10 research outputs found

    Efficient illumination independent appearance-based face tracking

    Get PDF
    One of the major challenges that visual tracking algorithms face nowadays is being able to cope with changes in the appearance of the target during tracking. Linear subspace models have been extensively studied and are possibly the most popular way of modelling target appearance. We introduce a linear subspace representation in which the appearance of a face is represented by the addition of two approxi- mately independent linear subspaces modelling facial expressions and illumination respectively. This model is more compact than previous bilinear or multilinear ap- proaches. The independence assumption notably simplifies system training. We only require two image sequences. One facial expression is subject to all possible illumina- tions in one sequence and the face adopts all facial expressions under one particular illumination in the other. This simple model enables us to train the system with no manual intervention. We also revisit the problem of efficiently fitting a linear subspace-based model to a target image and introduce an additive procedure for solving this problem. We prove that Matthews and Baker’s Inverse Compositional Approach makes a smoothness assumption on the subspace basis that is equiva- lent to Hager and Belhumeur’s, which worsens convergence. Our approach differs from Hager and Belhumeur’s additive and Matthews and Baker’s compositional ap- proaches in that we make no smoothness assumptions on the subspace basis. In the experiments conducted we show that the model introduced accurately represents the appearance variations caused by illumination changes and facial expressions. We also verify experimentally that our fitting procedure is more accurate and has better convergence rate than the other related approaches, albeit at the expense of a slight increase in computational cost. Our approach can be used for tracking a human face at standard video frame rates on an average personal computer

    Dense Methods for Image Alignment with an Application to 3D Tracking

    Get PDF
    This survey focuses on a class of methods for image alignment based on a global, iterative optimization. We synthetically describe the existing methods (included the recent Efficient Second Order Method), compare their theoretical aspects, computational costs and implementation issues, and finally present an example of application to 3D tracking, involving a complex, non-linear warp

    Robust 3D Object Pose Estimation and Tracking from Monocular Images in Industrial Environments

    Get PDF
    Recent advances in Computer Vision are changing our way of living and enabling new applications for both leisure and professional use. Regrettably, in many industrial domains the spread of state-of-the-art technologies is made challenging by the abundance of nuisances that corrupt existing techniques beyond the required dependability. This is especially true for object localization and tracking, that is, the problem of detecting the presence of objects on images and videos and estimating their pose. This is a critical task for applications such as Augmented Reality (AR), robotic autonomous navigation, robotic object grasping, or production quality control; unfortunately, the reliability of existing techniques is harmed by visual features such as the abundance of specular and poorly textured objects, cluttered scenes, or artificial and in-homogeneous lighting. In this thesis, we propose two methods for robustly estimating the pose of a rigid object under the challenging conditions typical of industrial environments. Both methods rely on monocular images to handle metallic environments, on which depth cameras would fail; both are conceived with a limited computational and memory footprint, so that they are suitable for real-time applications such as AR. We test our methods on datasets issued from real user case scenarios, exhibiting challenging conditions. The first method is based on a global image alignment framework and a robust dense descriptor. Its global approach makes it robust in presence of local artifacts such as specularities appearing on metallic objects, ambiguous patterns like screws or wires, and poorly textured objects. Employing a global approach avoids the need of reliably detecting and matching local features across images, that become ill-conditioned tasks in the considered environments; on the other hand, current methods based on dense image alignment usually rely on luminous intensities for comparing the pixels, which is not robust in presence of challenging illumination artifacts. We show how the use of a dense descriptor computed as a non-linear function of luminous intensities, that we refer to as ``Descriptor Fields'', greatly enhances performances at a minimal computational overhead. Their low computational complexity and their ease of implementation make Descriptor Fields suitable for replacing intensities in a wide number of state-of-the-art techniques based on dense image alignment. Relying on a global approach is appropriate for overcoming local artifacts, but it can be un-effective when the target object undergoes extreme occlusions in cluttered environments. For this reason, we propose a second approach based on the detection of discriminative object parts. At the core of our approach is a novel representation for the 3D pose of the parts, that allows us to predict the 3D pose of the object even when only a single part is visible; when several parts are visible, we can easily combine them to compute a better pose of the object. The 3D pose we obtain is usually very accurate, even when only few parts are visible. We show how to use this representation in a robust 3D tracking framework. In addition to extensive comparisons with the state-of-the-art, we demonstrate our method on a practical Augmented Reality application for maintenance assistance in the ATLAS particle detector at CERN

    Optical-Flow Based Detection of Moving Objects in Traffic Scenes

    Get PDF
    Traffic is increasing continuously. Nevertheless the number of traffic fatalities decreased in the past. One reason for this are the passive safety systems, such as side crash protection or airbag, which have been engineered the last decades and which are standard in today's cars. Active safety systems are increasingly developed. They are able to avoid or at least to mitigate accidents. For example, the adaptive cruise control (ACC) original designed as a comfort system is developed towards an emergency brake system. Active safety requires sensors perceiving the vehicle environment. ACC uses radar or laser scanner. However, cameras are also interesting sensors as they are capable of processing visual information such as traffic signs or lane markings. In traffic moving objects (cars, bicyclists, pedestrians) play an important role. To perceive them is essential for active safety systems. This thesis deals with the detection of moving objects utilizing a monocular camera. The detection is based on the motions within the video stream (optical flow). If the ego-motion and the location of the camera with respect to the road plane are known the viewed scene can be 3D reconstructed exploiting the measured optical flow. In this thesis an overview of existing algorithms estimating the ego-motion is given. Based on it a suitable algorithm is selected and extended by a motion model. The latter one considerably increases the accuracy as well as the robustness of the estimate. The location of the camera with respect to the road plane is estimated using the optical flow on the road. The road might be temporary low-textured making it hard to measure the optical flow. Consequently, the road homography estimate will be poor. A novel Kalman filtering approach combining the estimate of the ego-motion and the estimate of the road homography leads to far better results. The 3D reconstruction of the viewed scene is performed pointwise for each measured optical flow vector. A point is reconstructed through intersection of the viewing rays which are determined by the optical flow vector. This only yields a correct result for static, i.e. non-moving, points. Further, static points fulfill four constraints: epipolar constraint, trifocal constraint, positive depth constraint, and positive height constraint. If at least one constraint is violated the point is moving. For the first time an error metric is developed exploiting all four constraints. It measures the deviation from the constraints quantitatively in a unified manner. Based on this error metric the detection limits are investigated. It is shown that overtaking objects are detected very well whereas objects being overtaken are detected hardly. Oncoming objects on a straight road are not detected by means of the available constraints. Only if one assumes that these objects are opaque and touch the ground the detection becomes feasible. An appropriate heuristic is introduced. In conclusion, the developed algorithms are a system to detect moving points robustly. The problem of clustering the detected moving points to objects is outlined. It serves as a starting point for further research activities

    Model-based Optical Flow: Layers, Learning, and Geometry

    Get PDF
    The estimation of motion in video sequences establishes temporal correspondences between pixels and surfaces and allows reasoning about a scene using multiple frames. Despite being a focus of research for over three decades, computing motion, or optical flow, remains challenging due to a number of difficulties, including the treatment of motion discontinuities and occluded regions, and the integration of information from more than two frames. One reason for these issues is that most optical flow algorithms only reason about the motion of pixels on the image plane, while not taking the image formation pipeline or the 3D structure of the world into account. One approach to address this uses layered models, which represent the occlusion structure of a scene and provide an approximation to the geometry. The goal of this dissertation is to show ways to inject additional knowledge about the scene into layered methods, making them more robust, faster, and more accurate. First, this thesis demonstrates the modeling power of layers using the example of motion blur in videos, which is caused by fast motion relative to the exposure time of the camera. Layers segment the scene into regions that move coherently while preserving their occlusion relationships. The motion of each layer therefore directly determines its motion blur. At the same time, the layered model captures complex blur overlap effects at motion discontinuities. Using layers, we can thus formulate a generative model for blurred video sequences, and use this model to simultaneously deblur a video and compute accurate optical flow for highly dynamic scenes containing motion blur. Next, we consider the representation of the motion within layers. Since, in a layered model, important motion discontinuities are captured by the segmentation into layers, the flow within each layer varies smoothly and can be approximated using a low dimensional subspace. We show how this subspace can be learned from training data using principal component analysis (PCA), and that flow estimation using this subspace is computationally efficient. The combination of the layered model and the low-dimensional subspace gives the best of both worlds, sharp motion discontinuities from the layers and computational efficiency from the subspace. Lastly, we show how layered methods can be dramatically improved using simple semantics. Instead of treating all layers equally, a semantic segmentation divides the scene into its static parts and moving objects. Static parts of the scene constitute a large majority of what is shown in typical video sequences; yet, in such regions optical flow is fully constrained by the depth structure of the scene and the camera motion. After segmenting out moving objects, we consider only static regions, and explicitly reason about the structure of the scene and the camera motion, yielding much better optical flow estimates. Furthermore, computing the structure of the scene allows to better combine information from multiple frames, resulting in high accuracies even in occluded regions. For moving regions, we compute the flow using a generic optical flow method, and combine it with the flow computed for the static regions to obtain a full optical flow field. By combining layered models of the scene with reasoning about the dynamic behavior of the real, three-dimensional world, the methods presented herein push the envelope of optical flow computation in terms of robustness, speed, and accuracy, giving state-of-the-art results on benchmarks and pointing to important future research directions for the estimation of motion in natural scenes

    Appearance Modelling and Reconstruction for Navigation in Minimally Invasive Surgery

    Get PDF
    Minimally invasive surgery is playing an increasingly important role for patient care. Whilst its direct patient benefit in terms of reduced trauma, improved recovery and shortened hospitalisation has been well established, there is a sustained need for improved training of the existing procedures and the development of new smart instruments to tackle the issue of visualisation, ergonomic control, haptic and tactile feedback. For endoscopic intervention, the small field of view in the presence of a complex anatomy can easily introduce disorientation to the operator as the tortuous access pathway is not always easy to predict and control with standard endoscopes. Effective training through simulation devices, based on either virtual reality or mixed-reality simulators, can help to improve the spatial awareness, consistency and safety of these procedures. This thesis examines the use of endoscopic videos for both simulation and navigation purposes. More specifically, it addresses the challenging problem of how to build high-fidelity subject-specific simulation environments for improved training and skills assessment. Issues related to mesh parameterisation and texture blending are investigated. With the maturity of computer vision in terms of both 3D shape reconstruction and localisation and mapping, vision-based techniques have enjoyed significant interest in recent years for surgical navigation. The thesis also tackles the problem of how to use vision-based techniques for providing a detailed 3D map and dynamically expanded field of view to improve spatial awareness and avoid operator disorientation. The key advantage of this approach is that it does not require additional hardware, and thus introduces minimal interference to the existing surgical workflow. The derived 3D map can be effectively integrated with pre-operative data, allowing both global and local 3D navigation by taking into account tissue structural and appearance changes. Both simulation and laboratory-based experiments are conducted throughout this research to assess the practical value of the method proposed

    3D Gaze Estimation from Remote RGB-D Sensors

    Get PDF
    The development of systems able to retrieve and characterise the state of humans is important for many applications and fields of study. In particular, as a display of attention and interest, gaze is a fundamental cue in understanding people activities, behaviors, intentions, state of mind and personality. Moreover, gaze plays a major role in the communication process, like for showing attention to the speaker, indicating who is addressed or averting gaze to keep the floor. Therefore, many applications within the fields of human-human, human-robot and human-computer interaction could benefit from gaze sensing. However, despite significant advances during more than three decades of research, current gaze estimation technologies can not address the conditions often required within these fields, such as remote sensing, unconstrained user movements and minimum user calibration. Furthermore, to reduce cost, it is preferable to rely on consumer sensors, but this usually leads to low resolution and low contrast images that current techniques can hardly cope with. In this thesis we investigate the problem of automatic gaze estimation under head pose variations, low resolution sensing and different levels of user calibration, including the uncalibrated case. We propose to build a non-intrusive gaze estimation system based on remote consumer RGB-D sensors. In this context, we propose algorithmic solutions which overcome many of the limitations of previous systems. We thus address the main aspects of this problem: 3D head pose tracking, 3D gaze estimation, and gaze based application modeling. First, we develop an accurate model-based 3D head pose tracking system which adapts to the participant without requiring explicit actions. Second, to achieve a head pose invariant gaze estimation, we propose a method to correct the eye image appearance variations due to head pose. We then investigate on two different methodologies to infer the 3D gaze direction. The first one builds upon machine learning regression techniques. In this context, we propose strategies to improve their generalization, in particular, to handle different people. The second methodology is a new paradigm we propose and call geometric generative gaze estimation. This novel approach combines the benefits of geometric eye modeling (normally restricted to high resolution images due to the difficulty of feature extraction) with a stochastic segmentation process (adapted to low-resolution) within a Bayesian model allowing the decoupling of user specific geometry and session specific appearance parameters, along with the introduction of priors, which are appropriate for adaptation relying on small amounts of data. The aforementioned gaze estimation methods are validated through extensive experiments in a comprehensive database which we collected and made publicly available. Finally, we study the problem of automatic gaze coding in natural dyadic and group human interactions. The system builds upon the thesis contributions to handle unconstrained head movements and the lack of user calibration. It further exploits the 3D tracking of participants and their gaze to conduct a 3D geometric analysis within a multi-camera setup. Experiments on real and natural interactions demonstrate the system is highly accuracy. Overall, the methods developed in this dissertation are suitable for many applications, involving large diversity in terms of setup configuration, user calibration and mobility

    Object Tracking

    Get PDF
    Object tracking consists in estimation of trajectory of moving objects in the sequence of images. Automation of the computer object tracking is a difficult task. Dynamics of multiple parameters changes representing features and motion of the objects, and temporary partial or full occlusion of the tracked objects have to be considered. This monograph presents the development of object tracking algorithms, methods and systems. Both, state of the art of object tracking methods and also the new trends in research are described in this book. Fourteen chapters are split into two sections. Section 1 presents new theoretical ideas whereas Section 2 presents real-life applications. Despite the variety of topics contained in this monograph it constitutes a consisted knowledge in the field of computer object tracking. The intention of editor was to follow up the very quick progress in the developing of methods as well as extension of the application
    corecore