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ABSTRACT 
 

MULTI-ORDER MODELING OF LINEAR MAGNETIC MOTOR SYSTEM 
 

by 
 

MING-JEN CHEN 
 
 

The University of Wisconsin-Milwaukee, 2023 
Under the Supervision of Professor Ilya Avdeev 

 
 

Numerical simulations have been proven to be a powerful tool for predicting, testing, 

and validating the capabilities of new designs. However, given the high demand for 

simulating extremely complicated geometries and nonlinear physical phenomena, simulations 

can often be significantly time consuming. Consequently, the development of high-precision 

reduced-order models becomes indispensable to reduce computational time. In this study, we 

simplified and characterized an industrial motion system based on linear magnetic motor 

technology using accurate full 3-D numerical model. The system behavior was explored 

through various scenarios, including extreme conditions, to gain a deeper understanding of its 

thermal behavior during operation.  The simulation results were then compared with 

experimental measurements. To achieve model order reduction, the initial and boundary 

conditions, along with temperature distributions derived from the simulation results, were 

translated into excitations and outputs for constructing robust reduced-order models. 

Subsequently, the reduced order model was thoroughly tested and validated against new 

scenarios derived from the 3-D simulation results.  
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1. Introduction 

Manufacturing industries, such as microelectronics, metal manufacturing and food 

processing are established with a focus on mass production. Generally, three distinct 

manufacturing production models have been adopted by these and other industries: make-to-

stock, make-to-order, and make-to-assembly. 

Make-to-stock (MTS) represents a manufacturing production model in which products 

and goods are manufactured prior to receiving orders. In this approach, manufacturing 

companies may assume the risk of producing an excess of parts, components, goods or 

merchandise. However, it proves to be an optimal strategy for suppliers of products with 

consistent demand, such as construction parts, auto components, as it enables swift order 

fulfillment. 

Make-to-order (MTO) stands in stark contrast to the MTS model. With MTO, 

manufacturing companies initiate the production of parts only upon receiving orders from 

their customers. This approach alleviates the need for manufacturing companies to shoulder 

the burden of excessive product inventory in their warehouses. Nevertheless, it introduces 

concerns about meeting demand promptly and the potential for competitors to seize the 

remaining portion of the order.  

Make-to-assembly (MTA) can be seen as a hybrid production model that combines 

elements of both MTS and MTO. In this approach, manufacturing companies pre-produce the 

core parts and components required for the final product, but the assembly of the ultimate 

product is deferred until customer orders are received.  

All manufacturing models rely on transportation systems to facilitate the movement of 

materials, parts, components or final goods between different stations of the production line. 
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Factories use these transportation systems to ensure the accurate and efficient conveyance of 

materials and discrete parts [1]. This process is illustrated in Figure 1.1, where the 

manufacturing materials are observed to be distributed along the manufacturing production 

line at any given point of time. 

 

Figure 1.1 Materials Distributed Along the Manufacturing line [28] 

A reliable transportation system is essential for both production lines and assembly lines 

to effectively satisfy the demands of mass production. Historically, conveyor systems have 

been the predominant technology harnessed within manufacturing. A foundational conveyor 

system typically comprises components such as rollers, belts or chains, and motors. These 

conveyors convert the rotational motion of the motor into linear motion facilitating the 

movement of part within the factory.  

Broadly, three distinct conveyor types exist: chain belt conveyors, slider bed conveyors, 

and steel belt conveyors. These variants offer several noteworthy advantages, including time 

savings, easy controllability, and reduced reliance on human effort. Despite the numerous 

benefits associated with these conveyor systems, the cost of maintenance emerges as a 

notable concern for manufacturing facilities. Most factories that use conveyor as their 
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transporting system maintain an ample stock of spare parts to mitigate the impact of 

unexpected downtime, which is considered to be a serious concern with significant economic 

impact on the overall business.  

In addition to conventional conveyor systems, linear electric motors serve as viable 

alternative. Analogous to the rotational electric motors, linear motors consist of two parts: a 

rotor and a stator. The rotor encompasses coils, while the stator features a magnetic array. In 

a rotational motor, the application of current to the coils induces rotational motion. In 

contrast, a linear motor could be seen as an extension of a rotational motor, generating linear 

movement and force.  

Linear motors could be categorized into seven different types: Brush, Brushless, 

Induction Homopolar, Tubular, Piezo Electric and Synchronous. In this research, we are 

going to focus on linear magnetic motor technology. As mentioned earlier, linear magnetic 

motors follow the same physical principles as their rotational counterparts. Nonetheless, their 

design offers increased versatility for integration into production lines. Notably, the modular 

structure of linear magnetic motors enables the connection of multiple motors based on the 

design need, as depicted in Figure 1.2 [4]. 
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Figure 1.2 Different Configurations of Linear Magnetic Motors 

In this scenario, production lines can effectively optimize traffic flow to achieve 

maximum throughput through the application of Operation Research principles. Furthermore, 

individual motor operation enables bidirectional propulsion and variable pitch adjustment, 

catering to diverse vehicles requirements. Adding to their advantages, linear magnetic motors 

boast simple designs reducing the overall cost of maintenance [3]. 

(C) Straight Track Configuration 

(a) Switch Configuration (b) Curve Track Configuration 
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Nonetheless, heat generation and dissipation require thorough consideration when 

employing linear magnetic motors in production [5]. This concern imposes constraints on 

design of the manufacturing transporting systems. Various systems may incorporate active 

cooling or passive cooling mechanisms, each presenting distinct advantages and 

disadvantages [6], [7]. Modern production lines are frequently conceptualized and executed 

in collaboration with Original Equipment Manufacturers (OEMs), as exemplified by 

Rockwell Automation’s MagneMotion system. 

Designing and assembling a linear magnetic system with heat considerations in mind 

requires comprehensive understanding of the production loads and schedule and 

environmental variables, such as ambient temperature, humidity etc.  Modeling and 

predicting large-scale system electromagnetic-thermal behavior is essential for design of such 

systems. This work contributes to the body of knowledge related to system modeling by 

probing model order reduction approach to capturing dynamic thermal behavior of a real 

linear magnetic system. 

2. Literature Review 

The remarkable advancements in semiconductor technology have led to a notably 

accelerated enhancement in engineering computing. These developments outpaced the 

evolution of manufacturing engineering systems themselves. It becomes more feasible to 

simulate an entire production system in order to design and produce it. Typically, finite 

element analysis (FEA) models are deployed to that end. However, an emerging demand has 

arisen to replicate these intricate systems in real-time or to forecast potential failures arising 

from shifting environmental or load conditions. Yet, the conventional approach that involves 

full 3-D FEA models proves too complicated for most manufacturing end-users or OEMs 
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designing and integrating such systems. A model order reduction can offer model flexibility 

and design speed that makes system-level design for heat failure prevention attainable. 

The initial application of model order reduction dates to 1967 when it was employed to 

address the challenges posed by inhomogeneous turbulent flows [8]. Since then, the model 

order reduction has been used broadly for simplifying problem-complexity and to reduce the 

compute time.  

In the realm of model order reduction for thermal management of electromagnetic 

motors, significant research efforts have been directed towards eccentricity [9], thermal 

distribution [10], and optimization [11]. Most of these concerns manifest within rotational 

magnetic motors. However, due to the inherent structural differences between rotational and 

linear motors, understanding of the linear motor’s behavior is essential. 

The unique structure of linear magnetic motors enables the seamless connection of 

multiple units, facilitating development of complex transportation systems. This distinctive 

feature empowers linear magnetic motors to pave the way for long-distance and high-speed 

transportation systems. One prominent example is the magnetic levitation (maglev) train, a 

popular mode of commuting and travel. In this context, Japan's pursuit of an economical and 

swifter maglev system exemplifies the ongoing efforts in this field [13]. 

However, the development of such an intricate system cannot rely solely on trial and 

error, given its potential cost implications. Employing finite element analysis offers a more 

reasoned and viable approach for crafting this ambitious system. Yet, the maglev system 

presents a substantial-scale model for finite element method applications, necessitating 

extensive simulation times. Consequently, the prevalent trajectory in finite element analysis 

involves the construction of reduced-order models to expedite simulations, as exemplified in 

recent research trends [14], [15], [16], [17], [18]. 
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Another significant application of linear magnetic motors lies in the transportation 

systems within manufacturing factories – the focus of this research. As previously discussed, 

the establishment of an efficient transportation infrastructure for production lines is 

imperative for achieving mass production targets across various manufacturing entities. 

Depending on the specific requirements and contextual environmental factors, Original 

Equipment Manufacturers (OEMs) must be equipped to provide tailored solutions to their 

clientele. Nonetheless, much of the existing research in this domain has predominantly 

focused on the performance and thermal characteristics of linear actuators, often employing 

model order reduction techniques [19], [20]. While these approaches undeniably contribute to 

understanding of the key principles and thermal dynamics of linear actuators, there remains 

an unexplored space of multi-order modeling of linear magnetic motors within the 

manufacturing application space.  

 

  2.1 Physical Model 

The physical real-world system under investigation encompasses a magnetic 

configuration comprising both mobile and stationary components. The moving part, referred 

to as a "puck," is composed of five permanent magnets. To optimize the magnetic flux on one 

side and thereby enhance performance, these magnets are arranged in a Halbach Array 

configuration [22]. The stationary component, on the other hand, constitutes the motor, 

characterized by coreless coils. This strategic design choice, notably the absence of a steel 

core, effectively mitigates the cogging effect associated with such linear magnetic motor 

systems [23], [24]. For a visual representation, the mechanical blueprints and structural 

attributes of both the puck and the motor are illustrated in Figure 2.1, Figure 2.2, Figure 2.3, 

and Figure 2.4. 
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Figure 2.1 250-mm Linear Magnetic Motor Drawing 
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Figure 2.2 Puck Drawing (Moving Magnetic Part) 

 

Figure 2.3 Halbach Array 
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Figure 2.4 Full assembly of a 250-mm linear magnetic motor 

The performance parameters of the linear magnetic motor are shown in Table 2-1. 

 

Table 2-1 The Limitations of the Linear Magnetic Motor 

Maximum Velocity 2.0 m/s 

Maximum Acceleration 9.0 m/s2 

Thrust 6.0 N/cycle 

Maximum Payload 2.0 kg 
Maximum Power 35 W 
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  2.2 Mathematical model 

In this study, our focus centers on comprehending the thermal dynamics inherent to the 

linear magnet driving system. The heat transfer mechanisms governing the behavior of the 

system are encapsulated by the following equation: 

 

Δ𝐻 = 𝑚 × 𝑠 × ΔT (2.1) 

  

Where Δ𝐻 is the heat supplied to the system, m is the mass, s is the specific heat capacity and 

ΔT is the temperature change. 

Generally speaking, three primary modes of heat transfer present in the 

electromechanical motor systems: conduction, convection, and radiation. However, within 

the scope of this study, our focus is directed solely towards the coil and rubber components 

housed within the metal cover. Recognizing that metal exhibits substantial insulating 

properties concerning heat transfer via radiation [29], we opt to disregard the radiation term 

within this mathematical model. As a consequence, our mathematical representation 

predominantly encapsulates the thermal conduction and thermal convection aspects, as 

illustrated by the equations provided below (Eq. 2.2 and 2.3). 

For thermal conduction: 

𝑄 =
𝑘𝐴(𝑇!"# − 𝑇$"%&)#

𝑑
(2.2) 

Where: 

𝑄: The Rate of heat transfer  

𝑘 : The coefficient of thermal conductivity 

𝐴 : The contact area. 
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𝑇 : The temperature 

𝑡  : Time 

𝑑 : Thickness of the material 

 

For thermal convection, the governing equation is: 

𝑄 = 𝐻'𝐴(𝑇!"# − 𝑇$"%&) (2.3) 

Where: 

𝐻' : Heat Transfer Coefficient of the material 

 
  2.3 3-D Numerical Model 

Our approach involves addressing heat transfer via the Finite Element Method. The 

computational model is formulated based on certain underlying assumptions, which we 

outline below. Our current investigation is focused on constructing models of varying orders 

and delving into the analysis of Joule heat within the linear magnet driving system. We treat 

this scenario as a transient thermal problem, wherein the coils of the linear motor 

continuously generate heat. Our computational framework necessitates considering key 

parameters, such as thermal conductivity, film coefficient, and room temperature, which 

serve as vital boundary conditions for computing the temperature distribution across the 

linear magnetic motor. 

To build the robust FEA numerical model, we must simplify system’s physical 

representation. The visual depiction of both the physical and 3-D models is encapsulated in 

Figure 2.5 and Figure 2.6, respectively. 
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Figure 2.5 Full Physical Model of the Linear Magnetic Motors (Entire System) 

 

Figure 2.6 Full 3-D CAD Model of Linear Magnetic Motor (One Motor) 
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Although we possess the comprehensive 3-D parametric CAD model derived from the 

physical model, it remains imperative to conduct a meticulous analysis to determine the 

essential components and features for inclusion within the numerical model. Our primary 

focus is on understanding of thermal dynamics exhibited by the linear magnetic motor, while 

concurrently striving to optimize computational efficiency. To achieve this goal, we retained 

solely the pertinent heat source and its associated components. Therefore, system elements 

such as rails, covers, and screws have been intentionally excluded from the FEA geometry to 

streamline the model. 

In alignment with these principles, our simplified numerical model exclusively 

incorporates the coils and EPDM Rubber, which enshrouds the coils. This abridged model, as 

depicted in Figure 2.7, underscores our commitment to distilling the model to its core thermal 

aspects, effectively prioritizing computational speed and precision. 
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Figure 2.7 Simplified CAD Model 

The Finite Element Method (FEM) is a numerical approach of choice for this project, 

employed to solve differential and integral equations through iterative procedures. At the 

heart of FEM lie its constituent elements, which are elemental building blocks fundamental to 

the method's operation. In our study, the transient thermal model is aptly delineated using 

tetrahedral elements and hexahedral elements. Tetrahedral elements and hexahedral elements, 

as illustrated in (Figure 2.8, Figure 2.9) [25], constitute the most widely utilized components 

within FEM. Their prevalence can be attributed to their remarkable capability to precisely 

accommodate a diverse array of curved geometries. Given their versatility and precision, we 

adopt tetrahedral elements as the basis for constructing our numerical model. 
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Figure 2.8 Tetrahedral Mesh of EPDM Rubber 
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Figure 2.9 Tetrahedral and Hexahedral Mesh of Coils 

After building simplified model and FE mesh, we assigned the material properties to the 

model components. The material properties of rubber and coils are shown in Table 2-2 and 

Table 2-3. 

 

Table 2-2 Material Properties of EPDM Rubber 
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Table 2-3 Material Properties of the Coil 

 

 

Then, we proceed to define the requisite boundary conditions for the simulation. For our 

transient thermal simulation, specific initial conditions are integral to solving the 

mathematical models effectively. These initial conditions encompass the initial temperature 

of the model, representative of the ambient room temperature. Additionally, we incorporate 

the film coefficient, signifying the convection coefficient [32], alongside the heat source 

parameters. For this study, the maximum power consumption is assumed to be under 35W. 

Furthermore, we recognize that power consumption adjusts in correspondence with the load 

carried by the motor during transmission. Consequently, our strategy involves executing an 

array of diverse scenarios, spanning power consumptions of 10W, 15W, 20W, 25W, 30W, 

and 35W over a time span of 6,000 seconds. These scenarios furnish a comprehensive 

spectrum of conditions to scrutinize. 

 The initial conditions and excitations integral to each of these scenarios are 

systematically documented Table 2-4. Of particular interest is the 35W scenario, which 

represents an extreme operational case for the motor. This comprehensive approach allows us 

to thoroughly investigate the thermal behavior across a spectrum of conditions, enriching our 

understanding of the system's dynamics. 
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Table 2-4 Initial Conditions and Boundary Conditions 

Index Ambient Temperature (°C) Film Coefficient 
(W/m2*°C) 

Power Consumption 
(W) 

1 22 25 10 
2 22 25 15 
3 22 25 20 
4 22 25 25 
5 22 25 30 
6 22 25 35 

 

  2.4 Reduced-Order Modeling 

Despite the continuous advancement of High-Performance Computing (HPC) systems, 

the computational demands of such intricate models remain time intensive. To expedite the 

simulation process, we employ the dynamic Reduced-Order Modeling (ROM) method, 

leveraging the capabilities of ANSYS Dynamic ROM Builder. This innovative approach 

involves utilizing 3-D simulation results as the output data, coupled with excitation data 

serving as the input. 

The process of generating the ROM follows a systematic workflow, as depicted in 

Figure 2.10. This strategy enables us to effectively distill the complexity of the model while 

retaining the essential dynamics, thereby significantly reducing computational time, and 

enhancing efficiency. 
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Figure 2.10 The Workflow of Building a Dynamic Reduced-Order Model 

As detailed in the ANSYS Twin Builder User Help Manual [30], the foundation of the 

Dynamic Reduced-Order Modeling (ROM) approach is rooted in the principles of deep 

learning [31]. The fundamental architecture of a deep learning model comprises distinct 

layers: an input layer, one or more hidden layers, and an output layer. The input values are 

initially assigned random weight coefficients and biases. Progressing through the hidden 

layer(s), the values at the final layer are derived as a summation of the weighted values from 

the preceding layer, subsequently undergoing activation through an activation function, 

yielding the output value. This sequence is commonly referred to as "forward propagation." 

After forward propagation, optimization techniques are employed to fine-tune the 

initially randomized weight coefficients, aiming to enhance accuracy or computational 

3-D Transient Simulation Result 

Unvalidated ROM 

Validated ROM 

Use the excitations and Results as 
inputs and outputs for ROM 

Test the different scenario with 3-D 
Transient Simulation 

If the error is unacceptable, include the 
test data as input and output for new ROM 
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efficiency. This iterative procedure is denoted as "backward propagation." A graphical 

depiction of a single-layer neural network is depicted in Figure 2.11, illustrating the intricate 

mechanics of this deep learning framework. 

 

 

Figure 2.11 Single-Layer Neural Network 

Let’s consider a brief example for the concept of deep learning. Here: x0 is one of the 

input values from the user. Then we multiply the input value by the random weight 

coefficient (wi,j), so we could obtain function yi,j: 

𝑦( = 𝑥(𝑤(,( + 𝑥*𝑤(,* (2.4) 

x0

x1

y0

y1

y2

z0

z1

w0,0

w0,1

Bias

w*0,2

w*0,1

w*0,0



 

 

 

 

22 

Then, after calculating yj, we could use the same principle to get the value which we 

should apply in activation function to obtain the output value:  

𝑧( = 𝐴(𝑦(𝑤∗
(,( + 𝑦*𝑤∗

(,* + 𝑦,𝑤∗
(,, + 𝐵𝑖𝑎𝑠) (2.5)	

Where: A(z) is the activation function 

Then, after finishing the process of forward propagation and getting the value from the 

output layer we could use the backward propagation to compute new weight coefficients. In 

the process of backward propagation, we calculate the loss function, C(w) and its gradient 

used to update weight coefficients: 

𝐶(𝑤) =
Σ(𝑤 − 𝑤B),

𝑛
(2.6) 

 

𝑤-./ = 𝑤"%& − 𝜂 ∗ ∇𝐶H𝑤0,1 , 𝑤0,1∗ J (2.7) 

Where: 𝜂 is the learning rate which is a tuning parameter for optimizing the result. 

By employing this conceptual framework, we can continually refine our deep learning 

model through training across diverse scenarios, aiming to attain an increasingly time-

efficient and accurate dynamic reduced-order model. In the context of our current study, our 

primary focus is directed towards comprehending the thermal dynamics exhibited by the 

linear magnetic system, with specific emphasis on the temperature distribution across the 

motor's surface. 

 To achieve this objective, we use a range of power inputs, extracted from the 3-D 

simulations, as the excitation signals for our dynamic Reduced-Order Model (ROM). 

Meanwhile, the temperature distribution data, derived from the 3-D simulations, serves as the 

corresponding output data for our dynamic ROM. This strategy effectively equips us with a 
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predictive tool that accurately captures and expedites the system's thermal behavior, enabling 

us to make informed analyses of temperature profiles across the motor's surface. 

 

  2.5 Experimental Setup for Data Acquisitions 

As per the MagneMover Lite user manual [26], the maximum allowable number of 62 

mm vehicles (pucks) per meter is capped at 9 pucks at a time. These vehicles can achieve a 

top speed of 2 meters per second and a maximum acceleration of 9.0 m/sec² [26]. Armed with 

these insights, it's evident that the worst-case scenario unfolds when the motor operates at its 

peak speed and acceleration. To gauge the potential impact on operational temperature, an 

experiment is devised to monitor the maximum temperature attained when the MagneMover 

Lite is subjected to the highest speed and acceleration settings. 

For this experiment, the data acquisition system comprises an Arduino Uno and LM35 

temperature sensors. The Arduino Uno is an open-source embedded system hardware 

platform, offering a versatile avenue for crafting interactive projects. Meanwhile, the LM35 

sensor is an integrated-circuit temperature sensor with a linearly proportional output voltage 

corresponding to centigrade temperature [27]. Six LM35 sensors are employed, with one 

dedicated to measuring room temperature and the remaining five evenly distributed along the 

motor's top surface. 

The schematic representation of this setup is illustrated in Figure 2.12, while the 

experimental arrangement is depicted in Figure 2.13. These elements collectively constitute 

the experimental framework employed to investigate the temperature variations when the 

MagneMover Lite is subjected to its utmost operational speed and acceleration conditions. 
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Figure 2.12 The Schematics of Data Acquisition Process 

 

Figure 2.13 The Experimental Setup: Temperature Sensors’ Placement 
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3. Results 

  3.1 Numerical Convergence Test 

This chapter will comprehensively present the outcomes derived from the 3-D 

simulation, dynamic ROM, and experimental study. However, prior to delving into the 

intricacies of the 3-D simulation, a pivotal preliminary step involves assessing the adequacy 

of the number of elements employed in constructing the numerical model. To ascertain this, 

we undertake a mesh convergence test.  

In this test, we meticulously evaluate the impact of varying mesh lengths, specifically 

analyzing four distinct mesh lengths: 10mm, 7.5mm, 5mm, and 2.5mm. The ensuing 

disparities observed across these diverse mesh configurations are vividly illustrated in Figure 

3.1. This iterative process aids us in establishing the optimal mesh length, crucial for ensuring 

the precision and reliability of our numerical model. 
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Figure 3.1 Maximum Temperatures between Four Difference Mesh Sizes 

Upon conclusion of the mesh convergence test, we decided to use 5mm as the mesh size 

for subsequent simulations. The  simulations differences among four mesh size models are 

shown in Figure 3.2 and undershooting of 10 mm and 7.5 mm are shown in Figure 3.3 and 

Figure 3.4. 
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Figure 3.2 The Difference of Four Meshes 

 

Figure 3.3 Undershooting of 10mm Meshes 

 

Figure 3.4 Undershooting of 7.5mm Meshes 
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  3.2 3-D Simulation Results 

Having successfully completed the mesh convergence test, we are now poised with a 

robust foundation to proceed with running the simulations encompassing the six distinct 

scenarios elucidated in Chapter 3. The outcomes stemming from the simulations conducted at 

power levels of 10W, 15W, 20W, 25W, and 30W are succinctly depicted in in Figure 3.5 

through Figure 3.16. These visual representations serve as a comprehensive look at the 

thermal behaviors exhibited within the linear magnetic system across varying operational 

conditions. 
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Figure 3.5 The Temperature Distribution on Coils with 10W Load

Figure 3.6 The Temperature Distribution on Wrap (EPDM Rubber) with 10W Load 
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Figure 3.7 The Temperature Distribution on Coils with 15W Load 

 

Figure 3.8 The Temperature Distribution on Wrap (EPDM Rubber) with 15W Load 
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Figure 3.9 The Temperature Distribution on Coils with 20W Load 

 

Figure 3.10 The Temperature Distribution on Wrap (EPDM Rubber) with 20W Load 



 

 

 

 

32 

 

Figure 3.11 The Temperature Distribution on Coils with 25W Load 

 

Figure 3.12 The Temperature Distribution on Wrap (EPDM Rubber) with 25W Load 
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Figure 3.13 The Temperature Distribution on Coils with 30W Load 

 

Figure 3.14  The Temperature Distribution on Wrap (EPDM Rubber) with 30W Load 
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Figure 3.15 The Temperature Distribution on Coils with 35W Load 

 

Figure 3.16 The Temperature Distribution on Wrap (EPDM Rubber) with 35W Load 
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  3.3 Reduced-Order Modeling Results 

With the amalgamation of the six distinct scenarios presented earlier, our study 

encompasses a total of six diverse learning scenarios for the dynamic Reduced-Order Model 

(ROM) to acquire insights from. Subsequently, these acquired insights are employed to 

predict and reproduce the system's behavior under differing conditions. These results, 

encompassing a comprehensive array of thermal dynamics, are succinctly displayed in Figure 

3.17 through Figure 3.19.  
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Figure 3.17 The Result from 3-D Simulation 

 

Figure 3.18 The Result of 3-D Simulations and ROMs 
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Figure 3.19 The Errors between 3-D Simulations and ROMs 

Then, due to the errors between 3-D models and ROMs are less than 0.2%, we now test 

the ROM with a new data set from 3-D model to see if the ROM performs properly. The 

testing results are shown in Figure 3.20 to Figure 3.22. 
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Figure 3.20 The Testing Result of ROM with 23W Load 

 

Figure 3.21 The Validating Result of 3-D Simulation with 23W Load 
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Figure 3.22 Result of ROM vs. Result of 3-D Simulation 

  3.4 Experimental Results 

To get a full picture of the temperature distribution across the motor's surface while 

operating at its utmost acceleration of 9 m/s², we strategically positioned five LM35 

temperature sensors uniformly along the top surface of the motor. This meticulous 

arrangement allowed us to capture a detailed snapshot of temperature variations.  

The temperature monitoring results, depicted in  Figure 3.23., provide a visual 

representation of the intricate temperature distribution observed across the motor's surface 

during its operation under the highest acceleration conditions. These observations form a 

critical component of our investigative pursuit, providing invaluable insights into the thermal 

dynamics and behavior of the linear magnetic system. 
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Figure 3.23 Temperature Monitoring at the Surface of the Motor 

  



 

 

 

 

41 

4. Summary of Results 

We have presented the results of our multi-order modeling approach, encompassing a 

mesh convergence test, 3-D simulations, reduced-order modeling validation, and 

experimental findings. Now, let's delve further and establish the connections that bind these 

diverse outcomes into a coherent understanding. 

 

  4.1 Mesh Convergence Test 

In the context of the mesh convergence test, the difference in maximum temperatures 

amounts to less than two percent. This discrepancy falls within an acceptable and appropriate 

range, rendering the utilization of a ten-millimeter length mesh suitable. In essence, a larger 

side length for the mesh element corresponds to a reduced requirement for the number of 

elements in the model. 

However, a closer examination of Figure 4.3 and Figure 4.4 highlights a noteworthy 

phenomenon: both the 7.5-mm and 10-mm models exhibit undershooting in their minimum 

temperature values. This observation prompts a reconsideration of the mesh size's influence. 

Given the manifestation of undershooting, a prudent course of action involves diminishing 

the mesh size to enhance precision. Consequently, we arrived at the decision to adopt a 5-mm 

mesh element size for our simulations. This choice, underpinned by the objective of 

mitigating undershooting and elevating precision, ensures a more robust and accurate 

modeling approach. 
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  4.2 Transient 3-D Simulation and Thermal Experiment 

Numerical simulation serves as a high-fidelity technique for scrutinizing intricate 

models. In our specific context, we harnessed the ANSYS Transient Thermal module to 

comprehensively examine the thermal dynamics within the linear magnetic driving system. 

Drawing insights from our experimental endeavors, it becomes evident that when the motor 

operates at its peak acceleration in the absence of payloads, the power consumption gravitates 

around the 20W mark. The outcomes stemming from both the experiment and the simulation 

are concisely portrayed in Figure 4.1and Figure 4.2, respectively. These visual depictions 

encapsulate the convergence between empirical findings and simulation results, bolstering 

our understanding of the thermal behavior of the linear magnetic driving system. 

Indeed, a parallel examination of the thermal behavior reveals striking similarities 

between the experiment and the simulation. Both models exhibit a convergence towards a 

quasi-static state over a duration of approximately 1,200 seconds. However, disparities in 

temperature readings can be attributed to the following factors: 

• Unstable Convection in the Experiment: The experiment encountered challenges in 

maintaining stable convection, which could have contributed to temperature 

variations. Fluctuations in convection affect the heat transfer dynamics and 

subsequently influence temperature measurements. 

• Airflow Generated by the Moving Part (Puck): The movement of the puck 

generates airflow within the experimental setup. This airflow has the effect of 

reducing the measured temperature, as it contributes to enhanced heat dissipation 

from the surface. Consequently, the experimentally measured temperature is 

anticipated to be lower than the simulated value. 
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In essence, while temperature disparities exist, the underlying thermal behavior remains 

consistent between the two models. The experiment's lower measured temperature, 

influenced by factors like unstable convection and the airflow generated by the moving part, 

aligns with the simulation's thermal trends. This convergence in thermal behavior 

underscores the effectiveness of our modeling approach in capturing the real-world dynamics 

of the linear magnetic driving system. 

 

Figure 4.1 Temperature Monitoring at the Surface of the Motor 

 

Figure 4.2 Transient Thermal Simulation Result with 20W Load 
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  4.3 Reduced-order model building and validating 

Leveraging the simulation results as learning scenarios, we proceeded to formulate and 

validate the reduced-order model (ROM). The outcomes, showcased in Figure 4.18 and 4.19, 

distinctly illustrate the alignment between the simulation and ROM results, with an 

impressively low error margin of below 0.1%. This robust agreement serves to validate the 

efficacy and accuracy of our ROM approach. 

To further expand the scope, we introduced a new scenario in the realm of 3-D 

simulations. In this scenario, we introduced a 23W load as an input, aiming to assess the 

ROM's predictive capabilities under altered conditions. Impressively, as depicted in Figure 

4.18 to Figure 4.22, the ROM results consistently demonstrate a high degree of accuracy, 

effectively mirroring the 3-D simulation outcomes within a matter of seconds. This swift and 

acceptable alignment attests to the ROM's proficiency in delivering reliable predictions even 

in scenarios beyond its training scope. 

 

  4.4 Comparing Time: Full 3-D vs. Dynamic ROM Simulations 

Concluding our discussion on the experiment, 3-D numerical simulation, and ROM 

simulation results, let us shift our focus to the critical aspect of simulation runtimes. It is 

universally acknowledged that incorporating a greater number of elements in a physical 

model enhances the accuracy of the results. However, this augmentation in accuracy comes at 

a cost – the computational time. In this pursuit, CAE engineers are tasked with striking a 

delicate balance between precision and the expenditure of computational resources. 

Moreover, they must judiciously allocate priorities for running simulations. 
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To illuminate this concept further, we present Table 4-1 and Figure 4.3, both of which 

provide a comprehensive overview of the time consumption associated with both 3-D 

simulations and ROM simulations. These representations underline the intricate interplay 

between accuracy and computational efficiency, offering a tangible illustration of the trade-

off that CAE engineers strategically navigate to achieve optimal results within pragmatic 

timeframes. 

Table 4-1 Time Consumption of for 6,000 sec transient simulation 

 
10mm 7.5mm 5mm 2.5mm ROM 

Time Consumption(s) 668 1047 1,232 6,720 9 
 

 

Figure 4.3 Time Consumption for 6,000 sec Transient Simulation 

The difference in time between 3-D simulation and ROM simulation is substantial. 

Opting for quasi-real-time results comes with a trade-off: an error under 0.1%. Yet, this 

compromise yields a significant benefit. The reduced-order model becomes a valuable tool, 
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enabling developers and CAE engineers to swiftly test ideas and assumptions. This efficiency 

accelerates innovation, offering a nimble approach to tackle complex challenges with 

confidence. In essence, the reduced-order model strikes a balance between precision and 

speed, enhancing simulations' effectiveness. 

5. Future Work 

Reflecting on the motivations behind constructing finite element models, the 

overarching objective is clear: to empower engineers in curtailing time and costs associated 

with trial and error. It is not uncommon for simulations to require days for completion. Enter 

Reduced-Order Modeling (ROM), a tool tailor-made for developers, streamlining their 

ideation process. This acceleration in the development timeline holds the potential to expedite 

the advent of new technologies. 

Let's illustrate this with a tangible case. While a 3-D transient thermal simulation for a 

motor may demand approximately half an hour, the ROM accomplishes the same task within 

mere seconds. This astonishing swiftness in predicting model behavior propels the realization 

of the digital twin concept. The digital twin leverages real-time simulation data as virtual 

sensors, facilitating the monitoring of operational conditions in demand systems. Through 

this innovation, engineers can mitigate unforeseen downtime, thereby enhancing system 

reliability. 

Our next endeavor involves the application of this concept in constructing the digital 

twin—a significant stride towards fostering a harmonious synergy between virtual simulation 

and real-world operations. 
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