(ℓ)
(

z(ℓ)− g(θ̂(ℓ|ℓ− 1))
)

(4.21)

M(ℓ|ℓ) = M(ℓ|ℓ− 1)−K(ℓ) ·G(ℓ) ·M(ℓ|ℓ− 1), (4.22)

where the matrix K(ℓ) is the Kalman gain. The Kalman gain quantifies the relative

accuracy of the predicted state vector and the measurement vector. Thus a “small”

Kalman gain implies that the predicted state vector is more reliable than the mea-

surement vector and hence more weight is given to the predicted state vector than

the measurement vector. On the other hand, a “large” Kalman gain implies that the

measurement vector is more reliable than the predicted state vector and hence more

weight is given to the measurement vector than the predicted state vector [BSKL01].

It must be noted that the prediction step which is based on the state transition equation

in (4.5) leaves the estimated positions of the stationary scatterers unchanged. However,

in the update step the estimated positions of the stationary scatterers is updated, i.e.,

θ̂(ℓ|ℓ) = θ̂(ℓ|ℓ− 1) +K(ℓ)
(

z(ℓ)− g(θ̂(ℓ|ℓ− 1))
)

(4.23)
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updates the estimated positions of the stationary scatterers based on measurement data.

Thus the proposed MS tracking algorithm corrects the initially estimated positions of

scatterers based on the information obtained from measurement data.

The initial estimate of the position of the MS is obtained by using the total least

squares (TLS) localization algorithm discussed in Section 3.3 for synchronized BSs and

MS. The initial estimate of the positions of the scatterers is obtained from the estimated

position of the MS by exploiting the linear relation between the positions of the MS

and scatterers. Furthermore, the initial estimate of the velocity of the MS is obtained

from a multivariate Gaussian distribution. The initial estimate θ̂(0) of the state vector

is constructed from the initial estimate of the position of the MS, the velocity of the

MS and the positions of the scatterers. In some cases, the initial estimate of the state

vector may not be in the neighborhood of the true value of the initial state vector.

Hence the linear approximation of the measurement function would be rather coarse

and the extended Kalman filter may diverge. In such cases, estimates of the trajectory

of the MS obtained from the successive independent position estimates by the TLS

localization algorithm are used as MS trajectory estimates of the extended Kalman

filter.

It must be noted that unlike the initial estimate of the position of the MS which is

determined by exploiting all the measurements, the initial estimate of the position of

each scatterer is determined by exploiting the measurement which corresponds to each

scatterer. Thus the initial estimates of the positions of the scatterers are not as reliable

as the initial estimate of the position of the MS. Consequently, the entries of the initial

covariance matrix M(0|0) of the state vector for the positions of the scatterers should

be much larger as compared to the entries for the positions of the MS. This would

mitigate the propagation of the estimation errors arising from the possibly erroneous

initial estimate of the positions of the scatterers to the estimated positions of the MS

during tracking.

4.3 Performance analysis

4.3.1 Posterior Cramér-Rao lower bound

Performance bounds give useful information about attainability of a given performance

requirement. Furthermore, performance bounds give useful information about the ef-

ficiency of an estimator in terms of the amount of information extracted from the



4.3 Performance analysis 49

measurements about the parameter in question. In Section 3.4.1, the lower bound of

the mean square error of an unbiased estimator of a non-random parameter has been

presented using the CRLB. In the MS tracking problem considered here, the unknown

parameter is random as it tracks the state of a nonlinear randomly driven dynamical

system. The lower bound of the mean-square error of a biased estimator of a random

scalar or vector parameter is commonly referred to as the Van Trees bound [VT68]

or the posterior CRLB (PCRLB) [TMN98]. The bias in the estimator comes from

the random nature of the parameter to be estimated which is characterized by the a

priori pdf of the parameter. Thus unlike the CRLB which considers the conditional

pdf, the PCRLB considers the conditional and the a priori pdfs when computing the

mean square error of a biased estimator. Hence the posterior CRLB is more general

than the conventional CRLB.

Mathematically, for a biased estimator θ̂(z(ℓ)) which estimates the random parameter

θ(ℓ) based on the measurement vector z(ℓ), the covariance matrix of the estimator is

bounded from below as

Ez(ℓ),θ(ℓ){(θ̂(z(ℓ))− θ(ℓ))(θ̂(z(ℓ))− θ(ℓ))
T} − J−1(θ(ℓ)) � 0, (4.24)

where J(θ(ℓ)) is the Fisher information matrix defined as

J(θ(ℓ)) = Ez(ℓ),θ(ℓ)

{(
∂ln (p (θ(ℓ), z(ℓ)))

∂θ(ℓ)

)(
∂ln (p (θ(ℓ), z(ℓ)))

∂θ(ℓ)

)T
}

= −Ez(ℓ),θ(ℓ)

{(
∂2ln (p (θ(ℓ), z(ℓ)))

∂θ(ℓ)∂θT(ℓ)

)}

. (4.25)

The symbol � in (4.24) denotes that the difference of the two matrices is posi-

tive semi-definite and Ez(ℓ),θ(ℓ){·} denotes the expectation with respect to the pdf

p (θ(ℓ), z(ℓ)). Similar to the derivation of the CRLB, the PCRLB is derived under cer-

tain regularity conditions described in Appendix B. Using the relation p (θ(ℓ), z(ℓ)) =

p (z(ℓ)|θ(ℓ)) p (θ(ℓ)), the Fisher information matrix J(θ(ℓ)) can be decomposed into

the sum of the measurement Jm(θ(ℓ)) and the a priori Ja(θ(ℓ)) information matrices

as follows

J(θ(ℓ)) = Jm(θ(ℓ)) + Ja(θ(ℓ)), (4.26)

where

Jm(θ(ℓ)) = Ez(ℓ),θ(ℓ)

{(
∂ln (p (z(ℓ)|θ(ℓ)))

∂θ(ℓ)

)(
∂ln (p (z(ℓ)|θ(ℓ)))

∂θ(ℓ)

)T
}

(4.27)

Ja(θ(ℓ)) = Eθ(ℓ)

{(
∂ln (p (θ(ℓ)))

∂θ(ℓ)

)(
∂ln (p (θ(ℓ)))

∂θ(ℓ)

)T
}

, (4.28)
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and Eθ(ℓ){·} denotes the expectation with respect to the pdf p (z(ℓ)).

For the MS tracking problem which is considered as tracking the state of a dynamical

system, the PCRLB is calculated by considering the evolution of the state vectors, the

measurements and the a priori distribution of the initial state vector. To this end, let

Θ(ℓ) = (θ(0) · · ·θ(ℓ)) and Z(ℓ) = (z(0) · · ·z(ℓ)) denote the sequences of the state and

measurement vectors, respectively, up to time instance ℓ. The initial state vector θ(0)

has a priori pdf p (θ(0)). Furthermore, it is assumed that the a priori pdf p (z(0), θ(0))

equals p (θ(0)). The expression for the joint probability density function of the pair

(Θ(ℓ),Z(ℓ)) can be simplified using (4.5) and (4.9) as

p (Θ(ℓ),Z(ℓ)) =

ℓ∏

i=1

p (z(i)|θ(i))
ℓ∏

j=1

p (θ(j)|θ(j − 1)) · p (θ(0)) . (4.29)

Thus the PCRLB of the parameter Θ(ℓ) can be computed from the Fisher information

matrix of the pdf of (4.29). Furthermore, using the matrix inversion lemma, it is

possible to recursively compute the PCRLB for each vector parameter θ(ℓ) at time

instant ℓ instead of finding the PCRLB for the whole sequence of observations Θ(ℓ)

in a single step [TMN98]. The recursive approach is easier to compute and helps to

analyze the convergence properties of the PCRLB.

It has been assumed that the state transition and the measurement noises are multi-

variate Gaussian random variables. For Gaussian state transition and measurement

noises, computation of the PCRLB involves the inversion of the covariance matrix of

the state transition noise Γ · ums(ℓ) and the measurement noise w(ℓ). From (4.4) and

(4.5), the covariance matrix of the state transition noise Γ ·ums(ℓ) can be calculated as

E

{

Γ · ums(ℓ) · (Γ · ums(ℓ))
T
}

= Γ ·Ruu · Γ
T. (4.30)

For Γ defined in (4.7), i.e.,

Γ =









∆t 0
0 ∆t
1 0
0 1

02P×1 02P×1









,

the state transition noise covariance matrix is singular. Thus the computation of the

Fisher information matrix of the pdf given in (4.29) fails. This calls for a modification of

the computation of the PCRLB. In [TMN98], a systematic approach to computing the

PCRLB for such cases has been proposed. In the following, the proposed approach is

used to derive the PCRLB for the MS tracking problem. The proposed approach works
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by separating the vector parameter in block form as θ(ℓ) = (θT1 (ℓ), θ
T
2 (ℓ))

T where θ1(ℓ)

denotes the part of the vector parameter which is driven by the system driving noise and

θ2(ℓ) denotes the part of the vector parameter which does not evolve with the system

dynamics and/or evolves as a result of its relation with θ1(ℓ). For the considered

MS tracking problem, the scatterers are assumed stationary and the movement of

the MS is modelled by making random changes to the velocity of the MS which is

assumed to be constant within the tracking interval. Consequently, θ1(ℓ) = vms(ℓ) and

θ2(ℓ) = (pT
ms(ℓ),p

T
sc,1, . . . ,p

T
sc,P )

T. Hence the state transition equation given in (4.5) is

modified as

θ1(ℓ) = θ1(ℓ− 1) + ums(ℓ) (4.31)

θ2(ℓ) = θ2(ℓ− 1) + B̃ · θ1(ℓ), (4.32)

where

B̃ =





∆t 0
0 ∆t

02P×1 02P×1



 . (4.33)

The measurement vector z(ℓ) consists of the path lengths, the angles-of-departure and

the angles-of-arrival of the propagation paths which are not functions of the velocity of

the MS. Since θ1(ℓ) represents only the velocity of the MS, the measurement equation

given in (4.9) is modified as

z(ℓ) = g(θ2(ℓ)) +w(ℓ). (4.34)

The calculation of the PCRLB for the modified MS tracking problem is carried out by

subsequent recursive calculation of the Fisher information matrices (FIMs) of the pdfs

p(ℓ) = p(Θ1(ℓ− 1), θ1(ℓ), θ2(ℓ),Z(ℓ)) (4.35)

p̃(ℓ+ 1) = p(Θ1(ℓ), θ2(ℓ), θ1(ℓ+ 1),Z(ℓ+ 1)) (4.36)

p(ℓ + 1) = p(Θ1(ℓ), θ1(ℓ+ 1), θ2(ℓ+ 1),Z(ℓ+ 1)). (4.37)

The FIM of the pdf p(ℓ) can be used to calculate the FIM of the pdf p̃(ℓ+1) by relating

the two pdfs as follows:

p̃(ℓ+ 1) = p(Θ1(ℓ), θ2(ℓ), θ1(ℓ+ 1),Z(ℓ+ 1))

= p(Θ1(ℓ), θ2(ℓ),Z(ℓ)) · p(θ1(ℓ+ 1), z(ℓ+ 1)|Θ1(ℓ), θ2(ℓ),Z(ℓ))

= p(ℓ) · p(θ1(ℓ+ 1)|Θ1(ℓ), θ2(ℓ),Z(ℓ))

· p(z(ℓ+ 1)|Θ1(ℓ), θ2(ℓ), θ1(ℓ+ 1),Z(ℓ)). (4.38)

Using (4.31), (4.32) and (4.34) one obtains

p̃(ℓ+ 1) = p(ℓ) · p(θ1(ℓ+ 1)|θ1(ℓ)) · p(z(ℓ+ 1)|θ2(ℓ), θ1(ℓ+ 1)). (4.39)
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Furthermore, the FIM of the pdf p̃(ℓ + 1) can be used to calculate the FIM of the

pdf p(ℓ+ 1) by using the rule for change of coordinates of estimated parameters. The

coordinates of the pdfs p̃(ℓ + 1) = p(Θ1(ℓ), θ2(ℓ), θ1(ℓ + 1),Z(ℓ + 1)) and p(ℓ + 1) =

p(Θ1(ℓ), θ1(ℓ+ 1), θ2(ℓ+ 1),Z(ℓ+ 1)) are related, using (4.32), as






vec(Θ1(ℓ− 1))
θ1(ℓ)

θ1(ℓ+ 1)
θ2(ℓ+ 1)







=







I2ℓ 02ℓ×2 02ℓ×2(P+1) 02ℓ×2

02×2ℓ I2 02×2(P+1) 02

02×2ℓ 02 02×2(P+1) I2
02(P+1)×2ℓ B̃ I2(P+1) 02(P+1)×2







︸ ︷︷ ︸

=Υ̃







vec(Θ1(ℓ− 1))
θ1(ℓ)
θ2(ℓ)

θ1(ℓ+ 1)






,

(4.40)

where vec(·) is a matrix vectorization operator which transforms a matrix into a vector

by stacking the columns of the matrix one underneath the other. Obviously, the matrix

Υ̃ is nonsingular. For a nonsingular matrix Υ̃ the FIMs of the pdfs p̃(ℓ+1) and p(ℓ+1)

are related as [LC98]

J (Θ1(ℓ), θ1(ℓ+ 1), θ2(ℓ+ 1)) = (Υ̃−1)T · J (Θ1(ℓ), θ2(ℓ), θ1(ℓ+ 1)) · Υ̃−1. (4.41)

Thus it remains to make use of the discussion above to recursively calculate the Fisher

information matrix (FIM) of the state vector θ(ℓ). To this end, let J(ℓ) be the FIM

of the state vector
(
θT1 (ℓ), θ

T
2 (ℓ)

)T
. The decomposition of the matrix J(ℓ) into blocks

corresponding to the vectors θ1(ℓ) and θ2(ℓ) reads

J(ℓ) =

(
J11(ℓ) J12(ℓ)
J21(ℓ) J22(ℓ)

)

. (4.42)

Furthermore, let Q(ℓ) be the FIM of the vector
(
θT1 (ℓ− 1), θT1 (ℓ), θ

T
2 (ℓ)

)T
. The decom-

position of the matrix Q(ℓ) into blocks corresponding to the vectors θ1(ℓ − 1), θ1(ℓ)

and θ2(ℓ) reads

Q(ℓ) =





Q11(ℓ) Q12(ℓ) Q13(ℓ)
Q21(ℓ) Q22(ℓ) Q23(ℓ)
Q31(ℓ) Q32(ℓ) Q33(ℓ)



 . (4.43)

Based on the discussion made in the previous paragraph, the FIM J(ℓ) can be computed

recursively using the FIM Q(ℓ) as [TMN98]:

J(ℓ) =

(
Q22(ℓ) Q23(ℓ)
Q32(ℓ) Q33(ℓ)

)

−

(
Q21(ℓ)
Q31(ℓ)

)

Q−1
11 (ℓ)

(
Q12(ℓ) Q13(ℓ)

)
(4.44)

Q(ℓ+ 1) = (Υ−1)T ·





J11(ℓ) +H11(ℓ) J12(ℓ) +H12(ℓ) H13(ℓ)
(J12(ℓ) +H12(ℓ))

T J22(ℓ) +H22(ℓ) H23(ℓ)
HT

13(ℓ) HT
23(ℓ) H33(ℓ)



 ·Υ−1, (4.45)

where

Υ =





I2 02×2(P+1) 02

02 02×2(P+1) I2
B̃ I2(P+1) 02(P+1)×2



 (4.46)
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H11(ℓ) = Ez(ℓ+1),θ(ℓ+1)

{

−

(
∂2ln (p̄)

∂θ1(ℓ)∂θ
T
1 (ℓ)

)}

(4.47)

H12(ℓ) = Ez(ℓ+1),θ(ℓ+1)

{

−

(
∂2ln (p̄)

∂θ1(ℓ)∂θ
T
2 (ℓ)

)}

(4.48)

H13(ℓ) = Ez(ℓ+1),θ(ℓ+1)

{

−

(
∂2ln (p̄)

∂θ1(ℓ)∂θ
T
1 (ℓ+ 1)

)}

(4.49)

H22(ℓ) = Ez(ℓ+1),θ(ℓ+1)

{

−

(
∂2ln (p̄)

∂θ2(ℓ)∂θ
T
2 (ℓ)

)}

(4.50)

H23(ℓ) = Ez(ℓ+1),θ(ℓ+1)

{

−

(
∂2ln (p̄)

∂θ2(ℓ)∂θ
T
1 (ℓ+ 1)

)}

(4.51)

H33(ℓ) = Ez(ℓ+1),θ(ℓ+1)

{

−

(
∂2ln (p̄)

∂θ1(ℓ+ 1)∂θT1 (ℓ+ 1)

)}

(4.52)

p̄ = p(θ1(ℓ+ 1)|θ1(ℓ)) · p(z(ℓ+ 1)|θ2(ℓ), θ1(ℓ+ 1)). (4.53)

The partial derivatives of ln (p(θ1(ℓ+ 1)|θ1(ℓ)) · p(z(ℓ+ 1)|θ2(ℓ), θ1(ℓ+ 1))) can be

evaluated using the modified MS tracking problem given in (4.31), (4.32) and (4.34).

From (4.4) and (4.31) the expression for the pdf p(θ1(ℓ+ 1)|θ1(ℓ)) is given as

ln (p (θ1(ℓ+ 1)|θ1(ℓ))) = c1 −
1

2
(θ1(ℓ+ 1)− θ1(ℓ))

T R−1
uu (θ1(ℓ+ 1)− θ1(ℓ)) , (4.54)

where c1 is a constant. On the other hand, from (4.10), (4.32) and (4.34)

ln (p (z(ℓ+ 1)|θ2(ℓ), θ1(ℓ+ 1))) = c2 −
1

2
(z(ℓ+ 1)− g(θ2(ℓ), θ1(ℓ+ 1)))T

·R−1
ww (z(ℓ+ 1)− g(θ2(ℓ), θ1(ℓ+ 1))) , (4.55)

where c2 is a constant. Hence using (4.54) and (4.55) the partial derivatives of

ln (p(θ1(ℓ+ 1)|θ1(ℓ)) · p(z(ℓ+ 1)|θ2(ℓ), θ1(ℓ+ 1))) can be calculated as

H11(ℓ) = R−1
uu (4.56)

H12(ℓ) = 02×2(P+1) (4.57)

H13(ℓ) = −R−1
uu (4.58)

H22(ℓ) =

(
∂g(θ2(ℓ), θ1(ℓ+ 1))

∂θ2(ℓ)

)T

·R−1
ww ·

(
∂g(θ2(ℓ), θ1(ℓ+ 1))

∂θ2(ℓ)

)

(4.59)

H23(ℓ) = 02(P+1)×2 (4.60)

H33(ℓ) = R−1
uu . (4.61)

The above Hessian matrices were derived in a similar manner as in (3.42). The Jacobian

matrix ∂g(θ2(ℓ))
∂θ2(ℓ)

can be calculated using the expressions given in Appendix A.

The initial recursion Fisher information matrix (FIM) J(0) is defined by using the

Jacobian of the a priori pdf p (θ1(0), θ2(0), z(0)) = p (θ1(0), θ2(0)). From (4.8), the
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initial state vector is a multivariate Gaussian distributed random variable and hence

J(0) = R−1
θθ (0). (4.62)

The Fisher information matrix (FIM) J(ℓ) represents the FIM of the positions of the

MS and scatterers and the velocity of the MS. Since only the positions of the MS are

of interest, the PCRLB of estimates of the positions of the MS is required. This can

be obtained by partitioning the FIM J(ℓ) into block submatrices and using the matrix

inversion lemma as shown in Section 3.4.1.

4.3.2 Simulation results

In this section, the performance of the proposed MS tracking algorithm is analysed

considering a picocell NLOS multipath localization scenario using Monte Carlo simula-

tions with 105 independent trials. The radius of the cell is assumed to be 100 m and it

is served by a single BS. The probability distribution of the initial position of the MS

is assumed to be uniform within the cell. In the simulations, the MS to be tracked is

assumed to be a pedestrian. Consequently, the initial velocity of the MS is generated

randomly from the distribution vms(0) ∼ N (0, diag (1 m2/sec2, 1 m2/sec2)). The posi-

tions of the scatterers are generated randomly using the single bounce elliptical model

discussed in Section 3.4.2 for a normalized maximum path delay τmax

τLOS
= 2.5. The MS

trajectory consists of L = 10 positions with a tracking interval of ∆t = 0.5 sec. The

MS trajectory has been generated using the first order Gauss-Markov mobility model

defined in (4.5). The state transition noise ums(ℓ) in (4.5) has a covariance matrix

Ruu = diag (0.12 m2/sec2, 0.12 m2/sec2).

As mentioned in Section 4.2, the initial estimate θ̂(0) of the state vector θ(0) is obtained

using initial MS and scatterer position estimates from the total least squares (TLS) lo-

calization algorithm. The initial estimates of the velocity of the MS are obtained using

a zero mean Gaussian distribution, i.e., v̂ms(0) ∼ N (0, diag (1 m2/sec2, 1 m2/sec2)).

Furthermore, the initial covariance matrix M(0|0) of the state vector was set to

diag(10, . . . , 10
︸ ︷︷ ︸

4

, 103, . . . , 103
︸ ︷︷ ︸

2P

). As discussed in Section 4.2, the magnitude of the di-

agonal elements of the covariance matrix M(0|0) was set in such a way that its inverse

reflects the confidence on the initial estimates of the parameter in question, i.e., the posi-

tion of the MS, the velocity of the MS or the positions of the scatterers. For cases where

the extended Kalman filter diverges, MS trajectory estimates obtained using the TLS lo-

calization algorithm are used as MS trajectory estimates of the extended Kalman filter.
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The extended Kalman filter is said to have diverged if ‖p̂ms(ℓ)− p̂ms(ℓ− 1)‖2 ≥ 10 m,

where p̂ms(ℓ) is the estimated position of the MS at the ℓth time instant. It has been ob-

served that depending on the magnitude of the standard deviations of the measurement

noises, the extended Kalman filter converges for 50–75 % of the simulation runs. It will

be shown that the extended Kalman filter nevertheless yields significant performance

gains over the TLS localization algorithm.

The performance metric is the root mean square error rmse(p̂ms(ℓ)) of the estimated

position p̂ms(ℓ) of the MS which is calculated as

rmse(p̂ms(ℓ)) =
√

Ez(ℓ),pms(ℓ) {(p̂ms(ℓ)− pms(ℓ))T(p̂ms(ℓ)− pms(ℓ))}, (4.63)

where pms(ℓ) is the true position of the MS at the ℓth time instant and Ez(ℓ),pms(ℓ){·}

denotes the expectation with respect to the pdf p (z(ℓ),pms(ℓ)). In the simulations, the

expectations of (4.63) are computed using averages. To assess the performance gains

obtained from tracking the MS, the performance of successive independent position

estimates of the trajectory of the MS using the total least squares (TLS) localization

algorithm is also considered. In the following, the root mean square errors rmse(p̂ms(ℓ =

10)) of the last position on the trajectory of the MS of the extended Kalman filter

tracking, which is close to the steady state root mean square error, and the TLS

localization algorithms are compared for different numbers of paths and noise powers.

In all cases, the PCRLB is used as a performance benchmark. The initial recursion of

the PCRLB is computed using the covariance matrix Rθθ(0) of the initial state vector

which is assumed to be a diagonal matrix with a variance of 1 m2/sec2 for the velocity

and a variance of 502 m2 for the positions of the MS and scatterers.

Fig. 4.1 shows the performances of the extended Kalman filter (EKF) tracking and the

TLS localization algorithms versus the standard deviation σφ = σφbs,p = σφms,p of the

angles-of-departure and angles-of-arrival measurement noise for different numbers of

propagation paths P . In the simulations, the standard deviation σd of the path lengths

measurement noise was set to 5 m. It can be seen from Fig. 4.1 that the performances of

the EKF tracking and the TLS localization algorithms are bounded by the PCRLB. The

performances of the EKF tracking and the TLS localization algorithms approach the

PCRLB when σφ is close to zero. Furthermore, it can be concluded from the superior

performance of the EKF tracking algorithm over the TLS localization algorithm that

there is an appreciable performance gain obtained from tracking the MS. Moreover,

there are significant performance improvements by both the EKF tracking algorithm

and the TLS localization algorithm as the number of propagations paths P is increased

owing to the extra information about the position of the MS from the extra propagation

paths. This shows that the NLOS multipath propagations are effectively exploited as

an aid in tracking the MS.
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Figure 4.1. Influence of the number of paths and the standard deviation of the angles-
of-departure and angles-of-arrival measurement noise on the proposed MS tracking
algorithm, σd = 5 m

Fig. 4.2 shows the performances of the EKF tracking and the TLS localization algo-

rithms versus the standard deviation σd of the path lengths measurement noise for

different numbers of propagation paths P . In the simulations, the standard deviations

σφbs
and σφms of the angles-of-departure and angles-of-arrival measurement noises were

set to 5◦. It can be seen from Fig. 4.2 that the performances of the EKF tracking

and the TLS localization algorithms are bounded by the PCRLB. Furthermore, similar

to the simulation results shown in Fig. 4.1, the EKF tracking algorithm results in an

appreciable performance improvement over the TLS localization algorithm. Moreover,
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Figure 4.2. Influence of the number of paths and the standard deviation of the path
lengths measurement noise on the proposed MS tracking algorithm, σφ = 5◦ (figure
drawn not to scale)

confirming the exploitation of the NLOS propagation paths for localization and track-

ing, there are significant performance improvements by both the EKF tracking and the

TLS localization algorithms as the number of propagations paths P is increased.

It can be seen from Fig. 4.1 and Fig. 4.2 that generally there is only a minor im-

provement in performance brought about by the EKF tracking algorithm over the

TLS localization algorithm when σφms and σd are near zero, respectively. This oc-

curs owing to the fact that for such cases, the standard deviations σφms and σd of the
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measurement noises are comparable with the standard deviation of the state transi-

tion noise. As mentioned earlier, the state transition noise has a covariance matrix

Ruu = diag (0.12 m2/sec2, 0.12 m2/sec2). This means that the predicted state vector

and the measurement vector have comparable reliability and the Kalman filter does not

significantly outweigh the predicted state vector over the measurement vector. This

reduces the performance gain that is obtained by exploiting the dependency between

the successive positions of the MS.

Owing to the reliance of the extended Kalman filter on linearization of the nonlinear

measurement function, estimates of the initial state vector play a crucial role in the

convergence and accuracy of the extended Kalman filter. The extended Kalman filter

obtains estimates of the initial state vector using estimates of the TLS localization

algorithm. The accuracy of estimates of the initial position of the MS can be increased

by considering more NLOS propagation paths. However, the increase in the accuracy

of the estimates of the initial position of the MS from consideration of more NLOS

propagation paths is accompanied by an increase in the number of scatterers whose

positions are also to be tracked by the extended Kalman filter. For each considered

scatter, three measured propagation path parameters are obtained while the dimension

of the state vector is increased by two for the position of the considered scatter. Thus

the reliability of estimates of the initial state vector does not increase dramatically

when considering more NLOS propagation paths. Nevertheless, significant gains can

be obtained when considering more NLOS propagation paths as shown in Figs. 4.1

and 4.2.

It must be noted that the simulations have been performed for synchronized BS and

MS. It has been observed that, unlike MS localization for unsynchronized BS and MS,

MS localization for synchronized BS and MS does not result in an unstable TLS prob-

lem. Thus the simulations were carried out without having to mitigate such cases.

Furthermore, there was no need to consider a high number of propagation paths to

obtain a well posed TLS problem. This is due to the fact that estimates of the prop-

agation path lengths obtained from synchronized BS and MS yield more information

about the position of a MS than estimates of the propagation path length differences

obtained from unsynchronized BS and MS. Consequently, for synchronized BS and

MS at least two NLOS propagation paths are required for MS localization unlike for

unsynchronized BS and MS where at least three NLOS propagation path are required

for MS localization.
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Chapter 5

Network localization in NLOS multipath
environments

5.1 Cooperative localization

In the previous chapters, the problem of localizing and tracking a MS in NLOS multi-

path environments was considered. It has been shown that while a single BS is adequate

for localizing and tracking a MS, additional BSs could be considered to increase the

accuracy of the estimated positions of a MS. In this chapter, a network localization

scenario is considered where there are at least two MSs and two BSs. The unknown

positions of the MSs are to be estimated using the known positions of the BSs. Network

localization plays a key role in sensor networks where the knowledge of the locations

of the sensors is essential to make a meaningful interpretation of the sensed data.

In a network localization scenario, the positions of the MSs can be estimated using

either a centralized or a distributed localization. In centralized localization, a cen-

tral processing unit collects all measurements and estimates the positions of the MSs.

Centralized localization algorithms have the downside of not being scalable and hence

don’t lend themselves to applications in large scale networks [WLW09]. In distributed

localization, each MS estimates its own position based on its own acquired measure-

ments. In some cases, the MSs may iteratively update their estimated positions by

exchanging the processed measurement data with neighbouring MSs. In practice, dis-

tributed localization algorithms have inferior performance over centralized localization

algorithms owing to the exchange of processed measurement data, rather than the raw

measurement data, which may suffer from information loss during processing by each

MS. Furthermore, distributed localization algorithms may require a substantial num-

ber of iterations to have comparable performance to centralized localization algorithms.

In [SCC+14], it has been shown that after infinite iterations a distributed localization

algorithm has the same performance bound as a centralized localization algorithm. In

the following, a centralized localization algorithm is considered for network localization

in NLOS multipath environments.

In a network localization, the MSs can cooperate with each other to determine their

positions [WLW09] and/or to obtain a significant improvement in localization accu-

racy [MBW+04]. The MSs cooperate by directly communicating with each other to
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Figure 5.1. Cooperative localization can be used to resolve ambiguity in the positions
of the MSs by considering the distance between the MSs [WLW09]

obtain estimates of the propagation path parameters between the MSs. The measure-

ments obtained from consideration of the MS-MS links can be used to complement

the measurements from the BS-MS links so that it is possible to localize MSs where

the measurements from the BS-MS links are not sufficient for localization, see Fig.

5.1. Thus cooperation between the MSs can be used to increase localization coverage.

Furthermore, the measurements obtained from cooperation between the MSs can be

used to improve localization accuracy by exploiting the information about the relative

positions of the MSs.

In [WLW09] and [MBW+04], cooperation between the MSs has been exploited to in-

crease localization coverage and accuracy for network localization in LOS environments,

respectively. In this chapter, network localization in NLOS multipath environments is

of interest. The idea of using cooperation between the MSs to increase localization

coverage and accuracy can also be applied in NLOS multipath environments. The

increased localization accuracy obtained as a result of the cooperation between the

MSs is especially important in NLOS multipath environments. Cooperative localiza-

tion algorithms for network localization in LOS environments can be applied for net-

work localization in NLOS environments. However, the NLOS multipath propagations

are detrimental to the localization performance of localization algorithms developed

for LOS environments [GC09, SW14b]. Consequently, new approaches to network lo-

calization in NLOS multipath environments are required. In this chapter, two new

approaches to cooperative localization in NLOS multipath environments are proposed.
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5.2 Cooperative localization in NLOS multipath en-

vironments under the explicit consideration of

scatterers

The potential performance gain from cooperation between MSs can be demonstrated for

network localization in NLOS multipath environments under the explicit consideration

of scatterers. Towards this end, consider a network consisting of Nbs BSs and Nms

MSs. For ease of exposition, let the number of NLOS propagation paths between each

BS-MS and MS-MS links be P . Furthermore, let C denote the number of measured

propagation path parameters for each BS-MS and MS-MS links, i.e., the times-of-

arrival, the angles-of-departure, the angles-of-arrival or a combination thereof. It is

assumed that each MS cooperates with all other MSs, i.e., there is full connectivity

between the MSs. Furthermore, it is assumed that there is full connectivity between

the BSs and the MSs. For such a network localization scenario, the number of unknown

parameters, i.e., the positions of the MSs and the scatterers, is

2Nms + 2 · P ·Nbs ·Nms + 2 · P
Nms(Nms − 1)

2
,

whereas the number of measured propagation path parameters is

C · P ·Nbs ·Nms + C · P
Nms(Nms − 1)

2
.

The terms 2 · P Nms(Nms−1)
2

and C · P Nms(Nms−1)
2

denote the extra unknown parameters

and the extra measured propagation path parameters incurred due to the consideration

of the MS-MS connections, respectively. If C ≥ 3, then the number of measured path

parameters, i.e., the number of equations, is greater than the number of unknown

parameters and hence localization of the MSs is possible. Furthermore, if C ≥ 3, then

consideration of the MS-MS links results in an increase in the number of unknown

parameters by 2·P Nms(Nms−1)
2

, while the increase in the number of measured propagation

path parameters is C · P Nms(Nms−1)
2

. Thus consideration of the MS-MS links results in

a larger increase of the number of measured propagation path parameters than the

number of unknown parameters. Consequently, the MS-MS links can be considered to

obtain significant performance gain in the accuracy of the estimated positions of the

MSs.

In Section 3.3, an algorithm for MS localization in NLOS multipath environments under

the explicit consideration of scatterers has been proposed. The proposed MS localiza-

tion algorithm exploits the linear relations between the positions of the MS, the BS

and the scatterers to determine the position of the MS. The proposed localization algo-

rithm can be easily extended to network localization in NLOS multipath environments.
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This results in a geometric cooperative localization algorithm for network localization

in NLOS multipath environments which determines the positions of the MSs under the

explicit consideration of scatterers.

For cooperative localization in NLOS multipath environments under the explicit con-

sideration of scatterers, the increase in the number of unknown parameters and the

number of measured propagation path parameters owing to consideration of the MS-

MS links is quadratic in the number of MSs. Thus even though there is a significant

performance gain from consideration of the MS-MS links, the comparable increase in

the number of unknown parameters and the number of measured path parameters

limits the performance gain from consideration of the MS-MS links. Furthermore,

the quadratic increase in the number of unknown parameters could result in a signif-

icant computational burden on network localization algorithms which would have to

explicitly estimate the positions of the scatterers, for example a maximum-likelihood

estimation algorithm. Nevertheless, it must be kept in mind that a satisfactory network

localization performance can be guaranteed for all NLOS multipath network localiza-

tion scenarios only under the explicit consideration of scatterers.

5.3 Cooperative localization in NLOS multipath en-

vironments without the explicit consideration

of scatterers

Had it not been for the explicit consideration of scatterers, the increase in the number

of measurements which is quadratic in the number of the MSs would have not been

accompanied by an increase in the number of unknown parameters. Hence if scatter-

ers are not explicitly considered by a network localization algorithm, the number of

unknown parameters, i.e., the positions of the MSs, is 2Nms, whereas the number of

measured propagation path parameters is

CNbs ·Nms + C
Nms(Nms − 1)

2
.

Thus a network localization algorithm that does not explicitly consider scatterers would

strongly benefit from the number of measurements which grow quadratically with the

number of the MSs without being accompanied by an increase in the number of un-

knowns. However, without the explicit consideration of scatterers, the NLOS multipath

propagations become detrimental to the performance of the network localization algo-

rithm. To mitigate this, the straightforward approach would be to use LOS network
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localization algorithms under the assumption that the NLOS multipath propagations

cause erroneous path parameter measurements. The extra measurements obtained

from cooperation can help to “average out” the influence of the NLOS propagations.

However, this approach is susceptible to the proportion of the LOS and NLOS propa-

gation paths; hence it does not yield a satisfactory localization performance [SW14b].

A more subtle approach to exploiting the extra measurements can potentially yield a

satisfactory localization performance. In the following, a systematic approach to net-

work localization in NLOS multipath environments is proposed without the explicit

consideration of scatterers.

Since the scatterers are not explicitly considered, it is necessary to consider models

which describe the influence of the NLOS propagations. Different models have been

considered to describe the effect of the NLOS propagations on the measured distances

[GC09] and directions of arrivals [ECS+98, SJJS00]. In the following, the measured

distance between the BS-MS and the MS-MS communication links is considered for

simplicity without loss of any generality of the cooperative localization algorithm to

be proposed, hence C = 1 holds. Consideration of only the times-of-arrival of the

propagation paths for the network localization enables the cooperative localization

algorithm to be proposed to be applied also for sensor networks where the sensor nodes

in general do not possess antenna arrays which are required to estimate the directions

of arrival.

Let the position of the nth
bs BS, nbs = 1, . . . , Nbs be denoted by pbs(nbs), whereas the

position of the nth
ms MS, nms = 1, . . . , Nms be denoted by pms(nms). For the network

localization scenario with Nbs BSs and Nms MSs, there are

Nd = Nbs ·Nms +
Nms(Nms − 1)

2
(5.1)

measured distances considering the BS-MS and MS-MS links. Let d̃(nd), nd =

1, . . . , Nd denote the measured distances of the BS-MS and the MS-MS links. The

measured distance d̃(nd), ∀nd = (nbs − 1)Nms + nms ∈ {1, . . . , Nbs ·Nms} of the BS-MS

links is given by

d̃(nd) = ‖pbs(nbs)− pms(nms)‖2 + w(nd), (5.2)

whereas the measured distance d̃(nd), ∀nd = Nbs · Nms + (nms − 1)Nms −
1
2
nms(nms +

1) + ńms ∈ {Nbs ·Nms + 1, . . . , Nd} of the MS-MS links, i.e., the nth
ms and the ńth

ms MSs,

ńms > nms, ńms ∈ {1 . . . Nms}, is given by

d̃(nd) = ‖pms(nms)− pms(ńms)‖2 + w(nd). (5.3)

w(nd) is the measurement noise.
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In the previous chapters, the distance measurement noises were assumed to be inde-

pendent and identically distributed zero mean Gaussian distributed random variables.

There is no need to modify this assumption if the BS-MS and MS-MS links have

unobstructed LOS propagation paths. However, if the BS-MS and MS-MS links are

multipath links, then the measurement noises shall be modified to describe the effect

of the NLOS propagations on the measured distances. Consequently, different dis-

tributions have been assumed for the NLOS propagation noises based on theoretical

models and empirical models based on measurements [GC09]. In the following, the

measurement noises for the NLOS propagation paths are assumed to be independent

and identically distributed Gaussian noises for simplicity. The impact of the NLOS

propagation path lengths which are longer than the LOS propagation path lengths is

described by a positive distance bias b whose value depends on the localization scenario

under consideration. Furthermore, owing to the various possible NLOS propagation

paths, the variance of the measured distances for the NLOS propagation paths are

assumed to be significantly higher than the variance of the measured distances for the

LOS propagation paths. Thus the measurement noise for the NLOS propagation paths

are identical and independently distributed Gaussian noises with a non-zero mean de-

scribed by the positive distance bias b and a variance which is much larger than the

measurement noises for the LOS propagation paths. Consequently, the measurement

noise w(nd) can be described by a Gaussian mixture noise:

w(nd) ∼ (1− ε)N (0, σ2
LOS) + εN (b(nd), σ

2
NLOS), (5.4)

where b(nd) is the positive distance bias and the parameter ε determines the fraction of

the BS-MS and MS-MS links which are NLOS. The parameters σLOS and σNLOS denote

the standard deviations of the LOS and the NLOS measurement noises, respectively.

The NLOS propagation paths, unlike the LOS propagation paths, result in distance

measurements which tend to be much larger than the true distances between the BS-

MS and the MS-MS links. Thus if the majority of the propagation paths are NLOS,

then the estimated positions of the MSs will be biased by the measured distances

from the NLOS propagations; hence satisfactory localization performance cannot be

guaranteed. Consequently, as is often the case, in the following, the case where the

majority of the links are LOS propagation links, i.e., ε < 0.5, is considered. In this case,

the distance measurements from the NLOS propagation paths result in outliers which

do not agree with the majority of the distance measurements. The straightforward

approach to mitigate the impact of the NLOS propagation paths would be to identify

and eliminate the distance measurements from the NLOS propagations and perform

cooperative localization using the measurements from the LOS propagations. However,

this approach has the downside that it results in a loss of information which otherwise
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could be exploited for localization. Furthermore, there is always the possibility of

misidentification of distance measurements from LOS propagations as being from NLOS

propagations and vice versa. Thus more subtle approaches are required for mitigating

the NLOS propagations.

The maximum likelihood estimator which estimates the positions of the MSs pmss =
(
pT
ms(1), . . . ,p

T
ms(Nms)

)T
based on the distance measurements d̃ = (d̃(1), . . . , d̃(Nd)) is

given as

p̂mss = arg max
pmss

p
(

d̃|pmss

)

, (5.5)

where p
(

d̃|pmss

)

is the conditional pdf of the measured distances given the positions of

the MSs. The maximum likelihood estimator for the cooperative localization problem

given in (5.5) is intractable as it is a highly nonlinear and non-convex optimization

problem. Consequently, several suboptimal cooperative localization algorithms have

been proposed [SG04, LTZN05, AM08, YES09, ER10, VB12]. In the following, a

cooperative localization algorithm is proposed which yields nearly optimal estimates

of the positions of the MSs. The proposed cooperative localization algorithm uses

techniques from robust estimation theory where the measurements are systematically

weighted so that the impact of outliers resulting from the NLOS propagation paths is

minimized.

5.4 Robust cooperative localization

The goal of robust estimators is to yield nearly optimal estimates of an unknown pa-

rameter not only when the measurements follow a given distribution exactly, but also

when the measurements follow a given distribution only approximately [MMY06]. Con-

sequently, for the network localization problem given in (5.5), nearly optimal estimates

of the positions of the MSs could be obtained by using techniques from robust estima-

tion theory without complete information about the conditional pdf p
(

d̃|pmss

)

, i.e.,

ε, b(nd), σLOS and σNLOS. It is only required that the majority of the BS-MS and the

MS-MS links are LOS. The maximum likelihood estimator, on the other hand, requires

full information about the conditional pdf p
(

d̃|pmss

)

.

For the network localization problem under consideration, the measurement noise is

modeled by a Gaussian mixture given in (5.4) as

w(nd) ∼ (1− ε)N (0, σ2
LOS) + εN (b(nd), σ

2
NLOS),
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Figure 5.2. Plot of exact Gaussian and Gaussian mixture pdfs

which can be considered to be approximately Gaussian distributed. Fig. 5.2 shows plot

of the pdf of an exact Gaussian and a Gaussian mixture for ε = 0.25. The parameters

of the Gaussian mixture pdf are b = 5, σLOS = 1 and σNLOS = 10, whereas the exact

Gaussian pdf has a standard deviation σ = 1. It can be seen that the Gaussian mixture

pdf has heavy tails. A robust estimator can be used to deliver nearly optimal estimates

when the measurement noise is not only exactly Gaussian, but also Gaussian mixture.

Since any robust estimator is developed based on minimizing the impact of outliers,

the distribution of the outliers does not affect the performance of a robust estimator.

Thus the distribution of the measurement noises for the NLOS propagations, which

have been assumed to be Gaussian for simplicity, need not necessarily be Gaussian.

This has great practical importance as the cooperative localization algorithm to be

proposed is not constrained by the assumption of the Gaussian measurement noise for

the NLOS propagations.

The maximum likelihood estimator of the network localization problem of (5.5) solves

a nonlinear and non-convex optimization problem. In the following, an approximate

solution to the estimation problem of (5.5) is proposed. Techniques from robust estima-

tion theory are proposed to solve the non-convexity of the optimization problem. The

nonlinearity of the estimation problem can be handled by approximating the nonlinear

measurement function as a linear function using a first order Taylor series. Towards

this end, let g(pmss) = (d(1), . . . , d(Nd))
T denote the vector-valued function which

yields the true distances between the BS-MS and the MS-MS links. Thus the network

localization measurement equation is given as

d̃ = g(pmss) +w, (5.6)

where w = (w(1), . . . , w(Nd))
T is a multivariate Gaussian mixture measurement noise.

The linear approximation of the vector-valued function g(pmss) at a reference point
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pmss0 , which shall be close to the true value of the vector pmss to yield a reliable linear

approximation, is given as

g(pmss) ≈ g(pmss0) +G0 · (pmss − pmss0), (5.7)

where the matrix G0 is defined as

G0 =
∂g(pmss)

∂pmss

∣
∣
∣
∣
pmss0

. (5.8)

The matrix G0 can be calculated using the expressions given in Appendix A. Substi-

tuting (5.7) in (5.6) results in

d̃ = g(pmss0) +G0 · (pmss − pmss0) +w. (5.9)

Re-arranging the above equation results in

d̀0 = G0 · pmss +w, (5.10)

where

d̀0 = d̃− g(pmss0) +G0 · pmss0. (5.11)

The conditional pdf p
(

d̀0|pmss

)

for the linearized network localization scenario in

(5.10) is given as

p
(

d̀0|pmss

)

=

Nd∏

nd=1

p
(

d̀0(nd)− gT
0 (nd) · pmss

)

, (5.12)

where gT
0 (nd) and d̀0(nd) are the nth

d row of the matrix G0 and the nth
d element of

the observation vector d̀0, respectively. The maximum likelihood estimator for the

linearized network localization scenario is given as

p̂mss = arg max
pmss

Nd∏

nd=1

p
(

d̀0(nd)− gT
0 (nd) · pmss

)

. (5.13)

Since the logarithm function is a monotonically increasing function, (5.13) can be

rewritten as

p̂mss = arg min
pmss

Nd∑

nd=1

ρ
(

d̀0(nd)− gT
0 (nd) · pmss

)

, (5.14)

where ρ(θ) is the loss function defined as

ρ(θ) = −ln (p(θ)) . (5.15)
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Differentiating (5.14) with respect to pmss and equating the resulting expression to zero

yields
Nd∑

nd=1

η
(

d̀0(nd)− gT
0 (nd) · p̂mss

)

· g0(nd) = 0, (5.16)

where

η(θ) =
∂ρ(θ)

∂θ
. (5.17)

In order to solve (5.16), exact knowledge of the conditional pdf p
(

d̃|pmss

)

, i.e., the

values of ε, b, σLOS and σNLOS, is required. As mentioned earlier, the goal of robust

estimators is to yield nearly optimal estimates of an unknown parameter when the

measurements follow a given distribution not only exactly, but also only approximately

[MMY06]. Thus robust estimators consider functions ρ(θ) which do not necessarily

yield the maximum likelihood estimates for any distribution but which ensure that

nearly optimal estimates are obtained when the pdf is exactly Gaussian and approx-

imately Gaussian. It has been shown that a continuous and increasing η(θ) yields a

unique solution to (5.16) and hence (5.14) [MMY06]. One such family of ρ(θ) and η(θ)

functions is the Huber functions [Hub64]. The Huber function ρH,κ(θ) is defined as

ρH,κ(θ) =

{
1
2
θ2 if |θ| ≤ κ
κ|θ| − 1

2
κ2 if |θ| > κ,

(5.18)

which has the derivative

ηH,κ(θ) =

{
θ if |θ| ≤ κ
sgn(θ) · κ if |θ| > κ.

(5.19)

It must be noted that the Huber functions ρH,κ(θ) and ηH,κ(θ) are defined for a disper-

sion parameter σ of one. The dispersion parameter is a robust alternative to measuring

the deviations in a given data which is conventionally measured using the standard de-

viation. An example of a robust dispersion parameter estimate is the median absolute

deviation (MAD) which is defined for a data set x as

MAD(x) = median (|x−median(x) |) . (5.20)

If the dispersion parameter σ is different from one, then the Huber functions ρH,κ(θ)

and ηH,κ(θ) should be scaled by the dispersion parameter σ.

Fig. 5.3 shows plot of the Huber functions ρH,κ(θ) and ηH,κ(θ) for κ = 1.4 and κ = ∞.

It must be noted that the Huber loss function ρH,κ(θ) for κ = ∞ corresponds to the

square loss function which yields optimal estimates if the pdf p is exactly Gaussian.

However, the Huber loss function ρH,κ(θ) for κ = ∞ does not yield optimal estimates
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Figure 5.3. The Huber functions ρH,κ(θ) and ηH,κ(θ)

when the pdf p is approximately Gaussian. On the other hand, the Huber function

ρH,κ(θ) for κ = 1.4 yields nearly optimal estimates when the pdf p is exactly Gaussian

and approximately Gaussian. This can be inferred by considering the equation given

in (5.16), i.e.,
Nd∑

nd=1

η
(

d̀0(nd)− gT
0 (nd) · p̂mss

)

· g0(nd) = 0,

and the plot of the Huber function ηH,κ(θ) in Fig. 5.3. For κ = ∞, the Huber function

ηH,κ(θ) weights all the residuals d̀0(nd)− gT
0 (nd) · p̂mss in (5.16) in proportion to their

values, whereas for κ = 1.4, the Huber function ηH,κ(θ) weights the residuals for |θ| ≤ κ

in proportion to their values and the rest of the residuals are weighted equally. Thus,

for the case where κ = ∞, the outliers resulting from the NLOS propagation path

measurements are weighted in proportion to their values which results in estimates of

the positions of the MSs dominated by outliers. On the other hand, for the case where

κ = 1.4, the outliers resulting from the NLOS propagation path measurements are not

weighted in proportion to their residuals and hence their impact on the estimates of

the positions of the MSs is rather limited.

Nevertheless, the robustness of the Huber function ρH,κ(θ) for κ = 1.4 is accompanied

by an increase in the variance of the estimates when the pdf p is exactly Gaussian. In

robust estimation theory, the efficiency of a robust estimator is defined as the ratio

of the variance of the optimal estimator and the robust estimator when the pdf p is

exactly Gaussian. Thus, the Huber function ρH,κ(θ) for κ = 1.4 yields an estimator
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with reduced efficiency when the pdf p is exactly Gaussian [MMY06]. This happens

owing to the saturation of the Huber function ρH,κ(θ) for |θ| > κ which results in loss of

information from some residuals which ultimately leads to a loss in efficiency. Needless

to say, the value of the parameter κ determines the efficiency and robustness of an

estimator. By proper selection of the parameter κ, it is possible to have an estimator

which has a comparable variance with the square loss function when the pdf p is exactly

Gaussian and yields robust estimates when the pdf p is approximately Gaussian. For

example, for an estimator with κ = 1.4, the variance is only 4.7% larger than for

κ = ∞ when the pdf p is exactly Gaussian. However, an estimator with κ = 1.4

is robust unlike the one of with κ = ∞. Consequently, there is a trade-off between

robustness and efficiency.

In order to achieve more robustness towards outliers, the function η should be designed

in such a way that it tends to zero at infinity so that the outliers are given small or no

weight in the estimation. Consequently, the bisquare family of functions is a popular

choice for ρ and η as they result in a bounded ρ function and hence an η function

which is zero at infinity. Thus the bisquare family of functions is more robust towards

outliers than the Huber functions. A bisquare ρbis,κ(θ) function is defined as

ρbis,κ(θ) =

{

1−
(
1− ( θ

κ
)2
)3

if |θ| ≤ κ
1 if |θ| > κ,

(5.21)

which has a derivative
∂ρbis,κ(θ)

∂θ
=

6ηbis,κ(θ)

κ2 where

ηbis,κ(θ) =

{

θ ·
(
1− ( θ

κ
)2
)2

if |θ| ≤ κ
0 if |θ| > κ.

(5.22)

As in the case of the Huber functions ρH,κ(θ) and ηH,κ(θ), the bisquare functions ρbis,κ(θ)

and ηbis,κ(θ) are defined for a dispersion parameter σ of one. Fig. 5.4 shows plot of

the bisquare functions ρbis,κ(θ) and ηbis,κ(θ), respectively. As mentioned earlier, a

continuous and increasing η(θ) yields a unique solution to (5.16) and hence (5.14).

Since the bisquare function ηbis,κ(θ) is not an increasing function, it is possible to have

multiple solutions of (5.16). Moreover, some solutions may not satisfy the absolute

minimum criterion in (5.16). In addition, the bisquare functions do not yield the

maximum likelihood estimates for any distribution. Nevertheless, in the following, the

bisquare function ηbis,κ(θ) is considered to solve (5.16) as it is more robust towards

outliers than the Huber function ηH,κ(θ).

It can be inferred from (5.22) that the bisquare function ηbis,κ(θ) can be written as

ηbis,κ(θ) = cκ(θ) · θ, (5.23)
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Figure 5.4. The bisquare functions ρbis,κ(θ) and ηbis,κ(θ), κ = 4.68

where cκ(θ) is a weighting function. For the bisquare function ηbis,κ(θ), ηbis,κ(0) = 0

and
∂ηbis,κ(θ)

∂θ

∣
∣
∣
θ=0

exists, so that ηbis,κ(θ) can be considered to be linear at the origin.

Thus the weight function can be derived from (5.23) as

cκ(θ) =

{
ηbis,κ(θ)

θ
if θ 6= 0

∂ηbis,κ(θ)

∂θ

∣
∣
∣
θ=0

if θ = 0.
(5.24)

Using the formula for the bisquare function ηbis,κ(θ) in (5.22), the bisquare weight

function is given as

cκ(θ) =

{ (
1− ( θ

κ
)2
)2

if |θ| ≤ κ
0 if |θ| > κ.

(5.25)

Fig. 5.5 shows plot of the bisquare weight function. It can be seen from Fig. 5.5 that

the residuals of the outliers are given small or zero weight.

Using the bisquare weight function, (5.16) can be re-written as

Nd∑

nd=1

cκ(nd) ·
(

d̀0(nd)− gT
0 (nd) · p̂mss

)

· g0(nd) = 0, (5.26)

where

cκ(nd) = cκ

(

d̀0(nd)− gT
0 (nd) · p̂mss

σ

)

. (5.27)

The weights cκ(nd) are scaled by the dispersion parameter σ as the bisquare function

ηbis,κ(θ) is defined for a dispersion parameter σ of one. The system of equations in (5.26)
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Figure 5.5. The bisquare weight function cκ(θ), κ = 4.68

is nonlinear in the estimates of the positions of the MSs p̂mss as the weights cκ(nd) are

calculated using estimates of the positions of the MSs p̂mss. The system of nonlinear

equations can be solved using a method called the iteratively re-weighted least squares

(IRLS) algorithm [MMY06]. The IRLS algorithm starts with a initial estimate p̂mss0

from which the weights cκ(nd) are calculated. Then (5.26) solved iteratively until a

desired threshold is reached. Towards this end, (5.26) can be re-formulated as follows

(Cκ ⊙G0)
T · d̀0 = (Cκ ⊙G0)

T ·G0 · p̂mss, (5.28)

where Cκ is a Nd × 2Nms matrix defined as

Cκ =








cκ(1) cκ(1) · · · cκ(1)
cκ(2) cκ(2) · · · cκ(2)
...

...
...

cκ(Nd) cκ(Nd) · · · cκ(Nd)







. (5.29)

The symbol ⊙ in (5.28) denotes the Hadamard (element-wise) matrix product. Thus

p̂mss can be estimated as

p̂mss =
(
(Cκ ⊙G0)

T ·G0

)+
· (Cκ ⊙G0)

T · d̀0, (5.30)

where the superscript + stands for the Moore-Penrose pseudoinverse. Thus the IRLS

algorithm starts with a initial estimate p̂mss0 and solves (5.30) iteratively until a desired

threshold is reached.

The nonlinear network localization problem has been handled by approximating it as

a linear estimation problem using a first order Taylor series. In order to obtain reli-

able estimates of the positions of the MSs, the linearization of the nonlinear network

localization problem and estimation of the positions of the MSs using the IRLS algo-

rithm shall be performed iteratively. The initial iteration point is crucial to reliable

linearization of the nonlinear network localization problem and to convergence of the
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IRLS algorithm. In the following, a means of obtaining robust initial estimates p̂mss0

of the positions of the MSs is proposed by considering the BS-MS links. Towards this

end, the measurement equation for the BS-MS links given in (5.2) can be linearized as

follows [CSMC04]

d̃(nd) = ‖pbs(nbs)− pmss(nms)‖+ w(nd)
(

d̃(nd)− w(nd)
)2

= ‖pbs(nbs)− pmss(nms)‖
2

(

d̃(nd)− w(nd)
)2

= ‖pbs(nbs)‖
2 − 2pT

bs(nbs)pmss(nms) + ‖pmss(nms)‖
2

ď(nd) =
(
−2pT

bs(nbs) 1
) (

pT
mss(nms) ‖pmss(nms)‖

2
)T

+ w̌(nd), (5.31)

where

ď(nd) = d̃2(nd)− ‖pbs(nbs)‖
2 (5.32)

w̌(nd) = 2d̃(nd)w(nd)− w2(nd). (5.33)

The squared norm ‖pmss(nms)‖2 in (5.31) is a nuisance variable. The least squares esti-

mator can be used to obtain initial estimates p̂mss0 of the positions of the MSs from the

linearized BS-MS measurement equation in (5.31). However, the square loss function

of the least squares estimator is not robust to outliers. Consequently, the absolute loss

function is considered to obtain robust initial estimates p̂mss0 of the positions of the

MSs, i.e.,

p̂mss0 = arg min
pmss, ‖pmss‖2

Nbs·Nms∑

nd=1

∣
∣
∣ď(nd)−

(
−2pT

bs(nbs) 1
) (

pT
mss(nms) ‖pmss(nms)‖

2
)T
∣
∣
∣ .

(5.34)

The absolute loss function is robust to outliers as it scales the loss only linearly, instead

of quadratically as in the square loss function, by the value of the residuals. Minimiza-

tion of the absolute loss function in (5.34) can be evaluated using linear programming.

The MATLAB function fminsearch, which uses the simplex method to iteratively solve

linear programming problems, can be used to solve (5.34).

Algorithm 1 shows the pseudocode of the robust cooperative localization algorithm.

The robustness of the proposed estimator is due to the initial robust estimates and

the bisquare function ηbis,κ(θ) which systematically weights the distance measurements

from the LOS and the NLOS propagations so that the impact of outliers resulting

from the NLOS propagation paths is minimized. As it can be seen from algorithm 1,

the proposed robust cooperative localization algorithm is semi-parametric in that it

only requires estimates of the dispersion parameter σ̂ to yield robust estimates of the

positions of the MSs. On the other hand, the maximum likelihood estimator requires

an estimate of the fraction ε of the propagation paths which are NLOS, the NLOS
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Algorithm 1 Pseudocode for the robust cooperative localization algorithm

1: use the MATLAB function fminsearch to solve (5.34)
2: i = 0
3: repeat

4: Gi =
∂g(pmss)
∂pmss

∣
∣
∣
p̂mssi

5: use the IRWLS algorithm to solve (5.30)
6: i = i+1
7: until 1√

Nms
‖p̂mssi − p̂mssi−1

‖ < ∆ or Nmax

8: p̂mss = p̂mssi

biases b(nd), the standard deviation of the LOS paths σLOS and the NLOS paths σNLOS

to yield optimal estimates of the positions of the MSs.

It must be noted that the performance of the robust cooperative localization algorithm

depends on the accuracy of the initial estimates p̂mss0 of the positions of the MSs. Bad

initial estimates and unfavorable localization scenarios can result in ill-posed inverse

problems in (5.30). Such cases can be alleviated using the Thikonov regularization

[TA77], for example. Empirical studies have shown that given a sufficiently large

network localization scenario, (5.30) is well-posed.

5.5 Performance analysis

5.5.1 Cramér-Rao lower bound

The Cramér-Rao lower bound (CRLB) is considered here to determine the lower bound

of the covariance matrix of an unbiased estimate of the positions of the MSs. The

CRLB of the geometric cooperative localization algorithm can be easily obtained from

a straightforward extension of the CRLB of the MS localization algorithm for NLOS

multipath environments under the explicit consideration of scatterers presented in Sec-

tion 3.4.1. On the contrary, the CRLB of the robust cooperative localization algorithm

is rather complicated and needs special treatment. In the following, the CRLB of the

robust cooperative localization algorithm is presented.

For network localization in multipath environments with the effect of the NLOS prop-

agations on the measured NLOS propagation path parameters modeled by a positive

distance bias, the unknown parameters are the positions of the MSs and the NLOS

biases. It is assumed that the parameter ε which determines the proportion of the
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LOS and the NLOS propagation paths is known. Let the 2Nms + Nd × 1 vector

ρ =
(
pT
mss, b(1), . . . , b(Nd)

)T
denote the unknown parameters. Furthermore, let the

pdf p
(

d̂|ρ
)

denote the conditional pdf of the measurements d̃ =
(

d̃(1), . . . , d̃(Nd)
)T

given the unknown parameters ρ. The parameter ε determines the proportion of the

LOS and the NLOS distance measurements of the measurement vector d̃. Consequently,

the parameter ε determines the conditional pdf p
(

d̃|ρ
)

.

Given the measurement vector d̃, the composition of the LOS and the NLOS distance

measurements of the measurement vector d̃ is unknown, i.e., it is not known which dis-

tance measurements are from LOS and NLOS propagation paths. For a measurement

vector d̃ of length Nd, there are 2
Nd possible combinations of LOS and NLOS distance

measurements. Let p (γ), γ = 1, . . . , 2Nd denote the probability mass function (pmf)

of the possible combinations of LOS and NLOS distance measurements. Thus the pmf

p (γ) can be written as

p (γ) = (1− ε)nLOSεNd−nLOS, (5.35)

where nLOS = 0, . . . , Nd is the number of LOS propagation path measurements. Thus

considering the different possible distance measurements, the conditional pdf p
(

d̃|ρ
)

can be written using the total probability theorem as

p
(

d̃|ρ
)

=

2Nd
∑

γ=1

p (γ) p
(

d̃|γ,ρ
)

, (5.36)

where the pdf p
(

d̃|γ,ρ
)

is a product of Gaussian pdfs of the LOS and the NLOS

distance measurements whose composition is determined by γ.

The CRLB of the robust cooperative localization algorithm can be computed using

the conditional pdf p
(

d̃|ρ
)

defined in (5.36). However, the computation involves

cumbersome expressions whose computations prove to be rather an arduous task. Con-

sequently, in the following, the CRLB shall be investigated under the assumption that

the decomposition of the distance measurements are known a priori, i.e., it is known

which of the distance measurements resulted from a LOS or a NLOS propagation path.

For such cases, the CRLB can be computed in a similar manner as the derivation of

the CRLB discussed in Section 3.4.1. It must be noted that this CRLB is not tight

as the robust cooperative localization algorithm discussed in the previous section does

not have a priori information about the composition of the distance measurements.

It has been shown in [QKS06] that the CRLB for a MS localization in multipath

environments, when the BS-MS links with NLOS propagation paths are known a priori,

depends only on the propagation paths which are LOS. Thus the distance measurements
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from the NLOS propagation paths are not to be exploited for MS localization. This

result, somewhat surprising, is justified in that no prior information is assumed about

the NLOS biases which could be exploited for localization of the MS. The fact that

the NLOS biases are positive does not give any information about the locations of the

MSs. Thus an estimator can only exploit the distance measurements from the LOS

propagation paths, by identifying the LOS distance measurements, for localizing the

MS. This result also holds for the network localization case. Thus the CRLB depends

on the BS-MS and the MS-MS links which are LOS which in turn is determined by the

parameter ε. Thus the CRLB depends implicitly on the parameter ε. It must be noted

that if the CRLB were derived from the conditional pdf p
(

d̃|ρ
)

defined in (5.36), then

the CRLB would depend explicitly on the parameter ε.

5.5.2 Simulation results

In this section, the performances of the geometric and the robust cooperative localiza-

tion algorithms are analyzed considering a picocell network localization scenario using

Monte Carlo simulations with 104 independent trials. The picocell network localization

scenario consists of 14 cells. Each cell has a radius of 100 m and is served by a single

BS. Furthermore, in each cell there are 4 MSs. Thus there are 14 BSs and 56 MSs. The

BSs are located at the center of the cell. For each run of the Monte Carlo simulations,

the positions of the MSs are generated randomly from a distribution in which each MS

is assumed to be uniformly distributed within the cell. Fig. 5.6 shows an exemplary

realization of the randomly generated picocell network localization scenario. The BSs

are marked with boxes, whereas the MSs are marked with circles. It is assumed that

full connectivity exists between the BSs and MSs. It has been discussed that dramatic

improvement in performance could be obtained from cooperation between all the MSs,

i.e., full connectivity is assumed between the MSs. In practice, the MSs have limited

power and it may not be possible to have full connectivity between the MSs. Conse-

quently, it is assumed that two MSs cooperate only if the distance between the MSs is

less than the radius of the cell.

The performance metric is the root mean square error (RMSE) rmse(p̂mss) of the

estimated positions p̂mss of the MSs which is calculated as

rmse(p̂mss) =
√

Ed̃,pmss
{(p̂mss − pmss)T(p̂mss − pmss)}, (5.37)

where pmss denotes the true positions of the MSs and Ed̃,pmss
{·} denotes the expectation

with respect to the pdf p
(

d̃,pmss

)

. In the simulations, the expectations in (5.37) are

computed using averages.
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Figure 5.6. A sample realization of the random generation of the network localization
scenario

The geometric cooperative localization algorithm has been proposed for network local-

ization in NLOS multipath environments under the explicit consideration of scatterers.

The explicit consideration of scatterers is effected via the geometric description of the

NLOS propagations. On the other hand, the robust cooperative localization algorithm

has been proposed without the explicit consideration of scatterers. Since the scatter-

ers are not explicitly considered, the effect of the NLOS propagations on the measured

NLOS propagation path parameters has been described using a probabilistic model. In

order to obtain significant insights about the performance of the robust cooperative lo-

calization algorithm, its performance is analysed first using the probabilistic description

of the effect of the NLOS propagations on the measured NLOS propagation path param-

eters. Later, the performances of the geometric and the robust cooperative localization

algorithms are analysed using the geometric description of the NLOS propagations.

As discussed in Section 5.3, the probabilistic description of the effect of the NLOS

propagations on the measured NLOS propagation path parameters is modeled using a

Gaussian mixture measurement noise given in (5.4). In the simulations, the LOS path

noise standard deviation σLOS is assumed to be 20 m. Furthermore, it is assumed that

the NLOS propagation path bias b(nd) is 40 m. This assumption is made only for the

sake of simplicity. In reality, the NLOS path biases depend on the BS-MS and the MS-

MS link distances, among other factors. The performance of the robust cooperative
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localization algorithm is compared with the one of a non-robust cooperative localization

algorithm proposed in [MBW+04]. The non-robust cooperative localization algorithm

is based on linearization of the measurement equation in (5.6) and iteratively solving

the resulting linearized least squares problem. To assess the performance gain obtained

from cooperation between the MSs, the performance of a robust non-cooperative local-

ization algorithm given in (5.34) is also considered. The performance of a non-robust

non-cooperative localization algorithm obtained from the least squares estimates of the

linearized BS-MS links given in (5.31) is also considered. The non-robust cooperative

localization algorithm from [MBW+04] is initialized using estimates of the MSs from

the non-robust non-cooperative localization algorithm. Since the network localization

scenarios are randomly generated, the averaged CRLB of the randomly generated net-

work localization scenarios is considered as a performance benchmark of the considered

cooperative localization algorithms.

In all the simulations, the robust cooperative localization algorithm is tuned for an

efficiency of 95%, thus κ = 4.68 in (5.22). For a fair comparison between the robust

and the non-robust cooperative localization algorithms, the LOS path noise standard

deviation σLOS is used as the dispersion parameter for both cooperative localization al-

gorithms. Furthermore, the maximum number of iterationsNmax in both the robust and

non-robust cooperative localization algorithms is set to 10. For cases where the robust

and the non-robust cooperative localization algorithms diverge, the estimates of the

positions of the MSs are obtained from the robust and the non-robust non-cooperative

localization algorithms, respectively. The robust and the non-robust cooperative local-

ization algorithms are said to have diverged if 1√
Nms

‖p̂mssi − p̂mssi−1
‖ > 20 m.

Fig. 5.7 shows the RMSE performances of the aforementioned localization algorithms

for different fractions ε of the propagation paths which are NLOS. The NLOS path

noise standard deviation σNLOS is assumed to be 80 m. It can be seen that the co-

operation between the MSs results in a significant improvement in performance for

both the robust and the non-robust localization algorithms. Furthermore, the robust

cooperative and the robust non-cooperative localization algorithms result in a signif-

icant performance improvement over the non-robust cooperative and the non-robust

non-cooperative localization algorithms, respectively. Moreover, the performances of

the localization algorithms are bounded by the CRLB. In general, the robust cooper-

ative localization algorithm results in a significant performance improvement over the

non-robust cooperative localization algorithm. It can be seen that the improvement in

performance begins to decrease as the fraction ε of the propagation paths which are

NLOS approaches 0.5. This is to be expected as the number of the LOS propagations

decreases with increasing ε. A closer look at Fig. 5.7 reveals that when the fraction ε

of the propagation paths which are NLOS is close to zero, the non-robust cooperative
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Figure 5.7. RMSE performances of different localization algorithms for different frac-
tions ε of the propagation paths which are NLOS, σNLOS = 80 m

localization algorithm results in a slight improvement in performance over the robust

cooperative localization algorithm. This happens owing to the fact that the robust co-

operative localization algorithm is derived to be only nearly optimal in the presence or

absence of the NLOS propagations. Thus in the absence of the NLOS propagations, the

non-robust cooperative localization algorithm, which assumes only LOS propagations,

performs better than the robust cooperative localization algorithm. The robustness of

the robust cooperative localization algorithm is paid for by the loss of efficiency when

there are only LOS propagation paths.

It must be noted that the robustness of the robust cooperative localization algorithm

is guaranteed only for cases where the fraction ε of the propagation paths which are

NLOS is less than 0.5. For ε ≥ 0.5, the robust estimator cannot distinguish the noise

distribution for the measured LOS propagation path parameters from the measured

propagation path parameters. Thus estimates of the dispersion parameter σ̂ will be

biased towards the standard deviation σNLOS of the NLOS propagation path parameter

measurement noise. Consequently, estimates of the positions of the MSs will be severely

influenced by the measured NLOS propagation path parameters. However, this is not

reflected in the simulation results shown in Fig. 5.7 as the LOS path noise standard

deviation σLOS is used as an estimate of the dispersion parameter σ̂. Thus the robust

cooperative localization algorithm is still able to mitigate the measured path parame-

ters from the NLOS propagation paths. Furthermore, the NLOS propagation path bias
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b(nd) is assumed to be 40 m regardless of the BS-MS and the MS-MS link distances.

Thus, for cases where the BS-MS and the MS-MS link distances are large as compared

to the NLOS propagation path bias b(nd), the impact of the NLOS propagation paths

on the estimated positions of the MSs is rather small.

Fig. 5.8 shows the RMSE performances of the aforementioned localization algorithms

for different NLOS propagation path noise standard deviations σNLOS when the fraction

ε of the propagation paths which are NLOS is 0.1. As in the simulation results shown

in Fig. 5.7, cooperation between the MSs results in a significant improvement in per-

formance for both the robust and the non-robust localization algorithms. Furthermore,

the robust localization algorithms result in a significant performance improvement over

their non-robust counterparts. In addition, the performances of the localization algo-

rithms are bounded by the CRLB. The CRLB curve is flat as it is independent of

σNLOS. It can be seen that as the NLOS propagation path noise standard deviation

σNLOS increases, there is a significant decline in performance by the non-robust local-

ization algorithms, whereas the robust localization algorithms show little or no change

in performance. This shows that the robust localization algorithms mitigate the out-

liers resulting from the NLOS propagation paths regardless of their strength. A close

examination of Fig. 5.8 reveals that up to σNLOS = 60 m the robust cooperative lo-

calization algorithm shows improvement in performance with increasing σNLOS. This

result which may appear rather strange occurs owing to the fact that the bisquare func-

tion ηbis,κ(θ) is tuned to have an efficiency of 95%, i.e., κ = 4.68. Owing to the trade-off

between robustness and efficiency, the bisquare function ηbis,κ(θ) with κ = 4.68 is not

very sensitive to outliers. Thus a considerable number of distance measurements from

the NLOS propagation paths are not zero-weighted when σNLOS is comparable to σLOS.

Such distance measurements negatively impact the performance of the robust coopera-

tive localization algorithm. However, as σNLOS increases, most of the outliers from the

NLOS propagation paths are zero-weighted and eliminated completely. Consequently,

the performance of the robust cooperative localization algorithm stabilizes.

In the previous simulations, the probabilistic description of the effect of the NLOS

propagations on the measured NLOS propagation path parameters has been consid-

ered. As the robust cooperative localization algorithm has been derived based on

this probabilistic description, it was seen that it results in a satisfactory localization

performance. Nevertheless, a more accurate description of the NLOS propagations is

obtained from the geometric description of the NLOS propagations. Thus in the fol-

lowing, the performance of the robust cooperative localization algorithm is analysed

using the geometric description of the NLOS propagations. In doing so, the versatility

of the robust cooperative localization algorithm can be assessed. As the geometric
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Figure 5.8. RMSE performances of different localization algorithms for different stan-
dard deviations of the NLOS propagation noise σNLOS, ε = 0.1 (figure drawn not to
scale)

cooperative localization algorithm is based on the geometric description of the NLOS

propagations, its performance is also analysed.

The geometric description of the NLOS propagations is obtained using the single bounce

elliptical model discussed in Section 3.4.2. Thus, in the simulations, the positions of

the scatterers are generated randomly using the single bounce elliptical model where

the scatterers are assumed to be uniformly distributed within an ellipse defined by the

normalized maximum path delay τmax

τLOS
of the NLOS propagation paths. For the sake

of simplicity, it is assumed that each of the BS-MS and the MS-MS links has only one

propagation path. As the robust cooperative localization algorithm is derived under

the assumption that the majority of the propagation paths are LOS, the parameter ε

is used to determine the fraction of the propagation paths which are NLOS.

It must be noted that it is difficult to fairly compare the performances of the robust and

the geometric cooperative localization algorithms. The geometric cooperative localiza-

tion algorithm uses estimates of the times-of-arrival, angles-of-departure and angles-of-

arrival of the propagation paths, whereas the robust cooperative localization algorithm

uses only the times-of-arrival of the propagation paths. Thus, in the following, the

relative behaviour of the robust and the geometric cooperative localization algorithms

is studied. Except for the generation of the NLOS propagations using the single bounce

elliptical model, the simulation setup is similar to the one considered earlier.
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Fig. 5.9 shows the RMSE performances of the robust and the geometric cooperative lo-

calization algorithms for different normalized maximum path delays τmax

τLOS
of the NLOS

propagation paths and fractions ε of the propagation paths which are NLOS. The stan-

dard deviation σd of the measured times-of-arrival is 20 m, whereas the standard devi-

ation σφ of the measured angles-of-departure and angles-of-arrival is 5◦. It can be seen

that the geometric cooperative localization algorithm yields a satisfactory performance

regardless of the fractions ε of the propagation paths which are NLOS and the value

of the normalized maximum path delay τmax

τLOS
of the NLOS propagation paths. Even

though the geometric cooperative localization algorithm benefits from the extra infor-

mation from the spatial dimension, i.e., the angles-of-departure and angles-of-arrivals

of the propagation paths, its satisfactory performance stems from the explicit consid-

eration of scatterers rather than a mere direct usage of the extra information obtained

from the spatial dimension.

It can be seen from Fig. 5.9 that the performance of the robust cooperative localization

algorithm strongly depends on the fraction ε of the propagation paths which are NLOS.

In general, for ε = 0.1 and ε = 0.3, the robust cooperative localization algorithm yields

a satisfactory performance. However, for ε = 0.5, the robust cooperative localization

algorithm deteriorates severely at higher values of τmax

τLOS
. This occurs owing to the poor

initial estimates obtained from the BS-MS links using the absolute loss function given

in (5.34). For ε = 0.5, the measured propagation path parameters from the LOS and

the NLOS propagation paths are equal in proportion. Thus the absolute loss function,

which weights the residuals linearly, is severely influenced by the measured NLOS

propagation path parameters. Consequently, for ε = 0.5, the poor initial estimates

obtained from the absolute loss function hinder the robust cooperative localization

algorithm from converging.

As discussed previously, the robustness of the robust cooperative localization algorithm

is guaranteed only for cases where the fraction ε of the propagation paths which are

NLOS is less than 0.5. Nevertheless, it can be seen from Fig. 5.7 and Fig. 5.9 that

the robust cooperative localization algorithm is relatively robust when ε = 0.5 as

the LOS path noise standard deviation σLOS is used as an estimate of the dispersion

parameter σ̂. Thus the robust cooperative localization algorithm is still able to mitigate

the measured NLOS propagation path parameters. However, the performance of the

robust cooperative localization algorithm suffers relatively more for the case where the

geometric description of the NLOS propagations is considered. This occurs owing to the

fact that in the geometric description of the NLOS propagations, the extra propagation

path lengths due to the NLOS propagations correspond with the normalized maximum

path delay τmax

τLOS
of the NLOS propagation paths and the distances between the BS-MS

and the MS-MS links. Hence the impact of the measured NLOS propagation path
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Figure 5.9. RMSE performances of the robust and the geometric cooperative localiza-
tion algorithms versus the normalized maximum path delay τmax

τLOS
for different fractions

ε of the propagation paths which are NLOS, σd = 20 m and σφ = 5◦

parameters on the estimated positions of the MSs is severe. On the other hand, in

the probabilistic description of the effect of the NLOS propagations on the measured

NLOS propagation path parameters, a NLOS propagation path bias b(nd) of 40 m

was assumed regardless of the BS-MS and the MS-MS link distances. This limits the

impact of the NLOS propagations on the estimated positions of the MSs.

It can also be seen from Fig. 5.9 that the performance of the geometric cooperative

localization algorithm somewhat deteriorates as the value of the normalized maximum

path delay τmax

τLOS
of the NLOS propagation paths is increased. As a result of the explicit

consideration of scatterers, the geometric cooperative localization algorithm is not in-

fluenced by the value of τmax

τLOS
except for the impact of the change in the geometry of the

localization scenario with a change in τmax

τLOS
. However, the impact of the measurement

noises on the geometric cooperative localization algorithm varies with the change in
τmax

τLOS
. If the standard deviation σd of the times-of-arrival measurement noises is fixed,

then an increase in τmax

τLOS
results in NLOS propagation paths with increased path lengths

while the value of σd is unchanged. Hence, for a given σd, the geometric cooperative

localization algorithm would show a performance gain with an increase in τmax

τLOS
owing

to the decrease in the relative value of the NLOS propagation path lengths and σd. On

the other hand, if the standard deviation σφ of the angles-of-departure and angles-of-

arrival measurement noises is fixed, then an increase in τmax

τLOS
results in a localization
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Figure 5.10. RMSE performances of the robust and the geometric cooperative localiza-
tion algorithms versus the normalized maximum path delay τmax

τLOS
for different fractions

ε of the propagation paths which are NLOS, σd = 20 m and σφ = 1◦

scenario with relatively large distances between a BS, a scatterer and a MS which is

more sensitive to the errors in the angles-of-departure and angles-of-arrival estimates.

Hence, for a given σφ, the geometric cooperative localization algorithm would show a

performance loss with an increase in τmax

τLOS
owing to the increase of the impact of σφ.

Setting aside the impact of the change in the geometry of the localization scenario with

a change in τmax

τLOS
, the overall impact of the increase in τmax

τLOS
is determined by the relative

values of σd and σφ. Thus, if the times-of-arrival measurement noise is dominant, then

the increase in τmax

τLOS
results in a performance gain, whereas if the angles-of-departure

and angles-of-arrival measurement noise is dominant, then the increase in τmax

τLOS
results

in a performance loss. This effect can be seen in Fig. 5.9 where σd = 20 m and σφ = 5◦

and Fig. 5.10 where σd = 20 m and σφ = 1◦. It can be considered that the angles-

of-departure and angles-of-arrival measurement noise is dominant in Fig. 5.9, whereas

the times-of-arrival measurement noise is dominant in Fig. 5.10. Consequently, in Fig.

5.9, the increase in τmax

τLOS
results in a performance loss for all considered fractions ε of

the propagation paths which are NLOS. On the other hand, in Fig. 5.10, the increase

in τmax

τLOS
results in performance gain for all considered fractions ε of the propagation

paths which are NLOS.

In both Fig. 5.9 and Fig. 5.10, it can be seen that the increase in the fractions ε of

the propagation paths which are NLOS results in a performance gain for the geometric
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cooperative localization algorithm. However, this does not hold true for all cases. The

result occurs owing to the interplay of the impacts of σd and σφ on the LOS and the

NLOS propagation paths and the changing localization scenario with the fraction ε of

the propagation paths which are NLOS.

It can be concluded that, if the majority of the propagation paths are LOS, then the

proposed robust cooperative localization algorithm can be used to get a satisfactory

localization performance. However, a satisfactory network localization performance

can be guaranteed for all NLOS multipath network localization scenarios only under

the explicit consideration of scatterers.

In the previous chapters, it has been assumed that the measurement noises are ex-

actly Gaussian distributed. This assumption has been made for simplicity only and

in reality the measurement noises are not exactly Gaussian distributed. Measurement

campaigns in indoor [BKR97] and outdoor [Mid99] mobile radio communication chan-

nels have shown the presence of outliers which result in heavy-tailed measurement

noises [ZKCM12]. Hence the robust localization technique discussed in this chapter

can be easily adapted to the localization techniques discussed in the previous chapters

to guarantee a satisfactory performance in practice.
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Chapter 6

MIMO channel prediction

6.1 Channel prediction using the double directional

channel model

In the previous chapters, the spatio-temporal channel properties of MIMO systems

have been exploited for localizing and tracking a MS in NLOS multipath environments

under the explicit consideration of scatterers. It has been shown that exploiting the

spatio-temporal channel properties of MIMO systems offers new insights which result

in significant performance gains in localizing and tracking a MS in NLOS multipath en-

vironments. In this chapter, the spatio-temporal channel properties of MIMO systems

are investigated to obtain new insights in MIMO channel prediction. In the following

chapters, the new insights will be exploited for developing MIMO channel prediction

algorithms.

In this section, MIMO channel prediction based on the double directional channel

model presented in Section 2.1 is considered. For the double directional channel model,

the channel transfer function of the channel between the nth transmitter antenna and

the mth receiver antenna is given in (2.8) as

Hm,n(f, t) =

P∑

p=1

αpe
−j2π(f+f0)τpej2πνpte−j2πf0τ

(n,p)
Tx e−j2πf0τ

(m,p)
Rx .

In this thesis, multicarrier transmission scheme is considered. The time index is denoted

by ℓ = 1, . . . , L, whereas the subcarrier index is denoted by k = 1, . . . , K. Moreover,

the transmit symbol has a duration T and the subcarrier spacing is F = 1
T
. Thus the

channel coefficient of the channel between the nth transmitter antenna and the mth

receiver antenna for the kth subcarrier at the ℓth time instant is given as

Hm,n(k, ℓ) =
P∑

p=1

αpe
−j2π(Fk+f0)τpej2πνpTℓe−j2πf0τ

(n,p)
Tx e−j2πf0τ

(m,p)
Rx . (6.1)

Consequently, the channel coefficient of the channel between the nth transmitter an-

tenna and the mth receiver antenna for the (k+∆k)th subcarrier at the (ℓ+∆ℓ)th time

instant, i.e., for a prediction depth of ∆ℓ in time and ∆k in frequency, is given as

Hm,n(k +∆k, ℓ+∆ℓ) =
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P∑

p=1

αpe
−j2π(Fk+f0)τpej2πνpTℓe−j2πf0τ

(n,p)
Tx e−j2πf0τ

(m,p)
Rx e−j2πF∆kτpej2πνpT∆ℓ. (6.2)

Thus given estimates of the propagation path parameters, the channel prediction task

is a mere computation of the value of the channel coefficient at the prediction depths

∆ℓ in time and ∆k in frequency.

It must be noted that in the derivation of the channel transfer function the narrowband

assumption for array signal processing has been considered, i.e., the bandwidth B of the

signal is small as compared to the center frequency f0 and the antenna array dimensions

are small enough so that
∣
∣
∣F · (k +∆k) · τ (n,p)Tx

∣
∣
∣ and

∣
∣
∣F · (k +∆k) · τ (m,p)

Rx

∣
∣
∣ are close to

zero. Consequently, under the narrowband assumption for array signal processing the

relation

e−j2π(F (k+∆k)+f0)τ
(n,p)
Tx ≈ e−j2πf0τ

(n,p)
Tx (6.3a)

e−j2π(F (k+∆k)+f0)τ
(m,p)
Rx ≈ e−j2πf0τ

(m,p)
Rx (6.3b)

holds. Thus it was not necessary to modify the steering factors e−j2πf0τ
(n,p)
Tx and

e−j2πf0τ
(m,p)
Rx in (6.2) in order to account for the prediction in frequency direction.

6.2 Channel dynamics of the double directional

channel model

Given reliable estimates of the propagation path parameters, (6.2) can be used to pre-

dict the channel coefficients at a prediction depth of ∆ℓ in time and ∆k in frequency.

However, obtaining reliable estimates of the propagation path parameters requires us-

age of array signal processing techniques which tend to be computationally intensive.

Consequently, far less computationally intensive channel prediction approaches have

been considered which model the mobile radio channel as a stochastic process and

exploit the statistical dependency between the channel coefficients to perform channel

prediction. For the sake of simplicity, the channel coefficients are modeled using an

autoregressive model with the channel correlation describing the statistical dependency

between the channel coefficients. Consequently, linear predictors have been employed to

exploit the linear correlation between the channel coefficients. While many of the chan-

nel prediction algorithms have considered the linear correlation between the channel

coefficients, some works have considered the possible nonlinear statistical dependencies

between the channel coefficients for channel prediction [EK99].
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In this section, the spatio-temporal channel properties of MIMO systems are analyzed

to exploit the dependency between the channel coefficients for channel prediction with-

out making any statistical assumption about the channel coefficients. The dependency

between the channel coefficients is studied by considering the channel dynamics of the

double directional channel model in time and frequency. Consequently, the double

directional channel model based predictor in (6.2) is investigated to obtain significant

insights about the dependency between the channel coefficients. These insights shall

be used to develop optimal channel prediction algorithms.

The channel coefficient in (6.1), i.e.,

Hm,n(k, ℓ) =
P∑

p=1

αpe
−j2π(Fk+f0)τpej2πνpTℓe−j2πf0τ

(n,p)
Tx e−j2πf0τ

(m,p)
Rx

is a weighted sum, with weights αp, of products of complex exponentials. The prediction

of the channel coefficient at a prediction depth of ∆ℓ in time and ∆k in frequency is

given in (6.2), i.e.,

Hm,n(k +∆k, ℓ+∆ℓ) =
P∑

p=1

αpe
−j2π(Fk+f0)τpej2πνpTℓe−j2πf0τ

(n,p)
Tx e−j2πf0τ

(m,p)
Rx e−j2πF∆kτpej2πνpT∆ℓ.

It can be seen that the channel coefficient Hm,n(k +∆k, ℓ+∆ℓ) can be obtained from

the channel coefficient Hm,n(k, ℓ) by rotating the phase of each of the products of the

complex exponentials of Hm,n(k, ℓ) by an amount e−j2πF∆kτpej2πνpT∆ℓ which depends on

the delays τp and the Doppler shifts νp of the propagation paths and the prediction

depths ∆ℓ and ∆k. Thus the channel prediction process is a mere phase rotation of

each of the products of the complex exponentials. Since each channel coefficient is a

linear combination of products of complex exponentials with weights αp, it is possible to

perform a linear combination of a sufficient number of channel coefficients such that the

channel coefficient to be predicted with the required phase rotation can be obtained.

Thus the channel coefficient at a prediction depth of ∆ℓ and ∆k can be obtained

by finding weights such that the linear combination of the products of the complex

exponentials corresponding to each propagation path for each channel coefficient, i.e.,

αpe
−j2π(Fk+f0)τpej2πνpTℓe−j2πf0τ

(n,p)
Tx e−j2πf0τ

(m,p)
Rx ,

yields the products of the complex exponentials corresponding to each propagation

path for the channel coefficient to be predicted, i.e.,

αpe
−j2π(Fk+f0)τpej2πνpTℓe−j2πf0τ

(n,p)
Tx e−j2πf0τ

(m,p)
Rx e−j2πF∆kτpej2πνpT∆ℓ.
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The question is then what is the minimum number of channel coefficients that are

required to predict any channel coefficient. It is obvious that the minimum number

of required channel coefficients depends on the number of propagation paths, i.e., the

number of the products of complex exponentials constituting the channel coefficients.

In fact, in the following, it will be proved that the minimum number of required channel

coefficients is equal to the number of propagation paths. This result has been claimed

in [Pal11] based on the investigation of the equivalence of the double directional channel

model to the linear filter based channel model. Furthermore, similar arguments as in

the preceding discussions have been used for performing temporal channel prediction of

the narrowband version of the double directional channel model using an autoregressive

analysis [GS04]. In the following, the proof of the preceding intuitive explanation, i.e.,

any channel coefficient can be predicted using a linear combination of other known

channel coefficients, and the results in [GS04, Pal11] is given.

Fig. 6.1 shows an example channel prediction scenario. The unknown channel co-

efficient is to be predicted using Ḱ known channel coefficients considered in Ĺ time

instants. The unknown channel coefficient is located at a distance of one time unit

and minus one subcarrier unit from the latest channel coefficient. Thus the prediction

depth is of ∆ℓ = 1 in time and ∆k = −1 in frequency from the latest channel coeffi-

cient. It shall be proved that a filter which only depends on the prediction depths ∆ℓ

in time and ∆k frequency but which is independent of the actual time and frequency

indices can be used to predict the unknown channel coefficient. As the filter coefficients

are time and frequency independent, channel coefficients at the same prediction depths

in time and frequency are predicted using the same filter coefficients. Let the known

channel coefficients be denoted by a matrix

Hm,n(k, ℓ) =






Hm,n(k, ℓ) · · · Hm,n(k, ℓ− Ĺ+ 1)
...

...

Hm,n(k − Ḱ + 1, ℓ) · · · Hm,n(k − Ḱ + 1, ℓ− Ĺ+ 1)




 . (6.4)

Each of these channel coefficients shall be weighted by a filter coefficient matrix

Φ∆k,∆ℓ =







ϕ
(0,0)
∆k,∆ℓ · · · ϕ

(0,Ĺ−1)
∆k,∆ℓ

...
...

ϕ
(Ḱ−1,0)
∆k,∆ℓ · · · ϕ

(Ḱ−1,Ĺ−1)
∆k,∆ℓ







(6.5)

to predict the unknown channel coefficient Hm,n(k +∆k, ℓ+∆ℓ), i.e.,

Hm,n(k +∆k, ℓ+∆ℓ) = ϕT
∆k,∆ℓ · vec(Hm,n(k, ℓ)), (6.6)

where ϕ∆k,∆ℓ = vec(Φ∆k,∆ℓ) and vec(·) is a matrix vectorization operator which trans-

forms a matrix into a vector by stacking the columns of the matrix one underneath the
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Figure 6.1. Prediction using Ĺ · Ḱ known channel coefficients

other. In derivation of the channel prediction based on the double directional channel

model, it was not necessary to modify the steering factors e−j2πf0τ
(n,p)
Tx and e−j2πf0τ

(m,p)
Rx

owing to the narrowband assumption for array signal processing. Consequently, the

filter coefficient vector ϕ∆k,∆ℓ is independent of the antenna pair under consideration,

i.e., the filter coefficient vector ϕ∆k,∆ℓ is valid for each of the M · N transmitter and

receiver antenna pairs.

The linear channel prediction in (6.6) can be re-written as

Hm,n(k +∆k, ℓ +∆ℓ) =

Ḱ−1∑

ḱ=0

Ĺ−1∑

ℓ́=0

ϕ
(ḱ,ℓ́)
∆k,∆ℓ ·Hm,n(k − ḱ, ℓ− ℓ́). (6.7)

Substituting for the channel coefficients using (6.1) results in

P∑

p=1

αpe
−j2π(Fk+f0)τpej2πνpTℓe−j2πf0τ

(n,p)
Tx e−j2πf0τ

(m,p)
Rx e−j2πF∆kτpej2πνpT∆ℓ

=

Ĺ−1∑

ℓ́=0

Ḱ−1∑

ḱ=0

ϕ
(ḱ,ℓ́)
∆k,∆ℓ

P∑

p=1

αpe
−j2π(Fk+f0)τpej2πνpTℓe−j2πf0τ

(n,p)
Tx e−j2πf0τ

(m,p)
Rx ej2πF ḱτpe−j2πνpT ℓ́.

(6.8)

Let the variable

ξ(k,ℓ)m,n,p = αpe
−j2π(Fk+f0)τpej2πνpTℓe−j2πf0τ

(n,p)
Tx e−j2πf0τ

(m,p)
Rx (6.9)

denote the common terms on the left and the right hand side of (6.8). Then (6.8) can

be re-written as

P∑

p=1

ξ(k,ℓ)m,n,p · e
−j2πF∆kτpej2πνpT∆ℓ =

P∑

p=1

ξ(k,ℓ)m,n,p

Ĺ−1∑

ℓ́=0

Ḱ−1∑

ḱ=0

ϕ
(ḱ,ℓ́)
∆k,∆ℓe

j2πF ḱτpe−j2πνpT ℓ́. (6.10)
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Furthermore, defining

ψτp = ej2πFτp (6.11)

ψνp = e−j2πTνp (6.12)

and using these expressions to simplify (6.10) results in

P∑

p=1

ξ(k,ℓ)m,n,p · ψ
−∆k
τp

· ψ−∆ℓ
νp

=
P∑

p=1

ξ(k,ℓ)m,n,p

Ĺ−1∑

ℓ́=0

Ḱ−1∑

ḱ=0

ϕ
(ḱ,ℓ́)
∆k,∆ℓ · ψ

ḱ
τp
· ψℓ́

νp
. (6.13)

Equation (6.13) can be re-arranged to obtain a simplified expression as

(
ξ(k,ℓ)m,n

)T
·ψ∆k,∆ℓ =

(
ξ(k,ℓ)m,n

)T
·Ψ · ϕ∆k,∆ℓ, (6.14)

where

Ψ =






1 ψτ1 · · · ψḰ−1
τ1

ψν1 ψν1ψτ1 · · · ψν1ψ
Ḱ−1
τ1

· · · ψĹ−1
ν1

ψḰ−1
τ1

...
...

...
...

...
...

...

1 ψτP · · · ψḰ−1
τP

ψνP ψνPψτP · · · ψνPψ
Ḱ−1
τP

· · · ψĹ−1
νP

ψḰ−1
τP






(6.15)

ξ(k,ℓ)m,n =
(

ξ
(k,ℓ)
m,n,1, . . . , ξ

(k,ℓ)
m,n,P

)T

(6.16)

ψ∆k,∆ℓ =
(
ψ−∆k
τ1

· ψ−∆ℓ
ν1

, . . . , ψ−∆k
τP

· ψ−∆ℓ
νP

)T
. (6.17)

As the filter coefficient vector ϕ∆k,∆ℓ is time and frequency independent, the filter coef-

ficient vector ϕ∆k,∆ℓ holds for all K channel coefficients considered in L time instants.

Furthermore, owing to the narrowband assumption for array signal processing, the

filter coefficient vector ϕ∆k,∆ℓ is independent of the transmitter and receiver antenna

pair under consideration. Consequently, a system of M ·N ·K ·L linear equations can

be obtained from (6.14). The resulting system of linear equations can be written as

Ξ ·ψ∆k,∆ℓ = Ξ ·Ψ · ϕ∆k,∆ℓ, (6.18)

where Ξ is a M ·N ·K · L× P matrix with elements obtained from (6.9), i.e.,

ξ(k,ℓ)m,n,p = αpe
−j2π(Fk+f0)τpej2πνpTℓe−j2πf0τ

(n,p)
Tx e−j2πf0τ

(m,p)
Rx .

The matrix Ξ can be represented as

Ξ =








Ξ1,1

Ξ1,2
...

ΞM,N








⊙








ΞT
ν,τ

ΞT
ν,τ
...

ΞT
ν,τ







, (6.19)
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where

Ξm,n =






α1e
−j2πf0τn,1e−j2πf0τm,1e−j2πf0τ1 · · · αP e

−j2πf0τn,P e−j2πf0τm,P e−j2πf0τP

...
...

α1e
−j2πf0τn,1e−j2πf0τm,1e−j2πf0τ1 · · · αP e

−j2πf0τn,P e−j2πf0τm,P e−j2πf0τP




 (6.20)

Ξν,τ =






ej2πTν1 · · · ej2πTLν1

...
...

ej2πTνP · · · ej2πTLνP






︸ ︷︷ ︸

Ξν

∗






e−j2πFτ1 · · · e−j2πFKτ1

...
...

e−j2πFτP · · · e−j2πFKτP






︸ ︷︷ ︸

Ξτ

. (6.21)

The matrix Ξm,n is of dimension K · L× P and the symbols ⊙ and ∗ in (6.19) denote

the Hadamard (element-wise) and Khatri-Rao (row-wise Kronecker) matrix products,

respectively.

If there is a filter coefficient vector ϕ∆k,∆ℓ which satisfies

ψ∆k,∆ℓ = Ψ ·ϕ∆k,∆ℓ, (6.22)

then (6.18), i.e.,

Ξ ·ψ∆k,∆ℓ = Ξ ·Ψ · ϕ∆k,∆ℓ

is also satisfied. Thus (6.22) is a sufficient condition for (6.18). If the matrix Ξ has

full column rank, then (6.22) is a necessary and sufficient condition for (6.18). This is

due to the fact that if the matrix Ξ has full column rank, then the pseudo inverse of

matrix Ξ, i.e.,

(Ξ∗T ·Ξ)−1 ·Ξ∗T

can be multiplied on the left of both sides of (6.18) to obtain (6.22). Thus (6.22) is

a necessary and sufficient condition if (6.7) shall hold for all k and ℓ and all M · N

transmitter and receiver antenna pairs, i.e., if the filter coefficient vector ϕ∆k,∆ℓ shall be

independent of k and ℓ and the transmitter and receiver antenna pair. In the following,

it will be shown that the matrix Ξ has full column rank and hence (6.22) is a necessary

and sufficient condition for (6.7) to hold.

To show that the matrix Ξ in (6.19), i.e.,

Ξ =








Ξ1,1

Ξ1,2
...

ΞM,N








⊙








ΞT
ν,τ

ΞT
ν,τ
...

ΞT
ν,τ








has a full column rank, it is sufficient to show that the matrix Ξm,n ⊙ ΞT
ν,τ has a full

column rank. As it can be seen from (6.21), the matrix Ξν,τ is the Khatri-Rao product
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of the matrices Ξν and Ξτ . Furthermore, it can be seen that the matrices Ξν and Ξτ are

Vandermonde matrices. If the generators of the Vandermonde matrices, i.e., ej2πTℓνp for

Ξν and e−j2πFkτp for Ξτ , are distinct, then the Vandermonde matrices Ξν and Ξτ have

full rank [GVL13]. Moreover, the Khatri-Rao product of the Vandermonde matrices

Ξν ∈ CP×L and Ξτ ∈ CP×K whose 2P complex exponential parameters νp and τp are

drawn from a continuous distribution has almost surely full rank, i.e., for the Doppler

shifts νp and delays τp drawn from a continuous distribution, the probability of the

matrix Ξν,τ being a full rank matrix is one [JStB01]. Consequently, for K · L > P

the matrix Ξν,τ has almost surely a full row rank of P and hence the matrix ΞT
ν,τ has

almost surely a full column rank of P . On the other hand, as it can be seen from (6.20)

the matrix Ξm,n whose columns consist of identical elements has a rank of one. The

Hadamard (element-wise) product of the matrices Ξm,n and ΞT
ν,τ results in a matrix

which has almost surely full column rank as the Hadamard product only scales the

columns of the matrix ΞT
ν,τ .

In the preceding discussions, it has been proved that the matrix Ξ has almost surely

a full column rank. Thus it is left to show that the necessary and sufficient condition

given in (6.22), i.e.,

ψ∆k,∆ℓ = Ψ · ϕ∆k,∆ℓ

holds. According to the Rouché-Capelli theorem, (6.22), i.e., the above equation, has

at least one solution if the rank of the augmented matrix (Ψ|ψ∆k,∆ℓ) is equal to the

rank of the coefficient matrix Ψ [Ser93]. The matrix Ψ is the Khatri-Rao (row-wise

Kronecker) product of two Vandermonde matrices, i.e.,

Ψ =






1 ψτ1 · · · ψḰ−1
τ1

ψν1 ψν1ψτ1 ψν1ψ
2
τ1

· · · ψĹ−1
ν1

ψḰ−1
τ1

...
...

...
...

...
...

...

1 ψτP · · · ψḰ−1
τP

ψνP ψνPψτP ψνPψ
2
τP

· · · ψĹ−1
νP

ψḰ−1
τP






=






1 ψν1 ψ2
ν1

. . . ψĹ−1
ν1

...
...

...
...

1 ψνP ψ2
νP

. . . ψĹ−1
νP






︸ ︷︷ ︸
Ψν

∗






1 ψτ1 ψ2
τ1

. . . ψḰ−1
τ1

...
...

...
...

1 ψτP ψ2
τP

. . . ψḰ−1
τP






︸ ︷︷ ︸
Ψτ

. (6.23)

The Khatri-Rao product of the Vandermonde matrices Ψν ∈ CP×Ĺ and Ψτ ∈ CP×Ḱ

whose 2P complex exponential parameters νp and τp are drawn from a continuous

distribution has almost surely full rank [JStB01]. Thus the matrix Ψ has almost surely

full rank. Furthermore, for Ĺ · Ḱ ≥ P the augmented matrix (Ψ|ψ∆k,∆ℓ) has a rank

equal to the rank of the coefficient matrix Ψ. Thus there exists almost surely a unique

filter coefficient vector ϕ∆k,∆ℓ which satisfies (6.22) if Ĺ · Ḱ = P . For Ĺ · Ḱ > P there

are almost surely infinitely many filter coefficient vectors ϕ∆k,∆ℓ which satisfy (6.22).
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For the case where the number of unknowns in (6.22) is equal to the number of equa-

tions, i.e., Ĺ · Ḱ = P , there is a unique filter coefficient vector ϕ∆k,∆ℓ. The optimal

estimate ϕ̂∆k,∆ℓ of the unique filter coefficient vector ϕ∆k,∆ℓ, in the least squares sense,

can be determined from (6.22) as

ϕ̂∆k,∆ℓ =
(
Ψ∗T ·Ψ

)−1
·Ψ∗T ·ψ∆k,∆ℓ. (6.24)

On the other hand, for the case where the number of unknowns in (6.22) is greater than

the number of equations, i.e., Ĺ ·Ḱ > P , there are an infinite number of filter coefficient

vectors ϕ∆k,∆ℓ which satisfy the underdetermined system of linear equations of (6.22).

Out of the infinitely many possible filter coefficient vectors, the filter coefficient vector

with the minimum norm is of interest. The choice of the norm has crucial influence

on the complexity of finding the filter coefficient vector and the qualitative behaviour

of the filter in the presence of noise. For example, the filter coefficient vector with the

minimum l0-norm, i.e., the filter coefficient vector with the smallest possible number

of non-zero elements, has no closed-form solution. Furthermore, the filter coefficient

vector with the minimum l0-norm is disadvantageous in that not all channel coefficients

are exploited in predicting the required channel coefficient. This results in severe

performance degradation in the presence of noise. In the following, owing to the ease

of finding a closed-form solution and its stability in the presence of noise, the minimum

Euclidean norm is considered. The filter coefficient vector ϕ∆k,∆ℓ with the minimum

Euclidean norm can be determined by solving

ϕ̂∆k,∆ℓ = arg min
ϕ∆k,∆ℓ

‖ϕ∆k,∆ℓ‖2

subject to ψ∆k,∆ℓ = Ψ · ϕ∆k,∆ℓ.
(6.25)

The minimum Euclidean norm solution to the system of linear equations of (6.25) can

be determined using the Moore-Penrose pseudoinverse as

ϕ̂∆k,∆ℓ = Ψ+ ·ψ∆k,∆ℓ, (6.26)

where the superscript + denotes the Moore-Penrose pseudoinverse. For Ĺ · Ḱ > P , the

rows of Ψ are linearly independent and hence the Moore-Penrose pseudoinverse Ψ+ is

the right inverse of Ψ. Consequently, the estimate ϕ̂∆k,∆ℓ of the filter coefficient vector

ϕ∆k,∆ℓ which minimizes the Euclidean norm is given as

ϕ̂∆k,∆ℓ = Ψ∗T ·
(
Ψ ·Ψ∗T)−1

·ψ∆k,∆ℓ. (6.27)

It must be noted that even though the matrix Ψ has almost surely full rank, finding

estimates of the filter coefficient vector ϕ̂∆k,∆ℓ from (6.22) can in some cases result in

an ill-posed problem. Consequently, consideration of regularization methods might be
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necessary. A well-posed problem in (6.22) can be obtained by considering cases where

Ĺ · Ḱ > P .

In the discussions so far, it has been assumed that the unknown channel is to be

predicted based on Ḱ known channel coefficients considered in Ĺ time instants. The

consideration of consecutive channel coefficients in time and frequency has resulted in

the matrix Ψ which is the Khatri-Rao product two Vandermonde matrices. Owing

to its special structure, the matrix Ψ has almost surely full rank. Consequently, it

has been shown that there exists a filter coefficient vector ϕ∆k,∆ℓ with dimension of at

least P . As discussed earlier, the linear relationship between the channel coefficients

arises due to their description as a weighted sum of products of complex exponentials.

Thus the filter coefficient vector ϕ∆k,∆ℓ shall exist regardless of the sequence of the

known channel coefficients. Towards this end, consider the channel prediction scenario

in Fig. 6.2 with arbitrarily chosen known channel coefficients. The unknown channel

coefficient is to be predicted using R arbitrarily chosen known channel coefficients.

Without loss of any generality, the unknown channel coefficient is chosen to be located

at a distance of one time unit and minus one subcarrier unit from the latest channel

coefficient, i.e., ∆ℓ = 1 and ∆k = −1. In the following, it will be proved that there

exists a filter coefficient vector which can predict the unknown channel coefficient using

R ≥ P arbitrarily chosen known channel coefficients.

Following a similar argument as in the preceding discussion, a system of linear equations

ψ̀∆k,∆ℓ = Ψ̀ · ϕ̀∆k,∆ℓ, (6.28)

can be obtained for the case of arbitrarily chosen known channel coefficients. It can be

shown that the matrix Ψ̀ has almost surely full rank. Towards this end, Ḱ consecutive

channel coefficients in Ĺ time instants such that all of the R arbitrarily chosen known

channel coefficients are contained in the Ĺ · Ḱ channel coefficients shall be considered.

Then the matrix Ψ̀ is nothing but a submatrix of

Ψ =






1 ψτ1 · · · ψḰ−1
τ1

ψν1 ψν1ψτ1 · · · ψν1ψ
Ḱ−1
τ1

· · · ψĹ−1
ν1

ψḰ−1
τ1

...
...

...
...

...
...

...

1 ψτP · · · ψḰ−1
τP

ψνP ψνPψτP · · · ψνPψ
Ḱ−1
τP

· · · ψĹ−1
νP

ψḰ−1
τP




 ,

(6.29)

with R columns drawn from Ψ corresponding to the positions of the R channel coeffi-

cients in the Ĺ · Ḱ channel coefficients. Thus the matrix Ψ̀ has almost surely full rank.

Consequently, for R ≥ P there is almost surely at least one filter coefficient vector

ϕ̀∆k,∆ℓ which can be used to predict the unknown channel coefficient.

Thus it can be concluded that any unknown channel coefficient can be predicted as a

linear combination of at least P other known channel coefficients. The matrix Ψ and
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frequency, k

time, ℓ

∆k=−1

∆ℓ=1

known channel
coefficients

channel coefficient
to be predicted

Figure 6.2. Prediction using arbitrarily chosen known channel coefficients

the vector ψ∆k,∆ℓ are determined using the delays τp and the Doppler shifts νp of the

propagation paths. Thus the prediction filter vector ϕ∆k,∆ℓ depends on the delays τp

and the Doppler shifts νp of the propagation paths and the prediction depths ∆ℓ and

∆k but is independent of the actual time and frequency.

It may seem counter-intuitive that even though the double directional channel model

has P degrees of freedom in time and in frequency, it is possible to predict a chan-

nel coefficient in time, in frequency and in time and frequency using only P known

channel coefficients. This result stems from the fact that each channel coefficient is a

weighted sum of products of complex exponentials. The products of complex exponen-

tials describe the phase rotations in time and frequency. As small scale MS mobility

is assumed, the propagation path parameters are assumed to be constant. Thus each

channel coefficient is a weighted sum of products of complex exponentials with the

same weights for each channel coefficient. Consequently, for predicting a channel coef-

ficient it is only required to obtain the P appropriate overall phase rotations in time

and frequency. For a given channel coefficient to be predicted, this can be obtained

from a proper linear combination of P known channel coefficients.

The consequence of the preceding discussions is that MIMO channel prediction can be

performed by exploiting the linear relation between the channel coefficients without hav-

ing to estimate the propagation path parameters. Owing to the linear relation between

the channel coefficients, given a sufficient number of estimated channel coefficients, a

system of linear equations can be set up from the estimated channel coefficients. Then

the filter coefficient vector can be estimated from the set up system of linear equations

by solving for the filter coefficient vector. Linear estimation techniques can be used to
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mitigate the impact of noises in the estimated channel coefficients in the estimation of

the filter coefficient vector.

In the discussions so far, it has been assumed that the propagation path parameters

are time and frequency independent. In practice, a variation of the propagation path

parameters can occur with time and frequency. It is possible to account for the change

in the path parameters by introducing noise, i.e.,

Hm,n(k +∆k, ℓ+∆ℓ) =

Ḱ−1∑

ḱ=0

Ĺ−1∑

ℓ́=0

ϕ
(ḱ,ℓ́)
∆k,∆ℓ ·Hm,n(k − ḱ, ℓ− ℓ́) + um,n(k +∆k, ℓ+∆ℓ),

(6.30)

where um,n(k+∆k, ℓ+∆ℓ) is a zero mean complex white Gaussian noise with variance

σ2
u. It must be noted that for time and frequency independent path parameters, the

poles of the filter coefficient vector ϕ∆k,∆ℓ are on the unit circle, whereas for the case

where the change in the path parameters is accounted for as in (6.30), the poles of the

filter coefficient vector ϕ∆k,∆ℓ are inside the unit circle [Mak75].
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Chapter 7

Performance gains from tracking a MIMO
channel

7.1 Tracking a MIMO channel in time-division-

duplex systems

In the previous chapter, it has been shown, based on the double directional channel

model, that there is a linear relation between the channel coefficients in time and

frequency. Consequently, linear channel estimation algorithms can be used to obtain

optimal estimates of the channel coefficients. In the following, training signal based

channel estimation techniques are considered to obtain estimates of the channel co-

efficients. In training signal based channel estimation, the transmitter transmits a

priori known pilot symbols multiplexed with useful data symbols [Cav91]. The receiver

exploits the received a priori known pilot symbols to estimate the channel at the pi-

lot symbol locations. The channels at other locations can then be estimated using

interpolation techniques. Furthermore, channel prediction at a desired point in time

and frequency can be performed by exploiting the linear relation between the chan-

nel coefficients. In performing channel prediction, it is possible to exploit only the

current received pilot symbols. This approach would make sense if the radio propaga-

tion scenario changes so swiftly that the channel coefficients at different pilot symbol

transmission times are independent. However, in this thesis small scale MS mobility is

assumed. Consequently, the radio propagation scenario remains unchanged or changes

slightly for a duration that is larger than multiples of the transmission duration of the

pilot symbols. Thus the present and the past received pilot symbols could be exploited

in predicting the required channel coefficients. Consequently, significant performance

gains in channel estimation can be obtained from tracking the mobile radio channel.

In the following, tracking a MIMO channel in time-division-duplex (TDD) systems is

considered. In TDD systems, the uplink data and the downlink data are transmitted

at different times. The uplink and the downlink channel are identical if the duplexing

time is much smaller than the coherence time of the channel [Mol05]. Thus, in general,

the uplink and the downlink channels are not identical. In the following, the uplink

and the downlink MIMO channels are to be tracked using the received pilot symbols at

the BS and the MS, respectively. As it has been discussed in Chapter 4, owing to its

convenience and intuitive description of dynamical systems, the state-space approach
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is preferable for modeling dynamical systems. Thus the MIMO channel tracking prob-

lem in TDD systems is described using a state-space model. The state-space model

describes a dynamical system using a state transition model and a measurement model.

The state transition model describes the change of the state of the system with time,

whereas the measurement model describes the relation between the measurements and

the state of the system.

Since training signal based channel estimation is considered, the channel coefficients

that are considered are the channel coefficients of the pilot symbol subcarriers. Con-

sequently, the subcarrier index k = 1, . . . , K is re-used to index the pilot symbol

subcarriers instead of all the subcarriers. Furthermore, the time index ℓ = 1, . . . , L

is re-used to index the sequence of the pilot symbols in time. The state vector θ(ℓ)

represents the state of the system at discrete time ℓ. As it has been shown in the

previous chapter, each of the channel coefficients can be represented as a linear combi-

nation of other channel coefficients which are at least equal, in number, to the number

of the propagation paths. Thus the state vector representing each channel coefficient

shall consider other channel coefficients which are at least equal, in number, to the

number of the propagation paths. Nevertheless, significant performance gains could be

obtained if the relation between all channel coefficients of the pilot symbol subcarriers

is exploited in tracking the evolution of the channel coefficients. To this end, all the

channel coefficients at a discrete time instant ℓ between the mth receive antenna and

the nth transmit antenna shall be considered, i.e.,

hm,n(ℓ) = (Hm,n(K, ℓ), Hm,n(K − 1, ℓ), . . . , Hm,n(1, ℓ))
T. (7.1)

Stacking such vectors from all M ·N transmit and receive antennas results in a vector

h(ℓ) = (hT
1,1(ℓ),h

T
1,2(ℓ), . . . ,h

T
M,N(ℓ))

T. (7.2)

Considering the vector h(ℓ) for Ĺ time instants means that the evolution of each channel

coefficient, for each of the M ·N transmit and receive antennas, is represented by Ḱ · Ĺ

other channel coefficients where Ḱ = K, i.e., all pilot symbol subcarriers. Each channel

coefficient can be represented as a linear combination of Ḱ · Ĺ other channel coefficients

as long as Ḱ · Ĺ ≥ P , where P is the number of propagation paths. Thus considering

the vector h(ℓ) for Ĺ time instants results in the state vector

θ(ℓ) = (hT(ℓ),hT(ℓ− 1), . . . ,hT(ℓ− Ĺ+ 1))T. (7.3)

The state transition equation describes the evolution of each of the channel coefficients

with time. If the path parameters are constant within the time duration and frequency
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band under consideration, then each of the channel coefficients can be described, with-

out error, as a linear combination of a sufficient number of other channel coefficients.

Otherwise, it is possible to account for the change in the path parameters by introduc-

ing noise as given in (6.30), i.e.,

Hm,n(k +∆k, ℓ+∆ℓ) =

Ḱ−1∑

ḱ=0

Ĺ−1∑

ℓ́=0

ϕ
(ḱ,ℓ́)
∆k,∆ℓ ·Hm,n(k − ḱ, ℓ− ℓ́) + um,n(k +∆k, ℓ+∆ℓ),

where um,n(k+∆k, ℓ+∆ℓ) is a zero mean complex white Gaussian noise with variance

σ2
u. Consequently, the state transition equation is linear. Thus using the above equation

the state transition equation of the state space model can be defined as

θ(ℓ) = B · θ(ℓ− 1) + Γ · u(ℓ), (7.4)

where the M ·N · Ḱ × 1 vector u(ℓ) is assumed to be zero mean complex multivariate

white Gaussian distributed with covariance matrix Ruu. TheM ·N ·Ḱ · Ĺ×M ·N ·Ḱ · Ĺ

state transition matrix B and the M ·N · Ḱ · Ĺ×M ·N · Ḱ matrix Γ are defined as

B =








D(1) · · · 0Ḱ D(2) · · · 0Ḱ · · · D(Ĺ) · · · 0Ḱ
...

. . .
...

...
. . .

...
...

. . .
...

0Ḱ · · · D(1) 0Ḱ · · · D(2) · · · 0Ḱ · · · D(Ĺ)

IM ·N ·Ḱ·(Ĺ−1) 0M ·N ·Ḱ·(Ĺ−1)×M ·N ·Ḱ








(7.5)

Γ =
(
IM ·N ·Ḱ 0M ·N ·Ḱ×M ·N ·Ḱ·(Ĺ−1)

)T
. (7.6)

The matrices IM ·N ·Ḱ and 0M ·N ·Ḱ denote the identity and the zero matrices of dimension

M ·N · Ḱ, respectively. The Ḱ × Ḱ · Ĺ filter coefficient matrix

D =
(

D(1) · · · D(Ĺ)
)

(7.7)

weights the channel coefficient vector
(

hT
m,n(ℓ− 1), . . . ,hT

m,n(ℓ− Ĺ)
)T

constituting the

state vector θ(ℓ−1) to yield the channel coefficient vector hm,n(ℓ). The filter coefficient

matrix D can be calculated, given the delays τp and Doppler shifts νp, using (6.27) as

D =
(
ϕ∆k=0,∆ℓ=1 · · · ϕ∆k=1−K,∆ℓ=1

)T
. (7.8)

The Ḱ · Ĺ × 1 filter coefficient vector ϕ∆k=k−K,∆ℓ=1 weights the channel coefficient

vector
(

hT
m,n(ℓ− 1), . . . ,hT

m,n(ℓ− Ĺ)
)T

to yield the channel coefficient Hm,n(k, ℓ). The

prediction depths ∆ℓ = 1 in time and ∆k = k − K in frequency are chosen as the

channel coefficient Hm,n(k, ℓ) is located at a prediction depths of ∆ℓ = 1 in time and

∆k = k−K in frequency from the reference channel coefficient Hm,n(K, ℓ−1), see Fig.

6.1.
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The measurement equation of the state-space model can be developed by considering

the signal model. It is assumed that training signal based channel estimation techniques

are employed to obtain measurements of the channel coefficients. Let the matrix S(ℓ)

denote a diagonal matrix of size M · N · Ḱ with elements on the diagonal being the

transmitted pilot symbols. The M ·N · Ḱ × 1 received pilot symbol vector e(ℓ) is then

given as

e(ℓ) =
(
S(ℓ) 0M ·N ·Ḱ×M ·N ·Ḱ·(Ĺ−1)

)

︸ ︷︷ ︸

G(ℓ)

·θ(ℓ) + n(ℓ), (7.9)

where n(ℓ) is the measurement noise which is a multivariate zero mean complex white

Gaussian noise with covariance matrix Rnn. Thus (7.9) defines the measurement equa-

tion of the state space model with the vector e(ℓ) being the measurement vector.

It can be seen that both the state transition and the measurement equations are linear

and Gaussian. Consequently, the Kalman filter can be used to obtain optimal esti-

mates, in the minimum mean square error sense, of the state vector. The Kalman

filter tracks the estimate of the state vector θ̂(ℓ|ℓ) and the correlation matrix of the

estimation error M(ℓ|ℓ) based on the measurements e(1), . . . , e(ℓ). The Kalman filter

starts with an initial estimate θ̂(0|0) = 0M ·N ·Ḱ·Ĺ×1 of the initial state vector θ(0|0) and

an initial covariance matrix M(0|0) = IM ·N ·Ḱ·Ĺ of the estimation error and recursively

computes estimates θ̂(ℓ|ℓ) of the state vector θ(ℓ) and the covariance matrix M(ℓ|ℓ) of

the estimation error using the following equations

• prediction step:

M(ℓ|ℓ− 1) = B ·M(ℓ− 1|ℓ− 1) ·B∗T + Γ ·Ruu · Γ
∗T (7.10)

θ̂(ℓ|ℓ− 1) = B · θ̂(ℓ− 1|ℓ− 1) (7.11)

• update step:

K(ℓ) =
M(ℓ|ℓ− 1) ·G∗T(ℓ)

G(ℓ) ·M(ℓ|ℓ− 1) ·G∗T(ℓ) +Rnn

(7.12)

θ̂(ℓ|ℓ) = θ̂(ℓ|ℓ− 1) +K(ℓ) ·
(

e(ℓ)−G(ℓ) · θ̂(ℓ|ℓ− 1)
)

(7.13)

M(ℓ|ℓ) = M(ℓ|ℓ− 1)−K(ℓ) ·G(ℓ) ·M(ℓ|ℓ− 1). (7.14)

The matrix K(ℓ) is the Kalman gain. Estimates of the channel coefficients at time

instant ℓ are obtained from θ̂(ℓ|ℓ), whereas the predicted channel coefficients at time

instant ℓ are obtained from θ̂(ℓ|ℓ− 1).
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7.2 Channel prediction using an adaptive Kalman

filter

The Kalman filter can be used to obtain optimal estimates of the channel coefficients.

However, in order to perform optimal estimation of the channel coefficients using the

Kalman filter, estimates of the delays and the Doppler shifts of each propagation path

are required to calculate the state transition matrix B. For the estimation problem

under consideration, it is assumed that only estimates of the received pilot symbols are

available. In such cases, an estimate of the Kalman filter parameter, i.e., the state tran-

sition matrix, is obtained by considering stochastic models of the mobile radio channel.

Many stochastic channel models are based on the wide-sense stationary uncorrelated

scattering (WSSUS) model which is valid for many mobile radio channels of interest

[Bel63]. The WSSUS model assumes that the second-order moment, i.e., the autocor-

relation function, of the channel does not change with time and the scattering at two

different paths are statistically uncorrelated. Considering zero mean normalized chan-

nel coefficients, i.e., E{Hm,n(k, ℓ)} = 0 and E{|Hm,n(k, ℓ)|2} = 1, the autocorrelation

function for the WSSUS model defined as

rf,t(k̆, ℓ̆) = E{Hm,n(k, ℓ) ·H
∗
m,n(k − k̆, ℓ− ℓ̆)}. (7.15)

The WSSUS model is thus characterized by the autocorrelation function of the channel.

In the stochastic approach to mobile radio channel modeling, the current channel co-

efficients are often assumed to be linear functions of past channel coefficients. Conse-

quently, the time and frequency dynamics of the channel are modeled using an autore-

gressive model. For autoregressive processes with stationary autocorrelation function,

the parameters of the autoregressive model can be easily determined from the so-called

Yule-Walker equations. A brief overview of autoregressive modeling and determina-

tion of the model parameters using the Yule-Walker equations is given in Appendix C.

The parameters of the autoregressive model, i.e., the filter coefficients and the stan-

dard deviation of the process noise, can be easily used to determine the parameters

of the Kalman filter, i.e., state transition matrix and the covariance matrix of the

state transition noise. Thus using stochastic channel models it is possible to determine

the parameters of the Kalman filter using the autocorrelation function of the channel

derived under the WSSUS assumption.

It is often assumed that the autocorrelation function of (7.15) is separable in to time-

domain and frequency-domain correlations, i.e.,

rf,t(k̆, ℓ̆) = rf(k̆) · rt(ℓ̆), (7.16)
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where rf(k̆) = E{Hm,n(k, ℓ) ·H∗
m,n(k − k̆, ℓ)} and rt(ℓ̆) = E{Hm,n(k, ℓ) ·H∗

m,n(k, ℓ− ℓ̆)}.

A commonly used model for the temporal correlations is the Jakes’ model where it

is assumed that the propagation paths impinge uniformly from all directions [Jak74].

Each of these paths has an associated Doppler shift dependent on the direction of

arrival at the receiver. For the Jakes’ model the temporal correlation function becomes

rt(ℓ̆) = J0

(

2πνmaxℓ̆T
)

, (7.17)

where J0(·) is the zeroth-order Bessel function of the first kind and νmax is the maximum

Doppler frequency. The symbol T stands for the transmit symbol duration. On the

other hand, the spectral correlations are often derived from the truncated one-sided

exponential power delay profile (PDP) [Pro95, WPY07]

Ah(τ) = E
{
hm,n(τ, t)h

∗
m,n(τ, t)

}

=

{
c
b
e−

τ
b 0 ≤ τ ≤ τmax

0 else ,
(7.18)

where hm,n(τ, t) is the time varying impulse response of the channel. The parameters b

and τmax depend on the radio channel scenario and c = 1/(1−e−
τmax

b ) is a normalization

constant which normalizes Ah(τ) to unity. The Fourier transform of the power delay

profile yields the spectral correlation function

rf(k̆) = c
b(1 − e−τmax(b+j2πk̆F ))

b+ j2πk̆F
. (7.19)

Thus using the WSSUS model, information about the maximum Doppler shift and the

multipath spread of the channel can be used to obtain estimates of the state transi-

tion matrix and the covariance matrix of the state transition noise. Estimating the

maximum Doppler shift and multipath spread of a channel is considerably easier than

estimating the Doppler shift and the delay of each propagation path of a mobile radio

channel. Consequently, the Jakes’ model and the truncated one-sided exponential PDP

are commonly used in channel tracking and prediction [CZ04, MCCK07]. However, the

stochastic process for many mobile radio channels of interest is not ergodic. Thus the

stochastic channel models describe only the statistics of the whole ensemble of the

channel realizations but not the individual channel realizations. For example, several

channel measurements have shown that there are only a handful of propagation paths

with significant powers [HRS+99, PW09a]. This is unlike the assumption in the Jakes’

model where infinitely many propagation paths impinge the receiver uniformly from

all directions. Thus the stochastic channel models do not reflect the statistics of a

single channel realization and the estimated channel autocorrelation function may not

be accurate enough to be used in practice with high reliability. In order to alleviate
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this problem, in this thesis, the Jakes’ model and the truncated one-sided exponential

PDP are used only for initially estimating the parameters of the Kalman filter. The

estimated channel coefficients, which are obtained from the Kalman filter, are then

used to periodically update the parameters of the Kalman filter. This results in an

adaptive Kalman filter which matches the actual mobile radio channel. Fig. 7.1 shows

a block diagram of the adaptive Kalman filter for MIMO channel tracking in TDD

systems.

Let Ĥm,n(k, ℓ) denote the estimated channel coefficient of the kth subcarrier at the

ℓth time instant of the mth receive antenna and the nth transmit antenna. The filter

coefficients ϕ
(ḱ,ℓ́)
∆k,∆ℓ which constitute the coefficient matrices D(ℓ́) can be estimated from

the estimated channel coefficients Ĥm,n(k, ℓ) by exploiting the linear relation between

the channel coefficients. Towards this end, a system of linear equations can be set up

from the estimated channel coefficients using (6.7), i.e.,

Ĥm,n(k, ℓ) ≈
Ḱ−1∑

ḱ=0

Ĺ∑

ℓ́=1

ϕ
(ḱ,ℓ́)
∆k=k−K,∆ℓ=1 · Ĥm,n(K − ḱ, ℓ− ℓ́). (7.20)

As the filter coefficient vector ϕ∆k=k−K,∆ℓ=1 is of dimension Ḱ · Ĺ ≥ P , then a system

of at least Ḱ · Ĺ ≥ P linear equations is required to solve for the filter coefficient

vector ϕ∆k=k−K,∆ℓ=1. The required system of linear equations can be obtained by

considering different sets of estimated channel coefficients which overlap in time. Fig.

7.2 shows different sets of estimated channel coefficients which overlap in time. Thus

using Ḱ ·Ĺ ≥ P overlapping sets of estimated channel coefficients, a system of Ḱ ·Ĺ ≥ P

linear equations can be generated which can be solved for the filter coefficient vector

ϕ∆k=k−K,∆ℓ=1.

A system of linear equations can also be set up which can be used to directly solve for

the coefficient matrices D(ℓ́). Equation (7.21) shows a system of linear equations set up

using the estimated channel coefficients from all M ·N transmit and receive antennas.


















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ĥ∗T
1,1(Ĺ+ 2)
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ĥ∗T
1,1(ℓ)
...
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ĥ∗T
M,N(ℓ− 1) ĥ∗T

M,N(ℓ− 2) · · · ĥ∗T
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Σ Σ
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Figure 7.1. A block diagram of the adaptive Kalman filter for MIMO channel tracking in TDD systems
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Figure 7.2. Three linear equations as a function of ϕ∆k=−1,∆ℓ=1 can be obtained from
three overlapping sets of estimated channel coefficients from time instants ℓ = 6, ℓ = 7
and ℓ = 8

The filter coefficient matrix D∗T can be determined from the overdetermined system of

linear equations of (7.21) using the method of least squares whenM ·N ·(ℓ−Ĺ) > Ḱ · Ĺ.

However, both the matrices X(ℓ) and Y(ℓ) have errors owing to the estimation error in

the estimated channel coefficient vector ĥm,n(ℓ). Consequently, the total least squares

estimator, which accounts for errors on both sides of (7.21), is a more appropriate

estimator of the filter coefficient matrix D∗T than the least squares estimator. In the

total least squares estimation, the estimation problem is given as

{D̂,∆X̂(ℓ),∆Ŷ(ℓ)} = arg min
D,∆X(ℓ),∆Y(ℓ)

‖(∆X(ℓ) |∆Y(ℓ))‖F

subject to (X(ℓ) + ∆X(ℓ)) ·D∗T = Y(ℓ) + ∆Y(ℓ).
(7.22)

where ‖ · ‖F denotes the Frobenius norm of a matrix. Thus the total least squares

estimator makes as little as possible corrections ∆X(ℓ) and ∆Y(ℓ) in the Frobenius

norm sense to both matrices X(ℓ) and Y(ℓ), respectively. The solution to the total

least squares problem can be determined using the singular value decomposition (SVD).

The SVD of the augmented matrix (X(ℓ) |Y(ℓ)), where the matrixX(ℓ) is of dimension

M ·N · (ℓ− Ĺ)× Ḱ · Ĺ and the matrix Y(ℓ) is of dimension M ·N · (ℓ− Ĺ)× Ḱ, is a

decomposition

(X(ℓ) |Y(ℓ)) = U ·Σ ·V∗T, (7.23)

where the M ·N · (ℓ− Ĺ)× (Ḱ · Ĺ+ Ḱ) matrix U and the (Ḱ · Ĺ+ Ḱ)× (Ḱ · Ĺ+ Ḱ)

matrix V have orthonormal columns and Σ = diag
(
σ1, σ2, . . . , σḰ·Ĺ+Ḱ

)
with σ1 ≥
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· · · ≥ σḰ·Ĺ+Ḱ ≥ 0. As described in Section 3.3, the total least squares solution

finds the matrix (∆X(ℓ)|∆Y(ℓ)) with the minimum norm that makes the matrix

(X(ℓ) + ∆X(ℓ)|Y(ℓ) + ∆Y(ℓ)), owing to the constraint in (7.22), rank deficient.

Each channel coefficient can be represented as a linear combination of P other channel

coefficients. Thus had it not been for the estimation error in the estimated channel

coefficients vector ĥm,n(ℓ), the rank of the matrix X(ℓ) would have been P . Thus the

SVD of the augmented matrix (X(ℓ) |Y(ℓ)) has Ḱ · Ĺ+ Ḱ singular values out of which

P are a superposition of the singular values corresponding to the propagation paths

and the estimation error in ĥm,n(ℓ), whereas the remaining Ḱ · Ĺ + Ḱ − P singular

values stem from the estimation error in ĥm,n(ℓ), i.e., σ1 ≥ · · · ≥ σP > σP+1 ≥ · · · ≥

σḰ·Ĺ+Ḱ . Consequently, the largest P singular values are of interest in the total least

squares solution. One approach to such kinds of problems is the truncated total least

squares [FGHO97] where only the largest P singular values corresponding to the P

propagation paths are considered, whereas the remaining singular values are treated

as zeros. Towards this end, the matrix V is partitioned, as shown in Fig. 7.3, as

V =

(
V11 V12

V21 V22

)

(7.24)

where V11 ∈ CḰ·Ĺ×P , V12 ∈ CḰ·Ĺ×(Ḱ·Ĺ+Ḱ−P ), V21 ∈ CḰ×P and V22 ∈ CḰ×(Ḱ·Ĺ+Ḱ−P ).

If V22 has full rank, then the total least squares solution D̂∗T, which has the minimum

Frobenius norm ‖D̂∗T‖F, is given as

D̂∗T = −V12 ·V
+
22, (7.25)

where the superscript + denotes the Moore-Penrose pseudoinverse [VHV91]. If the P th

singular value of the matrix X(ℓ) is greater than the (P + 1)th singular value of the

augmented matrix (X(ℓ) |Y(ℓ)), i.e., σP (X(ℓ)) > σP+1((X(ℓ) |Y(ℓ))), then V22 has

full rank and the total least squares solution exists.

From the preceding discussions, it can be concluded that the adaptive Kalman filter is

guaranteed to converge if the singular values corresponding to the propagation paths

are not negligible compared with the singular values of the estimation error in the

estimated channel coefficients vector ĥm,n(ℓ).

In the discussions so far, the total least squares solution has been derived under the

assumption of having an overdetermined system of linear equations, i.e.,M ·N ·(ℓ−Ĺ) >

Ḱ · Ĺ. However, the total least squares can also be applied to underdetermined system

of linear equations, i.e., M · N · (ℓ − Ĺ) < Ḱ · Ĺ, as long as M · N · (ℓ − Ĺ) > P .

In this case, the total least squares yields a solution, out of possible infinite number
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Ḱ

Figure 7.3. Pictorial representation of partitioning of the matrix V

of solutions, with minimum norm [MS00]. Thus it is possible to start update of the

adaptive Kalman filter parameters at the discrete time instant ℓ = Ĺ + 1. This is

beneficial in the case where Ḱ · Ĺ is large and the adaptive Kalman filter has to wait

a considerable time, i.e., M · N · (ℓ − Ĺ) > Ḱ · Ĺ, before the onset of the periodic

update of the adaptive Kalman filter parameters. Nevertheless, the onset of update of

the adaptive Kalman filter parameters should be made when the there is a sufficient

information that could be obtained from the estimated channel coefficients.

The reliability of the estimates D̂ of the filter coefficient matrixD improves periodically

as more estimated channel coefficients are used to estimate the filter coefficient matrix

D. Thus the adaptive Kalman filter has to consider the error in the estimates of

the filter coefficient matrix D and hence the state transition matrix B. Assuming

that the estimates D̂ of the filter coefficient matrix D as the superposition of the

true filter coefficient matrix D and an estimation error modelled as Gaussian noise,

the state transition noise can also be used to model the error in the estimates of

the filter coefficient matrix D. The covariance matrix of the state transition noise

can be estimated using the Yule-Walker equations as shown in Appendix C. Initial

estimates of the autocorrelation function of the channel can be obtained from the

Jakes’ model and the truncated one-sided exponential PDP, while at the later stages

estimates of the autocorrelation function of the channel can be obtained from the

estimated channel coefficients using time averaging. Thus at the early recursions of

the adaptive Kalman filter the covariance matrix of the state transition noise is “large”

to reflect the less reliability of the early estimates of the state transition matrix. This

enables the adaptive Kalman filter not to over-rely on the early estimates of the state

transition matrix. However, as the tracking progresses, the estimates of the covariance

matrix of the state transition noise get “smaller” to reflect the increasing confidence

on the estimates of the state transition matrix.
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7.3 Performance analysis

In this section, the performance of the proposed MIMO channel prediction algorithm for

TDD systems is analyzed considering a microcellular mobile radio system using Monte

Carlo simulations with 104 independent trials. It is assumed that the BS is located

at the origin, whereas the MS is located at (1000, 0) m. Furthermore, it is assumed

that the BS and the MS employ uniform linear antenna arrays. The minimum distance

between the BS antennas is 0.03 m, whereas the minimum distance between the MS

antennas is 0.02 m. It is assumed that the center frequency is f0 = 2.4 GHz and hence

the wavelength is λ = 0.125 m. Thus the minimum distance between the BS antennas

and the MS antennas is less than half the wavelength. The MS is assumed to move

with a speed of 30 km/hr during the tracking time and the direction of motion does

not change. The positions of the scatterers are generated randomly using the single

bounce elliptical model discussed in Section 3.4.2 for a normalized maximum path delay
τmax

τLOS
= 2.5. In the single bounce elliptical model, the scatterers are assumed to lie in a

horizontal plane [LR96]. Thus the elevation angles-of-departure and angles-of-arrivals

are 90◦ and only the azimuth angles-of-departure and angles-of-arrivals are considered

to characterize the directions of propagations. The propagation path parameters, i.e.,

the delays, the Doppler shifts, the angles-of-departure and the angles-of-arrival are

calculated from the geometry of the MS, BS and scatterers positions using (2.9).

It is assumed that both the direct path and the multipath components experience dβ

path loss, where β is the path loss exponent. The received power PRx,p for the pth

multipath component relative to the power PRx,0 of the direct path component is given

as

PRx,p − PRx,0 = −10βlog10

(
τp
τLOS

)

− Lr, (7.26)

where Lr is the loss owing to the reflection from a scatterer [LR96]. If the complex

amplitudes of the multipath components are normalized such that |α0| = 1, then the

complex amplitudes of the pth multipath component can be determined as

αp = 10
PRx,p−PRx,0

20 ejϑ, (7.27)

where ϑ is the random phase of the pth path which is assumed to be drawn from a

uniform distribution in [0, 2π). In the simulations, a path loss exponent of β = 4 and

a reflection loss of Lr = 6 dB are assumed.

It is assumed that the subcarrier spacing is F = 2 kHz and the transmit symbol dura-

tion is T = 1
F
= 500 µsec. The channel coefficients Hm,n(k, ℓ) are calculated using (6.1)

based on the randomly generated parameters of the propagation paths. The generated



110 Chapter 7: Performance gains from tracking a MIMO channel

channel coefficients are normalized to one, i.e., E{|Hm,n(k, ℓ)|2} = 1. K = 32 pilot

subcarriers are considered in 50 time instants. The time and frequency spacing of the

pilot symbols is 15T and 30F , respectively. Thus the pilot symbols sample the channel

transfer function at the Nyquist rate in time and frequency, i.e., 15T · νmax ≈ 1
2
and

30F · τmax ≈
1
2
. In the simulations, it is assumed that the propagation path parameters

are unchanged during the tracking time. Thus the state transition noise u(ℓ) is zero.

However, for the adaptive Kalman filter a non-zero state transition noise, computed

using the Yule-Walker equations, is considered in order to account for the imperfect

estimates of the state transition matrix.

The performance metric is the normalized mean square error (NMSE) for the ℓ = 50th

time instant between the true Hm,n(k, ℓ = 50) and the predicted Ȟm,n(k, ℓ = 50)

channel coefficients:

nmse(Ȟ(ℓ = 50)) =
Ee(ℓ),Hm,n(k,ℓ)

{∣
∣Ȟm,n(k, ℓ = 50)−Hm,n(k, ℓ = 50)

∣
∣
2
}

E
{
|Hm,n(k, ℓ = 50)|2

} . (7.28)

The operator Ee(ℓ),Hm,n(k,ℓ){·} denotes the expectation with respect to the pdf

p (e(ℓ), Hm,n(k, ℓ)). In the simulations, the expectations are computed using time aver-

ages. The prediction performance of the adaptive Kalman filter is analyzed for different

pseudo signal-to-noise-ratios (PSNRs)

PSNR = E
{
|s(k, ℓ)|2

}
/σ2

n, (7.29)

where s(k, ℓ) is the transmitted pilot symbol and σn is the standard deviation of the

measurement noise.

A reference Kalman filter where the Kalman filter parameters are calculated from the

true path parameters for each run of the Monte Carlo simulations is used as a perfor-

mance benchmark. The prediction performance of the Kalman filter based solely on

the Jakes’ model and the truncated one-sided exponential PDP is rather poor regard-

less of the considered dimensions of the MIMO channels or the numbers of propagation

paths. Consequently, the performance of the Kalman filter based on the Jakes’ model

and the truncated one-sided exponential PDP is not considered. Furthermore, for the

same reason, the performance of independent prediction of the SISO subchannels of

the MIMO channel is also not considered.

Fig. 7.4 shows the prediction performances of the reference and the adaptive Kalman

filters. 2×2 and 4×4 MIMO channels are considered for P = 5 and P = 10 propagation

paths. In the simulations, the linear relation between all the pilot symbol subcarriers

for two time instants is exploited, i.e., Ḱ = K and Ĺ = 2. Thus the filter dimension
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Ḱ ·Ĺ = 64 is well beyond the minimum required filter dimension, i.e., P = 5 and P = 10.

The periodical update of the parameters of the adaptive Kalman filter is initiated at

the time instant ℓ = 2Ĺ + 1. It can be seen from Fig. 7.4 that the performance of

the adaptive Kalman filter is bounded by the reference Kalman filter. It can also be

seen that the performance of the reference Kalman filter depends only the number of

propagations paths but not on the dimension of the MIMO channel. This occurs owing

to the narrowband assumption for array signal processing which results in prediction

filter coefficients which are independent of the transmitter and receiver antennas under

consideration as discussed in Section 6.1. It can also be seen from Fig. 7.4 that the

performance of the adaptive Kalman filter improves as the dimension of the MIMO

channel is increased. This arises owing to the exploitation of the spatial property of

the MIMO channel in predicting the channel coefficients.

Fig. 7.4 also shows the impact of the number of the propagation paths on the perfor-

mances of the reference and the adaptive Kalman filters. It can be seen that, for a given

MIMO channel, as the number of the propagation paths increases, the performance of

both the reference and the adaptive Kalman filter deteriorates. This result stems from

the fact that for the same filter dimensions, i.e., Ḱ · Ĺ = 64, more measurements than

the minimum required number of measurements are exploited for the case where the

number of propagation paths is smaller, i.e., P = 5, than for the case where the number

of propagation paths is higher, i.e., P = 10. This results in an improved performance

from noise suppression.

Fig. 7.5 and Fig. 7.6 show the convergence behaviours of the reference and the adap-

tive Kalman filters for different numbers of propagation paths and dimensions of the

MIMO channels when PSNR = 25 dB. It can be seen that the adaptive Kalman filter

converges quickly after ℓ > 2Ĺ iterations. In general, the adaptive Kalman filter starts

to converge quickly after the onset of update of the adaptive Kalman filter parame-

ters. Furthermore, it has been observed from the simulation results that the rate of

convergence increases considerably as the PSNR increases.

The Kalman filter based on the Jakes’ model and the truncated one-sided exponential

PDP would show a significant improvement in performance if the transmitted pilot sym-

bols were to sample the channel transfer function at several multiples of the Nyquist

rate in time and frequency. Fig. 7.7 shows the NMSE prediction performances of the

Kalman filter based on the Jakes’ model and the truncated one-sided exponential PDP

and the adaptive Kalman filter when the pilot symbols sample the channel transfer

function at eight times the Nyquist rate in time and frequency. In the previous simula-

tion results, the performance of the Kalman filter based on the Jakes’ model and the

truncated one-sided exponential PDP was rather too poor to be considered. However,
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Figure 7.4. The NMSE prediction performances of the reference Kalman filter (RKF)
and the adaptive Kalman filter (AKF)

for the over-sampled channel case shown in Fig. 7.7, it can be seen that the Kalman

filter based on the Jakes’ model and the truncated one-sided exponential PDP yields an

appreciable prediction performance. Consequently, in practice, channel prediction and

estimation algorithms based on stochastic models commonly consider pilot symbols

which sample the channel transfer function at several multiples of the Nyquist rate so

that the channel coefficients have strong correlations, thereby making the prediction

problem relatively easy [CZ04, SM05, MCCK07].

A note in passing: It has been assumed that training signal based channel estimation

techniques are employed. The received pilot symbols have been exploited to estimate

the channel at the pilot symbol locations. The channels at other locations are to

be estimated using interpolation techniques. Towards this end, the proposed adaptive

Kalman filter can also be used as an interpolation filter in the frequency domain. In the

adaptive Kalman filter implementation, the measurements for the channel coefficients

to be interpolated can be assumed to be unavailable. Thus the interpolation is to be

performed by the cumulative effect of extracting the information from the measurement

data about the channel coefficients to be interpolated and recursively incorporating this

information with the next measurement data to predict the channel coefficients to be
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Figure 7.5. The convergence behaviours of the reference Kalman filter (RKF) and the
adaptive Kalman filter (AKF), P = 5 and PSNR = 25 dB

interpolated. It has been shown in [SW15a] that satisfactory interpolation performance

can be obtained by the adaptive Kalman filter. Needless to say, the interpolated channel

coefficients have a higher NMSE than the channel coefficients whose measurement data

is available.
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Figure 7.6. The convergence behaviours of the reference Kalman filter (RKF) and the
adaptive Kalman filter (AKF), P = 10 and PSNR = 25 dB
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(Ȟ

(ℓ
=

50
))
/d

B

Jakes’ KF
AKF

Figure 7.7. The NMSE prediction performances of the Kalman filter based on the Jakes’
model and the truncated one-sided exponential PDP (Jakes’ KF) and the adaptive
Kalman filter (AKF) for an eight times over-sampled 2× 2 MIMO channel, P = 5
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Chapter 8

Exploiting side information in MIMO
channel prediction

8.1 Exploiting feedback in frequency-division-

duplex systems

In the previous chapter, it has been shown that significant improvements in channel

prediction performance can be obtained by tracking a MIMO channel. As an example,

tracking the uplink (UL) and the downlink (DL) channels in TDD systems has been

considered. In this chapter, the possible performance improvements brought about by

exploiting side information in tracking a MIMO channel are considered. The double

directional channel model has been derived by considering the physical parameters of

the radio propagation paths. Hence information related to the propagation paths can

be exploited to improve channel prediction performance. For example, nowadays it is

not uncommon for a MS to be equipped with sensors which can measure the speed,

acceleration and direction of motion of the MS. This information can be used to obtain

significant performance improvements in tracking and predicting a MIMO channel.

The adaptive Kalman filter has been derived under the assumption of a small scale

MS mobility which is assumed to result in a negligible change in the radio propagation

scenario. Hence the information about the change in the direction of motion of a MS

can be used to accommodate the adaptive Kalman filter to the change in the radio

propagation scenario.

A rather readily available side information which could be exploited for tracking a

MIMO channel is the feedback information. Side information about the channel ob-

tained from the feedback channel is particularly useful for frequency-division-duplex

(FDD) systems. In FDD systems, the UL data and the DL data are transmitted in

different frequency bands. The UL and the DL channels are identical only if the fre-

quency duplexing distance is much smaller than the coherence bandwidth of the channel

[Mol05]. However, in practice, there is a relatively large frequency duplexing distance

between the UL and the DL bands to enable easy separation between transmission and

reception using affordable filters. Thus, in general, the UL and the DL channels are

not identical. Thus using training signal based channel estimation techniques, the BS

and the MS would only have an estimate of the UL and the DL channel, respectively,

i.e., only receiver side channel information is available. However, at the BS and the MS
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the required transmitter side channel state information (CSI) is that of the DL and the

UL channel, respectively. Towards this end, the BS and the MS transmit their receiver

side CSI via the feedback channel to be used as a transmitter side CSI. However, this

approach yields outdated transmitter side CSI.

Thus the outdated transmitter side CSI obtained via the feedback channel shall be

exploited to obtain an up-to-date transmitter side CSI. In the following, two approaches

to exploiting the outdated transmitter side CSI are considered. In the first approach,

only the outdated transmitter side CSI is exploited to obtain an up-to-date transmitter

side CSI. In the second approach, the outdated transmitter side CSI is jointly exploited

with the up-to-date receiver side CSI to obtain an up-to-date transmitter side CSI. The

second approach constitutes an UL-DL channel transformation at the BS and a DL-UL

channel transformation at the MS. In the following, the UL-DL transformation of the

channel transfer function (CTF) at the BS is considered. The DL-UL transformation

of the channel transfer function at the MS is a similar problem. Furthermore, the first

approach is also considered to obtain an up-to-date transmitter side DL CSI.

Fig. 8.1 shows the UL and DL channel estimation scenario at the BS. It is assumed

that the number of UL and DL subcarriers are equal, i.e., KUL = KDL. A gap band

between the UL and DL channels is not considered. Thus the UL and the DL channel

coefficients are indexed with 1 ≤ kUL ≤ KUL and KUL + 1 ≤ kDL ≤ K, respectively.

However, as mentioned earlier, in practice, there is a relatively large gap band between

the UL and the DL bands. For the first approach of obtaining up-to-date transmitter

side CSI using only the outdated transmitter side CSI, the presence of a gap band has

no influence on estimating the up-to-date transmitter side CSI. However, for the second

approach, i.e., UL-DL channel transformation, the presence of a gap band makes the

UL-DL channel transformation difficult as the prediction has to span a large bandwidth.

In the discussions so far, it has been assumed that the propagation path parameters

remain unchanged during the frequency band under consideration. Thus the impact

of the gap band on the UL-DL channel transformation is not considered. In [SW14d],

UL-DL channel transformation algorithms have been proposed based on the geometric

channel model under consideration of the gap band between the UL and DL channels.

It is assumed that the BS uses training signal based channel estimation to obtain

up-to-date estimates of the UL channel. Furthermore, it is assumed that the BS has

outdated estimates of the DL channel obtained from the MS via the feedback channel.

In practice, the feedback channel is limited and hence a quantized CSI information

is transmitted rather than the estimated DL channel [LHSH04]. Nevertheless, it is

assumed here that the estimated DL channel at the MS is available at the BS after a

delay of one time unit without loss of information. Thus at the BS the estimate of the
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Figure 8.1. The UL and DL channel estimation scenario at the BS

current DL channel is unknown. Furthermore, the estimate of the DL channel at the

next time instant is required so that the BS has an up-to-date transmitter side CSI.

In the first approach, the BS shall exploit the delayed estimates of the DL channel to

predict the DL channel at the next time instant, i.e., a prediction of two time units. On

the other hand, in the second approach, the BS shall exploit the current estimates of

the UL channel and the delayed estimates of the DL channel to predict the DL channel

at the next time instant, i.e., a prediction of one time unit. The first approach is rather

similar to the MIMO channel tracking discussed in the previous chapter, whereas the

second approach requires further treatment. In the following, the second approach is

discussed in detail with appropriate digression to the first approach when necessary.

Owing to its convenience and intuitive description of dynamical systems, the MIMO DL

channel tracking problem in FDD systems is described using a state-space model. Since

training signal based channel estimation is considered, the channel coefficients that are

considered are the channel coefficients of the pilot symbol subcarriers. Consequently,

for the sake of simplicity, the subcarrier index k = 1, . . . , K is re-used to index the

pilot symbol subcarriers instead of all the subcarriers. Furthermore, the time index

ℓ = 1, . . . , L is re-used to index the sequence of the pilot symbols in time. Since the

DL channel coefficients are to be tracked, the state vector shall contain the DL channel

coefficients. It is beneficial to exploit the linear relation between all the DL channel

coefficients of the pilot symbol subcarriers. To this end, all the DL channel coefficients

at a discrete time instant ℓ between the mth receive antenna and the nth transmit
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antenna shall be considered, i.e.,

h(DL)
m,n (ℓ) = (Hm,n(K, ℓ), Hm,n(K − 1, ℓ), . . . , Hm,n(KUL + 1, ℓ))T. (8.1)

Stacking such vectors from all M ·N transmit and receive antennas results in a vector

hDL(ℓ) = ((h
(DL)
1,1 (ℓ))T, (h

(DL)
1,2 (ℓ))T, . . . , (h

(DL)
M,N(ℓ))

T)T. (8.2)

Considering the vector hDL(ℓ) for Ĺ time instants means that the evolution of each DL

channel coefficient, for each of theM ·N transmit and receive antennas, is represented by

Ḱ ·Ĺ other DL channel coefficients where Ḱ = KDL, i.e., the number of DL pilot symbol

subcarriers. Each DL channel coefficient can be represented as a linear combination of

Ḱ · Ĺ other DL channel coefficients as long as Ḱ · Ĺ ≥ P , where P is the number of

propagation paths. Thus considering the vector hDL(ℓ) for Ĺ time instants results in

the DL state vector

θDL(ℓ) = (hT
DL(ℓ),h

T
DL(ℓ− 1), . . . ,hT

DL(ℓ− Ĺ+ 1))T. (8.3)

The state transition equation describes the evolution of each of the DL channel coeffi-

cients with time. It has been shown that each channel coefficient can be represented as

a linear combination of a sufficient number of other channel coefficients. Consequently,

the state transition equation is linear. The state transition equation can be written as

θDL(ℓ) = B · θDL(ℓ− 1) + Γ · uDL(ℓ), (8.4)

where theM ·N ·Ḱ×1 vector uDL(ℓ) is assumed to be zero mean complex multivariate

white Gaussian distributed with covariance matrix RuDLuDL
. The M ·N · Ḱ · Ĺ×M ·

N · Ḱ · Ĺ state transition matrix B and the M ·N · Ḱ · Ĺ×M ·N · Ḱ matrix Γ can be

derived in a similar manner as in (7.5) and (7.6), respectively.

The measurement equation of the state-space model can be developed by considering

the signal model. The UL-DL channel transformation exploits the current UL channel

measurements and the one time unit delayed DL channel measurements, which are

fedback from the MS to the BS, to predict the DL channel coefficients. Thus the

measurement vector is defined as e(ℓ) = (eTUL(ℓ), e
T
DL(ℓ−1))T, where the vectors eUL(ℓ)

and eDL(ℓ−1) are the current UL and the delayed DL measurements, respectively. Let

the matrix SUL(ℓ) and SDL(ℓ) denote diagonal matrices of size M ·N · Ḱ with elements

on the diagonal being the transmitted UL and DL pilot symbols, respectively. The

2M ·N · Ḱ × 1 received pilot symbol vector e(ℓ) is then given as

e(ℓ) = G(ℓ) · θDL(ℓ) + n(ℓ), (8.5)
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where

G(ℓ) =




SUL(ℓ) ·T

0M ·N ·Ḱ SDL(ℓ− 1) 0M ·N ·Ḱ×M ·N ·Ḱ·(Ĺ−2)



 (8.6)

and n(ℓ) is the measurement noise which is a multivariate zero mean complex white

Gaussian noise with covariance matrix Rnn. The M ·N · Ḱ ×M ·N · Ḱ · Ĺ matrix T is

the DL to UL channel transformation matrix which transforms the state vector θDL(ℓ)

containing the DL channel coefficients into the UL channel coefficient vector hUL(ℓ) so

that the current UL measurements can be exploited. The matrix T is given as

T =






T(1) · · · 0Ḱ T(2) · · · 0Ḱ · · · T(Ĺ) · · · 0Ḱ
...

. . .
...

...
. . .

...
...

. . .
...

0Ḱ · · · T(1) 0Ḱ · · · T(2) · · · 0Ḱ · · · T(Ĺ)




 . (8.7)

The Ḱ × Ḱ · Ĺ coefficient matrix

T̃ =
(

T(1) · · · T(Ĺ)
)

(8.8)

weights the DL channel coefficient vector
(

(h
(DL)
m,n (ℓ))T, . . . , (h

(DL)
m,n (ℓ− Ĺ+ 1))T

)T

con-

stituting the DL state vector θDL(ℓ) to yield the UL channel coefficient vector h
(UL)
m,n (ℓ).

The coefficient matrix T̃ can be calculated, given the delays τp and Doppler shifts νp,

using (6.27) as

T̃ =
(
ϕ∆k=KUL−K,∆ℓ=0 · · · ϕ∆k=1−K,∆ℓ=0

)T
. (8.9)

The Ḱ · Ĺ × 1 filter coefficient vector ϕ∆k=kUL−K,∆ℓ=0 weights the DL channel coeffi-

cient vector
(

(h
(DL)
m,n (ℓ))T, . . . , (h

(DL)
m,n (ℓ− Ĺ+ 1))T

)T

to yield the UL channel coefficient

Hm,n(kUL, ℓ). The prediction depths ∆ℓ = 0 in time and ∆k = kUL −K in frequency

are chosen as the UL channel coefficient Hm,n(kUL, ℓ) is located at a prediction depths

of ∆ℓ = 0 in time and ∆k = kUL − K in frequency from the reference DL channel

coefficient Hm,n(K, ℓ).

As both the state transition and the measurement equations are linear and Gaussian,

the Kalman filter can be used to obtain optimal estimates, in the minimum mean

square error (MMSE) sense, of the state vector. The Kalman filter starts with an

initial estimate θ̂DL(0|0) = 0M ·N ·Ḱ·Ĺ×1 of the initial state vector θDL(0|0) and an initial

covariance matrix M(0|0) = IM ·N ·Ḱ·Ĺ of the estimation error and recursively computes

estimates θ̂DL(ℓ|ℓ) of the state vector θDL(ℓ) and the covariance matrix M(ℓ|ℓ) of the

estimation error using the following equations

• prediction step:

M(ℓ|ℓ− 1) = B ·M(ℓ− 1|ℓ− 1) ·B∗T + Γ ·RuDLuDL
· Γ∗T (8.10)
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θ̂DL(ℓ|ℓ− 1) = B · θ̂DL(ℓ− 1|ℓ− 1) (8.11)

• update step:

K(ℓ) =
M(ℓ|ℓ− 1) ·G∗T(ℓ)

G(ℓ) ·M(ℓ|ℓ− 1) ·G∗T(ℓ) +Rnn

(8.12)

θ̂DL(ℓ|ℓ) = θ̂DL(ℓ|ℓ− 1) +K(ℓ) ·
(

e(ℓ)−G(ℓ) · θ̂DL(ℓ|ℓ− 1)
)

(8.13)

M(ℓ|ℓ) = M(ℓ|ℓ− 1)−K(ℓ) ·G(ℓ) ·M(ℓ|ℓ− 1). (8.14)

Estimates of the DL channel coefficients at time instant ℓ are obtained from θ̂DL(ℓ|ℓ),

whereas the predicted DL channel coefficients at time instant ℓ are obtained from

θ̂DL(ℓ|ℓ− 1).

In the previous discussion, the UL-DL channel transformation using the Kalman filter

has been presented. The Kalman filter for obtaining the DL channel estimates using

only the delayed DL channel measurements can be easily adapted from the UL-DL

channel transformation Kalman filter. While the state transition equation is identical,

the measurement equation is different in that only the delayed DL channel measure-

ments are considered. Since delayed DL channel measurements are used to track the

DL channel, the Kalman filter tracks the DL channel with one time unit delay. Hence

in order to obtain an up-to-date estimate of the DL channel, two time units prediction

has to be performed. In the prediction step of the Kalman filter, two time units predic-

tion can be performed by multiplying the estimate θ̂DL(ℓ− 1|ℓ− 1) of the state vector

θDL(ℓ− 1) at time instant ℓ− 1 with the square of the state transition matrix B, i.e.,

θ̂DL(ℓ+ 1|ℓ− 1) = B2 · θ̂DL(ℓ− 1|ℓ− 1). (8.15)

The two step predicted DL channel coefficients at time instant ℓ− 1 are obtained from

θ̂DL(ℓ+ 1|ℓ− 1).

8.2 Downlink channel prediction using an adaptive

Kalman filter

As discussed in the previous chapter, in order to use the Kalman filter, which yields op-

timal estimates of the DL channel coefficients, estimates of the delays and the Doppler

shifts of each propagation path are required. In this chapter, performing up-to-date

estimates of the DL channel at the BS is of interest. In the two-step DL channel pre-

diction approach, the DL channel is to be tracked and predicted using the delayed DL
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channel measurements, whereas in the UL-DL channel transformation, the DL chan-

nel is to be tracked and predicted using the current UL and the delayed DL channel

measurements. Consequently, the adaptive Kalman filter presented in the previous

chapter shall be considered to obtain up-to-date estimates of the DL channel at the

BS for both approaches. In the adaptive Kalman filter, early estimates of the DL chan-

nel coefficients are obtained using estimates of the Kalman filter parameters which

are determined using stochastic channel models. The state transition matrix and the

covariance matrix of the state transition noise are determined from the Yule-Walker

equations based on the Jakes’ model and the truncated one-sided exponential PDP. An

initial estimate of the DL to UL channel transformation matrix T can also be obtained

using the Jakes’ model and the truncated one-sided exponential PDP.

The DL to UL channel transformation matrix T transforms the state vector θDL(ℓ) into

the UL channel coefficient vector hUL(ℓ) so that the current UL measurements can be

exploited. Initial estimates of the DL to UL channel transformation matrix T can be

determined using the correlation matrix of the channel obtained from the Jakes’ model

and the truncated one-sided exponential PDP. The DL to UL channel transformation

matrix T̂ which yields the MMSE estimate T̂ · θDL(ℓ) of the UL channel coefficient

vector hUL(ℓ) can be determined by solving

T̂ = arg min
T

EhUL(ℓ),θDL(ℓ) {‖hUL(ℓ)−T · θDL(ℓ)‖2} , (8.16)

where the operator EhUL(ℓ),θDL(ℓ){·} denotes the expectation with respect to the pdf

p (hUL(ℓ), θDL(ℓ)). The above problem can be solved using the Wiener filter which

finds a linear MMSE estimator based on the correlation between hUL(ℓ) and θDL(ℓ).

The estimate T̂ of the DL to UL channel transformation matrix which yields the MMSE

estimate of the UL channel coefficient vector hUL(ℓ) is given as [Kay93]

T̂ = EhUL(ℓ),θDL(ℓ)

{
hUL(ℓ) · θ

∗T
DL(ℓ)

}
·
(
EθDL(ℓ)

{
θDL(ℓ) · θ

∗T
DL(ℓ)

})−1

= RUL,DL ·R
−1
DL,DL, (8.17)

where the operator EθDL(ℓ){·} denotes the expectation with respect to the pdf p (θDL(ℓ)).

Estimates of the covariance matrices RUL,DL(ℓ) and RDL,DL(ℓ) of the channel can be

calculated using the Jakes’ model and the truncated one-sided exponential PDP.

As described in the previous chapter, the stochastic channel models, i.e., the Jakes’

model and the truncated one-sided exponential PDP, describe only the statistics of

the whole ensemble of channel realizations but not the individual channel realizations.

Thus the stochastic channel models do not reflect the statistics of a single channel real-

ization and the estimated autocorrelation function of the channel may not be accurate

enough to be used in practice with high reliability. Consequently, the estimated channel
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coefficients are then used to periodically update the estimates of the state transition

matrix, the covariance matrix of the state transition noise and the DL to UL channel

transformation matrix.

The initial estimate of the DL to UL channel transformation matrix T is periodically

updated using the estimated UL channel coefficients Ĥm,n(kUL, ℓ) and the DL channel

coefficients Ĥm,n(kDL, ℓ) by exploiting the linear relation between the UL and the DL

channel coefficients. Towards this end, a system of linear equations can be set up from

the estimated channel coefficients using (6.7), i.e.,

Ĥm,n(kUL, ℓ) ≈
Ḱ−1∑

ḱ=0

Ĺ−1∑

ℓ́=0

ϕ
(ḱ,ℓ́)
∆k=kUL−K,∆ℓ=0 · Ĥm,n(K − ḱ, ℓ− ℓ́). (8.18)

In order to solve for the filter coefficient vector ϕ∆k=kUL−K,∆ℓ=0, a system of linear

equations should be set up by considering different sets of estimated DL and UL channel

coefficients which overlap in time. The filter coefficient vector ϕ∆k=kUL−K,∆ℓ=0 can be

determined from the set up system of linear equations using the method of total least

squares. Following similar derivations as shown in the previous chapter, it is also

possible to estimate the DL to UL channel transformation matrix T at once using the

total least squares estimator.

The DL to UL channel transformation matrix T relates the DL channel coefficients

and the UL channel coefficients so that the current UL channel measurements can be

exploited to estimate the DL channel coefficients. The imperfect estimates of the DL

to UL channel transformation matrix T can result in distortion of the information

contained in the UL channel measurements. Thus depending on the accuracy of esti-

mates of the DL to UL channel transformation matrix T, it is possible that erroneous

information about the DL channel coefficients can be extracted from the current UL

channel measurements. Thus the adaptive Kalman filter shall consider the reliability

of estimates of the DL to UL channel transformation matrix T so that the information

obtained from the current UL channel measurements shall be weighted accordingly.

Towards this end, the estimate T̂ of the DL to UL channel transformation matrix T

is assumed to be a superposition of the true DL to UL channel transformation matrix

T and an estimation error modelled as Gaussian noise. Hence the measurement noise

can also be used to model the error in the estimates of the DL to UL channel trans-

formation matrix T. The covariance matrix of the estimation error of the DL to UL

channel transformation matrix T can be estimated using the Yule-Walker equations as

shown in Appendix C by considering the evolution of the channel coefficients in the

frequency domain. Initial estimates of the autocorrelation function of the channel can

be obtained from the Jakes’ model and the truncated one-sided exponential PDP, while
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at the later stages estimates of the autocorrelation function of the channel is obtained

from the estimated channel coefficients using time averaging. Thus the update stage

of the Kalman filter is modified as follows to include the covariance matrix RTT of the

estimation error of the DL to UL channel transformation matrix T

K(ℓ) =
M(ℓ|ℓ− 1) ·G∗T(ℓ)

G(ℓ) ·M(ℓ|ℓ− 1) ·G∗T(ℓ) + R̃nn

, (8.19)

where

R̃nn = Rnn +

(
RTT 0M ·N ·Ḱ

0M ·N ·Ḱ 0M ·N ·Ḱ

)

. (8.20)

Thus at the early recursions of the adaptive Kalman filter the delayed DL measurements

are given more weight than the current UL channel measurements in estimating the

DL channel measurements. This enables the adaptive Kalman filter to mitigate the

information loss and possible inclusion of misleading information from the processed

current UL channel measurements. However, as the tracking progresses, the current

UL and the delayed DL channel measurements are properly weighted to reflect the

reliability of extracting information from the current UL channel measurements using

the improved estimate T̂ of the DL to UL channel transformation matrix.

Estimates of the state transition matrix and the covariance matrix of the state transi-

tion noise are also periodically updated using the estimated channel coefficients. In the

two-step DL channel prediction, estimates of the state transition matrix and the covari-

ance matrix of the state transition noise are updated using the estimated DL channel

coefficients. For the UL-DL channel transformation approach, periodical update of

estimates of the state transition matrix and the covariance matrix of the state transi-

tion noise can be estimated from the estimated DL channel coefficients. However, in

the UL-DL channel transformation, the current UL channel measurements, processed

by the DL to UL channel transformation matrix, and the delayed DL channel mea-

surements are used to obtain estimates of the DL channel coefficients. As mentioned

earlier, processing the current UL channel measurements using the initial imperfect

estimate of the DL to UL channel transformation matrix T can result in distortion

of the information contained by the UL channel measurements. Consequently, using

the early estimated DL channel coefficients to estimate the state transition matrix and

the covariance matrix of the state transition noise can result in unreliable estimates.

Thus estimates of the UL channel coefficients which are estimated using the current UL

channel measurements at the BS are used to obtain estimates of the state transition

matrix and the covariance matrix of the state transition noise. For both approaches,

the state transition matrix and the covariance matrix of the state transition noise are

estimated from the estimated channel coefficients using the same technique discussed

in the previous chapter.
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The UL-DL channel transformation adaptive Kalman filter initially uses the state tran-

sition matrix, the covariance matrix of the state transition noise and the DL to UL

channel transformation matrix calculated using the correlation matrix of the channel

obtained from the Jakes’ model and the truncated one-sided exponential PDP. The

estimated channel coefficients, which are obtained from the adaptive Kalman filters,

are then used to periodically update the parameters of the Kalman filter. This re-

sults in an UL-DL channel transformation adaptive Kalman filter which matches the

actual mobile radio channel. Fig. 8.2 shows a block diagram of the UL-DL channel

transformation adaptive Kalman filter for FDD systems.

8.3 Performance analysis

In this section, the performances of the proposed MIMO DL channel prediction algo-

rithms for FDD systems is analyzed considering a microcellular mobile radio system

using Monte Carlo simulations with 104 independent trials. Except for the number of

UL and DL pilot symbols, the simulation setup is identical to the one considered in the

previous chapter, i.e., Section 7.3. The generated channel coefficients are normalized

to one, i.e., E{|Hm,n(k, ℓ)|2} = 1. KUL = 32 UL and KDL = 32 DL pilot subcarriers

are considered in 50 time instants. The performance metric is the normalized mean

square error (NMSE) for the ℓ = 50th time instant between the true Hm,n(kDL, ℓ = 50)

and the predicted Ȟm,n(kDL, ℓ = 50) DL channel coefficients:

nmse(ȞDL(ℓ = 50)) =
Ee(ℓ),Hm,n(kDL,ℓ)

{∣
∣Ȟm,n(kDL, ℓ = 50)−Hm,n(kDL, ℓ = 50)

∣
∣
2
}

E
{
|Hm,n(kDL, ℓ = 50)|2

} .

(8.21)

The operator Ee(ℓ),Hm,n(kDL,ℓ){·} denotes the expectation with respect to the pdf

p (e(ℓ), Hm,n(kDL, ℓ)). In the simulations, the expectations are computed using time

averages. The prediction performance of the adaptive Kalman filter is analyzed for

different pseudo signal-to-noise-ratios (PSNRs)

PSNR = E
{
|s(kDL, ℓ)|

2} /σ2
n, (8.22)

where s(kDL, ℓ) is the transmitted DL pilot symbol and σn is the standard deviation

of the measurement noise. A reference two-step DL channel prediction Kalman filter

and a reference UL-DL channel transformation Kalman filter where the Kalman filter

parameters are calculated from the true propagation path parameters for each run of

the Monte Carlo simulations are used as performance benchmarks for the two-step

DL channel prediction and the UL-DL channel transformation adaptive Kalman filters,

respectively.
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Ĝ(ℓ)

K̂(ℓ)

measurement vector
e(ℓ)

Kalman gain

K(ℓ)

K(ℓ)
Σ Σ

estimated DL state vector
θ̂DL(ℓ|ℓ)

predicted DL state vector
θ̂DL(ℓ|ℓ− 1)

estimated UL state vector
θ̂UL(ℓ|ℓ)

z−1

++
+−

Figure 8.2. A block diagram of the UL-DL channel transformation adaptive Kalman filter for FDD systems



126 Chapter 8: Exploiting side information in MIMO channel prediction

Fig. 8.3 shows the prediction performances of the two-step DL channel prediction and

the UL-DL channel transformation adaptive Kalman filters for different numbers of

propagation paths and dimensions of the MIMO channels. 2 × 2 and 4 × 4 MIMO

channels are considered for P = 5 and P = 10 propagation paths. In the simulations,

the linear relation between all the DL pilot symbol subcarriers for two time instants

is exploited, i.e., Ḱ = KDL and Ĺ = 2. Thus the filter dimension Ḱ · Ĺ = 64 is well

beyond the minimum required filter dimensions, i.e., P = 5 and P = 10. Consideration

of higher filter dimensions results in an improved performance owing to the gain from

noise suppression from exploitation of more measurements for each channel coefficient

[SW15b]. It can be seen from Fig. 8.3 that the performances of the two-step DL channel

prediction and the UL-DL channel transformation adaptive Kalman filters are bounded

by their respective reference Kalman filters. It can also be seen that the performances

of the reference Kalman filters depend only the number of propagations paths but

not on the dimension of the MIMO channel. This occurs owing to the narrowband

assumption for array signal processing which results in prediction filter coefficients

which are independent of the transmitter and receiver antennas under consideration as

discussed in Section 6.1. On the other hand, the performance of the adaptive Kalman

filter improves as the dimension of the MIMO channel is increased. This occurs owing

to the exploitation of the spatial property of the MIMO channel in predicting the

channel coefficients.

Fig. 8.3 also shows the impact of the number of the propagation paths on the perfor-

mances of the reference and the adaptive Kalman filters. It can be seen that, for a given

MIMO channel, as the number of the propagation paths increases, the performances of

both the reference and the adaptive Kalman filters deteriorate. This result stems from

the fact that for the same filter dimensions, i.e., Ḱ · Ĺ = 64, more measurements than

the minimum required number of measurements are exploited for the case where the

number of propagation paths is smaller, i.e., P = 5, than for the case where the number

of propagation paths is higher, i.e., P = 10. This results in an improved performance

from noise suppression.

Comparing the two DL channel prediction approaches, it can be seen from Fig. 8.3 that

the reference Kalman filter for the UL-DL channel transformation has a lower NMSE

than the reference Kalman filter for the two-step DL channel prediction. This occurs

owing to the fact that the UL-DL channel transformation approach exploits both the

current UL and the delayed DL channel measurements, whereas the two step DL chan-

nel prediction approach exploits only the delayed DL channel measurements. Hence

the UL-DL channel transformation benefits from consideration of the extra informa-

tion from the current UL channel measurements. However, the two-step DL channel



8.3 Performance analysis 127

prediction adaptive Kalman filter yields a superior performance over the UL-DL chan-

nel transformation adaptive Kalman filter. This result stems from the fact that the

imperfect estimates of the DL to UL channel transformation matrix T result in infor-

mation distortion which impairs the performance of the UL-DL channel transformation

adaptive Kalman filter.

Fig. 8.4 shows the convergence behaviours of the reference and the adaptive Kalman

filters for different numbers of propagation paths and dimensions of the MIMO channels

when PSNR = 25 dB. It can be seen that the reference two-step DL channel prediction

and the UL-DL channel transformation Kalman filters converge quickly. Furthermore,

the two-step DL channel prediction adaptive Kalman filter also converges quickly after

ℓ > 2Ĺ iterations. On the other hand, the UL-DL channel transformation adaptive

Kalman filter converges gradually. This occurs owing to the fact that for the UL-DL

channel transformation adaptive Kalman filter the imperfect estimates of the DL to

UL channel transformation matrix T precludes the UL-DL channel transformation

adaptive Kalman filter from exploiting all the available information. Hence it takes

relatively long time before sufficient information is available to have reliable estimates of

the adaptive Kalman filter parameters. In general, the two-step DL channel prediction

adaptive Kalman filter starts to converge quickly after the onset of update of the two-

step DL channel prediction adaptive Kalman filter parameters, whereas the UL-DL

channel transformation adaptive Kalman filter converges gradually. Furthermore, it

has been observed from the simulation results that the rate of convergence for the two-

step DL channel prediction and the UL-DL channel transformation adaptive Kalman

filters increases considerably as the PSNR increases.

Even though the UL-DL channel transformation adaptive Kalman filter has more infor-

mation available than the two-step DL channel prediction adaptive Kalman filter, the

lack of sufficiently correct estimates of the DL to UL channel transformation matrix

can preclude the proposed UL-DL transformation algorithm from exploiting the avail-

able information. Furthermore, in some cases the gap band between the UL and DL

channels is so large, e.g., up to 680 MHz [3GP14], that the assumption of radio prop-

agation path parameters being constant over the UL and DL channels might not be a

sound assumption. Consequently, in such cases, the two-step DL channel prediction is

probably a safe choice in order to guarantee a satisfactory performance.



128 Chapter 8: Exploiting side information in MIMO channel prediction

0 5 10 15 20 25
−30

−25

−20

−15

−10

−5

0

PSNR/dB

n
m
se
(Ȟ
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transformation (ref. UL-DL) and the reference two-step DL channel prediction (ref.
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Chapter 9

Summaries

9.1 Summary in English

In this thesis, the spatio-temporal channel properties of multiple-input multiple-output

(MIMO) systems are exploited to obtain valuable insights and new approaches to lo-

calization and channel prediction in MIMO systems which yield elegant solutions to

crucial problems in localization and channel prediction. The spatio-temporal channel

properties of MIMO systems are studied using the double directional channel model

which characterizes MIMO channels by the complex amplitudes, delays, Doppler shifts,

angles-of-departure and angles-of-arrival of the propagation paths.

Exploitation of the spatio-temporal channel properties of MIMO systems enables local-

ization of a mobile station (MS) in non-line-of-sight (NLOS) multipath environments

under the explicit consideration of scatterers. It is assumed that the propagation paths

which are considered for localization contain a maximum of one scattering. The param-

eters of each propagation path, i.e., the time-of-arrival, the angle-of-departure and the

angle-of-arrival, define a linear relation between the positions of the BS, the correspond-

ing scatterer and the MS. The linear relations obtained from all propagation paths are

used to determine the position of the MS. Owing to the physical mobility constraints

of a MS, there is a strong statistical dependency between the consecutive positions of

the MS. By modeling the mobility of a MS using a first-order Gauss-Markov process,

the dependency between the successive positions of the MS can be exploited to yield

improved estimates of the positions of the MS.

The idea of MS localization in NLOS multipath environments under the explicit con-

sideration of scatterers can be easily extended to network localization. In network

localization, cooperation between the MSs can be used to obtain satisfactory perfor-

mance even without the explicit consideration of scatterers, i.e., using only the times-of-

arrival (TOA) measurements. In this case, the number of TOA measurements increases

quadratically with the number of MSs, whereas the number of unknowns increases only

linearly with the number of MSs. Hence the extra information from cooperation can

be used to reduce the estimation error. In general, the measured TOA of the NLOS

propagation paths are much larger than the true TOA of the line-of-sight (LOS) prop-

agation paths. Hence the direct usage of the TOA measurements would result in a
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severe estimation error. Consequently, nearly optimal estimates of the positions of the

MSs are obtained by using techniques from robust estimation theory where the TOA

measurements are systematically weighted so that the impact of outliers resulting from

the NLOS propagation paths is minimized.

Valuable insights and new approaches to MIMO channel prediction can be obtained

from exploitation of the spatio-temporal channel properties of MIMO systems. In the

double directional channel model, each channel coefficient is represented as a weighted

sum of products of complex exponentials which depend on the propagation path param-

eters. For small scale MS mobility, the propagation path parameters can be assumed

to be constant. Consequently, each channel coefficient is a weighted sum of products

of complex exponentials with the same weights for each channel coefficient. Thus the

channel prediction is performed by a mere phase rotation of each of the products of the

complex exponentials. Since each channel coefficient is a weighted sum of products of

complex exponentials with the same weights for each channel coefficient, it is possible

to predict any channel coefficient as a linear combination of other channel coefficients.

It is proved that a time and frequency independent filter whose dimension is at least

equal to the number of propagation paths can be used to weight the channel coefficients.

The filter depends on the delays and Doppler shifts of the propagation paths. Owing

to the narrowband assumption for array signal processing, the filter coefficients are the

same for all single-input single-output (SISO) subchannels of a MIMO channel.

For small scale MS mobility, satisfactory channel prediction performance could be ob-

tained by tracking a MIMO channel. For optimal MIMO channel prediction, estimates

of the propagation path parameters are required to determine the filter coefficients.

However, estimation of the propagation path parameters requires computationally in-

tensive array signal processing algorithms. Thus initial estimates of the filter coeffi-

cients are determined using estimates of the channel correlation obtained from stochas-

tic channel models. However, as most channels of interest are not ergodic, the consid-

ered stochastic channel models do not describe the statistics of the individual channel

realizations. Consequently, the stochastic channel models are used for initialization

only and then the estimates of the filter coefficients are periodically updated using

the linear relation between the estimated channel coefficients. Further performance

gains could be obtained by exploiting side information. Of particular importance for

frequency-division-duplex systems is the side information obtained from the feedback

channel. The delayed and hence outdated transmitter side channel state information

(CSI) obtained from the feedback channel can be used independently or jointly with

the receiver side CSI to obtain up-to-date transmitter side CSI.



132 Chapter 9: Summaries

9.2 Zusammenfassung in deutscher Sprache

In der Disssertation werden die raumzeitlichen Kanaleigenschaften von MIMO-

Systemen (engl. multiple-input multiple-output) ausgenutzt, um wertvolle Einblicke

und neue Ansätze zur Lokalisierung und Kanalprädiktion in MIMO-Systemen zu er-

halten. Dadurch können elegante Lösungen für zentrale Probleme bei der Lokalisie-

rung und Kanalprädiktion erhalten werden. Die raumzeitlichen Kanaleigenschaften

von MIMO-Systemen werden mit dem doppelt-direktionalen Kanalmodell untersucht,

das MIMO-Kanäle anhand der komplexen Amplituden, Laufzeiten, Dopplerfrequenzen,

Einfallswinkel und Austrittswinkel der Ausbreitungspfade charakterisiert.

Das Ausnutzen der raumzeitlichen Kanaleigenschaften von MIMO-Systemen ermöglicht

die Lokalisierung einer Mobilstation (MS) in NLOS-Mehrwegeumgebungen (engl. non-

line-of-sight) unter der expliziter Berücksichtigung von Streuern. Es wird angenommen,

dass die für die Lokalisierung genutzten Ausbreitungspfade maximal eine Streuung

enthalten. Die Parameter eines Ausbreitungspfades, d.h. die Laufzeit, der Einfallswinkel

und der Austrittswinkel, definieren eine lineare Beziehung zwischen den Positionen der

BS, dem entsprechenden Streuer und der MS. Die Position der MS wird auf Basis der

linearen Beziehungen aller Ausbreitungspfade bestimmt. Aufgrund der eingeschränkten

physikalischen Mobilität einer MS gibt es eine starke statistische Abhängigkeit zwischen

den aufeinanderfolgenden Positionen der MS. Durch Modellieren der Mobilität unter

Verwendung eines Gauss-Markov-Prozesses erster Ordnung kann diese Abhängigkeit

zur Verbesserung der Positionsschätzung genutzt werden.

Die Idee der MS Lokalisierung in NLOS-Mehrwegeumgebungen unter der expliziten

Berücksichtigung von Streuern kann leicht für die Netzwerk-Lokalisierung erweitert

werden. In der Netzwerk-Lokalisierung kann die Kooperation zwischen den MSen ge-

nutzt werden, um eine ausreichende Leistung auch ohne die explizite Berücksichtigung

von Streuern zu erhalten, d.h. nur unter Verwendung der Laufzeitmessungen. In die-

sem Fall wächst die Anzahl der Laufzeitmessungen quadratisch mit der Anzahl der

MSen, während die Anzahl der Unbekannten nur noch linear mit der Anzahl der

MSen wächst. Somit kann die Zusatzinformation aus der Kooperation verwendet

werden, um den Schätzfehler zu verringern. Die gemessenen Laufzeiten der NLOS-

Ausbreitungspfade sind in der Regel viel größer als die tatsächlichen Laufzeiten der

LOS-Ausbreitungspfade (engl. line-of-sight). Daher würde die direkte Verwendung

der Messungen zu einem großen Schätzfehler führen. Folglich werden nahezu opti-

male Positionsschätzungen der MSen unter Verwendung von Techniken der robusten

Schätztheorie erhalten. Dabei werden die Laufzeitmessungen systematisch gewichtet,
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so dass die Auswirkung von Ausreißern resultierend aus den Messungen der NLOS-

Ausbreitungspfade minimiert wird.

Wertvolle Einblicke und neue Ansätze zur MIMO-Kanalprädiktion können aus der Aus-

nutzung der raumzeitlichen Kanaleigenschaften von MIMO-Systemen erhalten werden.

In dem doppelt-direktionalen Kanalmodell wird jeder Kanalkoeffizient als eine gewich-

tete Summe von Produkten komplexer Exponentialfunktionen, die von den Ausbrei-

tungspfadparametern abhängig sind, dargestellt. Bewegt sich die MS nur geringfügig

(engl. smale scale MS mobility) dann können die Ausbreitungspfadparameter als kon-

stant angenommen werden. Folglich ist jeder Kanalkoeffizient eine gewichtete Summe

von Produkten komplexer Exponentialfunktionen mit den selben Gewichten für jeden

Kanalkoeffizienten. Für die Kanalprädiktion muss dann nur eine Phasendrehung der

einzelnen Produkte aus den komplexen Exponentialfunktionen durchgeführt werden.

Da jeder Kanalkoeffizient eine gewichtete Summe von Produkten komplexer Exponen-

tialfunktionen mit den selben Gewichten für jeden Kanalkoeffizient ist, kann ein beliebi-

ger Kanalkoeffizient als lineare Kombination von anderen Kanalkoeffizienten dargestellt

werden. Es wird nachgewiesen, dass ein zeit- und frequenzunabhängiges Filter zur Wich-

tung der Kanalkoeffizienten verwendet werden kann. Die Dimension des Filters muss

mindestens der Anzahl der Ausbreitungspfade entsprechen. Das Filter ist abhängig von

den Laufzeiten und Dopplerfrequenzen der Ausbreitungspfade. Aufgrund der in der

Array-Signalverarbeitung genutzten Schmalbandannahme sind die Filterkoeffizienten

für alle SISO (engl. single-input single-output) Subkanäle eines MIMO-Kanals gleich.

Für geringfügige Bewegungen der MS konnte eine ausreichende Prädiktionleistung

durch das Nachführen des MIMO-Kanals erhalten werden. Zur optimalen MIMO-

Kanalprädiktion sind Schätzungen der Ausbreitungspfadparameter erforderlich, um

die Filterkoeffizienten zu bestimmen. Jedoch erfordert das Schätzen der Ausbreitungs-

pfadparameter rechenintensive Signalverarbeitungsalgorithmen. Daher werden erste

Schätzungen der Filterkoeffizienten unter Verwenden von Schätzungen der Kanalkorre-

lation auf Basis stochastischer Kanalmodelle bestimmt. Da jedoch die meisten inter-

essierenden Kanäle nicht ergodisch sind, beschreiben die stochastischen Kanalmodelle

nicht die Statistik der einzelnen Kanalrealisierungen. Folglich werden die stochastischen

Kanalmodelle nur für die Initialisierung verwendet. Die Schätzwerte der Filterkoeffizi-

enten werden dann unter Verwenden der linearen Beziehung zwischen den geschätzten

Kanalkoeffizienten periodisch aktualisiert. Weitere Performanzgewinne konnten durch

Ausnutzen von Seiteninformation erzielt werden. Für Frequenzduplexsysteme ist die

gewonnene Seiteninformationen aus dem Rückkanal von besonderer Bedeutung. Die

aus dem Rückkanal gewonnene, verzögerte und somit veraltete senderseitige CSI (engl.

channel state information) kann unabhängig oder gemeinsam mit der empfängerseitigen

CSI verwendet werden, um aktuelle senderseitige CSI zu erhalten.
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Appendix A

Calculation of the Jacobian matrix

In the following, simpler expressions for evaluating the Jacobian matrix of the

propagation path parameters are presented. Let the 2(P + 1) × 1 vector psm =

(pT
sc,1, . . . ,p

T
sc,P ,p

T
ms)

T denote the two dimensional positions of the MS and the scat-

terers. Furthermore, let the 4P × 1 vector

g(psm) =




d1, . . . , dP
︸ ︷︷ ︸

d

, d1,q, . . . , dP,q
︸ ︷︷ ︸

dq

, φbs,1, . . . , φbs,P
︸ ︷︷ ︸

φbs

, φms,1, . . . , φms,P
︸ ︷︷ ︸

φms






T

(A.1)

denote the path lengths, the path length differences, the angles-of-departure and the

angles-of-arrival of the P propagation paths. The 4P × 2(P + 1) Jacobian matrix

∂g(psm)

∂psm
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can be calculated using the derivatives

∂d

∂xms
= −

(
xsc,1 − xms

dms,1
, . . . ,

xsc,P − xms

dms,P

)T

(A.3)

∂d

∂yms
= −

(
ysc,1 − yms

dms,1
, . . . ,

ysc,P − yms

dms,P

)T

(A.4)

∂d

∂xsc
= diag

(
xsc,1 − xms
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, . . . ,

xsc,P − xms

dms,P

)

+ diag

(
xsc,1 − xbs,1

dbs,1
, . . . ,
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)

(A.5)
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∂d
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= diag
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∂dq

∂xms
= −

(
xsc,1 − xms

dms,1
, . . . ,

xsc,P − xms

dms,P

)T

+

(
xsc,1 − xms

dms,1
, . . . ,

xsc,1 − xms

dms,1

)T

(A.7)

∂dq

∂yms
= −

(
ysc,1 − yms

dms,1
, . . . ,

ysc,P − yms

dms,P

)T

+

(
ysc,1 − yms

dms,1
, . . . ,

ysc,1 − yms

dms,1

)T

(A.8)

∂dq

∂xsc

= diag

(
xsc,1 − xms

dms,1

, . . . ,
xsc,P − xms

dms,P

)

+ diag

(
xsc,1 − xbs,1

dbs,1
, . . . ,

xsc,P − xbs,P
dbs,P

)

− diag

(
xsc,1 − xms

dms,1

, . . . ,
xsc,1 − xms

dms,1

)

− diag

(
xsc,1 − xbs,1

dbs,1
, . . . ,

xsc,1 − xbs,1
dbs,1

)

(A.9)

∂dq

∂ysc
= diag

(
ysc,1 − yms

dms,1
, . . . ,

ysc,P − yms

dms,P

)

+ diag

(
ysc,1 − ybs,1

dbs,1
, . . . ,

ysc,P − ybs,P
dbs,P

)

− diag

(
ysc,1 − yms

dms,1
, . . . ,

ysc,1 − yms

dms,1

)

− diag

(
ysc,1 − ybs,1

dbs,1
, . . . ,

ysc,1 − ybs,1
dbs,1

)

(A.10)

∂φbs

∂xms

= 0P×1 (A.11)

∂φbs

∂yms
= 0P×1 (A.12)

∂φbs

∂xsc
= −diag

(

ysc,1 − ybs,1
d2bs,1

, . . . ,
ysc,P − ybs,P

d2bs,P

)

(A.13)

∂φbs

∂ysc
= diag

(

xsc,1 − xbs,1
d2bs,1

, . . . ,
xbs,P − xbs,P

d2bs,P

)

(A.14)

∂φms

∂xms
=

(

xsc,1 − xms

d2ms,1

, . . . ,
xsc,P − xms

d2ms,P

)T

(A.15)

∂φms

∂yms

= −

(

xsc,1 − xms

d2ms,1

, . . . ,
xsc,P − xms

d2ms,P

)T

(A.16)

∂φms

∂xsc

= −diag

(

ysc,1 − yms

d2ms,1

, . . . ,
ysc,P − yms

d2ms,P

)

(A.17)

∂φms

∂ysc

= diag

(

xsc,1 − xms

d2ms,1

, . . . ,
xsc,P − xms

d2ms,P

)

(A.18)

dbs,p =
√

(xsc,p − ysc,p)2 + (ysc,p − ybs)2 (A.19)

dms,p =
√

(xsc,p − xms)2 + (ysc,p − yms)2, (A.20)

where xsc = (xsc,1, . . . , xsc,P ) and ysc = (ysc,1, . . . , ysc,P ).
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Appendix B

Derivation of the posterior Cramér-Rao
lower bound

B.1 Posterior Cramér-Rao lower bound for a scalar

parameter

Theorem 1. Consider a random scalar parameter θ and an observation vector z. The

mean square error of any estimate θ̂ satisfies the inequality, which is often referred to

as the Posterior Cramér-Rao lower bound (PCRLB) or the Van Trees bound [VT68],

Ez,θ{(θ̂ − θ)2} ≥

(

−Ez,θ

{
∂2ln (p (z, θ))

∂θ2

})−1

≥

(

Ez,θ

{(
∂ln (p (z, θ))

∂θ

)2
})−1

, (B.1)

where Ez,θ{·} denotes the expectation with respect to p (θ, z). The probability density

p (z, θ) is a joint probability density and the expectation is done over both θ and z. The

following conditions are assumed to hold:

1. ∂p(z,θ)
∂θ

exists and is absolutely integrable with respect to θ and z.

2. ∂2p(z,θ)
∂θ2

exists and is absolutely integrable with respect to θ and z.

3. lim
θ→+∞

b(θ)p (θ) = 0 and lim
θ→−∞

b(θ)p (θ) = 0, where b(θ) is the conditional expeca-

tion of the estimation bias.

4. lim
θ→+∞

dp(θ)
dθ

= 0 and lim
θ→−∞

dp(θ)
dθ

= 0.

Proof. The conditional expectation of the estimation bias, given the true value θ of

the parameter, is

b(θ) =

+∞∫

−∞

(θ̂ − θ)p (θ|z) dz. (B.2)

From this one can obtain:

b(θ)p (θ) =

+∞∫

−∞

(θ̂ − θ)p (θ|z) p (θ) dz =

+∞∫

−∞

(θ̂ − θ)p (z, θ) dz (B.3)
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d

dθ
{b(θ)p (θ)} =

d

dθ







+∞∫

−∞

(θ̂ − θ)p (z, θ) dz







= −

+∞∫

−∞

p (z, θ) dz+

+∞∫

−∞

(θ̂ − θ)
∂p (z, θ)

∂θ
dz. (B.4)

Now integrate with respect to θ:

+∞∫

−∞

d

dθ
{b(θ)p (θ)} dθ = −

+∞∫

−∞

+∞∫

−∞

p (z, θ) dzdθ +

+∞∫

−∞

+∞∫

−∞

(θ̂ − θ)
∂p (z, θ)

∂θ
dzdθ

[

b(θ)p (θ)
]+∞

−∞
= −1 +

+∞∫

−∞

+∞∫

−∞

(θ̂ − θ)
∂p (z, θ)

∂θ
dzdθ. (B.5)

Using the third assumption, the left hand side becomes zero:

0 = −1 +

+∞∫

−∞

+∞∫

−∞

(θ̂ − θ)
∂p (z, θ)

∂θ
dzdθ. (B.6)

Exploiting
∂ln (p (z, θ))

∂θ
=

1

p (z, θ)

∂p (z, θ)

∂θ
, (B.7)

we obtain:

+∞∫

−∞

+∞∫

−∞

(θ̂ − θ)
∂ln (p (z, θ))

∂θ
p (z, θ) dzdθ = 1

+∞∫

−∞

+∞∫

−∞

(

(θ̂ − θ)
√

p (z, θ)
)(∂ln (p (z, θ))

∂θ

√

p (z, θ)

)

dzdθ = 1. (B.8)

Using the Schwarz inequality it follows:




+∞∫

−∞

+∞∫

−∞

(θ̂ − θ)2p (z, θ) dzdθ



 ·





+∞∫

−∞

+∞∫

−∞

(
∂ln (p (z, θ))

∂θ

)2

p (z, θ) dzdθ





≥

∣
∣
∣
∣
∣
∣

+∞∫

−∞

+∞∫

−∞

(

(θ̂ − θ)
√

p (z, θ)
)(∂ln (p (z, θ))

∂θ

√

p (z, θ)

)

dzdθ

∣
∣
∣
∣
∣
∣

2

= 1

Ez,θ

{

(θ̂ − θ)2
}

· Ez,θ

{(
∂ln (p (z, θ))

∂θ

)2
}

≥ 1

Ez,θ

{

(θ̂ − θ)2
}

≥

(

Ez,θ

{(
∂ln (p (z, θ))

∂θ

)2
})−1

. (B.9)

Thus the theorem is proved.
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To prove that Ez,θ

{(
∂ln(p(z,θ))

∂θ

)2
}

= −Ez,θ

{
∂2ln(p(z,θ))

∂θ2

}

, consider the following:

p(θ) =

+∞∫

−∞

p (z, θ) dz

dp(θ)

dθ
=

∂

∂θ







+∞∫

−∞

p (z, θ) dz







dp(θ)

dθ
=

+∞∫

−∞

∂ln (p (z, θ))

∂θ
p (z, θ) dz

d2p(θ)

dθ2
=

∂

∂θ







+∞∫

−∞

∂ln (p (z, θ))

∂θ
p (z, θ) dz







d2p(θ)

dθ2
=

+∞∫

−∞

∂2ln (p (z, θ))

∂θ2
p (z, θ) dz+

+∞∫

−∞

(
∂ln (p (z, θ))

∂θ

)2

p (z, θ) dz. (B.10)

In the third and in the last line the relation in (B.7) was used. Integrating with respect

to θ yields:

dp(θ)

dθ

∣
∣
∣
∣

+∞

−∞
=

+∞∫

−∞

+∞∫

−∞

∂2ln (p (z, θ))

∂θ2
p (z, θ) dzdθ +

+∞∫

−∞

+∞∫

−∞

(
∂ln (p (z, θ))

∂θ

)2

p (z, θ) dzdθ

(B.11)

Using the fourth assumption, it follows that:

Ez,θ

{(
∂ln (p (z, θ))

∂θ

)2
}

= −Ez,θ

{
∂2ln (p (z, θ))

∂θ2

}

(B.12)

holds.

B.2 Posterior Cramér-Rao lower bound for a vector

parameter

Theorem 2. For a random r-dimensional vector parameter θ = (θ1, . . . , θr) and an

observation vector z, the mean square error of any estimate θ̂i satisfies the inequality

Ez,θ{(θ̂i − θi)
2} ≥ [J−1]ii, (B.13)
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where [J−1]ii is the i
th row and the ith column element of the inverse of the r×r matrix

J with the elements

[J]ij = −Ez,θ

{
∂2ln (p (z, θ))

∂θi∂θj

}

= Ez,θ

{
∂ln (p (z, θ))

∂θi

∂ln (p (z, θ))

∂θj

}

, i, j = 1, . . . , r. (B.14)

Proof. The proof follows the same conditions and procedures as for the scalar PCRLB

case. Consider the vector parameter version of the product of the conditional expec-

tation of the estimation bias and the a priori probability defined in equation (B.3)

b(θi)p (θ) =

+∞∫

−∞

(θ̂i − θi)p (z, θ) dz. (B.15)

Differentiating with respect to θj yields

d

dθj
{b(θi)p (θ)} =

d

dθj







+∞∫

−∞

(θ̂i − θi)p (z, θ) dz







= −δij

+∞∫

−∞

p (z, θ) dz+

+∞∫

−∞

(θ̂i − θi)
∂p (z, θ)

∂θj
dz, (B.16)

where δij is a Kronecker delta function which equals to 1 when i = j and which equals

to 0 when i 6= j. Now performing a multidimensional integration with respect to θ:

+∞∫

−∞

d

dθj
{b(θi)p (θ)} dθ = −δij

+∞∫

−∞

+∞∫

−∞

p (z, θ) dzdθ +

+∞∫

−∞

+∞∫

−∞

(θ̂i − θi)
∂p (z, θ)

∂θj
dzdθ

[

b(θi)p (θ)
]+∞

−∞
= −δij +

+∞∫

−∞

+∞∫

−∞

(θ̂i − θi)
∂p (z, θ)

∂θj
dzdθ. (B.17)

Using the vector form of the third assumption, the left hand side of the equation

becomes zero:

0 = −δij +

+∞∫

−∞

+∞∫

−∞

(θ̂i − θi)
∂p (z, θ)

∂θj
dzdθ. (B.18)

Exploiting the relation shown in equation (B.7), we obtain

δij =

+∞∫

−∞

+∞∫

−∞

(θ̂i − θi)
∂ln (p (z, θ))

∂θj
p (z, θ) dzdθ. (B.19)
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Consider the case where i = 1 for simplicity. Define an r + 1 dimensional vector

ζ =








θ̂1 − θ1
∂ln(p(z,θ))

∂θ1
...

∂ln(p(z,θ))
∂θr







. (B.20)

The covariance matrix of the vector ζ is

Ez,θ{ζζ
T} =










var(θ̂1 − θ1) 1 0 . . . 0
1 J11 J12 . . . J1r
0 J12 J22 . . . J2r
...

...
...

...
0 Jr1 Jr2 . . . Jrr










(B.21)

where the ones and zeros in the matrix come from the Kronecker delta function δij

according to equation (B.19). Since it is a covariance matrix, it is positive semidefinite,

which implies that the determinant of the entire matrix is greater than or equal to

zero. Evaluating the determinant of the covariance matrix Ez,θ{ζζT} using a cofactor

(adjunct) expansion yields:

var(θ̂1 − θ1) det (J)− det








1 J12 . . . J1r
0 J22 . . . J2r
...

...
...

0 Jr2 . . . Jrr








≥ 0. (B.22)

The determinant can be further simplified as:

det








1 J12 . . . J1r
0 J22 . . . J2r
...

...
...

0 Jr2 . . . Jrr








= det






J22 . . . J2r
...

...
Jr2 . . . Jrr




 = cofactor{[J]11}. (B.23)

Equation (B.22) can thus be rewritten as:

var(θ̂1 − θ1) det (J)− cofactor{[J]11} ≥ 0. (B.24)

If we assume that J is nonsingular, then

var(θ̂1 − θ1) ≥
cofactor{[J]11}

det (J)
= [J−1]11, (B.25)

which is the desired result.

The modifications for singular J follow easily by considering the nonsingular part of

the matrix J. The proof for i 6= 1 is also an obvious modification.
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Appendix C

Modeling channels as an autoregressive
process

The mobile radio channel has been modelled as an autoregressive (AR) process [Ekm02,

CZ04, SM05, Aro11, AVWS12]. In the following, a SISO channel is considered for

simplicity. The SISO channel is assumed to be a realization of a random process. Let

the column vector h(ℓ) denote the vector of K channel coefficients at the ℓth discrete

time instant. The Ĺth order vector AR model of the channel is given as

h(ℓ) =
Ĺ∑

ℓ́=1

Ω(ℓ́) · h(ℓ− ℓ́) + u(ℓ), (C.1)

where Ω(ℓ́) are fixed coefficient matrices and u(ℓ) is assumed to be a multivariate white

Gaussian noise. Equation (C.1) can be re-written as







h(ℓ)
h(ℓ− 1)

...

h(ℓ− Ĺ+ 1)








=








Ω(1) · · · Ω(Ĺ− 1) Ω(Ĺ)
IK · · · 0K 0K

...
. . .

...
...

0K · · · IK 0K








︸ ︷︷ ︸

Λ

·








h(ℓ− 1)
h(ℓ− 2)

...

h(ℓ− Ĺ)







+








u(ℓ)
0K×1
...

0K×1







.

(C.2)

The above vector autoregressive process is stable if all the eigenvalues of the matrix Λ

are less than one in magnitude [Kay93, Lüt07].

Given estimates of the channel coefficient vectors h(ℓ), the fixed coefficient matrices

Ω(ℓ́) can be estimated from (C.1) using the method of least squares. However, the

least squares estimate of the fixed coefficient matrices Ω(ℓ́) is often derived, without

estimates of the channel coefficient vectors, using the so-called Yule-Walker equations.

The Yule-Walker equations are derived based on the stationary autocorrelation function

of the channel which satisfy [Kay93]

Rhh(ℓ) =







Ĺ∑

ℓ́=1

Ω(ℓ́) ·Rhh(ℓ− ℓ́) ℓ ≥ 1

Ĺ∑

ℓ́=1

Ω(ℓ́) ·Rhh(−ℓ́) +Ruu ℓ = 0

, (C.3)

where

Rhh(ℓ́) = E{h(ℓ) · h∗T(ℓ− ℓ́)} (C.4)
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is the autocorrelation matrix of the channel and Ruu is the covariance matrix of the

noise u(ℓ). The above equation can be set up to a system of linear equations








Rhh(−1)
Rhh(−2)

...

Rhh(−Ĺ)








=








Rhh(0) Rhh(1) . . . Rhh(Ĺ− 1)

Rhh(−1) Rhh(0) . . . Rhh(Ĺ− 2)
...

...
...

Rhh(−(Ĺ− 1)) Rhh(−(Ĺ− 2)) . . . Rhh(0)








·








Ω∗T(1)
Ω∗T(2)

...

Ω∗T(Ĺ)







,

(C.5)

using the relationR∗T
hh (ℓ́) = Rhh(−ℓ́). Similarly, an equation can be obtained containing

the covariance matrix of the noise, i.e.,

Rhh(0) =
Ĺ∑

ℓ́=1

Ω(ℓ́) ·Rhh(−ℓ́) +Ruu. (C.6)

These equations are known as the Yule-Walker equations. Estimates of the autocorre-

lation function of the channel can be obtained from stochastic channel models under

the WSSUS assumption. Thus given estimates of the autocorrelation function of the

channel, the fixed coefficient matrices Ω(ℓ) can be determined by solving the Yule-

Walker equations. The covariance matrix Ruu of the noise u(ℓ) can be determined

using estimates of the fixed coefficient matrices Ω(ℓ) and the autocorrelation function

of the channel.

It is often assumed that the autocorrelation function of the channel is separable in

to time-domain and frequency-domain correlations. For this case the autocorrelation

matrix of the channel can be simplified as

Rhh(ℓ́) = rt(ℓ́) ·Rf , (C.7)

where rt(ℓ́) is the temporal autocorrelation function and Rf is the spectral autocor-

relation matrix of the channel. The Yule-Walker equation (C.5) can be re-written as








rt(−1)
rt(−2)

...

rt(−Ĺ)








︸ ︷︷ ︸
rt

⊗Rf =








rt(0) rt(1) . . . rt(Ĺ− 1)

rt(−1) rt(0) . . . rt(Ĺ− 2)
...

...
...

rt(−(Ĺ− 1)) rt(−(Ĺ− 2)) . . . rt(0)








︸ ︷︷ ︸

Rt

⊗Rf ·








Ω∗T(1)
Ω∗T(2)

...

Ω∗T(Ĺ)








︸ ︷︷ ︸

Ω∗T

.

(C.8)

Solving for Ω∗T using the method of least squares results in

Ω̂∗T = ((Rt ⊗Rf)
∗T · (Rt ⊗Rf))

−1 · (Rt ⊗Rf)
∗T · (rt ⊗Rf),

= ((R∗T
t ·Rt)⊗ (R∗T

f ·Rf))
−1 · (R∗T

t ⊗R∗T
f ) · (rt ⊗Rf),

= ((R∗T
t ·Rt)

−1 ⊗ (R∗T
f ·Rf)

−1) · (R∗T
t ⊗R∗T

f ) · (rt ⊗Rf),
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= ((R∗T
t ·Rt)

−1 ·R∗T
t ⊗ (R∗T

f ·Rf)
−1 ·R∗T

f ) · (rt ⊗Rf),

= (R∗T
t ·Rt)

−1 ·R∗T
t · rt ⊗ (R∗T

f ·Rf)
−1 ·R∗T

f ·Rf ,

= (R∗T
t ·Rt)

−1 ·R∗T
t · rt ⊗ IK . (C.9)

Thus if the autocorrelation function of the channel is separable in to time-domain and

frequency-domain correlations, then the frequency domain correlation matrix Rf has

no influence on the estimated fixed coefficient matrix Ω̂.
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Appendix D

Glossary of symbols and abbreviations

D.1 Symbols

(Boldface lower case characters denote vectors, whereas boldface upper case characters

denote matrices.)

(̂·) denotes estimate

(·)T denotes transpose

(·)∗ denotes conjugate

(·)−1 denotes inverse

(·)+ denotes the Moore-Penrose pseudoinverse of a matrix

⊙ denotes the Hadamard (element-wise) matrix product

∗ denotes the Khatri-Rao (row-wise Kronecker) matrix product

∼ denotes is distributed according to

| · | denotes absolute value

‖ · ‖2 denotes the Euclidean norm

‖ · ‖F denotes the Frobenius norm
∂g(θ)
∂θ

Jacobian matrix of vector-valued function g(θ) with respect to θ

0 zero matrix

1 vector of ones

arg max
θ

p (θ) denotes the value of θ that maximizes p (θ)

arg min
θ

p (θ) denotes the value of θ that minimizes p (θ)

ai or a(i) the ith element of vector a

aij or a(i, j) the (i, j)th entry of matrix A

B bandwidth

B state transition matrix

D filter coefficient matrix

det(A) determinant of matrix A

diag (a) diagonal matrix with elements a on main diagonal

dp length of the pth propagation path

dp,q path length difference of the pth and the qth propagation paths

e vector of received pilot symbols

Eθ{·} denotes expectation with respect to the pdf p (θ)

F subcarrier spacing



D.1 Symbols 145

f continuous frequency

f0 carrier frequency

G measurement matrix

g(·) vector-valued measurement function

H(k, ℓ) MIMO channel coefficient matrix of subcarrier k at time instant ℓ

h(ℓ) vector of MIMO channel coefficients at time instant ℓ

Hm,n(f, t) channel transfer function of the channel between the nth transmitter

and the mth receiver antenna at frequency f and time t

Hm,n(k, ℓ) channel coefficient of the channel between the nth transmitter and the

mth receiver antenna for the kth subcarrier at time instant ℓ

hm,n(ℓ) vector of channel coefficients of the channel between the nth transmit-

ter and the mth receiver antenna at time instant ℓ

hDL(ℓ) vector of DL MIMO channel coefficients at time instant ℓ

hUL(ℓ) vector of UL MIMO channel coefficients at time instant ℓ

I identity matrix

J Fisher information matrix

K number of subcarriers

K Kalman gain matrix

k subcarrier index

Ḱ number of channel coefficient samples in frequency direction

L number of time instants

ℓ time instant

Ĺ number of channel coefficient samples in time direction

M number of receiver antennas

M mean square error matrix of θ̂

N (µ, σ2) Gaussian distribution with mean µ and variance σ2

N (µ,R) multivariate Gaussian distribution with mean µ and covariance R

N number of transmitter antennas

nmse(θ̂) normalized mean square error of θ̂

n vector of received pilot symbol measurement noise

P number of propagation paths

p index of the propagation paths

p (·) probability density function or probability mass function

p (z|θ) conditional probability density function of z conditioned on θ

p (θ, z) joint probability density function of θ and z

pbs position of the BS

pms position of the MS

pmss positions of the MSs in network localization

psc,p position of the pth scatter
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psm positions of the scatterers and the MS

rmse(θ̂) root mean square error of θ̂

RDL,DL covariance matrix of the MIMO DL channel

Rnn covariance matrix of the measurement noise n

RUL,DL covariance matrix of the MIMO UL and DL channels

Ruu covariance matrix of the state transition noise u

Rww covariance matrix of the measurement noise w

Rθθ(0) covariance matrix of the initial state vector θ(0)

rf(k) spectral autocorrelation function of the channel

rt(ℓ) temporal autocorrelation function of the channel

S(ℓ) diagonal transmit pilot symbol matrix with diagonal elements s(k, ℓ)

s(k, ℓ) transmit pilot symbol of the kth subcarrier at time instant ℓ

T transmit symbol duration

T DL to UL channel transformation matrix

t continuous time

u state transition noise

vec(·) matrix vectorization operator

w propagation path parameters measurement noise

z measured propagation path parameters

αp complex amplitude of the pth propagation path

∆k prediction width in frequency

∆ℓ prediction width in time

∆t MS tracking interval

δij Kronecker delta

ε fraction of the propagation paths which are NLOS

θ state vector

θ̂(ℓ|ℓ) estimated state vector at time instant ℓ

θ̂(ℓ|ℓ− 1) predicted state vector at time instant ℓ

θDL state vector of the DL MIMO channel

θbs,p elevation angle-of-departure of the pth propagation path

θms,p elevation angle-of-arrival of the pth propagation path

νp Doppler shift of the pth propagation path

νmax maximum Doppler shift

σ2 variance

τm,p delay of the pth propagation path from the receiver antenna array RP

to the mth receiver antenna

τn,p delay of the pth propagation path from the transmitter antenna array

RP to the nth transmitter antenna

τp delay of the pth propagation path
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τmax maximum delay

Φ∆k,∆ℓ prediction filter coefficient matrix

φbs,p azimuth angle-of-departure of the pth propagation path

φms,p azimuth angle-of-arrival of the pth propagation path

ϕ∆k,∆ℓ prediction filter coefficient

ϕ∆k,∆ℓ prediction filter coefficient vector

D.2 Abbreviations

AKF adaptive Kalman filter

AOA angle-of-arrival

AOD angle-of-departure

AR autoregressive

BS base station

CRLB Cramér-Rao lower bound

CSI channel state information

DL downlink

EKF extended Kalman filter

EM electromagnetic

FDD frequency-division-duplex

FIM Fisher information matrix

i.i.d. independent and identically distributed

IRLS iterative re-weighted least squares

KF Kalman filter

LOS line-of-sight

LS least squares

MAD median absolute deviation

MIMO multiple-input multiple-output

ML maximum likelihood

MMSE minimum mean square error

MS mobile station

MSE mean square error

NLOS non-line-of-sight

NMSE normalized mean square error

PCRLB posterior Cramér-Rao lower bound

pdf probability density function

PDP power delay profile

pmf probability mass function
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PSNR pseudo signal-to-noise-ratio

RMSE root mean square error

RP reference point

SISO single-input single-output

SVD singular value decomposition

TDD time-division-duplex

TDOA time-difference-of-arrival

TLS total least squares

TOA time-of-arrival

UL uplink

WSSUS wide-sense stationary uncorrelated scattering
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