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Abstract

Robotic swarm systems attract increasing attention in a wide variety of applications,

where a multitude of self-organized robotic entities collectively accomplish sensing or

exploration tasks. Compared to a single robot, a swarm system offers advantages in

terms of exploration speed, robustness against single point of failures, and collective

observations of spatio-temporal processes.

Autonomous swarm navigation, including swarm self-localization, the localization

of external sources, and swarm control, is essential for the success of an autonomous

swarm application. However, as a newly emerging technology, a thorough study of

autonomous swarm navigation is still missing.

In this thesis, we systematically study swarm navigation systems, particularly em-

phasizing on their collective performance, which distinguishes them from traditional

navigation systems. The general theory of swarm navigation as well as an in-depth

study on a specific swarm navigation system proposed for future Mars exploration mis-

sions are covered. First, a generic swarm navigation system is formally defined. Then,

the theoretic potential of swarm self- and source localization is investigated. The theo-

retical findings are then used for swarm localization and control algorithm design and

validation.

Concerning swarm localization, a decentralized algorithm dubbed direct particle

filtering for decentralized network localization (DiPNet) is proposed. DiPNet achieves

a near-optimal performance with low complexity for a dense swarm network.

Regarding swarm control, a position-aware swarm control concept is proposed. The

swarm is aware of not only the position estimates and the estimation uncertainties of

itself and the sources, but also the potential motions to enrich position information.

As a result, the swarm actively adapts its formation to improve localization perfor-

mance, without losing track of other objectives, such as goal approaching and collision

avoidance.

The autonomous swarm navigation concept described in this thesis is verified for a

specific Mars swarm exploration system. More importantly, this concept is generally

adaptable to an extensive range of swarm applications.
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Zusammenfassung

Robotische Schwarmsysteme werden zunehmend für Anwendungen in Betracht ge-

zogen, bei denen eine Vielzahl von selbstorganisierten Roboter-Einheiten gemeinsam

Mess- oder Explorationsaufgaben durchführen. Im Vergleich zu einem einzelnen Robo-

ter bietet ein Schwarmsystem Vorteile in Bezug auf die Explorationsgeschwindigkeit,

die Robustheit gegenüber
”
Single Point of Failures“ und die gemeinsame Beobachtung

von räumlich und zeitlich varianten Prozessen.

Die autonome Schwarmnavigation, einschließlich der Selbstlokalisierung im

Schwarm, der Lokalisierung externer Quellen, und der Schwarmregelung ist für den Er-

folg einer autonomen Schwarm-Anwendung unerlässlich. Da es sich um eine neuartige

Technologie handelt, fehlt jedoch noch eine gründliche, theoretische Betrachtung.

In dieser Arbeit untersuchen wir systematisch Schwarmnavigationssysteme, wobei

wir ein besonderes Augenmerk auf ihre kollektive Leistung legen. Dies unterscheidet

sie von herkömmlichen Navigationssystemen. Es werden sowohl die allgemeine Theorie

der Schwarmnavigation, als auch eine detaillierte Studie eines spezifischen Schwarmna-

vigationssystems, das für zukünftige Mars Explorationsmissionen vorgeschlagen wird,

behandelt. Zunächst wird ein generisches Schwarmnavigationssystem formal definiert.

Anschließend wird die Selbst- und Quellenlokalisierung hergeleitet und das theoretische

Potenzial untersucht. Die theoretischen Ergebnisse werden dann für die Schwarmnavi-

gation und das Design und die Validierung des Regelungsalgorithmus verwendet.

Bezüglich der Schwarmlokalisierung wird ein dezentraler Algorithmus mit dem Na-

men
”
Direct Particle Filtering for Decentralized Network Localization“ (DiPNet) vor-

geschlagen. Für ein dichtes Schwarmnetzwerk arbeitet DiPNet, trotz geringer Komple-

xität, nahe am Optimum.

Hinsichtlich der Schwarmregelung wird ein Konzept vorgeschlagen, welches die

Positionierung einbezieht. Der Schwarm berücksichtigt dabei nicht nur die Posi-

tionsschätzungen und Schätzunsicherheiten seiner Teilnehmer und der Quellen,

sondern auch mögliche Bewegungen, welche einen Gewinn von Positionsinforma-

tionen ermöglichen. Der Schwarm passt daher seine Formation aktiv an um die

Lokalisierungsleistung zu verbessern, ohne andere Aufgaben wie Zielannäherung und

Kollisionsvermeidung aus den Augen zu verlieren.
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Das in dieser Arbeit beschriebene Konzept zur autonomen Schwarmnavigation wird

für bestimmtes Schwarmexplorationssystem für den Mars verifiziert. Das vorgestellte

Konzept kann jedoch an eine Vielzahl von Schwarmanwendungen angepasst werden.
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Chapter 1
Introduction

1.1 Autonomous Robotic Swarms

In nature, swarm behavior refers to grouping of numerous biological entities, for exam-

ple bird flocking (like in Figure 1.1), mammal herding, insect swarming or fish schooling

[1]. Each entity, or agent, follows simple interaction rules based on the observation of

its surrounding [2]. Yet the whole swarm acts as a single organ with emerging global

situation awareness and collective behaviors, such as immigrating, foraging or escaping

from predators [3, 4].

Autonomous robotic swarms, analogous to biological swarms in nature, are self-

organized multi-agent systems composed of a crowd of collaborative artificial entities

[5, 6, 7, 8]. Robotic swarm systems attract increasing attention in sensing and explo-

ration applications, e.g. for search and rescue [9], environmental monitoring [10], and

extraterrestrial missions [11, 12, 5, 13]. The size of a robotic swarm, referred to either

its cardinality or its collective aperture’s size, varies depending on the applications.

The cardinality, i.e. the number of agents in the swarm, differs from a few dozens in

laboratory demonstrations [14, 15] to a few thousands in National Aeronautics and

Space Administration (NASA)’s envisioned deep space exploration missions [5, 16, 17].

The collective aperture, i.e. the collective area covered by the swarm, has also a wide

range of size, from nanometer scale for nano-swarms implanted inside the human body

[18], to a few hundred meters for planetary surface swarm sensing and exploration in

both terrestrial [19] and extraterrestrial applications [12], and to hundreds of kilometers

for orbital applications with a satellite swarm [5].

Compared to a single robot used in state-of-the-art exploration such as the Curiosity

[20], a swarm offers various advantages. First, the exploration efficiency increases due

to collaboration [5]. Second, the inherent system redundancy avoids single point of

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1. A flock of birds recorded in Sylt, Germany, 2014.

failures that could jeopardize the whole mission [21]. Last but not least, a spread-

out swarm can be collectively seen as a distributed sensor array with dynamically

adaptable sensing aperture and resolution. Spatio-temporal processes generated from

some physical phenomena, for example luminous, radio frequency (RF), acoustic, gas

and seismic emissions [8, 13], can be observed by the swarm at multiple spatial points

simultaneously. These observations enhance the environmental cognition and situation

awareness of the swarm. The situation awareness, especially position awareness is

essential for autonomous exploration missions. The implication of position awareness

is threefold with three gradually increasing awareness levels:

1) Awareness of position estimates;

2) Awareness of position estimation uncertainties;

3) Awareness of potential motions to enrich position information.

The three position awareness levels are closely related to autonomous swarm naviga-

tion, which will be introduced in Section 1.2. Humans only need to interact with an

autonomous swarm by high-level abstract mission objectives, such as search for life

forms, water, mineral resources or gas releasing sources. It is up to the swarm itself to

decide the minutiae of an efficient exploration strategy, based on its cognition of the

surrounding [22].

A radio-based swarm system for future Mars exploration missions is taken as an

application example for investigation in this thesis, which is illustrated in Figure 1.2. A

swarm of rovers autonomously drive from the mission base (upper left) to an exploration

area (lower right), where a gas source may be present. Agents in the swarm observe
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Figure 1.2. A radio-based swarm system for future Mars exploration missions: The
swarm autonomously drives from the landing site to an exploration area, where a gas
source may be present. The green lines and arrows with various colors indicate observation
link between entities.

RF signals from a lander, three static probes, a mobility incapacitated rover and other

agents. Agents also measure the concentration of gas, emitted from the gas source.

The swarm exploits these observations for localization and to navigate itself towards

the area of interest.

All the entities are considered as isotropic point emitters when they send out sig-

nals, such as RF signals and gas, into the environment. Besides agents in the swarm,

whose positions are unknown and controllable, there are two general types of entities

considered in this thesis. An entity external to the swarm with a known position is

referred to as a beacon, such as the lander and the static probes close to the mis-

sion base. An external entity with an unknown position is referred to as a source, for

example the mobility incapacitated rover and the static prob in the middle, and the

gas emitter. The different entities in the considered system are shown in Figure 1.3.

Formal definitions of the entities will be introduced in Chapter 2 and illustrated in

Figure 2.1.
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Beacons
(known positions)

Sources
(unknown positions)

Agents

Swarm (unknown positions, controllable)

Agents

Figure 1.3. Different entities of the swarm system shown in Figure 1.2: Arrows indicate
signals propagating from the emitters to the observers.

1.2 Autonomous Swarm Navigation

Autonomous navigation is essential for a swarm system, where the swarm aims to

answer by itself the questions of

1) Where am I?

2) Where shall I go?

The answers to these two questions correspond to two interconnected research topics,

namely swarm localization and swarm control.

There is limited literature in swarm navigation than in the closely related topics

such as multi-agent navigation and network navigation. Even though, the distinction

between swarms and classic multi-agent systems is vague, we define a swarm as a multi-

agent system with (1) a large cardinality, (2) computational decentralization with low

complexity, and (3) self-organized mobility with collective behaviors, and focus on the

impacts of these unique properties on swarm navigation.

1.2.1 Swarm Localization

Localization is a classical problem in signal processing, where the geometrical relation-

ship of a group of objects is determined by, for example, distance and angular related

observations between objects. Swarm localization includes problems such as estimating

(1) agent’s relative position with respect to (w.r.t.) the swarm, (2) the swarm’s posi-

tion w.r.t. an external coordinate system, and (3) environmental features’ positions

w.r.t. the swarm or/and the external coordinate system. Environmental features can

generally be active points emitting signals, passive points interacting with environment,
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like scatterers in radar applications, or functions like profiles of certain fields. In this

thesis, we only consider point emitters as examples of environmental features. Swarm

localization is closely related to the topics such as network localization, relative lo-

calization, cooperative positioning, cooperative simultaneous localization and mapping

(SLAM) [23], simultaneous localization and tracking (SLAT) [24, 25], simultaneous

localization and synchronization (SLAS) [26], wireless sensor network (WSN) localiza-

tion and tracking, etc. Intensive research has been conducted in these topics. From

theory, fundamental limits of localization-related problems are addressed with the help

of mathematical tools in estimation and detection theory such as Fisher information

(FI)/Cramér-Rao bound (CRB) [27, 28, 29] and different variants of Bayesian bound

(BB) [30, 31]. In practice, numerous localization algorithms have been developed,

which can be categorized as centralized/decentralized, Bayesian/non-Bayesian and low

complexity/high resolution algorithms [32, 33]. However, in distinction to classical lo-

calization, swarm localization emphasizes on the collective behavior and possesses the

following four unique properties.

1.2.1.1 Multi-Level Perspectives

For most of the classical localization problems, a global coordinate system is externally

specified. Especially due to the development of global navigation satellite systems

(GNSSs) [34, 35], the geographic coordinate system and the Earth-centered, Earth-fixed

(ECEF) system are widely employed for localization. Precise geodesic measurements

of ground stations are exploited to determine a globally unified coordinate system,

like the world geodetic system 1984 (WGS84) for global positioning system (GPS). In

most GNSS-based localization applications, global coordinate systems are considered

without any uncertainty. For swarm exploration scenarios, an external coordinate

system is not always available. The swarm localization problem is formulated according

to the original definition of localization, i.e. determining the geometrical relationship

among objects. Multiple levels of perspectives can be employed to describe swarm

localization, depending on the applications.

1) Micro-Level

In micro-level, or agent-centric perspective, the geometry of the local network

around an agent, including the agent itself, its neighboring agents and its environ-

mental surroundings, is estimated. The agent-centric view is favorable for designing

decentralized swarm localization algorithm and for applying the low-level control

such as collision-avoidance to the agent.

2) Meso-Level
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In meso-level, or swarm-centric perspective, the ”shape” of the swarm, i.e. the

geometrical relationships among all agents or a subset of agents are estimated.

In addition, the relative positions of point sources w.r.t. the swarm are jointly

estimated by the observations of agents. In the meso-level perspective, the swarm

is viewed as a single organ. The swarm-centric view is in favor when the swarm

collective behaviors and performance are under investigation.

3) Macro-Level

In macro-level, or global perspective, sufficient number of swarm’s observations are

connected to an external global coordinate system. Therefore, the swarm and the

external sources’ positions w.r.t. this global coordinate system can be determined.

The macro-level perspective is appropriate when a mission is designed with a global

coordinate system, which car be defined by pre-deployed nodes at known positions,

also known as (a.k.a.) beacons, or priorly acquired environment maps.

1.2.1.2 Dense Network with Scalable Topology

By definition, a swarm is composed of a multitude of agents, which are able to conduct

inter-agent communications and measurements through agent-to-agent (A2A) links.

The agents form a large-scale meshed network, which is advantageous in estimating not

only the positions of agents and external sources, but also additional parameters, such

as clock offset and drift, parameters of an observation model and signal propagation

model. In tracking mode, parameters like agents’ heading, velocity and acceleration

can also be estimated through the meshed network. The swarm network’s topology is

configurable by adapting the communication and measurement protocols and resource

assignment. For a swarm of |A| agents, the total number of A2A links scales from the

order of O(|A|) when agents are only connected within their close proximity, to the

order of O(|A|2) when the measurement coverage of agents is comparable to the collec-

tive aperture size of the swarm. The notation |·| denotes the cardinality of a set, and

A denotes the set of all agents in a swarm. As a comparison, the number of unknown

agents’ parameters is in the order of O(|A|). Therefore, the swarm network’s topology

can be configured, such that arbitrary properly designed agent parameter estimation

problems are over-determined, hence solvable. Similarly, an external source is con-

nected with the swarm by source-to-agent (S2A) links, forming a star network with the

external source as the central hub. The number of observations on the source is in the

order of O(|A|), which is often much larger than the number of unknown parameters

of the source. Hence, the source parameter estimation problems are in general solvable

as well. As a result, a dense swarm network is suitable for simultaneous localization
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and any other parameter determination (SLAX), which is a generalization of a class

of problems, including the above mentioned cooperative SLAM, SLAT, SLAS, etc.

For classical localization systems like GNSS, the number of independent observations

are essential. Contrarily, for swarm localization, we can evaluate the performance at

|A|→ ∞ asymptotics, where only the collective aperture and the underlying observa-

tion model play essential roles. Another factor to be considered in swarm network’s

topology design is the limitation on total resources in the network, such as RF spec-

trum, transmit power, time slot, etc. Finding a favorable trade-off between the number

of established links and the amount of resource, allocated per link, is challenging.

1.2.1.3 Decentralized Localization Algorithm in Real-time

Typically, agents in a swarm move in condensed formations, which demands accurate

position estimates in real-time, for example to avoid collision. Besides, in order to

exploit the scalability of a swarm, decentralized localization algorithm executed at

each agent is preferable. In addition, even though the swarm localization as a whole

is a high dimensional complex problem, the execution on single agent should remain

relatively simple. Therefore, it is crucial to design a decentralized swarm localization

algorithm, achieving a high accuracy with low complexity.

1.2.1.4 Coupling with Swarm Control

Another unique feature of swarm localization is the potential benefit of coupling with

the swarm mobility. Firstly, an agent is aware of the control commands employed to

itself, which can be utilized for self-localization. Secondly, each agent decides its own

mobility. Hence, the agent is capable of moving to a desired position, so that the whole

swarm is in an advantageous formation for localization.

1.2.2 Swarm Control

Swarm control is another essential component of swarm navigation, where the swarm

decides on its own where to go according to certain objectives. First of all, the swarm

decides for a common direction to move according to mission objectives, such as ap-

proaching to the mission base, a water or gas source, mineral resource, biological signa-

ture, etc. Second, the swarm is controlled according to formation optimization objec-

tives, to improve, for example the observation quality of the swarm or external source’s

position. Last but not least, there are some critical objectives act as constraints, such as

collision avoidance, minimally tolerated agent position uncertainty, energy and physical

mobility limitations, etc.
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Multi-agent control [36, 37, 38, 39, 40] is a research topic closely related to swarm

control, and has been intensively investigated. A key focus of multi-agent control is

formation control. The goal is to achieve and maintain a stable formation as close

as possible to a predefined target formation, or according to a target group geome-

try relationship. Another focus of multi-agent control is to cooperatively accomplish

some abstract functionalities, such as maximizing the coverage, task assignment, path

planning, etc. Other multi-agent control schemes exist as well. One example is the

nature-inspired flocking algorithm [41], which acts according to the three heuristic rules

of swarming proposed in [2], i.e. cohesion (stay close to each other), separation (avoid

collisions) and alignment (match velocity).

Precise position or relative geometrical information is assumed for most of the multi-

agent controls. The uncertainty in position information is often overlooked. Some

formation control schemes do include this information but in a tolerance-base [42, 43,

44], i.e. to evaluate the effectiveness of the controller with the presence of position

uncertainty.

Very few studies have been conducted in controlling multi-agent systems to improve

the knowledge of position. In [45], formation is controlled to guarantee the rigidity of

the agent network, which neglected the impacts of measurement quality. In [46], linear

state transition and measurement models are assumed, both distorted by additive white

Gaussian noise (AWGN). With this simplified model, the covariance matrix obtained

from a Kalman filter (KF) is exploited to achieve preferable swarm formations for both

self- and source localization. In [25] a Bayesian framework was proposed, supporting

only a few agents due to the high complexity.

A signal processing theoretical view of swarm control is still missing. We propose

position-aware swarm control, where the swarm possesses all three levels of position

awareness and applies information seeking control. In this way, the swarm is able to

actively compose formations, which enhances the localization accuracy or guarantees

the accuracy to meet mission objectives. The full position awareness is especially

crucial for autonomous swarm systems.

The overview of the swarm navigation system considered in this thesis are summa-

rized in Figure 1.4.

1.3 Contributions of the Thesis

As we can see from Section 1.2, swarm navigation is an interdisciplinary topic, involving

many aspects of research. In this thesis, we concentrate on the signal processing per-

spective of swarm navigation, including swarm self- and source localization, as well as
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Swarm navigation

Swarm localization Position-aware swarm control

Self-localization Source localization Information seeking Other objectives
im

proving

Figure 1.4. Swarm navigation system breakdown diagram.

swarm control to improve localization performance. Three aspects in swarm navigation

are under investigation, namely (1) potential of swarm localization, (2) decentralized

swarm localization algorithms, and (3) position-aware swarm control. With these as-

pects, we aim to cover both general swarm navigation theory and an in-depth study on

a specific swarm navigation system proposed for future Mars exploration missions as

illustrated in Figure 1.2. On the one hand, we introduce a formal generic swarm navi-

gation framework, which includes general theory as well as system design and analysis

methodologies suitable for a wide variety of swarm applications. On the other hand,

we apply the general theory to the particular Mars swarm exploration system. Agents

observe the RF signals from other agents, beacons and RF sources, and the gas signals

from the gas source, and utilize these signals for navigation.

The main contribution of this thesis is threefold, corresponding to the three aspects

to be addressed:

1) From the theoretic aspect, a unified formal definition for swarm navigation systems

is introduced. Based on this definition, theoretical analysis on the potential and

constraints of swarm localization is provided. Both swarm self-localization and ex-

ternal source localization are investigated. For swarm self-localization, we focus on

the network localizability with limited RF resource. The trade-off between number

of A2A links and amount of RF resource allocated per link is studied. For external

source localization, the swarm is collectively considered as a distributed array with

a large aperture. We investigate the impacts of swarm’s aperture on source localiza-

tion with different types of observations. Particularly, in many applications external

sources are located in the near field of the swarm’s aperture. Hence, the curvature of
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the spherical signal front is observable to the swarm. By estimating the signal cur-

vature of arrival (CoA), not only the source angular information, but also distance

information can be inferred. A low complexity CoA based source localization algo-

rithm expressed in closed-form is derived, which employs the exact CoA formula.

The proposed algorithm outperforms the traditional Fresnel approximation-based

near field source localization algorithms. Additionally, the mutual enhancement of

swarm self- and source localization is addressed. Precise swarm position information

is required for source localization. By collectively observing a source, the swarm’s

position information is further enriched. Specific to RF signals, the potential of

joint self- and source localization with a mixture of symbol delay and carrier phase

processing is investigated.

2) From the algorithmic aspect, we focus on the design of decentralized low-complexity

algorithms for swarm localization. Most of the network localization algorithms ap-

ply a two-step approach, i.e. distance estimation (ranging) and position estimation

(localization). In two-step approaches, the location information contained in the RF

signal is not fully exploited, since the two steps are usually optimized separately.

Unpredictable propagation conditions, for example the multipath and non-line-of-

sight (NLOS) propagation, are the main source of error in two-step localization. We

exploit the high density feature of the swarm and propose a localization algorithm

dubbed direct particle filtering for decentralized network localization (DiPNet). An

agent’s position is directly estimated from the received signal waveform, incorpo-

rating location uncertainty of neighboring nodes, with a low complexity multi-link

fusion scheme. We prove that the multipath and NLOS effects on DiPNet become

insignificant for dense networks, due to the multi-link collective processing. There-

fore, DiPNet achieves a near-optimal performance with low complexity, which is

particularly attractive for realtime swarm self-localization. Both simulations and

experiments have been conducted to verify the superior performance of DiPNet over

traditional two-step approaches.

3) From the swarm control aspect, we utilize the theoretical findings in swarm local-

ization and introduce a position-aware swarm control concept. The core component

of position-aware swarm control is information seeking. A swarm exploits the third

level of position awareness to reduce the position uncertainties of itself and the

sources. The position information qualities are quantified by the FI and Bayesian

information (BI), which are utilized by the swarm to formulate the information

seeking objectives. Having derived analytically the closed-form expressions of the

information gradients, the information seeking control commands can be generated
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efficiently, which is particularly attractive for the control of a large-scale swarm.

With the proposed concept, the total position information, or its partitions, can be

flexibly chosen as either cost functions or constraints of the swarm control problem,

depending on the applications. As a result, the swarm actively adapts its formation

to improve localization performance of itself as well as the external point sources,

without losing track of other mission objectives. Unlike the traditional formation

control, where a target formation is given, the position-aware swarm control results

swarm formations, which are justifiably preferable for navigation purpose. The pro-

posed position-aware swarm control concept can be employed to different phases of

swarm exploration missions, such as exploration area approaching, external source

searching, and returning to the mission base after exploration. More importantly,

it can be generalized to a wide variety of swarm applications.

1.4 Structure of the Thesis

Despite of the logical interconnections, the three swarm navigation aspects, namely

the theoretical analysis, localization algorithm design and swarm control, are relatively

independent from each other. Accordingly, the thesis is structured by these three

aspects. Each chapter focuses on one individual aspect, including background study,

main contributions, results and discussion.

The rest of this thesis is structured as follows. In Chapter 2, a formal defini-

tion of swarm navigation systems is introduced. In Chapter 3, theoretical potential

of swarm localization is investigated. In Chapter 4, the DiPNet algorithm for swarm

self-localization is proposed and followed by an analysis of its robustness against propa-

gation effects. In Chapter 5, the concept of position-aware swarm control is introduced.

Multiple examples are provided to demonstrate the employment of this concept to dif-

ferent phases of swarm exploration missions. In Chapter 6, conclusions of the thesis

are drawn. Extensive mathematical derivations are stored in Appendix C, in order to

improve the readability of the main text. Complementary materials are provided in

the appendices as well, including a list of acronyms and abbreviations in Appendix

A, a list of mathematical notations in Appendix B, and a list of own publications in

Appendix D.

The thesis structure is depicted in Figure 1.5 to provide an intuitive overall impres-

sion of the thesis. Each circle illustrates the amount of theoretical contribution versus

the load of numerical and experimental validation in each technical chapter. The circle

size represents the volume of that chapter.
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Figure 1.5. Overview of the thesis structure: Each circle illustrates the amount of the-
oretical work versus the load of numerical and experimental validation in each technical
chapter. The circle size represents the volume of that chapter.



Chapter 2
A Formal Definition of Swarm Navigation

As we have already seen in Chapter 1, swarm navigation is an emerging interdisci-

plinary topic, involving physical signal processing, localization, Bayesian estimation,

network and graph theory, control theory, etc. It is important to define a unified formal

definition of swarm navigation systems before diving into particular aspects.

2.1 Extended Swarm Network

In this thesis we consider an extended swarm network in two-dimensional (2D) space,

for example the Mars swarm exploration system introduced in Figure 1.2. Different

entities of the example swarm network are illustrated in Figure 2.1 and formally defined

in Section 2.1-2.5.

A generic node au ∈ V with an index u in the network located at point Pu is either

an agent within the agent set A, an external source within the source set S or a bea-

con within the beacon set B. Throughout the thesis, the index u preferably indicates

a generic node, or an agent which receives a signal. The index v preferably indicates

a node which transmits a signal. The complete node set in the network is defined as

V = A ∪ S ∪ B. The coordinates, a.k.a. positions, of nodes are defined by the differ-

ent coordinate systems under investigation. The collection of all agents’ positions is

referred to as the swarm’s formation. In applications such as environmental feature

mapping and path planning, the coordinates, pGu = vec{xGu , yGu }, w.r.t. a pre-defined

global Cartesian coordinate system G are crucial. The vectorization operator vec{· · ·}
arranges elements into a column vector. The coordinate system G is often spanned by

multiple beacons. In some other applications, for example, swarm formation estima-

tion and source observation, an alternative swarm-level Cartesian coordinate system

C with the origin at the swarm centroid is beneficial for analysis. The coordinates

of node au become pCu = vec{xCu , yCu }. When the angular and distance information

13
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A

G

TP,opt (translation, rotation)

P

A S

B

EA

ES

EB
Virtual

X

V

Sgas

SRF

Figure 2.1. Graph representation and different entities of the swarm system example
shown in Figure 1.2: Agents, a gas source, RF sources and beacons, are illustrated as
green, red, magenta and blue dot(s), respectively. Different links are shown with lines and
arrows. Dashed arrow on the top indicates the transformation from an arbitrary swarm
coordinate system A to the global coordinate system G.
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between the source and the swarm are investigated individually, the swarm-level polar

coordinate system P, corresponding to C, is preferable. In that case, the coordinates

of the node au are denoted as pPu = vec{dPu , θPu }. If the coordinate system under inves-

tigation is previously specified, the superscript is often omitted for simplicity, where

the coordinates of the node au are denoted as pu. A state vector of au is denoted

as xu = vec{pu, au}, including the coordinates pu and other generic parameters au,

a.k.a. nuisance parameters. These parameters, e.g. clock offset, carrier phase offset

or signal propagation parameters, maybe unknown and need to be jointly estimated

together with the node’s coordinates. The three types of nodes, i.e. beacons, sources

and agents, are distinguished as follows.

1) Beacons

A beacon au ∈ B is a node with perfectly known global coordinates pGu and nuisance

parameters. The states of all beacons are xB = vec{xu : ∀au ∈ B}. Beacons are

static infrastructures, for example fixed RF transmitters at the mission base, which

span the global coordinate system. The beacons are synchronized to each other

and their clocks represent the system clock. A beacon au ∈ B continuously emits a

signal su(t), which is exploited by the swarm for localization in the global coordinate

system. In the context of cooperative and network localization, a beacon is also

referred to as an anchor in literature, e.g. [32].

2) Sources

A source au ∈ S is an external node whose state xu is unknown and of interest to

the swarm. As in the swarm exploration example introduced in Chapter 1, a source

can either be a static unit emitting RF signals, which is observed by the swarm as

signals of opportunity, or an environmental point source that shall be localized by

the swarm, e.g. a gas diffusion source. For this example, the set of sources S can be

further divided into the set of RF sources SRF and a set of gas sources Sgas. Similar

to beacons, the emitted signal from source au ∈ S is generically denoted as su(t).

The states of all sources are represented as xS = vec{xu : ∀au ∈ S}.

3) Agents

Actively controlled agents are the core components of a swarm. An agent au ∈ A
emits a signal su(t) and receives the signals ruv(t) emitted from other nodes av ∈ V
through unidirectional links euv. Measurements like range, containing geometric

relationship between au and av can be extracted from the received signals and are

generically denoted as zuv. Links in the swarm network can be classified according

to the origin of the signal. Agent au communicates and conducts measurements



16 CHAPTER 2. A FORMAL DEFINITION OF SWARM NAVIGATION

with a neighboring agent av ∈ Au by an A2A link euv ∈ EA,u ⊂ EA. The set of

neighboring agents Au of au is defined for example by the measurement coverage of

agents. The A2A link sets of agent au and of the network are defined as EA,u and

EA, respectively. Additionally, agent au receives signals transmitted from an beacon

av ∈ B or a source av ∈ S within the observation ranges of the beacon-to-agent

(B2A) link euv ∈ EB,u ⊂ EB and S2A link euv ∈ ES,u ⊂ ES . The B2A and S2A link

sets of agent au and of the network are denoted as EB,u, ES,u, EB and ES , respectively.

The collective link sets of agent au and the network are Eu = EA,u ∪ EB,u ∪ ES,u and

E0 = EA ∪ EB ∪ ES . Agent au exploits the received signals collected from links Eu
and the state information of its neighbors to estimate its own state xu. At the same

time the agents jointly estimate the states of the sources xS . The states of all agents

are represented as xA = vec{xu : ∀au ∈ A}. The measurement collection of agent

au is denoted as zu = vec{zuv : ∀av ∈ Vu}. The total measurements in the swarm is

defined as z = vec{zu : ∀au ∈ A}.

Agents and sources are collectively denoted as the nodes with unknown parameters

au ∈ X = A ∪ S and the set X is referred to as the unknown node set. The states

of all unknown nodes are x = vec{xA,xS}. The total states of the whole network

are xV = vec{xB,x}. While the explicit assignment of nodes to different sets is fixed,

nodes can nevertheless take different implicit roles during a mission. An agent who is

not moving for a while can accumulate precise absolute position information and can

thus act as a quasi-beacon to other agents. Vice versa, an agent outside of the swarm

or a remote beacon can be considered as a source to the swarm, when relative positions

of nodes are of interest.

2.2 Graph Representation of Swarm Localization

We utilize graph theory to unify the swarm localization problem formulation, consist-

ing the cases of anchor-free where available beacons are insufficient to span a global

coordinate system, and anchor-based with sufficient number of beacons to define the

global coordinate system G. The swarm observation network can be interpreted as

a framework F0 = (G0,p
G) with an underlying directed graph G0 = (V , E0), where

nodes are interpreted as the vertices and measurement links as edges. The super-

script G of coordinates is omitted for global coordinate system. The swarm observa-

tion network can be extended to an undirected graph with the same vertices V and

undirected edges L0 = {luv : ∀u < v,euv or evu ∈ E0}. In order to incorporate the

beacons in the formulation, we extend L0 with a virtual beacon-to-beacon (B2B) link

set LB = {luv : ∀u < v,au and av ∈ B} without measurement to completely connect all
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the beacons, i.e. the new edge set is L = L0

⋃
LB. The extended graph and framework

become G = (V ,L) and F = (G,p), respectively. In anchor-free case, positions of

nodes w.r.t. G are not observable. Only the ‘shape’ of the network can be observed.

The framework can be estimated subject to (s.t.) rigid affine transformations T (p̂)

including translations and rotations, where p̂ is the estimated position vector of nodes.

Theoretically, there exists a flipping ambiguity for the ‘shape’ estimate. However, it is

not a continuous transformation in 2D, thus excluded from discussion. In practice, the

flipping ambiguity can be eliminated by initial information or tacking. The objective

of network localization is to find a framework F̂ = (G, p̂), with nodes’ coordinates p̂,

whose ‘shape’ is as ‘similar’ as possible to the original one F , given all the observations

z. In some applications, only nodes belong to a certain node subset VP = XP
⋃
BP ,

including a subset of agents AP , sources SP and beacons BP , and XP = AP
⋃
SP ,

are considered for localization and control. Through this thesis P is used to denote an

unspecific set. A sub-framework FP = (GP ,pP) is defined with corresponding positions

pP , graph GP = (VP ,LP) and edge set LP . Hence, the objective of swarm localiza-

tion can be generally written as minimizing the shape difference ε(F̃P ,FP) between

sub-frameworks F̃P = (GP ,qP) and FP . Given the total measurements z, the swarm

localization problem can be formally stated as

p̂P = arg min
qP

ε(qP ,pP). (2.1)

The cost function ε(qP ,pP) describes the shape difference of the two sub-frameworks

and can be defined as either the average shape difference εF̃P or as framework distance

root mean square error (RMSE) εd̂P . Prior to the definition of εF̃P , we need to define

the position error vector after an affine transformation TP(qP) as

εTP (qP ) , TP(qP)− pP . (2.2)

The notation , denotes the definition and is read as ’is defined as’. The average shape

difference is a direct metric to assess the ‘similarity’ of these two sub-frameworks and

is defined as

εF̃P ,

√
1

|XP |
‖εTP,opt(qP )‖2, (2.3)
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where the optimal affine transformation TP,opt is the affine transformation, which leads

to the minimum position estimation RMSE [47], constrained on beacons’ positions, i.e.

TP,opt = arg min
TP

‖εTP (qP )‖2 (2.4)

s.t. TP(qu) = pu, ∀au ∈ BP . (2.5)

The notation ‖·‖ denotes the Frobenius norm of a scalar, a vector or a matrix, distin-

guished from the notation |·|, which exclusively denotes the cardinality of a set. The

optimal affine transformation aligns an arbitrary Cartesian coordinate system A to G.

For the anchor-based case, A and G are identical. The term εTP,opt(qP ) is referred to

as the shape difference.

The cost function ε(qP ,pP) can also be defined by an indirect metric dubbed

framework distance RMSE εd̂P , which compares the distance differences of every node

pairs, even if there are no measurements between the pairs. Since beacons’ posi-

tions are known, the virtual B2B link set LB is excluded. We define the consid-

ered link set Lall, which describes a fully connected network, except the B2B pairs,

i.e. Lall = {luv : ∀u < v, au and av ∈ P , luv /∈ LB}. The framework distance RMSE is

defined as

εd̂P =

√
‖εd̂P‖

2

|Lall|
, (2.6)

where εd̂P = vec{εuv : ∀ luv ∈ Lall}, and εuv = ‖d̂uv − duv‖ are the absolute dif-

ference between the node pair distances d̂uv = ‖qAu − qAv ‖ and duv = ‖pu − pv‖ of

sub-frameworks F̃P and FP . The framework distance RMSE compares the distance

differences of every node pairs, including the non-connected pairs, and does not require

optimal transformation. The two metrics are not identical. However, for a generic

large-scale sub-framework, both of the metrics capture the shape difference between

the two sub-frameworks. Often, the average shape difference εF̃P in (2.3) is preferable

for formal navigation problem formulation, whereas the framework distance RMSE εd̂P
in (2.6) is preferable for performance evaluation. If the measurements are the distances

between nodes, the localizability of the sub-framework FP is analogous to the rigid-

ity of the corresponding mechanical bar-joint framework. Hence, the localizability of

a extended swarm network can be equivalently described by the rigidity theory from

mechanics [48], which is discussed in Chapter 3.

As we can see, the extended swarm network is a complex system composed of het-

erogeneous entities. For the swarm system example shown in Figure 1.2, the graph
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representation and different entities are illustrated in Figure 2.1 to visualize the intro-

duced formal swarm navigation definition.

2.3 Swarm Dynamics and Position-Aware Control

Having defined the entities and sets, we have a look at the dynamics and control

model of the agents. In many applications, the temporal evolution of the network

state is of interest, instead of a snapshot of the current state. One example is Bayesian

tracking, where temporal coherency of the state is exploited to improve the current

state estimation. Another example is swarm control, where a control command is

applied to the swarm for spatial transition. We use the superscripts (−) to denote

variables at the previous time step, and (+) at the current step. Moreover, (0 : −)

and (0 : +) indicate all previous time steps up to the last step and the current step,

respectively.

Bayes’ theorem is often applied for estimation problems with dynamics or more

generally with a-priori information. A Bayesian estimator treats states x(+) as random

variables and estimates them from the a posteriori probability density function (pdf)

p(x(+)|z(+)), which incorporates the a priori pdf p(x(+)) and the observation likelihood

function p(z(+)|x(+)) by Bayes’ rule

p
(
x(+)|z(+)

)
∝ p

(
x(+)

)
p
(
z(+)|x(+)

)
. (2.7)

With a state transition model and the first-order Markov assumption, the Bayesian

estimation framework can be extended to an a posteriori filtered density p
(
x(+)|z(1:+)

)
recursively with sequential measurements as

p
(
x(+)|z(1:+)

)
∝ p

(
z(+)|x(+)

)
p
(
x(+)|z(1:−)

)
(2.8)

= p
(
z(+)|x(+)

) ˆ
p
(
x(+)|x(−)

)
p
(
x(−)|z(1:−)

)
d x(−). (2.9)

Equation (2.9) is the foundation of recursive Bayesian tracking algorithms such as

different variants of KFs and particle filters (PFs). The derivation of (2.9) is well

known and can be found in [49, 50]. Once the a posteriori filtered density p(x(+)|z(1:+))

is acquired, a point estimate of the states can be obtained in a minimum mean square

error (MMSE) or maximum a posteriori (MAP) manner.

Agents collaborate in the sense of actively adapting their positions so that the

emerging swarm formation is optimized according to certain mission objectives. In our
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example, these objectives include e.g. minimizing the position uncertainty of the swarm

and external sources, i.e. information seeking, approaching to an area of interest, and

avoiding collision. In this thesis, we mainly consider measurements that provide geo-

metric information between nodes. The dynamic parameters of agent such as velocity,

acceleration and heading are not included in the state. An extension to the dynamic

state space is straightforward as shown in [51]. The transition of the agent’s position

in the global coordinate system G between two consecutive time steps is described by

movement model

p(+)
u = f(p(−)

u ,bu) + ωpu , ∀au ∈ A. (2.10)

As an example in this thesis, we consider the following movement model [37]

p(+)
u = p(−)

u + bu + ωpu , ∀au ∈ A, (2.11)

i.e. the control command bu is directly applied to the 2D position of the agent. This

control command is constrained by a maximum step size bmax, i.e. bu ∈ U = {bu :

∀‖bu‖≤ bmax}. In other words, the spatial movement between two time steps is limited.

In addition, the control command is disturbed by additive Gaussian noise, i.e.

ωpu ∼ N (0,Qpu(bu)), ∀au ∈ A. (2.12)

The Gaussian noise has zero mean and its covariance is a function of the control

command bu, e.g.

Qpu(bu) = σ2‖bu‖⊗I2×2, ∀au ∈ A, (2.13)

where σ2 is the variance of noise normalized to step size, ⊗ denotes the Kronecker

product, and In×n denotes identity matrix with dimension n. This movement model

reflects the fact that if the traveled distance, i.e. the magnitude of the control command,

is large, so is the disturbance employed on this control. This is a realistic assumption for

a high level movement model of a robot whose low level controller is based on odometry

suffering from drift. For notation simplicity, we combine the control commands of all

agents to bA = vec{bu : ∀au ∈ A}, and denote the collective feasible control set as UA.

An extension to a more sophisticated movement model would not change the overall

approach presented in this thesis. The considered swarm dynamic model allow us to

focus on demonstrating the concept of applying estimation theory to swarm control.

The transition of a generic parameter [x]l other than agents’ position, i.e. the nuisance

parameter of an arbitrary node, or the coordinate of a non-agent node, is modeled

similarly with a Gaussian process noise with small variance σ2
l . Particularly σ2

l = 0

represents a special case of static state. The covariance of the complete state space of
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the swarm is given by the diagonal matrix Q(bA), aggregating the diagonal elements

of Qpu(bu), ∀au ∈ A, and σ2
l for all other parameters.

Position-aware control aims to optimize the swarm formation to meet the aforemen-

tioned objectives. The objectives can be formulated as either cost functions, referred

to as the f−type objectives, or as constraints, referred to as the h−type objectives.

The information seeking can be employed as both types, i.e. either actively minimizing

position uncertainties, or maintaining the uncertainties below a certain tolerated value

εmax. In general, the information seeking as a cost function, can be combined with other

high level mission objective like goal approaching, denoted as fm(bA), with weighting

factor wp for information seeking and wm for other cost functions, respectively. Be-

sides, additional constraints like the collision avoidance function hc,uv(duv, dmin), with

minimum tolerated distance between nodes dmin will be discussed in Section 5.5. The

feasible control command set UA can be interpreted acts as a constraint as well. How-

ever, since it acts on the travel distance instead of direction, we consider it separately

from the other constraints. To put these criteria into a formal formulation, a desired

control command bA is generally defined as the one, which mostly efficiently reducing

the estimation error of sub-framework FPf and other potential mission cost function

fm(bA), while constrained on the estimation error of the sub-framework FPh , collision

avoidance, and other potential constraints, i.e.

minimize
bA∈UA

wpε(p̂
(+)
Pf ,p

(+)
Pf ) + wmfm(bA), (2.14)

s.t. εmax − ε(p̂(+)
Ph ,p

(+)
Ph ) > 0, (2.15)

hc,uv(duv, dmin) > 0, ∀luv ∈ Lall, (2.16)

...

The information seeking objective function ε(p̂
(+)
P ,p

(+)
P ) depends on the new agents’

positions, i.e. is a function of the control command bA as expressed in (2.11). The

sub-frameworks Pf and Ph, as well as the weights wp and wm can be chosen flexibly

according to applications. For information seeking, individual weight can be assigned

to each node. Variants of objective functions can be defined according to the employed

signal processing models, for example the Bayesian and non-Bayesian models, which

will be discussed in details in Chapter 5.
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2.4 Signals and Observations in Swarm

Different types of physical emission processes can be modeled with partial differential

equations (PDEs), such as the wave equation for RF, seismic and acoustic waves, and

the diffusion equation for gas and heat diffusion. If the emission area of the physical

process is small enough, it can be approximated as a point emitter, such as an external

source, a beacon or another agent. We only focus on the isotropic point emitter case,

where the distance information between the observing agent and the emitter can be

extracted from either the intensity-based signal features like the received amplitude

of RF signals [52], or the concentration of gas signals [53], or the propagation time

based signal features like carrier phase [54, 55] and symbol delay [56, 57, 58, 59] of

RF signals. Note, that non-geometrical information such as proximity and fingerprint

can be exploited for localization as well. However, these techniques either provide

insufficient accuracy or require a database, which are not suitable for swarm navigation

and excluded from the discussion. In general, localization approaches with RF signals

could be directly adapted to acoustic source localization tasks [60, 61]. Instead of

RF signals, acoustic waves are received by microphone arrays in order to estimate or

track unknown sound sources. Similarly, range related observations can be exploited

in seismic applications to find sources of tremors or earthquakes. For example, seismic

source is localized in [62] based on time difference of arrival (TDoA) observations

obtained from synchronous sensor networks. Even for other physical phenomena like

airborne dispersion of gas, it is possible to find range related observations that indicate

the geometrical relationship between the swarm and an emission source. The most

evident observations is the gas concentration that is decreasing with the distance to

the source [63, 53]. For gas source localization, one can also find other statistic features

of the gas signal, e.g. variance [64] or bouts [65], that correlate with the relative distance

to the source. We unify different signal observations by introducing a general signal

model for fields generated by point sources in Section 2.4.1. Observation models with

RF signal, derived from the wave equation, are discussed in details in Section 2.4.2 and

Section 2.4.3, which are the main observation models assumed for the swarm application

in this thesis. To demonstrate the signal model’s generality, an observation of gas

diffusion, derived from the diffusion equation, is briefly introduced in Section 2.4.4.

2.4.1 Generic Signal Model

The spatial-temporal process exploited for swarm navigation can be often described by

a PDE. The solution of the PDE is normally a function of position and time, which

we referred to as the signal model, indicating the signal observable at certain position
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and time.

For a general case we assume a node av ∈ Vu, emitting a continuous signal sv(t).

An agent au ∈ A observes this continuous signal as

ruv(t) = suv(xuv, t) + εuv(t), 0 ≤ t < To (2.17)

through link euv. The term suv(xuv, t) contains the emitted signal, propagation effects

as well as position-related information about nodes au and av, where xuv , vec{xu,xv}.
As (2.17) is general, suv(xuv, t) can be either real or complex valued depending on the

underlying physics. For real suv(x, t), the additive noise εuv(t) is a white process [66]

with a power spectral density (PSD) of N0/2. In the complex-valued case we have

εuv(t) = <[εuv(t)] + =[εuv(t)] with the real, denoted with the real value operator <[·],
and imaginary parts, denoted with the imaginary value operator =[[·], being white

processes with a PSD of N0/2. The letter  denotes the imaginary unit. As εuv(t) is

zero-mean, suv(xuv, t) represents the mean of ruv(t).

Particularly for radial signals, i.e. the signals sent out from isotropic point emitters

and homogeneously propagating into the environment, the signal fronts are spherical.

Hence, the received signal depends only on the emitter-to-receiver distance and time.

Therefore, the geometric relationship of the emitter and receiver is solely embedded in

distance-related signal features.

The signal features guv = g(duv, au, av) are expressed as real-valued functions of

real-valued nuisance parameters au, av and distance duv. Both signal feature functions

and nuisance parameters are determined by the underlying physical models. Often

in practice, discrete received signals ruv = vec{ruv(iTsa) : i = 1, · · · , N} are obtained,

which are sampled from the continuous signal ruv(t) at N time instants with a sampling

period Tsa.

2.4.2 Generic RF Signals

RF propagation is described by the spherical wave equation

∂2dE(P, t)

∂d2
=

1

c2

∂2dE(P, t)

∂t2
, (2.18)

which can be derived from the Maxwell equations for a three-dimensional (3D) obser-

vation point P at time t, with distance d between observation point and the emitter,

the speed of light c and electric field E(P, t) [54, p. 465]. Equation (2.18) holds for elec-

tric fields E(P, t) when the medium of propagation is homogeneous and non-dispersive.

Considering signals sent from a point emitter, the generic solution to (2.18) is of the
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form

E(P, t) =
1

d
s+(t− d/c) +

1

d
s−(t+ d/c), (2.19)

where s+(t) and s−(t) are two arbitrary functions. We are only interested in the

outward traveling wave 1/ds+(t − d/c), i.e. the signal traveling from the emitter into

environment. Particularly, for a RF point emitter av, the outward traveling wave can

be modeled as

d−1s+(t− d/c) = d−1Ave
ω(t−d/c)sv(t− d/c), (2.20)

with the transmit power A2
v and the normalized transmitted baseband signal sv(t)

modulated onto a carrier eωt with carrier frequency f and ω = 2πf . A receiver au at

distance duv from the emitter would observe the down converted and low-pass filtered

baseband signal (multiplication by e−ωt) within the observation interval 0 < t < To as

ruv(t) =

Auv︷ ︸︸ ︷
Avd

− γ
2

uv e
−ω(

Φuv︷ ︸︸ ︷
duv − δuv − φuv)/c)︸ ︷︷ ︸
αuv

s̃uv(t)︷ ︸︸ ︷
sv(t− (duv − δuv︸ ︷︷ ︸

τuv

)/c)

︸ ︷︷ ︸
suv(t)

+ε(t). (2.21)

The path-loss exponent γ equals to two for free-space propagation and larger than

two if the propagation path is (partially) obstructed. As oscillators in transmitter

and receiver are not synchronized we have a clock offset δuv = δu − δv in addition

to the propagation, with δv and δu denoting the clock offsets of the transmitter and

receiver, w.r.t. a system clock, respectively. Additional phase offsets φuv = φu − φv

can be present, e.g. due to phase-locked loops (PLLs) in the transceiver chain. The

phase offsets of the transmitter and receiver, w.r.t. a system phase are denoted as φv

and φu, respectively. The additive noise ε(t) is circularly-symmetric complex normally

distributed with a PSD N0/2 for real and imaginary components, respectively. Since we

are interested in the geometric information contained in the signal, both symbol delay

τuv and carrier phase Φuv are in units of meters. For simplicity we assume that the

carrier frequency offset and clock drift have already been compensated.

It can be observed that the position information can be extracted from either re-

ceived signal magnitude Auv, symbol delay τuv and carrier phase Φuv, which are func-

tions of distance between transceivers duv and nuisance parameters, i.e. Av, γ, δuv,

φuv. If these additional parameters are known, direct range measurements can be ob-

tained, for example, by received signal strength (RSS) from magnitude Auv or time

of arrival (ToA) from symbol delay τuv. Ranging directly from the carrier phase is

difficult due to short wavelength. However, with appropriate infrastructure and ini-
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tialization, ranging with carrier phase is possible, similar to the real-time kinematic

(RTK) service in GNSSs. If both forward and backward links are available, symbol

delays from both directions can be combined to the round trip time (RTT) observation.

The clock offsets δuv and δvu cancel each other out, so that an equivalent direct ranging

can be obtained. In the case of general unknown nuisance parameters, measurements

at spatially separated points are collected by agents. Essentially, distance differences

between transceivers are exploited for joint localization and parameter estimation. For

magnitude and symbol delay, differential received signal strength (DRSS) and TDoA

are utilized for localization, respectively. For carrier phase, traditional angle of ar-

rival (AoA) measurement from the phase difference of arrival (PDoA) observation with

plane-wave model contains only the angular information between nodes. The CoA mea-

surement adopts the spherical-wave model, which includes both distance and angular

information [67].

For the transmitted baseband signal sv(t), orthogonal frequency-division multi-

plexing (OFDM) modulation scheme is assumed as an example for discussion, which is

widely employed in communications, e.g. in wireless local area network (WLAN), long-

term evolution (LTE) and intelligent transport systems (ITS)-G5, as well as foreseen

in 5th generation mobile networks (5G). An OFDM signal sv(t) transmitted from av
is expressed as

sv(t) =
1√
N

∑
n∈Nv

Sne
ωscnt, (2.22)

where ωsc = 2πfsc, fsc is the subcarrier spacing, n is the subcarrier index, and Sn is the

information symbol carried by the nth subcarrier. The subcarriers employed for RF

observation are in general a subset of the total subcarriers, i.e. Nv ⊆ {−N−1
2
, · · · , N−1

2
}.

We assume an odd number N of total subcarriers, without loss of generality.

In a realistic scenario, the signal is not only distorted by AWGN, but also affected

by the propagation channel. For line-of-sight (LOS) scenarios, the signal propagates

along the LOS path and some additional paths, referred to as multipath components

(MPCs). Whereas for NLOS scenarios, the signal is solely received via the MPCs.

The observation model defined in (2.21) considered only a single path, i.e., the LOS

path. This model is mainly assumed within the thesis, which allows us to concentrate

on the main topics of swarm navigation. One exception is in Chapter 4, where the

impacts of unpredictable propagation conditions on the proposed DiPNet algorithm

is explicitly investigated, and the RF observation model in (2.21) is extended with

multipath/NLOS propagation. A generic path component l is defined by its complex

amplitude αuv,l = Auv,le
ωφuv,l/c, with a magnitude Auv,l and a phase φuv,l, and the total

propagation delay τuv,l = duv,0 + δuv,l + buv, which includes the LOS distance duv,0, the
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NLOS delay buv and the path’s delay δl additional to the potential LOS path delay all

with units of meters. The NLOS delay buv is positive for NLOS scenarios and zero for

LOS scenarios. The LOS path is denoted with index 0, i.e. δuv,0 = 0. NLOS scenarios

are included by setting αuv,0 = 0. The clock offsets are assumed to be compensated

with the RTT technique already. The received signal can be generally written as the

superposition of the potential LOS path and L MPCs distorted by the AWGN εuv(t)

as

ruv(t) =
L∑
l=0

αuv,l sv(t− τuv,l/c) + εuv(t). (2.23)

2.4.3 Heterogeneous RF Signals in Swarm

Two types of RF signals are employed by the swarm. The first one is with a higher

carrier frequency like fc = 5.2 GHz and ωc = 2πfc, and a larger bandwidth like Bc =

37 MHz, aiming for short distance communications and intra-swarm measurements,

i.e. on A2A links. The second one is with a much lower carrier frequency like fs =

20 MHz and ωs = 2πfs, and a smaller bandwidth like Bs = 1 KHz, which is suitable for

long distance communications and beacon/RF source to swarm measurements, i.e. on

B2A and S2A links. For the three different RF link classes, namely A2A, B2A and

S2A links, we consider three specific types of signal models derived from (2.21).

1) A2A links

For a specific A2A link euv ∈ EA, agent av transmits a signal sv(t) modulated onto

a carrier with carrier frequency fc. The signal is received by agent au and down-

converted to baseband. The received signal in baseband can then be expressed

by

ruv(t) = αuv sv(t− (duv − δu + δv)/c) + εuv(t), (2.24)

where αuv is the unknown complex signal amplitude, considered as a nuisance

parameter. For the A2A links we mainly consider the position information ex-

tracted from the symbol delay. Particularly, if the A2A links are always symmetric,

i.e. euv ∈ EA if and only if (i.f.f.) evu ∈ EA, the clock offsets from both links cancel

out. Hence (2.24) can be equivalently expressed with −δu + δv = 0. In this case,

distance can be directly estimated from ToA.

2) B2A links

The second type is the B2A links included in EB. Signals are emitted by beacons

near the mission base. The lower carrier frequency fs � fc is suitable for guiding the
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swarm within a wider area. Beacons’ clock offsets δv and phase offsets φv are set to

zero and assumed to be known. Due to the lower carrier frequency we assume that

in this case the position information contained in the carrier phase can be exploited

in addition to the symbol delay. In order to extract geometric information from

the phase, it is essential to assume that the phase offset from the agent’s receiving

frontend is coherent to its clock offset. This assumption is valid explicitly for low

RFs if the carrier phase, for example from the PLL or direct sampling, are adjusted

to be aligned with its own clock. Hence, the receiver’s phase offset fulfills φu = δu.

In the end, the phase offset in the transceiver chain becomes φuv = δu. A signal

transmitted by beacon av and received by agent au is defined in baseband as

ruv(t) = Auve
−ωs(duv−δu)/c sv(t− (duv − δu)/c) + εuv(t). (2.25)

For sufficient number of beacons, the positions of agents in the global coordinate

system G can be estimated from symbol delays with the TDoA observations. In

addition, by exploiting the carrier phase, the AoA or CoA measurements can be

applied to estimate agents’ angle or position in G. In the case of insufficient number

of beacons, the position of agents in G is not observable. However, if the swarm’s

formation is already estimated with A2A links, w.r.t. its own coordinate system

C, the beacons’ positions in C can be estimated reversely, with range difference,

AoA or CoA measurements. In this case, the beacons are similar to an external

RF source. One application of this technique is returning to mission base, where

insufficient number of beacons are deployed, which will be discussed in Chapter 5.

3) S2A links

The third link type under consideration is S2A links included in ES , where signals

are emitted from external RF sources. Similar to the B2A signals, they have a low

carrier frequency fs � fc. Similar to (2.25), we assume the receiver’s carrier phase

is aligned with its clock, i.e. φu = δu. A signal transmitted by source av and received

by agent au is described by

ruv(t) =Auve
−ωs(duv−δu+φv)/csv(t− (duv − δu + δv)/c) + εuv(t). (2.26)

The difference to (2.25) is that in contrast to the beacons, the clocks of the RF

sources are not synchronized to the system. Therefore the unknown clock offset

and phase offset δv and φv has to be estimated jointly as nuisance parameters.

Similarly symbol delays and carrier phase can be exploited with range difference,

AoA or CoA method for source localization, w.r.t. C or G, depending on whether
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the number of beacons is sufficient.

2.4.4 Gas Diffusion

Gas diffusion process can be described by PDEs, referred to as the diffusion equations

[68]. The gas concentration can be observed by swarm and utilized for gas source local-

ization. In [53], sophisticated gas diffusion models have be investigated. In this thesis,

we consider a single gas source av ∈ Sgas at point Pv with radial diffusion. Planar

isotropic diffusion in steady state is assumed, which corresponds to the diffusion of

material with a density heavier than the surrounding atmosphere. With this model,

similar as described in [68, p. 69], the diffusion equation simplifies to an ordinary dif-

ferential equation (ODE), which depends only on the source distance d, and expressed

as

− κ
(
∂2C(d)

∂d2
+

1

d

∂C(d)

∂d

)
= hs(d), d ∈ R+, (2.27)

where κ is the diffusion coefficient and hs(d) is a source function. We define the source

function as hs(d) = η · (1−σH(d/R0−1)) with σH indicating a Heaviside step function.

The source function describes a disc with a significantly small radius of, for example

R0 = 1 m, which can be considered as a point in the ground, with an emission rate

η. As a boundary condition, we assume that the concentration reaches 0 at a distance

dmax from the source. In addition we consider ∂C(d)
∂d
|d=0= 0. The solution of the ODE

in (2.27) is derived together with my colleague Thomas Wiedemann, and expressed as


η

2κ

(
R2

0

2
− d2

2
+R2

0 ln dmax −R2
0 lnR0

)
, 0<d < R0 (2.28a)

ηR2
0

2κ
(ln dmax − ln d) , R0 < d < dmax. (2.28b)

For source localization we are interested in the second case R0 < d < dmax, i.e. the

concentration outside the source. We can rewrite the concentration from the gas source

av ∈ Sgas at agent au ∈ A within an observation window 0 < t < To as

suv(xuv, t) = C(duv) =
ηR2

0

2κ
ln dmax︸ ︷︷ ︸
ag

− ηR
2
0

2κ︸︷︷︸
bg

ln duv. (2.29)

As can be seen from (2.29), the gas concentration has two nuisance parameters, namely

the scaling parameter ag and the exponent parameter bg, employed to the distance,

which has a similar expression as the magnitude observation of a RF source in (2.21).

With the gas diffusion model and a Gaussian assumption on the sensor noise, the
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received signal at au is given as

ruv(t) = suv(xuv, t) + εuv(t), (2.30)

with εuv(t) being AWGN. With the gas source model under consideration, we assume

either there is only one gas source, or there exist multiple separable sources, e.g. with

different types of gas. This assumption circumvents the necessity to distinguish between

the received concentration of different emission sources in the diffusion process. There

are also possibilities as discussed in [69] to localize multiple gas sources with same type.

2.5 Generic terminologies in Swarm Localization

To avoid ambiguities, the terminologies used in this thesis for problem statement of

swarm localization are listed as follows. A node with index u belonging to node set P ,

is denoted as au ∈ P . The node is located at a point in space independent to coordinate

system as Pu. In a particular coordinate system A, the node possesses coordinates pAu ,

which is referred to as the position of that node. The process of acquiring the node’s

position estimate p̂Au is referred to as localization. A list of these terminologies can be

found in Table 2.1.

Table 2.1. Terminologies in swarm localization problem statement.

Node
index

Node
Node
set

Point in
space

Coordinate
system

Coordinates
(position)

Position
estimate

(localization)

u au P Pu A pAu p̂Au

The terminologies used in the swarm localization signal processing chain are de-

fined as follows. An agent first receives continuous or sampled signals, e.g. RF and

gas signals. Signals are generically denoted with the letter r. Features of the signals,

generically denoted with the letter g, are the physical quantities in the signal model,

which contain geometrical relationship between the emitter and the receiver. As partic-

ularly for an isotropic point source, the signal features can be represented as functions of

emitter-to-receiver distance and nuisance parameters, and classified into two categories,

namely the intensity based, and the propagation time based features. The intensity

based features include, e.g. amplitude of RF signals, and concentration of gas signals.

The propagation time based features are only observable for time variant signals, such

as the carrier phase and symbol delay of RF signals. In the case of known nuisance

parameters, the signal features solely depend on the distance. Whereas in presence of

unknown nuisance parameters, the signal features are expressed as joint functions of



30 CHAPTER 2. A FORMAL DEFINITION OF SWARM NAVIGATION

Table 2.2. Terminologies in signal processing chain of swarm localization.

Terminology Examples

Received signals (r) continuous ruv(t), sampled ruv

Signal features (g) amplitude Auv, phase Φuv, symbol delay τuv, gas concentration Cuv

Observations RSS, DRSS, PoA, PDoA, ToA, TDoA, RTT, observed concentration

Measurements (z)
range, range difference, AoA, AoD, CoA, sampled signal ruv(for direct

localization)

States (x) positions of nodes (parameters of interest) pX ,

nuisance parameters: Av, γ, δuv, φuv, ag, bg

Evaluation metrics (ε)
covariance, variance, RMSE,

(average) framework shape difference: (εF̃P
), εTP,opt(qP),

framework distance error and RMSE: εd̂P
, and εd̂P

distance and nuisance parameters. Observations are obtained by the receivers, linked

to the signal features, and contaminated by noise. Observations can be clustered into

two categorizes according to the presence of nuisance parameters. Without nuisance

parameter, direct observations are obtained at each receiver, e.g. RSS, phase of arrival

(PoA), ToA and the observed gas concentration. With nuisance parameters, indirect

observations combing the ones at multiple receivers are obtained, e.g. DRSS, PDoA,

TDoA and observed gas concentration difference. The observations are transferred

to geometrical inference between nodes,such as range, pseudo-range, range difference,

AoA, angle of departure (AoD), CoA, etc., referred to as measurements, generically

denoted with the letter z. In an exceptional case of direct localization in Chapter 4, the

sampled received signal ruv is directly treated as measurements. The direct localization

scheme has a benefit of preserving more information from the signal for localization,

which will be discussed in Chapter 4. States, generically denoted with the letter x,

including the parameters of interest like nodes’ positions and the nuisance parameters,

can be then estimated from the measurements. Finally, the performance of swarm

localization is evaluated by the metrics, generically denoted with the letter ε, such

as covariance, variance, RMSE, (average) framework shape difference and framework

distance error and RMSE. A summary of the terminologies in the signal processing

chain is listed in Table 2.2.



Chapter 3
Theoretical Aspects of Swarm Localization

With the formal framework introduced in Chapter 2, we are able to theoretically inves-

tigate the potential, constraints and geometrical interpretations of swarm localization.

In estimation theory, a variety of mathematical tools have been introduced to reveal

some specific characteristics of parameter estimation problems. Among those tools,

estimation performance bounds directly indicate the best possible statistical perfor-

mance of arbitrary estimators given the system model, which can be utilized in a wide

range of applications, such as system analysis and optimization, estimator design, etc.

Especially, the CRB and its variations are widely used for both swarm localization and

position-aware swarm control in the thesis. We briefly introduce the CRB, posterior

Cramér-Rao bound (PCRB) and Ziv-Zakai bound (ZZB), which are relevant to the

thesis, in Section 3.1. In Section 3.2, the FI contained in the swarm observations is

derived. We also discuss the choice an of optimal swarm coordinate system C, when

the number of beacons is insufficient. For swarm self-localization, in Section 3.3 we

focus on the network localizability and limited RF resource effects. In Section 3.4, we

look into the geometrical interpretation of source localization with different types of

nuisance parameters and introduce the concept of CoA based source localization. In

Section 3.5, the potential of swarm joint self- and source localization is analyzed. The

results in Section 3.6 evaluate the potential performance of swarm localization.

3.1 Lower Bounds for Parameter Estimation

3.1.1 Cramér-Rao Bound

The theory of FI and CRB is one of the most widely used tools in statistical signal

processing for system analysis/design, estimator benchmark, etc., due to its simplis-

tic expression. The CRB has been intensively discussed e.g. in [70, 27, 71]. In many

31
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estimation problems, parameters x to be estimated are considered as unknown deter-

ministic variables. Discrete observations z are distorted with random noise and linked

to the parameters with a likelihood function p(z; x). The Fisher information matrix

(FIM) Ix quantifies the ‘information’ contained in z about x, and is defined as [27,

p. 44]

Ix = −Ez [Mx
x ln p(z; x)] , (3.1)

with the notations of the first and second order partial derivatives Oa and Mb
a, OaOT

b .

If Ix is full rank, and the regularity condition holds, i.e.

Ez [Ox ln p(z; x)] = 0, (3.2)

the CRB, defined as the inverse of the FIM, bounds from below the covariance matrix

cov[x̂] of any unbiased estimates x̂, i.e.

cov[x̂] < CRB[x] , I−1
x . (3.3)

The expression A < B reads as ‘A is more positive semidefinite than B’, meaning

A−B is a positive semidefinite matrix, i.e. A−B < 0. The CRB can be alternatively

expressed as a lower bound for the variance of any unbiased individual estimate [x̂]l,

i.e.

var [[x̂]l] ≥ CRB[x]l,l. (3.4)

Cases of singular FIM are discussed in [72], where constraints may be added to the

problem, so that a meaningful CRB can be derived. In our swarm navigation appli-

cation, if the swarm network is not localizable, the position FIM will be singular. A

singular position FIM is also expected when the number of beacons is insufficient. For

example, if there is only one beacon, the coordinate system can be rotated around that

beacon, which leads to a rank one deficiency. Both singularity cases will be discussed

in Section 3.3.

The theory of FI and CRB is extended to general Gaussian observations in [27,

p. 47], discrete complex-valued observations in [27, p. 525], continuous real-valued

observations with approximation in limits in [27, p. 55], and with the Karhunen-Loéve

expansion in [70, p. 275] and [71, p. 332]. In Section 3.2 we derive the FI for swarm

localization from continuous complex-valued observations like RF signals. Besides of

swarm localization, the CRB is also applied in FI seeking swarm control in Section 5.3,

where the formation is optimized, to gain maximal position information with a snapshot
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of observations.

Often we are interested in the estimation bound of a parameter subset x1, where

x = vec{x1,x2}. The total FIM can be divided into sub-matrices as

Ix =

(
Ix1 Ix1,x2

Ix2,x1 Ix2

)
, (3.5)

where Ix1 is the FIM of x1 when the complementary set of parameter x2 is perfectly

known. The terms Ix1,x2 and Ix2,x1 represent the correlation between variables x1 and

x2. When x2 is unknown, the CRB of x1 can be equivalently formulated by the so-

called equivalent Fisher information matrix (EFIM) [73] Ĩx1 according to the Schur

complement

covz;x[x̂1] < CRB[x1] = Ĩ−1
x1

,
(
Ix1 − Ix1,x2I

−1
x2

Ix2,x1︸ ︷︷ ︸
,Dx2→x1

)−1

, (3.6)

where the term Dx2→x1 represents the information degradation of x1 from the uncer-

tainty in x2. The Schur complement also plays an important role in the derivation

of PCRB, where the parameters x are considered as random variables and estimated

incorporating a-priori information, the current and historical observations.

3.1.2 Posterior Cramér-Rao Bound

As mentioned in Section 2.3, the parameters of interest x are often assumed to be ran-

dom variables, in order to systematically incorporate historical or a-priori information

in Bayesian estimators. One example of a Bayesian estimator is the DiPNet algorithm

proposed in Chapter 4. In this case, the PCRB of x(+), a.k.a. Bayesian Cramér-Rao

bound (BCRB), is introduced analogously to the classic CRB, to lower bound the mean

square error (MSE) of any Bayesian estimates covx(+)|z(+) [x̂(+)], i.e.

covx(+)|z(+) < PCRB[x(+)] ,
(
J(+)
x

)−1
. (3.7)

The Bayesian information matrix (BIM) of x(+) can be defined from the joint pdf

p(z(+),x(+)) as [74, p. 5]

J(+)
x = Ex(+)

[
− Mx(+)

x(+) ln p(x(+)) + Ez(+)|x(+)

[
− Mx(+)

x(+) ln p(z(+)|x(+))
]

︸ ︷︷ ︸
I
(+)
x

]
, (3.8)
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where Ix(+) is the information from the current measurements z(+) with a similar ex-

pression as the FIM Ix in the non-Bayesian case. The BIM can be expressed recursively

as [31]

Jx(+) = D22 −D21(Jx(−) + D11)−1D12, (3.9)

where

D11 =Ex(−),x(+)

[
− Mx(−)

x(−) ln p
(
x(+)|x(−)

)]
, (3.10)

D12 =Ex(−),x(+)

[
− Mx(+)

x(−) ln p
(
(x(+)|x(−)

)]
= DT

21, (3.11)

D22 =Ex(−),x(+)

[
− Mx(+)

x(+) ln p
(
(x(+)|x(−)

)]
+ Ex(+) [Ix(+) ] . (3.12)

The PCRB is also applied in Bayesian information seeking swarm control in Section 5.4,

where the formation is optimized to gain maximal position information, taking all

historical information into account.

3.1.3 Ziv-Zakai Bound

The CRB and its variants essentially evaluate the curvature of the log-likelihood func-

tion at its peak, therefore do not take detection errors into account. The ZZB [75] and

its variations combine the detection probability and the estimation accuracy, which are

MSE lower bounds tighter than CRB. In this thesis, only the ZZB for scalar parameter

estimation is relevant. For a scalar random variable x with a uniform a-priori pdf in

the state space [0, X], the MSE of estimate x̂ is lower bounded by

MSE[x̂] ≥ ZZB[x] ,
ˆ X

0

G

(
1

X

ˆ X−δ

0

Pmin(χ, χ+ δ)dχ

)
δ dδ, (3.13)

where G(·) is a valley-filling function, and Pmin(θ, θ + h) is the minimum error proba-

bility from likelihood ratio test [74, p. 55]. In Section 3.3, the scalar ZZB is utilized to

analyze the ToA/RTT based distance estimation performance [76], especially with RF

resource limitation. A ZZB modified CRB (ZCRB) incorporates the detection error

in observation model with ZZB, which is used for swarm self-localization analysis and

position-aware swarm control in Chapter 5. The ZZB is extended to multi-parameter

estimation in [77] and adapted to localization applications in [78, 79, 80]. However,

due to the high complexity of multiple integrals, the vector ZZB cannot be readily used

for large-scale swarm localization, therefore, is excluded from this thesis.
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3.2 Fisher Information in Swarm Observations

Now we assume that for all links in the extended swarm network euv ∈ E0 a total of

|E0| different signals r(t) = vec{ruv(t) : euv ∈ E0} defined by the generic model (2.17)

are received. The information contained in all these signals regarding the parameter

vector x can then be quantified by the FIM Ix

Ix =
2

N0

<
{ ∑

euv∈E0

ˆ To

0

Oxs
∗
uv(t)OxT suv(t)dt

}
. (3.14)

Equation (3.14) can be obtained by modifying the proof for real-valued continuous

signals [70, p. 275] and complex-valued discrete signals [27, p. 525], and is detailed in

Appendix C.1. By the chain rule of derivatives, the signal features guv preserve all the

information about x contained in the complex-valued continuous signal. The FIM of

the state in (3.14) can be rewritten as

Ix =
∑

euv∈E0

Oxg
T
uvIguvOxTguv, (3.15)

where Iguv is the FIM of the signal features guv from the received signal ruv(t) [81, 71]

expressed as

Iguv ,
2

N0

<
{ˆ To

0

Oguvs
∗
uv(t)OgTuv

suv(t)dt

}
. (3.16)

For a one-dimensional signal feature guv, the FI is denoted as ιguv . Especially, if the

signal feature is distance, ιguv is also referred to as ranging information intensity (RII)

in [73]. Following the definition in Section 2.4.1, (3.14) is valid for both real and

complex valued suv(t). For a gas source, the signal feature is the concentration defined

in ??, i.e. guv = C(duv). The FI becomes ιguv = 2/N0. For a RF source the distance

information is embedded in the signal features, amplitude Auv, phase Φuv and symbol

delay τuv, i.e. guv = vec{Auv,Φuv, τuv}. As observed in Section 2.4.4, the gas diffusion

model has a similar expression as the RF amplitude model in logarithm domain. We

therefore only discuss the FI contained in continuous complex-valued RF signals ruv(t).
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For RF signal the integrand in (3.16) can be represented as

Oguvs
∗
uv(t) OgTuv

suv(t)

=


‖s̃uv(t)‖2 Auv‖s̃uv(t)‖2ωv/c Auvs̃

∗
uv(t)

∂s̃uv(t)
∂τuv

−Auv‖s̃uv(t)‖2ωv/c A2
uv‖s̃uv(t)‖2ω2

v/c
2 −A2

uvs̃
∗
uv(t)

∂s̃uv(t)
∂τuv

ωv/c

Auvs̃uv(t)
∂s̃∗uv(t)
∂τuv

A2
uvs̃uv(t)

∂s̃∗uv(t)
∂τuv

ωv/c A2
uv‖

∂s̃uv(t)
∂τuv
‖2

 , (3.17)

with the carrier frequency fv and ωv = 2πfv Considering the N0 → 0 and To → ∞
asymptotics [71], we can have

ˆ To

0

‖s̃uv(t)‖2dt =

ˆ ∞
−∞
‖S(f)‖2df , ‖S̄uv‖2/A2

uv, (3.18)

with the received signal energy ‖S̄uv‖2.

ˆ To

0

s̃uv(t)
∂s̃uv(t)

∗

∂τuv
dt

=

ˆ ∞
−∞

ˆ ∞
−∞

2πf2S(f2)S∗(f1)/c

ˆ To

0

e2π(f2−f1)(t−τuv/c)dtdf1df2

=

ˆ ∞
−∞

ˆ ∞
−∞

2πf2S(f2)S∗(f1)/ce2π(f2−f1)(To/2−τuv/c)
ˆ To/2

−To/2
e2π(f2−f1)t

′

dt
′

︸ ︷︷ ︸
=δ(f1−f2)

df1df2

=

ˆ ∞
−∞

2πf‖S(f)‖2/cdf , Gv‖S̄uv‖2/(A2
uvc), (3.19)

with the centroid of the spectrum Gv, and

ˆ Ts

0

∥∥∥∂s̃uv(t)
∂τ̃uv

∥∥∥2

dt =

ˆ ∞
−∞

4π2f 2‖S(f)‖2/c2df , β2
v‖S̄uv‖2/A2

uvc
2, (3.20)

where βv is the root-mean-square signal bandwidth, or β2
v the effective bandwidth. The

transformed FIM can be expressed as

Iguv = 2N SNRuv

 A−2
uv 0 0

0 ω2
v/c

2 −Gvωv/c
2

0 −Gvωv/c
2 β2

v/c
2

 . (3.21)
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The signal to noise ratio (SNR) is defined as the total energy ratio between the signal

and the noise, referred to as the input SNR

SNRuv = ‖S̄uv‖2/N0N, (3.22)

which is proportional to d−γ as indicated in (2.21). Additionally, if we assume a

symmetric spectrum, i.e. Gv = 0, the matrix Iguv becomes diagonal, with the FIs of

amplitude ιAuv , phase ιΦuv and symbol delay ιτuv along the diagonal, i.e.

Iguv = diag{ιAuv , ιΦuv , ιτuv}. (3.23)

The diagonalization operator diag{·} arranges the elements (scalers, vectors or matri-

ces) into the diagonal of a matrix. The diagonal FIM of guv is optimal in the sense

of maximizing the information of Φuv and τuv, according to the Schur complement in

(3.6). Additionally, the contributions of amplitude, phase and symbol delay to the

state FIM Ix can be assessed independently in this case. In this thesis, Gv = 0 is

generally assumed, which can be achieved by waveform design.

If the nuisance parameters, i.e. Av, γ, δuv, φuv, δuv are known, the distance between

transceivers duv can be directly estimated from the signal features guv, which is com-

monly referred to as ranging. Utilizing the diagonal property of Iguv , the RII, ιduv ,

of different ranging techniques can be evaluated by transferring Iguv , or its diagonal

elements, back to distance, i.e.

var[d̂uv] ≥ CRB[duv] = ι−1
duv

=

(∑
l∈Iuv

ι
[guv ]l
duv

)−1

,

(∑
l∈Iuv

∂[guv]l
∂duv

[Iguv ]l,l
∂[guv]l
∂duv

)−1

,

(3.24)

where ι
[guv ]l
duv

is the distance FI in the signal features [guv]l and Iuv is the index set of

the considered signal features.

1) RSS

Distance between transceivers can be extracted from the RSS, given the transmit

power and the path-loss exponent. The distance FI ιRSS
duv

and CRB with RSS obser-

vation can be written as

CRBRSS[duv] = (ιRSS
duv )−1 =

(
2SNRuvA

−2
uv

(∂Auv
∂duv

)2)−1

=
2d2

uv

γN SNRuv

. (3.25)

For free space path-loss, i.e. γ = 2, and SNRuv ∝ d−2, besides the impact of SNR,

the distance CRB with RSS observation increases, in addition, quadratically with
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distance duv. In reality, the performance of RSS-based ranging is sensitive to the

propagation model mismatch, even though intensive research has been conducted

to it.

2) ToA

Symbol delay can be exploited for distance estimation in a ToA manner, with the

distance FI ιToA
duv

and CRB expressed as

CRBToA[duv] = (ιToA
duv )−1 =

c2

2β2
vN SNRuv

. (3.26)

Hence, the variance of distance estimation is inversely proportional to the effec-

tive bandwidth β2
v and the SNR. In practice, the clock offset may affect the ToA

based observation. Synchronization or a multi-way ranging protocol needs to be

implemented to eliminate the effects of clock offset. The effective bandwidth is

determined by the PSD function of the baseband signal, which can be maximized

by waveform optimization. ToA-based ranging is robust against model mismatch

and relatively simple for implementation. Therefore, it is widely considered through

investigation, particularly in swarm self-localization topics, such as system design

[82, 83], distributed algorithm design [51, 84] and formation control [85].

3) PoA

Carrier phase can also be exploited for distance estimation, with the FI and CRB

defined similarly to the ToA case, i.e.

CRBPoA[duv] = (ιPoA
duv )−1 =

c2

2ω2
vN SNRuv

. (3.27)

Hence, the variance of distance estimation is inversely proportional to the square of

the angular carrier frequency ω2
v and the SNR. It can be seen that the PoA bound

possesses a same tendency as the ToA bound. The ratio ω2
v/β2

v indicates the gain

of using PoA in comparison with ToA. However, in practice, PoA-based ranging is

more difficult due to integer ambiguities, or phase wrapping. In addition, coher-

ent transceivers need to be implemented. PoA-based ranging requires an accurate

initialization, or tracking. It is used in, for example, the RTK service of GNSS.

4) All three features

Fundamentally, if the amplitude, symbol delay and carrier phase are jointly ex-
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Figure 3.1. Graph representation of swarm self-localization: Green dots and lines indi-
cate agents and A2A links, respectively.

ploited for ranging, a joint ranging CRB can be derived as

CRBRF[duv] = (ιRF
duv)

−1 = (ιRSS
duv + ιToA

duv + ιPoA
duv )−1 =

c2

2N SNRuv(γc2d−2/4 + β2
v + ω2

v)
,

(3.28)

which follows from (3.21) being diagonal.

In the presence of unknown nuisance parameters, distance information cannot be

extracted solely from a single link. However, by collaboration among agents, distance

between transceivers can be estimated jointly with the nuisance parameters, which will

be discussed with the swarm source localization in Section 3.4.

3.3 Swarm Self-Localization

We investigate an anchor-free self-localization case illustrated in Figure 3.1, i.e. V =

X = P = A. Only the ranging measurements from the ToA observation are exploited.

The impacts of swarm’s formation and connectivity on self-localization are discussed in

detail. First of all, the swarm self-localization performance depends on the formation

of the swarm. Second, for a swarm with fixed formation pA, the connectivity condition

is adaptable by modifying the measurement coverage assumption, which also affects

the localization performance. In practice, the measurement coverage can be changed

by either changing the transmit power or link selection according to the receive power.

The connectivity has to be sufficiently high to guarantee a unique localization solution.

However, due to the limits on total RF resource, e.g. power and bandwidth, increasing

measurement coverage leads to reducing resources allocated to each link in order to

guarantee orthogonal channel accesses. As a consequence, the ranging measurements

are erroneous, which leads to a poor self-localization performance.
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3.3.1 Swarm Self-Localizability

As discussed before, with the absence of nuisance parameters, the swarm’s position

information is solely embedded in the distance between agents. In this case, the swarm

network can be analogously interpreted as a bar-joint framework and its localizability

is addressed fundamentally by the rigidity theory [48]. A framework is rigid, if none

of the vertices can move continuously without changing at least one edge length. For

a generic framework FA = (GA,pA), if it can be smoothly transformed into another

framework F̃A = (GA,qA) with agents position qA 6= pA and all the edge distances

dA = vec{duv : ∀luv ∈ L0} keep constant during the transformation, we can state

‖pu − pv‖2= const., ∀luv ∈ L0. (3.29)

Taking the derivative of (3.29), we can get

(pu − pv)
T (ṗu − ṗv) = 0, ∀luv ∈ L0. (3.30)

ṗu is a virtual velocity of agent au. Collecting for all the edges, (3.30) can be rewritten

as

R(FA)ṗA = 0, (3.31)

with ṗA = vec{ṗu : ∀au ∈ A} and R(FA) ∈ R|L0|×2|A| is called rigidity matrix of the

framework FA expressed as

R(FA) =


··· 2u:2u+1 ··· 2v:2v+1 ···

...
. . .

iuv 0T (pu − pv)
T 0T (pv − pu)

T 0T

...
. . .

, (3.32)

where iuv is the index of the edge luv ∈ L0. In 2D, there are 3-degree flexible global

motions, 2-degree in translations and 1-degree in rotations, which lead to three groups

of non-zero vectors of ṗA. Hence, the rank of R(FA) fulfills rank[R(FA)] ≤ 2|A|−3,

where the equality holds i.f.f. the framework is rigid. Therefore, to prove the rigidity of

a generic framework where no more than two agents are collinear, we can simple check

if the rigidity matrix has rank 2|A|−3. The rigidity can prevent continuous motion of

agents, which means a swarm self-localization algorithm will converge to a solution.

However, it does not necessarily mean the solution is unique. One common exception

is the folding ambiguity. If an agent au is only connected to two agents av and aw, then

au can be folded along the line of av and aw into a new position p̃u which makes the
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new formation different from the original. For the uniqueness of the solution, we need

to verify the framework is global rigid. It has been proved in [48] that a framework is

global rigid if it is 3-connected and redundantly rigid. 3-connected means deleting any

less than three vertices, the graph is still connected. Redundantly rigid means removal

any one edge, the remaining graph is still generic rigid. Checking a framework’s global

rigidity is more computational demanding compared with the check of rigidity. Since

the folding ambiguity produces isolated local minima, it can be avoided by tracking

filters such as extended Kalman filter (EKF) or PF.

The ToA measurements from each link are assumed to be independent. In addition,

the ranging information on the bi-directional link is equivalently considered as a single

measurement with new ranging information of ιuv = ιToA
uv + ιToA

vu . The total ranging

FIM can be written as IdL0
= diag{ιuv : ∀ luv ∈ L0}. The swarm’s position FIM IpA

based on ToA measurements can be written by mapping the ranging FIM IdL0
onto

position domain, i.e.

IpA = HL0IdL0
HT
L0
, (3.33)

with the ranging geometry matrix HL0 defined as

HL0 = ∇pAdTL0
. (3.34)

Theorem 3.3.1 (FIM and rigidity). The swarm framework FA is rigid, i.f.f. rank (IpA) =

2|A|−3.

Proof. Combining (3.32), (3.34) and (3.33), we can rewrite IpA as

IpA = R(FA)T IdL0
· diag {dL0}

−2 R(FA). (3.35)

Since the measurement links are independent, i.e. IdL0
and diag {dL0}

−2 are full rank

diagonal matrices with positive real-valued scalars along the diagonal, we have

rank (IpA) = rank (R(FA)) . (3.36)

Hence the network rigidity can be equivalently checked by the rank of the swarm self-

localization FIM IpA .

3.3.2 Anchor-free Self-Localization CRBs

As discussed before, due to the anchor-free setup, swarm self-localization is often a

problem with singularity, where the position FIM is at least rank deficient by three,
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corresponding to the global rigid motion of translation (two degree of freedom) and

rotation (one degree of freedom). Hence, three linearly independent constraints have

to be defined to determine a unique swarm coordinate system A.

3.3.2.1 Position CRB with Baseline Constraints

An intuitive choice of the constraints is to define a baseline B from two agents, for

example, constraining au at the origin and av on the positive y-axis. The coordinate

system defined by the baseline B is denoted as B. Since the state for baseline xB,

i.e., the coordinates of au and x-coordinate of av is no longer unknown, the position

FIM IpA can be truncated to IpA/xB , where columns and rows corresponding to the

baseline states are removed. If the formation is rigid, the reduced FIM IpA/xB will be

full rank. Therefore, the CRB of the remaining unknowns can be expressed as

CRB[pA/xB ] = I−1
pA/xB

. (3.37)

The total position CRB in B, denoted as CRB[pBA], can be written by inserting zero

column and row vectors to CRB[pA/xB ] corresponding to xB.

The coordinate systems defined by baselines are not optimum in the sense of min-

imizing the position RMSE according to (2.4). Due to the noisy measurements, the

choice of baseline will bring additional coordinate system uncertainty. As a conse-

quence, agents at larger distance from the baseline will experience larger localization

errors.

3.3.2.2 Position CRB with Group Motion Constraints

As discussed in [47], an optimal coordinate system C for self-localization can be found

by directly constraining the self-localization problem with the three global motions.

The optimal constraints are represented by the subspace U⊥ = [ux,uy,ur], with or-

thonormal bases of translations in x and y directions ux and uy, and rotation ur defined

as

[ux,uy] =
1√
|A|

1|A|×1 ⊗ I2×2, (3.38)

ur =
1

‖pA‖
vec{yu,−xu : u = 1, · · · |A|}. (3.39)

The base U⊥ spans the left nullspace of the state space, i.e., the constraints. The

orthonormal bases of column space Uq can be determined by the eigenvalue decompo-
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sition as

I−U⊥UT
⊥ = [Uq, Ũ⊥]

[
Λ 0

0 0

][
UT

q

ŨT
⊥

]
. (3.40)

The total FIM can be projected onto the column space as UT
q IpAUq and becomes full-

rank. Finally, the position CRB in C is calculated by inverting the projected FIM and

transforming back to the parameter space as

CRB[pCA] = Uq

(
UT

q IpAUq

)−1

UT
q . (3.41)

Alternatively, the position CRB in C can be equivalently written as the Moore-Penrose

pseudoinverse of IpA [47], i.e.

CRB[pCA] = I†pA . (3.42)

The position CRB in C lower bounds the covariance of shape error defined in (2.4), i.e.

cov[εTA,opt
(qP)] < CRB[pCA], (3.43)

or the variance of the average shape difference defined in (2.3), i.e.

var[εF̃A ] ≥ CRB[pA] , Tr
[
CRB[pCA]

]
/|A|, (3.44)

where CRB[pCA] is the average position CRB in C. The coordinate system C is opti-

mum in the sense of eliminating the coordinate system uncertainty, i.e. Tr[CRB[pCA]] ≤
Tr[CRB[pBA]]. Therefore, we refer CRB[pCA] to as the optimal position CRB.

3.3.2.3 Framework Distance CRB

The position CRB with arbitrary constraints can be transferred back to the link dis-

tances dA = vec{duv : ∀ luv ∈ Lall}, with the overall geometry matrix HA defined

as

HA = ∇pAdTA. (3.45)

Theorem 3.3.2 (Framework distance CRB). For a swarm A with a position CRB

constrained with an arbitrary Cartesian coordinate system A, e.g. A ∈ {B,C}, denoted

as CRB[pAA], the distance estimation error in framework can be lower bounded by the
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framework distance CRB denoted as CRB[dA], or its mean CRB[dA], i.e.

cov[εd̂A ] < CRB[dA] = HT
ACRB[pAA]HA, (3.46)

or

var[εd̂A ] ≥ CRB[dA] , Tr
[
CRB[dA]

]
/|Lall|. (3.47)

Proof. Apply the CRB for the transformed parameters [27, p. 45], [86].

Theorem 3.3.2 indicates that the framework distance CRB is invariant to the choice

of constraints, e.g. either defined by a baseline or group motions. The framework

distance CRB assesses self-localization performance in distance, which is the same

domain as ranging. Therefore, it can be utilized to evaluate the resource allocation

efficiency and the performance gain through collaboration, which will be discussed in

Section 3.3.3.

3.3.2.4 Interpretation of CRBs

The position CRBs in an arbitrary Cartesian coordinate systemA, denoted as CRB[pAA]

are preferable for investigating the geometrical inference of pAu estimation. For example,

we can extract the 2× 2 sub-matrix corresponding to the position pAu of agent au from

CRB[pAA]

CRB[pAu ] = CRB
[
pAA
]
<pAu ,p

A
u>
. (3.48)

By eigenvalue decomposition, CRB[pAu ] can be interpreted as an ellipse with major

axis λ1 and minor axis λ2 rotated by the rotation matrix Φ(ξu)

CRB[pAu ] = Φ(ξu)

(
λ2

1 0

0 λ2
2

)
Φ(ξu)

T . (3.49)

The shape and size of the CRB ellipses are firstly affected by the formation of swarm,

reflected in the geometry matrix HL0 . A swarm in open area often intends to form

quasi-lattice formations, like in flocking [41], which cover the area of interest homoge-

neously. Secondly, the CRB ellipses depend on the range information intensity, IL0 ,

which is determined by the ranging techniques. Theoretically, for an optimal self-

localization algorithm, the performance is independent of the choice of constraints,

since the results are transformable upon different constraints. However, the position

CRB under the optimal constraints eliminates the coordinate system uncertainty, which



3.3. Swarm Self-Localization 45

(a) CRBs with baseline constraints (b) CRBs with group motion constraints

Figure 3.2. Comparison of different self-localization CRBs and the centralized WLS
position estimators: The position CRBs of each agent is illustrated with magenta ellipse.
The values on A2A links indicate the framework distance CRBs.

allows us to infer the fundamental property of swarm self-localization. Besides, for sub-

optimal algorithms a short baseline may leads to an unstable position estimation. A

comparison of different self-localization CRBs is illustrated in Figure 3.2. In Figure 3.2,

we also show the performance of a centralized weighted least-square (WLS) position

estimator, which is a commonly used maximum likelihood (ML) estimator under Gaus-

sian assumption [33]. The green dots represent agents’ positions. 3 σ position CRBs

ellipses are illustrated in magenta color. The numbers along the A2A links indicate

the distance CRBs from the framework estimate. The ranging observation is assumed

to be distorted with Gaussian noise, where the RII of each link is set to 1 m−2. The

gray markers are the localization results of 500 numerical simulation runs. The il-

lustration of baseline and group motion constraints are depicted in Figure 3.2a and

Figure 3.2b, respectively. The baseline is defined with the position of the agent at the

origin and the x−coordinate of the agent located on the y−axis. As we discussed, the

group motion constraints are optimal in the sense of minimizing the position RMSE.

With the baseline constraints, the agent further away from the baseline additionally

suffers from the coordinate system uncertainty, which leads to a bending, sometimes

referred to as a ”banana-shape” [87], estimation uncertainty. In this case, neither the

CRB ellipse nor second-moment statistics would capture the position uncertainty of

the agent. As described in Theorem 3.3.2, the framework distance CRBs, which are

shown on each links, are invariant to the choice of constraints, i.e. inherently optimal

for evaluating the self-localization performance. Two definitions of optimal CRBs in
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(3.43) and (3.46) show the link between the two performance evaluation metrics in-

troduced in Section 2.2, namely the average shape difference εF̃P and the framework

distance RMSE εd̂P .

3.3.3 Self-Localization under RF Resource Limits

A swarm is a dynamic network system with a large-scale and high density. The total

RF resources used by the swarm, i.e. total available spectrum, total allowed transmis-

sion power, and transmission time, are often limited. The objective of designing a radio

access technology (RAT) for a swarm system is to achieve synchronization, communi-

cations and precise multi-link ranging among agents with a high update rate. As an

example of such a system, a specific RAT is depicted in Figure 3.3, which is designed

for the Mars swarm exploration system at German Aerospace Center (DLR) [82]. An

OFDM modulation scheme is employed for physical layer (PHY) transmissions due

to its flexibility in orthogonal RF resource allocation. For the media access control

layer (MAC), a hybrid time-division multiple access (TDMA)-orthogonal frequency-

division multiple access (OFDMA) scheme is used. TDMA is used for the first layer,

where agents exclusively access the channel in a sequential manner. Inside one TDMA

slot, eight OFDM symbols are dedicated for synchronization, ranging and communica-

tions. TDMA slots can be assigned in a self-organized fashion, either with traditional

detect-and-preserve scheme, or with a more flexible scheme like pulse coupled oscil-

lator (PCO) [82]. The subcarriers are further distributed for simultaneous multi-link

two-way ranging. The depicted system applies a frequency division duplexing (FDD)

amplify-and-forward ranging with interleaved subcarrier allocation for implementation

simplicity as proposed in [88].

3.3.3.1 CRB for Multi-Link Ranging

As a generalization for theoretical analysis of self-localization with limited resource,

we assume there exists a subcarrier allocation scheme which allocates |Nuv| out of

N subcarriers, for the ranging link luv ∈ L0. The ratio between the total subcarrier

number and the used subcarrier number per link is defined as the resource sharing factor

Kuv = N/|Nuv |. If the subcarriers are equally allocated among links, we have Kuv = |L0|
for unicast-based ranging and Kuv = |A| for broadcast-based ranging. For a special

case where each occupied subcarrier has an constant energy density, i.e. ‖S(f)‖2= ‖S‖2

and ‖Sn‖2= ‖S‖2fsc , ‖S̃‖2, the ranging CRB with the OFDM signal can be derived
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Figure 3.3. Hybrid TDMA-OFDMA structure of A2A links.

from (3.26) as

CRB[duv] =
c2

2ω2
sc SNRuv

∑
n∈Nuv n

2
. (3.50)

Additionally assume each subcarrier is occupied with an equal probability 1/Kuv, i.e.

E

[ ∑
n∈Nuv

n2

]
=

1

Kuv

N−1
2∑

n=−N−1
2

n2 =
(N − 1)N(N + 1)

12Kuv

. (3.51)

Lemma 3.3.1 (Multi-Link Ranging CRB). With randomized orthogonal subcarrier

allocation and a fixed power allocated per subcarrier, the ranging CRB can be asymp-

totically approximated as

CRB[duv] ≈
6c2Kuv

ω2
sc SNRuv(N − 1)N(N + 1)

=
3c2Kuv

2π2B2
cN SNRuv

= KuvCRB0[duv],

(3.52)

hence, the ranging CRB with full subcarrier occupation, CRB0[duv], scaled by the re-

source sharing factor Kuv.

Proof. Replace the summation in (3.50) with its expectation in (3.51).

An interpretation of Lemma 3.3.1 is that by randomized subcarrier occupation, the

effective bandwidth β2
uv asymptotically remains the same as the one with full occupa-

tion, whereas the SNR is degraded to SNRuv/Kuv due to the subcarrier allocation.
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3.3.3.2 Collaboration Gain in Self-Localization

For a meshed network like the swarm network under investigation, agents localize

themselves collaboratively. There is a gain in network localization obtained through

collaboration [32, 28]. The collaboration gain in position domain has been investigated

in [28]. As a conclusion, for a fully connected swarm network with a ranging model

independent of the number of links, the position CRB of each agent scales as O(1/|A|).

We investigate the collaboration gain in the link distance domain with the framework

distance CRB introduced in Theorem 3.3.2, which directly compares the accuracy of

ranging from single link and the distance from the framework estimate. In addition, we

consider the limited resource effects with both unicast and broadcast ranging schemes.

We also assume a fully connected network, i.e. L0 = Lall, dL0 = dA and HL0 = HA.

Combining (3.33), (3.42) and (3.47), the averaged framework distance CRB is defined

as

CRB[dA] =Tr
[
HT
A
(
HAIdL0

HT
A
)†

HA

]/
|Lall|

=Tr

[
I
−1/2
dL0

(
HAI

1/2
dL0

)T (
HAI

1/2
dL0

(
HAI

1/2
dL0

)T)†
HAI

1/2
dL0

I
−1/2
dL0

]/
|Lall| (3.53)

=Tr

[
I−1
dL0

(
HAI

1/2
dL0

)†
HAI

1/2
dL0

]/
|Lall|. (3.54)

To derive (3.54) from (3.53), we utilize the properties of trace and Moore–Penrose

inverse of matrix, Tr[AB] = Tr[BA] and AT (AAT )† = A†. We apply the singular

value decomposition (SVD) to HAI
1/2
dL0

HAI
1/2
dL0

= [U1,U2]

(
S1 0

0 0

)
[V1,V2]T . (3.55)

With this decomposition, the averaged framework distance CRB can be rewritten as

CRB[dA] =Tr

I−1
dL0

V1D
−1
1 UT

1 U1︸ ︷︷ ︸
I

D1V
T
1

/|Lall|

=Tr
[
I−1
dL0

V1V
T
1

]/
|Lall|. (3.56)

In this thesis, the notations I and In×n denote identity matrices, whereas Ix denotes

the FIM of state x. If the ranging CRB of each link is a constant σ2
ρ, which can be

achieved by setting Kuv ∝ SNRuv, a corollary can be readily stated as follows.

Corollary 3.3.1 (Framework Distance CRB with Equal Ranging Accuracy). For a
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swarm A with equal ranging CRB, σ2
ρ, the average framework distance CRB can be

expressed as

CRB[dA] = σ2
ρ(2|A|−3)/|Lall|. (3.57)

Hence, through collaboration, the average distance estimation accuracy is gained by

|Lall|/2|A|−3.

Proof.

CRB[dA] = Tr
[
σ2
ρIV1V

T
1

]/
|Lall|= σ2

ρTr
[
V1V

T
1

]/
|Lall|= σ2

ρrank(V1)
/
|Lall|. (3.58)

For generic cases, with unequal ranging CRBs, the average framework distance

CRB can be over-bounded with the following corollary.

Corollary 3.3.2 (Framework Distance CRB with Unequal Ranging Accuracy). For a

swarm A with unequal ranging CRBs decreasingly sorted as σ2
1 ≥ σ2

2, · · · , σ2
|L0| > 0, the

average framework distance CRB can be over-bounded by

CRB[dA] ≤ 1

|Lall|

2|A|−3∑
l=1

σ2
l , (3.59)

i.e. depending on the 2|A|−3 most significant ranging CRBs in the network.

Proof. To prove Corollary 3.3.2, we utilize the trace inequality of any two Hermitian

positive semidefinite n× n matrices A and B [89]

Tr[AB] ≤
n∑
i=1

λi(A)λi(B), (3.60)

where {λi(X) : i = 1 · · ·n} are the eigenvalues of X sorted in non-increasing order. We

insert the eigenvalues

{λl(I−1
dL0

) = σ2
l : l = 1 · · · L0}

vec{λl(V1V
T
1 ) : l = 1 · · · L0} = vec{12|A|−3,0L0−2|A|+3} (3.61)

into (3.60). The equality in (3.56) can be relaxed to the inequality (3.59).

Since the swarm network is fully connected, we have |Lall|= |A|(|A|−1)/2. From Corol-

lary 3.3.1 and Corollary 3.3.2, we can observe that for both equal and unequal ranging
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CRBs cases, the average framework distance CRBs are reduced to O(1/|A|) of the rang-

ing CRBs, which is similar as the conclusion about position CRB scaling in [28]. In

addition, for unicast ranging schemes, the average framework distance CRBs is in

O(|A|CRB0[duv]), i.e. |A| times worse than ranging performance with all the subcar-

riers. For broadcast ranging schemes, the average framework distance CRBs is on the

order of O(CRB0[duv]). Hence, for broadcast ranging, the framework distance estima-

tion of all links are almost as accurate as single link ranging occupying all RF resources,

i.e. the degradation due to resource sharing is compensated by the collaboration gain.

According to the CRB analysis in this section, a large-scale network with mas-

sive number of simultaneous multi-links is preferable for self-localization, especially

for broadcast schemes. However, detection failure effects are excluded with traditional

CRB, which makes the analysis over optimistic. Next, we include the detection failures

with the help of ZZB.

3.3.3.3 ZZB modified CRB for Self-Localization

CRB is a lower bound of unbiased estimators, which is achievable for high SNR. For

our swarm system with multi-link ranging, the SNR can be low due to resource sharing.

As a consequence, an estimator may fail to distinguish signal from noise which leads

to a severe error. In this case, the CRB is no longer applicable in predicting the

performance of estimators. Therefore, we have to take the detection probability into

consideration as well, for example by the ZZB defined in (3.13). [56] and [90] derived

the ranging ZZB for ultra-wide band (UWB) and multicarrier signals, respectively. We

adapt the result in [56] to our signal and the randomized subcarrier allocation scheme.

The ranging ZZB of a ranging link with subcarrier set Nuv states

ZZB[duv] =
c2

To

ˆ To

0

t(To − t)Q
(√

SNRuv|Nuv|(1− ρ(t))
)

dt, (3.62)

where Q(·) is the Gaussian Q-function and ρ(t) is the signal auto-correlation function

normalized to one. The ToA is assumed to be uniformly distributed in the a-priori

searching window (0, To]. As a Bayesian bound, ZZB treats the distance between agents

as a random variable, which is contrary to the deterministic variable assumption of the

ranging CRB. The Bayesian and non-Bayesian concepts are not restrictively compa-

rable since they describe a variable from different perspectives. Intuitively speaking,

Bayesian concept measures subjectively the a-posteriori ‘knowledge’ about the variable

of interest, given the a-priori knowledge and the observations. Non-Bayesian concept

emphasizes on objectively estimating the variable given the observations. However,

in practice the Bayesian concept is often adapted to estimate an objective physical
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variable, like distance between agents, since it conveniently combines the a-priori in-

formation and the observations. In this case, the bounds, e.g. ZZB and CRB, and

estimators, e.g. MMSE and ML estimators, from Bayesian and non-Bayesian concepts

are often compared. For example as a well known result, the ranging ZZB converges

to the ranging CRB for high SNR, since in the high SNR region, the a-priori informa-

tion plays an insignificant role. In the threshold SNR region, the ranging ZZB diverges

above the CRB, which is tighter to the ranging MSE since it includes the detection fail-

ures. In the low SNR region, the ranging ZZB flattens due to the a-priori information,

whereas the CRB remains increasing as the SNR decreases. A comparison of ranging

ZZB, CRB and estimation RMSEs with different resource sharing factors is illustrated

in Figure 3.11 in Section 3.6.1. The CRB discussion in Section 3.3.3.2 is valid for high

SNR. However, to investigate the resource limitation effect on self-localization, which

is essentially determined by the SNR according to Lemma 3.3.1, we are interested in

the whole range of SNRs. We propose a ZCRB, which incorporates the ranging ZZB in

position CRB. In order to do so, the ranging model is modified as follows. We consider

the A2A distance duv is a deterministic unknown variable. The starting point τo of the

searching window (τo, τo + To] is assumed by a Bayesian range estimator as uniformly

distributed in (duv/c− To, duv/c]. The range estimate ρuv is modeled as the real distance

duv distorted by a additive noise εuv, i.e.

ρuv = duv + εuv. (3.63)

The distribution of the noise is generally unknown, which leads to a difficulty to derive

the exact position CRB. However, the noise is zero mean since the searching window is

symmetric w.r.t. duv/c. In addition, the noise variance is tightly bounded from below by

the ranging ZZB. It has been proved in [91], that for a parameter estimation problem

with an observation distorted by a zero mean noise with fixed variance, the CRB gets

its largest value if the noise is Gaussian distributed. We utilize this result and find

another ranging model

ρ̃uv = duv + ε̃uv, (3.64)

where ε̃uv ∼ N (0,ZZB[duv]). The position FIM with the virtual ranging ρ̃uv can be

written according to [27] as

ǏpA = HL0diag{ZZB[duv] : luv ∈ L0}HT
L0
. (3.65)
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The optimal position CRB corresponding to ǏpA is referred to as the position ZCRB,

i.e.

ZCRB[pCA] = Ǐ†pA , (3.66)

which is a conservative approximation of the exact position CRB in the optimal coor-

dinate system C. As we can see from (3.62), once the transmitted signal is determined,

the ranging ZZB only depends on the SNR, which can be pre-calculated and stored in

a lookup table. Then the position ZCRB can be assessed with a low computational

effort. The position ZCRB is used to evaluate the connectivity-ranging trade-off in self-

localization in Section 3.6.1, and to optimize the swarm formation minimizing position

uncertainty in Chapter 5.

3.4 Swarm Source Localization

As next step we are interested in what we can learn from Fisher information for the

scenario where a distant point source av ∈ S is collectively localized by the swarm

A. As introduced in Section 1.2.1, a swarm-centric view is applied with a meso-level

Cartesian coordinate system C, i.e. the swarm coordinate system. In order to focus

on the source localization problem, we assume the agent states xA are known in this

section, i.e. X = S. Therefore, the choice of the coordinate system will not affect

the investigation, unlike swarm self-localization, discussed in Section 3.3. A graph

representation of swarm source localization can be found in Figure 3.4.

3.4.1 From Discrete to Continuous Swarm Aperture

Without loosing the generality, we investigate the case where the origin of the coor-

dinate system C is located at the swarm center and the source av is located at the

positive side of the x−axis. Source localization can be equivalently seen as two prob-

lems, namely determining the AoA θv and the distance dv of the source av w.r.t. the

swarm coordinate system C. In order to assess the property of the two problems

separately, we use the polar coordinate system P corresponding to C as the default

coordinate system in this section and omit the superscript P. The agent and source’s

polar coordinates are pu = vec{du, θu},∀au ∈ A and pv = vec{dv, θv}, respectively.

The source av emits a signal sv(t) which is received by all agents. We generally assume

some nuisance parameters av which need to be jointly estimated with the source’s posi-

tion. The joint parameter vector to be estimated is thus xv = vec{pv, av}. Analogous

to (3.5) and (3.6) the EFIM of pv, denoted as Ĩpv can be derived using the Schur
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Dq

D⊥

x

y

2arccotD⊥
2dv
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pv

pA

θv

Figure 3.4. Graph representation of swarm source localization: Red and green dot(s)
indicate a source and agents, respectively. Agents’ positions in C are assumed known.
Definitions of different apertures introduced in Section 3.4.1 are illustrated.

complement as

Ĩpv = Ipv − Ipv ,avI
−1
av︸ ︷︷ ︸

Dav→pv

ITpv ,av , (3.67)

where Ipv is the information about pv given the nuisance parameters av. The term

Dav→pv shows the degradation of the information about pv when av is unknown. The

components of (3.67) are defined as

Ipv =
∑
au∈A

ιguv

(
∂guv
∂duv

)2

OpvduvOpTv
duv,

Ipv ,av =
∑
au∈A

ιguv
∂guv
∂duv

OpvduvOaTv
guv,

Iav =
∑
au∈A

ιguvOavguvOaTv
guv. (3.68)

For a large-scale swarm, the observability of certain parameters, e.g. source position, is

decisively determined by the swarm collective aperture D and the observation models,

instead of the number of agents for observation. From a macroscopic perspective, a

swarm with a massive number of agents in 2D, i.e. |A|→ ∞, and a finite aperture
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size D = 2R, can be considered as a surface which captures signals in a spatially

continuous manner. The agent positions can be treated as known independent and

identically distributed (i.i.d.) random variables with a pdf of p(du, θu). Hence the sum-

mation of a certain function f(d, θ) sampled at every agent f(du, θu), ∀au ∈ A, can be

asymptotically approximated by the expectation over the agent’s spatial distribution,

i.e.

lim
|A|→∞

∑
au∈A

f(du, θu) = |A| Epu [f(du, θu)] . (3.69)

With this approximation we can rewrite (3.68) with expectations and focus on the

collective aperture covered by the swarm instead of particular swarm formation, which

provides more insights on the geometrical interpretation of source localization. A

2D aperture D can be projected on the direction perpendicular to the source’s AoA,

referred to as the tangential aperture D⊥, and on the direction of the source’s AoA,

referred to as the radial aperture Dq. In addition, the angular aperture is defined as

D⊥/dv, which measures the relative geometrical relationship of the swarm-source system.

The definitions of different apertures are illustrated in Figure 3.4. We will investigate

the impacts of the aperture on individual direction on source localization.

3.4.2 Impacts of Nuisance Parameters

From the models in Section 2.4 we observe that the position information of an isotropic

point source, i.e. distance dv and AoA θv from the swarm perspective, is inferred

essentially from the distances duv between the source av and agents ∀au ∈ A.

The AoA, θv, can be estimated utilizing the fact that signal emitted from an

isotropic point propagates radially. The tangent plane (in 3D ), or tangent line (in

2D), of the signal front is always perpendicular to the source’s direction. Especially

when the source is distant from the swarm, the signal front is approximately planar.

Agents along a line perpendicular to the direction of the source will observe nearly

identical signal values. Intuitively, the AoA of the source can be fully determined

from the directions of these lines, independently from the knowledge of the nuisance

parameters. Hence the AoA information of a distant source can be captured only by

the tangential aperture of the swarm. Contrarily, the distance information of a distant

source is solely contained in the observation from the radial aperture, since the sig-

nal feature guv = g(duv, av) only obtains distinguishable values in the radial direction.

Without nuisance parameters, distance between source and agent duv can be directly

derived from a signal feature guv = g(duv). The source to swarm distance dv can be

estimated by averaging over the range measurements from all agents. The rest of this
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subsection is dedicated to the case in presence of a nuisance parameter. We consider

a generic signal feature guv = g(duv, av) as an arbitrary function of the source to agent

distance duv and a single nuisance parameter av. We prove that there is only one class

of signal feature model, where a nuisance parameter can not be separated from the

source distance by the radial aperture. Hence, the source distance is not observable by

the radial aperture Dq. However, it can be estimated from the tangential aperture D⊥,

which will be discussed in Section 3.4.3.

Let us consider a linear swarm, i.e. a swarm composed of agents on a line, along

the x−axis with known positions in polar coordinate system pA = vec{[du, θu]T : du <

R, θu ∈ (0, π], au ∈ A}. A source is located on the positive x−axis at distance dv to

the swarm, i.e. θv = 0 and known. Let us further assume the signal feature at agent

au is guv = g(dv − xu, av). The FIM of xv = vec{dv, av} is then approximated with

expectation as

Ixv ≈ |A| Epu

ιguv
 (

∂guv
∂dv

)2
∂guv
∂dv

∂guv
∂av

∂guv
∂dv

∂guv
∂av

(
∂guv
∂av

)2

 . (3.70)

The source distance is not observable i.f.f.

det [Ixv ] = 0, (3.71)

which leads to the following lemma.

Lemma 3.4.1 (Condition for Source Localizability). A linear swarm cannot observe

its distance to a collinear source duv and the nuisance parameter av i.f.f. the following

PDE holds

K
∂g(duv, av)

∂duv
=
∂g(duv, av)

∂av
, (3.72)

where K is an arbitrary constant coefficient.

Proof. See Appendix C.2.

The PDE in (3.72) belongs to the class of first-order PDE with a constant coefficient.

Discarding the trivial solution of g(duv, av) = C, the general solution of this type of

PDE is expressed in [92, p. 359] as

g(duv, av) = F (duv +Kav), (3.73)
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where F (ξ) is any differentiable function of a single variable ξ. With this observation,

the following proposition can be readily stated.

Proposition 3.4.1 (Source Localizability by a Collinear Swarm). A linear swarm is

able to observe the distance to a collinear source duv and the nuisance parameter av

i.f.f. the signal feature function g(duv, av) possess a form other than (3.73).

This proposition can be interpreted such that a nuisance parameter which brings a

arbitrary bias to distance observations, e.g. a clock offset for ToA, or a carrier phase

offset for PoA, will fully neutralize the source distance information in the observations

of the radial aperture. Contrarily, for arbitrary types of signal feature g(duv, av) other

than the class defined by (3.73), the distance to a collinear source can still be estimated

by the linear swarm with a reduced accuracy, compared to the case of known nuisance

parameter. One example is the gas concentration with scaling and exponent factors as

nuisance parameters, introduced in (2.29).

Even in the worst case, where the source’s distance is not distinguishable from a

nuisance parameter by the radial aperture, it can be estimated by with the observations

from the tangential aperture through observing the curvature of the signal, as we

discussed in [67]. In the next section we provide a geometrical interpretation of the

extractable source position information from the signal’s curvature.

3.4.3 Source Distance Information in Signal’s Curvature

The concept of CoA based source distance estimation is intuitively illustrated by an

example in Figure 3.5. A source located at pv transmits a sine wave which propagates

to the swarm aperture D as illustrated by the black curve. From the view of the 1D

collinear swarm aperture (Figure 3.5a), the received signal would be identical to the

one (red curve) transmitted at an offseted position p̃v with a corresponding delay offset

δ. From the view of a 2D swarm aperture (Figure 3.5b), a distance offset leads to a

different arriving curvature of the signal, which makes these two curves distinguishable.

Hence the source distance can uniquely be determined. Now we quantify the extractable

distance information from the CoA. We assume a single nuisance parameter av and a

signal feature g(duv, av) = g(duv + Kav) fulfilling (3.73). Additionally, we assume the

source distance is much larger than the size of the swarm’s aperture, i.e. dv � max{du :

∀au ∈ A}, so that ιguv and ∂g(duv ,av)/∂dv can be approximated by their value at duv = dv.

The EFIM Ĩpv can then be approximated as

Ĩpv ≈ ιdv |A| Epu

[
OpvduvO(pv)T duv

]
− ιdv |A| Epu [Opvduv]Epu

[
O(pv)T duv

]
, (3.74)
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(a) 1D aperture: The source at the true position pv (black) and the offsetted hypothesis p̃v (red)
generate non-distinguishable signals (black and red) in the one-dimensional (1D) colinear aperture.

(b) 2D aperture: The source at the true position pv (black) and the offsetted
hypothesis p̃v (red) generate distinguishable signals (black and red) in the 2D
aperture.

Figure 3.5. Observability of source distance dv in the presence of a distance offset δ as
nuisance parameter: Figure 3.5a shows that dv is not separable from δ by a 1-D aperture.
Figure 3.5b shows that dv is separable from δ through observing the CoA by a 2-D aperture.
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where ιdv is the RII at the swarm center defined as

ιdv , ιguv

(∂guv
∂duv

)2 ∣∣∣
duv=dv

. (3.75)

Besides, the S2A distance duv is approximated by its second-order Taylor expansion

d̃uv around du = 0 as

d̃uv ≈ dv − du cos(θu − θv) +
d2
u

2dv
sin2(θu − θv). (3.76)

Additionally, we consider a large-scale swarm, whose agents are randomly deployed

on a dish D, centered at the origin with a radius of R. The positions of agents are

statistically i.i.d. with a uniform distribution in Cartesian coordinate system C within

the dishD, as shown in Figure 3.15. The EFIM of the source’s position pv = vec{dv, θv}
in (3.74) is further approximated as

Ĩpv ≈ ιdv |A|

(
32d4

v−8d2
vR

2+R4

32d4
v

0

0 6d2
vR

2+R4

24d2
v

)
︸ ︷︷ ︸

≈Ipv

− ιdv |A|

(
64d4

v−16d2
vR

2+R4

64d4
v

0

0 0

)
︸ ︷︷ ︸

≈Dav→pv

, (3.77)

where Ipv is the EFIM assuming known nuisance parameter. Applying the assumption

of dv � D, where D , 2R denotes the aperture size of the swarm, leads to the

approximated CRBs as follows.

Theorem 3.4.1 (Nuisance Parameter Impact on Source Localization CRBs). With

known nuisance parameter, the CRB of pv is approximated by

CRB[pv|av] ≈
1

ιdv |A|

(
1 0

0 4
R2

)
. (3.78)

With unknown nuisance parameter, the CRB of pv is approximated by

CRB[pv] ≈
1

ιdv |A|

(
64
(
dv
R

)4
0

0 4
R2

)
. (3.79)

The first diagonal entries of CRB[pv|av] and CRB[pv] are the source distance esti-

mation lower bounds with known and unknown nuisance parameters, respectively. The

second diagonal entries are the corresponding source AoA estimation lower bounds.

The AoA estimation variance is inverse quadratically proportional to the aperture size

D and independent of the nuisance parameters. Contrarily, the nuisance parameters

severely degrade distance estimation, as the distance estimation variance in that case
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is inverse quartically proportional to the size of the angular aperture defined as D/dv.

In the next section we investigate a particular application, where the RF carrier

phases of S2A signals are exploited for source localization.

3.4.4 Curvature of Arrival(CoA) based RF Source Localiza-

tion

3.4.4.1 Theoretical Analysis

For a RF source av ∈ SRF, which radiates a single-carrier signal at carrier frequency fs

with transmit power of A2
v, the source position information can be extracted collectively

by the agents from the received signal phases with a unit of meters Φuv = duv +

φv, ∀au ∈ A as defined in (2.21) and (2.26). In this case the nuisance parameter is

the unknown phase offset of the source φv, which is additive to the distance duv. The

swarm A is collectively considered as a large-scale phased array. Traditionally, the

signal phases observed by a phased array are utilized only for AoA estimation with

the plane wave model, since the source is normally located in the far field of the array,

i.e. dv � dF =
2D2
⊥

λs
, where dF is called the Fraunhofer distance [93], λs is the wavelength,

and D⊥ is the tangential aperture length. In our case, the aperture composed by the

swarm is significantly larger than the one from traditionally considered phased arrays.

Therefore, the spherical wave model has to be applied, which enables CoA-based source

localization. In Figure 3.6, the concepts of far-field and near-field source localization

with carrier phase is illustrated, where the swarm forms a uniform rectangular array

(URA) as an example.

The generic notation of A(x1,x2) indicates a 2D coordinate system with x1 as the first

axis and x2 as the second axis. The Cartesian coordinate system C(ξϕ) in Figure 3.6b is

the swarm coordinate system C rotated by θv, whose ξ−axis is aligned with the AoA.

The signal CoA at the center of swarm Po can be defined as follows.

Definition 1 (RF Signal CoA). The signal CoA κv is defined as the extrinsic cur-

vature of −Φvc/ωs along the ϕ-axis of C(ξϕ). With the spherical wave model, CoA is

proportional to the absolute value of the phase’s second-order derivative and equals to

the reciprocal of dv, i.e.

κv , −
c

ωs

∂2Φv

∂ϕ2

∣∣∣
Po

=
1

dv
, (3.80)

where Φv = dv + φv is the virtual phase observation at Po, since there is generally no

agent at point Po.
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(a) Far-field AoA estimation

(b) Near-field AoA/distance estimation

Figure 3.6. Far-field vs. near-field source localization.
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The definition of the signal CoA will be used in Section 3.4.4.3 to derive a low

complexity CoA-based source localization algorithm. The total FIM of xv can be

calculated similarly as in [94]. The source position CRB denoted as CRB[pv] can be

obtained by applying the Schur complement to the position corresponded sub-matrix of

the FIM defined in (3.67). We assume free-space pathloss, and the array aperture size

to be small compared to the source distance dv, but still large enough to capture the

signal’s CoA. Therefore, the distance-related attenuation differences among elements

are negligible. Hence given Auv = Avc/2ωsdv, the positioning CRB states

cov[p̂v]<CRB[pv]=
2N0d

2
v

A2
v

(( ∑
au∈A

∇pvdvu∇pTv
dvu

)
− 1

|A|
∑
au∈A

∇pvdvu
∑

aw∈A

∇pTv
dvw

)−1

,

(3.81)

where the factor in front 2N0d2
v/A2

v indicates the effect of SNR. To infer the geometry

impacts on CoA-based source localization, we first investigate a linear swarm forming

a symmetric linear array (SLA) along the x-axis, with an aperture length D. We

define the kth empirical moment of the normalized agents’ spatial distribution Mk =∑
au∈A(du/D)k/|A|, and the tangential aperture length D⊥ = D sin θv, to characterize

the array geometry.

Theorem 3.4.2 (Source Position CRB for SLA). For the SLA, assuming |A|� 1 and

dv � D, the CRB of AoA estimate can be approximated by

CRB[θv] ≈
2N0d

2
v

A2
v|A|D2

⊥M2

, (3.82)

whereas the distance CRB is approximated by

CRB[dv] ≈
2N0d

2
v

A2
v

4d4
v

|A|D4
⊥(M4 −M2

2 )
. (3.83)

Proof. See Appendix C.3.

Both CRBs in (3.82) and (3.83) linearly decrease with the number of agents |A|.
The CRB for AoA decreases quadratically with D⊥. The distance CRB experiences a

quartic growth with the angular aperture dv/D⊥, indicating a strong impact from the

relative geometry. These two conclusions coincide with the continuous dish aperture

asymptotics analysis of a random swarm in Theorem 3.4.1.

In addition, the CRB for AoA decreases linearly with the antennas’ spatial spread

M2, whereas the distance CRB decreases with M4 −M2
2 , which describes the shape

of the antennas’ spatial distribution. These two discoveries may be further exploited
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for swarm formation optimization according to a preference of estimating the source’s

direction or distance.

More importantly, when θv = 0 ◦, both CRBs approach infinity. Hence, the signal

captured by the swarm’s radial aperture expanded in ξ−direction contains no infor-

mation of the source’s position. With the last observation, we extend Theorem 3.4.2

to arbitrary 2D centro-symmetric arrays (CSAs). Many typical arrays are centro-

symmetric, e.g. uniform circular/linear arrays, the ones in [94], as well as the URA

illustrated in Figure 3.6.

Corollary 3.4.1 (Linear Projection of a CSA). A CSA centered at P0 can be projected

on the ϕ−axis, forming a virtual SLA.

Proof. By the definition of centro-symmetry, for any non-centered element u with po-

sition pu = vec{du, θu}, there exists an element w with position pw = vec{du, θu + π}.
Elements u and w are projected on the v−axis at ±du sin(θu− θv) respectively and are

symmetric w.r.t. P0. Hence the projected array is an SLA.

Since the aperture expanded in ξ−direction does not contain position information,

the projected virtual linear array along the ϕ−axis is almost equivalent to the original

CSA in the sense of CoA source localization. Hence, the positioning CRB with a URA

can be approximated by applying Theorem 3.4.2 to the projected virtual SLA.

Figure 3.7 illustrates the optimized swarm formations for source AoA (Figure 3.7a)

and distance (Figure 3.7b) estimation, according to Theorem 3.4.2 and Corollary 3.4.1,

s.t. a fixed tangential aperture length D⊥ and formation rigidity. For source AoA

estimation, agents are in favor of spreading to the tips of the tangential aperture, since

it maximizes M2. For source distance estimation, half of the agents are deployed to the

tips of the tangential aperture, whereas the other half are at the middle. In this way the

value of M4 −M2
2 is maximized. For a swarm with unconstrained tangential aperture

length, agents are spreading as far as possible in the tangential direction for source

AoA estimation. For source distance estimation, new agents are deployed to extend

the tangential aperture i.f.f. the new tangential aperture length fulfills D⊥ > 2
√

2M2.

Otherwise, the new agents should be added at the center of the tangential aperture.

3.4.4.2 Survey on Spherical Wave Source Localization Algorithm

As discussed in Section 3.4.4, the swarm A can be collectively considered as a phased

array towards a RF source av ∈ SRF. In classical phased array processing, the sources

are assumed to be located in the far-field of the phased array. AoA is estimated from the

carrier phase differences between antennas [95, 96, 97]. In order to localize the sources

multiple arrays are required. Alternatively, distance of the source needs to be estimated
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D⊥
Source AoA θv

(a) Optimized formation for source AoA estimation.

D⊥
Source AoA θv

(b) Optimized formation for source distance estimation.

Figure 3.7. Optimized swarm formations for source AoA (Figure 3.7a) and distance
(Figure 3.7b) estimation, s.t. a fixed tangential aperture length D⊥ and formation rigidity,
green dots indicate agents, magenta arrow illustrates the source AoA.
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with e.g. ToA and multi-way ranging, subject to synchronization or bi-directional com-

munications between array and the source [29]. Unlike traditional phased arrays, the

swarm array has a significantly larger collective aperture D, which leads to a large

Fraunhofer distance. For example, for a swarm spreading a tangential aperture of

length D⊥ = 100 m, its Fraunhofer distance to a RF source with a carrier frequency

of fs = 20 MHz is 3000 m. The signal wavefront received by the swarm is modeled as

spherical wave. The spherical wave model has been exploited for antenna phase center

determination in [98], for LOS-multiple-input and multiple-output (MIMO) commu-

nications in [99], as well as for source localization in [100, 101, 102, 103]. We are

interested in the applications of source localization. Under this model, not only AoA

but also distance information of the source is contained in the carrier phase, which

enables localization of the source [67]. Source localization approaches exploiting the

spherical wave model are commonly referred to as near field source localization in the

literature [101]. However, it is also applicable for a source located at the beginning

of the Fraunhofer far field region. Therefore, to be precise, we use the term spherical

wave source localization instead of near-field source localization. Most previous spheri-

cal wave source localization algorithms apply the Fresnel approximation to arrays with

special geometries, e.g. uniform linear arrays (ULAs) [101, 102, 103], and introduce a

model mismatch. This mismatch has recently been noticed to jeopardize the achievable

positioning precision [104]. In [105] a lookup table is used for ULA model correction.

The ML algorithm in [100] exploits the exact model, but includes a computationally

expansive recursion.

3.4.4.3 CoA based Source Localization Algorithm

In the section, we propose a low complexity CoA-based source localization algorithm,

directly utilizing the signal CoA defined in Definition 1. The proposed algorithm avoids

recursions and reduces the model error from the Fresnel approximation. More impor-

tantly, it can be operated in a decentralized fashion, which is particularly preferable

for swarm localization. The proposed algorithm can be applied either directly as a

realtime positioning variant or to initialize a recursive algorithm like an ML estima-

tor [100]. The objective of the CoA-based source localization algorithm is to estimate

the position of the source pCv in the swarm Cartesian coordinate system C. We de-

fine groups of swarm Pi composed of at least three adjacent agents and centered at

points Pi. The estimated local AoA θ̂vi can be calculated by traditional far-field AoA

estimation methods [97], applying the plane wave model on all applicable agent pairs
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al, am ∈ Pi

φlm ≈ −eTviplmωs/c, ∀dlmωs/c < π/2, (3.84)

where plm = pCl − pCm, φlm = φl − φm and evi = vec{cos θvi, sin θvi}. To estimate

the group’s curvature κi, a coordinate system C(ξiϕi) centered at Pi is defined, whose

ξ−axis is aligned to the AoA of the source, similarly as in Figure 3.6. The second order

derivative of phase local to Pi can be approximated by a double difference with three

adjacent agents al, am, an ∈ Pi, which leads to a curvature estimate as

κ̃lmn = 2
Mlm − Mmn

ϕlm + ϕmn
, where Mgh=

φghc/ωs + ξgh
ϕgh

,[
ξgh

ϕgh

]
=

[
êTvi

êTvi,⊥

]
pgh and êvi,⊥ =

[
sin θ̂vi

− cos θ̂vi

]
.

The coarse estimate of the group’s curvature κ̃i is obtained by averaging κ̃lmn over all

the effective combinations of al, am and an, i.e. ∀ l,m, n, where ‖ϕlm‖, ‖ϕmn‖ and ‖ϕlm+

ϕmn‖� 0. The curvature estimated from a single group is heavily distorted by noise.

To get a stable estimate, an extra smoothing step is applied, exploiting the geometry

equality

pCv = κ−1
i evi + pCi =

∑
∀Pi evi + κip

C
i∑

∀Pi κi
. (3.85)

The group’s curvature estimate can be refined as

κ̂i =
∥∥∥(∑

∀Pj

κ̃j

)−1(∑
∀Pj

êvj + κ̃jp
C
j

)
− pCi

∥∥∥−1

. (3.86)

Finally, the transmitter’s position can be estimated by replacing θvi and κi in (3.85)

with their estimates θ̂vi and κ̂i . We can observe that only summations across the groups

are involved in the proposed algorithm, which can be implemented in a decentralized

fashion with average consensus algorithms.

3.5 Swarm Joint Self- and Source Localization

As the final investigation on the theoretical aspects of swarm localization, we look

into the joint swarm self- and source localization, i.e. X = A ∪ S, for the extended

swarm system introduced in Section 2.1, with all the potential observations described

in Section 2.4. Graph representations of the two examples of joint self- and source
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localization are illustrated in Figure 3.8. Figure 3.8a, which is a sub-graph of the Mars

swarm exploration system in Figure 2.1, shows a scenario where only the swarm A
and RF sources SRF are included for joint localization, i.e. V = A ∪ Sgas. Figure 3.8b,

which is the same graph as in Figure 2.1, shows the joint localization of the whole

extended swarm network, i.e. V = A∪Sgas∪SRF∪B. Agents, a gas source, RF sources

and beacons, are illustrated as green, red, magenta and blue dot(s), respectively. Dif-

ferent links are shown with lines and arrows, same as in Figure 2.1. The first case

is an anchor-free scenario, where swarm and multiple RF sources are jointly localized

w.r.t. the swarm coordinate system. The symbol delay of both A2A and S2A signals

as well as the carrier phase of the S2A signals are exploited for localization. Both clock

offsets and carrier phase offsets of all nodes are considered as the unknown nuisance

parameters. The swarm Cartesian system C is applied for agents since the self- local-

ization performance evaluated in position domain is eventually of interest for agents.

The sources localization is performed in the swarm polar coordinate system P so that

the distance and AoA performance can be assessed individually. The second case is

illustrated in Figure 1.2 as an extension of the first one. One gas source and three

beacons are additionally included. All the states of beacons are known. The position

pv and nuisance parameters ag and bg of the gas source av ∈ Sgas are unknown. In

Section 3.5.1, the assembling of FIM for joint self- and source localization is discussed.

In Section 3.5.2, we derive the joint localization CRB with the swarm reference system.

Numerical analysis of both cases are demonstrated in Section 3.6.3.

3.5.1 FI of Joint Self- and Source Localization

Signals from different links euv ∈ E0 are considered independent to each other. If mul-

tiple signal features guv are extracted from a link euv, e.g. amplitude Auv, phase Φuv

and symbol delay τuv from a RF link, the signal features are also considered as inde-

pendent, which is justified by (3.23). The signal features applied for localization are

indicated with an index set Iuv. Fundamentally, the total state FIM can be expressed

as in (3.14), which does not provide intuitive insights of the impacts of each building

components, e.g. different types of links, nodes, signal features and nuisance param-

eters, on localization. As we discussed in both swarm self-localization in Section 3.3

and source localization in Section 3.4, the swarm localization problem can be essen-

tially interpreted as extracting geometrical relationship among nodes from distances

or distance differences between transceivers. In order to unveil the insights, we expand

the total FIM with a chain of transformations ruv(t) → guv → duv → x, ∀euv ∈ E0.

Hence we start from the received signal ruv(t) to formulate the FI in the signal features

guv, denoted as Iguv , as in (3.16). Then the signal features are transformed to distance
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(a) Anchor-free RF network.

(b) Extended swarm network in Figure 2.1.

Figure 3.8. Graph representations of two joint swarm self- and source localization exam-
ples: Agents, a gas source, RF sources and beacons, are illustrated as green, red, magenta
and blue dot(s), respectively. Different links are shown with lines and arrows.
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domain to get the RII denoted as ιduv , similar to (3.24). Finally, we apply the distance-

to-state transformation to obtain the FIM of the total states Ix, similar to (3.33). The

FIM expansion is summarized as follows. The FI of the lth signal feature [guv]l, l ∈ Iuv
on a link euv ∈ E0 is written as

ι[guv ]l =
2

N0

<

{ˆ To

0

∥∥∥∥∂suv(t)∂[guv]l

∥∥∥∥2

dt

}
. (3.87)

The FI contained in [guv]l about the link distance duv, i.e. the RII in [guv]l is expressed

as

ι
[guv ]l
duv

= ι[guv ]l

∥∥∥∥∂[guv]l
∂duv

∥∥∥∥2

. (3.88)

The total RII of the link euv is obtained by the RIIs summation for all the considered

signal features, i.e.

ιduv =
∑
l∈Iuv

ι
[guv ]l
duv

. (3.89)

The FI contained in a single link euv about the total states x is expressed as

Ieuv
x = ιduv∇xduv∇xT duv. (3.90)

The FIM of x in one type of links in set EP ∈ {EA, EB, ES}, i.e. all the A2A, B2A, or

S2A links, is expressed as

IEPx =
∑

euv∈EP

Ieuv
x . (3.91)

At the end, the total FIM of the extended swarm network can be written as

Ix =
∑

EP∈{EA,EB,ES}

IEPx . (3.92)

The chain of information flow is visualized in Figure 3.9. It can be observed that

the contributions of every components to the total state FIM are individually addable.

This observation allows us to flexibly compare different scenarios of swarm joint self-

and source localization.

1) Impacts of particular signal features

The performance of swarm localization decisively depends on the exploited signal



3.5. Swarm Joint Self- and Source Localization 69

EB
IEBx

Ix

EA

ES

euv

· · ·

· · ·

...

...

...

...

· · ·

· · ·

IEAx

IESx

ιduv Ieuv
xruv(t) [guv]l ι[guv ]l ι

[guv ]l
duv

Figure 3.9. The chain of information flow from the continuous observations to the total
states FIM.

features. In order to assess their impacts on swarm localization, we can add or

remove a particular signal feature’s index l into the considered signal feature set

Iuv.

2) Impacts of particular links

The impacts of particular links or link sets can be evaluated by adding or removing

euv or EB/EA/ES blocks depicted in Figure 3.9. With this manipulation to the

FIM, we can analyze the gain for swarm self- and source localization through agent

collaborations.

3) Impacts of the knowledge of particular states

If particular states are assumed to be known, we can remove them from the state

vector x, meantime keeping all the observations related to the corresponding nodes.

This approach can be utilized to analyze different scenarios. If the removed states

are coordinates of the nodes, the truncated FIM represents a scenario where the

corresponding nodes are considered as beacons. If the removed states are nuisance

parameters, with the truncation of the FIM, we are able to compare the absolute ob-

servations for example RSS, PoA, ToA, with their differential counterparts, DRSS,

PDoA, TDoA.

4) Impacts of particular nodes
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If we would like to exam the impacts of particular nodes on the swarm localization,

the nodes should be excluded or included together with the measurements associated

with them. One application is to investigate the gain of swarm self-localization by

collectively estimating positions of some sources.

3.5.2 Swarm Reference System Constraints

In some scenarios the reference system is not defined, e.g. in Figure 3.8a, the coordinate

system and reference system for the nuisance parameters, such as a common clock

and phase base, are not defined. As a consequence, the FIM is singular, similarly

to anchor-free self-localization. In this case, the swarm aims to localize itself and

the source in a swarm reference system. Hence only a partition (the swarm) of the

considered network can be used to define the reference system. The sources have to

be excluded for determining the reference system. Constraints unifying a reference

system needs to be considered in order to convert the total FIM into CRB. A baseline

in the swarm can be selected as the constraints like in Section 3.3.2.1. This is not

optimal, since an additional coordinate system uncertainty is introduced. Optimal

swarm constraints can be expressed similarly as in Section 3.3.2.2. For the coordinate

system, the group motions of the agents as introduced in (3.38) and (3.39) can be

selected as the constraints. As explained in [106], since the group motion constraints are

only applied on A, which is a subset of the extended node set V , the alternative Moore-

Penrose pseudoinverse expression in (3.42) cannot be employed, since it implies that

both swarm and the sources are utilized to define the reference system. For the nuisance

parameters, like common clock and phase bases, a centroid constraints analogous to the

translation constraints of the coordinate system can be applied. We derive the joint self-

and source localization CRB for the scenario illustrated in Figure 3.8a to demonstrate

the reference system defined by a subset of nodes, for example the swarm A. The

unknowns of agent au ∈ A are its position and clock offset, i.e. xu = vec{pu, δu},
whereas the unknowns of source av ∈ SRF are its position, clock offset and carrier phase

offset, i.e. xv = vec{pv, δv, φv}. The total agents’ unknowns are xA = vec{xu : au ∈ A}.
The total sources’ unknowns are xS = vec{xv : av ∈ SRF}. The total unknowns of the

system are x = vec{xA,xS}. The total FIM can be written as

Ix =

(
IEAxA 0

0 0

)
︸ ︷︷ ︸

I
EA
x

(information in A2A links)

+

(
IESxA IESxA,xS

IESxS ,xA IESxS

)
︸ ︷︷ ︸

I
ES
x

(information in S2A links)

, (3.93)
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where the first term IEAx and the second term IESx indicate the information about the

total states x, in all A2A links and all S2A links, respectively. For the joint self-

and source localization and synchronization problem, the FIM is rank-four deficient,

since the positions are subject to arbitrary group rotation (one degree of freedom)

and translation (two degrees of freedom), and the clock offset estimates are subject

to arbitrary group offset (one degree of freedom). In the scenario under investigation,

we are interested in the accuracy of the joint self- and source localization w.r.t. the

swarm. Therefore, an optimal Cartesian coordinate system C is defined by constraining

the group rotations and translations of the swarm [106]. An optimal clock reference

system of the formation is defined by setting the mean clock offset to a constant,

similarly to the position group translation. The constrains of the reference system are

represented by the subspace of the swarm Ū⊥ = (ux,uy,uδ,ur), with orthonormal

bases of translations in x and y directions ux and uy, clock offset uδ and rotation ur

defined as

(ux,uy,uδ) =
1√
|A|

11×|A| ⊗ I3×3, (3.94)

ur =
1

‖pA‖
vec{yu,−xu, 0 : au ∈ A}. (3.95)

The bases U⊥ spans the left nullspace of the swarm’s state space, i.e. the reference

constraints. Since the sources’ unknowns are not involved in the constraints determi-

nation, the left nullspace of the total state space Ū⊥ can be acquired by padding zeros

to U⊥, i.e.

Ū⊥ =
(
UT
⊥,04|SRF|×4

)T
. (3.96)

The orthonormal bases of column space Uq can be determined by the eigenvalue de-

composition as

I− Ū⊥ŪT
⊥ =

(
I−U⊥UT

⊥ 0

0 I

)
=

 (Uq, Ũ⊥)

(
Λ 0

0 0

)(
UT

q

ŨT
⊥

)
0

0 I

 (3.97)

=

(
UqΛUT

q 0

0 I

)
=

(
Uq 0

0 I

)(
Λ 0

0 I

)(
UT

q 0

0 I

)
, ŨqΛ̃ŨT

q .

(3.98)

It can be observed that the eigenvectors representing the column space of the total state

space Ũq are the ones for the swarm Uq extended by an identity matrix. The total
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FIM can be projected onto the column space, expressed as ŨT
q IxŨq, which is full-rank.

Finally, the CRB of x is calculated by inverting the projected FIM and transforming

back to the parameter space as

CRB[x] =Ũq

(
ŨT

q IxŨq

)−1

ŨT
q (3.99)

=

(
Uq 0

0 I

)(
UT

q
(
IEAxA + IESxA

)
Uq UT

q IESxA,xS
IESxS ,xAUq IESxS

)−1(
UT

q 0

0 I

)
. (3.100)

3.6 Numerical Analysis

Numerical analysis is provided to verify the theoretical aspects of swarm localization.

The numerical analysis can be further divided into three parts, namely self-localization

in Section 3.6.1, source localization in Section 3.6.2, and joint self- and source localiza-

tion in Section 3.6.3.

For self-localization, the effects of geometry and resource allocation on ZCRB are

illustrated in Section 3.6.1.1-3.6.1.3. Experimental data and both non-Bayesian and

Bayesian estimators, are employed for further verification, which is presented in Sec-

tion 3.6.1.4.

For source localization, we first illustrate in Section 3.6.2.1 the effects of different

types of nuisance parameters, on the performance of source distance and AoA estima-

tion. Then we compare in Section 3.6.2.2 the exact and approximated CRBs of the

source distance and AoA. With this comparison, the approximations of the CRBs are

validated. The performances of different source localization algorithms are evaluated

as well, including the proposed CoA based algorithm, an ML algorithm and a state of

the art algorithm based on Fresnel approximation.

For joint self- and source localization, in Section 3.6.3.1 mutual improvement of self-

and RF source localization is demonstrated. In Section 3.6.3.2 the joint localization

CRBs, of the swarm, the RF source and the gas source, are evaluated for the Mars

swarm exploration mission introduced in Figure 1.2.

3.6.1 Swarm Self-Localization

3.6.1.1 Geometry Effects

In this section, we demonstrate the geometry effects on swarm self-localization. When

a swarm in open space is controlled with a homogeneous strategy, i.e. agents are ma-

nipulated by the same control rules, a formation with regular patterns often emerge.

For example, a swarm controlled by the flocking algorithm proposed in [41] is stabilized
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(a) Random formation (b) Quasi-lattice formation

Figure 3.10. Comparison of the CRB ellipses for a random (Figure 3.10a) and a quasi-
lattice (Figure 3.10b) formation. The agents are illustrated with green dots. The blue
lines show the connectivity of the swarm network, with a ranging standard deviation of
1 m. The CRB of each agent is illustrated by magenta error ellipse.

in a quasi-lattice formation. Agents in a quasi-lattice formation, compared to the ones

in a random formation, are more likely to have neighbors in all directions, which is

preferable for their self-localization.

Figure 3.10 shows a comparison of the CRB ellipses of self-localization for a random

(Figure 3.10a) and a quasi-lattice (Figure 3.10b) formation. The CRB ellipse of each

agent is illustrated in magenta color, which is the lower bound of the RMSE of self-

localization under group motion constraints. A ranging standard deviation of 1 m

is assumed. It can be observed that for this setup, the CRB ellipses of the lattice

formation are, on average, an order of magnitude smaller than the ones of a random

formation, due to the regular geometry.

3.6.1.2 Multi-link Ranging

In this section, the effects of resource limitation on multi-link ranging are evalu-

ated. We consider OFDM modulated signals for ranging, with a carrier frequency

of fc = 5.5 GHz, a bandwidth of Bc = 36.6 MHz, 2499 subcarriers with a spacing of

fsc = 14.65 KHz. The received ranging signals are distorted with AWGN. Agents are

assumed to be synchronized to conduct ToA based ranging measurements. A prede-
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Figure 3.11. Comparison of CRB, ZZB and an MMSE estimator for ranging with a
single link (Kuv = 1) and 24 simultaneous random OFDMA links (Kuv = 24).

fined orthogonal subcarrier allocation on Kuv ranging links is assumed, where each

subcarrier is selected for ranging with a probability of 1/Kuv. An a-priori window

of To c = 10 km is considered, where the true distance is uniformly distributed inside

the window. The ranging CRBs and ZZBs as well as the RMSE of a correlation-based

MMSE range estimator, for single link (Kuv = 1) and 24 simultaneous links (Kuv = 24)

are shown in Figure 3.11. As we discussed in Section 3.3.3.1, for a low SNR, the ZZB

converges to
√
c2T 2

o /12 as the MMSE solution using only the a-priori information.

For a high SNR, the ZZB converges to the CRB. For a SNR value in between (thresh-

old region), the ZZB starts diverging from the CRB. The MMSE estimator performs

with the same tendency of ZZB. From single link to multi-link, all the performance

curves shift to a higher SNR by roughly 13.8 dB, i.e. with Kuv times higher SNR, which

coincides with the conclusion of Lemma 3.3.1.

3.6.1.3 Connectivity-Ranging Trade-off

By jointly considering the geometry and multi-link resource allocation effects, we can

evaluate the connectivity-ranging accuracy trade-off for swarm self-localization. The

averaged self-localization ZCRB, introduced in Section 3.3.3.3, of the random and

quasi-lattice formations are plotted against the measurement coverage in Figure 3.12.

An SNR of -5 dB under the usage of all subcarriers (single link) is assumed for all

links. The resource sharing factor Kuv increases together with the measurement cov-

erage, while the number of subcarriers used per link is reduced. As a consequence, the

SNR of each link is reduced accordingly. The a-priori map size is constrained to 60 m.

For each set of simulation parameters, 1000 simulation runs are employed. The im-

pact of connectivity-ranging accuracy trade-off on self-localization can be seen. When

the measurement coverage is too small the expected self-localization performance is
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Figure 3.12. Average ZCRB of random and quasi-lattice formation with -5 dB SNR
under the usage of all subcarriers (single link).

poor due to the lack of connectivity, i.e. the network is no longer rigid. When the

measurement coverage is too large, the expected performance is also poor, due to the

insufficient subcarriers allocated on each link. According to ZCRB, the quasi-lattice

formation has a larger preferable coverage range due to the regularity of the formation.

For quasi-lattice formations, self-localization may additionally suffer from the folding

ambiguity. Hence, the position estimates of a sub-group of agents are folded along a

quasi-line due to the formation’s regularity. The folding ambiguity is not considered

in the CRB type of evaluation. In practice, the folding ambiguity can be resolved by

Bayesian tracking with a-priori information, which will be shown in the next section.

3.6.1.4 Experimental Validation

In order to validate the connectivity-ranging accuracy trade-off investigated in the pre-

vious sections, we conduct an experiment with the data collected from a measurement

campaign with our ranging test-bed in 2013. At that time, we have only a single link

ranging test bed, which is implemented by my colleague Dr. Emanuel Staudinger, with

details introduced in [88]. This test-bed consists of a master node and a mirror node.

The master node can apply two-way ranging by transmitting an OFDM signal, and

receiving the amplified and forwarded signal from the mirror node. The OFDM signals

applied for two-way ranging have the same bandwidth and subcarrier spacing as the

simulation setup. Carrier frequencies for the forward link from the master node to

the mirror node are 5.5 GHz, and 5.7 GHz for the return link with a transmit power

of 20 dBm. We conducted outdoor measurements to collect ranging data at different

distance on a parking lot at the DLR, see Figure 3.13. Both nodes are mounted on
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RTD mirror RTD master Tachymeter

End of track

Figure 3.13. Images of the parking lot with placed ranging nodes [88]. The red dashed
line shows the measurement track from 1 m to 60 m.
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Figure 3.14. 90th percentile of the absolute framework distance error εuv of random and
lattice formations in non-tracking and tracking scenarios.

trolleys with the same heights. The mirror node is placed on a fixed position. The

master node is placed on specific points with approximately 1 m separation along a

60 m long track. The ground truth positions of the nodes are measured with a Leica

tachymeter. At each point we acquired 1000 ranging snapshots for post-processing.

We use the measurement data, apply random subcarrier allocation for a specific

number of multiple links Kuv, and regenerate the synthetic ranging measurements at

different distance with a correlation-based first-peak detector [107]. Self-localization

simulation is conducted with random and quasi-lattice formations, with randomly

picked ranging values from the synthetic ranging measurements, given the link dis-

tance duv and the resource sharing factor Kuv. A distributed particle filtering (DPF)

as in [51] is implemented at each agent to estimate its position. Details on the design of
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the distributed self-localization algorithm will be described in Chapter 4. Two scenar-

ios, namely non-tracking and tracking, are considered. In the non-tracking scenario,

uniform distribution of the agents within the map is assumed as the initial a-priori

position distribution. In the tracking scenario, the initial a-priori position distribu-

tion is assumed to be a Gaussian distribution with a mean at the true position and a

standard deviation of 1 m in each dimension. The absolute framework distance error

εuv = ‖d̂uv − duv‖ as introduced in Section 2.2 is used as the metrics for performance

evaluation, so that the coordinate system uncertainty is inherently eliminated. The

90th percentile error curves are shown in Figure 3.14. For a small coverage, the perfor-

mances are poor for almost all the scenarios, except for lattice formation tracking. This

observation indicates that in that coverage range, the random formations are non-rigid

with a high probability, whereas the lattice formations are rigid but not globally rigid.

For the lattice formation tracking case, the folding ambiguity caused by non globally

rigid formations is resolved by a-priori information. For a large coverage, the network

connectivity is high, but the ranging measurements are distorted with larger noise. In

this case, the non-tracking self-localization with a random formation outperforms the

lattice case. That is because of the regularity of the lattice formations, which leads

to a severe local minima problem to DPF. Again, the local minima problem can be

resolved by tracking. The overall tendency of the experimental performance coincides

with the one of ZCRB in Figure 3.12.

3.6.2 Swarm Source Localization

3.6.2.1 Impacts of Nuisance Parameters

In this section, the impacts of nuisance parameters on source localization are demon-

strated, with two generic source observation models.

In the first model, the nuisance parameter δ acts on the source to agent distance duv

as an offset, i.e. g(duv, δ) = F (duv+δ). The type of observation model is widely applied

for the signal propagation time based observation such as symbol delay based obser-

vations with unknown clock offsets, or carrier phase based observations with unknown

phase offsets.

In the second model, two nuisance parameters, namely a scaling factor a1 and an

exponent factor a2, are considered, i.e. g(duv, a1, a2) = F (a1d
a2
uv). This model is closely

related to energy intensity based observations, such as RSS and the gas concentration.

A swarm of 50 agents are randomly deployed in a dish area with a radius of R =

50 m, whereas a single source is located dv = 240 m away from the center of the swarm.

The agents’ position are assumed to be known, in order to concentrated on the impacts
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Figure 3.15. Comparison of 10 σ CRB of source’s polar coordinates, with/out nuisance
parameters of scaling and exponent factors and distance offset.

of nuisance parameters on source localization. Numerical analysis of joint self- and

source localization will be discussed in Section 3.6.3. The CRB with the offset model is

independent to the value of the offset δ. For the second model, we set a1 = 1 and a2 =

−1 for generating the source localization CRB. With each model, source localization

CRBs are calculated for the both cases of known and unknown nuisance parameters.

The signal feature functions g(duv, a) and g(duv, a1, a2) are set in a way, so that CRBs of

the known nuisance parameters cases with both models are equal. In this manner, the

geometrical impacts of the nuisance parameters can be better illustrated. Figure 3.15

shows the source localization CRBs of both types of nuisance parameters. Similar to

the ellipse interpretation in a Cartesian coordinate system, we obtain the 10 σ of the

source position CRBs in the swarm polar coordinate system P and visualize them in the

corresponding Cartesian coordinate system C. After the polar to Cartesian coordinate

transformation, the shapes of position CRBs are no longer ellipses. The distance offset

case is shown in black. The scaling and exponent factors case is shown with cyan

curves. The cases of known nuisance parameters are shown by the solid lines, whereas

the cases of unknown nuisance parameters are shown by dashed lines. In addition,

the approximated CRBs of the distance offset case, expressed in (3.78) and (3.79), are

plotted in red. As expected, the AoA accuracy is not affected by the knowledge of the

nuisance parameters. With known nuisance parameters, the approximated and true

CRBs overlap. The AoA uncertainty dominates the position estimation error. With an

unknown distance offset, the distance CRB approximation matches the exact one well.
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In addition, the distance uncertainty dominates the source’s position uncertainty. In

the case of unknown scaling and exponent factors as nuisance parameters, the distance

CRB is larger than the known parameter case and smaller than the distance offset case,

since the source distance can be also estimated by the parallel aperture concluded in

Section 3.4.2. An intuitive explanation is that the unknown scaling parameter can be

determined by the slope of observation values along the direction of the source.

3.6.2.2 CoA based RF Source Localization

In this section, we evaluate CoA based RF source localization by comparing the ap-

proximated CRBs derived in Section 3.4.4 with the exact CRBs and three different

source localization algorithms. The algorithms under investigation are the proposed

low complexity CoA based algorithm, an ML algorithm initiated with the proposed

algorithm, and a state of the art near field source localization algorithm based on

Fresnel approximation. For the proposed algorithm, the groups in Section 3.4.4.3 are

constructed by 3 × 3 elements for the URA and 1 × 3 for the ULAs. Three swarm

formations with different apertures orientated along the x-axis are considered in the

investigation. The first formation is uniform rectangular along the x− and y−axis, with

aperture length in each dimension Dx = 75 m, Dy = 15 m. The rest two formations

are uniform linear, with aperture lengths 15 m and 75 m. All three formations operate

as phased arrays, i.e. one URA and two ULAs, for a carrier frequency of fs = 20 MHz,

with element spacing of λs/4. A single antenna transmitter is deployed at distances

from 10 m to 10000 m and with AoAs from 0 ◦ to 90 ◦, to the center of the arrays, trans-

mitting a single-carrier signal with 0 dBm transmit power at 20 MHz carrier frequency.

Free-space pathloss with an additional noise figure of 15 dB is assumed.

First, the performance of the URA is investigated. The approximated and the

exact CRBs, as well as the RMSEs of the proposed CoA based algorithm an the ML

algorithm, are compared in Figure 3.16. For each parameter set 100 Monte Carlo

runs have been conducted. The RMSE of the ML estimator always overlaps with the

exact CRB for both source distance and AoA estimation, which validates the tightness

of the CRBs in the considered setup. For small dv, a slight mismatch between the

approximated and the exact CRBs are observed, which come from the Taylor expansion

applied to approximate the CRBs. At most of the evaluation points where dv > 100 m,

the approximated and exact CRBs coincide, which verifies the CRB approximations

for CSAs in Section 3.4.4. With increasing dv, the RMSEs of the proposed CoA based

algorithm firstly decrease due to a decreasing model error, and then increase because

of the reducing SNR and worsen geometry. For small dv, the model error varies with

θv, but only leads to small estimation errors.
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AoA estimation RMSE in log10

(a) Source AoA estimation

Distance estimation RMSE in log10

(b) Source distance estimation

Figure 3.16. Source localization performance of a URA aligned with x- and y-axis with
aperture lengths in x-direction Dx = 75 m and in y-direction Dy = 15 m, fs = 20 MHz
and element spacing of λs/4.
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(a) AoA estimation error versus source distance

(b) Distance estimation error versus source distance

Figure 3.17. Source localization performance against source distance, of two ULAs along
x-axis with aperture lengths D = 15 m and 75 m, fs = 20 MHz and an element spacing of
λ/4.
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Next we compare the proposed low complexity CoA based source localization al-

gorithm to a state of the art near field source localization algorithm with the ULAs,

since most low complexity near field source localization algorithms apply the Fresnel

approximation on ULAs, [101], [103]. To remove the outliers occurring at small θv, the

RMSEs are calculated only for AoAs range between 30 ◦ and 90 ◦. Figure 3.17 shows

the performance of the proposed CoA based algorithm, the Fresnel based approach in

[103], the CoA initialized ML algorithm and the CRBs for different ds. The Fresnel

based approach has a larger model error for larger arrays. In contrast, the CoA source

localization only experiences model mismatch within individual groups, independently

of the total aperture. Therefore, the proposed CoA based algorithm outperforms the

Fresnel based approach for shorter distances and larger arrays. At larger distances, the

model error is no longer decisive, and all algorithms perform similarly along the CRBs.

For the 15 m ULA at small θv and dv > 2000 m, the ratio dv/D⊥ is so small, that none

of the three algorithms is able to effectively estimate the distance. As a final result, for

the 75 m sized ULA, the distance estimate can be achieved with a sub-meter RMSE

by the proposed CoA based algorithm up to 600 m. The ML algorithm initialized with

the proposed CoA based algorithm extends the applicable distance to 1000 m for the

75 m sized ULA.

3.6.3 Joint Self- and Source Localization

3.6.3.1 Mutual Improvement of Self- and Source Localization

In this section, we show that the swarm self- and source localization are mutually

improved by joint estimation. Similar as the setup in Section 3.6.2.1, a swarm of 50

agents are randomly deployed in a dish area with a radius of R = 100 m. Different

number of RF sources from 0 to 27 are uniformly located on rings around the center

of the swarm with distances dv from 10 m to 1000 m. The swarm coordinate system

constrained on group motions C is used for describing the positions of agents and

used as the default coordinate system. The corresponding polar coordinate system

P is applied to describe the source distance and AoA separately. The RF signals

propagating on A2A links use a carrier frequency of fc = 5.2 GHz and a bandwidth of

Bc = 37 MHz, whereas the ones on S2A links use a carrier frequency of fs = 20 MHz

and a bandwidth of Bs = 1 KHz. For both RF types, a transmit power of 0 dBm, a

free-space pathloss model and an additional noise figure of 15 dB are assumed. All the

agents and sources are neither carrier nor symbol synchronized. The symbol delays of

the A2A and S2A links and the carrier phases of the S2A links are exploited for joint

swarm self- and source localization. We also consider one case where agents’ locations
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(a) Source distance estimation CRBs.

(b) Source AoA estimation CRBs.

(c) Swarm self-localization CRBs.

Figure 3.18. CRBs of the joint swarm self- and source localization with A2A links:
fc = 5.2 GHz, Bc = 37 MHz, and S2A links: fs = 20 MHz, Bs = 1 KHz.



84 CHAPTER 3. THEORETICAL ASPECTS OF SWARM LOCALIZATION

and clock offsets are perfectly known as benchmarks. The perfect agents’ knowledge

assumption is valid when the number of targets approaches infinity, or the swarm is

precisely localized with other measurements, e.g. from radar, optical sensors or the

phased array for A2A signal.

The partial derivatives required for the CRB calculation with a mixture of swarm

Cartesian coordinate system C and the swarm polar coordinate system P are listed

in Appendix Section C.4. The square root of CRBs of the source’s distance and AoA

estimation are plotted in Figure 3.18a and Figure 3.18b, respectively. The root mean

CRBs of the swarm self-localization, i.e. the position error bound averaged over all

agents, are illustrated in Figure 3.18c. 1000 Monte Carlo runs have been conducted

for each set of parameters.

First of all, both self- and source localization performances significantly improved

by adding more sources. Especially when the sources are close to the swarm, the

improvements approach to the benchmark for a larger number of sources.

Second, the CRBs of sources’ distance estimates are stable inside the swarm, and

increasing while sources are moving to the outside of the the swarm.

Third, the CRBs of sources’ AoA estimates are decreasing inside the swarm, due

to the higher angular sensitivity around the coordinate system’s origin, and increasing

while sources are moving to the outside of the the swarm.

Last but not least, the sources improve the swarm self-localization CRBs more

significantly when moving towards the border of swarm from inside, which is due to a

desirable sources’ geometry. The improvements decreases when the sources move away

from the swarm, which is due to the increasing uncertainty in source localization.

3.6.3.2 Localization in Mars Swarm Exploration Mission

As the last numerical analysis of this chapter, we demonstrate the swarm joint self-

and source localization with the case study of the Mars swarm mission illustrated in

Figure 1.2.

Three beacons are deployed near the mission base, with known positions in the

global coordinate system G and clock offsets. A gas source and two RF sources are

located remotely from the mission base. All sources’ positions and nuisance parameters

are considered unknown. The unknown clock and carrier phase offsets of RF sources

are set to zero. Both types of RF signals employ the same system parameters as in

Section 3.6.3.1. In addition, measurement coverage is considered for the A2A symbol

delay observations and the S2A and B2A carrier phase observations, similarly as in

[85] in order to reflect issues like low SNR or distortions from propagation in practice.

The observation uncertainty increases rapidly and smoothly when the link distance
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Figure 3.19. The standard deviations of the observed distance according to the signal
models under investigation.

Figure 3.20. Swarm exploration scenario with two RF sources and one gas source and
30 agents. Links are indicated in light grey. Colored ellipses represent the 50σ snapshot
position CRB for agents (very large ellipses are omitted) and sources, respectively. The
cases of non-cooperative (only B2A links), cooperative (B2A + A2A links) and all links
are shown.
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exceeds the measurement coverage, which can be modeled with either ZZB introduced

in Section 3.3.3.3 or empirical data as in Section 3.6.1.4. Agents can also measure

the gas concentration level at their positions. The scaling and exponent parameters

introduced in (2.29) of the gas source are set to ag = 1 and bg = 9.2103, respectively.

The standard deviations of the observed distance from the signal models are plotted in

(2.29). From these models, modified RII can be calculated to derive the modified joint

localization CRB, accounting for low SNR of A2A links, and propagation effects on

carrier phase of B2A and S2A links. A swarm of 50 agents assembles in a predefined

formation connecting the beacons and the gas source. The modified position CRBs of

agents and sources considering different observations are shown in Figure 3.20. The

beacons, agents, RF sources and a gas source are illustrated by the blue, green, magenta

and red dot(s), respectively. The effective RF measurement links, i.e. the links where

the observed distance standard deviations are smaller than 10 m, are indicated with

gray lines. The ellipses in red, blue and magenta are the 50 σ CRB ellipses for non-

cooperative (exploiting B2A links only), cooperative (exploiting B2A + A2A links)

and whole extended network localization. The very large ellipses are omitted for better

visualization.

Firstly, for non-cooperative localization, the red CRB ellipses at the left part of the

figure quickly expand in the B2A link direction when an agent is further away from

the beacons. This is due to the clock offset between beacons and agents, and coincides

with the discovery in (3.79). Hence, the distance uncertainty dominates the position

error when an offset type nuisance parameter is unknown.

Secondly, by A2A cooperative links, the agent position accuracy improves signifi-

cantly, which is illustrated by the blue ellipses in the middle of the figure. The uncer-

tainty in this case is mainly on the perpendicular direction of the A2A link. That is

because the A2A links are symmetric dual links, where the clock offsets are compen-

sated out. Hence, an A2A link luv is equivalent to a synchronized ToA link.

Last but not least, a further improvement can be obtained by jointly estimating

source positions with the whole extended network, which is visible at the right part of

the figure.



Chapter 4
Decentralized Swarm Localization

Algorithms

After investigating theoretical aspects of swarm localization, in this chapter we focus

on practical aspects. More precisely, based on the theoretical analysis from Chapter 3,

we look at the design of decentralized localization algorithms suitable for swarms.

We propose a decentralized swarm self-localization algorithm dubbed DiPNet. A

node’s position is directly inferred from the received signals, incorporating position

uncertainty of neighboring nodes. The propagation effects, namely multipath and

NLOS propagation, on DiPNet become insignificant for dense networks, due to the

multi-link collective PHY layer signal processing. DiPNet achieves a near-optimal

performance with low complexity, which is particularly attractive for realtime dense-

network localization. In this chapter, we only focus on swarm self-localization, i.e. V =

X = A. The direct localization concept can be straightforwardly extended to source

localization as well.

A brief survey on network localization is provided in Section 4.1, which can be

generalized to a wide range of specific applications including swarm self-localization.

As in particular to swarm localization introduced in Section 1.2.1, we are interested

in decentralized localization algorithms suitable for large-scale dense networks, with

high reliability and low complexity. The DiPNet proposed in Section 4.3 is designed

to explicitly meet these requirements. The DiPNet adapts the decentralized Bayesian

network localization introduced in Section 4.2, and directly considers the received sig-

nals as measurements, instead of taking the range measurements as in traditional two

step localization algorithms. DiPNet is proved in Section 4.4 to be more robust against

erroneous distance information from unpredictable propagation effects such as multi-

path and NLOS condition. In Section 4.5, the performances of DiPNet are evaluated

with both simulations and experiments.

87
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4.1 Survey on Network Localization

Intensive research has been conducted to network localization. A comprehensive

overview of network localization algorithms is provided in [32], and further com-

pleted by [33]. We briefly review the algorithm classifications according to different

perspectives.

1) Place of Position Estimation

An algorithm is considered as centralized if the positions of all agents are calculated

at a fusion center [108]. Whereas if each agent calculates its own position based on

local observations, the algorithm is referred to as decentralized [109, 32].

2) Model of Measurements

Algorithms can be classified by the extractable position-related signal features, for

example, signal power, carrier phase and symbol delay [110, 111]. They can also

be classified according to the measurement abstraction level, whether to utilize the

received waveform directly as measurement, for example in direct position estima-

tion (DPE) [112], or an abstracted single value measurement with an associated

likelihood function. For the latter case, algorithms can be further classified by the

measurements extracted from the position-related signal features, such as range,

range difference, or AoA [111, 29].

3) Model of Unknowns

Non-Bayesian algorithms treat unknowns as deterministic variables. An ML ap-

proach can be implemented by the least-square (LS) Gauss-Newton algorithm [111],

which may suffer from local minima. Alternatively, a convex-relaxation based ap-

proach such as semi-definite programming (SDP) [113] and alternating direction

method of multipliers (ADMM) [108] can be applied to reduce the effect of local

minima. Bayesian algorithms treat unknowns as random variables. The main task

of the algorithm is to infer the posterior pdf of the random variables [114]. In

general, calculating the exact posterior pdf demands high dimensional marginal-

ization, which makes it impracticable for dense networks. KF-based approaches

approximate the system with linear transition and measurement models distorted

by Gaussian noise, and solve it with relatively low complexity. Message passing

(MP) is a popular category of Bayesian algorithms, where agents infer their poste-

rior pdfs by only marginalizing over the inferences of their neighbors, in a recursive

fashion. MP is adaptable to different system models with moderate complexity

[110, 32].
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4) Multi-Link Fusion

Low complexity algorithms such as LS treat all links identically. Measurement

quality can be quantified through some characteristics of the signal, such as SNR,

channel impulse response (CIR), propagation condition, etc., and used in for exam-

ple WLS [111]. For decentralized algorithms, neighbor’s position uncertainty can

be taken into account in a heuristic way [115], or systematically by the marginal-

ization in MP. The marginalization can be realized by expectation maximization

(EM), numerical integrals such as Gaussian quadrature integrals, also known as

sigma points [116], or Monte Carlo (MC) integration such as used in DPF [117]. In

[28] the impact of neighbor’s position uncertainty on agent localization is quantified

by the equivalent ranging information intensity (ERII). The ERII can be exploited

for example by projecting the neighbor’s position uncertainty onto the distance

measurement [51]. This projection is also a systematic approach, which has lower

complexity compared to MP.

A more exhaustive literature survey on network localization can be found in [32, 33].

In this work, we address decentralized network localization using a Bayesian framework,

where position information is extracted from the symbol delays. More precisely, we

focus on utilizing the received waveform directly as measurement for localization, with

a low complexity systematic multi-link fusion scheme. Synchronization among agents

are assumed as in Section 3.3, i.e. only the positions of agents pA are included in

the states. The concept of decentralized direct localization can be extended to other

scenarios with little modifications.

4.2 Decentralized Bayesian Self-Localization

In Bayesian framework, the states, in this chapter the positions of agents pA , are

modeled as random variables. We use a subscript 0 to distinguish the physical quantity

of true positions, e.g. pA,0 and pu,0 with au ∈ A, and the corresponding mathematically

modeled positions, e.g. pA and pu, as random variables.

Bayesian tracking formulated in (2.8) is a common approach to incorporate a priori

density p(p
(+)
A |z

(1:−)
A ) and likelihood of the measurements p(z

(+)
A |p

(+)
A ). The a priori

density p(p
(+)
A |z

(1:−)
A ) can be inferred from marginalizing the product of the previous

a posteriori filtered density p(p
(−)
A |z

(1:−)
A ) and the state transition p(p

(+)
A |p

(−)
A ) over

p
(−)
A . In this section, we focus on obtaining the a posteriori filtered density from the

measurement likelihood and an already inferred a priori density. Thus, we use the

compact expression of the Bayesian framework in (2.7) and omit the superscript (+)
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Figure 4.1. The kth iteration of the belief update of agent au: agent au combines its initial
belief, the beliefs of neighbors av and aw at iteration k− 1, all illustrated with light dashed
ellipses, with the measurements obtained from the A2A links shown in green, update its

belief to b
(k)
u , and passes it to its neighbors.

for simplicity, i.e.

p(pA|zA) ∝ p(pA)p(zA|pA). (4.1)

For a dense network, a decentralized localization algorithm is often advantageous, where

an agent au ∈ A estimates its own position using the marginalized a posteriori pdf

p(pu|zA)

p(pu|zA) ∝ p(pu)

ˆ
p(pA/au|pu)

∏
∀evw∈E0

p(zvw|pv,pw) dpA/au . (4.2)

Due to cooperation among agents, a 2(|A|−1) dimensional integral is needed for an

exact decentralized Bayesian estimator of pu, which makes it impracticable. A popular

approach to reduce the complexity of marginalization is belief propagation (BP), for

example the sum-product algorithm over a wireless network (SPAWN) algorithm [32].

In SPAWN, an agent au only considers a local framework Fu = (Gu,pÃu) with an

agent set Ãu = Au ∪ {au}, including its neighbors and itself, and the underlying star

subgraph Gu = (Ãu, Eu), for example illustrated in Figure 4.1. The edge set Eu contains

all the links between au and its neighbors. The marginalized a posteriori pdf p(pu|zA)

is approximated by the belief b
(K)
u of agent au, which is updated by exchanging belief

with neighbors for K iterations

b(k)
u = b(0)

u

∏
∀av∈Au

ˆ
b(k−1)
v p(zuv|pu,pv) dpv k = 1, · · · , K. (4.3)

The kth iteration of the belief update of agent au is shown in Figure 4.1.

The SPAWN reduces the complexity to |Au| integrals with four dimensions for each
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iteration. The marginalization in (4.3) can be realized by Monte Carlo integration as in

non-parametric belief propagation (NBP) [109], by numerical integration for example

in cubature belief propagation (CBP) [116, 118], or analytically with parametric belief

propagation (PBP) for special distributions [87]. For direct localization, the transfor-

mation from received signal waveform measurements to position is highly non-linear,

which leads to non-Gaussian beliefs. The commonly used Gaussian PBP is not suit-

able. We also implemented a CBP method with Gaussian-Laguerre integration, which

outperforms a Monte Carlo integration based NBP method with same complexity, in

the sense of the Kullback–Leibler divergence (KLD). However, there is no significant

evidence of improvement in the sense of localization performance. It is due to the

fact that the belief directly taking waveform as measurement is steep and multi-modal,

which cannot be efficiently represented by the Gaussian-Laguerre integration. There-

fore, we omit the investigation of CBP, and use NBP and PBP methods as state of the

art algorithms as benchmarks.

The proposed DiPNet is a variant of BP, where non-parametric belief is updated

locally and only the first two moments of the belief b
(k)
u are broadcasted to the neighbors.

4.3 DiPNet: A Direct Swarm Self-Localization Al-

gorithm

4.3.1 Equivalent Measurement Likelihood (EL)

To further reduce the complexity, we define an equivalent measurement likelihood (EL)

based on FI theory, which will be used later for the proposed DiPNet algorithm. The

joint pdf q(pÃu , zEu) of the simplified graph Gu can be written as

q(pÃu , zEu) = b(0)
u

∏
av∈Vu

b(k−1)
v p(zuv | pu,pv). (4.4)

The BIM JÃu of pÃu is expressed as

JÃu = J̃Ãu + EpÃu ,zEu

[
4pÃu

pÃu
ln p(zEu|pÃu)

]
, (4.5)

where J̃Ãu = diag{J̃(0)
u , J̃

(k−1)
v : ∀av ∈ Au}, is the a priori position information of pÃu ,

with individual a priori information J̃
(k)
w defined as

J̃(k)
w , −Epw

[
4pw

pw ln b(k)
w

]
. (4.6)
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The equivalent Bayesian information matrix (EBIM) Ju of pu, derived from the theory

of Schur’s complement [31], determines the best achievable variance for the a posteriori

estimate p̂u. Assuming the beliefs b
(k)
w are concentrated at their a priori means p̄w =

Epw [pw], the EBIM is approximated as

Ju = J̃(0)
u +

∑
av∈Au

ι̃duv ēuvē
T
uv, (4.7)

where ι̃duv is the ERII defined as

ι̃duv =
ῑduv

1 + ῑduvσ
2
v 7→uv

. (4.8)

The projection vector ēuv and the projected variance σ2
v 7→uv are defined as

ēuv ,
(p̄u − p̄v)

‖p̄u − p̄v‖
, σ2

v 7→uv , ēTuv(J̃
(k−1)
v )−1ēuv, (4.9)

which projects the position uncertainty of av onto the line connecting au and av. The

marginalized RII ῑduv is defined as

ῑduv , −Epu,pv

[
Ezuv |pu,pv

[d2 ln p(zuv|pu − pv)

dd2
uv

]
︸ ︷︷ ︸

,ιduv

]
, (4.10)

where duv = ‖pu−pv‖. The derivation of (4.7) is detailed in Appendix C.5. A similar

result has been reported in [28]. The EBIM in (4.7) has a similar expression as the

position information J(u,u) assuming the neighbor’s position is perfectly known:

J(u,u) = J̃(0)
u + EpÃu

[∑
v∈Au

ιduveuve
T
uv

]
, (4.11)

where euv , ∇puduv is the unit vector pointing from av to au. Alternatively, equation

(4.8) can be expressed by the equivalent ranging uncertainty

ι̃−1
duv

= ῑ −1
duv

+ σ2
v 7→uv. (4.12)

Hence the neighbor’s position uncertainty can be additively aggregated to the ranging

uncertainty. We utilize these observations to define an EL, which can be applied to

further reduce the complexity of network localization.

Definition 2 (Equivalent Measurement Likelihood). An equivalent measurement like-
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lihood (EL) p̃(zuv | pu,pv) is a pdf of zuv given on pu and pv, such that

−Ezuv |pu,pv

[
d2 ln p̃(zuv|pu,pv)

dd2
uv

]
= ι̃duv . (4.13)

The system can be further simplified to non-cooperative localization, where neigh-

boring agents are considered as virtual beacons. Hence, the virtual measurement like-

lihood function is modeled with the EL and the neighbor’s virtual a priori pdf is

modeled as a Dirac function at point p̂
(k−1)
v . The EBIM of the simplified system equals

to the original Ju. Low-complexity distributed network localization algorithms can be

designed as follows. Agent au receives the first two moments of its neighbor’s non-

parametric belief, namely the position estimate p̂
(k−1)
v and the covariance estimate

cov[p̂
(k−1)
v ], to approximate ERII in (4.8). Instead of the sum-product algorithm in

(4.3), the belief can be updated by the simplified model using the EL

b(k)
u ≈ b(0)

u

∏
∀av∈Au

p̃
(
zuv|pu, p̂(k−1)

v

)
. (4.14)

The EL-based algorithm further reduces the complexity to one 2-dimensional integral

per algorithmic iteration, which enables distributed Bayesian network localization in

realtime. The concept of EL can be generally applied to any distance-based measure-

ment models. For example in [51], it is used in two-step network localization with

Gaussian ranging models by exploiting the equivalent ranging variances (ERVs). In

the next section, we introduce the DiPNet algorithm, where an EL is adapted for direct

localization from the OFDM waveform.

4.3.2 Direct Self-Localization with RF Signal

In a realistic scenario, the signal is not only distorted by sensor noise, but also affected

by the propagation channel. For LOS scenarios, the signal propagates along the LOS

path and some additional paths, referred to as MPCs. Whereas for NLOS scenarios,

the signal is solely received via the MPCs. A generic path component l, between au
and av, is defined by its complex amplitude αuv,l = Auv,le

φuv,l , with a magnitude Auv,l

and a phase φuv,l in radians, and the total propagation delay τuv,l = τuv,0 + δuv,l + buv,

which includes the LOS delay τuv,0 = duv,0, the NLOS delay buv and the path’s delay

additional to the potential LOS path δl, all in meters. The NLOS delay buv is positive

for NLOS scenarios and zero for LOS scenarios. The LOS path is denoted with index

0, i.e. δuv,0 = 0. NLOS scenarios are included by setting Auv,0 = 0. The continuous

received signal can be generally written as the superposition of the potential LOS path

and L MPCs distorted by AWGN as introduced in (2.23). The received sampled signal
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can be generally written as

ruv(iTsa) =
L∑
l=0

αuv,lsuv,l(iTsa − τuv,l/c) + εuv(iTsa), (4.15)

with a sampling period Tsa and ∀i = 1, · · · , N . The (delayed) signal samples are

represented in vector forms, for example, r , vec{r(Tsa), · · · , r(NTsa)} and s(τ) ,

vec{s(Tsa− τ), · · · , s(NTsa− τ)}. The clock offsets between nodes may bias the delay-

based distance information. However, it can be eliminated with multi-way ranging.

For the AWGN case, the two-way ranging with an amplify-and-forward scheme [58]

is equivalent to the synchronized one-way ranging [82]. For the multipath scenario,

it is analogous to the synchronized one-way ranging, with a channel equivalent to the

convolution of the forward and backward channels.

The DiPNet algorithm is derived based on a one-path received signal assumption

in LOS condition, i.e. ‖αuv,0‖6= 0 and L = 0. The assumed received signal is denoted

as ruv,0, in order to be distinguishable from the true received signal ruv. The one-path

signal model enables low complexity position estimation, at the cost of sub-optimality

due to model mismatch. In two step approaches, this mismatch may lead to erroneous

position estimates. In Section 4.4 it is discussed that the impacts of the model mismatch

on the proposed DiPNet algorithm become insignificant in dense networks, as a result

of collective PHY processing. The one-path model can be described by the likelihood

function p(ruv,0|pu,pv, αuv,0). The complex amplitude αuv,0 is irrelevant to position

estimate and estimated separately as

α̂uv,0 =
suv(‖pu − pv‖/c)Hruv,0
‖suv(‖pu − pv‖/c)‖2

, (4.16)

with a constant denominator expressed as ‖suv‖2. According to the theory of separable

variables [119], the ranging likelihood function can be expressed by inserting the phase

estimate into the original likelihood function as

p (ruv,0|pu,pv) ∝ exp

(
‖f(‖pu − pv‖)‖2

N0‖suv‖2

)
. (4.17)

The cross-correlation function f(‖pu − pv‖) is written as

f(‖pu − pv‖) = rHuv,0 suv(‖pu − pv‖/c). (4.18)

The logarithmic likelihood function is proportional to the squared cross-correlation

function (SCF) ‖f(‖pu − pv‖)‖2, which is asymptotically maximized at ‖pu − pv‖=
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duv,0. We will use these properties in Section 4.4 to evaluate the performance of DiPNet

in multipath propagation conditions. The ranging uncertainty ῑ −1
duv

in (4.12), i.e. the

ranging CRB denoted by CRBuv, is derived as in [51] with the one-path OFDM signal

model as

ῑ −1
duv

= CRBuv =
c2N0

2‖α̂uv,0‖2ω2
sc

∑N−1
2

n=−N−1
2

‖Sn‖2n2
. (4.19)

A choice of EL for DiPNet is to aggregate the neighbor’s position uncertainty as noise,

i.e.

p̃
(
ruv,0 | pu, p̂(k−1)

v

)
∝ exp

(‖f(‖pu − p̂
(k−1)
v ‖)‖2

σ̃2
uv‖suv‖2

)
, (4.20)

where σ̃2
uv is the equivalent noise variance (ENV). The corresponding equivalent ranging

uncertainty ι̃−1
duv

has an expression similar to ῑ −1
duv

in (4.19), by replacing N0 with σ̃2
uv.

The ENV is derived by inserting ῑ −1
duv

and ι̃−1
duv

into (4.12) as

σ̃2
uv = N0 +

2ω2
scσ

2
v 7→uv
c2

‖α̂uv,0‖2

N−1
2∑

n=−N−1
2

‖Sn‖2n2. (4.21)

In the proposed DiPNet, the position belief is updated according to (4.14) and (4.20),

by replacing the algorithmic signal model r̃uv with the real received signal ruv. A

DPF is implemented at each agent for non-parametric belief calculation [117], [51].

Q particles Q(0)
u = {Q(1,0)

u , · · · , Q(Q,0)
u } are drawn at au according to its a priori pdf.

Each particle Q
(q,0)
u = (p

(q,0)
u , w

(q,0)
u ) is defined with its position p

(q,0)
u and a normalized

weight w
(q,0)
u . The non-parametric belief at kth iteration can be represented as

b(k)
u ≈

Q∑
q=1

w(q,k)
u δ(pu − p(q,0)

u ). (4.22)

The weight is updated by (4.14) as

w(q,k)
u =

w
(q,0)
u

Cu

∏
av∈Au

p̃
(
ruv | p(q,0)

u , p̂(k−1)
v

)
, (4.23)

where Cu is a normalization factor. With all building blocks been introduced, we can

finally describe the overall DiPNet algorithm for an agent au in Algorithm 1.

For numerical stability, DiPNet is operated in logarithm domain with the Jacobian

algorithm as described in [120].
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Algorithm 1: DiPNet algorithm for agent au
1 for algorithmic iteration k = 0 to K do
2 if k = 0 then

3 draw particles Q(0)
u from a priori p(pu)

4 else

5 receive moments of b
(k−1)
v ,∀av ∈ Au

6 calculate ENV σ̃2
uv using (4.21), ∀av ∈ Au

7 for particle q = 1 to Q in parallel do

8 update particle w
(q,k)
u using (4.23) and (4.20)

9 normalize particles Q(k)
u

10 calculate and broadcast moments of b
(k)
u

Table 4.1. Comparison of algorithms in the sense of complexity and transmitted messages

Algorithm Complexity Message number

Exact Q|A| Q|A|
Sampled SPAWN Q2|Au|K Q|Au|K

Position
(per agent)

EL Q|Au|K |Au|K

Correlation KτN
Ranging

SAGE Ks(L+ 1)KτN
Signal

(per link)
β-interpolated IFFT βN log βN

DiPNet (per agent) Q|Au|K + |Au|βN log βN |Au|K

DiPNet only requests evaluating cross-correlation function f(‖p(q,0)
u − p̂

(k−1)
v ‖) at

Q discrete points. An efficient interpolation technique, for example the inverse fast

Fourier transform (IFFT), can be applied to calculate these values. An advanced

method can be utilized to further reduce the computational complexity of interpolation

[121]. DiPNet has a complexity comparable to the ranging step in two-step approaches,

where the evaluation of cross-correlation function f(duv) is also required.

A complexity and communication overhead comparison of different algorithms is

summarized in Table 4.1, where Kτ and Ks are the number of iterations for delay

estimation and space-alternating generalized expectation-maximization (SAGE), re-

spectively, and (L+ 1) is the model order in SAGE. The DiPNet composed of EL and

β-interpolated IFFT requires only few messages on the order of |Au|K to transmit.

The computational complexity is nearly linear to the number of particles Q and the

number of samples N .

In comparison to the state-of-the-art network localization algorithms mentioned

in the introduction, the DiPNet utilizes a low measurement abstraction level as in
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DPE. It adapts the Bayesian framework of MP to enable decentralized calculation.

Unlike traditional MP, neighbor’s belief is exploited to calculate the EL instead of

marginalization, to achieve a flexible belief inference while retaining low complexity.

The concept of DiPNet even shares some commonality to the vector tracking algorithm

of GNSS receivers, where the positioning solution feeds back into the tracking of signal

to reject outliers [122].

Compared with the traditional two-step approach, the direct localization approach

applied in DiPNet has also a few unfavorable properties. Firstly, the cross correlation

function of each link has to be stored in a lookup table, which requires more memory, or

communication overhead for a centralized variant, and has limited resolution. Secondly,

in order to apply low complexity MP algorithms, for example by numerical integral

[116], the measurement message has to possess certain properties, which is not fulfilled

by the direct localization approach. Hence, it is not straightforward to extend direct

localization to low complexity MP.

In the next section, we first prove that the DiPNet is more robust in the con-

sidered multipath environments, in comparison with traditional algorithms. Then in

Section 4.5 we verify with simulation and experimental results that for the considered

applications, the drawbacks of DiPNet are insignificant compared to its advantages

over the traditional algorithms.

4.4 DiPNet in Multipath/NLOS Environments

The multipath propagation condition violates the one-path signal model assumed in

DiPNet, which leads to a sub-optimality for localization. Due to the stochastic re-

alizations of network and channel, it is difficult to analyze the impacts of the model

mismatch on the DiPNet performance. Instead, we investigate the collective propaga-

tion impacts from all links, utilizing the fact that a generic agent au in a dense network

is often connected with a large number of neighbors. We consider an agent au sur-

rounded by |Au| neighbors. In the last sections, we proposed DiPNet, which includes

neighbor’s position uncertainty by finding an alternative non-cooperative localization

problem. In this section, we assume the neighbors’ positions are perfectly known or

have already been compensated with DiPNet, in order to focus on the propagation

effects on localization. The agent au has a uniformly distributed a priori belief of its

position b
(0)
u and updates its belief to b

(1)
u by the received signals ruv, ∀av ∈ Au. As

mentioned in Section 4.3.2, the updated logarithmic belief can be expressed with the
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summation of the SCFs of all links as

log b(1)
u ∝

∑
av∈Au

‖rHuvsuv(‖pu − pv‖/c)‖2. (4.24)

For discussion convenience, we define a polar coordinate system that originates at the

true position pu,0 of au, whose axes are aligned with the ones of the original Cartesian

coordinate system. The position of av is reformulated with the LOS distance duv,0 and

the angle θuv to au as

pv = pu,0 + duv,0[cos θuv, sin θuv]
T . (4.25)

The position of au, which is apart from the true position with a distance M τ and an

angle θ̃, is expressed as

pu = pu,0+ Mτ [cos θ̃, sin θ̃]T . (4.26)

The distance ‖pu − pv‖ is reformulated as

‖pu − pv‖ =
√
d2
uv,0+ Mτ 2 − 2duv,0 Mτ cos(θuv − θ̃). (4.27)

We have in addition the following statistical assumptions of the link parameters:

1) The angle of the neighbor is uniformly i.i.d. around pu,0, i.e. θuv ∼ U[0, 2π);

2) The LOS distance duv,0 between au and av is i.i.d. and independent from θuv;

3) The link’s LOS/NLOS condition Xuv ∈{ LOS, NLOS} is i.i.d. given duv,0;

4) The number of MPCs Luv of each link is i.i.d. given Xuv;

5) The amplitude of each path αuv,l is i.i.d., with a power Puv,l = A2
uv,l depending

on Xuv and duv,0 and a uniformly distributed phase φuv,l ∼ U[0, 2π).

6) The NLOS delay and additional path delay of MPCs, buv and δuv,l, are i.i.d. given

Xuv.

Since the propagation parameters of all links are i.i.d., in an asymptotic case where

|Au|→ ∞, we have

log b(1)
u → |Au| Exuv

[
‖rHuvsuv(‖pu − pv‖/c)‖2

]
, (4.28)
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where xuv is the random variables of the link euv, including all parameters mentioned

above and the noise εuv. Hereafter, the subscripts u and v are omitted for simplicity

when a single link euv is under investigation. The joint pdf of the link’s random

variables can be factorized as

p(x) =p(d0) p(θ) p(ε) Pr(X=χ|d0) p(b;χ) p(P0|d0;χ)

×p(φ0)Pr(L= L̃;χ)
L̃∏
l=1

p(δl;χ) p(Pl|d0;χ) p(φl). (4.29)

Expanding the received signal r according to (4.15), the expectation of SCF over link

e becomes

Ex

[
‖rHs(‖pu − pv‖/c)‖2

]
=N0‖s‖2+Ed0

[
P̄0 Eθ[‖s(τ0)Hs(‖pu − pv‖/c)‖2]

]
+Ed0

[
L̄P̄lEδl,b|d0 [Eθ[‖s(τl)

Hs(‖pu − pv‖/c)‖2]]
]
, (4.30)

with the expected path power P̄l = EPl|d0 [Pl] and the expected MPC number L̄ =

EL|d0 [L], given the LOS distance d0. The derivation of (4.30) is detailed in Appendix

C.6. We use the notation τ = ‖pu − pv‖ in derivations for simplicity, keeping in mind

that τ is a function of positions pu and pv. Let us further assume that the symbol on

each subcarrier has a constant power, for example phase-shift keying (PSK) modulated,

i.e. ‖Sn‖2= ‖S̃‖2,∀n = −N−1
2
, · · · , N−1

2
. The lth path’s cross-correlation can be further

written as

s(τl)
Hs(‖pu − pv‖/c)

=
1

N

N∑
i=1

N−1
2∑

m,n=−N−1
2

S∗ne
−nωsc(iT−τl/c)Sme

mωsc(iT−τ/c)

=
1

N

N−1
2∑

m,n=−N−1
2

S∗nSme
nωscτl/c−mωscτ/c

N∑
i=1

e(m−n)ωsciT

︸ ︷︷ ︸
=Nδ(m−n)

=‖S̃‖2

N−1
2∑

n=−N−1
2

ejnωsc(τl−τ)/c = ‖S̃‖2 sin (ωscN(τl − τ)/2c)

sin (ωsc(τl − τ)/2c)

,‖S̃‖2Dl(‖pu − pv‖), (4.31)

where Dl(‖pu−pv‖) is a circular symmetric function of pu around a given pv, obtained
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by rotating the order (N−1) Dirichlet kernel, also known as the periodic sinc function,

around pv.

4.4.1 Asymptotic Localization Unbiasedness

A condition of the DiPNet being asymptotically unbiased for position estimation is that

the true position pu,0 is a local maximum of log b
(1)
u for |Au|→ ∞. Since D2

l (‖pu−pv‖)
is a smooth function for arbitrary ‖pu−pv‖6= 0, the asymptotic unbiasedness condition

can be proved by the derivative test w.r.t. Mτ for Mτ → 0 as

stationarity: lim
Mτ→0

∂Ex

[
‖rHs(‖pu − pv‖/c)‖2

]
∂ Mτ

= 0, (4.32)

concavity: lim
Mτ→0

∂2Ex

[
‖rHs(‖pu − pv‖/c)‖2

]
∂ Mτ 2

< 0. (4.33)

The updated logarithmic belief log b
(1)
u is asymptotically proportional to the superpo-

sition of the expected contributions from each path, over d0, θ, b and δl, as indicated in

(4.30) and (4.31). Therefore, we evaluate the derivatives of the expected Dl(‖pu−pv‖)2

of the LOS path (l = 0) and the MPCs (l > 0), w.r.t. Mτ for Mτ = 0. The first deriva-

tive of the expectation over θ is written as

lim
Mτ→0

∂Eθ[Dl(‖pu − pv‖)2]

∂ Mτ

=Eθ
[

lim
Mτ→0

∂Dl(‖pu − pv‖)2

∂ Mτ

]
=Eθ

[
2 cos(θ − θ̃)

N−1
2∑

m,n=−N−1
2

mωsc/ce
Smnωsc(δl+b)/c

]
= 0, (4.34)

with the notation Smn = m + n, and proves the stationarity condition (4.32). The

second derivative of the expectation over θ is expressed as

D̈2
l (‖pu,0 − pv‖)

, lim
Mτ→0

∂2Eθ[Dl(‖pu − pv‖)2]

∂ Mτ 2

=Eθ
[

lim
Mτ→0

∂2Dl(‖pu − pv‖)2

∂ Mτ 2

]
=− π

N−1
2∑

n,m=−N−1
2

(
S2
mnω

2
sc/c

2 +
Smn
τ0

ωsc/c
)
eSmnωsc(δl+b)/c. (4.35)
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It can be observed that the expectation of the second derivative is independent of θ̃.

Hence the expectation of Dl(‖pu − pv‖)2 is isotropic in the sense of concavity around

pu,0. For the LOS path, inserting δ0 = 0 and b = 0 into (4.35), the second order

derivative states

D̈2
0(τ0) = −πω

2
scN

2(N2 − 1)

6c2
. (4.36)

The condition of concavity can be reformulated by combining (4.30), (4.31) and (4.33)

as

ς , Ed0

[ 6L̄P̄lEδl,b|d0 [D̈2
l (‖pu,0 − pv‖)]

πω2
scN

2(N2 − 1)/c2
− P̄0︸ ︷︷ ︸

,ς̃(d0)

]
< 0, (4.37)

where ς is dubbed the concavity indicator and ς̃(d0) is the conditional concavity in-

dicator (CCI) with a given d0. The concavity condition holds, if and only if the con-

cavity indicator ς is negative. Most of the communication-related channel parameters,

e.g. power-delay profile, delay spread, shadow fading, LOS probability and K-factor,

are intensively investigated. In comparison, the localization-related channel character-

istics, for example the distribution of δl and b, is not always available from the study

of channel model. However, for the lth MPC with arbitrarily distributed δl and b, an

upper-bound of D̈2
l (‖pu,0 − pv‖) can be formulated from (4.35) as

D̈2
l (‖pu,0 − pv‖) ≤π

N−1
2∑

n,m=−N−1
2

S2
mnω

2
sc/c

2 +
‖Smn‖ωsc

τ0c

=
πω2

scN
2(N2 − 1)

6c2
+
πωscN(N2 − 1)

3τ0c
. (4.38)

With (4.36), (4.38) and ωscN = 2πBc, the CCI can be upper-bounded, which yields a

new sufficient negative condition as

ς < Ed0

[
(1 +

c

πBcd0

)L̄P̄l − P̄0︸ ︷︷ ︸
≥ς̃(d0)

]
< 0. (4.39)

For a given non-zero d0, if the expected LOS path power is larger than the expected

total power of all other paths, there exists a minimal bandwidth, inversely proportional

to d0, to guarantee the concavity condition (4.33) holds for arbitrarily distributed δl and

b. In a few channel models, both δl and b are assumed exponentially distributed [123],

i.e. p(b;X=NLOS)=Exp(aB), p(δl;X=LOS)=Exp(aL) and p(δl;X=NLOS)=Exp(aN).
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The rate parameters aB, aL and aN can be derived from the mean NLOS delay and

delay spreads from channel models. The CCI in (4.37) can be expressed in close form

by marginalizing over δl and b, as detailed in Appendix C.7. The CCI can be utilized

to analytically assess the applicability of DiPNet, given limited system and channel

characteristics. The DiPNet is an asymptotically unbiased localization algorithm if

ς̃(d0) < 0,∀d0 ∈ (dmin, dmax), where dmin and dmax are the minimum and maximum

operational distances of an application. The CCIs in typical urban and rural areas are

demonstrated in Figure 4.2 in Section 4.5.

4.4.2 Resistance to Erroneous Distance Information

It is known that two-step localization approaches with Gaussian ranging model are

vulnerable to large distance estimation offsets, for example due to wrongly detected

paths or clock offset. In order to evaluate the erroneous distance information resistance

of DiPNet, we investigate a specific scenario as follows. An agent au has a position

belief generically modeled by a smooth isotropic unimodal pdf b
(0)
u , with the single

mode at the origin. The logarithm belief is defined as g(pu), which is a monotonically

decreasing function of du = ‖pu‖. A neighbor av located on the negative x-axis with

coordinates pv = [−d0, 0]T , provides inter-agent distance information with a continuous

measurement function z(pu), which is a function of duv and smooth at every point

except pv. The new belief h in logarithm domain is expressed as

h(pu) , log b(1)
u (pu) = g(pu) + z(pu). (4.40)

Let us assume z(pu) reaches its global maximum with an additional distance offset

δ > −d0. This offset may introduce a local maxima shift to the belief h(pu), which is

under investigation.

Lemma 4.4.1 (Local Maximum Point). A point pox = vec{xox, yox} is a local maxi-

mum point of h(pu), if and only if (a) yox = 0, (b) it is a local maximum point over

x-domain and (c) xox > −d0.

Proof. See Appendix C.8.

Lemma 4.4.1 indicates that it is sufficient to investigate the local maxima shift of

the belief over x-domain only, i.e., in the direction of link euv. We can redefine function

h, z and g as one dimensional function of xu by setting yu = 0.

Theorem 4.4.1 (General Belief Shift). For DiPNet, if the neighbor av is separated

from au by at least a fractional of sample in distance %κ defined in Appendix C.9, a
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path with an offset δ shifts the maximum of au’s position belief from the origin to a local

maximum point pox = [xox, 0]T . The belief shift ‖xox‖ is upper bounded by %κ which

decreases from c/Bc to c/2Bc with increasing ‖δ‖.

Proof. See Appendix C.9.

Theorem 4.4.2 (Shift of Bivariate Belief). In addition to Theorem 4.4.1, if the original

position belief is modeled with isotropic bivariate normal distribution b
(0)
u = N (0, σ2

0I),

the belief shift ‖xox‖ is more tightly bounded by
‖δ‖

1 + υ
, ∀‖δ‖< c

Bc
(4.41a)

%κ
1 + υ

3ρ2(1+ρ2)

, ∀‖δ‖> c
Bc

(4.41b)

where ρ is inversely proportional to Bc‖δ‖ and ν is the ratio between the the measure-

ment and a priori belief uncertainties. Both ρ and ν are defined in Appendix C.10.

Proof. See Appendix C.10.

The upper bound expressed in (4.41a) is the belief shift introduced by a two step

approach, having a Gaussian ranging model with a mean biased by arbitrary δ and

a variance modeled by the ranging CRB, denoted as CRBl. With Theorem 4.4.2 we

can observe that for a small distance offset, the belief shift from DiPNet is upper

bounded by the shift from the two step approach, i.e. increasing with the distance

offset ‖δ‖ and bandwidth Bc. For a large distance offset, the belief shift from DiPNet

decreases with increasing ‖δ‖ and Bc, which is contrary to the two step approach and

makes the DiPNet more resistant to erroneous distance information. The belief shift

is demonstrated in Figure 4.3, which is explained in more detail in Section 4.5.

4.5 Simulation and Experimental Results

4.5.1 Simulation Results

We conduct simulations using an OFDM system designed for multi-link ranging [82, 58],

with parameters as follows: bandwidth Bc = 37 MHz, number of subcarriers N = 2569 ,

subcarrier spacing fsc = 14.65 KHz, carrier frequency fc = 5.2 GHz, transmit power

PTx = 1 mW (0 dBm), temperature of 300 K for thermal noise calculation and an

additional noise figure of 15 dB.

In Figure 4.2, we illustrate the CCI, ς̃(d0) defined in Section 4.4.1, with the channel

parameters of urban (C2) and rural area (D1) scenarios from the WINNER-II channel
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Figure 4.2. CCIs for urban and rural areas normalized to the LOS path power, bench-
marked against the AWGN case, where ς̃(d0) = −Pr(X = LOS).
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Figure 4.3. Belief shift of au’s position.
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model [124]. For arbitrary multipath bias δl and NLOS bias b, the upper bound of ς̃(d0)

defined in (4.39) is calculated with the K-factor, path-loss models and LOS probabil-

ity P (LOS) listed in the WINNER-II channel model. For exponentially distributed

δl, delay spreads from the WINNER-II channel model are additionally included to

marginalize δl. The distribution of NLOS bias b is not included in the WINNER-II

model. We assume an exponentially distributed NLOS bias with a mean of 0.3 µs,

which is acquired by an urban area raytracing tool developed in project GREAT [125].

AWGN cases are included as benchmarks, where ς̃(d0) = −Pr(X = LOS), representing

the unrealistic optimal cases of perfect multipath mitigation and NLOS rejection. For

arbitrary δl and b, if d0 > 2 m in urban areas or d0 > 1 m in rural areas, ς̃(d0) is neg-

ative, i.e. DiPNet is an asymptotically unbiased position estimator. For exponentially

distributed δl and b, DiPNet is asymptotically unbiased for any d0 > 0.1 m. All ς̃(d0)

are converging to the benchmarks with increasing d0, where LOS probability becomes

the decisive factor. The CCI of urban area is significantly larger than the one of rural

area for a large d0, due to a faster decreasing LOS probability. The investigation of the

concavity indicator allows us to analytically conclude that DiPNet is asymptotically

unbiased in both urban and rural areas. Besides, DiPNet in rural area may outperform

the one in urban area due to a higher LOS probability.

In Figure 4.3, we demonstrate Theorem 4.4.2 in Section 4.4.2 with ν = 1. The

position belief shift ‖xox‖ with DiPNet (in blue), its upper bound (in red), the belief

shift with the corresponding Gaussian two-step approach (in green) and a sample ex-

pressed in meters (in black) against increasing distance offset δ are plotted. The upper

bound derived in Theorem 4.4.2 is always smaller than one sample distance, firstly in-

creases then decreases as the envelope of the DiPNet belief shift and becomes negligible

for large ‖δ‖. Whereas the belief shift of the Gaussian two-step approach monotoni-

cally increases with ‖δ‖. This observation verifies the erroneous distance information

resistance of DiPNet.

Finally, we conduct simulations of anchor-free network localization in urban and

rural area with complete channel models adapted from WINNER-II. Different sizes

of fully meshed networks composed of three to thirty agents are simulated. Agents

are uniformly deployed in a 100 m× 100 m area. DiPNet is compared with three two-

step algorithms, namely a correlation-based ranging approach [126], a SAGE-based

approach for multipath mitigation [127] and a SAGE-based approach with only LOS

links as a benchmark for perfect NLOS rejection. All the two-step approaches apply the

ERV concept [51] and the Gaussian ranging model, with the one-path ZZB as ranging

variance [56, 128]. A DPF with 1000 particles is implemented at each agent for every

algorithm with parametric belief exchanges.
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Figure 4.4. Correlation-based and SAGE-based ranging RMSEs in comparison with CRB
and ZZB in both urban and rural areas.

Figure 4.4 shows the ranging RMSEs from correlation and SAGE, in comparison

with the CRB and the ZZB. Ranging samples are collected from all the links in the

networks under investigation in both urban and rural areas. SAGE outperforms the

correlation-based ranging as expected. However, both ranging RMSEs diverge from

the bounds due to the unpredictable multipath and NLOS propagation effects. This

divergence directly limits the achievable localization accuracy for two-step approaches

with the ranging error modeled by the bounds, as shown next.

In Figure 4.5 and Figure 4.6, the anchor-free network localization performances

of the compared algorithms in urban and rural areas are shown. In Figure 4.5a and

Figure 4.5b the framework distance RMSEs defined in (2.6) of the compared algorithms

with different network sizes are plotted. In Figure 4.6a and Figure 4.6b the CDFs of the

absolute framework distance error of different algorithms are compared for networks

with three and thirty agents. The RMSEs of all algorithms decrease with an increasing

number of agents from three to thirty, which indicates a cooperative gain through

mesh networks. Correlation and SAGE-based algorithms result in larger RMSEs than

the other two due to the NLOS-bias. The proposed DiPNet performs similarly to

the NLOS-rejected SAGE, which verifies that the DiPNet is NLOS-bias resistant as

proved in Section 4.4.2. The DiPNet obtains similar sub-meter RMSEs in both urban

and rural areas for a number of agents larger than 12. The CDF plots show that in

urban area, localization outliers are more often present than in rural area, except the

DiPNet and NLOS-rejected SAGE in 30-agent networks. It is due to the fact that the

LOS probability in rural area (95.1% ) is significantly higher than the one in urban

area (65.6% ). Both CDF and RMSE plots show a slight outperforming of DiPNet

compared to the NLOS-rejected SAGE in dense networks in the sub-meter error range.



4.5. Simulation and Experimental Results 107

3 6 12 18 24 30
10

-1

10
0

10
1

Correlation
SAGE
DiPNet
NLOS-rejected

(a) Urban area RMSE εd

3 6 12 18 24 30
10

-1

10
0

10
1

Correlation
SAGE
DiPNet
NLOS-rejected

(b) Rural area RMSE εd

Figure 4.5. RMSE simulation results in urban and rural areas with DiPNet, correlation-
based, SAGE-based and NLOS-rejected SAGE algorithms: (a) and (b) framework distance
RMSE for 3 to 30 agents.
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Figure 4.6. CDF simulation results in urban and rural areas with DiPNet, correlation-
based, SAGE-based and NLOS-rejected SAGE algorithms: (a) and (b) absolute framework
distance error cumulative distribution function (CDF) for 3 and 30 agents.
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It is caused by the non-resolvable MPCs in SAGE algorithm and approximation error

in ZZB.

4.5.2 Experimental Results

We conducted two outdoor experiments with six swarm navigation prototypes devel-

oped at our research group [88], on a grass field at the DLR in 2015. At this time, six

test-beds has been implemented by Emanuel [88], capable of ranging with an update

rate of 100 ms. Two-way ranging between all prototypes is implemented in a sequen-

tial fashion, with OFDM signals similarly to simulations, except a transmit power of

100 mW (20 dBm) and a carrier frequency of 5.5 GHz for forward links and 5.7 GHz for

backward links are used. A second OFDM symbol with a scattered pilot structure is

transmitted additionally for SNR estimation, counteracting non-ideal effects related to

hardware. All 30 links are pre-calibrated in our laboratory over cables and RF attenua-

tors to compensate hardware characteristics like the RF front-end delays and the filter

frequency responses. Five prototypes are placed in approximately symmetric pentago-

nal formations, with a dimension of 15 m in experiment 1 and a dimension of 30 m in

experiment 2, and remain stationary. The sixth prototype is mounted on a remotely

controlled rover, driving around within a 50 m× 80 m area. An accurate ground truth

of agent’s position is continuously obtained with a reflecting prism on the rover tracked

by a Leica tachymeter. The received raw OFDM symbols are collected through Ether-

net at a host computer and time-stamped together with the ground truth, so that the

experiments can be replayed in laboratory for algorithm comparison. In total 17700

two-way measurements are collected, 260 snapshots for experiment 1 and 330 snapshots

for experiment 2. Similar to simulations, we implement a SAGE-based algorithm ex-

changing parametric beliefs, referred to as parametric SAGE, to compare with DiPNet.

In addition, sample-based DPE and SAGE approaches are implemented, where particle

represented beliefs are directly exchanged and incorporated in the DPF. To maintain

similar complexity for each agent, 7157 particles are used for DiPNet and parametric

SAGE, whereas 100 particles are employed for sample-based DPE and sample-based

SAGE. The experimental setup is shown in Figure 4.7, including Figure 4.7a images

of experiments, where stationary agents are marked in yellow and rover in red, Fig-

ure 4.7b agent’s true trajectories in experiment 2 and their particle-represented beliefs

from DiPNet at snapshot 61, Figure 4.7c and Figure 4.7d agent’s true and estimated

trajectories in experiment 1 from parametric SAGE and DiPNet. The rover is mostly

driving smoothly with a moderate velocity, except from snapshot 250 in experiment

2, where the maximum velocity and rapid turns are experienced by the rover with the

trajectory illustrated in Figure 4.7b in red. The moving/stationary condition infor-
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mation is not available at agents, i.e. the DPFs at all agents apply the same mobility

model. The optimal rigid affine transformation Topt is applied to generate Figure 4.7b-

Figure 4.7d for visualization convenience [47].

Comparing Figure 4.7c and Figure 4.7d, we can see that DiPNet significantly out-

performs parametric SAGE. A more detailed comparison can be found in Figure 4.8 and

Figure 4.9, with Figure 4.8a and Figure 4.8b showing the framework distance RMSE

for each snapshot and, Figure 4.9a and Figure 4.9b showing the CDF of the absolute

framework distance error. In both experiments, the ranging links are distorted with

the MPCs from surrounding metallic structures. Additionally, low SNR is observed

for some links due to the grass field ground reflection. DiPNet outperforms all three

other algorithms in both experiments. Both sample-based DPE and DiPNet perform

more robustly than their corresponding two-step counter partners. Sample-based DPE

experiences a limited achievable accuracy due to small particle populations, as reported

in [87]. A larger network dimension in experiment 2 leads to a higher failure rate for

SAGE-based approaches, while only slightly affects the accuracy of DiPNet in sub-

meter range. A higher rover dynamics also slightly reduces the DiPNet accuracy in

sub-meter level due to a higher uncertainty in the state transition.
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(a) Experimental setup
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(b) DiPNet snapshot in experiment 2
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(c) Parametric SAGE in experiment 1
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(d) DiPNet in experiment 1

Figure 4.7. Experiments: (a) experimental setup, (b) agent’s true trajectories in exper-
iment 2 and particles at snapshot 61, (c) and (d) agent’s true and estimated trajectories
from parametric SAGE and DiPNet in experiment 1.
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Figure 4.8. Experimental performance of DiPNet, parametric SAGE, sample-based DPE
and sample-based SAGE: (a) and (b) framework distance RMSE at each snapshot.
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(a) CDF of εuv in experiment 1
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Figure 4.9. Experimental CDF performance of DiPNet, parametric SAGE, sample-based
DPE and sample-based SAGE: (a) and (b) absolute framework distance error CDF at each
snapshot.
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Chapter 5
Position-Aware Swarm Control

In Chapter 3 we have studied theoretical aspects of swarm navigation, especially the

FI and variational CRBs to quantify the expected localization performance. With the

help of FI, we are able to reveal the essence of swarm self- and source localization, and

to infer the impacts of e.g. geometry, resource allocation, coordinate system, on swarm

localization. FI has been also used for designing low complexity swarm localization

algorithms in Chapter 4, by defining the equivalent likelihood function. Both Chap-

ter 3 and Chapter 4 aim to answer the first question of autonomous swarm navigation

described in Section 1.2, i.e. ”Where am I?” In this chapter, we exploit the knowl-

edge of FI/BI and the mobility of the swarm and solve the problem of ”Where shall I

go?”. As an outcome of the proposed position-aware swarm control, swarm formations

are assembled, which are preferable for localization. As already been introduced in

Chapter 1, the implication of position awareness is threefold.

First, the swarm estimates the positions of itself and the sources, for example, with

the swarm localization algorithms introduced in Section 3.4.4 and Chapter 4.

Second, the position estimation uncertainties are inferred with CRBs for non-

Bayesian estimators, and with PCRBs for Bayesian estimators as introduced in Chap-

ter 3.

Third, the swarm is aware of the impacts of, e.g. its formation and resource alloca-

tion, on position information, e.g. the FI, BI or Shannon information [25]. The swarm

actively adapts its formation to maximize the aforementioned information metrics,

which is referred to as position information seeking control.

In Figure 5.1, the three levels of position awareness in autonomous swarm navigation

systems are illustrated progressively with arrows colored in green, blue and red. The

red dashed loop emphasizes the swarm’s self-awareness of its navigation process. For

traditional navigation systems, the control objectives are externally defined, optionally

tolerating the estimation uncertainty. Contrarily, in our autonomous swarm navigation

115
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Figure 5.1. Position awareness in swarm navigation: The three levels of position aware-
ness are illustrated progressively with arrows colored in green, blue and red. The red dashed
loop emphasizes the swarm’s self-awareness of its navigation process.

system the estimation uncertainty is a controllable feature. The swarm is aware of not

only the state estimation uncertainty but also the causality between its states and the

estimation uncertainty. With the later awareness, the swarm can actively adapt its

formation minimizing the estimation uncertainty.

We propose a concept of position-aware swarm control based on projected steepest

gradient descent (PSGD), maximizing FI or BI, meantime achieving other control ob-

jectives, such as goal approaching and collision avoidance. Position CRBs and PCRBs

of an arbitrary subset of nodes are utilized as the objective functions and the con-

straints of the control problem. Thus, the controller can be designed flexibly according

to applications. A closed form expression of the gradient based controller is derived to

enable low complexity swarm control.

5.1 Survey on Position-Aware Swarm Control

As mentioned in Section 1.2.2, the main focus of swarm control (or multi-agent con-

trol) in the literature is on achieving or maintaining a predefined target formation and

accomplishing some task with minimized collective efforts. The position uncertainty

is often either overlooked, or considered in a tolerance-base, which is only related to

the first, i.e. awareness of position estimates, and second, i.e. awareness of position

uncertainty, levels of position awareness. There is limited literature on swarm control

related to the third level of position awareness, where the swarm is aware of the self-

and source localization process, and actively composes formations which is beneficial
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for swarm localization. Information seeking controls, e.g. in [46, 25, 129], often ex-

ploit information metrics such as Shannon or Fisher information, for designing control

objective functions to actively minimize localization uncertainty. In [45], the swarm

formation is optimized by minimizing the trace of the rigidity matrix introduced in

Section 3.3. This approach can be interpreted as to compose a formation as rigid as

possible. The geometry effects on swarm self-localization is considered, whereas the

measurement quality effects are overlooked. In [130, 129], the agents’ positions are

assumed to be known, and the source position FI is utilized to optimize the swarm

formation so that the source localization performance is improved. In [46], linear state

transition and measurement models are assumed, both distorted by AWGN. With this

simplified model, a KF is implemented. The covariance matrix obtained from the KF

is used as the cost function to achieve preferable swarm formations for both self- and

source localization. In [25], NBP approach is implemented for joint self- and source lo-

calization. The swarm formation is optimized by maximizing the negative conditional

differential entropy. This approach is suitable for only a few agents due to the high

complexity of NBP.

5.2 Gradient based Swarm Control

For the considered large-scale swarm with controllable agents’ positions, swarm con-

trol formulated in Section 2.3 is a high dimensional non-convex optimization problem.

Instead of finding the optimal solution in one step, we adapt the PSGD method [131,

Ch. 5] to design a low complexity swarm controller.

5.2.1 Projected Steepest Gradient Descent Control

PSGD is an iterative method to find a local optimal solution of a constrained opti-

mization problem. The general idea of PSGD is to iteratively apply the following four

steps:

1) Finding an initial solution pointing against the gradient of the cost function;

2) Checking the potential violation of the constraints;

3) If the constraints are violated, projecting the initial solution on the tangent space

of the constraints;

4) checking the potential violation again, and applying necessary corrections to com-

pensate the non-linearity effect of the constraints.
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We utilize the general concept of PSGD to generate the control command bA to the

swarm from the gradients of the objective functions, including the cost function and

the constraints. Instead of iterations applied in PSGD, the cost function and the

constraints are evaluated only once at the previous agents’ positions. With this mod-

ification, a low complexity can be maintained for real-time swarm control, at a risk

of possible slight constraint violations. We reformulate the swarm control problem

with a generic objective function f(bA) to be minimized and L inequality constraints

h(bA) > 0, where h(bA) = vec{hl(bA) : l = 1, · · · , L}, i.e.

minimize
bA∈UA

f(bA), (5.1)

s.t. h(bA) ≥ 0. (5.2)

The gradient of the objective function is written as

cA = vec{cu : au ∈ A} = ∇bAf(bA), (5.3)

which points to the direction where the value of f(bA) ascends fastest. An uncon-

strained control command b̃A can be firstly found by the steepest gradient descent

method as

b̃A = vec{cu : au ∈ A} = −µ cA
‖cA‖

, (5.4)

where µ is the chosen step size of the gradient descent, such that max{‖cu‖: au ∈ A} ≤
bmax. The maximum travel distance in one step is denoted as bmax, which is limited

by the mechanical capability of the agents. Then we identify the activated constraints

ha(bA) = vec{hl(bA) : hl(0) ≤ 0}, i.e. the constraints either have been violated or are

at the boundary of violation. The constraints’ gradient matrix N is defined as

N = ∇bAha(bA)T |bA=0. (5.5)

A projection matrix P is defined as

P = I−N
(
NTN

)−1
NT , (5.6)

which projects the unconstrained control command b̃A to the tangent space of the

constraints as described in the step (3) of PSGD. The control command δ after the

projection is expressed as

δ = Pb̃A. (5.7)
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In addition, the quantity of constraint violations need to be compensated, similar to

the step (4) of PSGD, which leads to the final solution of the control command as

bA = δ −N
(
NTN

)−1
ha(0). (5.8)

A scaling factor may be applied again if bA is not contained in the feasible set of

control command UA due to the compensation step. From the general step description

of PSGD, we can observe that the essence of applying such an algorithm is firstly to

design the cost function f(bA) and the constraints h(bA), and secondly to calculate

the derivatives of them w.r.t. the controller bA.

5.2.2 Objective Functions for Swarm Control

Swarm control is often a multi-objective problem. These objectives act as the cost func-

tions or/and the constraints, depending on their priorities defined by the applications.

The objectives considered in this thesis are formally expressed as follows.

1) Position information seeking

Position information seeking control, i.e. controlling the swarm’s formation so that

the position uncertainties of certain nodes are minimized, is the main control ob-

jective considered in this thesis. The trace of the weighted covariance matrix of the

total state estimation is utilized as the figure of merit for this objective. Thus, the

position information seeking objective, generically denoted as fp(bA), is formally

expressed as

fp(bA) , Tr
[
Λfcov[x̂(+)]

]
, (5.9)

where the diagonal weighing matrix Λf = diag{λfi : i = 1, · · · , Nχ} indicates the

objective emphasis on the Nχ dimensional states. The entities λfi of the weighing

matrix can be either binary valued from {0, 1} to select certain dimensions of the

states for optimization, or arbitrary non-negative real valued, which puts different

weights at particular dimensions. The weights on non-position states are set to zero.

If the position information seeking objective function acts as the cost function, the

swarm will constantly optimize its formation so that the value of this cost function

gradually decreases. The priority of this cost function is lower than the activated

constraints.

If the position information seeking objective function is used as a constraint, it will

only affect the swarm controller if it is activated. Hence, only if the value of the
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objective function is not smaller a certain maximum tolerated position error εmax,

the swarm controller will act to reduce its value with a higher priority than other

objectives served as cost functions. Generally, the weighing matrix of the position

information seeking as a cost function can be different from the one as a constraint.

The position information seeking objective used as a constraint is denoted as hp(bA)

with a weighing matrix Λh, in order to be distinguished from the usage as a cost

function, i.e.

hp(bA) , Tr
[
Λhcov[x̂(+)]

]
. (5.10)

The position information seeking constraint is expressed as

εmax − hp(bA) ≥ 0. (5.11)

The covariance matrix is an empirical metrics, which is difficult to be directly ex-

ploited as an objective function for two reasons. First, a large number of samples

are demanded to evaluate the covariance matrix. Second, even if a covariance ma-

trix has been calculated from samples, it can not be analytically formulated as a

function of the control command bA.

In Section 5.3 and Section 5.4, we use FI and BI as the predicted covariance matrices

of non-Bayesian and Bayesian estimators, respectively, to design position informa-

tion seeking swarm controls.

2) Goal approaching

Goal approaching is a commonly applied objective for a wide variety of swarm

control applications. A swarm aims to move from it current position p
(−)
A to a goal

point Pg with coordinates pg.

For an exploration mission, the goal point can be defined as the center of an explo-

ration area of interest, with predefined coordinates in the global coordinate system

pGg .

In a return-to-mission-base application, the swarm returns to the mission base with-

out the knowledge of the global coordinate system. We consider an even more chal-

lenging scenario, where only one beacon is transmitting a low frequency RF signal

to guide the swarm back to the mission base. Due to lacking knowledge of the

global coordinate system, the beacon is considered as a RF source without position

information. In this application, the goal coordinates are defined as the coordinates

of the RF source to be estimated, pBv or pCv , av ∈ SRF, in a swarm coordinate sys-
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tem defined by a baseline B, or defined by the group motions C, as discussed in

Section 3.3.

In some applications, like the gas exploration mission illustrated in Figure 1.2, the

swarm estimates the position of the gas source w.r.t. the global coordinate system

G, while approaching the gas source. In this case, the goal position is the position

of the gas source pGv , av ∈ Sgas.

The objective function of goal approaching fg(bA) is generally formulated as

fg(bA) = −bTA · eg, (5.12)

where eg =
1|A|×1 ⊗ pg − pA
‖1|A|×1 ⊗ pg − pA‖

. (5.13)

The symbol ⊗ denotes the Kronecker product, which stacks the goal position into

a vector with the same size as pA. The gradient of the goal approaching objec-

tive function w.r.t. the control command bA can be straightforwardly written as

eg. Hence, the preferable directions of goal approaching points to the goal from

individual agents, which is intuitive.

The goal approaching objective is preferably implemented as a cost function since

the distance to the goal should gradually decrease through the whole mission. How-

ever, it can be also used as a constraint for a mission-duration crucial application,

demanding a minimum goal distance reduction smin. The constraint is written as

− fg(bA)− smin ≥ 0. (5.14)

3) Collision avoidance

Collision avoidance is another crucial objective for swarm control, which is often

considered as a constraint. Due to the imperfection of the controller and the position

uncertainty, an agent au ∈ A need to keep its distance duv to another node av ∈ V
larger than a minimal tolerated distance dmin. The objective function can be simply

written as

duv − dmin ≥ 0, (5.15)

where in practice the distance duv is replaced with its estimate ‖p̂u− p̂v‖. However,

for collision avoidance which is a safety critical objective, only constraining on the

mean distance is often not enough. Therefore, we model duv as a random variable

and further propose to constrain the probability of violation. The collision avoidance
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objective function hc(bA) can thus be formulated as

hc,uv(bA) , βmax − Pr [duv ≤ dmin] ≥ 0, (5.16)

where βmax ∈ [0, 1] is the maximum acceptable probability of the violation of the

minimum tolerated distance dmin. In Section 5.5, we will derive this constraint as

well as its gradient w.r.t. the control command bA in detail.

By combing the introduced objective functions, the position information seeking

swarm control problem can be formulated flexibly according to the application require-

ment. A typical problem formulation can be expressed as

minimize
bA∈UA

wpfp(bA)︸ ︷︷ ︸
(position information seeking)

+ wgfg(bA)︸ ︷︷ ︸
(goal approaching)

(5.17a)

s.t. εmax − hp(bA) ≥ 0 (position information seeking), (5.17b)

− fg(bA)− smin ≥ 0 (goal approaching), (5.17c)

hc,uv(bA) ≥ 0, ∀luv ∈ Lall (collision avoidance). (5.17d)

The problem formulation can be straightforwardly extended to a heterogeneous

swarm control strategy, where the cost functions and the constraints are designed

differently for each individual agent.

5.3 Fisher Information Seeking

As discussed in Section 5.2.2, the estimation covariance is an empirical metric and not

suitable to be directly used as the objective function. Instead, position information

seeking objective functions can be formulated with the predicted FIM, denoted as Ix(+) ,

given a snapshot of predicted measurements z̃(+), i.e. virtual measurements expected

to be obtained at the new position. The predicted CRB, denoted as CRB[x(+)], is a

lower bound of the predicted estimation covariance covz̃(+);x(+) [x̂(+)], i.e.

covz̃(+) [x̂(+)] < CRB[x(+)]. (5.18)

Moreover, as discussed in [29], the CRB is a tight bound in a scenario of preferable

node geometry and high SNR, and thus, is used as the approximation of the estimation

covariance exploiting only a snapshot of measurements. As discussed in the general

description of the PSGD algorithm in Section 5.2, the essential step is to derive the

gradient of the trace of the CRB weighted by a generic weighing matrix Λ w.r.t. the
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control command bA, i.e.

cA = ∇bATr
[
ΛCRB[x(+)]

]
. (5.19)

In scenarios where the FIM has a full rank, the CRB is expressed as the inverse of

the FIM. The scenarios includes the applications with sufficient beacons to define a

global coordinate system G, like the extended network illustrated in Figure 3.8b, or

anchor-free applications with a swarm coordinate system B, defined by a baseline B.

Subsequently, a closed-form expression of the derivative cl of the trace of the weighted

CRB, Tr[ΛI−1
x(+) ] w.r.t. the lth element of bA, i.e. bl = [bA]l is derived. Utilizing the

derivative chain rule ∂A−1 = −A−1∂AA−1 and the property of the trace Tr[AB] =

Tr[BA], the derivative can be rewritten in the form

∂Tr[ΛI−1
x(+) ]

∂cl
= −Tr

I−1
x(+)ΛI−1

x(+)︸ ︷︷ ︸
,A

∂Ix(+)

∂cl

 . (5.20)

The expanded closed-form expression of Section 5.3 is lengthy, and therefore is stored

in Appendix C.11. The derivative cA of Tr[ΛI−1
x(+) ] w.r.t. bA is obtained by stacking

all cl, i.e. cA = vec{cl : l = 1, · · · , Nχ}, which can be used for controller design based

on the PSGD introduced in Section 5.2. In practice, the initiated control can be set

to zero, i.e. bA = 0, and the current agents’ positions are replaced by their estimates.

Hence, the gradient is evaluated at the current agents’ estimated positions.

We also derive the gradient of the weighted CRB for an anchor-free self-localization

scenario with the group motion constrained swarm coordinate system C. The FIM

is singular, and the Moore-Penrose pseudoinverse has to be applied to express the

position CRB, i.e. CRB[p
(+)
A ] = I†

p
(+)
A

. Utilizing the derivative law of a symmetric

matrix’s Moore-Penrose pseudoinverse A† [119]

∂A† = −A†∂AA† + A†A†∂A(I−AA†) + (I−A†A)∂AA†A†, (5.21)
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the gradient of the weighted anchor-free self-localization CRB can be derived as

∂Tr[ΛI†
x(+) ]

∂cl

=−Tr


(

I†
x(+) + Ix(+)I

†
x(+) − I +

(
I†
x(+)

)2
)
Λ

(
I†
x(+) + I†

x(+)Ix(+) − I +
(
I†
x(+)

)2
)

︸ ︷︷ ︸
,Ā

∂Ix(+)

∂cl

,
(5.22)

which can be expressed in closed-form similarly to the previously discussed full-rank

case in Section 5.3 and Appendix C.11. Especially, for swarm self-localization with

multi-way ranging as discussed in Section 3.3 and Chapter 4, the FI seeking objective

function can be formulated by setting the weighting matrix to the identity matrix,

i.e. Λ = I. In this case, the swarm formation is optimized by minimizing the RMSE of

the swarm self-localization. The gradient of the objective function in (5.22) simplifies

to

∂Tr[I†
x(+) ]

∂cl
= −Tr

[(
I†
x(+)

)2 ∂Ip(+)

∂cl

]
, (5.23)

which has almost the same expression as the full-rank case, only replacing the inverse

with the Moore-Penrose pseudoinverse. To obtain (5.23), we have utilized the trace

property again and the following equalities of a real symmetric matrix A:

A†A† −A†A†A†A = A†A† −A†(AA)†A = A†A† −A†A† = 0. (5.24)

With the gradient of weighted estimation CRB w.r.t. the control command bA being

derived, the FI seeking controller can be designed.

5.4 Bayesian Information Seeking

For the BI seeking swarm control, the state x(+) is considered as a random vector. Not

only the predicted snapshot measurements z̃(+) but also the historical measurements

z(1:−) are exploited for the state estimation. We focus on full rank cases. Hence, the

PCRB, which is a lower bound of the covariance matrix of a Bayesian estimate x̂(+),

is expressed as the inverse of the BIM, denoted as Jx(+) , i.e.

covx(+)|z(1:−),z̃(+) [x̂(+)] < PCRB[x(+)] , J−1
x(+) . (5.25)
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The full rank BIM assumption is valid for swarm navigation in a global coordinate

system G with a sufficient number of beacons, or in the baseline constrained swarm

coordinate system B. The information about x(+) in the predicted measurements z̃(+)

is denoted as Ix(+) , which has a similar expression as the FI in the non-Bayesian case.

With the linear state transition model and the non-linear observation model both

distorted by AWGN described in Section 2.3, the BIM simplifies to

Jx(+) = Ex(+)

[
Ix(+)

]
+
(
Q(bA) + J−1

x(−)

)−1

︸ ︷︷ ︸
,J̃

x(+)

. (5.26)

The term J̃x(+) is the a-priori information after the state transition and prior to ob-

taining the measurements z̃(+). The term Q(bA) is the covariance matrix of the state

transition noise introduced in Section 2.3, which depends on the step size of the indi-

vidual agent ‖bu‖.

A lower bound of the estimation covariance without the predicted measurements

z̃(+) is obtained by the inverse of J̃x(+) , i.e.

covx(+)|z(1:−) [x̂(+)] <
(
J̃x(+)

)−1

, (5.27)

which will be used for the collision avoidance objective in Section 5.5. Similar to the

FI seeking control, the essential step of the BI seeking control, both as a cost function

and as a constraint, is to derive the gradient of the trace of the PCRB weighted by a

generic diagonal weighing matrix Λ w.r.t. the control command bA, i.e.

cA = ∇bATr
[
ΛPCRB[x(+)]

]
= ∇bATr

[
ΛJ−1

x(+)

]
. (5.28)

The partial derivative ∇bATr
[
ΛJ−1

x(+)

]
can be derived similarly as the one for the FI

seeking case in Section 5.3. The derivative w.r.t. the l-th element of bA, i.e. bl = [bA]l
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is expressed as

∂Tr
[
ΛJ−1

x(+)

]
∂bl

=− Tr

J−1
x(+)ΛJ−1

x(+)︸ ︷︷ ︸
,Ã

∂Jx(+)

∂bl

 (5.29)

=− Tr

Ã

∂Ex(+)

[
Ix(+)

]
∂bl

+
∂J̃x(+)

∂bl

 (5.30)

=− Tr

Ã
∂Ex(+)

[
Ix(+)

]
∂bl

+ Tr

[
B
∂Q(bA)

∂bl

]

=− Tr

Ã
∂Ex(+)

[
Ix(+)

]
∂bl

+
σ2bl
‖bu‖

Tr[B<pu,pu>], (5.31)

where

B , J̃x(+)ÃJ̃x(+) , (5.32)

and A<x1,x2> denotes a submatrix of a generic matrix A, truncated at the rows and

columns corresponding to the state x1 and x2, respectively. The term B<pu,pu> is the

2×2 matrix, truncated from B at the two rows and two columns with the indices of pu

from the total state x. In order to evaluate the expectation over x(+), the a posteriori

pdf of x(+) needs to be estimated, which makes the Bayesian controller unattractive

for a large-scale swarm [25]. Intensive research has been conducted on the a posteriori

pdf inference with reduced complexity [116, 32]. This work focuses on the concept

of exploiting the position information awareness for swarm formation optimization.

Therefore we use the value calculated from the estimated position x̂(+) to replace the

expectation without further investigation of Bayesian inference techniques to maintain

the low complexity of the swarm controller. The derivative cA of Tr
[
ΛJ−1

x(+)

]
w.r.t. bA

can be expressed as cA = vec{ci : i = 1, · · · , Nχ} and used for a gradient-based

controller similar to the one in Section 5.3.

We can observe that the second term in (5.31) depends only on the direction of the

control vector instead of the step size. Additionally, it is proportional to the directional

vector of the control command. Hence, it does not change the direction of the control

commands for each agent, but only reduces their step size. This reduction is due to the

step size dependent transition uncertainty defined in (2.13). The amount of step size

reduction differs from agent to agent. With these observations we can set the initiated

control to zero, i.e. bA = 0, to calculate the direction of the gradient from the first
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term in (5.31). Then we assume the control vector points into the opposite direction

to the gradient to calculate the step size reduction by the second term.

5.5 Collision Avoidance

We employ the probability formulation of the collision avoidance objective in (5.16),

because it is a safety crucial objective. The PCRB provides an approximation of the

covariance of a Bayesian estimation. However, it does not provide any information of

the distribution of the state, which is needed to evaluate the probability in (5.16). We

propose a conservative criterion to guarantee collision avoidance probability based on

a multi-variant generalization of the Chebyshev inequality with arbitrary distribution

introduced in [132]. We define a vector puv = pu − pv, which is a random variable

with an a-priori mean p̄uv = Ep|z(1:−) [puv], and an a-priori covariance matrix Cuv =

covp|z(1:−) [puv]. Only the case of ‖p̄uv‖> dmin is considered. If the mean distance is

smaller than the minimum tolerated distance, the trivial objective function in (5.15)

can be firstly employed. According to the Chebyshev inequality, we have

Prp|z(1:−)

[
(puv − p̄uv)

TC−1
uv (puv − p̄uv) < ε

]
> 1− 2

ε
= 1− βmax. (5.33)

The mean p̄uv = Ep|z(1:−) [puv] is expressed as

p̄uv = p̄(+)
u − p̄(+)

v = p̄(−)
u − p̄(−)

v + bu − bv. (5.34)

The covariance matrix Cuv is calculated from the corresponding elements in J̃−1
x(+) as

Cuv = Qu + Qv + Buv, (5.35)

where

Buv , (J−1
x−)<pu,pu> + (J−1

x−)<pv ,pv> − (J−1
x−)<pu,pv> − (J−1

x−)<pv ,pu>, (5.36)

which is independent from bA.

The geometric interpretation of (5.33) is that the random vector puv gets its value

inside an ellipse E(p̄uv, εCuv) with at least probability 1 − 2
ε
. The notation E(x,C)

denotes an ellipse centered at x. The shape of the ellipse is defined with the eigenvalue

decomposition of C

C = U(θ)diag[λ2
1, λ

2
2]U(θ)T (5.37)
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where λ1 > λ2 > 0 are the major and minor axes, respectively, and U(θ) is the rotation

matrix applying an angle θ rotation to the ellipse.

We define a critical circle E(0, dminI), whose boarder is expressed as

pTuvpuv = d2
min. (5.38)

A realization of puv violates the minimum tolerated distance, i.f.f. it lies inside the

critical circle. The collision avoidance probability can be guaranteed if the area of the

defined ellipse and the critical circle are mutually exclusive. We have the following

lemma, equivalent to (5.33).

Lemma 5.5.1 (Collision Avoidance). The collision avoidance probability can be guar-

anteed if there exists a scaling factor a > 1, so that the scaled ellipse E(p̄uv, aεCuv) is

externally tangent to the critical circle.

The tangent point p̌uv fulfills

p̌uv = dmin
C−1
uv (p̄uv − p̌uv)

‖C−1
uv ((p̄uv − p̌uv)‖

. (5.39)

The collision avoidance constraint can be reformulated as

(p̌uv − p̄uv)
TC−1

uv (p̌uv − p̄uv) = aε > ε. (5.40)

Equation (5.40) can be expanded as

a(d2
min) + b(dmin) + p̄TuvC

−1
uv p̄uv > ε. (5.41)

The first term in (5.41) is defined as

a(d2
min) =

d2
min(p̄uv − p̌uv)

TC−3
uv (p̄uv − p̌uv)

(p̄uv − p̌uv)TC−2
uv (p̄uv − p̌uv)

> 0, (5.42)

which is positive because Cuv is positive definite. The second term in (5.41) is lower

bounded by Cauchy–Schwarz inequality

b(dmin) = −2dmin
(p̄uv − p̌uv)

TC−2
uv p̄uv

‖C−1
uv (p̄uv − p̌uv)‖

(5.43)

> −2dmin
‖C−1

uv (p̄uv − p̌uv)‖·‖C−1
uv p̄uv‖

‖C−1
uv (p̄uv − p̌uv)‖

(5.44)

= −2dmin‖C−1
uv p̄uv‖. (5.45)

Finally we can state a constraint for collision avoidance more conservative than
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Lemma 5.5.1 as

hc,uv(bA) = −2dmin‖C−1
uv p̄uv‖+p̄TuvC

−1
uv p̄uv − ε > 0. (5.46)

It is worth to notice when dmin = 0, the constraint reduces to p̄TuvC
−1
uv p̄uv > ε, indicating

the origin is outside the ellipse E(p̄uv, εCuv). The derivative of hc,uv(bA) w.r.t. bu is

expressed as

∂hc,uv(bA)

∂bu
= 2C−1

uv p̄uv −
2dminC

−2
uv p̄uv

‖C−1
uv p̄uv‖

+
σ2bu
‖bu‖

(
p̄TuvC

−2
uv −

2dminp̄
T
uvC

−3
uv

‖C−1
uv p̄uv‖

)
p̄uv.

(5.47)

The derivation details of (5.47) can be found in Appendix C.12.

In practice, the mean p̄uv can be replaced with the estimates p̂uv = p̂u − p̂v. The

collision avoidance introduced in this section assumes a Bayesian model of the state.

However, it can be analogically extended to the non-Bayesian case, with the mean p̄uv

as the true value and the covariance matrix approximated with the CRB calculated

from the snapshot of measurements.

5.6 Simulation Results

Simulations with a variety of scenarios are conducted. The simulation results are not

only to validate the proposed position-aware swarm control, but also consolidate the

theoretic findings from Chapter 3.

Four scenarios are investigated, namely formation optimization for swarm self-

localization, swarm returning to mission base guided by a single RF source, swarm

navigation beyond the beacons’ coverage and the case study of the Mars swarm ex-

ploration mission. None of the control objectives in these four applications could be

accomplished by a single agent. However, the objectives can be achieved collectively

by a swarm.

In Section 5.6.1, the swarm’s formation is optimized for better self-localization per-

formance by FI seeking. The impact of the choice of a swarm coordinate system,

i.e. the baseline constrained swarm coordinate system B and the group motion con-

strained swarm coordinate system C, is evaluated. The results verify the theoretical

analysis in Section 3.3.

In Section 5.6.2, a returning to mission base application is considered. A single RF

source is located at the mission base remotely from the swarm. The swarm optimizes its

formation to minimize the position CRBs of itself and the RF source w.r.t. B in order
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to return to the mission base. The emerging formation coincides with the preferable

aperture analysis of the source localization in Section 3.4.

In Section 5.6.3, the swarm aims to navigation outside the beacons’ measurement

coverage, maintaining its self-localization ability. Two control strategies are compared,

namely the homogeneous one, where all agents obey the same control rules, and the

heterogeneous one, where one agent set the priorities of the objectives differently than

the other agents. Both FI and BI seeking controls are evaluated. We also assess the

benefit of having additional RF sources for swarm joint self- and source localization.

These investigations are closely related to Section 3.3 - 3.5.

As the final scenario, the control aspect of the Mars swarm exploration mission

introduced in Figure 1.2 is investigated in Section 5.6.4. A swarm intents to localize,

and optionally to approach a gas source, while remaining a high accuracy of its self-

localization. The scenarios of different nuisance parameters assumptions, number of RF

sources, control strategies, objectives’ combinations and information criteria, are eval-

uated. The final scenario demonstrates the adaptivity of the proposed position-aware

swarm control. More importantly, it verifies the complete concept of the autonomous

swarm navigation system proposed in this thesis.

The parameter set used in this section is summarized as follows. The same obser-

vation models as applied in Section 3.6.3.2 are used. The observed distance’s standard

deviations have been plotted in Figure 3.19 and will not be repeated here. Nuisance

parameters include the clock offsets of the agents and RF sources, the carrier phase off-

sets of the RF sources, the scaling ag and exponent factors bg of the gas source. Agents

move according to the mobility model described in (2.11)-(2.13), with σ2 = 0.1 m deter-

mining the agent’s mobility uncertainty. Hence when an agent aims to move by 1000 m,

it will suffer from a position noise with variance 100 m2. The maximum agent’s step

size is set to 0.2 m. The collision avoidance constraint is applied in all scenarios, with a

minimum tolerated A2A distance of dmin = 50 m and a maximum acceptable violation

probability of βmin = 5%. When the position information seeking objective is applied

as a constraint, a maximum tolerated position error is set to εmax = 1 m2. When the

position information seeking objective and the goal approaching objective are jointly

exploited as the cost function, the unconstrained preferable direction is generated by

combing the gradient of the position information seeking objective cpA and the gradient

of the goal approaching objective cgA as

b̃A ∝ −0.4
cpA
‖cpA‖

− 0.6
cgA
‖cgA‖

. (5.48)

When both the heterogeneous control strategy and the goal approaching objective are
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applied, the first agent a1 is assigned as the leader, whose unconstrained preferable

direction is set to

b̃u ∝ −0.001
cpu
‖cpA‖

− 0.999
cgu
‖cgA‖

, (5.49)

where cpu and cgu are the components in cpA and cgA, corresponding to bu. Agent a1

is referred to as a leader since when the position information seeking and the goal

approaching objectives generate contradictory preferable directions, the agent a1 will

have a higher priority to follow the goal approaching objective. We aim to verify the

the proposed position-aware swarm control concept in general, rather than design a

particular controller for certain applications. With the proposed concept, different

swarm controller can be designed, given the criteria of the applications. In order to

focus on the control aspect, a centralized EKF is implemented to track the state xX over

time steps. EKF is a widely used Bayesian tracking algorithm with low complexity,

which performs well with small state transition and measurement noise. In a real

swarm application, a sophisticated and potentially decentralized tracking algorithm,

for example the ones in [32, 33], or the proposed DiPNet and the CoA based source

localization algorithm, could be preferable.

Different simulation scenarios are summarized in Table 5.1, with section index

(Sec.), figure index (Fig.), number of agents (|A|), RF sources (|SRF|), gas sources

(|Sgas|) and beacons (|B|), coordinate system (Coo.), information criterion (Info.),

cost functions (Cost), and the existence of unknown nuisance parameters (Nui. par.),

position error constraint (Pos. const.) and leader (Leader). 1

5.6.1 Formation Optimization for Self-Localization

The first scenario under investigation is the swarm formation optimization for self-

localization. The swarm formation is optimized according to FI seeking control, so

that the self-localization CRB is minimized. We are particularly interested in the

impact of the choice of the swarm coordinate system on the emerging formations. The

resulting formations considering the baseline constrained swarm coordinate system B

and the group motion constrained swarm coordinate system C are compared. 30 agents

are considered in the network, i.e. V = X = A. Ranging measurements between agents

are assumed, without the impact of clock offset. Hence only agents’ positions are in

the state vector, i.e. x = pA = pAA, A ∈ {B,C}. Position CRBs of agents are exploited

as the cost function with equal weights, i.e. fp(bA) = Tr[CRB[pA]].

1Video clips of the position-aware swarm control performance in all considered scenarios can be
found at https://ieeexplore.ieee.org/abstract/document/9089222.
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Table 5.1. Position-aware swarm control setup.

Sec. Fig. |A| |SRF| |Sgas| |B| Coo. Info. Cost Nui. Pos. Leader

par. const.

5.6.1 5.2 34 0 0 0 B FI ΛpA

5.6.1 5.3 34 0 0 0 C FI ΛpA

5.6.2 5.4 30 1 0 0 B FI
ΛpX

goal

5.6.3 5.5 50 0 0 6 G FI
ΛpA

goal
X X

5.6.3 5.6 50 0 0 6 G FI
ΛpA

goal
X X a1

5.6.3 5.7a 50 0 0 6 G BI
ΛpA

goal
X X a1

5.6.3 5.7b 50 2 0 6 G BI
ΛpA

goal
X X a1

5.6.4 5.8a 50 0 1 3 G FI ΛpSgas
X

5.6.4 5.8b 50 2 1 3 G FI ΛpSgas
X

5.6.4 5.9a 50 0 1 3 G FI ΛpSgas
X X

5.6.4 5.9b 50 2 1 3 G FI ΛpSgas
X X

5.6.4 5.10 50 0 1 3 G BI
0.9ΛpSgas

0.1ΛpA

goal
X X a1

5.6.4 5.11 50 2 1 3 G BI
0.9ΛpSgas

0.1ΛpA

goal
X X a1
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Four snapshots of each coordinate system, B and C, are shown in Figure 5.2 and

Figure 5.3, respectively. Agents are illustrated as green dots, except the two defining the

swarm coordinate system B in Figure 5.2, which are shown as the blue dots. Magenta

ellipses indicate the 1 σ position CRBs of agents, which are only visible for the first two

snapshots in the B case. An unfavorable short baseline is chosen for B as initiation.

As a consequence, the agents far from the baseline experience large position CRBs,

due to the undesirable geometry as discussed with Figure 3.2a. The collision avoidance

constraint pushes the agents with large position CRBs away from each other, which

can be seen in Figure 5.2b. The information seeking objective inherently optimizes the

coordinate system by increasing the length of the baseline, as shown in Figure 5.2c.

At the end, the swarm condenses to a regular lattice formation with agent spacing

according to the minimal tolerated distance, as shown in Figure 5.2d. The condensed

lattice formation is known to be a favorable formation for swarm self-localization, as

been discussed with Figure 3.10. The information seeking control considering C does

not need to optimize the coordinate system. Therefore, the swarm directly condenses

into the favorable lattice formation faster than the B case, as shown in Figure 5.3.

5.6.2 Returning to Mission Base

The second considered scenario is a swarm returning to mission base. After exploring

an area of interest 10 km away from the mission base, the swarm intends to return. We

consider a more challenge case, where only a single RF source is located at the mission

base.

The swarm optimizes its formation to improve the localization performances of itself

and the RF source w.r.t. B, in order to navigate itself returning to the mission base.

34 agents and one RF source are considered in the network, i.e. V = X = A ∪ SRF.

Ranging measurements on A2A and S2A links are assumed, without the impact of clock

offset. Hence only nodes’ positions are in the state vector, i.e. x = pB = vec{pBA,pBSRF
}.

Position CRBs of both agents and RF source are exploited as the cost function with

equal weights, i.e. fp(bA) = Tr[CRB[pB]]. Meantime goal approaching is desired, where

the goal position is set to the RF source position in B, i.e. pg = pBSRF
.

Four snapshots are shown in Figure 5.4. The direction of the RF source is illus-

trated with the magenta dashed line. Agents are represented as green dots, except the

two defining the swarm coordinate system B, which are shown as the blue dots. Ma-

genta ellipses indicate the position CRBs of agents. The swarm automatically spreads

out vertically to direction of the RF source, which significantly increases the tangen-

tial aperture for source localization, which coincides with the theoretical analysis in

Section 3.4. Meantime, agents remain connected with a regular lattice formation, to
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(a) Step 1 (b) Step 500

(c) Step 1000 (d) Step 2000

Figure 5.2. FI seeking for swarm self-localization w.r.t. B: Agents are illustrated as
green dots, except the two used for defining the swarm coordinate system B, which are
shown as the blue dots. Magenta ellipses indicate the position CRBs of the agents.
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(a) Step 1 (b) Step 100

(c) Step 300 (d) Step 2000

Figure 5.3. FI seeking for swarm self-localization w.r.t. C: Similar scenario setup as
in Figure 5.2, expect the group motion constrained swarm coordinate system C is applied.
The magenta ellipses indicating the position CRBs of the agents are too small to be seen.
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perform self-localization. Similar to the swarm control for self-localization with B in

Figure 5.2, the baseline is stretched, in order to optimized the coordinate system.

5.6.3 Bridging the Coverage Gap

The third scenario is swarm navigation outside the beacons’ measurement coverage.

Two groups of beacons are located 5 km apart, with the measurement coverage below

1 km. The swarm aims to travel from the left beacon group to the right beacon group,

while performing self-localization in the global coordinate system G spanned by bea-

cons. The goal is set to the center of the beacons on the right, i.e. pg = vec{5000, 0}. In

order to reach the goal, the swarm has to cross an area over 3 km in length outside the

carrier phase measurement coverage of the beacons. Nuisance parameters are assumed

to be unknown. Four scenarios are considered, which evaluate the homogeneous and

heterogeneous control strategies, the FI and BI seeking objectives, and the benefit of

having additional RF sources to support swarm self-localization.

In the first scenario shown in Figure 5.5, the nodes with unknown states are only the

agents, i.e. X = A, and total node set includes in addition the beacons, i.e. V = X ∪B.

The unweighted position CRBs of the agents are used as the FI seeking cost function,

together with a goal approaching cost function. The maximum tolerated position error

constraint and the homogeneous control strategy are applied. Three snapshots are

shown in Figure 5.5. Beacons are shown as the blue dots. Agents are shown as dots

with green edges. The gray scale colors on the agent dots illustrate the logarithmic

value of the agents’ position CRBs. It can be observed that the agents in front move

in a cluster, until reaching 2,500 m, where the agents’ position CRBs approach the

maximum tolerated position error of εmax.

In the second scenario shown in Figure 5.6, the scenario setup is similar to the one

in Figure 5.5, except a heterogeneous control strategy is applied. The agent acts as a

leader is marked in orange. The leader moves faster towards the goal, and therefore,

pulls its neighbors. The cluster effect is avoided. As a result, the agents in front are

stabilized at 3,000 m, which is 500 m closer to the goal compared with the homogeneous

control strategy.

The third scenario shown in Figure 5.7a has a similar setup as the second one shown

in Figure 5.6, except the position PCRBs are exploited as cost function instead of the

CRB. The gray scale colors on agent dots show the logarithmic values of the position

PCRBs. With Bayesian tracking, the swarm is able to form a bridge connecting the

two areas with beacons. Hence, the swarm can travel from the left area to the right

one, fulfilling the position error constraint.

The last scenario further extends the setup of the third one in Figure 5.7a with two
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(a) Step 1 (b) Step 100

(c) Step 300 (d) Step 2000

Figure 5.4. FI seeking swarm control for swarm self- and RF source localization w.r.t. B:
A RF source is located at the mission base 10 km from the swarm, whose direction is
illustrated with the magenta dashed line. The swarm aims to minimize the position CRBs
of itself and the RF source w.r.t. B in order to return to the mission base. Agents are
shown as green dots, expect the two used for defining the swarm coordinate system B,
which are shown as the blue dots. Magenta ellipses indicate the position CRBs of the
agents.
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additional RF sources, which is shown in Figure 5.7b. The position of the RF sources

are jointly estimated with the swarm position. The RF sources’ position PCRBs are

not used as the control objectives. It can be observed that with the support of the

RF sources, the swarm only needs to build a bridge between the RF sources and the

goal. The swarm formation is less stretched with better self-localization performances,

in comparison with the third scenario in Figure 5.7a.

5.6.4 Position-Aware Control in Mars Swarm Exploration

Mission

In the last scenario we conduct a case study of the proposed position-aware swarm

control in the Mars swarm exploration mission introduced in Figure 1.2. A swarm is

initially deployed close to the mission base and aim to localize a gas source 4 km away.

We start with the FI seeking control illustrated in Figure 5.8a-Figure 5.9b. Only the

position CRB of the gas is considered as the cost function, which is explicitly minimized,

i.e. Λp = Λpgas . Maximum agents’ position CRBs constraint and the homogeneous

control strategy are applied.

In the first (Figure 5.8a) and second (Figure 5.8b) cases, the nuisance parameters are

assumed to be known. In the other two cases illustrated in Figure 5.9a and Figure 5.9b,

unknown nuisance parameters are assumed. In Figure 5.8a and Figure 5.9a, there are

no RF sources, while in Figure 5.8b and Figure 5.9b, two RF sources are placed in the

middle of the field with unknown positions. The gray scale colors on the agent dots

represent their position CRBs valued in logarithm.

The formations without nuisance parameters spread out mainly in the direction

perpendicular to the gas source’s direction, aiming to maximize the tangential swarm

aperture towards the gas source, hence improving the source AoA performance. Mean-

time, the swarm tries to be closer to the source, to improve the measurement quality,

s.t. fulfilling the maximum agents’ position CRBs constraint.

With nuisance parameters, both source AoA and distance estimation prefer a large

swarm tangential aperture. The nuisance parameters ag and bg act on the gas con-

centration as scaling and exponent factor, which are not additive to the link distance

duv as in (3.73). Therefore, according to Section 3.4.2, the source distance information

can not only inferred from the observation with the tangential swarm aperture, but

also the with the radial aperture. As a result, the swarm intends to also expand in the

horizontal direction. Some agents even move in the opposite direction of the source,

so that the swarm’s radial aperture is maximized s.t. fulfilling the maximum tolerated

agents’ position CRBs constraint. The additional RF sources support the swarm, in
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(c) Step 38,800

Figure 5.5. FI seeking swarm control for swarm self-localization w.r.t. G: Two groups of
beacons are located 5 km apart, with the measurement coverage illustrated as the magenta
circles. The swarm aims to travel from the left beacon group to the right beacon group,
meantime minimizing its position CRB. The maximum tolerated position error and the
homogeneous control strategy are applied. Nuisance parameters are assumed to be un-
known. Beacons are shown as the blue dots. Agents are shown as dots with green edges.
The colors of the agent dots indicate the value of their position CRBs in logarithm.
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Figure 5.6. FI seeking swarm control for swarm self-localization w.r.t. G: Similar sce-
nario setup as in Figure 5.5, except a heterogeneous control strategy is applied with the
leader agent marked with an orange circle.
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Figure 5.7. BI seeking swarm control for swarm self- (and RF source in Figure 5.7b)
localization w.r.t. G: Similar scenario setup as in Figure 5.6, except the PCRBs of the
swarm’s positions are exploited for the position information seeking objectives instead of
the CRBs. In Figure 5.7b two RF sources are added, whose positions are jointly estimated.
The position PCRBs of the RF sources are not used as the control objectives. The RF
sources are illustrated with magenta dots, with their measurement coverage shown as ma-
genta circles. The colors of the agent dots indicate the value of their position PCRBs in
logarithm.
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further extending its aperture, even though their positions need to be jointly estimated.

At last, we compare two BI seeking control scenarios with (Figure 5.10) and without

(Figure 5.11) the support from additional RF sources.

In both scenarios, the BI seeking objective is set as the mixture of 10% agents infor-

mation seeking and 90% gas source information seeking, i.e. Λp = 0.1ΛpA+0.9Λpgas . A

goal approaching objective is included with the heterogeneous swarm control strategy.

The maximum tolerated agents’ position PCRBs constraint is applied. All nuisance

parameters are considered as unknown. We also compare the position PCRBs of the

agents, RF sources and the gas source with the estimation performances from the EKF.

The gray scale colors on the nodes in Figure 5.10a and Figure 5.11a represent the po-

sition PCRBs of the nodes, while the ones in Figure 5.10b and Figure 5.11b indicate

the absolute position error of the nodes at the same snapshot.

The formations in Figure 5.10a and Figure 5.11a share some similarities with the

ones in Figure 5.7a and Figure 5.7b, respectively, due to similar goal approaching and

agents BI seeking objectives. However, in Figure 5.10a and Figure 5.11a the swarm

intends to expand its tangential aperture, which is due to the gas source BI seeking

objective. Interestingly, in both Figure 5.10a and Figure 5.11a, the leader marked

in orange is still in the front of the swarm, however, it is no longer in the leading

position. It is due to the gas source BI seeking objective, which motivates the swarm

to come closer to the gas source. As a consequence, the information seeking and goal

approaching objectives do not generate contradictory preferable moving directions.

Therefore, the heterogeneous swarm control strategy can not guarantee the leader to

be at the leading position of the swarm. Last but not least, in Figure 5.10 the EKF

performance coincides with the PCRBs. In Figure 5.11 the EKF performs generally

worse than the PCRBs. It is due to an estimation bias of the RF sources introduced

from the highly nonlinear measurement model. Despite the bias, EKF provides around

one meter accuracy to the joint swarm self- and source localization in this challenge

scenario, which is sufficient for the position-aware swarm control.
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Figure 5.8. FI seeking swarm control for swarm self- and source localization w.r.t. G:
Three beacons, shown as blue dots, are deployed at the mission base. Swarm aims to
minimize the position CRB of a gas source, shown by the red dot, located 4 km away from
the mission base. Similar as in Figure 5.7b, two RF sources are added in Figure 5.8b,
whose positions are jointly estimated but the position CRBs are not used as the control
objectives. Nuisance parameters are assumed to be known. Formations at time step 40,000
are shown. The colors of the agent dots indicate the value of their position CRBs in
logarithm.
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Figure 5.9. FI seeking swarm control for swarm self- and source localization w.r.t. G:
Similar scenario setup as in Figure 5.8, except the nuisance parameters are assumed to be
unknown.
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Figure 5.10. BI seeking swarm control for swarm self- and source localization w.r.t. G:
Similar scenario setup as in Figure 5.9a. A heterogeneous swarm control strategy is ap-
plied, with the leader agent marked in orange. A mixture of swarm and gas position
PCRBs is exploited as the position information seeking objectives. A goal approaching
objective is added, where the swarm tries to approach the gas source in addition to local-
ization. The nuisance parameters are assumed to be unknown. The colors of the agent and
the source dots in Figure 5.10a and Figure 5.10b indicate the logarithmic value of their
position PCRBs and their localization error from the EKF, respectively at the current step.
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Figure 5.11. Similar scenario setup as in Figure 5.10, except two RF sources are added
for the joint localization. The RF sources’ position PCRBs and the localization error are
illustrated by the colors as well. The RF sources’ position PCRBs is not exploited for
control objectives.



Chapter 6
Conclusion and Outlook

6.1 Conclusion

Robotic swarm is a promising system for a wide variety of sensing and exploration appli-

cations. Position awareness of the swarm itself and external entities is essential for the

success of an autonomous swarm application, like future Mars swarm exploration. The

implication of position awareness is threefold with three gradually increasing awareness

levels, namely (1) awareness of position estimates, (2) awareness of position uncertainty,

and (3) awareness of potential actions to enrich position information. The three po-

sition awareness levels are closely related to autonomous swarm navigation, including

swarm self- and source localization corresponding to the first two levels, and swarm

control corresponding to the third level. As a newly emerging technology, a thorough

study of autonomous swarm navigation was still missing.

In this thesis, we have systematically studied the navigation problem of a general

class of swarm, where generic signals are emitted from isotropic point emitters and

observed by agents for navigation. Distance information between the emitter and the

receiving agent could be in general inferred from either intensity features or propagation

time features of the received signals. In particular w.r.t. the Mars swarm exploration

mission considered in this thesis, the emitters are RF signal transmitters, such as agents

in the swarm, beacons and RF sources, as well as a gas source. Features such as the

carrier phases and symbol delays of the received RF signals and the gas concentration

are exploited for swarm self- and source localization.

In comparison with traditional navigation systems, some distinguishing properties

of swarm navigation systems are identified, such as non-trivial coordinate system, scal-

able topology, decentralization, collective behavior, coupling of localization and control,

latency intolerance, etc. We have adequately investigated swarm navigation, partic-
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ularly focusing on these properties. In this thesis, we covered both general swarm

navigation theory, and an in-depth study on the specific swarm navigation system

proposed for Mars exploration.

A formal generic swarm navigation definition was introduced. The theoretic po-

tential of swarm localization were discussed, emphasizing on the interpretations of the

reference systems, collective performance and scalability. Estimation theoretical tools,

especially the Fisher information (FI) theory, are the core components throughout this

thesis, not only in the theoretical analysis but also in the design of localization and

control algorithms particularly suitable for swarm systems.

Concerning swarm self-localization, FI was interpreted with different forms of

CRBs. A collaboration gain of the swarm self-localization has been proved to be

proportional to the swarm’s cardinality |A|. The connectivity-ranging trade-off has

been evaluated with ranging ZZB, which verifies the existence of an optimal RF

measurement coverage for agents, balancing the connectivity and ranging accuracy for

swarm self-localization.

A decentralized swarm self-localization algorithm dubbed DiPNet was proposed,

exploiting the large cardinality property of the swarm. An agent’s position was directly

estimated from the received RF signal waveform, incorporating position uncertainty of

neighboring nodes, with a low complexity multi-link fusion scheme. It was proved that

the multipath and NLOS effects on DiPNet became insignificant for dense networks,

due to the massive-link collective processing. Both simulations and experiments verified

that DiPNet achieves a near-optimal performance with low complexity, superior to

traditional two-step approaches. Therefore, it is particularly attractive for realtime

swarm self-localization.

Considering swarm source localization, the swarm was collectively treated as a dis-

tributed large scale array. Geometrical interpretation of swarm source localization with

different classes of observation has been investigated. Properties of source localization

have been proved, which is useful to either design an optimal swarm formation for

source localization, or verify the resulting swarm formation of the source position in-

formation seeking control. We decompose the swarm aperture into the perpendicular

aperture towards the source and the radial aperture along the direction of the source.

Source’s AoA information can be inferred from the observations captured by the tan-

gential aperture, independent of the nuisance parameters. In contrast, the source’s

distance estimation strongly depends on the type and knowledge of the nuisance pa-

rameters. If there is no nuisance parameter, the source distance information can be

simply inferred from the distance related observation of individual links. If and only

if the nuisance parameters are unknown and additive to the link distance, such as
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the clock offset and the carrier phase offset of RF signals, the source distance is not

observable from the radial aperture. The source distance can still be estimated with

the tangential aperture, by observing the curvature of the spherical signal front, due

to the isotropic source. We referred this technique to as curvature of arrival (CoA)

based source localization, and proposed an algorithm exploiting the relation between

the signal CoA and the source distance. The proposed algorithm was verified to be

superior to the state of the art low complexity near field source localization algorithm.

For other types of unknown nuisance parameters, such as the scaling and exponent

factors of the gas source, source distance information is contained in the observations

captured by both tangential and radial apertures.

Additionally, the mutual enhancement of swarm self-localization and source lo-

calization was addressed. Precise swarm position information is required for source

localization. By collectively observing the source, a swarm’s position information is

further enriched.

Position aware swarm control was an other aspect of autonomous swarm navigation

we investigated. Three swarm objectives have been introduced as examples, namely

the goal approaching, the collision avoidance and the position information seeking. For

goal approaching, only the first level of position awareness was required. For collision

avoidance, the swarm needed to reach the second level of position awareness. Hence,

not only the position estimates, but also the uncertainty of those estimates are crucial

to collision avoidance objective. We designed a controller which limited the maximum

probability of violation, assuming arbitrary distribution of agents’ positions, given

only the BIs of the agents. Position information seeking was the core component of the

position aware swarm control. The position information qualities of the swarm itself as

well as the sources were quantified by the FI for a snapshot based control and the BI

for a Bayesian based control. Having derived analytically the closed-form expressions

of the information gradients, control commands could be generated efficiently, allowing

a large-scale swarm actively seeking position information. Position information could

be flexibly chosen as either cost functions or constraints for swarm control, depending

on the applications. As a result, the swarm actively adapted its formation to improve

localization of itself and the sources, without losing track of other mission objectives.

Unlike most of the traditional formation control methods, which focus on assembling

and maintaining a predefined target formation, the position aware swarm control brings

a justification to the swarm formation that emerges. The proposed position-aware

swarm control concept has been verified in different scenarios of swarm exploration

missions, such as self-localization, exploration area approaching, returning to mission

base after exploration, gas source searching, etc.
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As the final conclusion of the thesis, we proposed a generic concept of autonomous

swarm navigation, which has been verified for a specific Mars swarm exploration system

under investigation. More importantly, the concept can be generally adapted to a wide

variety of swarm applications.

6.2 Outlook

Autonomous swarm navigation is an emerging interdisciplinary topic with proliferated

applications. The work presented in this thesis helps us to gain some insight into the

topic, instead of attempting to cover all the aspects exhaustively. A further investiga-

tion in the following directions may lead to a fruitful discovery:

1) Advanced models

In order to obtain a fundamental understanding of swarm navigation system, ab-

stract models have been widely assumed in this thesis. The extension to advanced

models needs to be investigated. The agent’s dynamic model can be extended with

its attitude, velocity, acceleration, measurements from inertial sensors, and low level

control loop. RF signals between nodes are emphasized through the thesis. Realistic

channel models have been considered in the design and validation of DiPNet. The

impacts of channel models on the fundamental limits of swarm navigation, CoA-

based source localization, and swarm control deserve a further study. In addition,

an advanced clock model should be considered, which may lead to challenges in

swarm network synchronization. Besides of the RF signals, observations from other

signals, like gas emission, with more sophisticated models can be considered.

2) Extension on optimal reference system

Fundamentals in reference system of anchor-free localization has been addressed.

It would be interesting to further extend the group motion constrained optimal

reference system to Bayesian tracking, decentralized localization algorithm design

and swarm control.

3) Decentralized information matrix estimation

For the information seeking control, a full awareness of the estimated FIM or BIM

entities is required. However, most of the BP based decentralized localization algo-

rithms, like DiPNet proposed in this thesis, only approximate a partition of informa-

tion at each node. A adequate study on decentralized calculating or approximating

the entities of these information matrices is important in designing a fully decen-

tralized swarm control algorithm.
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[55] R. Pöhlmann, S. A. Almasri, S. Zhang, T. Jost, A. Dammann, and P. A. Hoeher,

“On the potential of multi-mode antennas for direction-of-arrival estimation,” IEEE

Trans. Antennas Propag., vol. 67, no. 5, pp. 3374–3386, May 2019.

[56] D. Dardari, A. Conti, U. Ferner, A. Giorgetti, and M. Z. Win, “Ranging with

ultrawide bandwidth signals in multipath environments,” Proc. IEEE, vol. 97, no. 2,

pp. 404–426, Feb. 2009.

[57] I. Guvenc and C. Chong, “A survey on TOA based wireless localization and NLOS

mitigation techniques,” IEEE Commun. Surveys Tuts., vol. 11, no. 3, pp. 107–124,

rd 2009.

[58] E. Staudinger, S. Zhang, and A. Dammann, “Cramer-Rao lower bound for round-

trip delay ranging with subcarrier-interleaved OFDMA,” IEEE Trans. Aerosp. Elec-

tron. Syst., vol. 52, no. 6, pp. 2961–2972, Dec. 2016.

[59] J. J. Caffery, Wireless Location in CDMA Cellular Radio Systems. Norwell, MA,

USA: Kluwer Academic Publishers, 1999.

[60] M. Cobos, F. Antonacci, A. Alexandridis, A. Mouchtaris, and B. Lee, “A survey

of sound source localization methods in wireless acoustic sensor networks,” Wirel.

Commun. Mob. Com., vol. 2017, pp. 1–24, 2017.

[61] C. Rascon and I. Meza, “Localization of sound sources in robotics: A review,”

Rob. Auton. Syst., vol. 96, pp. 184–210, 2017.

[62] N. Poiata, C. Satriano, J. P. Vilotte, P. Bernard, and K. Obara, “Multiband

array detection and location of seismic sources recorded by dense seismic networks,”

Geophys. J. Int., vol. 205, no. 3, pp. 1548–1573, 2016.

[63] C. Nicol, A. Ellery, B. Lynch, E. Cloutis, and G. de Croon, “Martian methane

plume models for defining Mars rover methane source search strategies,” Int. J.

Astrobiol., vol. 17, no. 3, pp. 228–238, 2018.

[64] A. J. Lilienthal, M. Reggente, M. Trincavelli, J. L. Blanco, and J. Gonzalez, “A

statistical approach to gas distribution modelling with mobile robots - the Ker-

nel DM+V algorithm,” in 2009 IEEE/RSJ International Conference on Intelligent

Robots and Systems, Oct. 2009, pp. 570–576.

[65] M. Schmuker, V. Bahr, and R. Huerta, “Exploiting plume structure to decode gas

source distance using metal-oxide gas sensors,” Sensors and Actuators, B: Chemical,

vol. 235, pp. 636–646, 2016.



BIBLIOGRAPHY 157

[66] J. G. Proakis and M. Salehi, Digital Communications, 5th ed. Boston, Mass.:

McGraw-Hill, 2008.
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Appendix A
List of Acronyms and Abbreviations

1D one-dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2D two-dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3D three-dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5G 5th generation mobile networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
a.k.a. also known as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
A2A agent-to-agent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
ADMM alternating direction method of multipliers . . . . . . . . . . . . . . . . . . . . . . 88
AoA angle of arrival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
AoD angle of departure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
AWGN additive white Gaussian noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
B2A beacon-to-agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
B2B beacon-to-beacon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
BB Bayesian bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
BCRB Bayesian Cramér-Rao bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
BI Bayesian information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
BIM Bayesian information matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
BP belief propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
CBP cubature belief propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
CCI conditional concavity indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
CDF cumulative distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
CIR channel impulse response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
CoA curvature of arrival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
CRB Cramér-Rao bound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
CSA centro-symmetric array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
DiPNet direct particle filtering for decentralized network localization . . . . 10
DLR German Aerospace Center. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
DPE direct position estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
DPF distributed particle filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
DRSS differential received signal strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
EBIM equivalent Bayesian information matrix . . . . . . . . . . . . . . . . . . . . . . . . . 92
ECEF Earth-centered, Earth-fixed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
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EFIM equivalent Fisher information matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
EKF extended Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
EL equivalent measurement likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
EM expectation maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
ENV equivalent noise variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
ERII equivalent ranging information intensity . . . . . . . . . . . . . . . . . . . . . . . . . 89
ERV equivalent ranging variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
FDD frequency division duplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
FI Fisher information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
FIM Fisher information matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
GNSS global navigation satellite system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
GPS global positioning system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
i.f.f. if and only if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
i.i.d. independent and identically distributed. . . . . . . . . . . . . . . . . . . . . . . . . . 53
IFFT inverse fast Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
ITS intelligent transport systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
KF Kalman filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
KLD Kullback–Leibler divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
LOS line-of-sight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
LS least-square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
LTE long-term evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
MAC media access control layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
MAP maximum a posteriori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
MC Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
MIMO multiple-input and multiple-output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
ML maximum likelihood. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
MMSE minimum mean square error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
MP message passing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
MPC multipath component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
MSE mean square error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
NASA National Aeronautics and Space Administration . . . . . . . . . . . . . . . . . . 1
NBP non-parametric belief propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
NLOS non-line-of-sight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
ODE ordinary differential equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
OFDM orthogonal frequency-division multiplexing . . . . . . . . . . . . . . . . . . . . . . 25
OFDMA orthogonal frequency-division multiple access . . . . . . . . . . . . . . . . . . . . 46
PBP parametric belief propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
PCO pulse coupled oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
PCRB posterior Cramér-Rao bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
PDE partial differential equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
pdf probability density function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
PDoA phase difference of arrival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
PF particle filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
PHY physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
PLL phase-locked loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
PoA phase of arrival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
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PSD power spectral density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
PSGD projected steepest gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
PSK phase-shift keying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
RAT radio access technology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
RF radio frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
RII ranging information intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
RMSE root mean square error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
RSS received signal strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
RTK real-time kinematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
RTT round trip time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
s.t. subject to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
S2A source-to-agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
SAGE space-alternating generalized expectation-maximization. . . . . . . . . . 96
SCF squared cross-correlation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
SDP semi-definite programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
SLA symmetric linear array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
SLAM simultaneous localization and mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
SLAS simultaneous localization and synchronization . . . . . . . . . . . . . . . . . . . . 5
SLAT simultaneous localization and tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
SLAX simultaneous localization and any other parameter determination . 6
SNR signal to noise ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
SPAWN sum-product algorithm over a wireless network . . . . . . . . . . . . . . . . . . 90
SVD singular value decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
TDMA time-division multiple access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
TDoA time difference of arrival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
ToA time of arrival. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
ULA uniform linear array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
URA uniform rectangular array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
UWB ultra-wide band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
w.r.t. with respect to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
WGS84 world geodetic system 1984. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
WLAN wireless local area network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
WLS weighted least-square. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
WSN wireless sensor network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
ZCRB ZZB modified CRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
ZZB Ziv-Zakai bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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Appendix B
List of Mathematical Notations

To avoid an overlong list, only the important notations are listed. The ones locally

defined with limited usages in derivations are omitted.

0a×b matrix of zeros with dimension a× b
0a vector of zeros with length a
0 vector or matrix of zeros
4b

ac second order partial derivative of c w.r.t. b and a

, is defined as
∇ab gradient of b w.r.t. a
⊗ Kronecker product
1a×b matrix of ones with dimension a× b
1a vector of ones with length a
1 vector or matrix of ones
AH Hermitian of A
AT transpose of A
AT transpose of A
A∗ complex conjugate of A
A† Moore–Penrose pseudoinverse of A
A agent set in complete network
[A]i,j ith row, jth column element of A
A<x1,x2> sub-matrix of A, whose rows correspond to vector x1 and columns

correspond to vector x2

Ãu agent set including au and its neighboring agents
Au neighboring agent set of au
Auv amplitude of a signal received by au and transmitted from av
Av amplitude of a signal transmitted from av
A(x1x2) two dimensional coordinate system A with axes x1 and x2

A/a subset of A excluding element (or set) a
a(a1:a2) variable a from time step a1 to time step a2

a(+) variable a at current time step
ä second derivative of variable a

167



168 APPENDIX B. LIST OF MATHEMATICAL NOTATIONS

ȧ first derivative of variable a
ag scaling factor of gas source
ā mean of a
a(−) variable a at last time step
auv,0 generic parameter a of the lth MPC of the link between au and av
au nuisance parameters of au
αuv complex amplitude of signal transmitted from av and received by au
αuv complex amplitude on link euv
ã approximation of variable a
â estimation of variable a
‖a‖ Frobenius norm of variable a, where a can be scalar, vector and matrix
a ∼ CN (0, σ2) random variable(s) a is circularly-symmetric complex normally dis-

tributed with variance σ2

a ∼ N (µ,C) random variable(s)a is normally distributed with mean µ and covari-
ance C

a ∈ (a1, a2] a belongs to the interval (a1, a2], i.e. a1 < a ≤ a2

au node u
a1 : a2 from time step a1 to a2

B swarm coordinate system defined by baseline
B baseline of swarm
Bc bandwidth of A2A links
B anchor set in complete network
Bs bandwidth of B2A and RF S2A links
Bu neighboring beacon set of au
b̃A unconstrained control command ∀au ∈ A
bA control command ∀au ∈ A
bg exponent factor of gas source
bl control command in lth dimension

b
(k)
u position belief of au at iteration k
buv NLOS delay in addition to the LOS delay between au and av, in meters
bu control command for au
β2
c effective bandwidth of A2A links
βmax maximum acceptable probability of collision avoidance violation
β2
s effective bandwidth of B2A and RF S2A links
β IFFT interpolation factor for DiPNet
CRB0[duv] ranging CRB of link luv with full subcarrier occupation
CRB[a] CRB of variable a
C swarm Cartesian coordinate system constrained by group motion
Cuv covariance matrix of vector puv
C gas concentration
caA gradient of a particular control objective function denoted as a

w.r.t. bA
cA gradient of control objective function w.r.t. bA
cl gradient of control objective function on lth dimension
cau gradient of a particular control objective function denoted as a

w.r.t. bu
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cu gradient of the control objective function w.r.t. bu
cova[·] covariance matrix calculated over particular pdf p(a)
cov[·] covariance matrix
c speed of light
Dl(d) Dirichlet kernel, a.k.a. periodic sinc function
Dq swarm’s radial aperture to the source
D⊥ swarm’s tangential aperture to the source
D swarm aperture
Dx swarm aperture length in x-direction
Dy swarm aperture length in y-direction
Da2→a1 FI degradation of a1 due to an unknown variable a2

D swarm’s aperture size
dmin minimum tolerated distance of node pairs
duv Euclidean distance between au and av
du d-coordinate of au in polar coordinate system P

δu clock offset of au
diag{· · ·} diagonalization operator, arranging elements (scalars, vectors, or ma-

trices) along the diagonal of a matrix

d̂uv distance estimate between au and av from localization result
δ control command projected on the tangent space of the activated

constraints
E0 link set in complete network
E extended link set including E0 and virtual anchor-anchor links
Eu set of links to au
Exp(a) pdf of exponential distribution with rate parameter a
Ea[·] expectation operator w.r.t. variable(s) a
eg directional vector of goal approaching objective
euv link from av to au
εuv absolute framework distance error of node pair (au, av)
εd̂P absolute difference between node pair distance of node set P
εd̂P framework distance RMSE of node set P
εmax maximum tolerated agent’s position error

εF̃P average shape difference between frameworks F̃P and FP of node set
P

ε(qP ,pP) generic metrics to indicate swarm localization performance
εuv(t) RF noise at time t on link euv
εuv RF noise samples on link euv
εTP,opt(qP ) position error vector after the optimal affine transformation TP,opt of

node set P
εTP (qP ) position error vector after an affine transformation TP of node set P
F0 directed extended framework composed of G0 and E0

Fu sub-framework composed of Gu and pNu
F undirected extended framework composed of G and E
fc carrier frequency of A2A links
f(d) cross-correlation of RF signal as a function of propagation distance d
f(bA) generic cost function
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fg(bA) goal approaching cost function
fp(bA) information seeking objective, as cost function
fsc subcarrier spacing
fs carrier frequency of B2A and S2A RF links
fv carrier frequency of RF signal transmitted from av
G0 directed graph of the extended swarm network
G global coordinate system
Gu subgraph composed of Nu and Eu
G undirected graph of the extended swarm network
γ exponent coefficient of pathloss
HA overall geometry matrix of agent set A
HL0 ranging geometry matrix
hc,uv(bA) collision avoidance constraint function
h(bA) generic constraint functions
hp(bA) information seeking objective, as constraint
In×n identity matrix of size n
I identity matrix

Ĩa EFIM of variable a
Iba FIM of variable a in signal feature b
Ix1,x2 off-diagonal block in FIM representing the link between variables x1

and x2

Ia FIM of variable a
={a} imaginary part of variable a
ιba FI of a scalar variable a contained in variable b
ι̃duv ERII of nodes distance duv
ῑduv RII of nodes distance duv marginalized over pu and pv
ιduv RII of nodes distance duv
ιa FI of a scalar variable a
 imaginary unit
Ju EBIM of related to agent au
Jx Bayesian information matrix of x
Ju,v sub-matrix of BIM corresponding to nodes au and av
J̃x Bayesian information matrix of x after state transition before obtain-

ing new measurements
Ks number of iterations for SAGE based delay estimator
Kτ number of iterations for correlation based delay estimator
Kuv resource sharing factor
Mk kth empirical moment of the normalized agents’ spatial distribution
κv CoA of signal transmitted from node av
L0 undirected edge set in extended swarm network
LB virtual undirected edges between beacons
Lall undirected edge set of virtual fully connected swarm network, exclud-

ing B2B edges
L undirected edge set in extended swarm network together with the

virtual edges between beacons, i.e. L = L ∪ LB
Luv number of NLOS paths of link luv
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ΛpP weighing matrix for information seeking control, only including posi-
tions of a node subset P

Λf weighing matrix for information seeking control as cost function
Λh weighing matrix for information seeking control as constraint
Λ weighing matrix for information seeking control
{λi(X) : i =
1 · · ·n}

eigenvalues of X sorted in non-increasing order

lima→b limit as a approaches b
l. i.m.a→b limit in the mean as a approaches b
luv unidirectional link between av and au
N0/2 PSD of noise
Nuv subcarrier set used for ranging at link luv
N number of samples(and subcarriers)
ωc angular carrier frequency of A2A link
ωpu additive noise on control command bu of agent au
ωsc angular subcarrier spacing
ωs angular carrier frequency of B2A and RF S2A link
ωv angular carrier frequency of RF signal transmitted from av
PCRB[a] PCRB of variable a
Pa point in space labeled as a
Pu point in space where au is located
Φuv carrier phase of the signal transmitted from av and received by au
P generic point in space
|P| cardinality of a set P
φu carrier phase offset of au
p̃(zuv|pu,pv) equivalent measurement likelihood (EL)
pP coordinates of all nodes in generic set P
pa coordinates of point Pa in default coordinate system
pg coordinates of destination of goal approaching objective
pAu coordinates of au in a generic coordinate system A

pu coordinates of au in default coordinate system
Q(bA) covariance matrix of state transition noise
Q(·) Gaussian Q-function
Qpu(bu) covariance matrix of position transition noise of agent au
Q(k)
u particle set of agent au at inner iteration k in DiPNet

Q
(q,k)
u qth particle of agent au at inner iteration k in DiPNet

Q number of particles at agent au in DiPNet
R(F) rigidity matrix of framework F
Rn received symbol on OFDM subcarrier n
R radius of the swarm aperture
R received symbols on all OFDM subcarriers
R+ positive number set
<{a} real part of variable(s) a
ruv(t) received signal at time t at au through link euv
ruv received signal samples at au through link euv
ru received signals at au through all links
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rank(A) rank of matrix A
ρuv ranging measurement between au and av
Sgas set of gas source
Sn transmitted symbol on OFDM subcarrier n
SRF set of RF source
S set of source
S transmitted symbols on all OFDM subcarriers
suv(t) transmitted signal at time t from av to au
suv transmitted signal samples from av to au
su transmitted signal from av to au
σ̃2
uv equivalent noise variance
σ2 variance of noise on control command normalized to step size
σ2
v→uv position covariance of av projected to the measurement link euv
σ2
u variance of RF noise at au
ς concavity indicator
To observation time
Tsa sampling period
Topt(·) optimal affine transformation operator

T (·) affine transformation operator
Tr[A] trace of matrix A
τuv symbol delay of RF signal transmitted from av and received by au
θuv angle of of the link euv
θu θ-coordinate of au in polar coordinate system P

UA feasible set of control command bA of agent set A
U [a, b) pdf of uniform distribution within interval [a, b)
U feasible set of control command bu of agent au
V node set in complete network

Ṽu node set including au and its neighbors
Vu neighboring node set of au
var[a] variance of variable a
vec{· · ·} vectorization operator, arranging elements (scalars or vectors) into a

vector

p
(q,k)
u position of the qth particle of agent au at inner iteration k in DiPNet
wg weight of goal approaching cost function
wp weight of information seeking cost function

w
(q,k)
u weight of the qth particle of agent au at inner iteration k in DiPNet

Xuv LOS/NLOS indicator for link luv
X set of nodes with unknown positions
xP state of nodes in generic node set P
xu x-coordinate of au in Cartesian coordinate system C(xy)

yu y-coordinate of au in Cartesian coordinate system C(xy)

Z+ natural number set
ZCRB[pA] ZZB modified agents’ position CRB
ZZB[a] ZZB of variable a
z̃(+) predicted measurements after potential movement
zP measurements of all links in set P
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zuv generic measurement on link euv
zu generic measurement collected by au
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Appendix C
Mathematical Definitions & Derivations

C.1 FIM with Continuous Complex-valued Observations

We define sampling functions ψi(t),∀i = 1, · · · , N , with a sampling period of Tsa =

1/B = To/N as

ψi(t) =

 1/
√
Tsa (i− 1)Tsa ≤ t < iTsa

0 else.
(C.1)

The sampled signal is expressed as

ruv,i =

ˆ To

0

ruv(t)ψi(t)dt. (C.2)

According to the Theory of Karhunen-Loève expansion [70], the continuous signal can

be represented as

ruv(t) = l. i.m.
N→∞

N∑
i=1

ruv,iψi(t), (C.3)

where ”l. i.m.” denotes limit in the mean. The sampled signal ruv,i is a Gaussian

distributed random variable with a variance of σ2
u = N0 and a mean of

E[ruv,i] = suv,i =
1√
Tsa

ˆ iTsa

(i−1)Tsa

suv(t)dt. (C.4)
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According to estimation theory, the total FIM Ix is the superposition of the FIMs from

all the contributing links euv ∈ E0, i.e.

Ix =
∑

euv∈E0

Isuvx

, lim
N→∞

2

N0

<{
∑

euv∈E0

Oxs
∗
uvOxT suv}

= lim
N→∞

2

N0

<{
∑

euv∈E0

N∑
i=1

Oxs
∗
uv,iOxT suv,i}

= lim
N→∞

2

N0Tsa

<
{ ∑

euv∈E0

N∑
i=1

ˆ iTsa

(i−1)Tsa

Oxs
∗
uv(t)dt

ˆ iTsa

(i−1)Tsa

OxT suv(τ)dτ
}

= lim
N→∞

2

N0

<
{ ∑

euv∈E0

N∑
i=1

ˆ iTsa

(i−1)Tsa

Oxs
∗
uv(t)OxT suv(t)

−
(
Oxs

∗
uv(t)−

1

Tsa

ˆ iTsa

(i−1)Tsa

Oxs
∗
uv(τ)dτ

)(
OxT suv(t)−

1

Tsa

ˆ iTsa

(i−1)Tsa

OxT suv(τ)dτ
)

dt
}

= lim
N→∞

2

N0

<
{ ∑

euv∈E0

N∑
i=1

ˆ iTsa

(i−1)Tsa

Oxs
∗
uv(t)OxT suv(t)dt

}
+ 0+

≈ 2

N0

<
{ ∑

euv∈E0

ˆ To

0

Oxs
∗
uv(t)OxT suv(t)dt

}
, (C.5)

which completes the derivation of (3.14). The term 0+ denotes a negligible positive

semi-definite matrix.
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C.2 Condition of Non-Observable Source Distance

The condition of non-observable source distance from a 1D swarm colinear to the source

is proved with the following equations arranged according to causality.

det [Ixv ] = 0

EpPu

[
ιguv

(∂guv
∂dv

)2
]
EpPu

[
ιguv

(∂guv
∂av

)2
]
− EpPu

[
ιguv

∂guv
∂dv

∂guv
∂av

]2

= 0 (C.6)

EpPu ,p
P
w

[
ιguvιgwv

((∂guv
∂dv

∂gwv
∂av

)2

−
(∂guv
∂dv

∂guv
∂av

)(∂gwv
∂dv

∂gwv
∂av

))]
= 0 (C.7)

E{pPu :du>dw},pPw

[
ιguvιgwv

(
∂guv
∂av

∂gwv
∂dv

− ∂guv
∂dv

∂gwv
∂av

)2
]

= 0 (C.8)

∂guv/∂dv
∂guv/∂av

=
∂gwv/∂dv
∂gwv/∂av

, ∀u 6= w. (C.9)

∂guv/∂duv
∂guv/∂av

=
∂gwv/∂duv
∂gwv/∂av

, ∀u 6= w. (C.10)

It is straightforward to prove that the equality (C.10) is equivalent to (3.72).

C.3 Proof of Theorem 3.4.2

We apply the second-order Taylor expansion to dvu at du = 0

dvu ≈ dv − du cos(θu − θv) +
1

2
sin2(θu − θv)d2

u/dv (C.11)

and define au , 1− d2
u sin2 θv

2d2
v

and bu ,
d2
u sin θv cos θv

dv
.

By exploiting the symmetry of SLAs, we can write

∑
au∈A

∇pvdvu

|A|∑
w=1

∇pTv
dvw ≈


( ∑

au∈A

au

)2 ∑
au∈A

au
∑

aw∈A

bw∑
au∈A

au
∑

aw∈A

bw

( ∑
au∈A

bu

)2



and
∑
au∈A

∇pvdvu∇pTv
dvu ≈

∑
au∈A

(
a2
u aubu

aubu d2
u sin2 θv + b2

u

)
.
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The CRB of pv can be derived as

CRB[pv] ≈
2N0d

2
v

A2
v|A|D4

⊥(M4 −M2
2 )

(
d−4
v /4 cot θvd

−3
v /2

cot θvd
−3
v /2

D−2
⊥ M2

M4−M2
2

+ cot2 θvd
−2
v

)−1

. (C.12)

The CRB of AoA in (3.82) can be directly obtained by taking the second diagonal

entity of (C.12). The distance CRB is derived by taking the first diagonal entity of

(C.12)

CRB[dv] ≈
8N0d

6
v

A2
v|A|D4

⊥(M4 −M2
2 )

(
1 +

(M4 −M2
2 ) cot2 θv

(dv/D⊥)2M2

)
. (C.13)

Equation (3.83) is obtained from (C.13) with the assumption dv � D⊥, which com-

pletes the proof.

C.4 Partial Derivatives for Joint Self- and Source Localization

The partial derivatives required for joint self- and source localization CRBs with a

mixture of swarm Cartesian coordinate system C and the swarm polar coordinate

system P can be written as

−Oxuτuv = Oxvτuv = vec{cos θuv, sin θuv, 1}, ∀au, av ∈ A (C.14)

Oxuτuv = −vec{cos θuv, sin θuv, 1}, ∀au ∈ A, av ∈ SRF (C.15)

Oxvτuv = vec{OpPv
duv, 1, 0}, ∀au ∈ A, av ∈ SRF (C.16)

Oxuφuv = vec{cos θuv, sin θuv, 1}, ∀au ∈ A, av ∈ SRF (C.17)

Oxvφuv = vec{−OpPv
duv, 0, 1}, ∀au ∈ A, av ∈ SRF (C.18)

(C.19)

where θuv is the angle of incoming signal ruv(t), w.r.t. the swarm coordinate system,

and

OpPv
duv = vec{dv − du cos(θv − θu)

duv
,
dudv sin(θv − θu)

duv
}.∀au ∈ A, av ∈ SRF (C.20)
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C.5 Derivation of EBIM in (4.7)

The EBIM Ju can be formulated as

Ju = J(u,u) −Du, (C.21)

where J(u,u) is defined in (4.11). The term Du is the information degradation due to

neighbor’s uncertainty

Du ,
∑

av∈Au

JT(u,v)J
−1
(v,v)J(u,v), (C.22)

J(u,v) = −Epu,pv

[
ιduveuve

T
uv

]
(C.23)

J(v,v) = J̃(k−1)
v + Epu,pv

[
ιduveuve

T
uv

]
. (C.24)

The superscript (k − 1) of J̃
(k−1)
v is omitted for simplicity. With the assumption of

concentrated belief, the following approximation can be applied

Epu,pv

[
ιduveuve

T
uv

]
≈ ῑduv ēuvē

T
uv. (C.25)

Inserting C.23, (C.24) and C.25 into (C.22) and apply the Sherman-Morrison formula,

the information degradation can be approximated as

Du ≈
∑

av∈Au

ῑ2duv ēuvē
T
uv

(
J̃−1
v −

J̃−1
v ῑduv ēuvē

T
uvJ̃
−1
v

1 + ῑduvσ
2
v 7→uv

)
ēuvē

T
uv

=
∑

av∈Au

ῑduv ēuv

(
ῑduvσ

2
v 7→uv −

ῑ2duvσ
4
v 7→uv

1 + ῑduvσ
2
v 7→uv

)
ēTuv. (C.26)

Plugging (C.26) into (C.21), the EBIM Ju is reformulated as

Ju ≈J̃(0)
u +

∑
av∈Au

(
ῑduv − ῑ2duvσ

2
v 7→uv +

ῑ3duvσ
4
v 7→uv

1 + ῑduvσ
2
v 7→uv

)
ēuvē

T
uv. (C.27)

The expression in (4.7) is derived by simplifying (C.27), which completes the proof.
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C.6 Derivation of SCF Expectation in (4.30)

Ex

[
‖rHs(τ)‖2

]
=Ex

[
‖
( L∑
l=0

α∗l s(τl)
H + εH

)
s(τ)‖2

]
=Ex

[ L∑
l=0

‖α∗l s(τl)
Hs(τ)‖2

]
+ Ex

[
‖εHs(τ)‖2

]
+Ex

[
2<{

L∑
l=0

L∑
h>l

α∗l αhs(τl)
Hs(τ)s(τ)Hs(τh)}

]
︸ ︷︷ ︸

1○=0

+Ex

[
2<{

L∑
l=0

α∗l s(τl)
Hs(τ)s(τ)Hε}

]
︸ ︷︷ ︸

2○=0

(C.28)

=Ex

[
Tr[N0Is(τ)s(τ)H ]

]
+ Ed0,θ

[
EX|d0 [EP0|d0,X [P0]] ‖s(τ0)Hs(τ)‖2

]
+Ed0,θ

[
EX|d0

[
EL,b|X

[ L∑
l=1

EPl,δl|d0,X[Pl‖s(τl)
Hs(τ)‖2]

]]]
. (C.29)

We have used the fact that paths have independent channel gains αl with uniformly

distributed phases to prove the cross-terms 1○ and 2○ equal to zero. The sum of

expectations over all MPCs in (C.29) can be replaced with the expectation over a

single MPC, since the parameters of MPCs, i.e. Pl and δl, are i.i.d., i.e.

Ex

[
‖rHs(τ)‖2

]
=N0‖s‖2+Ed0

[
EP0|d0 [P0]︸ ︷︷ ︸

P̄0

Eθ[‖s(τ0)Hs(τ)‖2]
]

+Ed0

[
EL|d0 [L]︸ ︷︷ ︸

L̄

EPl|d0 [Pl]︸ ︷︷ ︸
P̄l

Eδl,b|d0 [Eθ[‖s(τl)
Hs(τ)‖2]]

]
. (C.30)
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C.7 Expectation of D̈2
l (‖pu,0 − pv‖) over Exponentially Dis-

tributed δl and b

For an MPC in NLOS case

Eδl,b;X=NLOS[D̈2
l (‖pu,0 − pv‖)]

=

ˆ ∞
0

ˆ ∞
0

aNaBD̈
2
l (‖pu,0 − pv‖)e−aNδle−aBbdδldb (C.31)

=πaNaB

N−1
2∑

n,m=−N−1
2

ωsc
2 S2

mn (τ0 ωsc
2 S2

mn/c
2 − aN aB τ0 + aB + aN) /c2

τ0 (ωsc
2 S2

mn/c
2 + aN2) (ωsc

2 S2
mn/c

2 + aB2)
. (C.32)

For an MPC in LOS case, we can replace aN by aL and set aB →∞

Eδl,b;X=LOS[D̈2
l (‖pu,0 − pv‖)] = π(

aL
τ0

− a2
L)

N−1
2∑

n,m=−N−1
2

S2
mnω

2
sc

S2
mnω

2 + a2
Lc

2
. (C.33)

C.8 Proof of Lemma 4.4.1

We first prove that local maxima of h(pu) can only exist on the x-axis, by its contra-

diction. Assume there exists a local maximum at po = [xo, yo]
T , where yo 6= 0. The

partial derivatives hx and hy of h, w.r.t. xu and yu can be expressed as

hx =
∂g

∂du

xu
du

+
∂z

∂duv

xu + d0

duv
= 0 (C.34)

hy =
∂g

∂du

yu
du

+
∂z

∂duv

yu
duv

= 0. (C.35)

Since yo 6= 0, from (C.35) we have

∂z

∂duv

1

duv
= − ∂g

∂du

1

du
. (C.36)

Additionally we have ∂g/∂du < 0, since g(pu) is unimodal. Inserting (C.36) into (C.34),

we get

hx = −d0

du

∂g

∂du
> 0. (C.37)

Hence po is not a stationary point of h(pu), which contradicts to the assumption.

Then we apply the second derivative test with the following derivatives evaluated
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at pox = [xox, 0]T

∂duv
∂xu

=
xu + d0

duv
,
∂du
∂xu

=
xu
du
,
∂duv
∂yu

=
∂du
∂yu

= 0,

∂2duv
∂y2

u

=
1

duv
,
∂2du
∂y2

u

=
1

du
,

∂2duv
∂x2

u

=
∂2du
∂x2

u

=
∂2duv
∂xu∂yu

=
∂2du
∂xu∂yu

= 0,

hxy= 0, hxx=
∂2g

∂d2
u

+
∂2z

∂d2
uv

, hyy=
∂g

du∂du
+

∂z

duv∂duv
.

Combining (C.35) and the assumption that pox is a local maximum point over x-

domain, we can get

hy = 0, hx = 0 and hxx < 0. (C.38)

According to the second derivative test, pox would be a local maximum point of h, if

and only if hxxhyy − h2
xy > 0, i.e., hyy < 0. It can be shown after some algebra, that

hyy < 0 only if xox > −d0, which completes the proof.

C.9 Proof of Theorem 4.4.1

The measurement function z(xu) can be substituted by the log-likelihood function of

DiPNet

z(xu) = SNRlDl((xu + d0)/c)2/N. (C.39)

In the case of δ > 0, a natural number is defined as κ = bBcδ/cc + 1 ∈ Z+, where

xκ = δ − κc/Bc is the κth zero point to the left of z(xu)’s main peak. b·c denotes the

floor operation. We further define γκ−1 as the (κ− 1)th maximum point to the left of

z(xu)’s main peak, where γ0 = δ. According to the property of periodic sinc function,

the value of Dl((xu + d0)/c)2 monotonically increases from the origin to γκ−1, where

it reaches a maximum. In the case of γκ−1 > 0, the derivative zx(xu) of z w.r.t. xu

satisfies

zx(γκ−1) = 0 and zx(xu) > 0, ∀0 6 xu < γκ−1. (C.40)

Additionally by the definition of unimodality, the derivative gx(xu) of g w.r.t. xu fulfills

gx(0) = 0 and gx(xu) < 0, ∀xu > 0. (C.41)
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Combining (C.40) and (C.41), we can get for the derivative hx(xu)

hx(0) > 0 and hx(γκ−1) < 0. (C.42)

Therefore, there exists xox ∈ (0, γκ−1], so that

hx(xu) > 0,∀xu ∈ (0, xox]

hx(xu) < 0,∀xu ∈ (xox, γκ−1],

where the equality only holds at xox. According to Lemma 4.4.1, the maximum point

of the belief is shifted from the origin to pox, which introduces a bias to the belief

‖xox‖< ‖γκ−1‖< %κ , ‖γκ−1 − xκ‖. The second inequality is obtained by the property

of periodic sinc function that ‖xκ−1 − γκ−1‖< ‖γκ−1 − xκ‖. The upper bound %κ

decreases with increasing κ from %1 = c/B and quickly approaches its asymptotic value

%∞ = c/2Bc. The proof can be extended to −d0 < δ < 0 and γκ−1 < 0 in a similar

manner, which completes the proof of Theorem 4.4.1.

C.10 Proof of Theorem 4.4.2

The measurement function z(xu) can be approximated by its second-order Taylor ex-

pansion z̃(xu) at xu = γκ−1

z̃(xu) =
1

2
zxx(γκ−1)︸ ︷︷ ︸

<0

(xu − γκ−1)2 + zx(γκ−1)︸ ︷︷ ︸
=0

(xu − γκ−1) + z(γκ−1). (C.43)

The maximum point x̃ox of g(xu) + z̃(xu) can be calculated with the equality of their

derivatives

gx(xu) + z̃x(xu) = − 1

σ2
0

xu + zxx(γκ−1)(xu − γκ−1) = 0

x̃ox =
γκ−1

1− 1
σ2

0zxx(γκ−1)

. (C.44)

With the property of the periodic sinc function, the derivatives of z(xu) and its Taylor

expansion fulfill

0 6 ‖zx(xu)‖6 ‖z̃x(xu)‖, (C.45)

where both equalities hold only for xu = γκ−1. Therefore, the bias ‖xox‖ of position

belief h(pu) is smaller than ‖x̃ox‖. Then we derive the derivatives of z(xu), simplifying
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the periodic sinc function with the sinc function, and defining ζ = ωsc(δ−γκ−1)/2c

zx(γκ−1) ≈ωscSNRl sin
2(Nζ)

cζ2

( 1

Nζ
− cos(Nζ)

sin(Nζ)

)
= 0,

zxx(γκ−1) ≈ω
2
scSNRl sin

2(Nζ)

c2ζ2

( 3

2Nζ2
− N

2
− 2 cos(Nζ)

ζ sin(Nζ)
+
N cos2(Nζ)

2 sin2(Nζ)

)
.

If ‖δ‖< c/Bc, κ = 1, i.e., ζ = 0. The second derivative zxx reaches its global minimum

lim
ζ→0

zxx(γκ−1) = −ω
2
scN

3SNRl

6c2
= − 1

CRBl

= − 1

υσ2
0

.

The bias of position belief is bounded by

‖xox‖< ‖x̃ox‖=
‖δ‖

1 + 3c2

2π2NSNRlB2
cσ

2
0

=
‖δ‖

1 + υ
. (C.46)

If ‖δ‖> c/Bc

zxx(γκ−1) ≈ω
2
scSNRl

c2ζ2

(N cos2(Nζ)

2
− N sin2(Nζ)

2
− sin2(Nζ)

2Nζ2

)
=
ω2

scSNRl

c2ζ2

(N cos(2Nζ)

2
− 1− cos(2Nζ)

4Nζ2

)
>− ω2

scSNRl

2c2ζ2

(
N +

1

Nζ2

)
= − 2NSNRl

(δ − γκ−1)2

(
1 +

c2

π2B2
c (δ − γκ−1)2

)
>− 2NSNRl

(‖δ‖−%κ)2
(1 + ρ2), (C.47)

where ρ = c/πBc(‖δ‖−%κ). Therefore

‖xox‖< ‖x̃ox‖<
%κ

1 + υ
3ρ2(1+ρ2)

. (C.48)

We can combine (C.46) and (C.48), which completes the proof.
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C.11 Partial Derivative of Weighted CRB

We define a notation X<uv> as a sub-matrix of matrix X, whose rows correspond to

node au and columns correspond to node av.

cl =
∂Tr

[
ΛhI−1

x(+)

]
∂bl

=− Tr

I−1
x(+)Λ

hI−1
x(+)︸ ︷︷ ︸

A

∂Ix(+)

∂bl

 (C.49)

=− Tr

[∑
euv∈E

(
A<uu> A<uv>

A<vu> A<vv>

)
∂

∂bl

(
Isuvxuv + Isvuxuv

)]
− Tr

[∑
euv∈E

A<uu>
∂

∂bl
Isuvxu

]
,

(C.50)

where xuv = vec{xu,xv} and Ismnxc is the information about xc contained in the obser-

vation of smn, i.e.

Ismnxc ,

 ιmnOxcgmnOxTc
gmn, if emn ∈ E0

0, otherwise.

A general term in (C.50) can be expressed analytically as

− Tr

[
Aop

∂

∂bl
Ismnxc

]
=− Tr

[
Aop

(∂Oxcgmn
∂bl

ιmnOxTc
gmn + Oxcgmn

∂ιmn
∂bl

OxTc
gmn + (Oxcgmn)ιmn

∂OxTc
gmn

∂bl

)]
=− OxTc

gmnAop
∂Oxcgmn
∂bl

ιmn − OxTc
gmnAopOxcgmn

∂ιmn
∂bl
−
∂OxTc

gmn

∂bl
Aop(Oxcgmn)ιmn

=−
∂OxTc

gmn

∂bl
(Aop + AT

op)Oxcgmnιmn − OxTc
gmnAopOxcgmn

∂ιmn
∂bl

. (C.51)

The partial derivative cl can be formulated analytically by combining (C.50) and (C.51).
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C.12 Partial Derivative of Collision Avoidance Objective

The derivative of hc,uv(bA) w.r.t. bl, the lth coefficient of bu, is expressed as

∂hc,uv(bA)

∂bl
(C.52)

=
−dmin

‖C−1
uv p̄uv‖

∂p̄TuvC
−2
uv p̄uv

∂bl
+
∂p̄TuvC

−1
uv p̄uv

∂bl
(C.53)

=
−dmin

‖C−1
uv p̄uv‖

(
p̄Tuv

∂C−2
uv

∂bl
p̄uv + 2p̄TuvC

−2
uv

∂p̄uv
∂bl

)
+ p̄Tuv

∂C−1
uv

∂bl
p̄uv2p̄TuvC

−1
uv

∂p̄uv
∂bl

(C.54)

=

(
2p̄TuvC

−1
uv −

2dminp̄
T
uvC

−2
uv

‖C−1
uv p̄uv‖

)
∂p̄uv
∂bl

+

(
p̄TuvC

−2
uv −

2dminp̄
T
uvC

−3
uv

‖C−1
uv p̄uv‖

)
∂Cuv

∂bl
p̄uv. (C.55)

Additionally, we have

∂p̄uv
∂bl

=
∂bu
∂bl

, (C.56)

and

∂Cuv

∂bl
=
∂Qu

∂bl
=

σ2bl
‖bu‖

I2×2. (C.57)

Finally we have the derivative of hc,uv(bA) w.r.t. bu as expressed in (5.47), which

completes the derivation.
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[J5] A. Dammann, C. Gentner, R. Pöhlmann, R. Raulefs, E. Staudinger, U. Ulm-

schneider, M. Walter, and S. Zhang, “5G and beyond cooperative positioning –

knowing ”where is everything” (under revision),” IEEE Access, 2020.

[J6] M. Schuster et al., “The ARCHES space-analogue demonstration mission: To-

wards heterogeneous teams of autonomous robots for collaborative scientific

sampling in planetary exploration (accepted),” IEEE Robot. Autom. Lett.,

2020.

187



188 CONFERENCE PUBLICATIONS
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[C15] R. Pöhlmann, S. Zhang, A. Dammann, and P. A. Hoeher, “Fundamental limits

for joint relative position and orientation estimation with generic antennas,”

in Proc. EURASIP 26th European Signal Processing Conf. (EUSIPCO), Rome,

Italy, Sep. 2018.

[C16] E. Staudinger, D. Shutin, C. Manss, A. Viseras, and S. Zhang, “Swarm tech-

nologies for future space exploration missions,” in Proc. 14th International Sym-

posium on Artificial Intelligence, Robotics and Automation in Space (i-sairas),

Jun. 2018.
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