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Abstract

Target localization has a wide range of military and civilian applications in wireless mobile

networks. Examples include battle-field surveillance, emergency 911 (E911), traffic alert,

habitat monitoring, resource allocation, routing, and disaster mitigation. Basic localization

techniques include time-of-arrival (TOA), direction-of-arrival (DOA) and received-signal

strength (RSS) estimation. Techniques that are proposed based on TOA and DOA are very

sensitive to the availability of Line-of-sight (LOS) which is the direct path between the

transmitter and the receiver. If LOS is not available, TOA and DOA estimation errors create

a large localization error. In order to reduce NLOS localization error, NLOS identification,

mitigation, and localization techniques have been proposed.

This research investigates NLOS identification for multiple antennas radio systems. The

techniques proposed in the literature mainly use one antenna element to enable NLOS

identification. When a single antenna is utilized, limited features of the wireless channel

can be exploited to identify NLOS situations. However, in DOA-based wireless localization

systems, multiple antenna elements are available. In addition, multiple antenna technology

has been adopted in many widely used wireless systems such as wireless LAN 802.11n and

WiMAX 802.16e which are good candidates for localization based services.

In this work, the potential of spatial channel information for high performance NLOS iden-

tification is investigated. Considering narrowband multiple antenna wireless systems, two

xv



NLOS identification techniques are proposed. Here, the implementation of spatial correla-

tion of channel coefficients across antenna elements as a metric for NLOS identification is

proposed. In order to obtain the spatial correlation, a new multi-input multi-output (MIMO)

channel model based on rough surface theory is proposed. This model can be used to com-

pute the spatial correlation between the antenna pair separated by any distance.

In addition, a new NLOS identification technique that exploits the statistics of phase differ-

ence across two antenna elements is proposed. This technique assumes the phases received

across two antenna elements are uncorrelated. This assumption is validated based on the

well-known circular and elliptic scattering models. Next, it is proved that the channel Ri-

cian K-factor is a function of the phase difference variance. Exploiting Rician K-factor,

techniques to identify NLOS scenarios are proposed.

Considering wideband multiple antenna wireless systems which use MIMO-orthogonal fre-

quency division multiplexing (OFDM) signaling, space-time-frequency channel correlation

is exploited to attain NLOS identification in time-varying, frequency-selective and space-

selective radio channels. Novel NLOS identification measures based on space, time and

frequency channel correlation are proposed and their performances are evaluated. These

measures represent a better NLOS identification performance compared to those that only

use space, time or frequency.

xvi



Chapter 1

Introduction

Systems capable of positioning mobiles remotely in wireless environments have emerg-

ing applications in homeland security, law enforcement, defense command and control,

emergency services, and traffic alert, situation awareness, spacecraft orbit control, multi-

robot coordination, and vehicle-to-vehicle and vehicle-to-pedestrian collision avoidance.

Many cooperative positioning methods based on direction-of-arrival (DOA), time-of-arrival

(TOA), time-difference-of-arrival (TDOA), and received signal strength indication (RSSI)

have been proposed. A common assumption across all these techniques is the availability

of line-of-sight (LOS). In Non-LOS (NLOS) situations, the performance of the proposed

methods highly decreases. Research is on-going to identify NLOS scenarios, reduce the

localization error due to NLOS scenarios, and localize targets available in NLOS. NLOS

identification avoids deceived positioning by reducing the effect of nodes that receive lo-

calization information through NLOS. NLOS identification techniques proposed in the lit-

1



erature incorporate the availability of a single antenna, and mainly function based on the

statistics of signal amplitude obtained over a single carrier frequency component. Today,

many multi-antenna and multi-frequency radios and standards such as IEEE 802.11n that

use multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM)

systems have been introduced. This dissertation proposes novel NLOS identification meth-

ods that incorporate the capabilities of MIMO and OFDM systems to maintain high perfor-

mance NLOS identification.

1.1 Motivation

Target localization has a wide range of military and civilian applications in wireless mobile

networks. Examples include battlefield command and control [1], fire fighters tracking

[2], emergency 911 (E911) [3], road traffic alert [4], resource allocation in mobile ad-hoc

networks [5] and routing in sensor networks [6, 7] and etc.

The location of a target can be estimated by different parameters of the received radio

signal, such as time-of-arrival (TOA) [8], direction-of-arrival (DOA) [9], time-difference-

of-arrival (TDOA) [10] and received signal strength indication (RSSI) [11]. All these tech-

niques require that the received signal travels through the line-of-sight (LOS) path which is

the direct path between transceivers∗. If the LOS path cannot be detected, i.e., in non-line-

of-sight (NLOS) propagation conditions, the received signal will travel longer distances

∗Some RSSI based methods perform in NLOS scenarios; however, with a poor performance.

2



Target-node

Target-node image

Base-node

Reflector

Barrier

Figure 1.1: Localization error in NLOS propagation environment.

compared to the LOS path, which results in a larger TOA. In addition, in NLOS conditions,

a wrong DOA estimation is expected (see Figure 1.1). Because of error in both DOA and

TOA estimation, a large localization error is experienced. Thus, lack of availability of LOS

has been known as the major source of localization errors. One method of reducing the

NLOS localization error is to identify NLOS conditions. Identification results are used to

mitigate the NLOS localization error [12].

Besides localization application, some NLOS identification methods offer LOS link quality

information. Shown in [13], based on this information more complex TOA estimators can

be selected for low quality links, i.e., the LOS path is detected but it is not the strongest in

the multi-path profile. and less complex TOA estimators shall be selected for high quality

links, i.e., the LOS path is detected and it is the strongest. In addition, identifying LOS

conditions allows optimal adjustment of the transmission mode of communication systems

by switching to a higher order of modulation for LOS links to achieve higher data rates.
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Figure 1.2: A big picture of NLOS identification

1.2 NLOS identification: a statistical detection problem

In essence, NLOS identification is a statistical detection problem. NLOS and LOS condi-

tions are considered as two hypothesis. The NLOS identification process can be depicted

using Figure 1.2. The source block in Figure 1.2 generates one of the possible outputs, i.e.,

NLOS or LOS hypothesis. Then, random observations are generated based on the condi-

tional probability density function (pdf) f (·|H0) or f (·|H1). In the decision rule block, the

likelihood ratio Λ(r) is compared to a threshold and then a decision is made on whether

LOS or NLOS hypothesis is true. The main task in NLOS identification is to find out met-

rics that differentiate NLOS and LOS and enable a binary hypothesis test to identify NLOS

conditions.

1.3 Different categories of NLOS identification techniques

NLOS identification techniques can be cooperative or non-cooperative. Cooperative tech-

niques use multiple nodes that are geographically distributed in an environment to identify
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a NLOS measurement. Non-cooperative NLOS identification are based on single node

channel measurements. The non-cooperative methods can be divided into three groups:

1. based on the range (TOA) statistics: The range is the product of TOA and the speed

of the light. If the LOS path is available, the estimated range is affected by the TOA

estimation error, and therefore is Gaussian distributed. But for NLOS situation, the

estimated range is positively biased and has non-Gaussian distribution. In addition,

NLOS range measurements tends to have a larger variance compared to LOS range

measurements;

2. based on channel characteristics: This includes received signal power, Rician K-

factor and features extracted from the power delay profile; and

3. hybrid methods: These methods explore the consistency between the TOA measure-

ment and path loss for LOS/NLOS, and the consistency between the direction of

departure (DOD) and DOA.

1.4 The main idea

Prior techniques mainly use the statistics attainable by one antenna element to enable NLOS

identification. Examples of these statistics are range statistics [14], Rician K-factor [15],

multipath auto correlation [16] and etc. The performance of these techniques are limited

because the features extraction using one antenna element does not allow high performance
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Figure 1.3: Channel correlation across time

NLOS identification. However, in DOA-based wireless localization systems, multiple an-

tenna elements are available. The spatial channel information exclusively available in mul-

tiple antenna systems has the potential to identify NLOS.

A general impulse response of the radio channel of multiple antenna systems is character-

ized as time-varying, frequency-selective and space-selective [17]. Assuming the location

of the receiver is denoted by a vector x ∈ R
3, the observation time instant is denoted by t

and the multipath delay is denoted by τ , the channel impulse response in NLOS conditions

can be represented by [17]

h(x, t,τ) =
L

∑
l=1

al exp{ j2πλ−1(Ωl · x)}exp( j2πνlt)δ (τ − τl) (1.1)

where λ is the wavelength, al is the complex amplitude, Ωl is the incidence direction, νl

is the Doppler frequency and τl is the delay of the lth impinging wave. Applying Fourier

transform to h(x, t,τ) with respect to the delay τ , the channel frequency response is ob-

tained and denoted by H(x, t, f ).
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Figure 1.4: (a) Channel correlation across frequency (b) Channel correlation across

distance

The channel frequency response H(x, t, f ) varies with the location, time and frequency.

The correlation of channel frequency response at a time separation |E(H(x, t, f )H(x, t +

Δt, f )∗)| is depicted in Figure 1.3. In Figure 1.3, Tc denotes the coherence time. It is

seen that when |Δt| > Tc, the correlation drops to a low level. Let Bc and Dc denotes

the coherence bandwidth and coherence distance, respectively. The correlation at a fre-

quency separation |E(H(x, t, f )H(x, t, f + Δ f )∗)| and the correlation at a space separation

|E(H(x, t, f )H(x+Δx, t, f )∗)| are shown in Figure 1.4.

A similar phenomenon can be observed that when |Δ f | > Bc and |Δx| > Dc, the correla-

tion would drop to a low level. In LOS conditions, the correlation of channel frequency

response would be the sum of the LOS component correlation and the NLOS correlation.

Note that the envelope of LOS component correlation would not change with Δt, Δ f and

Δx. Therefore, when Δt, Δ f or Δx is big enough, the channel correlation under NLOS con-

ditions tends to zero while the channel correlation under LOS conditions stays around the

value of LOS component correlation. These facts form the basis of NLOS identification
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techniques proposed in this dissertation.

1.5 MIMO-OFDM basics

As mentioned earlier, in this dissertation, we propose NLOS identification measures that

are based on statistical features that can be extracted using MIMO-OFDM systems. The use

of MIMO technology in combination with OFDM, i.e., MIMO-OFDM has been adopted as

the solution for emerging wideband wireless standards. These include IEEE 802.11n – the

next generation standard for wireless local networking, IEEE 802.16e – a new standard for

metropolitan area networks, and 3GPP Long Term evolution (LTE) – the next generation

standard for cellular networking. In the following, basics of OFDM and MIMO technology

are briefly described.

1.5.1 OFDM basics

In wideband systems, the symbols received in time domain are subject to inter-symbol

interference (ISI): delayed replicas of previous symbols interfere with the current symbol.

ISI occurs in multi-path channels. Wireless channels represent a filtering effect that is

characterized by the channel coherence bandwidth. ISI is typically generated when the

symbol bandwidth is in the order or higher than the channel coherence bandwidth.

Many techniques are proposed to tackle ISI effects. Equalization is an ISI removal tech-
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Figure 1.5: Multicarrier transmitter

nique that is implemented in the receiver only. Equalization techniques are realized via

complex signal processing techniques that increase the complexity and power consumption

of the receiver. In late 1990’s multicarrier modulation was introduced as a novel approach

that avoids ISI to occur in the first place. In multicarrier modulation, N symbols created

by the channel coder are serial to parallel converted, and each symbol is transmitted over

a unique carrier. The half power bandwidth of original symbols is 1/T s, while the band-

width of them after serial to parallel conversion would be 1/(NT s). Figure 1.5 represents

the operation of multicarrier systems.

By selecting the number of carriers (N) properly, the original wideband symbols are con-

verted to narrowband counterparts, such that the bandwidth of these narrowband signals

becomes smaller than the channel bandwidth. In this case, ISI is avoidable. The frequency

separation between these carriers is properly selected to maintain orthogonality across the

carriers and avoid ISI creation at the receiver as well.

OFDM is the discrete implementation of multicarrier modulation. OFDM systems are
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Figure 1.6: OFDM with IFFT/FFT implementation

simply implemented by an IFFT operation at the transmitter and an FFT operation at the

receiver. Figure 1.6 represents the implementation of an OFDM system. It is depicted that

OFDM systems are mainly implemented via simple digital operations. Therefore, OFDM

modulation reduces receiver complexity.

1.5.2 MIMO basics

MIMO systems use multiple antenna elements at the transmitter and receiver to maintain

high throughput and reliable communication.

The capability of high throughput communication in MIMO systems is realized by spa-
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tially multiplexing several independent data steams onto the MIMO channel under suitable

channel fading conditions. For example, in Figure 1.7, three independent data streams de-

noted by x1(t), x2(t) and x3(t) are simultaneously transmitted via transmit antenna 1, 2 and

3, respectively. The receiver equipped with multiple antennas is able to correctly detect

the three transmitted data streams. The throughput or capacity of a MIMO channel with

n transmit and receive antennas is proportional to n. Note that this throughput is n times

higher than that of single antenna systems.

One of the important problems in wireless communication systems is multi-path fading. In

a multi-path channel the signal received through multiple paths might be added together

destructively. This reduces the performance of receivers in wireless systems. Diversity

combining techniques are proposed to tackle fading in wireless channels. Diversity refers

to the transmission of signals over multiple independent channels. Proper combination

of the signals from these transmission channels yields a resultant with greatly reduced
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severity of fading and accordingly improves reliability of transmission. Different types

of diversity schemes include frequency diversity, time diversity, and space diversity. The

reliable communication in MIMO systems is enabled by exploiting the space diversity. In

Figure 1.7, the data stream x1(t) is received by each receive antenna. The received signals

of x1(t) at each receive antenna are mutually independent when the channel coefficients

from the transmit antenna 1 to each receive antenna are mutually independent. The channel

independency across receive antennas is held for the propagation channels containing a

great amount of spatially distributed scatterers which scatter radio waves.

1.6 Chapter contributions

Chapter 2 reviews NLOS identification techniques in the literature. Chapter 3, Chapter 4,

Chapter 5 and Chapter 6, collectively, propose four new NLOS identification techniques

for multiple antenna systems.

Chapter 2 reviews many cooperative and non-cooperative NLOS identification techniques.

Cooperative techniques use multiple nodes to identify NLOS measurements. Non-cooperative

NLOS identification is based on single node channel measurements, such as range statistics

and features extracted from the power delay profile. In the non-cooperative methods, vari-

ous techniques applied to narrow/wide band systems and ultra-wide-band (UWB) systems

are discussed. Moreover, the advantages and disadvantages, the complexity and perfor-

mance of each technique are discussed.

12



In Chapter 3, channel spatial correlation is proposed to identify NLOS scenarios for nar-

row band multiple antenna systems. In order to obtain the channel spatial correlation, a

new multi-user MIMO channel model for rough surface scattering is proposed. Here, the

scatterers are modeled as random rough surfaces: Any point on rough surfaces scatters the

incident wave into any given direction with certain probability. This leads to correlation

across antenna elements within one user and across users. The closed form expressions for

the intra-user (point-to-point) and inter-user (multi-user) correlation of channel coefficients

across antenna elements are derived. The correlation is affected by the distance between

transceivers, the geometry of the rough surfaces and the roughness of the surfaces. The

impact of these parameters is evaluated.

In Chapter 4, the phase difference statistics across two antenna elements is proposed to

identify NLOS scenarios for narrow band multiple antenna systems. This technique as-

sumes that the phases at two antenna elements are uncorrelated and this is held when the

antenna separation is greater than the coherence distance. The validity of this assump-

tion is verified via channel modeling simulations. A phase wrapping selection algorithm

is proposed to calculate the phase difference variance across two antenna elements. A the-

oretical relationship is maintained between the phase difference variance and the Rician

K-factor. Then, a hypothesis test on the K-factor is formed to identify NLOS situations.

The prior distributions of K-factor under LOS and NLOS conditions, and the K-factor

threshold which are used to distinguish LOS and NLOS situation are derived. The impact

of shadowing on the performance of the proposed NLOS identification method is studied.
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The performance of the proposed phase difference based K estimator is compared with that

of the envelope-based K estimator.

Chapter 5 and Chapter 6 propose a non-line-of-sight (NLOS) identification techniques that

exploit space-frequency channel correlation and space-time-frequency channel correlation

of wide band systems using multi-input multi-output (MIMO) orthogonal frequency divi-

sion multiplexing (OFDM) signaling. Here, space-time correlation refers to the correlation

across antenna elements and time, and frequency correlation refers to the correlation across

subcarriers. Two groups of metrics are proposed for NLOS identification. The first group

of metrics are based on space-frequency channel correlation and these metrics require min-

imal variation of spatial correlation across different multi-path components. The channel

model satisfying this requirement is studied. For the channel models fail to meet minimal

variation requirement, a second group of metrics based on space-time-frequency channel

correlation are applied. The probability of detection performance of the new NLOS identi-

fication method is investigated.
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Chapter 2

A Review on NLOS Identification Techniques in

the Literature

When line-of-sight (LOS) is not available, i.e., in non-LOS (NLOS) conditions, direction-

of-arrival (DOA) and time-of-arrival (TOA) techniques would involve with considerable

errors. To address this problem, many techniques have been proposed to identify LOS

conditions. If the NLOS situations are identified, the corresponding measurements should

be excluded from the localization process to eliminate the corresponding NLOS error.

This chapter reviews many NLOS identification techniques. NLOS identification tech-

niques can be categorized into cooperative and non-cooperative. Cooperative techniques

use multiple nodes to identify NLOS measurements. Non-cooperative NLOS identifica-

tion is based on single node channel measurements. These techniques are based on: (1) the
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range (TOA) statistics; (2) channel characteristics, such as received signal power, Rician K-

factor and features extracted from the power delay profile; and (3) the consistency between

the TOA measurement and path loss for LOS/NLOS, and the consistency between the di-

rection of departure (DOD) and DOA. In the second group, suitable channel characteristics

used in narrow/wide band systems and ultra-wide-band (UWB) systems are discussed.

2.1 Introduction

This chapter reviews many NLOS identification techniques in the literature. In addition,

the advantages and disadvantages, the complexity and performance of each technique are

discussed.

The rest of this chapter is organized as follows. In Section 2.2, cooperative NLOS identi-

fication is introduced. In Section 2.3, NLOS identification techniques based on the range

statistics are presented. In Section 2.4, NLOS identification techniques based on chan-

nel characteristics are presented. Section 2.5 presents miscellaneous NLOS identification

methods. In Section 2.6, the NLOS identification methods presented in previous sections

are compared in terms of requirements and performance. Section 2.7 concludes this chap-

ter.

16



LOS base node

NLOS base node

Target

Estimated Target

(xi, yi)

(x, y)
  i

i 

Figure 2.1: NLOS identification based on DOA residual testing

2.2 Cooperative NLOS identification

When multiple based nodes are involved in determining the position of a target, base nodes

(BNs) located in the LOS of a target produce consistent localization results, but BNs in

the NLOS condition produce inconsistent localization results. Because inconsistent NLOS

measurements tend to have large residuals, residual testing is an approach that can iden-

tify NLOS measurements. Many residual testing techniques have been proposed in the

literature. Here we present a summary of those techniques.

2.2.1 DOA residual testing

This approach has been proposed in [9]. In this method, it is assumed that there are N BNs

at known locations (xi,yi), i = 1 . . .N as illustrated in Figure 2.1. All BNs can measure

DOAs of the signal transmitted by the target. Let θi be the DOA measured by BN i. The

NLOS identification procedure consists of the following steps:
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1. Find the maximum likelihood position (x̂, ŷ) of the target using all DOA estimates.

2. Calculate the DOA residual ψi (see Figure 2.1) which is the absolute difference of θi

and the DOA obtained via the estimated target position (x̂, ŷ).

3. Select the NLOS BNs whose ψi > 1.5RMS(ψ). RMS(ψ) denotes the root mean

square of ψi.

After excluding the NLOS BNs, the maximum likelihood position of the target is estimated

again and the positioning accuracy is improved. The simulation result shows that when

there are 4 LOS BS and 1 NLOS BS, applying NLOS identification can cut the root mean

square positioning error greatly, from 1.2 km to 125m, which meets E911 requirements.

2.2.2 Time-difference-of-arrival (TDOA) residual

This approach defined in [18] takes into account the fact that NLOS error is always positive.

Assuming the measurement noise under the LOS condition is Gaussian distributed, the

residual ei is expressed as

ei = 0.5+0.5 erf

(
mi − fi(θ̂)√

2σi

)
(2.1)

In (2.1), erf(·) is the error function defined as erf(x) = (2/
√

π)
∫ x

0 e−t2
dt, mi represents

the TDOA measurement of BN i and the reference BN, θ̂ is the estimated target position

using all measurements, fi(θ̂) is the BN i’s TDOA given the target position θ̂ and σi is the
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square root of the measurement noise variance. The higher this residual, the more likely

the measurement mi is biased by NLOS error(s). Then the residual is compared with the

threshold λ and those BNs with residuals larger than λ are labeled as NLOS BNs. When

there is only one NLOS BN out of a total of 6 BNs, the identification probability can attain

0.79. However, this probability decreases when less BNs are available or more NLOS BNs

are present.

2.2.3 Residual distribution testing

This approach finds the set of LOS BNs [19]. let there be N BNs which use TOA estimates

to locate target nodes. The minimum number of BNs required for obtaining an estimate

of the target position is three. Therefore, there are a number of position estimates corre-

sponding to different combinations of BNs and the total number is S = ∑N
i=3 NCi where

NCi represents the number of i-element combination out of N elements, i.e., NCi = N!
i!(N−i)! .

Then the normalized residuals are defined as

χ2
x (k) =

[x̂(k)− x̂]2

Bx(k)

χ2
y (k) =

[ŷ(k)− ŷ]2

By(k)
, k = 1, . . .S−1 (2.2)

where (x̂(k), ŷ(k)) represents the target position estimate using the kth BN combination,

(x̂, ŷ) is the estimation involving all BNs, and Bx(k), By(k) are the approximations of the

Cramer-Rao lower bound (CRLB) on the estimation error of the respective x and y target
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coordinates. If all N BNs are in the LOS condition,
x̂(k)−x̂√

Bx(k)
and

ŷ(k)−ŷ√
By(k)

are approximately

Gaussian distributed with zero mean and unit variance. Therefore, the normalized residuals

in (2.2) have an approximate central χ2 pdf. If one or more BNs are in NLOS condition,

the means of (x̂(k)− x̂) and (ŷ(k)− ŷ) are biased by the NLOS measurement. Therefore,

the normalized residuals have a non-central χ2 pdf. The non-central χ2 distribution can

be detected using the fact that the probability of the central χ2 distributed random variable

being greater than 2.71 is 0.02. Thus, the appearance of a value higher than the threshold

T H = 2.71 indicates that there is one or more NLOS measurements with high likelihood.

The identification steps are as follow:

1. The normalized residuals defined in (2.2) are calculated for a total number of N BNs.

2. The residuals are compared to T H = 2.71. Then, the cases χ2
x > T H and χ2

y > T H

are counted.

3. If less than 10% of the residuals are above T H, then the number of LOS BN is D = N.

Otherwise, the test moves to (N −1) BNs.

4. This process stops when it has determined a D, or when D = 3.

5. The excluded BNs are identified as NLOS.

Simulations show that the location mean square error (MSE) is close to the CRLB for more

than 4 LOS BNs. But for 3 LOS BNs, identifying the NLOS BNs is difficult and the

location MSE is higher.
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The pros and cons of the cooperative NLOS identification approaches are summarized as

Pros

† NLOS conditions are selected in a way that the position estimation error can be

reduced.

Cons

† In order to correctly detect NLOS measurements in residual testing, there should be

at least 4 LOS BNs, while in real environments rarely enough LOS BNs are available.

† The locations of all BNs are required.

† The computation complexity is high and it increases with the number of BNs.

In Section 2.3, single node identification methods are studied. Single node methods do not

require LOS BNs or the locations of any BN and their complexity is not high in general.

2.3 NLOS identification based on the range statistics

Range refers to the distance between the BN and the target. Range is computed by multi-

plying TOA and the speed of light. NLOS can be identified based on the features derived
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from the time series of the range estimates [14, 20, 21, 22] or the features from the range

estimates across different frequency bands [23].

In this section, first, the methods that are based on range measurements over time are inves-

tigated and next the methods that are based on range measurement over different frequency

bands are studied.

2.3.1 Techniques based on range measurements over time

For LOS and NLOS situations, the ith range measurements can be modeled as

LOS: ri = di +ni

NLOS: ri = di +ni + ei, i = 1, . . . ,N (2.3)

where di is the true LOS range, ni is the measurement noise, and ei is the NLOS error.

In (2.3), ni is modeled as Gaussian distributed with zero mean and variance σ2, and ei is

modeled by a random variable which is exponentially [24] or Gaussian distributed [20]

with positive mean μe and variance σ2
e . Normally, ni and ei are independent. Empirical

measurement in [25] shows that the NLOS error is more irregular than the measurement

noise, which results in σ2
e > σ2. Therefore, a hypothesis test can be formed based on the

pdf or the variance of the estimated range. Note that this technique usually assumes that the

target is moving and thus the positions of reflectors between transceivers change with time.
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Therefore, the NLOS range measurements change over time and have a larger variance.

The testing based on range variance is used when there is not a priori information about

the NLOS error (such as pdf, mean and variance) [20]. The measurement noise variance

σ2 is usually known, as it is determined by the range estimation method. Let σ̂2 denote the

estimated range variance and the hypothesis testing is given by

H0 : σ̂2 = σ2(LOS condition)

H1 : σ̂2 > σ2(NLOS conditon) (2.4)

The decision rule is

σ̂2

H1

≷

H0

η (2.5)

The threshold η may vary with the availability of a priori information: If only the noise

variance is known, η is σ2; If the NLOS error variance σ2
e is known, η = σ2

e /2; The

threshold η can also depend on the typically known maximal velocity of the object [26]. In

reality, the true range di varies with time i and a polynomial fitting is used to compute the

range variance σ̂2 [14]. The true range is reconstructed via the polynomial fitting, and the

23



reconstructed range is denoted by si. Then, the range variance can be calculated

σ̂2 =

√
1

N

N

∑
i=1

(si − ri)2 (2.6)

The testing based on the range distribution can be divided into two groups: parametric and

non-parametric. In parametric methods, part or complete a priori information is known

such as the likelihood of LOS and NLOS error pdf. Assuming Gaussian NLOS error,

reference [20] discusses parametric NLOS identification and forms a couple of likelihood

ratio tests for different levels of a priori information. For example, if the likelihood of LOS

and the pdf of NLOS error are known, and the true LOS range is not known, a generalized

likelihood ratio test (GLRT) can be used, which corresponds to

Λg(r) =
maxd+μe fnlos(r)

maxd flos(r)

H1

≷

H0

P(LOS)
P(NLOS)

(2.7)

where r is a vector of range measurements, r = [r1, . . . ,rN ], d is the true LOS range, fnlos

and flos represent the pdfs of LOS and NLOS range measurement, P(LOS) and P(NLOS)

are the likelihoods of LOS and NLOS hypotheses, respectively.

Because the NLOS distribution is site-specific, its characterization is very difficult. In these

cases, the non-parametric technique which does not assume the knowledge of NLOS error
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statistics can be used in NLOS identification. In [22, 21], it is assumed that it is only known

that the NLOS error is not Gaussian. Tests for the normality of the range measurements are

developed in [21]. In [22], a metric measuring the distance between two pdfs are introduced

and the distances between the candidate LOS range pdfs and the range measurements pdf

are computed. Then, LOS is decided when the minimum pdf distance is smaller than the

threshold, and NLOS is decided otherwise.

2.3.2 Techniques based on the range measurements over different frequency bands

Based on channel measurements in a typical indoor environment, the authors of [23] show

that under LOS condition estimated ranges are similar across sub bands, but under NLOS

condition they are drastically different across sub bands. The difference of ranges across

sub bands is due to the different propagation characteristics across sub bands: higher op-

erational frequency means lower penetration capabilities. In other words, signal at higher

frequency bands may not penetrate blockage and experience a NLOS propagation while

signal at lower frequency bands may penetrate blockage and still experience a LOS prop-

agation. Thus, the LOS ranging measurements over sub bands have a small variance and

the NLOS ranging measurements over sub bands have a large variance. Let σ denote the

standard deviation of the ranging measurements and let fnlos and flos be the pdfs of σ for
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respective hypothesis. The decision rule is

fnlos(σ)
flos(σ)

NLOS

≷

LOS

σsh (2.8)

where flos, fnlos and the threshold σsh need to be determined experimentally. This method

can be implemented on multi-band orthogonal frequency division multiplexing (OFDM)

systems. The multi-band approach requires a frequency hopping capable RF front end and

therefore the cost and the complexity are higher. It would be a cheaper solution to combine

radio ranging signal and low frequency sound (such as in [27]). How their ranging is

different under different channel conditions needs to be investigated.

A summary of this part is given in Table 2.1. A general disadvantage of range statistics

based methods is the latency (about 5 seconds) due to using time series of the range es-

timates. Therefore in Section 2.4, faster NLOS detection methods are studied. When the

BN and the target are both stationary, which means that the signal traveling path does not

change, this method would fail because the range statistics will not differ considerably for

LOS and NLOS situations.
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Table 2.1: A summary on range statistics based methods

Estimated range

pdf
Range variance

Range variance across

sub bands

LOS Gaussian Small Small

NLOS Non-Gaussian Large Large

Cons Not for stationary

BN and target

Not for stationary

BN and target

Only for multi-band

UWB

Latency

2.4 NLOS identification based on channel characteristics

This section investigates NLOS identification approaches based on channel characteristics.

Almost all channel characteristics mentioned here are extracted from the power delay pro-

file of the received signal.

Since the power delay profile exhibits differently for systems with different bandwidth, this

discussion includes methods for narrow and wideband systems and UWB systems.

2.4.1 Narrow and wideband systems

In this case, the power envelope distribution of the received signal can be used to identify

NLOS [28], because the power distribution of the first arriving path is usually modeled as

Rayleigh fading for NLOS condition and Rician fading for LOS condition [29]. Here is the

identification process:

1. Estimate the pdf of the first arriving path power. To correctly estimate this pdf, a
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set of independent fading coefficients are needed. The fading coefficients would be

considered independent if they are separated by at least a coherence time.

2. Compare the estimated pdf to some reference pdfs, such as Rayleigh or Rician, via

Pearson’s test statistic [15] or Kolmogorov-Smirnov test [28].

3. Form a hypothesis test on the comparison result and make a decision.

This method has two disadvantages: (1) the observation interval should be long enough to

compute the accurate pdf of the first path power. As reported in [15], this time interval is in

the order of one second; and (2) when the LOS component is much smaller than the NLOS

component in the first path, it is difficult to distinguish the power distribution under LOS

condition from the distribution under NLOS condition, i.e., Rayleigh.

In order to further reduce the observation time, an approach based on the Rician K factor

of the first arriving path is proposed in [30, 15]. Rician K factor is defined as the ratio of

LOS and NLOS component powers. When there is no LOS component (NLOS condition),

K = 0 by its definition. When LOS component exists, K > 0. In [15], the Rician K factor

is estimated, denoted by K̂ and the LOS state is weighted according to a pre-defined scale:

if K̂ > Kmax decide LOS

if Kmin < K̂ < Kmax the probability of LOS is: (K̂ −Kmin)/(Kmax −Kmin)

if K̂ < Kmin decide NLOS

(2.9)
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In [30], a simplified hypothesis testing is used:

K̂ > 1, decide LOS

K̂ < 1, decide NLOS

(2.10)

The time required to estimate K is around 10 milliseconds reported in [15].

Another approach to identify NLOS depends on the autocorrelation properties of each mul-

tipath component [31, 16]. The autocorrelation of multipath components indicates how the

corresponding fading coefficient varies with time. If fading coefficients vary fast, the auto-

correlation is low. Otherwise, the autocorrelation is high. The NLOS multipath component

coefficient usually varies fast, since it consists of numerous time-varying irresolvable paths.

The presence of LOS component in the first path provides higher autocorrelation as com-

pared to the other paths which do not include LOS component, because the LOS component

coefficient has a deterministic structure and varies slowly. If there is no LOS component

in the first path, the autocorrelation of the first path would be comparable to the following

paths. This observation can be used to identify the existence of the LOS component.

2.4.2 Ultra-wide-band (UWB) systems

UWB enables precise ranging and localization via incorporating extremely short duration

pulses. In this case, the multipath components of the received signal can be well resolved.

Therefore, it is a very promising technique for indoor localization. Moreover, the UWB
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channel models have been intensively characterized for LOS and NLOS channel conditions

[32], based on which some metrics distinguishing LOS and NLOS are studied.

In [26], a confidence metric is given as a function of the amplitude α1 and the arrival time

τ1 of the first path, and the strongest path amplitude αmax and the respective arrival time

τmax. Based on the observation that compared to the first path, the subsequent multipath

components should have lower power in the LOS case and vice versa in the NLOS case,

the confidence metric would be high for LOS case and low for NLOS case. Another similar

approach is proposed in [33]. Here, the first path power |α1|2 and the delay of the strongest

path, i.e., τmax − τ1 are used to form a joint likelihood ratio test as follows:

J(|α1|2,τmax − τ1) =
flos(|α1|2)
fnlos(|α1|2) ×

flos(τmax − τ1)
fnlos(τmax − τ1)

LOS

≷

NLOS

1 (2.11)

A disadvantage of these two methods is that they may mistakenly detect non-dominant

direct path (NDDP) channel condition as NLOS, because in NDDP cases the direct path

(LOS) is not the strongest but still detectable by an appropriate receiver architecture.

A method based on the change of signal power is proposed in [26]. The principle is that a

sudden decrease of the maximum signal power |αmax|2 could indicate the movement from a

LOS into a NLOS condition, and vice versa. The LOS and NLOS states are detected when

the transition between LOS and NLOS occurs, therefore it is not suitable for the case when
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the channel stays at one state for a long time.

NLOS identification methods based on RSS test are proposed in [34, 35]. RSS is defined

as the total received power of the received signal. The received signal h(t) is

h(t) =
L

∑
l=1

αlδ (t − τl) (2.12)

where L is the total number of multi-paths, αl is the amplitude of the lth multi-path, and τl

is the delay of the lth multi-path. Then, RSS is represented by

RSS =
L

∑
l=1

|αl|2 (2.13)

RSS can be easily measured by most wireless devices. The estimated RSS has been mod-

eled as a lognormal random variable with different variances in LOS and NLOS scenarios

[34]. Then a likelihood ratio test similar to (2.8) can be applied to determine LOS or NLOS.

In [35], RSS is modeled by Weibull distribution based on measurements.

Other metrics can be extracted from the received multi-path signal h(t), and similar hypoth-

esis testings can be formed to identify NLOS. Those metrics include mean excess delay,

Delay spread, kurtosis, skewness [34, 12, 36, 37], and they are defined as follows:
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mean excess delay

τm =
∫ ∞
−∞ t|h(t)|2dt∫ ∞
−∞ |h(t)|2dt

(2.14)

where h(t) is defined in (2.12)

delay spread

τrms =
∫ ∞
−∞(t − τm)2|h(t)|2dt∫ ∞

−∞ |h(t)|2dt
(2.15)

Here, τm is defined in (2.14)

kurtosis

κ =
E[(|h(t)|−μ|h|)4]

σ4
|h|

(2.16)

where E(·) denotes expectation over delay, and μ|h| and σ|h| are the mean and stan-

dard deviation of |h(t)|, respectively.

skewness

s =
E[(|h(t)|−μ|h|)3]

σ3
|h|

(2.17)

Some of the above metrics can be combined as shown in (2.11) to achieve higher identifi-

cation performance [12, 37, 35, 34].
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All metrics introduced for NLOS identification in UWB systems can be obtained from a

snapshot of the received multi-path signal. In other words, no statistics information over

time (variance, mean, pdf and so on) needs to be collected. Therefore, the NLOS identifi-

cation process speed is very fast.

The pdfs of these metrics are required for likelihood ratio tests. In some cases these pdfs

are unavailable. In these scenarios, self-learning techniques used in classification problems

can be applied. Examples are support vector machine [38] and neural network [35]. In

those methods, a training set is needed, which is a group of channel characteristics data

with known LOS/NLOS conditions. Then, the pattern of LOS data and NLOS data can be

learned from the training set and the recognized pattern is used to identify NLOS scenario.

A summary of NLOS identification based on channel characteristics and their performance

are tabulated in Table 2.2. The identification probability can be one of the followings: the

correct decision probability under LOS defined as P(LOS|LOS), and the correct decision

probability under NLOS defined as P(NLOS|NLOS), the overall correct decision prob-

ability defined as P(LOS)P(LOS|LOS) + P(NLOS)P(NLOS|NLOS), where P(LOS) and

P(NLOS) are a priori probabilities of respective LOS and NLOS scenarios. In general, the

performance order is self-learning techniques > combined metrics > single metric.
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Table 2.2: A summary on channel characteristics based methods

Channel charac-

teristics
LOS NLOS

Identi-

fication

proba-

bility

Application/Note

First arriving path

power pdf
Rician Rayleigh N/A

Narrow and wide

band, [28, 15]

Rician K factor High Low
71.6-

80.0%

Narrow and wide

band[15, 30, 39]

Multipath auto-

correlation
High Low N/A

Wide band [31,

16]

Confidence met-

ric
High Low

93-

100%

UWB, NDDP de-

tected as NLOS,

[26]

First path power

|α1|2 & delay of

strongest path

τmax − τ1

Large |α1|2 &

small τmax − τ1

Small |α1|2 &

large τmax − τ1

87.3-

93.6%

UWB, NDDP de-

tected as NLOS,

[33]

Change of power
Increases from

NLOS to LOS

Decreases from

LOS to NLOS

60.3-

100%

UWB, only de-

tect transition,

[26]

RSS High Low 78.30% UWB, [34, 35]

Delay spread Small Large
61.7-

100%

UWB, [34, 12,

26]

Mean excess de-

lay
Small Large

74.3-

100%
UWB, [12]

Kurtosis High low
66.3-

98.4%
UWB, [12, 36]

Skewness High Low N/A UWB, [37]

Combined met-

rics

81.8-

99.9%

UWB, [12, 37,

35, 34]

Self-learning

techniques
91-92% UWB. [38, 35]

2.5 Hybrid approaches

In this section, we introduce hybrid NLOS identification techniques. For either LOS or

NLOS condition, a relationship can be maintained across different channel metrics. For
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example in LOS condition, as the TOA increases, it is expected that the RSS decreases

following LOS path loss model. Here, the consistency between different channel metrics

is explored to perform NLOS identification.

TOA and RSS matching techniques are discussed in [28, 40, 41]. The intuition behind

this method is that if the measured TOA is for a LOS/NLOS BN, then the received power

should obey the LOS/NLOS propagation channel model. In [28], the received power is

computed from the LOS and NLOS Walfisch-Ikegami path loss model where the distance

is substituted with the measured range. Then, the computed power is compared with the

measured power (RSS) to see whether it is closer to the LOS model or to the NLOS model.

In [40], the likelihood ratio is given as

f (L̂p|d̂,Hn)
f (L̂p|d̂,Hl)

Hn

≷

Hl

κ (2.18)

where L̂p is the estimated path loss, d̂ is the estimated range, Hn and Hl are the respective

hypotheses of NLOS and LOS, and κ is the threshold that depends on the preassigned false

alarm probability.

Three kinds of channel link conditions can be identified in [41]. The likelihood ratio is per-

formed on the conditional pdfs f (Ci|d̂, L̂p), i = 0,1,2, where C0,C1,C2 refer to the channel
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0

0

Figure 2.2: The relationship of DOD and DOA of LOS component

link condition: LOS, NDDP, NLOS respectively.

When both sides of the communication channel are equipped with an antenna array, DOA

and DOD matching method can be used to identify NLOS [40]. This method is based on

an observation of LOS component as illustrated in Figure 2.2: θ0 = φ0. This relationship

does not hold for NLOS components.

2.6 Comparison of NLOS identification methods

Table 2.3 compares different NLOS identification methods in terms of hardware complex-

ity, software complexity, SNR requirement, processing time and performance. When the

antenna array is required, the hardware complexity is considered medium to high. When

the DOA or TOA needs to be estimated, the SNR should be high. When the statistics infor-

mation needs to be collected or the algorithm is complex, it needs a longer processing time.

It is observed that channel characteristics-based and antenna array-based methods maintain

a good trade-off between requirements and performance: fair to good performance may be

achieved with low to medium requirements.
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Table 2.3: Comparison of NLOS identification methods

Hardware

complexity

Software

com-

plexity

SNR

require-

ment

Processing

time
Performance

Cooperative

methods

Low-

medium
High High

Medium-

high

Good for ≥4

LOS BNs

Range statistics

based
Low Low High High Fair

Channel charac-

teristics based
Low

Low-

medium

Low-

medium

Low-

medium
Varying

Hybrid methods

Low

(high for

DOD&DOA

matching)

Low High Low Fair-Good

2.7 Conclusion

This chapter reviews NLOS identification techniques in the literature. There are a variety

of NLOS identification methods with different complexity and performance levels. The co-

operative NLOS identification techniques performs well only when there are enough LOS

measurements, and the software complexity is high. The range statistics based methods

require a high SNR for TOA estimation and also require a long processing time to acquire

statistics. Moreover, they may fail to correctly identify NLOS when base nodes, the tar-

get node and the scatterers are all stationary. The channel characteristics based and hybrid

methods provide a good trade-off between requirements and performance.
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Chapter 3

NLOS Identification Using Spatial Correlation

A novel approach for modeling multi-user multi-input and multi-output (MIMO) channels

is proposed. Here, the scatterers are modeled as random rough surfaces: Any point on

rough surfaces scatters the incident wave into any given direction with certain probability.

This leads to correlation across different spatially distributed users.

The closed form expressions for the intra-user (point-to-point) and inter-user (multi-user)

correlation of channel coefficients across antenna elements are derived. It is observed that

the distance of users relative to the scatterer surfaces as well as the degree of roughness

impact the correlation region. The technique is applied to both non-line-of-sight (NLOS)

and line-of-sight (LOS) scenarios. The spatial correlation of channel coefficients across

antenna elements is proposed as a metric for NLOS identification.
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3.1 Introduction

Multiple input and multiple output (MIMO) wireless communication, featured by multiple

antenna elements at the transmitter and receiver, has the potential to increase throughput

capacity in rich multipath environments, without increasing transmit power and bandwidth

[42, 43]. Here, the performance is enhanced by the spatial properties of the multipath chan-

nel, which is characterized by MIMO channel impulse response matrix. Therefore, MIMO

propagation channel modeling is an important prerequisite for evaluating the performance

improvements of MIMO systems, such as capacity [42], diversity gain and multiplexing

gain [44]. In addition, it is crucial for designing and evaluating space-time coding tech-

niques [45] and transceiver architecture [46] for such systems.

In early MIMO research, a rich scattering environment is assumed, leading to a circularly

symmetric complex Gaussian distributed MIMO channel with independent fadings across

different antenna pairs [42, 45]. Due to the analytical feasibility, this statistical model is

quite often used. However, the assumption of independent fading across antenna pairs does

not always hold in real scenarios where a rich scattering environment may not be available.

Spatial correlation of one-ring model is first investigated by Jakes [47]. Moreover, [48] first

employs the one-ring model to study the fading correlations in MIMO systems. In addition,

the effect of spatially correlated fading on MIMO capacity is analyzed in [48] and [49].

Recently, various spatially correlated MIMO channel models have been studied to describe

40



the statistics of the channel matrix. These models include Kronecker product form (KPF)

[50], virtual channel representation (VCR) [51] and W-model [52]. The applications of all

those models are subject to restrictions: W-model requires the eigenbasis of the transmitter

and receiver to be separable [53]; VCR is suitable for large dimension linear arrays; KPF

is applicable to environments where both the transmitter and receiver are only surrounded

by local scatterers [54]. Another approach in MIMO channel modeling is to describe the

properties of the physical multipath propagation channel. Such models are summarized in

[55] and an easy-to-use spatio-temporal correlation function of MIMO channel is presented

in [56].

Similarly, in recent studies, the channel across different users in multi-user scenarios has

been assumed independent. The correlation across the channel of multiple users impacts

the sum transmission rate and accordingly the design of transmission schemes. For exam-

ple, transmission schemes for MIMO broadcast systems with partial channel information

has been studied in [57]. We have not encountered a topic on correlated multi-user MIMO

channel modeling in articles of this research area. In addition, there is a lack of corre-

lated multi-user models; none of the introduced single user MIMO channel models can be

conveniently extended to correlated multi-user scenarios.

Here, we propose a novel approach for modeling multi-user MIMO channels. The tech-

nique enables us to study the channel correlation across antenna elements within one user

and across users. This is accomplished by characterizing the key features of physical en-
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vironments, which include the geometry and roughness of scattering surfaces. Here, we

model the scatterers as a random rough surface with its height being a Gaussian process.

Accordingly, any point of the rough surface scatters the incident wave into various direc-

tions with the certain probability. This leads to the correlation of signals across multiple

users. An example of the relevant scenarios are users located within a valley (e.g., hilly

area). In addition, under certain conditions, scatterers located in streets might be similarly

modeled.

Technically, Kirchhoff theory [58, Ch.3] is used to calculate the statistics of scattered fields,

which is also known as tangent plane or physical optics theory. It is the most widely used

theory in the study of wave scattering from rough surfaces: It gives relatively simple analyt-

ical expressions for scattered field amplitudes, being readily compared with the experiment

results.

In this chapter, the intra-user and cross-user correlation is derived based on Kirchhoff the-

ory. It studies the impact of the incident angle, the distance of the transmitter and the

receiver, the surface roughness, and the ratio of the power of the line-of-sight (LOS) and

non-LOS (NLOS) on the correlation. The results confirm that: (a) Higher roughness leads

to lower correlation; (b) topography plays the main role in the shape of the correlation;

(c) more signal power spreads out for larger roughness; (d) the roughness impact would

be lower when the incident angle gets smaller; and (e) LOS signals drastically boosts the

correlation. .
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Figure 3.1: Two-user channel for the scattering environment within a valley.

The remainder of the chapter is organized as follows: Section 3.2 presents the multi-

path two-user channel model and the definitions of LOS and NLOS channel coefficients.

Moreover, the proposed single-user MIMO model is compared with some widely accepted

MIMO channel models [50]-[52]; Section 3.3 derives a closed form for the intra- and inter-

user spatial correlation functions; Section 3.4 presents the numerical evaluation of the cor-

relation; Section 3.5 concludes this chapter.

3.2 multipath two-user MIMO channel matrix

As shown in Figure 3.1, we consider a simple multi-user broadcast scenario where one base

station (BS) deployed with N antennas is capable of transmitting symbols simultaneously

to User 1 and User 2, both equipped with M antennas.
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Figure 3.2: Signal arrivals and departures for multi-user MIMO channel.

3.2.1 NLOS and LOS channel matrices

Figure 3.1 represents the scattering environment encountered by users located within a

valley that is formed by two rough scattering planes represented by the top and the bottom

lines. The two scattering planes are partitioned into P segments of length 2L and single

bounce reflection is assumed.

In the remainder of this chapter, “scatterer” refers to a segment of a rough scattering plane.

We also assume two users are closely located. Thus, the scatterers contributing to the

transmission paths between BS and User 1 will contribute to those between BS and User 2

and vice versa. In other words, the scatterers “seen” by User 1 and BS are the same as those

“seen” by User 2 and BS. In addition, we assume any point of the rough surface scatters
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the incident energy toward any given direction with certain probability.

In the derivations, we assume the symbol duration is much larger than the delay incurred

by different scatterers, i.e., flat fading. Developed from the double-directional propagation

model [59], the channel matrix for User 1, HNLOS
1 , for a NLOS scenario, corresponds to

HNLOS
1 = (er(φ1) . . .er(φP))

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 · · · 0

...
. . .

...

0 · · · aP

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

eT
t (ϕ1)

...

eT
t (ϕP)

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.1)

=
P

∑
p=1

aper(φp)eT
t (ϕp) (3.2)

where the scatterer or transmission path denoted by p has a coefficient of ap, makes an an-

gle of φp with the receive antenna array, and an angle of ϕp with the transmit antenna array.

A detailed scattering geometry of one segment (scatterer p) is sketched in Figure 3.2. When

a signal departs from or arrives at an antenna array, the signal phase at Antenna 1 is taken

as reference and at the remaining antennas additional phases are incurred due to relative

delay. In (3.2), er(φp) and er(ϕp) are array vectors consisting of such phase shifts. Assum-

ing uniform linear arrays and all antenna arrays are perpendicular to the scatterer surface as

shown in Figure 3.2, er(φp) = (1,exp(− j2πdr sinφp), . . . ,exp(− j2π(M − 1)dr sinφp))T ,

et(ϕp) = (1,exp(− j2πdt sinϕp), . . . ,exp(− j2π(N −1)dt sinϕp))T where dt and dr are the

receive and transmit antenna separation normalized to wavelength λ , respectively.

The antennas radiation pattern and polarization may be considered in the channel model
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(3.2). The radiation pattern for each antenna element can be characterized by the azimuth

gain Gr(φp) and Gt(ϕp) for the receiver and transmitter, respectively. Therefore the channel

formulation (3.2) can be rewritten as

HNLOS
1 =

P

∑
p=1

apGr(φp)Gt(ϕp)er(φp)eT
t (ϕp) (3.3)

It is expected that differing polarization between the incoming waves and the receive an-

tennas reduces the received power. In the derivation of (3.30), we assumed linearly polar-

ized incident wave for the transmit antennas. This has been underlined in the assumptions

presented after (3.32). If the incident wave is vertically or horizontally polarized, it is rea-

sonable to consider the polarization of the scattered field unchanged and there is no power

reduction at a receiver whose antenna has the same linear polarization [58, Ch.8] However,

if the polarization of the scattered field is changed, a polarization mismatch loss will be

introduced on ap in (3.2), which in turn impacts the channel correlation.

Similarly, a channel matrix for User 2 corresponds to

HNLOS
2 =

P

∑
p=1

bper(ψp)eT
t (ϕp) (3.4)

where the angle of departure (AOD) characterized by the left array vectors remains the

same as in (3.2), the signal directed to User 1 with angle of arrival (AOA) φp reaches User
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2 at a new angle ψp, determined by the location information of User 2 relative to User 1

and the scatterer. Note that H1 in (3.2) differs from H2 in (3.4) in the angle of arrival (φp

and ψp) and associated path coefficient (ap and bp).

Using (3.2), the channel coefficients from the BS’s Antenna n to the User 1’s Antenna m

for NLOS and LOS are:

h(1)NLOS
mn =

P

∑
p=1

ap exp
(
− j2π

(
dr(m−1)sinφp

+dt(n−1)sinϕp
))

(3.5)

h(1)LOS
mn = a0 +h(1)NLOS

mn (3.6)

where the scatterer or transmission path p, p∈{1,2, . . . ,P}, has the coefficient of ap, which

is a complex random variable. In addition, a0 represents the LOS component and:

a0 =
√

K1Ω1e− j2π/λd1 (3.7)

Here Ω1 = E(|h(1)NLOS
mn |2) (E(·) denotes statistical expectation and | · | represents absolute

value), K1 is the Rice factor, defined as the ratio of the direct path power to the diffuse

component power, i.e., K1 = |a0|2/Ω1, λ is the wavelength, and D1 denotes the distance

between BS and User 1.

The channel coefficients from BS Antenna s to User 2’s Antenna t can be similarly defined,
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with b0 representing the LOS component and K2 representing the Rice factor of User 2.

Uncorrelated scatterers coefficients are assumed, i.e.,

E(aia∗j) = 0, E(bib∗j) = 0, E(aib∗j) = 0,

if i �= j i, j = 1,2, . . . ,P (3.8)

where ∗ denotes conjugate. These hold because the surface profiles of different segments

are uncorrelated (see (3.22) and the assumption of L � T before (3.33)).

Let us define the normalized spatial correlations between the channel coefficients across

users (inter-user) and within one user (intra-user):

Inter-user

γ(1)(2)NLOS
mn,st = E(h(1)NLOS

mn h(2)NLOS∗
st )/E(|h(1)LOS

mn |2) (3.9)

γ(1)(2)LOS
mn,st = E(h(1)LOS

mn h(2)LOS∗
st )/E(|h(1)LOS

mn |2) (3.10)

Intra-user

γ(1)(1)NLOS
mn,st = E(h(1)NLOS

mn h(1)NLOS∗
st )/E(|h(1)LOS

mn |2) (3.11)

γ(1)(1)LOS
mn,st = E(h(1)LOS

mn h(1)LOS∗
st )/E(|h(1)LOS

mn |2) (3.12)
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where the normalization factor E(|h(1)LOS
mn |2) is selected as the maximum correlation which

happens when User 2 coincides with User 1 in LOS scenarios. Therefore, the generated

normalized correlation lies within the interval [0, 1].

Assuming uncorrelated scattering, the spatial correlations would correspond to:

E(h(1)NLOS
mn h(2)NLOS∗

st ) =
P

∑
p=1

E(apb∗p)exp(− j2π(dr((m−1)sinφp

− (s−1)sinψp)+dt(n− t)sinϕp)) (3.13)

E(h(1)NLOS
mn h(1)NLOS∗

st ) =
P

∑
p=1

E(apa∗p)exp(− j2π(dr((m− s)sinφp)

+dt(n− t)sinϕp)) (3.14)

In order to evaluate the intra-user and inter-user correlations, E(apb∗p) and E(apa∗p) are

evaluated in Section 3.3.

3.2.2 Comparison with other channel models

In this section, the benefits and limitations of the proposed model are discussed and com-

pared with respect to some widely accepted single-user MIMO models, i.e., Kronecker

product form (KPF), virtual channel representation (VCR) and W-model. First, the basis
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of those models is introduced. The KPF model, which is reported in [50], assumes separate

correlation at the transmitter and the receiver. With N transmit antennas and M receive

antennas, the channel matrix is expressed as

H = G
1
2
RX Hi.i.dG

1
2 T
T X (3.15)

where Hi.i.d is an M ×N matrix consisting of identical independent zero-mean complex

Gaussian elements, GRX and GT X are receive and transmit correlation matrices respec-

tively, and (·)1/2 denotes the matrix square root such that G1/2
RX (G1/2

RX )H = GRX . The as-

sumption of separate correlation is valid only when scatterers are local to either transmit-

ters or receivers. Such a scenario is usually applicable in the traditional cellular networks

where the scatterer distributions follow one ring [48] or two-ring model [60]. The former

has one ring of scatterers around the mobile stations and the latter has one ring around the

transmitter and another around the receiver. This limitation is due to the fact that KPF is a

special case of VCR [61]. The KPF model can be both simulated and analyzed with great

mathematical simplicity; therefore, it is widely used in industrial standards, such as IEEE

802.11n.

VCR model is proposed in [51] and has its roots in double-directional propagation model

[59]. The formulation of VCR is

H = ARX HV AH
T X (3.16)
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where ARX and AT X are discrete Fourier transform (DFT) matrices which describe the

angular directions of scatterers at the receiver and transmitter. In addition, the entries of

HV are independent zero-mean Gaussian distributed. H and HV can be viewed as a two

dimensional Fourier transform pair. HV captures the essence of the scattering environment,

and reveals two factors effecting the capacity: the number of parallel channels and the level

of diversity [51] . The limitation of this model lies in the fact that the scatterer clusters

corresponding to the elements of HV may not distinct from each other, which results in

correlation between the elements of HV . This is due to the fact that the angular directions

of scatters are not necessarily aligned with the predefined DFT directions. In order to

decouple the elements of HV , large arrays which can increase angle resolution have to be

employed.

W-model is similar to VCR model. However, W-model lifts the restriction on angular

direction, which makes it applicable in versatile environments. The channel matrix is

H = URX HW UH
T X (3.17)

where URX , UT X are the unitary spatial eigenbasis at the receiver and the transmitter, re-

spectively, and HW is independent zero-mean Gaussian distributed. According to [62], the

structure defined by (3.17) implies that the transmit antennas are clustered together and the

receive antennas are clustered together. In addition, the distance between the two antenna

arrays is greatly larger than the array size. Thus the channels of distributed MIMO systems
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where the transmit antennas and/or receive antennas are not clustered together, cannot be

described by W-model.

The proposed rough surface model is indeed a double-directional propagation model. Equa-

tion (3.1) can be represented as

H1 = ERX HDET
T X (3.18)

where ERX denotes the receive directions, ET X denotes the transmit directions, and HD is a

diagonal matrix. Compared to previous models, it has merits in the theoretical computation

of channel gains and spatial correlation based on scattering surface profile and extendibility

to multi-user channel model. This model is appropriate for environments where the scat-

terers can be modeled as random rough surfaces. In addition, some parameters describing

the surface profile are required, i.e., the length, L, of the scattering plane, the correlation

distance, T , and the standard deviation, σ , of the rough surface height, which will be in-

troduced in Section 3.3. The suitable environments, benefits and limitations of the four

models are summarized in Table 3.1 .

3.3 Statistics of the scattered field

In this section, the statistics of the scattered electromagnetic field from a normally dis-

tributed random rough scattering surface are investigated. First, E(apb∗p), the correlation of
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Table 3.1: Comparison of four MIMO channel models.

Suitable envi-
ronments Benefits Limitations

KPF Local scatterers

only
Mathematically simple A special case of VCR

VCR

Scatters dis-

tribute mainly

according to pre-

defined angular

directions

Capturing the effects of scat-

tering characteristics on chan-

nel capacity and diversity

Requiring certain scat-

ter distribution or large

arrays

W-
model

Versatile environ-

ments

The limitations on VCR be-

ing lifted

Requiring clustered an-

tennas at the TX and

RX

Rough
surface
model

Large plane scat-

terers

theoretically computing the

channel gains and spatial cor-

relation based on scattering

surface profile and extending

to multi-user channel model

Restricted to certain en-

vironments and requir-

ing some parameters of

the scattering surface

S
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Figure 3.3: The scattering geometry.

the scattered field from scatterer p in different directions ap and bp, is computed. Then, the

power of the field E(apa∗p) is obtained as a particular case of E(apb∗p).
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In Figure 3.3, we use Cartesian coordinates x,y to represent the function of a one-dimensional

rough scattering plane

ξ = ξ (x), (3.19)

and the mean level of the surface is the plane

y = 0 (3.20)

In (3.19), ξ represents the surface height and is assumed to be Gaussian distributed with

mean value 0 and standard deviation σ . Incorporating Equation (2) in [58, Ch.5.3], its

probability density function corresponds to

w(ξ = y) =
1

σ
√

2π
exp(

−y2

2σ2
). (3.21)

The surface height ξ is a stochastic process in space coordinate x, and such a process is

further assumed to be stationary. Moreover, we assume the autocorrelation coefficient of

ξ (x) and ξ (x′) to follow

C(τ) = e−τ2/T 2
, τ := x− x′ (3.22)

where T is the correlation distance, at which C(τ) will drop to the value e−1. (see Equation

(4) in [58, Ch.5.3])

As shown in Figure 3.3, a random rough surface runs from −L to L. The signal source is

denoted by S and the incident field E1 is assumed a plane wave and there is no power loss.
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Thus,

E1 = e−ikR1, R1 � L (3.23)

where i =
√−1, k = 2π/λ is the modulus of wave vector and R1 is the distance from the

source to the origin (point O in Figure 3.3). Due to the roughness of the surface, in (3.23),

the phase is not actually kR1. However, it does not impact the derivation as later its effect is

cancelled in (3.28). In Figure 3.3, the points P1 and P2 are in the far field of the scattering

plane, i.e., R2 and R′
2 are the distance of P1 and P2 with respect to the origin.

In Figure 3.3, the angle of incidence is denoted by θ1 and the path coefficient or scat-

tered field at P1 is denoted by ap with a scattering angle θ2. Moreover, at point P2, the

scattered field is denoted by bp with a scattering angle of θ ′
2. The angle of incidence and

the scattering angle are measured with respect to the z axis. The scattering coefficient ρ

corresponding to ap is defined as:

ρ =
ap

ap0E1
, (3.24)

where ap0 is the field specularly reflected (θ2 = θ1) by a smooth and perfectly conducting

plane of the same dimension with the same angle of incident at the same distance when the

incident wave is horizontally polarized and ap0 is expressed as

ap0 =
ike−ikR2Lcosθ1

π
. (3.25)

where the parameters are defined in Figure 3.3.
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To take care of the difficulties associated with directly dealing with ap, we instead study the

statistics of ρ . Incorporating (3.23), (3.24), (3.25), the relationship of ρ and ap corresponds

to:

ap =
ike−ik(R1+R2)Lcosθ1

π
ρ. (3.26)

Here, R1 and R2 are the distances of the transmitter and User 1 from the rough surface

respectively (see Figure 3.3). Similarly, ρ ′ (that is the scattering coefficient of bp) has the

following relationship with bp:

bp =
ike−ik(R1+R′

2)Lcosθ1

π
ρ ′. (3.27)

Hence,

E(apb∗p) =
4e−ik(R2−R′

2)L2 cos2 θ1

λ 2
E(ρ(ρ ′)∗) (3.28)

E(apa∗p) =
4L2 cos2 θ1

λ 2
E(|ρ|2) (3.29)

Next, E(ρ(ρ ′)∗) is calculated in order to compute E(apb∗p), where ρ is calculated based on

the Kirchhoff approximation of the surface conditions which are required to evaluate the

Helmholtz integral [58, Ch.3.1].

ρ =
F(θ1,θ2)

2L

∫ L

−L
eivTrdx (3.30)
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where r = (x,ξ (x))T, and

v = (vx,vz)T

=
(

2π
λ

(sinθ1 − sinθ2),−2π
λ

(cosθ1 + cosθ2)
)T

(3.31)

F(θ1,θ2) =
1+ cos(θ1 +θ2)

cosθ1(cosθ1 + cosθ2)
(3.32)

In (3.30), the exponent of the integrand vTr is essentially the phase of the wave at P1

contributed by a small part of the surface. Therefore, integrating such contributions at P1

along the surface results in (3.30). As noted in (3.30), ρ is the integral of random process,

hence it is a random variable.

The derivation of (3.30) is subject to the following assumptions:

1. The incident wave is plane (requiring R1 � L) and linearly polarized. This assump-

tion can be withdrawn by conducting an integration over space vectors used to de-

scribe the polarization [58, Ch.8].

2. The surface is perfectly conducting. This assumption can be withdrawn by including

the relative permeability in the integrant of (3.30).

3. Mutual interaction of the irregularities on rough surface (shadowing and multiple

scattering) are neglected. This assumption can be withdrawn by integrating over the

illuminated parts of the surface and introducing secondary reflection coefficients for
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multiple scattering.

4. The field at any point of the surface can be approximated by the field that would

be present on the tangent plane at that point, which requires that the correlation dis-

tance, T , defined in (3.22) to be much greater that the wavelength, i.e., T � λ . This

assumption is essential in the Kirchhoff approach.

5. To ensure the availability of a rough surface, the dimension of surfaces should be

greater than the correlation distance, i.e., L � T .

6. The receiver is located sufficiently far from the rough surface (R2 � L) to ensure

the availability of plane scattered waves. This is also can be dropped by considering

spherical scattered waves where θ1 and θ2 in (3.31) are dependent on the considered

part of the surface, i.e., x in (3.30).

Some of the assumptions can be withdrawn at the cost of mathematical simplicity. Besides,

these assumptions do not seriously impair the generality of our solution, because it is a

well-known fact that the roughness of a surface modifies the scattered field far more than

its electrical properties.
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Then, E(ρ(ρ ′)∗) in (3.28) is corresponds to (Appendix-A)

E(ρ(ρ ′)∗) ≈ F(θ1,θ2)F(θ1,θ ′
2)

(√
πT

2L
sinc

(
(vx − v′x)L

)
e−g1

∞

∑
m=1

gm
2

m!
√

m
exp

(
−v2

xT 2

4m

)
+ e−g1sinc(vxL)sinc(v′xL)

)
(3.33)

where F(θ1,θ2) is defined in (3.32), sinc(x) = sin(x)/x, g1 = 1
2σ2(v2

z + v′z
2), g2 = vzv′zσ2,

vz and vx are defined in (3.31), F(θ1,θ ′
2) is obtained similar to F(θ1,θ2) by replacing θ2

with θ ′
2, and T is the corelation distance.

Letting θ ′
2 = θ2, E(ρρ∗) is readily derived and it agrees with the expression given in [58,

Ch.5.3].

To analyze the dependence of E(ρ(ρ ′)∗) on g2, vx, v′x and T , we consider three cases: 1)

g2 � 1, 2) g2 ≈ 1, 3) g2 � 1. Because g2 is proportional to σ2/λ 2, these three cases

correspond to a slightly, moderately and very rough surface.

g2 � 1: The series in (3.33) converges so quickly that we may only consider its first term.

Thus,

E(ρ(ρ ′)∗) ≈ F(θ1,θ2)F(θ1,θ ′
2)

(√
πT

2L
sinc

(
(vx − v′x)L

)

e−g1g2 exp

(
−v2

xT 2

4

)
+ e−g1sinc(vxL)sinc(v′xL)

)
(3.34)
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Figure 3.4: Statistics of the scattering coefficients: E(ρρ∗) and E(ρ(ρ ′)∗) for T =
25λ , L = 250λ , θ1 = θ2 = 45◦.

g2 ≈ 1: As g2 grows larger, the series converges slower and an increasing number of terms

of the series (3.33) must be taken into consideration.

g2 � 1: The series in (3.33) converges too slowly to be of any practical use and we use

another approach (Appendix-B) to get

E(ρ(ρ ′)∗) ≈ F(θ1,θ2)F(θ1,θ ′
2)

(
1

L
sinc

(
(vx − v′x)L

)
eg2−g1

√
π
g2

T exp

(
−v2

xT 2

4g2

)
+ e−g1sinc(vxL)sinc(v′xL)

)
(3.35)
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Figure 3.5: Statistics of the scattering coefficients: E(ρρ∗) and E(ρ(ρ ′)∗) for T =
25λ , L = 250λ , θ1 = θ2 = 5.625◦.

Now, we investigate the impact of roughness, and the incident and reflected angles on

the reflection coefficient auto and cross correlations. Autocorrelation is a measure of the

scattering power, while the cross correlation is a measure of the correlation of scattered

waves across two reflected angles. Given L = 250λ , T = 25λ , θ1 = 45◦, the scattering

power E(ρρ∗) versus scattering angle θ2 is plotted in Figure 3.4 for σ = 0.5λ and σ =

10λ . The cross correlation E(ρ(ρ ′)∗) versus scattering angle θ ′
2 is also plotted, where

ρ has the scattering angle θ2 = 45◦. E(ρρ∗) plots in (a) and (c) show that more signal

power spreads out as roughness increases. In addition, in (c), the maximum power shifts

toward the incident direction. This phenomenon can be explained by a simple geometrical
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Figure 3.6: Statistics of the scattering coefficients: E(ρρ∗) and E(ρ(ρ ′)∗) for T =
25λ , L = 250λ , θ1 = 45◦, θ2 = 22.5◦.

ray tracing. From E(ρ(ρ ′)∗) plots (b) and (d), we see that, regardless of roughness, the

correlation tends to zero very fast when the separation of θ ′
2 and θ2 increases. E(ρ(ρ ′)∗) is

significant only when θ ′
2 is within an interval about 2◦ around θ2. This can be explained by

the fact that the term sinc((vx − v′x)L) dominates (3.33) (the second summand in (3.33) is

negligible ) and vx − v′x = (sinθ ′
2 − sinθ2)2π/λ . Therefore, when the difference of θ ′

2 and

θ2 increases, sinc((vx − v′x)L) quickly tends to zero and so does E(ρ(ρ ′)∗).

In Figure 3.5, the incident angle θ1 = 5.625◦, therefore, the incident wave is nearly vertical

to the surface. Compared to the large shift of the maximum power off the specular direction
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Transmitter Observation

Figure 3.7: Illustration of beam oscillation technique.

in Figure 3.4 (c), it is observed in Figure 3.5 (c) that the maximum reflected power is

achieved when the reflected ray is near to the specular direction. Moreover, the scattering

power distribution in (c) looks similar to that in (a) except having greater width. The

figure shows that when the incident angle is small, the scattering power is approximately

symmetric around the y axis.

In Figure 3.6, The incident angle θ1 = 45◦, and the reflected angle θ2 = 22.5◦. It is seen

that E(ρ(ρ ′)∗) ’s peak value for σ = 10λ in (b) is larger than that for σ = 0.5λ in (d),

while the opposite result occurs in Figure 3.4 and Figure 3.5. This can be explained by

the fact that the scattered energy of slightly rough surface highly concentrates around the

specular direction; thus, the energy scattered in other directions is minimal. Meanwhile, the

scattered energy of very rough surface distributes in various directions. Therefore, lower

energy in off-specular direction of slightly rough surface leads to lower correlation.

Here, we observed that this channel model involves mainly three parameters to describe

the scatterers: the length L of the scattering plane, the correlation distance T and the stan-

dard deviation σ of the rough surface height. Now, we explain how these parameters are
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related to a real channel scenario. In addition, we propose techniques for estimating those

parameters.

The rough surface parameters are a function of the wavelength and the structure of surface

roughness. The rough surfaces encountered in the nature, e.g., terrain, sea, atmospheric

layers, can be best described by the statistical distribution of their deviation from the mean

level. For radio communication, hilly areas or moving passengers along crowded down-

town streets can be modeled as random rough surfaces as well. The roughness ÏČ repre-

sents the standard deviation of the height of the surface compared to the wavelength. The

correlation distance T indicates how close the hills and valleys of the surface are crowded

together. The length, L, of the scattering plane is determined by the size of the first Frensnel

zone ([58, Ch.2.2]).

Different techniques can be proposed to estimate the scatterer parameters. Some include:

frequency diversity, beam oscillation and scattered power distribution measurement. We

now briefly describe how they work. Frequency diversity method is based on the fact that

the scatterer roughness behavior varies with frequency (wavelength). For example, if the

roughness is in the order of one meter and the wavelength is in the order of 100 meters,

the surface exhibits specular behaviors; thus, reflects the incident power almost in one

direction. However, the same scatterer would act as a rough surface when the wavelength

is in the order of one meter. In other words, the scattered power varies as the wavelength of

the transmitted signal changes due to the fact that the irregularity of a surface depends on
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the wavelength of the impinging signal. Thus, we may illuminate the surface of scatterer

with a narrow beam signal modulated using different frequency ranges and measure the

received power at the receiver. According to the above explanation, it is expected that the

received power varies with frequency differently for different scatterer roughness σ . Thus,

the generated curve can be compared with a family of pre-measured curves with different

values of the desired parameters.

Beam oscillation method basically uses antenna array to steer beams toward a series of

incident directions upon the surface as shown in Figure 3.7. A probe is placed at some

points to measure the scattered power so as to get a curve versus different incident and

scattered angles. Then Equations (3.28) and (3.33) can be applied to solve the desired

parameters. Scattered power distribution measurement is similar to the beam oscillation

except that the incident beam is fixed and the probe moves around to measure the scattered

power along different directions. The full investigation of those methods is out of the scope

of this chapter. Interested readers are referred to [63] where the relations between surface

statistics and the scattered wave statistics are surveyed.

Note that the proposed model contains the rich scattering scenario. In a richly scattered

environment, the channel matrix elements have identical independent Gaussian distribu-

tion. The physical basis of this model is that there are a significant number of equal-energy

multipaths in each of the resolvable angular bins [51], which roughly corresponds to a large

spread out of the scattered signal from random rough surfaces. Because large roughness
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Figure 3.8: Simulation set-up.

σ leads to the large spread out as shown in Figure 3.4, richly scattered environment is

achieved when the roughness σ is large.

3.4 Numerical results and analysis

In this section, we present simulation results of the channel coefficient correlation of inter-

and intra-user antenna pairs for both LOS and NLOS situations, i.e., γ(1)(2)NLOS
mn,st , γ(1)(2)LOS

mn,st ,

γ(1)(1)NLOS
mn,st , γ(1)(1)LOS

mn,st in (3.9)-(3.12).

A schematic scattering environment is shown in Figure 3.8. The primary scattering envi-

ronment consists of two planes which are 5000λ apart and the active scattering region of

both planes is 5000λ in length. The active scattering region is segmented equally and the

center of each part is denoted by the small square on the upper and lower planes. The base
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station (BS) is placed at the point (0,0) and User 1 is at (1000λ ,0). The position of User 2

varies in a square region of dimension 200λ ×200λ , with the boundary denoted by the red

bold dashed line. User 1 is at the center of the square.

The parameters for the following simulation results are listed here or specified otherwise:

λ = 10 cm, L = 250λ , T = 25λ , dr = dt = 0.5λ , and in (3.7), K1 = K2 = K = 1. Here,

K essentially represents the power ratio of LOS and NLOS. Simulations are performed for

different roughness, and different distances between User 1 and BS.

The two dimensional spatial cross-user correlation γ(1)(2)NLOS
11,11 and γ(1)(2)LOS

11,11 for NLOS and

LOS, respectively, is depicted in Figure 3.9 when σ = 0.5λ , 10λ , D(BS, User 1)=3000λ

which is the distance between BS and User 1. Compared to the correlation corresponding

to σ = 0.5λ , the correlation for higher roughness σ = 10λ spreads out to neighboring

parts and has lower values (darker squares). This is consistent with the scattered energy

distributions in Figure 3.4 where surfaces with higher roughness spread out the signal into

various directions and each direction receives less power.

In order to see the impact of the topography, we consider another set-up: The distance of

BS and User 1 is set to 10000λ . Simulation and visualization are repeated and the results

can be found in Figure 3.10. It is seen that a shining cross appears in b) NLOS correlation.

This happens when the two users are in line with a significant scattering path and agrees

with the conclusion illustrated in Figure 3.4: the correlation tends to zero very fast when

the separation of the scattering angles increases. Therefore, topography plays a main role
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(a) σ = 0.5λ , LOS (b) σ = 0.5λ , NLOS

(c) σ = 10λ , LOS (d) σ = 10λ , NLOS

Figure 3.9: Comparison of LOS and NLOS spatial cross-user correlation for σ =
0.5λ , 10λ when D(BS, User 1)=3000λ .

in the look of the spatial correlation. Both in Figure 3.9 and Figure 3.10, LOS correlation is

generally larger than the NLOS and has less sharp variations. This reveals the stabilization

effect of LOS signal.

Figure 3.11 shows the comparison of correlation for NLOS and LOS when User 2’s position

is along X axis (Y coordinate is 0). It is observed that in most area, LOS correlation is much

larger than the NLOS correlation except for the case that two users are closely located. It is
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(a) σ = 0.5λ , LOS (b) σ = 0.5λ , NLOS

(c) σ = 10λ , LOS (d) σ = 10λ , NLOS

Figure 3.10: Comparison of LOS and NLOS spatial cross-user correlation for σ =
0.5λ , 10λ when D(BS, User 1)=10000λ .

also observed that NLOS correlation has more fluctuations than the LOS correlation. This

is basically resulted from the absence of the deterministic LOS component.

Spatial intra-user correlation γ(1)(1)NLOS
11,12 and γ(1)(1)LOS

11,12 versus BS’s antenna spacing dt is

shown in Figure 3.12 for K = 1 and K = 4. The envelopes of LOS are generally above

those of NLOS. The correlation is lower for very rough surface (σ = 10λ ), which may

be probably because that lower power is received for large roughness. When K factor is
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(a) σ = 0.5λ , D(BS, User 1)=3000λ (b) σ = 10λ , D(BS, User 1)=3000λ

(c) σ = 0.5λ , D(BS, User 1)=10000λ (d)σ = 10λ , D(BS, User 1)=10000λ

Figure 3.11: Comparison of LOS and NLOS spatial cross-user correlation along

X axis (Y coordinate=0) for σ = 0.5λ , 10λ when D(BS, User 1)=3000λ , 10000λ .

increased to 4, there is a big separation between LOS and NLOS as depicted in (c) and (d).

The fluctuation range of LOS in (c) and (d) is smaller than that in (a) and (b), which again

shows the stabilization effect of LOS signals.

If User 1’s antenna spacing varies, the behavior of intra-user correlation γ(1)(1)NLOS
11,21 and

γ(1)(1)LOS
11,21 is identical to that in Figure 3.12, because BS and User 1 are located symmetri-

cally about the scattering plane as shown in Figure 3.8.
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(a) D(BS, User 1) = 3000λ , K = 1
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(b) D(BS, User 1)=10000λ , K = 1
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(c) D(BS, User 1)=3000λ , K = 4
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(d) D(BS, User 1)=10000λ , K = 4

Figure 3.12: Comparison of LOS and NLOS spatial intra-user correlation versus

BS’s antenna spacing for σ = 0.5λ , 10λ when K = 1,4.

In the above intra-user correlation analysis, the antenna arrays at both the receiver and the

transmitter are perpendicular to the rough surfaces as shown in Figure 3.2. If the antenna

orientation of User 1 (receiver) is changed, intra-user correlation may also change. Here,

we study the impact of the antenna orientation of User 1 by considering a case: the BS’s an-

tenna array remains perpendicular to the surfaces while User 1’s antenna array is mounted

in parallel with the surfaces.
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(a) D(BS, User 1)=3000λ , K = 4
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Figure 3.13: LOS and NLOS spatial intra-user correlation for σ = 0.5λ , 10λ when

User 1’s antenna array is parallel to the surfaces.

The intra-user correlation for the parallel antenna array is shown in Figure 3.13. In this fig-

ure, the correlation curves of NLOS have no or sparse fluctuations, but the fluctuations are

found in the LOS curves (more obvious for σ = 0.5λ ). This is because the LOS component

produces phase shifts along the direction of antenna array as a result of the alignment be-

tween LOS direction and User 1’s antenna array. Looking back to Figure 3.12 (c) and (d),

both LOS and NLOS correlation curves have similar fluctuations. This is because, due to

the perpendicularity between the LOS direction and the antenna array, the LOS component

does not produce any phase shift along the direction of antenna array.

3.5 Conclusion

In this chapter, we proposed a novel approach to investigate the spatial correlation across

antenna elements within one user and across users in multiuser MIMO wireless commu-

nication systems. The intra-user and inter-user correlations are theoretically derived and
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numerically evaluated.

Simulation results represent that higher roughness leads to lower correlation. In addition,

topography, i.e., whether two users are in line with the significant scattering path, plays a

main role in the shape of the cross-user correlation.

For intra-user and inter-user cases, it is observed that LOS signals drastically boosts the

correlation and has a more flat trajectory in space. This property can be incorporated to

discriminate LOS signals from NLOS.
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Chapter 4

NLOS Identification via Phase Difference Statis-

tics across Two Antenna Elements

This chapter proposes and investigates the performance of a new NLOS identification tech-

nique for multiple antenna systems that is based on the phase difference across two an-

tenna elements. A phase wrapping selection algorithm is proposed to calculate the phase

difference variance across two antenna elements. A theoretical relationship is maintained

between the phase difference variance and the Rician K-factor. The proposed K estimator

requires an uncorrelated phase across antenna elements. The validity of this assumption

is verified via channel modeling simulations. Then, a hypothesis test on the K-factor is

formed to identify NLOS situations. The prior distributions of K-factor under LOS and

NLOS conditions, and the K-factor threshold which are used to distinguish LOS and NLOS

situation are derived. The impact of shadowing on the performance of the proposed NLOS
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identification method is studied. The performance of the proposed phase difference based

K estimator is compared with that of the envelope-based K estimator.

4.1 Introduction

This chapter introduces a novel NLOS identification technique that is based on the statistics

of the phase difference of two signals received across two antenna elements in an antenna

array. The received signal is usually modeled as a summation of a LOS component and a

diffusive component. When the LOS path is blocked, i.e., NLOS condition, K-factor that is

the ratio of LOS power to the diffusive one, is usually very small compared to that of LOS

condition [30]. This is due to the fact that the LOS signal usually suffers a large attenuation

due to the blockage between the transmitter and receiver.

In this chapter, the phase difference variance σ2
Δφ is analytically derived, assuming un-

correlated phase across antenna elements. It is depicted that σ2
Δφ is a function of Rician

K-factor. When K = 0, σ2
Δφ has the maximum value of 2π2/3, and σ2

Δφ decreased as K

increases. Therefore, the variance σ2
Δφ can be used to form a binary hypothesis test for

NLOS identification based on Rician K-factor. Here, distributions of K for LOS and NLOS

are computed, and to identify LOS from NLOS, a threshold for K is computed too. The

hypothesis test requires a limited number of phase difference samples. Thus, it functions

fast and its complexity is low.
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In addition, the chapter proposes a new Rician K-factor estimator based on σ2
Δφ . The per-

formance of the phase difference based K estimator is compared to a benchmark envelope

based K estimator.

Moreover, the assumption of uncorrelated phase across antenna elements is investigated for

both circular and elliptic scattering channels.

The remainder of the chapter is organized as follows: Section 4.2 presents the received

signal model and the Rician K-factor estimator based on the phase difference variance

σ2
Δφ . Section 4.3 formulates the problem of NLOS identification based on Rician K-factor.

Section 4.4 presents numerical justification on the uncorrelated phase assumption. Section

4.5 provides numerical evaluation of the performance of K-factor estimator based on the

phase difference and the performance of NLOS identification based on K-factor. Some

concluding remarks are made in Section 4.6.

4.2 Received signal model and K-factor estimator

A co-installed synchronized two-antenna system shown in Figure 4.1 can be used for the

proposed identification method. The far region scenario is assumed and therefore the im-

pinging wave on the antenna array is plane wave. In this system, two antennas are installed

with a fixed spacing and they share the same local oscillator. Therefore, the phase differ-
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Figure 4.1: Two-antenna receiver.

ence is

Δφ = φ2 −φ1, φ1,φ2 ∈ [−π,π] (4.1)

where φ1 and φ2 are the phases of r1 and r2, the received signals of the two antennas. As

shown in Figure 4.2, r1 = rLOS1 +rDIF1 and r2 = rLOS2 +rDIF2 where the subscript LOS and

DIF denotes the LOS and diffusive components. Now, using Figure 4.2 and considering

the range of φ1 and φ2 in (4.1), the phase difference Δφ corresponds to

Δφ = I[−π,π](φLOS1 +2πd cosθ/λ +Δφ2)− I[−π,π](φLOS1 +Δφ1)

= Δφ2 −Δφ1 +2πd cosθ/λ +X (4.2)
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Figure 4.2: Received signals in vector space.

where I[−π,π](·) wraps the phase to the range [−π,π], φLOS1 is the phase of rLOS1, Δφ2

is the angle shift from rLOS2 caused by rDIF2, Δφ1 is similarly defined, d is the antenna

spacing, θ is the DOA, i.e., the angle made by the direction of the arriving signal and the

antenna array, and λ is the wavelength. X is a discrete random variable which takes values

from {· · ·−4π,−2π,0,2π · · ·} and ensures that the range of Δφ in (4.1) would stay within

[−2π,2π]. Note that the range of φ1 and φ2 in Figure 4.1 should stay within [−π,π]. Thus,

the range of Δφ would be [−2π,2π].

It is assumed that the DOA of LOS signal (θ ) does not change within the sampling duration.

Hence, φLOS1 and 2πd cosθ/λ in (4.2) are fixed but unknown and could accept any value

within −π to π range. With certain probability, φLOS1 is around (2n + 1)π where n is

an integer number, and the wrapping function may add multiples of ±2π to φLOS1 + Δφ1,

giving rise to the randomness of X . In order to make the variance of Δφ is equal to the
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Figure 4.3: PDFs of Δφ1, I[−π,π](φLOS1 + Δφ1) and I[0,2π](φLOS1 + Δφ1) under the

case φLOS1 ≈ π

variance of Δφ2 −Δφ1, the randomness of X has to be eliminated.

When φLOS1 ≈ π , the probability density functions (PDFs) of Δφ1, I[−π,π](φLOS1 + Δφ1)

and I[0,2π](φLOS1 + Δφ1) are shown in Figure 4.3. Using [−π,π] wrapping, the PDF of

I[−π,π](φLOS1 + Δφ1) represented by the bold line in Figure 4.3 has a significant com-

ponent around −π (−180◦) due to wrapping. Thus, it fails to preserve the shape of

f (Δφ1) indicated by the thin solid line in Figure 4.3. This results that the variance of

I[−π,π](φLOS1 + Δφ1) (which is 4.9202) is larger than that of Δφ1 (which is 0.1528). In-

stead, using [0,2π] wrapping, the distribution of I[0,2π](φLOS1 + Δφ1) represented by the

dashed line in Figure 4.3 has a similar shape of the distribution of Δφ1. As a result,

I[0,2π](φLOS1 +Δφ1) has a variance of 0.1528 which is close to that of Δφ1.

The above analysis shows that improper wrapping enlarges the variance, while proper
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wrapping preserves the variance. Inversely, proper wrapping should be identified as having

the smallest variance. The algorithm of selecting proper wrapping to calculate Δφ in (4.2)

is summarized in the following:

1. Compute the variance of I[−π,π](φLOS1 + 2πd cosθ/λ + Δφ2) and the variance of

I[0,2π](φLOS1 + 2πd cosθ/λ + Δφ2), then choose the wrapping resulting in smaller

variance.

2. Compute the variance of I[−π,π](φLOS1 + Δφ1) and the variance of I[0,2π](φLOS1 +

Δφ1), then choose the wrapping resulting in smaller variance.

Applying this algorithm, the variance of (2πd cosθ/λ + X) is maintained much smaller

than σ2
Δφi

, i ∈ [1,2]. This point will be verified in Section 4.5 where we present the perfor-

mance of this technique. Accordingly, the variance of Δφ would be well approximated by

the variance of Δφ2 −Δφ1, and would correspond to

σ2
Δφ = σ2

Δφ1
+σ2

Δφ2
−2cov(Δφ1Δφ2) (4.3)

where cov(·) denotes the covariance operation. Using Figure 4.2, Δφ1 = angle(r1/rLOS1) =

angle(1 + rDIF1/rLOS1), Δφ2 = angle(1 + rDIF2/rLOS2). rDIF1 and rDIF2 is assumed to be

independent, which is a reasonable assumption for rich scattering environments, and large

antenna spacing (greater than half wavelength) [64]. Therefore, Δφ1 and Δφ2 can also

be considered independent, i.e., cov(Δφ1Δφ2) = 0. The uncorrelated phase assumption
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for circular and elliptic scattering environment will be further studied via simulations in

Section 4.4.

Assuming rDIF2 is complex Gaussian distributed, the PDF of Δφ1 is derived as (the detail

derivation is in Appendix C)

f (Δφ1) =
exp(−K)

2π
+

√
K
π

cosΔφ1 exp(−K sin2 Δφ1)×Q(−
√

2K cosΔφ1), Δφ1 ∈ [−π,π]

(4.4)

where K is the Rician factor, i.e., K = |rLOS1|2/E[|rDIF1|2] and Q(·) is the complementary

error function defined as Q(x) =
∫ ∞

x e−u2/2/
√

2πdu . Assuming r2 has the same K as r1, the

distribution of Δφ2 would be identical to that of Δφ1. Thus, σ2
Δφ1

= σ2
Δφ2

and using (4.2),

σ2
Δφ corresponds to

σ2
Δφ = 2σ2

Δφ1
= 2

∫ π

−π
Δφ 2

1 f (Δφ1)dΔφ (4.5)

Because a closed form expression of (4.5) does not exist, σ2
Δφ is numerically computed

and plotted in Figure 4.4. The estimation of K can be obtained using a lookup table or

be approximated by a closed form expression. Figure 4.4 plots g(K) � 1/σ2
Δφ . Here,

g(K) is well approximated by piece-wise low-order polynomial functions of K, g1(K) =

aK2 +bK +c when K ∈ [0, 5] and g2(K) = βK +γ when K ∈ [5, 30]. The coefficients a, b,

c, β and γ are computed by fitting g1(K) and g2(K) to g(K) in a least-square sense. Then,
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Figure 4.4: Polynomial least square fitting of g(K).

it is obtained

a = 0.0738, b = 0.4842, c = 0.1256, β = 1.004, γ = −0.6121 (4.6)

The approximation g1(K) and g2(K) of g(K) are also shown in Figure 4.4. After solving the

quadratic equation and the linear equation resulting from approximating g(K) with g1(K)

and g2(K), the estimation K̂ of K corresponds to:

When σ2
Δφ < 0.232, K̂ =

1/σ2
Δφ − γ
β

When σ2
Δφ > 0.232, K̂ =

−b+
√

b2 −4a(c−1/σ2
Δφ )

2a
(4.7)

Thus, a one-to-one mapping between σ2
Δφ and K is maintained, in other words, K can be

found given σ2
Δφ .
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4.3 NLOS identification based on estimated Rician K-factor

In the mobile communication, the Rician K-factor is not constant but varies from one

location to another due to channel variations. Therefore, K can be modeled by a ran-

dom variable conditioned on LOS and NLOS with the conditional PDFs f (K|LOS) and

f (K|NLOS), respectively, and

H0 −→ NLOS condition: K ∼ f (K|NLOS) with probability P(H0)

H1 −→ LOS condition: K ∼ f (K|LOS) with probability P(H1)

Now, f (K|NLOS) and f (K|LOS) are investigated. Let PLOS
r denote the received signal

power in dB via the LOS path,

PLOS
r = Pt −LLOS (4.8)

where Pt is the transmitted signal power in dB and LLOS is the path loss for the LOS path

only. Let PNLOS
r denote the received signal power in dB in NLOS scenario,

PNLOS
r = Pt −LNLOS −Lsh (4.9)

where LNLOS denotes the path loss for the NLOS scenario and Lsh accounts for shadowing
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effect in dB. Lsh is a random variable and usually modeled by normal distribution with zero

mean and standard deviation σsh

Lsh ∼ N(0,σ2
sh), f (Lsh) =

1√
2πσsh

exp

(−L2
sh

2σ2
sh

)
(4.10)

Walfisch-Ikegami (WI) [65] path loss model is used, because it distinguishes between LOS

and NLOS propagation. This model is suitable for medium city, suburban centers and

metropolitan centers. For LOS condition,

LLOS = 42.6+26logdkm +20log( fMHz) (4.11)

Here dkm corresponds to the LOS distance of transmitters and receivers in km, and fMHz is

the carrier frequency in MHz. For NLOS condition, an obstruction between the transmitter

and the receiver greatly attenuates the LOS signal. In this case, LLOS in (4.8) is modeled by

LLOS
pe = 42.6+26logdkm +20log( fMHz)+Lpe (4.12)

where Lpe is the penetration loss.

The authors in [66] have studied the building penetration power loss, which is lognormal

distributed with mean 8.1dB and standard deviation 6.2dB in urban area. In [66], one time

penetration, i.e., from outside to inside, is considered. However, here the penetration loss

of passing through buildings is considered. Therefore, the mean and standard deviation of
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this Lpe are doubled. Thus, Lpe is considered normal with mean μpe = 16.2dB and standard

deviation σpe = 12.4dB, i.e., Lpe ∼ N(μpe,σ2
pe)

For LNLOS in (4.9), according to WI model,

LNLOS = Anlos +38logdkm (4.13)

where Anlos is a parameter that varies with the signal carrier frequency, the transmitter and

receiver antenna heights, the structure of buildings and roads, and the street orientation

relative to the direct radio path, and dkm was defined in (4.11). Now using (4.8), (4.9) and

(4.12), the LOS K-factor in dB, i.e., KLOS
dB has the expression,

KLOS
dB = PLOS

r −PNLOS
r

= Lsh +LNLOS −LLOS (4.14)

and, in NLOS situations, KNLOS
dB is

KNLOS
dB = Lsh −Lpe +LNLOS −LLOS (4.15)

Observing (4.11) and (4.13), it is found that LNLOS − LLOS contains the term 12logdkm,

which suggests that the mean of KLOS
dB increases with distance. Based on the above deriva-

tions and due to the fact that Lsh and Lpe are Gaussian, both KLOS
dB and KNLOS

dB are Gaussian

distributed. KLOS
dB has standard deviation σsh and mean LNLOS − LLOS, and KNLOS

dB has
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standard deviation
√

σ2
sh +σ2

pe and mean LNLOS −LLOS −μpe. Two empirical KLOS
dB distri-

butions given in [67] and [68] both agree with the normal distribution.

As discussed in (4.11)-(4.13), the parameters that represent K statistics should be tuned

well, because those parameters are functions of antenna heights, the carrier frequency, the

LOS distance, and etc.. Those parameters can be obtained by measuring the path loss in a

practical system.

Two types of hypotheses test will be studied in the following, depending on the availability

of P(H1).

4.3.1 Known Prior Probability P(H1)

The prior probability P(H1) can be learned from previous LOS identification records, or it

is obtained from the environmental based empirical LOS likelihood formula, which is used

by the European IST project WINNER [69].

When the prior probability P(H1) is known, a Maximum A-Posteriori (MAP) detection can

be formed to achieve the minimum error probability. Here, the decision rules are

Decide NLOS if f (KNLOS
dB )P(H0) > f (KLOS

dB )P(H1)

Decide LOS if f (KNLOS
dB )P(H0) < f (KLOS

dB )P(H1)
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or

Decide NLOS if K < Kth

Decide LOS if K > Kth (4.16)

Kth can be obtained by finding the intersection of f (KNLOS
dB )P(H0) and f (KLOS

dB )P(H1). Let

σ1 and μ1 be the standard deviation and mean of KLOS
dB , and let σ0 and μ0 be the standard

deviation and mean of KNLOS
dB . Equating f (KNLOS

dB = Kth)P(H0) and f (KLOS
dB = Kth)P(H1),

the quadratic equation of Kth can be solved,

Kth =
(σ2

0 μ1 −σ2
1 μ0)−

√(
(σ2

0 μ1 −σ2
1 μ0)2 − (σ2

0 −σ2
1 )(σ2

0 μ2
1 −σ2

1 μ2
0 −σ2

1 σ2
0 ln

σ0P(H1)
σ1P(H0)

)
(σ2

0 −σ2
1 )

(4.17)

The other solution is larger and omitted because KNLOS
dB rarely accepts large values.

The detection probability of NLOS condition is defined by

PD =
∫ Kth

−∞
f (KNLOS

dB = k)dk = 1−Q((Kth −μ0)/σ0) (4.18)

and the false alarm probability of NLOS condition is defined by

PF =
∫ Kth

−∞
f (KLOS

dB = k)dk = 1−Q((Kth −μ1)/σ1) (4.19)
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Figure 4.5: Block diagram of NLOS identification technique based on phase dif-

ference across two antenna elements

Therefore the error probability is PE = (1−PD)P(H1)+PFP(H0).

4.3.2 Unknown Prior Probability P(H1)

In some cases, it is difficult to evaluate the prior probability P(H1). In those scenarios, the

Neyman-Pearson (NP) test can be used [70]. NP test aims to maximize PD by constraining

PF = α . The procedure follows,

1. Set the false alarm probability PF = α .

2. Solve the threshold Kth from α =
∫ ∞

Kth
f (KNLOS

dB = k)dk.

3. Decide NLOS or LOS by rules given in (4.16).

The overall algorithm of NLOS identification technique based on phase difference is illus-

trated in Figure 4.5. In the figure, the wrapping selection algorithm is given above (4.3); K
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estimator is shown in (4.7); the distributions of K under NLOS condition fK|H0
(k|NLOS)

and K under LOS condition fK|H1
(k|LOS) are derived in Section 4.3; Kth is computed by

(4.17) according to MAP detection rule or is computed from a given value of PF according

to NP test.

The estimated K is derived from the phase difference variance across two antenna ele-

ments. In order to calculate this variance, a large number of independent phase difference

samples should be collected in time domain. The time difference between any two consec-

utive phase difference sample should be selected large enough (for example greater than

the channel coherence time) to ensure the independence of the phase differences. If more

antenna elements are incorporated, independent phase difference variances across any two

consecutive antenna element pair can be created. In other words, independent phase dif-

ference samples can be created in the space domain as well. Thus, if using two antenna

elements T second was required to improve the localization performance, using M antenna

elements this can be reduced to T/(M − 1). Thus, increasing the number of antenna ele-

ments, the phase difference variance can be computed in a shorter time period.

4.4 Uncorrelated phase verification

This section investigates the phase correlation in two typical propagation environments:

circular scattering model [47] and elliptic scattering model [71]. Via simulation, the phase

uncorrelation assumption is justified and the influence of environment parameters are stud-
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Figure 4.6: Geometrical configuration of (a) circular scattering (b) elliptic scatter-

ing.

ied.

In (4.3), cov(Δφ1Δφ2) might not be zero in reality. By intuition, as shown in Figure 4.2,

the correlation between Δφ1 and Δφ2 is determined by the dependency of rDIF1 and rDIF2,

as well as the value of K-factor.

The geometry of scatterers has a great impact on the correlation of the received signals

in multi-antenna systems. The geometrical setting of the circular and elliptic scattering is

presented in Figure 4.6. The receiver (RX) is equipped with two antennas and is set to

detect the LOS/NLOS condition of the omni-directional transmitter (TX). Circular model

represents environments where the antenna height of RX is relatively large and the antenna

height of TX is small. In this case, signal scattering from locations near the RX would

be ignored. However, TX is assumed surrounded by a circle of scatterers. Elliptic model

represents scenarios where antenna heights of both RX and TX are low, and therefore the

scattering near the RX is as likely as the scattering near the TX.

Now, expressions of the received signals are derived for both models. In Figure 4.6 (a),
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scatterers lie on a ring with radius R and the TX is at the center of the ring. The ith scatterer

is represented by Si, D is the distance between RX and TX, Δ is the angle through which

the RX receives signals, θ is the DOA of LOS signals and d is the antenna spacing. This

model takes into account the Doppler effect, which is a result of TX mobility. The motion

of TX is characterized by its speed v and the direction of motion γ .

Here, the power of transmitted signal is assumed to be unity and the power of the received

signal via LOS or diffused directions does not change during the time over which phase

samples are taken. Using Figure 4.6, the expressions for the diffusive and the LOS compo-

nents of the received signal via Antenna 1 are

rDIF1 =

√
1

K +1

1√
N

N

∑
i=1

exp
{

jϕi − j
2π
λ

(ξ1i +ξit)+ j2π fD

(
cos(ψi − γ)

)
t
}

(4.20)

rLOS1 =

√
K

K +1
exp
{
− j2π

λ
ζ1t + j2π fD

(
cos(ψLOS

1 − γ)t
)}

(4.21)

In (4.20) and (4.21), K represents the power ratio of LOS component and diffusive com-

ponent, N is the number of scatterers around the TX, ϕi denotes the phase shift introduced

by the ith scatterer, ξ1i and ξit are the distances from Antenna 1 to the TX via scatterer

Si, as shown in Figure 4.6 (a), ψi is the angle of arrival (AOA) of the wave traveling from

the scatterer Si toward the TX, λ is the wavelength, j2 = −1, fD = v/λ is the maximum

Doppler shift, and finally, ζ1t and ψLOS
1 denote the length and the direction of the LOS

path between the RX and the TX. The DIF and LOS components rDIF2 and rLOS2 for the

received signal via Antenna 2 can be similarly computed.
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For sampling purpose, the trajectory of the received signal is recorded. The position of the

scatterers is held constant over the duration in which the TX travels a distance of 5 meters.

At the end of the 5-meter, the scatters are returned to their original position with respect to

the TX. At each 5-meter interval, random phases ϕi are assigned to the scatterers.

Figure 4.6 (b) shows the elliptic model. The RX and the TX are located at the foci and a de-

notes the semimajor axis, b denotes the semiminor axis and c =
√

a2 −b2. The definitions

of all other parameters are the same as those in Figure 4.6 (a).

The phase and signal correlation are investigated by evaluating their correlation coefficients

coeff(Δφ1,Δφ2) and coeff(rDIF1,rDIF2) via simulations. The correlation coefficients are

defined as:

coeff(Δφ1,Δφ2) =
cov(Δφ1,Δφ2)

σΔφ1
σΔφ2

(4.22)

where σ denotes the standard deviation. The correlation coefficients coeff(rDIF1,rDIF2) is

similarly defined. In addition, the variance of Δφ in (4.2), σ2
Δφ is evaluated to study the

impact of the phase correlation on the estimation of K when the parameters vary. First, the

simulation results for the circular model are presented. The AOA of LOS signals at the

RX, θ , and the moving direction of TX, γ take on values according to independent uniform

distribution in [0, 2π]. There are 20 omni-directional reflectors uniformly distributed along

the ring. Samples are taken per 0.1λ and the total number of samples is 500. In addition,

λ = 0.1m, v = 10m/s, R = 50m.
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Figure 4.7: Circular model: coeff(Δφ1,Δφ2) and coeff(rDIF1,rDIF2) versus antenna

spacing for (a) Δ = 19.2◦. (b) Δ = 60◦.
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Figure 4.8: Circular model: comparison of simulated and theoretical σ2
Δφ for (a)

Δ = 19.2◦. (b) Δ = 60◦.

Figure 4.7 shows the phase and signal correlation versus antenna spacings when Δ = 19.2◦

and Δ = 60◦. Comparing the main lobe of the correlation curves, the correlation in Fig-

ure 4.7(a) decreases more slowly than that in Figure 4.7(b) . These curves confirm that

when the separation of antenna elements is high enough, the phase difference correlation

is reasonably small.
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Figure 4.9: Elliptic model: (a) phase and signal correlation coefficients versus

antenna spacing (b) comparison of simulated and theoretical σ2
Δφ .

Figure 4.8 compares the simulated σ2
Δφ with the theoretical σ2

Δφ of uncorrelated phases,

given by (4.5). The performance is measured by the root mean square error (RMS) of the

difference between the simulated and theoretical curves. In both Figure 4.8(a) and (b), the

RMSs of 0.5λ antenna spacing are greater than those of 3λ antenna spacing, because the

phase correlation drops significantly for 3λ antenna spacing. The values of σ2
Δφ at K = 1 for

both antenna spacings, shown in Figure 4.8(b), fits the theoretical results better than those

shown in Figure 4.8(a). This outcome is consistent with our observations in Figure 4.7

which confirms that the correlation coefficients for 0.5λ and 3λ spacing at larger opening

angle Δ = 60◦ is smaller.

Now, the results of the elliptic model is investigated. Simulation parameters are similar to

those listed for the circular model except a = 100m and b = 50m. The results for antenna

spacing 0.5λ and 3λ are compared in Figure 4.9(b), where their performance in estimating

K is acceptable. This is a result of low phase correlation at 0.5λ & 3λ antenna spacing
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Figure 4.10: Performance comparison of K̂Δφ and K̂2,4 estimators with a sample

size of N = 500: (a) Root mean square error (b) Bias.

(Figure 4.9(a)). In the elliptic model, the RX receives signal from all directions which

contributes to the low phase correlation, while in the circular model, the RX receives signal

just from an opening angle of Δ. It is suggested in Figure 4.9(b) that in elliptic model, λ/2

antenna spacing is sufficient for K estimation.

4.5 Simulation results

Simulations are conducted to investigate the performance of K estimator introduced in

Section 4.2 for NLOS identification. And the probability-of-detection and the probability-

of-false alarm defined in (4.18) and (4.19) are studied as well.

Figure 4.10 compares the performance of the K̂Δφ estimator and the performance of K̂2,4

for constant LOS component and shadowed LOS component. K̂Δφ is the estimation based

on phase difference introduced in (4.7) and K̂2,4 is based on the second and fourth moments
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of the received signal envelope [72], corresponding to

K̂2,4 =
−2E2(R2)+E(R4)−E2(R2)

√
2E2(R2)−E(R4)

E2(R2)−E(R4)
(4.23)

where R denotes the received signal envelope, E(·) denotes expectation, E(R2) is the second

moment and E(R4) is the fourth moment. It is noted that the amplitude of LOS component

would be affected by shadowing characterized by Nakagami distribution [73]. The root

mean square error (RMSE) in Figure 4.10(a) is defined as

√
E(K − K̂)2, where K is the

true value and K̂ is the estimated value. The bias in Figure 4.10(b) is defined as E(K − K̂).

Simulation parameters are as follows: in Figure 4.2, rDIF1 and rDIF2 are independent com-

plex Gaussian variables; φLOS1 and 2πd cosθ/λ are deterministic but unknown, taking on

values from a uniform distribution in the range [−π,π]; number of samples N = 500; for

constant LOS case, rLOS1,2 is constant and for shadowed LOS case, |rLOS1,2| is a Nakagami

distributed random variable following the PDF given as

P(|rLOS1,2| = r) =
2mmr2m−1

Γ(m)Pm
r

exp

[−mr2

Pr

]
(4.24)

where Pr = E(|rLOS1,2|2) is the average power of the LOS component. The Nakagami

distribution is parameterized by Pr and the fading parameter m = 50. The larger m is,

the less shadowing is on the LOS component. Δφ is calculated by (4.2). In addition, the

wrapping in (4.2) is maintained via algorithm introduced above (4.3) in section 4.2.
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Figure 4.11: For σsh = 4dB, 6dB, 8dB (a) PDF of KNLOS
dB and KLOS

dB (b) probability-

of-detection PD V.S. probability-of-false alarm PF

It is observed in Figure 4.10(a) that for the case of constant LOS, K̂2,4 has a lower estima-

tion error than K̂Δφ when K ≥ 7. However, when the LOS component is subject to random

shadowing, the RMSE of K̂2,4 is much higher than that of K̂Δφ . This is because a pertur-

bation on LOS component makes the envelope distribution deviating from Rician which is

required in deriving the formula of K̂2,4 (4.23). Although the formula of K̂Δφ (4.7) is based

on a constant LOS component too, the impact of the LOS component perturbation on K̂Δφ

is not as severe as that on K̂2,4. Compared to the constant LOS results, it is clearly shown

in Figure 4.10(a) that the RMSE of K̂2,4 increases significantly (due to a big bias shown in

Figure 4.10(b)) while the RMSE of K̂Δφ increases slightly.

This observation suggests that compared to envelope based K estimators, KΔφ estimator is

more robust to amplitude variation of LOS component.

Now, the performance of NLOS identification based on KΔφ estimator is evaluated. The
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Table 4.1: Comparison of Kth, PF and PD for various σsh

Kth PF PD

σsh=4dB 6.54dB 0.0863 0.7952

σsh=6dB 5.17dB 0.1276 0.7519

σsh=8dB 4.24dB 0.1662 0.7164

carrier frequency is assumed to be 1.9 GHz. Anlos in (4.13) is set at 132 dB based on some

typical building and road parameters, dkm = 0.1 km, and the mean of KLOS
dB is computed to

be 12 dB. The distribution of KLOS
dB and KNLOS

dB is plotted in Figure 4.11(a) for shadowing

standard deviation σsh =4dB, 5dB, 6dB. It is observed that as σsh increases, the intersection

area of KNLOS
dB and KLOS

dB increases, along with which the probability-of-error will increase.

When the LOS condition likelihood P(H1) = 0.5, the MAP detection rule is applied. Plug-

ging the mean and standard deviation into (4.17)-(4.19), the threshold Kth, the detection

probability of NLOS, PD and the false alarm probability of NLOS, PF are summarized in

Table 4.1.

In Neyman Pearson test, the false alarm rate is set to a desirable value, and then the thresh-

old separating LOS and NLOS can be found. Using (4.18), the detection probability PD

is evaluated. The relationship of detection probability PD and false alarm probability PF

is sketched for different values of shadowing variance in Figure 4.11(b). It shows that as

σsh decreases, the curve moves to the upper left region. This means a better identification

performance can be attained, because for each fixed value of PF , lower σsh achieves higher

PD.
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4.6 Conclusion

In this chapter, a novel NLOS identification technique is proposed. It extracts the phase

difference of two signals received via two antenna elements. The proposed technique as-

sumes uncorrelated phase across the two antenna elements. Simulations depict that this

assumption is valid for elliptical distribution of scatterers as long as antenna element spac-

ing exceeds one wavelength. However, for circular distribution of scatterers, antenna ele-

ment spacing that ensures independency of the signal phase across antenna elements varies

with the distance of transmitter and receiver: as the transmitter-receiver distance increases,

higher antenna element spacing is required to ensure the independency of phases across

two antenna elements.

Thus, the proposed model performs better for elliptical models for which the antenna el-

ement spacing needs to be selected low. The elliptical model is a good model when the

altitude of both the transmitter and receiver is low. This motivates the application of the

proposed technique for near ground sensor networks in urban areas, such as those that could

be installed on vehicles for traffic alert and collision avoidance.

Compared to the traditional envelope-based K estimator, the proposed phase difference-

based K estimator is more robust when the signal envelope distribution deviates from Ri-

cian. For example, when the LOS component is subject to random shadowing, the envelope

distribution deviates from Rician. The impact of shadowing variance is investigated. It is
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shown that smaller shadowing variance leads to a better NLOS identification performance.

Typically, a variance of 4dB leads to 0.7952 probability of identification while a variance

of 8dB leads to 0.7164 probability of identification. This technique can also be applied to

systems with more than two antenna elements. Additional antennas increase the speed of

data acquisition process and reduce the identification processing time.
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Chapter 5

NLOS Identification in Frequency Selective and

Space Selective radio channels

This chapter proposes a non-line-of-sight (NLOS) identification technique that exploits

space-frequency channel correlation of multi-input multi-output (MIMO) orthogonal fre-

quency division multiplexing (OFDM) systems. Here, space correlation refers to the cor-

relation across antenna elements, and frequency correlation refers to the correlation across

subcarriers. In this chapter, metrics based on space-frequency channel correlation are pro-

posed for NLOS identification. The proposed metrics require minimal variation of spatial

correlation across different multi-path components. The channel model satisfying this re-

quirement is studied. The probability of detection performance of the new NLOS identifi-

cation method is investigated.
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5.1 Introduction

In this chapter, we investigate the NLOS identification problem for wireless wide band

multi-input multi-output (MIMO) systems. MIMO systems use multiple antenna elements

at the transmitter and receiver to maintain high throughput and reliable communication.

In wide band systems, orthogonal-frequency-division-multiplexing (OFDM) can signifi-

cantly reduce the receiver complexity [74]. Therefore, the use of MIMO technology in

combination with OFDM, i.e., MIMO-OFDM is an attractive solution for high throughput

wireless communications and it is also a promising candidate for location-based services.

MIMO-OFDM has already been adopted as the standard for wireless LAN 802.11n[75]

and WiMAX 802.16e [76].

We propose a new NLOS identification technique exploiting space-time-frequency channel

correlation of MIMO-OFDM systems. The channel correlation of MIMO-OFDM systems

can be measured across antenna (space) and across subcarrier (frequency). It is noted

that the channel information is available at the receiver in MIMO-OFDM systems and

accordingly, the measurement of channel correlation is straight forward. In this chapter,

the proposed metrics for NLOS identification are based on space-frequency correlation

and they include: (1) the absolute value of subcarrier correlation difference (SCD) and (2)

the mean value and (3) the standard deviation (std) of SCD over different transmit and

receive antenna combinations. The identification is based on the following observation:
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when the variation of spatial correlation across different multi-path components is minimal,

the absolute value of SCD, and the mean value and std of SCD under LOS conditions

would be larger than those under NLOS conditions with a large probability. The proposed

technique functions assuming microcell channel models. For the channel models fail to

meet minimal variation requirement, NLOS identification techniques for MIMO-OFDM

systems are investigated in Chapter 6.

The remainder of this chapter is organized as follows. In Section 5.2, we introduce the

space-frequency channel correlation model of MIMO-OFDM systems, and define the cor-

responding metrics: SCD, the mean value and std of SCD. In Section 5.3, we present the

performance of NLOS identification using the metrics defined in Section 5.2. Section 5.4

concludes the chapter.

5.2 Techniques based on space-frequency channel correlation

5.2.1 Space-frequency channel correlation

We consider a wideband MIMO channel with Mt and Mr transmit and receive antenna

elements, respectively. When LOS is available, the multi-path channel impulse response

(CIR) from the pth (p = 1,2, . . .Mt) transmit antenna to the qth (q = 1,2, . . .Mr) receive
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antenna is represented by a tapped-delay-line model that corresponds to

hp,q
LOS(t) = ap,q

LOSδ (t − τLOS)+
L

∑
l=1

ap,q
l δ (t − τl) (5.1)

where ap,q
LOS is the amplitude coefficient of the LOS path, τLOS is the TOA of the LOS path,

ap,q
l is the amplitude coefficient of the lth multi-path component, and τl is the associated

TOA. Let ε2
l be the power of the lth tap for any transmit-receive antenna combination, i.e.,

ε2
l = E(|ap,q

l |2), p = 1,2, . . .Mt , q = 1,2, . . .Mr . Usually, the first tap contains the LOS

and some NLOS rays. Thus, τ1 = τLOS.

Assuming ap,q
l is a zero mean Gaussian process, ap,q

LOS is a complex number and |ap,q
LOS|2 =

|aLOS|2, the Rician K-factor of the first path is defined as

K � |ap,q
LOS|2

E(|ap,q
1 |2) =

|aLOS|2
ε2

1

(5.2)

Next, we compute the channel response in the frequency domain. Let the signal bandwidth

be W and the total number of subcarriers is N, the frequency spacing in OFDM is defined

as Δ f � W/N. Applying Fourier transform to (6.1), the channel frequency response of the
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nth subcarrier is obtained,

H p,q
LOS(n) = ap,q

LOS exp(− j2πnΔ f τLOS)

+
L

∑
l=1

ap,q
l exp(− j2πnΔ f τl) (5.3)

where n = 0,1, . . .N−1 and τLOS can always be normalized to 0 without loss of generality.

Then, the normalized correlation of the channel response from the pth
1 transmit antenna to

the qth
1 receive antenna at the nth

1 subcarrier and the channel response from the pth
2 transmit

antenna to the qth
2 receive antenna at the nth

2 subcarrier is

RLOS(p1,q1,n1; p2,q2,n2)

= E{H p1,q1

LOS (n1)[H
p2,q2

LOS (n2)]∗}/E{H p1,q1

LOS (n1)[H
p2,q2

LOS (n1)]∗} (5.4)

Assuming uniform antenna arrays and uncorrelated scattering, i.e., E{ap1,q1

l (ap2,q2

k )∗} = 0,

when l �= k, the above correlation becomes

RLOS(p1,q1,n1; p2,q2,n2) =

|aLOS|2 f (θ0,φ0)+∑L
l=1 ε2

l χ p1,q1;p2,q2

l exp[− j2πΔ f (n1 −n2)τl]

∑L
l=1 ε2

l χ p1,q1;p2,q2

l + |aLOS|2 f (θ0,φ0)
(5.5)

where f (θ0,φ0) = exp[− j2π(p1− p2)dt sinθ0− j2π(q1−q2)dr sinφ0], dt , dr are the trans-

mit and receive antenna spacing normalized to the wavelength, θ0 is the direction-of-

departure (DOD), φ0 is the direction-of-arrival (DOA), and χ p1,q1;p2,q2

l is the spatial cor-
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relation coefficient, χ p1,q1;p2,q2

l = E{ap1,q1

l (ap2,q2

l )∗}/ε2
l .

When LOS is not available, the subcarrier correlation is obtained by letting aLOS = 0 in

(5.5), that corresponds to

RNLOS(p1,q1,n1; p2,q2,n2) =

∑L
l=1 ε2

l χ p1,q1;p2,q2

l exp[− j2πΔ f (n1 −n2)τl]

∑L
l=1 ε2

l χ p1,q1;p2,q2

l
(5.6)

5.2.2 Definition of subcarrier correlation difference

LOS subcarrier correlation difference (SCD) is defined as,

SCDLOS(p1 − p2,q1 −q2,n1 −n2) �

RLOS(p1,q1,n1; p2,q2,n2)−RLOS(p1,q1,n1; p1,q1,n2) (5.7)

NLOS subcarrier correlation difference is similarly defined and can be expanded as

SCDNLOS(p1 − p2,q1 −q2,n1 −n2) �

RNLOS(p1,q1,n1; p2,q2,n2)−RNLOS(p1,q1,n1; p1,q1,n2)

=
∑L

l=1 ε2
l χ p1,q1;p2,q2

l exp[− j2πΔ f (n1 −n2)τl]

∑L
l=1 ε2

l χ p1,q1;p2,q2

l

− ∑L
l=1 ε2

l exp[− j2πΔ f (n1 −n2)τl]

∑L
l=1 ε2

l
(5.8)
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Figure 5.1: Geometry of scatterer distribution for mircocell environments

Now, we depict that in microcell environments χ p1,q1;p2,q2

l remains approximately un-

changed across all multipath components, i.e.,

χ p1,q1;p2,q2

l ≈ χ p1,q1;p2,q2 (5.9)

This renders SCDNLOS small (almost zero) compared to SCDLOS defined in (5.7). That is

SCDNLOS(p1 − p2,q1 −q2,n1 −n2) ≈ 0 (5.10)

Figure 5.1 depicts the geometry of a microcell environment where scatterers are distributed

in the shaded area, the transmitter and the receiver are located at the foci of a set of ellipses,

and the scatterers in each elliptical subregion (shown in a different shade) contribute to one

of the multi-path components (taps). The spatial correlation χ p1,q1;p2,q2

l is determined by
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the power angular function of the lth multi-path component, i.e., gl(ψ), that is [77]

χ p1,q1;p2,q2

l =
∫ 2π

0
gl(ψ)exp(− j2π(p1−p2)dt sinθ− j2π(q1−q2)dr sinφ)dψ (5.11)

where θ , φ and ψ are shown in Figure 5.1. ψ is the angle of a scatterer with respect to the

center of the ellipse. Note that θ and φ are related with ψ by

sinθ =
Rl sinψ√

(Rl sinψ)2 +(D/2+Rl cosψ)2
(5.12)

sinφ =
Rl sinψ√

(Rl sinψ)2 +(D/2−Rl cosψ)2
(5.13)

where D is the distance between transceivers and

Rl =

√
1/(

sin2 ψ
a2

l
+

cos2 ψ
b2

l
) (5.14)

In (5.14), al is the value of semi major axis, bl is the value of semi minor axis.

gl(ψ) in (5.11) is the power angular function which describes how the power is distributed

with ψ for the lth multi-path component. Here, gl(ψ) = 1
2π , 0 ≤ ψ < 2π . The multi path

signals arrive with an absolute delay less than τm = 5μs and therefore the maximum value

of semi major axis is am = cτm/2 = 750m where c is the speed of light. Then al and bl in
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l in micro cell environment

(5.14) corresponds to

al = am − (L− l)cΔτ/2 (5.15)

bl =
√

a2
l − (D/2)2 (5.16)

where Δτ = 50ns for the system with 20MHz bandwidth. Plugging (5.12) (5.13) (5.15)

(5.16) into (5.11), χ p1,q1;p2,q2

l is numerically computed and plotted in Figure 5.2 for dif-

ferent transmit and receive antenna combinations. It is noted that here χ p1,q1;p2,q2

l is a real

number due to the symmetric scatterer distribution around the major axis. In Figure 5.2, it

is observed that the variation of χ p1,q1;p2,q2

l over taps are small and the value of χ p1,q1;p2,q2

l

does not cross 0 for most antenna combinations. Those observations support the approx-

imation shown in (5.9). Note that the small variation of χ p1,q1;p2,q2

l is mainly determined

by the fact that the DOA distributions of different multipath components are similar. This
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fact is also held for macrocell environments [78, 79] where the base station is usually el-

evated and free of local scatterer, and the mobile station is surrounded by a circle of local

scatterers.

5.2.3 Characteristics of SCD and SCD statistics across antenna pairs

The absolute value of SCD can be used to distinguish LOS and NLOS. This is due to the

fact that based on (5.7) and (5.10), the absolute value of SCD under LOS condition is

greater than zero and the absolute value of SCD under NLOS condition is close to zero.

Let

ΓLOS(n1 −n2) = |SCDLOS(p1 − p2,q1 −q2,n1 −n2)| (5.17)

ΓNLOS(n1 −n2) = |SCDNLOS(p1 − p2,q1 −q2,n1 −n2)| (5.18)

ΓLOS(n1 −n2) is a function of frequency separation (n1 −n2) and now it is decided which

value of (n1 − n2) will be used. Observing (5.5) and (5.7), it is found that when (n1 −

n2) is small, both the first and the second correlation in (5.7) is close to 1. Accordingly,

ΓLOS(n1 − n2) would be close to zero and ΓLOS(n1 − n2) and ΓNLOS(n1 − n2) would be
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indistinguishable. Therefore, let n1 −n2 = N/2, and ΓLOS(N/2) is approximated by

ΓLOS(N/2) ≈
∣∣∣∣∣ α
∑L

l=1 ε2
l χ p1,q1;p2,q2

l +α
− α

∑L
l=1 ε2

l +α

∣∣∣∣∣
by (5.9)≈

∣∣∣∣∣ α(1−χ p1,q1;p2,q2)∑L
l=1 ε2

l

(χ p1,q1;p2,q2 ∑L
l=1 ε2

l +α)(∑L
l=1 ε2

l +α)

∣∣∣∣∣
χ p1,q1;p2,q2≈0≈

∣∣∣∣∣ ∑L
l=1 ε2

l

∑L
l=1 ε2

l +Kε2
1 f (θ0,φ0)

∣∣∣∣∣ (5.19)

where α = |aLOS|2 f (θ0,φ0). In (5.19), when χ p1,q1;p2,q2 ≈ 0, ΓLOS(N/2) decreases with

Rician K factor. Accordingly, ΓLOS(N/2) cannot be distinguished from ΓNLOS(N/2) when

Rician K factor is large.

The mean and variance of SCD of different transmit-receive antenna combinations can also

be used to identify NLOS conditions. Note that (5.10) holds for any transmit and receive

antenna combinations. Accordingly, the variation of SCDNLOS(p1 − p2,q1 −q2,N/2) over

different antenna combinations is minimal. For LOS conditions, let μLOS denote the mean

of absolute SCD values over antenna combinations and μabs
LOS denote the absolute mean

value of SCD, i.e.,

μLOS =
1

M ∑
p1−p2,q1−q2

|SCDLOS(p1 − p2,q1 −q2,N/2)| (5.20)

μabs
LOS =

1

M

∣∣∣∣∣ ∑
p1−p2,q1−q2

SCDLOS(p1 − p2,q1 −q2,N/2)

∣∣∣∣∣ (5.21)

where M is the number of antenna combinations. The standard deviation of absolute SCD
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values is denoted by σLOS and the absolute value of standard deviation of SCD is denoted

by σ abs
LOS. Similarly, μNLOS, μabs

NLOS, σNLOS and σ abs
NLOS are defined for NLOS SCD values.

Based on (5.10) and (5.7), it is expected that

ΓNLOS(N/2) < ΓLOS(N/2) (5.22)

μNLOS < μLOS, μabs
NLOS < μabs

LOS (5.23)

σNLOS < σNLOS, σ abs
NLOS < σ abs

LOS (5.24)

In Section 5.3, the performance of using ΓNLOS(N/2), μNLOS and σNLOS in identifying

NLOS conditions will be evaluated and compared.

5.3 Numerical simulations and discussions

Simulations are conducted to plot distributions of the absolute values, the mean values, the

std values of SCD shown in (5.22)-(5.24). The performance of those measures in iden-

tifying NLOS scenarios are evaluated. Simulation parameters are selected consistent to

802.11n wireless LAN (WLAN) channel models [75]. Here, the bandwidth is W = 20

MHz, the number of subcarrier is N = 64, Δ f = W/N = 312.5kHz, dt = dr = λ/2. WLAN

Channel Model F which is suitable for indoor or outdoor large open space is used here

to characterize the power delay profile [75]. The delay spread τrms = 150ns, the max-

imum TOA τmax = 1000ns, and the tap power is assumed to decay exponentially, i.e.,
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Figure 5.3: The distributions of Γ(N/2) under LOS and NLOS scenarios when

p1− p2 = −1, q1 −q2 = −1, Rician K = 1,4,10.

ε2
l = exp(−τl/τrms).

The spatial correlation χ p1,q1;p2,q2

l is assumed to be uniformly distributed in a hollow disk

with radius from 0.1 to 0.9 on the complex plane, i.e., |χ p1,q1;p2,q2

l | ∼U [0.1,0.9],

angle(χ p1,q1;p2,q2

l ) ∼ U [0,2π], and the magnitude and the angle are independent. In order

to maintain the similarity of χ p1,q1;p2,q2

l over taps, the spatial correlation values of all taps

are restricted in either of the four quadrants. The DOD θ0 and the DOA φ0 are assumed to

be independent and uniformly distributed in [0,2π], i.e., θ0,φ0 ∼U [0,2π].
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Figure 5.4: The distributions of (a) μ and σ (b)μabs and σ abs when Rician K = 1.

5.3.1 Absolute value of SCD

The distributions of Γ(N/2) in (5.22) under LOS and NLOS scenarios for different values

of Rician K factor are shown in Figure 5.3. It is observed that SCD values for LOS and

NLOS are almost indistinguishable due to the large overlap of the distributions. In partic-

ular, when K = 10, the distributions of ΓNLOS(N/2) and ΓLOS(N/2) are almost identical.

Therefore, the identification performance of Γ(N/2) is poor.

5.3.2 Mean and variance of SCD

A 2× 2 MIMO system is considered. The transmit antenna difference (p1 − p2) and the

receive antenna difference (q1 − q2) take on values from {0,1,−1}. Therefore, 4 distinct

SCD values can be computed using the antenna combination (p1 − p2,q1 − q2) from the

set {(0,1)(1,0)(1,1)(1,−1)}.
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The distributions of mean values and std values of SCD are shown in Figure 5.4. Small

overlaps of mean and std distributions for LOS and NLOS are seen which indicates a good

NLOS detection performance. Bayesian hypothesis testing [70] is applied to perform the

NLOS detection and the decision rules are as follows,

Decide NLOS if

μ < μth or μabs < μabs
th or σ < σth or σ abs < σ abs

th (5.25)

Decide LOS if

μ > μth or μabs > μabs
th or σ > σth or σ abs > σ abs

th (5.26)

The detection performance is characterized by the false alarm rate PF and the detection rate

PD,

PF = P(NLOS|LOS) =
∫ η

0
f (m|LOS)dm (5.27)

PD = P(NLOS|NLOS) =
∫ ∞

η
f (m|NLOS)dm (5.28)

where η represent the decision threshold, f (m|LOS) is the metric pdf under LOS and

f (m|NLOS) is the metric pdf under NLOS. Now, the decision threshold, false alarm rate

PF and detection rate PD are computed. Assuming the probability of LOS and NLOS

appearances are equal, the decision threshold for each mean or std metric would be the

intersection of corresponding pdf curves for LOS and NLOS conditions. Accordingly,
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Table 5.1: Comparison of decision threshold, PF and PD for various metrics when

Rician K = 1

μ σ μabs σ abs

Threshold μth = 0.34 σth = 0.22 μabs
th = 0.26 σ abs

th = 0.39

PF 15.68% 3.96% 4.31% 19.50%

PD 94.86% 98.77% 97.26% 95.92%
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Figure 5.5: The distributions of (a) μ and σ (b)μabs and σ abs when Rician K = 10.

decision threshold, PF and PD are summarized in Table 5.1. It is shown in the table that σ

and μabs offers the best detection performance, since the detection using those two metrics

have a low false alarm rate and a high detection rate.

Next the impact of Rician K on the performance of mean and std values is discussed.

Following the same argument below (5.19), as Rician K increases, Γ(N/2) decreases and

both the mean and std values of SCD under LOS will be pushed near to those under NLOS.

This analysis is confirmed in Figure 5.5 where mean and std distributions are plotted for

Rician K = 10. (Note that in elliptical or circular scattering model, the Rician K can hardly

exceed 10 due to rich scattering.) It is observed that the distributions of μLOS and μNLOS are

almost identical, the distributions of σLOS and σNLOS are almost identical, and with a large
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probability σ abs
LOS < σ abs

NLOS. Only μabs can still be used to identify NLOS for large Rician K,

and the threshold, probability of detection and probability of false alarm are μabs
th = 0.17,

PF = 11.43%, PD = 82.23%. Therefore, the performance of large Rician K is worse than

that of small Rician K.

5.4 Conclusion

This chapter proposes to use space-frequency channel correlation based metrics and space-

time-frequency channel correlation based metrics for NLOS identification in MIMO-OFDM

systems.

It is observed that in elliptical scattering microcell environments, SCD in NLOS scenarios

is approximately 0 for any transmit and receive antenna combinations, but SCD in LOS

scenarios would change with selected antenna combination. Therefore, the absolute value,

the mean value and the standard deviation of SCD of NLOS are probably smaller than those

of LOS. Simulations using WLAN 2× 2 MIMO channel model shows that the technique

using the mean and standard deviation has a higher identification performance than the

technique using the absolute value of SCD. Among the four proposed mean and standard

deviation metrics, identification using σ and μabs offers the best performance, maintaining

a high detection rate (around 98%) with a low false alarm rate (around 4%) for small values

of Rician K (e.g. in the order of one). For large values of Rician K, the detection perfor-

mance is poor and only μabs can offers a decent performance. These results confirm that
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the proposed technique is a good candidate for NLOS identification that can be employed

in MIMO-OFDM systems.
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Chapter 6

NLOS Identification in Time-Varying, Frequency

Selective and Space Selective radio channels

This chapter proposes new measures for non-line-of-sight (NLOS) identification in wireless

localization systems. The measures are defined based on the space-time-frequency chan-

nel correlation features of multi-input multi-output (MIMO) orthogonal frequency division

multiplexing (OFDM) systems. Here, space-time channel correlation refers to the corre-

lation across antenna elements and time, and frequency channel correlation refers to the

correlation across subcarriers. The probability-of-detection performance of these NLOS

identification methods is investigated. The results represent a high identification perfor-

mance when the LOS and NLOS powers are in the same order of magnitude.
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6.1 Introduction

In this chapter, we propose a new NLOS identification technique exploiting space-time-

frequency channel correlation of MIMO-OFDM systems. The channel correlation of MIMO-

OFDM systems can be measured across antenna (space), across time and subcarrier (fre-

quency). The metrics proposed to perform NLOS identification include: (1) the absolute

value of space-time channel correlation with subcarrier separation and (2) the absolute

value of space-time channel correlation with zero subcarrier separation and (3) a function

of the first and the second metrics. The identification process is based on the idea that the

correlation of NLOS components would approach zero as the space and time separation

increase while the absolute value of the LOS component correlation is constant with any

space and time separation. The capability of the proposed measures are analyzed theoreti-

cally and via simulations.

The remainder of this chapter is organized as follows. In Section 6.2, we introduce the

space-time-frequency channel correlation model of MIMO-OFDM systems. In Section

6.3, the metrics used in NLOS identification are defined. In Section 6.4, we present the

performance of NLOS identification using the proposed metrics. Section 6.5 concludes

this chapter.
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6.2 Space-time-frequency channel model of MIMO-OFDM systems

We consider a wideband MIMO channel with Mt and Mr transmit and receive antenna

elements, respectively. The time-varying, time-dispersion channel impulse response (CIR)

from the pth (p = 1,2, . . .Mt) transmit antenna to the qth (q = 1,2, . . .Mr) receive antenna

is represented by a tapped-delay-line model that corresponds to

hp,q(t,τ) =
L

∑
l=1

ap,q
l (t)δ (τ − τl) (6.1)

where ap,q
l (t) is the amplitude coefficient of the lth multi-path component, and τl is the

associated TOA. When LOS is not available, let ε2
l be the power of the lth tap for any

transmit-receive antenna combination, i.e., ε2
l = E(|ap,q

l (t)|2). When LOS component is

available, the first tap is the sum of a specular component and a diffuse component, i.e.,

ap,q
1 (t) = ap,q

s (t) + ap,q
d (t). Let |ap,q

s (t)|2 = σ2
s and E(|ap,q

d (t)|2) = ε2
1 . Then the Rician

K-factor of the first path is defined as

K � |ap,q
s (t)|2

E(|ap,q
d (t)|2) =

σ2
s

ε2
1

(6.2)
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Assuming the receiver is moving, the specular component ap,q
s (t) corresponds to

ap,q
s (t) = Aexp(− j2π(p−1)dt sinθ0 − j2π(q−1)dr sinφ0)exp( j2π fD sin(φ0 −φα)t)

(6.3)

where A is a constant, θ0 is the direction-of-departure (DOD) of LOS component, φ0 is the

DOA of LOS component, fD is the maximum doppler frequency in radian, and φα is the

direction of movement.

Next, we compute the channel response in the frequency domain. Let the signal bandwidth

be W and the total number of subcarriers is N, the frequency spacing in OFDM is defined

as Δ f � W/N. Applying Fourier transform to (6.1), the channel frequency response of the

nth subcarrier is obtained as

H p,q(n, t) =
L

∑
l=1

ap,q
l (t)exp(− j2πnΔ f τl) (6.4)

where n = 0,1, . . .N −1.

Using (6.4), the space-time-frequency correlation of H p1,q1(n1, t) and H p2,q2(n2, t + Δt) is

124



expressed as

R(p1 − p2,q1 −q2,n1 −n2,Δt)

� E[H p1,q1(n1, t)H p2,q2(n2, t +Δt)∗]

=
L

∑
l=1

E[ap1,q1

l (t)ap2,q2

l (t +Δt)∗]exp(− j2πΔ f (n1 −n2)τl) (6.5)

which is assumed to be wide-sense stationary with time [64]. Since (6.5) is a function

of (n1 − n2), it is stationary with the subcarrier separation. In addition, the space-time-

frequency correlation is also stationary with the space separation, because as shown in [77]

the term E[ap1,q1

l (t)ap2,q2

l (t +Δt)∗] in (6.5) is a function of (p1 − p2) and (q1 −q2). There-

fore, the space-time-frequency correlation (6.5) is stationary with the space separation,

subcarrier separation and time separation. Then the correlation coefficients corresponds to

ρ(p1 − p2,q1 −q2,n1 −n2,Δt)

� R(p1 − p2,q1 −q2,n1 −n2,Δt)
R(0,0,0,0)

=
∑L

l=1 Ral(p1 − p2,q1 −q2,Δt)exp(− j2πΔ f (n1 −n2)τl)

∑L
l=1 Ral(0,0,0)

(6.6)

where Ral(p1 − p2,q1 −q2,Δt) = E[ap1,q1

l (t)ap2,q2

l (t +Δt)∗].

When the LOS component is available, Ra1
(p1− p2,q1−q2,Δt)= Ras(p1− p2,q1−q2,Δt)+
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Rad(p1 − p2,q1 −q2,Δt) and according to (6.3),

Ras(p1 − p2,q1 −q2,Δt)

= σ2
s exp(− j2π(p1 − p2)dt sinθ0 − j2π(q1 −q2)dr sinφ0)exp( j2π fD sin(φ0 −φα)Δt)

(6.7)

where σ2
s is the power of the LOS component.

6.3 Proposed measures: Λ(N/2), Λ(0) and Ω

The proposed measures are defined as,

Λ(N/2) = |ρ(p1 − p2,q1 −q2,N/2,Δt)|

=

∣∣∣∑l=2k−1 Ral(p1 − p2,q1 −q2,Δt)−∑l=2k Ral(p1 − p2,q1 −q2,Δt)
∣∣∣

∑L
l=1 Ral(0,0,0)

(6.8)

and,

Λ(0) = |ρ(p1 − p2,q1 −q2,0,Δt)|

=

∣∣∣∑l=2k−1 Ral(p1 − p2,q1 −q2,Δt)+∑l=2k Ral(p1 − p2,q1 −q2,Δt)
∣∣∣

∑L
l=1 Ral(0,0,0)

(6.9)
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Now, we define:

Ω =
∣∣∣Λ(N/2)+Λ(0)

2

∣∣∣2 − ∣∣∣Λ(N/2)−Λ(0)
2

∣∣∣2

=

∣∣∣∑l=2k−1 Ral(p1 − p2,q1 −q2,Δt)
∣∣∣2 − ∣∣∣∑l=2k Ral(p1 − p2,q1 −q2,Δt)

∣∣∣2(
∑L

l=1 Ral(0,0,0)
)2

(6.10)

Considering (n1 − n2) = N/2, the second equality in (6.8) holds because the exponential

term in the numerator of (6.6), exp(− j2πΔ f (n1 − n2)τl) = exp(− jπ(l − 1)) = (−1)l−1

when Δ f =W/N and τl = (l−1)/W , where W is the bandwidth. Considering (n1−n2) = 0,

the second equality in (6.9) holds because the exponential term in the numerator of (6.6),

exp(− j2πΔ f (n1 −n2)τl) = 1.

The correlation coefficient of two signals at a space separation greater than the coherence

distance or a time separation greater than the coherence time would be small. In general,

when the space separation or the time separation is sufficiently large, the corresponding

correlation coefficient would be zero, i.e.,

lim
Δt→∞ or (p1−p2)→∞ or (q1−q2)→∞

ΛNLOS(N/2) = 0 (6.11)

In NLOS cases, coherence time or distance is expected to be significantly small. Thus,

Ral(p1 − p2,q1 − q2,Δt) is expected to be small for typical separation of p1 − p2 ≥ 1 (or

q1 −q2 ≥ 1), namely one wavelength separation.
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In LOS cases, the correlation of LOS component given in (6.7) has an absolute value of σ2
s

which does not change with the space and time separation. Therefore,

lim
Δt→∞ or (p1−p2)→∞ or (q1−q2)→∞

ΛLOS(N/2) =
σ2

s

∑L
l=1 Ral(0,0,0)

(6.12)

Based on the above observations, the idea behind using Λ(N/2) in NLOS identification is

that in NLOS cases the numerator of those measures would be close to zero and in LOS

cases the numerator of those measures would be around σ2
s . Therefore, we expect that at a

certain spacing and time separations,

ΛLOS(N/2) > ΛNLOS(N/2) (6.13)

Following the same arguments, we also expect that at a certain spacing separation and time

separation,

ΛLOS(0) > ΛNLOS(0) (6.14)

and,

ΩLOS > ΩNLOS (6.15)
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In this technique, a high value of correlation Ral(p1 − p2,q1 −q2,Δt) in NLOS case would

be mistakenly identified as LOS case. Due to the combination of space separation and time

separation, Ral(p1 − p2,q1 −q2,Δt) would probably has a lower value than the correlation

with space separation or time separation alone. Kronecker channel model [50] is considered

here to model the correlation Ral(p1 − p2,q1 −q2,Δt). Kronecker channel model has been

used in wireless LAN 802.11n for MIMO system performance analysis [75].

It has been shown that considering Kronecker model, the space-time correlation can be

represented by [60, 54]

Ral(p1 − p2,q1 −q2,Δt) = ε2
l ρl(p1 − p2,q1 −q2,Δt)

= ε2
l ρl(p1 − p2)ρl(q1 −q2,Δt) (6.16)

where the correlation coefficients is the product of transmit space and receive space-time

correlation coefficients. In this case, the absolute value of the product of two correlation

coefficients would be more likely to be smaller than the absolute value of single correlation

coefficient, with a radius that varies from 0 to 1 on the complex plane.

6.4 Numerical simulations and discussions

Simulations are conducted to plot distributions of Λ(N/2), Λ(0) and Ω shown in (6.8)-

(6.10). The performance of those measures in identifying NLOS scenarios are evaluated.
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Figure 6.1: (a) Cluster scattering model A: Ral is independent of Ram , l �= m. (b)

Cluster scattering model B, Ral ≈ Ram , l �= m.

Simulation parameters are selected consistent to 802.11n wireless LAN (WLAN) channel

models [75]. Here, the bandwidth is W = 20 MHz, the number of subcarrier is N = 64,

Δ f = W/N = 312.5kHz, dt = dr = λ/2. WLAN Channel Model F which is suitable for

indoor or outdoor large open space is used here to characterize the power delay profile [75].

The delay spread τrms = 150ns, the maximum TOA τmax = 1000ns, and the tap power is

assumed to decay exponentially, i.e., ε2
l = exp(−τl/τrms).

Here, the correlation coefficients ρl(p1 − p2) and ρl(q1 − q2,Δt) in (6.16) are assummed

to be independent and uniformly distributed in the circle with radius from 0 to 1 on the

complex plane.

In order to model the relationship of the correlation coefficients of different taps, such as

Ral(p1 − p2,q1 − q2,Δt) of tap l and Ram(p1 − p2,q1 − q2,Δt) of tap m, cluster scattering

model A and B are considered. In cluster scattering model A shown in Figure 6.1(a), the

location and the size of the cluster corresponding to one tap is independent of those of the
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cluster corresponding to another tap. In this case, correlation coefficients of different taps

are assumed to be independent.This is due to the fact that the correlation coefficient of one

tap is determined by the location and the size of the cluster of scatterers corresponding to

that tap and independent clusters would lead to independent tap correlation. In cluster scat-

tering model B shown in Figure 6.1(b), neighboring taps are formed by the same cluster

and this creates some degrees of correlation between the correlation coefficients of neigh-

boring taps [80], i.e., Ral ≈ Ram, l �= m. In the following simulation, similar neighboring

taps correlation is realized by modeling the neighboring taps correlation coefficients to lie

in the same quadrant of the complex plane.

The performance of Λ(0) and Ω would not differ considerably between the two correlation

coefficients models: independent correlation coefficients across taps and correlated corre-

lation coefficients of neighboring taps. However, the performance of Λ(N/2) is expected

to be better in the latter model. The numerator of Λ(N/2) in (6.8) can be rearranged as the

sum of neighboring correlation difference. The sum is suppressed in the latter model and

as a result the distribution of ΛNLOS(N/2) is pushed away from that of ΛLOS(N/2).

First, simulation results for cluster scattering model A are presented. Let p1 − p2 = 1 and

q1 − q2 = 1. The symmetry in the correlation coefficient distribution would lead to the

same performance of Λ(0) and Λ(N/2). Therefore, only the distributions of Λ(N/2) and

Ω are depicted in Figure 6.2 for Rician K = 0.5. The probability of false alarm PF and

the probability of detection PD for Rician K = 0.5, 1, 1.5, 3 are listed in Table 6.1. The
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Figure 6.2: The distributions of Λ(N/2) and Ω when Rician K = 0.5 for cluster

scattering model A

Table 6.1: Comparison of PF and PD for Λ(N/2) and Ω when Rician K = 0.5, 1,

1.5, 3 for cluster scattering model A

K = 0.5 K = 1 K = 1.5 K = 3

Λ(N/2), PF 27.63% 15.26% 7.29% 0.48%

Λ(N/2), PD 53.56% 77.25% 89.27% 99.06%

Ω, PF 35.74% 9.20% 4.46% 0.13%

Ω, PD 72.40% 84.12% 94.49% 99.88%

threshold for computing PF and PD is the intersection of two corresponding distribution

curves. From the table, it is observed that Ω has a better NLOS detection performance

and the performance of both Λ(N/2) and Ω increases with Rician K. As predicted in

(6.11), (6.12), larger K leads to larger LOS measures. This creates larger gap between LOS

measures and NLOS measures, which reduces the identification error and improves the

performance. It can be concluded that either of the proposed measures would offer good

performance when K > 1.5.
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Figure 6.3: The distributions of Λ(N/2), Λ(0) and Ω when Rician K = 0.5 for

cluster scattering model B

Table 6.2: Comparison of PF and PD for Λ(N/2), Λ(0) and Ω when Rician K = 0.5,

1, 1.5, 3 for cluster scattering model B

K = 0.5 K = 1 K = 1.5 K = 3

Λ(0), PF 34.49% 19.71% 12.11% 1.64%

Λ(0), PD 51.44% 69.15% 83.66% 97.72%

Λ(N/2), PF 23.65% 9.74% 2.47% 0.026%

Λ(N/2), PD 66.10% 89.66% 95.98% 99.94%

Ω, PF 34.49% 9.49% 4.04% 1.5%

Ω, PD 73.20% 85.29% 94.89% 99.88%

Next, simulation results for cluster scattering model B are presented. The distributions of

Λ(N/2), Λ(0) and Ω for Rician K = 0.5 are depicted in Figure 6.3.

The PF and PD for Rician K = 0.5, 1, 1.5, 3 are listed in Table 6.2. The threshold for

computing PF and PD is the intersection of two corresponding distribution curves. From

the table, it is observed that the performance of Λ(N/2) is better than that of Λ(0), since

Λ(N/2) takes the advantage of frequency selectivity and similar correlation of neighboring
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taps. The performance of Ω and Λ(N/2) are comparable. Again it is noted that the perfor-

mance of all measures increases with Rician K and either of the proposed measure would

offer good performance when K > 1.5.

6.5 Conclusion

This chapter proposes NLOS identification techniques for MIMO-OFDM systems by in-

corporating space-time-frequency channel correlation based metrics: Λ(N/2), Λ(0) and Ω.

It is observed that the detection performance of Ω beats that of Λ(N/2) and Λ(0) when

the space-time tap correlation is independent from tap to tap (cluster scattering model A);

the detection performance of Ω and Λ(N/2) is comparable and is better than Λ(0) as the

space-time tap correlation of neighboring taps is similar (cluster scattering model B). For

both cases, the performance of all three measures improves as the value of Rician K in-

creases. These results confirm that the proposed NLOS identification technique that is

based on MIMO-OFDM is a good candidate for NLOS identification that can be employed

in MIMO-OFDM systems. The proposed NLOS identification has applications in indoor

and urban area localization.
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Chapter 7

Conclusions and Open problems

7.1 Conclusions

Chapter 2 conducts a thorough review on NLOS identification techniques proposed in the

literature. NLOS identification methods have been categorized into cooperative and non

cooperative. Each possesses different complexity and performance level. Cooperative tech-

niques incorporate multiple transmitters or receivers to identify NLOS scenarios. However

non cooperative techniques use only one receiver. The cooperative NLOS identification

techniques performs properly when there are enough LOS measurements. In addition, the

software complexity of these techniques is high. The non cooperative methods use different

measures statistics to identify NLOS scenarios. The measures include range statistics and

channel characteristics. The range statistics based methods require a high SNR for TOA
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estimation and also require a long processing time to acquire statistics. Moreover, they

fail to correctly identify NLOS when base nodes, the target node and the scatterers are all

stationary. On contrary, the channel characteristics based, and hybrid methods offer a good

trade-off between requirements and performance.

In Chapter 3, an approach is proposed to investigate the correlation across and within multi-

ple users in multiuser MIMO narrow band wireless communication systems. The intra-user

and inter-user correlations are theoretically derived and numerically evaluated. The impact

of surface roughness on radio signal is also studied and simulation results show that higher

roughness leads to lower correlation. In addition, topography, i.e., whether two users are

in line with the significant scattering path, plays a main role in the shape of the cross-user

correlation. For intra-user and inter-user cases, it is observed that LOS signals drastically

boost the correlation and have a more flat trajectory in space. This property can be incor-

porated to discriminate LOS scenarios from NLOS scenarios.

In Chapter 4, a method based on the phase difference statistics across two antenna elements

is proposed to identify NLOS scenarios in narrow band wireless systems. The proposed

technique assumes uncorrelated phase across the two antenna elements. Simulations de-

pict that this assumption is valid for elliptical distribution of scatterers as long as antenna

element spacing exceeds one wavelength. However, for circular distribution of scatter-

ers, antenna element spacing that ensures independency of the signal phase across antenna

elements varies with the distance of transmitter and receiver: as the transmitter-receiver
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distance increases, higher antenna element spacing is required to ensure the independency

of phases across two antenna elements. Thus, the proposed model performs better for ellip-

tical models for which the antenna element spacing needs to be selected low. The elliptical

model is a good model when the altitude of both the transmitter and receiver is low. This

motivates the application of the proposed technique for near ground sensor networks in

urban areas, such as those that could be installed on vehicles for traffic alert and collision

avoidance. It is shown that smaller shadowing variance leads to a better NLOS identifica-

tion performance. Typically, a variance of 4dB leads to 0.7952 probability of identification

while a variance of 8dB leads to 0.7164 probability of identification. This technique can

also be applied to systems with more than two antenna elements. Additional antennas in-

crease the speed of data acquisition process and reduce the identification processing time.

Chapter 5 proposes to use space-frequency channel correlation based metrics for NLOS

identification in frequency-selective and space-selective radio channels. Chapter 6 proposes

to use space-time-frequency channel correlation based metrics for NLOS identification in

time-varying, frequency-selective and space-selective radio channels. MIMO-OFDM sig-

naling is used here as MIMO-OFDM technology is a good candidate for such channels.

It is observed that in elliptical scattering microcell environments, the absolute value, the

mean value and the standard deviation of SCD (based on space-frequency channel corre-

lation) of NLOS are probably smaller than those of LOS. Simulations using WLAN 2×2

MIMO channel model shows that the technique using the mean and standard deviation has

a higher identification performance than the technique using the absolute value of SCD.
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Among the four proposed mean and standard deviation metrics, identification using σ and

μabs offers the best performance, maintaining a high detection rate (around 98%) with a

low false alarm rate (around 4%) for small values of Rician K (e.g. in the order of one).

For large values of Rician K, the detection performance is poor and only μabs can offers a

decent performance.

The use of metrics based on SCD assumes that the variation of spatial correlation across

different multi-path components is minimal. This assumption does not hold in some chan-

nel models and in this case a group of metrics based on space-time-frequency channel

correlation that are Λ(N/2), Λ(0) and Ω can be used. It is found that the performance

of Ω beats that of Λ(N/2) and Λ(0) when the space-time tap correlation is independent

from tap to tap; the performance of Ω and Λ(N/2) is comparable and is better than Λ(0)

when the space-time tap correlation of neighboring taps is correlated. For both cases, the

performance of all three measures increases as the value of Rician K increases.

7.2 Open problems

7.2.1 Practical issues in employing spatial correlation for NLOS identification

In Chapter 3, the spatial channel correlation is derived based on the proposed multi-user

MIMO channel model. This study can be extended to many other practical wireless envi-

ronments. In addition, spatial channel correlation characterization of other MIMO channel
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models needs a further study to find the practical parameters used in identification process,

such as the threshold separating correlation values of NLOS scenarios from those of LOS

scenarios.

7.2.2 In Chapter 4, what if cov(Δφ1Δφ2) �= 0

In Chapter 4, a NLOS identification technique using phase difference across two antenna el-

ements is proposed. In this technique, phases received at two antenna elements are assumed

to be uncorrelated, i.e., cov(Δφ1Δφ2) �= 0 where Δφ1 and Δφ2 are shown in Figure 4.2. In

some propagation environments, the uncorrelated phase assumption may not be applicable.

Thus, alternative techniques need to be investigated for this situation.

7.2.3 Space-time tap correlation model

To the best knowledge of the author, in Section 5.3 the space tap correlation coefficient

χ p1,q1;p2,q2

l and elements of space-time tap correlation coefficient ρl(p1− p2)ρl(q1−q2,Δt)

in (6.16) are assumed to be uniformly distributed in a given range. Their realistic distribu-

tions could be further studied. These distributions would have an impact on the decision

threshold and the performance of the proposed metrics. Therefore modeling of space-time

tap correlation from a practical perspective would make the proposed metrics work better

in real radio systems.

Closed forms of space-time correlation functions have been proposed in [56] and [60].
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Those functions take into account various physical parameters such as the angle spreads

at the transmitter and the receiver, the distance between transceivers, mean directions of

the signal arrivals, array configurations, and Doppler spread. The proposed space-time

correlation functions might be employed to study their distributions.

7.2.4 Measures based on multi-dimensional space-time tap correlation

In Section 6.2, all space-time-frequency correlation measures are based on the subcarrier

correlation coefficient ρ(p1− p2,q1−q2,n1−n2,Δt) defined in (6.6). There, a single value

of ρ(p1 − p2,q1 − q2,n1 − n2,Δt) with transmit space separation (p1 − p2), receive space

separation (q1 −q2) and time separation Δt is used to identify NLOS scenarios. Note that

multiple values of ρ(p1 − p2,q1 − q2,n1 − n2,Δt) could be obtained by varying (p1 − p2)

or (q1 −q2) or Δt. Therefore, an extension on current work is to study what new measures

can be formed based on a group of ρ(p1 − p2,q1 − q2,n1 − n2,Δt) with multiple sets of

(p1 − p2), (q1 −q2) and Δt.
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Appendix A

Derivation of (3.33)

Here, we intend to find:

E(ρ(ρ ′)∗) = Cov(ρ,ρ ′)+E(ρ)E∗(ρ ′). (A.1)

Thus, we need to derive equations for Cov(ρ,ρ ′), the covariance of ρ and ρ ′,

and E(ρ)E∗(ρ ′). Incorporating (3.30), we have:

Cov(ρ,ρ ′) =
F(θ1,θ2)F(θ1,θ ′

2)
4L2

∫ L

−L

∫ L

−L
eivxx−iv′xx′

(
χ2(vz,−v′z)−χ(vz)χ∗(v′z)

)
dxdx′ (A.2)

E(ρ)E∗(ρ ′) = F(θ1,θ2)F(θ1,θ ′
2)e

−g1sinc(vxL)sinc(v′xL) (A.3)
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where F(θ1,θ2) is defined in (3.32), vz and vx are defined in (3.31), v′x =(sinθ1−sinθ ′
2)2π/λ ,

v′z = −(cosθ1 + cosθ ′
2)2π/λ , χ(vz) = exp(−σ2v2

z/2) and

χ2(vz,−v′z) = exp
(−g1 +g2e−(x−x′)2/T 2

), g1 and g2 being defined under (3.33).

Note that the significant contributions to the integral merely come from the region near

τ := x− x′ = 0, i.e., [−δ ,δ ]. This is because for large τ , χ2(vz,−v′z)− χ(vz)χ(v′z) ≈ 0.

Then,

Cov(ρ,ρ ′)≈ =
F(θ1,θ2)F(θ1,θ ′

2)
2L

sinc
(
(vx − v′x)L

)
∫ δ

−δ
eivxτ

(
χ2(vz,−v′z)−χ(vz)χ∗(v′z)

)
dτ (A.4)

Expanding χ2(vz,−v′z) in an exponential series, we have

χ2(vz,−v′z) = e−g1

∞

∑
m=0

(
g2e−τ2/T 2)m

m!
(A.5)

Substituting (A.5) in (A.4) we obtain

Cov(ρ,ρ ′) ≈ F(θ1,θ2)F(θ1,θ ′
2)

2L
sinc

(
(vx − v′x)L

)
e−g1

∫ ∞

−∞
cos(vxτ)

∞

∑
m=1

gm
2

m!
e−mτ2/T 2

dτ (A.6)

where the integration limits ±δ are replaced by ±∞; it is allowed since the integral receives
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significant contributions only from the region near τ = 0. Using the integral

∫ ∞

−∞
e−at2

cos(bt)dt =
√

π
a

e
−b2

4a (a > 0) (A.7)

we then find (3.33).
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Appendix B

Derivation of (3.35)

The series (3.33) converges too slowly to be of any practical use, so let’s return to the

integral (A.4). First, we note that for g2 � 1, χ(vz)χ(v′z) ≈ 0. Substituting in (A.4),

Cov(ρ,ρ ′) ≈ F(θ1,θ2)F(θ1,θ ′
2)

L
sinc

(
(vx − v′x)L

)
eg2−g1

∫ δ

0
e−g2(1−exp(−τ2/T 2)) cos(vxτ)dτ (B.1)

It is easily verified that for g2 � 1, the only significant contribution to this integral comes

from the region near τ = 0; we may therefore set exp(−τ2/T 2) ≈ 1− τ2/T 2 and replace

the upper limit of integration by ∞, obtaining

Cov(ρ,ρ ′) ≈ F(θ1,θ2)F(θ1,θ ′
2)

L
sinc

(
(vx − v′x)L

)
eg2−g1

∫ ∞

0
e−g2τ2/T 2

cosvxτdτ (B.2)
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Applying (A.7), we then achieve (3.35).
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Appendix C

Probability density function of Δφ1

In Figure 4.2, without loss of generality, let rLOS1 = A. Let R1 = |r1|, and the coordinates

of r1 is (X1,Y1). Since rDIF1 is zero mean complex Gaussian distributed with variance 2σ2,

X1 has a normal distribution with mean A and variance σ2, and Y1 has a normal distribution

with mean 0 and variance σ2.

X1 and Y1 can be expressed in terms of R1, Δφ1,

X1 = R1 cosΔφ1, Y1 = R1 sinΔφ1 (C.1)

Using a bivariate transformation of random variables, the joint PDF of R1 and Δφ1 is

fR1Δφ1
(R1,Δφ1) = fX1Y1

(R1 cosΔφ1,R1 sinΔφ1)|J(R1,Δφ1)| (C.2)
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where

J(R1,Δφ1) =

∣∣∣∣∣∣∣∣
∂X1
∂R1

∂X1
∂Δφ1

∂Y1
∂R1

∂Y1
∂Δφ1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
cosΔφ1 −R1 sinΔφ1

sinΔφ1 R1 cosΔφ1

∣∣∣∣∣∣∣∣
= R1(cos2 Δφ1 + sin2 Δφ1) = R1 (C.3)

Now, the joint PDF of X1 and Y1 corresponds to:

fX1Y1
(X1,Y1) =

1

2πσ2
exp

{
−(X1 −A)2 +Y 2

1

2σ2

}
(C.4)

Hence, applying (C.3) and (C.4) into (C.2), fR1Δφ1
(R1,Δφ1) is obtained. The marginal PDF

of Δφ1 is calculated by intergrating over R1 in (C.2),

fΔφ1
(Δφ1) =

∫ ∞

0
fR1Δφ1

(R1,Δφ1)dR1

=
1

2πσ2
e−

A2 sin2 Δφ1
2σ2

[∫ ∞

0
(R1 −AcosΔφ1)e

− (R1−AcosΔφ1)2

2σ2 dR1+

∫ ∞

0
AcosΔφ1e−

(R1−AcosΔφ1)2

2σ2 dR1

]

=
1

2πσ2
e−

A2 sin2 Δφ1
2σ2

[
σ2e−

A2 cos2 Δφ1
2σ2 +AcosΔφ1

√
2πσQ

(
−AcosΔφ1

σ

)]

=
exp(−K)

2π
+

√
K
π

cosΔφ1 exp(−K sin2 Δφ1)×Q(−
√

2K cosΔφ1),

φ1 ∈ [−π,π] (C.5)

where K = A2

2σ2 and the second equality is created by using (C.2) and (C.4).
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