147,180 research outputs found

    Transport models and advanced numerical simulation of silicon-germanium heterojunction bipolar transistors

    Get PDF
    Applications in the emerging high-frequency markets for millimeter wave applications more and more use SiGe components for cost reasons. To support the technology effort, a reliable TCAD platform is required. The main issue in the simulation of scaled devices is related to the limitations of the physical models used to describe charge carrier transport. Inherent approximations in the HD formalism are discussed over different technology nodes, providing for the first time a complete survey of HD models capability and restrictions with scaling for simulation of SiGe HBTs. Moreover, a complete set of models for transport parameters of SiGe HBTs is reported, including low-field mobility, energy relaxation time, saturation velocity, high-field mobility and effective density of state. Implementation in a commercial device simulator is drawn and findings are compared with simulation results obtained using a standard set of models and with trustworthy results (i.e. MC and SHE simulation results and experimental data), validating proposed models and clarifying their reliability and accuracy over different technologies. Finally, electrical breakdown phenomena in SiGe HBTs are analyzed: a novel complete model for multiplication factor is reported and validated by experimental results; new M model provides an exhaustive accuracy over a wide range of collector voltages

    Multi-Order Modeling of Linear Magnetic Motor System

    Get PDF
    Numerical simulations have been proven to be a powerful tool for predicting, testing, and validating the capabilities of new designs. However, given the high demand for simulating extremely complicated geometries and nonlinear physical phenomena, simulations can often be significantly time consuming. Consequently, the development of high-precision reduced-order models becomes indispensable to reduce computational time. In this study, we simplified and characterized an industrial motion system based on linear magnetic motor technology using accurate full 3-D numerical model. The system behavior was explored through various scenarios, including extreme conditions, to gain a deeper understanding of its thermal behavior during operation. The simulation results were then compared with experimental measurements. To achieve model order reduction, the initial and boundary conditions, along with temperature distributions derived from the simulation results, were translated into excitations and outputs for constructing robust reduced-order models. Subsequently, the reduced order model was thoroughly tested and validated against new scenarios derived from the 3-D simulation results

    BowTie - A deep learning feedforward neural network for sentiment analysis

    Full text link
    How to model and encode the semantics of human-written text and select the type of neural network to process it are not settled issues in sentiment analysis. Accuracy and transferability are critical issues in machine learning in general. These properties are closely related to the loss estimates for the trained model. I present a computationally-efficient and accurate feedforward neural network for sentiment prediction capable of maintaining low losses. When coupled with an effective semantics model of the text, it provides highly accurate models with low losses. Experimental results on representative benchmark datasets and comparisons to other methods show the advantages of the new approach.Comment: 12 pages, 7 figures, 4 table

    Computing server power modeling in a data center: survey,taxonomy and performance evaluation

    Full text link
    Data centers are large scale, energy-hungry infrastructure serving the increasing computational demands as the world is becoming more connected in smart cities. The emergence of advanced technologies such as cloud-based services, internet of things (IoT) and big data analytics has augmented the growth of global data centers, leading to high energy consumption. This upsurge in energy consumption of the data centers not only incurs the issue of surging high cost (operational and maintenance) but also has an adverse effect on the environment. Dynamic power management in a data center environment requires the cognizance of the correlation between the system and hardware level performance counters and the power consumption. Power consumption modeling exhibits this correlation and is crucial in designing energy-efficient optimization strategies based on resource utilization. Several works in power modeling are proposed and used in the literature. However, these power models have been evaluated using different benchmarking applications, power measurement techniques and error calculation formula on different machines. In this work, we present a taxonomy and evaluation of 24 software-based power models using a unified environment, benchmarking applications, power measurement technique and error formula, with the aim of achieving an objective comparison. We use different servers architectures to assess the impact of heterogeneity on the models' comparison. The performance analysis of these models is elaborated in the paper

    An Investigation to Advance the Technology Readiness Level of the Centaur Derived On-orbit Propellant Storage and Transfer System

    Get PDF
    This research was carried out in collaboration with the United Launch Alliance (ULA), to advance an innovative Centaur-based on-orbit propellant storage and transfer system that takes advantage of rotational settling to simplify Fluid Management (FM), specifically enabling settled fluid transfer between two tanks and settled pressure control. This research consists of two specific objectives: (1) technique and process validation and (2) computational model development. In order to raise the Technology Readiness Level (TRL) of this technology, the corresponding FM techniques and processes must be validated in a series of experimental tests, including: laboratory/ground testing, microgravity flight testing, suborbital flight testing, and orbital testing. Researchers from Embry-Riddle Aeronautical University (ERAU) have joined with the Massachusetts Institute of Technology (MIT) Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) team to develop a prototype FM system for operations aboard the International Space Station (ISS). Testing of the integrated system in a representative environment will raise the FM system to TRL 6. The tests will demonstrate the FM system and provide unique data pertaining to the vehicle\u27s rotational dynamics while undergoing fluid transfer operations. These data sets provide insight into the behavior and physical tendencies of the on-orbit refueling system. Furthermore, they provide a baseline for comparison against the data produced by various computational models; thus verifying the accuracy of the models output and validating the modeling approach. Once these preliminary models have been validated, the parameters defined by them will provide the basis of development for accurate simulations of full scale, on-orbit systems. The completion of this project and the models being developed will accelerate the commercialization of on-orbit propellant storage and transfer technologies as well as all in-space technologies that utilize or will utilize similar FM techniques and processes

    NASP aeroservothermoelasticity studies

    Get PDF
    Some illustrative results obtained from work accomplished under the aerothermoelasticity work breakdown structure (WBS) element of the National Aerospace Plane (NASP) Technology Maturation Program (TMP) are presented and discussed. The objectives of the aerothermoelasticity element were to develop analytical methods applicable to aerospace plane type configurations, to conduct analytical studies to identify potential problems, to evaluate potential solutions to problems, and to provide an experimental data base to verify codes and analytical trends. Work accomplished in the three areas of experimental data base, unsteady aerodynamics, and integrated analysis methodology are described. Some of the specific topics discussed are: (1) transonic wind tunnel aeroelastic model tests of cantilever delta wing models, of an all-moveable delta-wing model, and of aileron buzz models; (2) unsteady aerodynamic theory correlation with experiment and theory improvements; and (3) integrated analysis methodology results for thermal effects on vibration, for thermal effects on flutter, and for improving aeroelastic performance by using active controls

    Numerical and experimental investigations of self-piercing riveting

    Get PDF
    Self-pierce riveting (SPR) is a new high-speed mechanical fastening technique which is suitable for point joining dissimilar sheet materials, as well as coated and pre-painted sheet materials. With increasing application of SPR in different industrial fields, the demand for a better understanding of the knowledge of static and dynamic characteristics of the SPR joints is required. In this paper, the SPR process has been numerically simulated using the commercial finite element (FE) software LS-Dyna. For validating the numerical simulation of the SPR process, experimental tests on specimens made of aluminium alloy have been carried out. The online window monitoring technique was introdu introdu ced in the tests for evaluating the quality of SPR joints. Good agreements between the simulations and the tests have been found, both with respect to the force-travel (time) curves as well as the deformed shape on the cross-section of SPR joint. Monotonic tensile tests were carried out to measure the ultimate tensile strengths for SPR joints with different material combinations. Deformation and failure of the SPR joints under monotonic tensile loading were studied. The normal hypothesis tests were performed to examine the rationality of the test data. This work was also aimed at evaluating experimentally and comparing the strength and energy absorption of SPR joints and SPR-bonded hybrid joints
    • …
    corecore