
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. P. Dillenbourg, président du jury
Prof. P. Fua, Prof. V. Lepetit, directeurs de thèse

Prof. R. Cipolla, rapporteur
Prof. C. Rother, rapporteur

Dr R. Boulic, rapporteur

Robust 3D Object Pose Estimation and Tracking from
Monocular Images in Industrial Environments

THÈSE NO 7282 (2016)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 18 NOVEMBRE 2016

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE VISION PAR ORDINATEUR

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2016

PAR

Alberto CRIVELLARO

Τί δύσκολον· Τὸ ἑαυτὸν γνῶναι.
Thales, 625-546 BC

Abstract

Recent advances in Computer Vision are changing our way of living and enabling new applica-

tions for both leisure and professional use, ranging from games based on Augmented Reality

to automated diagnostic tools based on the analysis of medical imagery. Regrettably, in many

industrial domains the spread of state-of-the-art technologies is made challenging by the abundance

of nuisances that corrupt existing techniques beyond the required dependability.

This is especially true for object localization and tracking, that is, the problem of detecting the

presence of objects on images and videos and estimating their pose. This is a critical task for

applications such as Augmented Reality (AR), robotic autonomous navigation, robotic object

grasping, or production quality control; unfortunately, the reliability of existing techniques is

harmed by the visual features encountered in many industrial environments, such as the abundance

of specular and poorly textured objects, cluttered scenes, or artificial and in-homogeneous lighting.

In this thesis, we propose two methods for robustly estimating the pose of a rigid object under the

challenging conditions typical of industrial environments. Both methods rely on monocular images

to handle metallic environments, on which depth cameras would fail; both are conceived with a

limited computational and memory footprint, so that they are suitable for real-time applications

such as AR. We test our methods on datasets issued from real user case scenarios, exhibiting

challenging conditions.

The first method is based on a global image alignment framework and a robust dense descriptor.

Its global approach makes it robust in presence of local artifacts such as specularities appearing on

metallic objects, ambiguous patterns like screws or wires, and poorly textured objects. Employing

a global approach avoids the need of reliably detecting and matching local features across images,

that become ill-conditioned tasks in the considered environments; on the other hand, current

methods based on dense image alignment usually rely on luminous intensities for comparing the

pixels, which is not robust in presence of challenging illumination artifacts. We show how the use

of a dense descriptor computed as a non-linear function of luminous intensities, that we refer to as

“Descriptor Fields”, greatly enhances performances at a minimal computational overhead. Among

others, we show the effectiveness of our Descriptor Fields over several optimization schemes and

distance metrics. Their low computational complexity and their ease of implementation make

Descriptor Fields suitable for replacing intensities in a wide number of state-of-the-art techniques

based on dense image alignment.

i

Abstract

Relying on a global approach is appropriate for overcoming local artifacts, but it can be un-effective

when the target object undergoes extreme occlusions in cluttered environments. For this reason,

we propose a second approach based on the detection of discriminative object parts. At the core of

our approach is a novel representation for the 3D pose of the parts, that allows us to predict the

3D pose of the object even when only a single part is visible; when several parts are visible, we

can easily combine them to compute a better pose of the object. The 3D pose we obtain is usually

very accurate, even when only few parts are visible. We show how to use this representation in a

robust 3D tracking framework. In addition to extensive comparisons with the state-of-the-art, we

demonstrate our method on a practical Augmented Reality application for maintenance assistance

in the ATLAS particle detector at CERN.

Key words: Computer Vision, 3D Detection, 3D Tracking, Rigid Pose Estimation, Augmented

Reality

ii

Résumé

Les récentes avancées dans le domaine de la Vision Assistée par Ordinateur sont en train de

changer notre façon de vivre ; elles rendent disponibles des nouvelles applications dans la sphère

professionnelle aussi bien que privée, à partir des jeux basés sur la Réalité Augmentée jusqu’aux

outils de diagnostic basés sur l’analyse d’imagerie médicale.

Malheureusement, dans de nombreux domaines industriels la diffusion des dernières technologies

est freinée par l’abondance de nuisances qui dégradent les performances des méthodes actuelles au

delà du degré de fiabilité requis.

Cela est vrai aussi, en particulier, pour la localisation et le suivi objets, c’est-à-dire le problème

de détecter la présence d’objets sur des images et des vidéos et d’estimer leur pose. Il s’agit

d’une étape cruciale dans des nombreuses applications, telles que la Réalité Augmentée (AR),

la navigation autonome et la saisie d’objets par des robots, ou le contrôle de qualité sur des

produits. Malheureusement, l’efficacité des approches existantes est limitée par des nombreuses

caractéristiques typiques des environnements industriels, dont l’abondance d’objets spéculaires ou

non-texturés, de scènes encombrées, d’une illumination artificielle et non-homogène.

Dans cette thèse, nous proposons deux méthodes pour estimer de façon robuste la pose d’un objet

rigide en temps réel dans les conditions extrêmes typiques des environnements industriels.

Les deux méthodes utilisent des images monoculaires pour être robustes en présence d’objet

métalliques où des senseurs de profondeur ne marcheraient pas ; les deux demandent une quantité

limitée de ressources de calcul, ce qui les rend utilisables pour des applications en temps réel

comme la Réalité Augmentée. Nous testons nos méthodes sur des bases de test représentatives des

conditions réelles.

La première méthode est basée sur une technique d’alignement d’images et un descripteur robuste.

Son approche globale la rend robuste en présence d’artefacts tels que des spécularités qui appa-

raissent sur des objets métalliques, détails ambigus comme des vis ou des câbles, et des objets non

texturés.

En utilisant une approche globale nous évitons de détecter explicitement et mettre en correspon-

iii

Abstract

dance des zones d’intérêt locales dans les images, une tâche extrêmement mal conditionnée dans

les environnements considérés. Les méthodes courantes basées sur l’alignement dense d’images

utilisent l’intensité pour comparer les pixels, ce qui le rend fragiles en présence d’artéfacts issues

de l’illumination. Nous montrons comment l’utilisation d’un descripteur dense, calculé avec une

transformation non-linéaire des intensités, que nous appelons “Descriptor Fields” , améliore sen-

siblement les performances avec un faible surcoût computationnel. Notamment, nous montrons

l’efficacité de nos Descriptor Fields avec différents schémas d’optimisation et distances. Leur faible

coût de calcul et leur facilité d’implémentation les rendent adaptés pour remplacer les intensités

dans des nombreuses méthodes courantes basées sur l’alignement d’images dense.

Utiliser une approche globale est approprié pour être robuste en présence d’artefacts locaux, mais il

peut s’avérer peu efficace quand l’objet est masqué par des très vastes occlusions. Pour cette raison,

nous proposons une deuxième approche basée sur la détection de parties de l’objet. Notre approche

repose sur une nouvelle représentation pour la pose en 3D des parties, qui nous permet de prédire la

pose 3D de l’objet aussi quand une seule partie est visible ; quand plusieures parties sont détectées

sur la même image, les estimations pour chaque parties sont facilement combinées pour prédire

la pose de l’objet de façon plus précise. Normalement, la pose calculée est très précise, même

quand seulement peu de parties sont visibles. Nous montrons comment utiliser cette représentation

dans un système robuste pour le suivi d’objets. En plus de comparaisons extensives avec l’état de

l’Art, nous présentons l’application de notre méthode pour un vrai cas test, un outil de Réalité

Augmentée pour l’assistance pendant des interventions techniques dans le détecteur de particules

ATLAS au CERN.

Mots clefs : Vision Assistée par Ordinateur, Détection 3D , Suivi d’Objets, Estimation de Pose

d’Objets Rigides, Réalité Augmentée

iv

Acknowledgements

First of all, I would like to thank my supervisor, Prof. Pascal Fua, for giving me the opportunity

to work at CVLab, and for the guidance he provided to me, not only as a creative researcher, but

also as a passionate teacher and an effective manager. I would also like to express my gratitude to

Prof. Pierre Dillenbourg, Dr. Ronan Boulic, Prof. Roberto Cipolla, and Prof. Carsten Rother, for

accepting to evaluate this thesis and for their insightful advice.

My deepest gratitude goes to my co-supervisor, prof. Vincent Lepetit. With his enthusiasm, his

enormous commitment, his creativity, his exceptional human and technical skills, he taught me

lessons that go far beyond Computer Vision, and has been a constant source of inspiration for my

work.

I am also very grateful to Josiane: during all these years, her perfect sense of organization was

only second to her patience coping with me and my clumsiness. I wish her all the best for her new

life, and good luck to Ariane for her up-coming work at CVLab.

During the time of my application, I randomly picked a name in the list of the future colleagues

and wrote to him for information about "this new job in Switzerland I could apply for". Since that

day, Roberto has been a guidance and source of inspiration for research, computer science, the

mountains and original life styles.

My special thanks goes to him and my colleagues at EPFL and CVLab.

To Amos, Marco and Jean Louis, for all the fun moments spent together. Working on different

topics and having different interests did not prevent us from sharing good memory. It lead us to

passionate discussions about topics ranging from techniques for growing vegetables to methods

for alleviating hangovers and best gears for alpine skiing.

To Yannick, with whom I shared the most tragic and epic moments of the EDUSAFE project,

ranging from extenuating organizational meetings to adventurous climbing expeditions. Thanks to

our great team work, we could survive both. To Kwang, my favorite Linux guru, and Xinchao,

for their support and their advice (including proofreading these pages). To Tomasz, Carlos, Dat,

Amaury and the other CVLab colleagues for the interesting discussions and their friendly advice.

To Olga Beltramello for her endless commitment in coordinating the EDUSAFE project, and to all

the EDUSAFE ESRs and ERs for our collaboration and the nice moments we spent together.

I am especially grateful to my favorite music group, Paperboots, aka Maira, Mati and Piotr, for

their great music and also for being great flat mates. To Eleonora and Francesco, who already

v

Acknowledgements

shared two cities and two universities with me; I hope Lausanne won’t be the last one! Last but not

least, to Lorenzo, Kri, Giada, Michele, Johnatan, Zoé, Juan, Audrey, Nadia and the other friends

Lausannois: the smiles and the bits of optimism they transmitted to me in all the good moments

spent together contributed to the work presented in this thesis.

Finally, my deepest gratitude goes to my family, Rossella, Mino and Andrea, for their unconditional

love, and to my wife Geraldine, for her patience, her support, her constant encouragement and for

sharing with me all the good and bad moments, for better or for worse. They are all role models to

me.

Lausanne, 25 October 2016

vi

Contents

Abstract (English/Français/Deutsch) i

Acknowledgements v

List of figures xiii

List of tables xvii

1 3D Tracking for Industrial Applications 1

1.1 3D Tracking in Industrial Environments: The “Daily Setup” Bias 2

1.2 3D Tracking Applications in Industrial Environments 2

1.2.1 Augmented Reality at CERN: the EDUSAFE Project 4

1.2.2 A Robotic Vision Case Study. Seam Tracking for Industrial TIG Pipe

Welding . 5

1.3 Contributions . 8

1.4 Outline . 9

2 3D Tracking : State of the Art 11

2.1 Related Work . 12

vii

Contents

2.1.1 Edge-based Methods . 12

2.1.2 Keypoints-based Methods . 13

2.1.3 Region-based Methods . 13

2.1.4 Dense Image Alignment Methods . 14

2.1.5 Depth-based Methods . 15

2.1.6 Learning-based Methods . 15

2.1.7 Deep Learning-based Methods . 17

2.1.8 Part-based Methods . 17

2.1.9 Large Scale Pose Estimation Methods 18

2.1.10 SLAM . 19

2.2 Addressing Challenges in Industrial Environments 20

2.2.1 Non-textured Objects; Ambiguous Patterns 20

2.2.2 Specularities and Illumination Artifacts 20

2.2.3 Occlusions and Clutter . 20

2.3 Conclusion . 21

3 Mathematical Framework 23

3.1 Main Notations . 23

3.2 Perspective Camera Model . 24

3.3 Approximate Camera Models . 27

3.4 Distortion Models . 29

3.5 Exponential Map Parametrization for 3D Rotations 30

3.6 Conclusion . 31

viii

Contents

4 Dense Methods for Image Alignment and their Application to 3D Tracking 33

4.1 Dense Image Alignment . 34

4.2 Optimization Framework . 35

4.3 First Order Methods . 35

4.3.1 Forward Additive Algorithm . 36

4.3.2 Forward Compositional Algorithm . 37

4.3.3 Inverse Compositional Algorithm . 39

4.3.4 Inverse Additive Algorithm . 41

4.4 A Second-order Method: ESM . 43

4.5 Choice of the Appropriate Algorithm. Additive vs Compositional Approach . . . 46

4.6 A Warp for 3D Tracking . 48

4.7 Extensions and Related Methods . 51

4.8 Conclusion . 55

5 Descriptor Fields for 3D Tracking 57

5.1 3D Tracking via Dense Image Alignment . 58

5.1.1 Optimization Framework . 58

5.1.2 Multi-scale Optimization . 59

5.2 Descriptor Fields . 60

5.2.1 A 1D Example . 61

5.2.2 An Example with Real Images . 62

5.3 Experimental Results . 63

5.3.1 Datasets . 63

ix

Contents

5.3.2 Evaluation Framework . 64

5.3.3 Evaluation . 65

5.3.4 Evaluation of the Distance Function . 67

5.3.5 Rotation Invariance . 69

5.4 Applications and Further Developments . 70

5.5 Conclusion . 71

6 Robust 3D Tracking using Stable Parts 77

6.1 Overview of the Method . 80

6.2 Part Detection . 81

6.3 Part Pose Estimation . 84

6.3.1 Representation of the Part Pose . 84

6.3.2 Prediction of the Reprojections of the Control Points 85

6.4 Object Pose Estimation . 86

6.4.1 Using a Single Gaussian Pose Prior . 87

6.4.2 Outlier Rejection for the Detected Parts 88

6.4.3 Using a Mixture-of-Gaussians for the Pose Prior 89

6.4.4 Identifying the Best Pose Estimate . 89

6.5 Tracking Frames across a Video Sequence and Pose Filtering 89

6.5.1 Extended Kalman Filter for 3D Tracking 90

6.6 Experimental Results . 93

6.6.1 Evaluation Protocol . 93

6.6.2 Datasets . 93

x

Contents

6.6.3 Part Detection . 94

6.6.4 Validation of the Part Pose Representation 96

6.6.5 Virtual Points Configuration . 98

6.6.6 Comparison against the State-of-the-Art 100

6.6.7 Training Details . 101

6.6.8 Results . 101

6.6.9 Runtimes . 103

6.7 Applications and Further Developments . 103

6.7.1 Articulated Objects . 104

6.7.2 Object Tracking and SLAM . 105

6.8 Conclusion . 106

7 Conclusion 107

7.1 Future Work . 108

A Appendix A: Additional Results for Dense Image Alignment Methods 111

A.1 An Example of Warp: 2D Rigid Deformation 111

A.2 Equivalence of First-order Methods . 113

A.2.1 Equivalence of FA and FC Algorithms 113

A.2.2 Equivalence of FC and IC Algorithms 114

A.3 A Theorem about Groups of Differentiable Warps 115

A.4 Relaxing Hypothesis of ESM . 116

A.5 Alignment of Multi-Channel Images . 117

A.6 Comparative Tables of Dense Alignment Methods 118

xi

Contents

B Appendix B: 3D Tracking with Dense Image Alignment and Different Internal Ma-
trices 121

Bibliography 131

Curriculum Vitae 133

xii

List of Figures

1.1 Examples of the challenging visual conditions encountered in industrial environments 3

1.2 Examples of Applications of 3D Tracking in Industrial Environments 4

1.3 The EDUSAFE Augmented Reality prototype in action. 4

1.4 The Personal Safety Device developed for the EDUSAFE project. 5

1.5 The pipe welding machine in action during an indoor test. 6

1.6 The automatic vision-aided system developed for a welding machine. 7

2.1 Examples of state-of-the art methods: edge-based tracking, Keypoint-based track-

ing, template matching . 14

2.2 Examples of state-of-the art methods: part-based tracking, large scale pose estima-

tion, and SLAM . 19

3.1 Perspective projection model . 25

3.2 The full perspective projection model and its approximations. 27

4.1 The image alignment problem. 34

4.2 The Forward Additive algorithm. 36

4.3 Updated warp in the Forward Compositional algorithm. 38

4.4 Updated warp provided by the Inverse Compositional algorithm. 39

xiii

List of Figures

4.5 Schematic representation of dense image alignment algorithms. 49

4.6 3D warp between a template T with pose pT , and an image I , with pose pT + p. 50

4.7 Inverse warp for 3D tracking. 50

5.1 Robust 3D tracking with Descriptor Fields in a non-Lambertian environment. . . 58

5.2 Iterative alignment of two 1D signals. 62

5.3 Sparsifying action of Descriptor Fields on a 1D example 63

5.4 Different descriptors on a specular surface and corresponding objective function

for a translation warp . 72

5.5 Examples from the ATLAS dataset . 73

5.6 Error thresholds employed for our evaluations 73

5.7 Comparisons between intensities and Descriptor Fields on our Experimental Setup

dataset. 73

5.8 Comparisons between intensities and Descriptor Fields on the ATLAS dataset. . . 74

5.9 Some applications of image alignment and Descriptor Fields 74

5.10 Comparison between different distance functions for image alignment. 75

6.1 Our part-based method in action during a demonstrative technical intervention at

CERN, Geneva. 78

6.2 Our representation of the 3D pose of an object part. 79

6.3 Main steps of our part-based algorithm. 80

6.4 Part detection pipeline. 83

6.5 Architecture of CNNpart-det for part detection. The last layer outputs the likelihoods

of the patch to correspond to each part or to the background. 83

6.6 Architecture of the CNN CNNcp-pred-p predicting the projections of the control

points. 86

xiv

List of Figures

6.7 Visualisation of the pose prior for an electric box: Projections of the box by each

of the 9 Gaussians centers pm. 87

6.8 Qualitative results of our part-based tracking framework on our challenging datasets. 95

6.9 Training images and control points we used for the BOX, the CAN and the DOOR

datasets. 95

6.10 Results of the experiment described in Section 6.6.3: detection error Cumulative

Distribution Functions (CDF) for the BOX dataset for different detectors. Top row:

Video #1. Bottom row: Video #2. 97

6.11 The rotation and translation error Cumulative Distribution Functions (CDF) on

the BOX dataset, Video #1 for the parametrizations of the part poses presented in

Section 6.6.4. Our pose representation entails a substantial performance gain. . . 99

6.12 Rotation and translation error Cumulative Distribution Functions (CDF) for the

configurations of virtual points shown in Figure 6.13 for the CAN dataset-Video #1. 99

6.13 Different configurations of control points tested on the CAN dataset. 100

6.14 The rotation and translation error Cumulative Distribution Functions (CDF) on the

BOX dataset. 101

6.15 The rotation and translation error Cumulative Distribution Functions (CDF) on the

CAN dataset. 102

6.16 The rotation and translation error Cumulative Distribution Functions (CDF) on the

DOOR dataset. 102

6.17 Tracking of articulated objects with our part-based framework. 105

6.18 Integration of our object pipeline and a ORB-SLAM, as described in Section 6.7.2. 106

B.1 Warp between a template T with internal calibration matrix KT and pose pT , and

an image I , with pose pT + p and internal calibration matrix KIM 122

xv

List of Tables

3.1 Main notations employed in this thesis. 24

5.1 Experimental results of comparisons between Descriptor Fields and state-of-the-art. 66

6.1 Main notations employed in Chapter 6 . 81

6.2 Detection error results for the BOX Dataset. We report the AUC scores for the

detection error relative to each part, as described in Section 6.6.3. 96

6.3 Experimental results for our part-based framework. 100

A.1 Computational complexity and assumptions on the family of warps for the algo-

rithms described in Chapter 4. 119

A.2 Formulas for the update of the warp estimate for the algorithms described in this

chapter. 120

xvii

3D Tracking for Industrial
Applications

Computer Vision is disclosing new, unforeseen possibilities in many domains of our life. New

applications are proposed every day in a wide number of domains, ranging from gaming to medical

analysis, from marketing to online retail.

The industrial domain, too, massively benefits from Computer Vision and its methods, because

of some undeniable advantages over competitor technologies: vision-based system are more

cost-effective, easier to install and simpler to maintain; moreover, they allow to accurately execute

some critical tasks, such as production control in manufacturing, at rates that would be impossible

for human operators.

Unfortunately, it is still rare for industrial applications to fully exploit the potential of state-of-the

art methods. On the one hand, this is due to the typical “conservatism” of industrial domain: the

required degree of dependability of the employed technologies is usually much higher for industry

than for other domains, since system upgrades, replacements and production interruptions are

expensive. On the other hand, in the case of vision-based technologies there is also another kind of

difficulties to overcome: as we shall describe in Section 1.1, industrial environments are usually

characterized by peculiar visual features, that make it difficult to apply methods conceived and

demonstrated for daily setups. This is especially true for 2D and 3D tracking methods, that are

among the techniques industrial applications may heavily benefit.

In this work, we propose efficient and robust methods for image based 3D pose estimation

and tracking of rigid objects, suited to applications in industrial contexts, such as Augmented

Reality (AR), robotic vision, quality control. Our goal is to contribute to bridge the gap between

these contexts and other environments where 3D tracking techniques have gained a high level of

robustness and reliability.

Our research has been mainly carried out within the EDUSAFE European research project,

described in Section 1.2.1, that aims at developing Augmented Reality based technology for

assistance to technical interventions in extreme environments. Of course, Augmented Reality is

1

Chapter 1. 3D Tracking for Industrial Applications

not the only field of application of the techniques presented in this work: other applications are

described in Section 1.2, while a practical test case example, developed for a welding machine

guidance system, is described in Section 1.2.2.

1.1 3D Tracking in Industrial Environments: The “Daily Setup”
Bias

Vision-based 3D tracking can be defined as the problem of estimating the 3D pose of an object

with respect to a camera, based on the acquired images. The problem has been extensively studied

and many methods are proposed in the literature; a more detailed definition and a review of the

state-of-the-art are given in Chapter 2. Nonetheless, it is interesting to notice how, probably

driven by the great number of applications available, many of the most popular methods are

applied to common, daily setups, such as indoor scenes with controlled lighting conditions, matte,

discriminative objects, possibly seen under moderate occlusions.

It is clear that reliable 3D tracking solutions for industrial environments like those shown in

Figure 1.1 would be of great benefit for a wide number of applications, as those presented in

Section 1.2. Unfortunately, most of the existing solutions are not suited to such environments,

because of the massive presence of challenging conditions, such as:

• non-textured objects;

• non-Lambertian surfaces, like metal and glass;

• drastic illumination conditions;

• ambiguous, repetitive patterns (screws, grids, cables, connectors, etc.);

• heavily cluttered scenes;

• large occlusions.

As confirmed by the experimental results presented in Chapters 5 and 6, many methods achieving

exceptional performances in daily setups are prone to fail in industrial setups, because of the

sources of nuisance mentioned above.

The methods presented in this work aim at alleviating the effect of these nuisances and to provide

robust 3D tracking methods suited for industrial applications, even though, of course, they may be

profitably employed in a general case.

1.2 3D Tracking Applications in Industrial Environments

Automated systems based on visual sensing are undergoing a growing interest in industrial applica-

tions, thanks to their low price and their flexibility. 3D tracking plays an increasingly important

2

1.2. 3D Tracking Applications in Industrial Environments

(a) (b) (c) (d)

Figure 1.1 – Examples of the challenging visual conditions encountered in industrial environments:

the ATLAS particle detector at CERN, Switzerland. Common sources of nuisance are (a) repetitive

patterns, (b)-(d) drastic illumination changes (hand held torches are used for lighting dark places)

(c) non-Lambertian surfaces.

role, enabling new applications and opportunities. One of the earliest domains of applications

consists in production quality control, where visual systems speed up the verification process

achieving very high precision rates; their early employment is partly justified by the fact that the

systems usually operate in strictly controlled conditions; moreover, many control tasks only require

simple reasoning, such as assessing the presence/absence of a component, or the alignment of 2

pieces; nowadays, the vision-based production quality assessment is widely employed in fields

ranging from electronic circuits [1] to fruits and vegetables [2].

Another well-established field of applications where 3D tacking has a prominent role consists

in robots for object picking, such as the one shown in Figure 1.2-(a); recent methods employing

weakly supervised learning approaches [3] aim at working for objects with generic shapes and

materials. A strictly related task is object sorting, for example in waste treatment factories where

robots automatically classify, pick and separate objects on a conveyor, as shown in Figure 1.2-(c).

Autonomous navigation and obstacle avoidance is a very active field of research, and autonomous

unmanned vehicles are increasingly used for military and civil applications, moving in air, on

ground and under water [4].

Augmented Reality has been actively investigated for several purposes, ranging from maintenance

assistance [5], to personnel training, personnel guidance in warehouses, and quality control: the

first commercial products are appearing, for example, for assisting workers in assembly operations

on airplane production lines 1, or in logistic warehouses for vision-aided picking 2.

Currently, new possibilities for Augmented Reality-based applications are being disclosed by the

recent introduction of devices such as the Microsoft Hololens [6]. Such devices are able to provide

accurate localization and 3D reconstruction by combining visual and inertial tracking, and also to

perform simple shape reasoning, such as identifying a flat surface where a virtual screen can be

overlapped. Methods for 3D object detection and tracking such as those presented in this work

provide the ability of detecting known shapes and estimating their position in the reconstructed

environments: we hope that this will empower new applications and further expand the capabilities

of modern Augmented Reality devices.

1http://www.airbusgroup.com/int/en/news-media/press-releases/Airbus-Group/Financial_Communication/2016/

04/Airbus-Group-Unit-Testia-to-Supply-To-Spirit-AeroSystems.html
2http://www.dhl.com/en/press/releases/releases_2015/logistics/dhl_successfully_tests_augmented_reality_

application_in_warehouse.html

3

Chapter 1. 3D Tracking for Industrial Applications

(a) (b) (c) (d)

Figure 1.2 – Examples of industrial 3D tracking applications: (a) a robotic arm picking metallic

pieces a; (b) a self-navigating robot displacing plant vases over a warehouse b; (c) an automated

waste sorting system c; (d) an autonomous robot for goods transportation.d.

ahttp://goo.gl/Fr4opa
bhttp://www.public.harvestai.com/
chttp://zenrobotics.com/
dhttp://www.adamrobot.com/en-ca/page/about

1.2.1 Augmented Reality at CERN: the EDUSAFE Project

(a) (b)

Figure 1.3 – The EDUSAFE Augmented Reality prototype in action for assisting technical

interventions. Left: a camera placed over the user’s head streams images to a server for pose

estimation; the pose is transmitted back to an head-mounted see-through display (HMD) for

rendering. Right: an example of augmented content seen through the HMD.

The EDUSAFE Marie Curie ITN project (http://edusafe.web.cern.ch/) is a European research

project coordinated by the CERN and involving 15 European institutions, belonging to both the

academic and the industrial domain; its goal is to design Augmented Reality-based solutions for

maintenance assistance in harsh industrial scenarios.

At CERN, technical interventions are often carried out in extreme conditions: technicians and

engineers are called to perform complex tasks in dangerous areas, where the high risk of exposure

to radioactive and bio-hazardous agents limits the intervention time and is a major cause of stress

for operators. The goal of EDUSAFE Project is to investigate Augmented Reality as a way of

reducing the time of intervention and the operators’ stress, by providing them instructions and

environmental data in visual form through an head-mounted display (HMD). Moreover, application

of AR-enabled systems to personnel training is also being investigated: the training activity is

4

1.2. 3D Tracking Applications in Industrial Environments

(a) (b)

Figure 1.4 – The Personal Safety Device developed for the EDUSAFE project. (a) front: the

compact camera and the Head-Mounted optical see through display are visible. The headset is

also equipped with accelerometers and gyroscopes for more robust tracking. (b) back: a portable

computing unit and a battery are fixed to the user’s belt. Images courtesy of m. Yuta Itoh.

currently carried out by senior technicians that could be profitably employed for other, critical

tasks.

The prototype shown in Figure 1.4 has been designed, built and presented at the EDUSAFE final

conference on June 20th, 2016. It shows the user instructions for a technical intervention on a

generic electric box as the one shown in Figure 1.3.

The system employs a remote server and a wearable, portable unit (PU) carried by the user. Images

captured by a camera mounted on the operator’s helmet are streamed to the server: there, the pose

of the object of interest—an electric box in the user case shown in Figure 1.4—is computed and

transmitted back to the user’s HMD, where authoring content is rendered on the head-mounted

display. Object tracking is performed with the pipeline described in Chapter 6 and fused with

information coming by accelerometers placed on the headset. The setup is shown in Figure 1.3:

the setup allows the user to keep his/her hands free during the whole intervention.

1.2.2 A Robotic Vision Case Study. Seam Tracking for Industrial TIG Pipe
Welding

During a 2-months internship at S&H, Milan, Italy, we developed a tracking system for an industrial

pipe welding machine. The welding machine shown in Figure 1.5 is employed in the construction

of oil and gas pipelines. Consecutive pieces of pipe are lathed and put side-by-side, so that a

V-shaped profile is created at the interface between the pipes. The Tugsten Inert Gas (TIG) welding

5

Chapter 1. 3D Tracking for Industrial Applications

machine is guided around the interface and the welding torch fills the profile with fused metal.

The welding torch position must be adjusted according to the seam width, depth and kept above

the center of the seam, which is not always aligned with the machine rail. Currently, the torch

guidance is manually carried out by experts: a painful task, considering that the welding torch must

be observed during the whole operation, as shown in Figure 1.5, and that usually such welding

operations are performed in extreme environments such as deserts, mud, or ice lands.

Figure 1.5 – The pipe welding machine in action during an indoor test. Guidance is provided by an

expert, that closely monitors the welding torch while it turns around the pipe and manually adjusts

the trajectory of the welding torch.

We developed the visual tracking system shown in Figure 1.6, (a), (b) for automatic welding torch

guidance. A calibrated camera has been installed on to the welding machine, at a fixed distance

from the pipe surface. The seam is tracked on the acquired images employing a generalized Hough

transform that tracks sets of parallel lines detected on the image, and the guidance systems outputs

the displacement of the machine from the seam center line in mm (horizontal displacement and

scale). In order to maximize accuracy, the guidance system must be placed as close as possible

to the welding torch; unfortunately, this causes artifacts created by sparks, smoke and projected

welding residuals appear on the images, as shown in Figure 1.6, (c), (d), seriously harming the

tracking performances. The system is equipped with an illumination system, a band-pass filter in

front of the camera, and a protective shield, shown in Figure 1.6, (a), (b). The prototype was tested

on videos recorded during real welding sessions, tracking a 7mm-width seam with sub-millimiter

accuracy at at 5Hz on an embedded device.

In this scenario, given the extremely simple shape of the tracked object, a standard technique

can successfully perform a 3D tracking task; nonetheless, the test case is representative of the

challenging problems that 3D tracking must face when operating in industrial environments:

occlusions and clutter coming from different sources, limited computational resources, the presence

of non-Lambertian surfaces, and heavy illumination changes caused by the unstable light produced

by the welding torch. Even with additional hardware protections, such as a protecting shield and

supplementary lighting and filters, the nuisance of these factors can only be partially alleviated.

Our experience confirmed that it is of crucial importance to design robust algorithms, able to

operate in realistic conditions, in order to let Computer Vision enable new applications in industrial

domains.

6

1.2. 3D Tracking Applications in Industrial Environments

(a) (b)

(d) (d)

Figure 1.6 – The automatic vision-aided system developed for a welding machine. Top: (a)

close-up of the guidance system; (b) the shielding after a welding run : residuals of fused material

are present on the protection shield. Bottom: (c), (d) examples of acquired images : the the welding

seam is occluded by sparks, smoke and incandescent residuals. An integrated illumination system,

a band-pass optical filter and a protective shield have been integrated to the system for greater

robustness.

7

Chapter 1. 3D Tracking for Industrial Applications

1.3 Contributions

In this thesis, we propose two new methods for robust and accurate 3D tracking, able to operate

in the difficult conditions mentioned above. Our goal is to bridge the gap between 3D tracking

performances of state-of-methods in daily setups and in industrial environments. More in particular,

the contributions of this thesis are:

• A thorough analysis of dense alignment methods and their employability for 3D tracking,

presented in Chapter 4. Following the footsteps of the excellent survey presented in [7], we

analyze recently introduced methods in the same framework (such as the Efficient Second

Order Method [8]) and discuss their employability for 3D tracking applications;

• The introduction of a novel dense descriptor, that we refer to as "Descriptor Fields", originally

presented in [9], for robust image alignment with non-textured and non-Lambertian objects

under heavy light changes;

• A 3D tracking approach based on the detection of stable parts of the object, that we intro-

duced in [10], robust in presence of difficult light conditions, clutter and severe occlusions,

described in Chapter 6;

• 2 datasets for evaluation of 3D tracking methods, exhibiting the challenging conditions

encountered in industrial environments described above. The published datasets are part of

the “International Workshop on Recovering 6D Object Pose” Challenges presented at ICCV

2015 and ECCV 2016.

This thesis covers the following peer-reviewed accepted or pending publications and demos:

• Alberto Crivellaro and Vincent Lepetit. Robust 3D tracking with descriptor fields. Confer-

ence on Computer Vision and Pattern Recognition (CVPR), Columbus, USA, 2014.

• Alberto Crivellaro, Mahdi Rad, Yannick Verdie, Kwang Moo Yi, Pascal Fua, Vincent

Lepetit. A Novel Representation of Parts for Accurate 3D Object Detection and Tracking in

Monocular Images. International Conference on Computer Vision (ICCV), Santiago, Chile,

2015.

• Dat Tien Ngo, Sanghyuk Park, Anne Jorstad, Alberto Crivellaro, Chang Yoo, Pascal Fua.

Dense image registration and deformable surface reconstruction in presence of occlusions

and minimal texture. International Conference on Computer Vision (ICCV), Santiago, Chile,

2015.

• Alberto Crivellaro, Mahdi Rad, Yannick Verdie, Kwang Moo Yi, Pascal Fua, Vincent Lepetit.

Robust 3D Object Tracking from Monocular Images using Stable Parts. Submitted to IEEE

Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2016.

• DEMO: Alberto Crivellaro, Yannick Verdie, Kwang Moo Yi, Pascal Fua and Vincent Lepetit.

Tracking Texture-less, Shiny Objects with Descriptor Fields. International Symposium on

Mixed and Augmented Reality (ISMAR), Munich, 2014.

8

1.4. Outline

• DEMO: Alberto Crivellaro, Mahdi Rad, Yannick Verdie, Kwang Moo Yi, Pascal Fua and

Vincent Lepetit. 3D Object Tracking from Monocular Images using Stable Parts. Conference

on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016.

1.4 Outline

This thesis is organized as follows.

• The next chapter provides an extensive overview of the state of the art in the field of 3D

rigid object tracking.

• In Chapter 3 we introduce the main notations employed in the thesis and describe the

mathematical background relevant to our work, that is, the perspective projection model and

its approximations, the most common image distortion models, and the exponential map

parametrization for 3D rotations.

• A description of the main dense alignment paradigms and their application to 3D tracking,

along with their recent extensions, is presented in Chapter 4.

• In Chapter 5 we propose a 3D tracking framework based on dense image alignment and a

novel dense image descriptor, the Descriptor Fields.

• A complementary approach based on the detection of stable parts of the object, suited for

tracking severely occluded objects, is described in Chapter 6. For both the methods presented

in Chapters 5 and 6, extensive evaluations against state-of-the-art, implementation details

and applications are described in the respective chapters.

• Finally, Chapter 7 provides final remarks and discusses future research directions.

9

3D Tracking : State of the Art

After introducing the main industrial applications of 3D tracking in the previous chapter, in this

chapter we give a more rigorous definition of 3D tracking and present an overview of the relevant

related work.

We refer to 3D tracking as the problem of retrieving the pose of a rigid object, based on one
or more images captured by a camera; the pose is defined as the rigid transform between
two Euclidean reference systems, one integral with the object and the other integral with
the camera.

The pose is described as the 3D rigid transform mapping the camera reference system to a reference

system integral with the object. The 2 opposite problems of retrieving the camera pose with respect

to the object and the object pose with respect to the camera are symmetric: the exact same methods

can be employed for solving both variants, passing from one to the other just requires a change

of coordinates. The rigid transform has 6 degrees of freedom, 3 for the rotation and 3 for the

translation.

The focus of this work is on rigid objects: tracking of non-rigid or articulated objects such as

deformable surfaces and human bodies may require ad-hoc formulations and explicit modeling

of the deformations the target objects can undergo. Some extensions of the proposed methods

with application to deformable surfaces and articulated objects are investigated respectively in

Sections 5.4 and 6.7.1. When the target object consists in the whole scene, the 3D tracking is also

referred to as camera localization.

The notion of camera is quite broad. Traditionally, 3D tracking techniques have been developed

employing inexpensive, low-resolution RGB or gray-scale cameras. The recent introduction of

cheap, effective hardware for depth sensing has lead to the spread of methods exploiting based on

RGB-D images. The choice of the employed camera should depend on the required application:

while in general depth sensors are undergoing a growing interest for their accessibility and their

robustness in many daily scenarios, their employability is still limited for outdoor scenes and

for objects with non-Lambertian surfaces (such as metallic objects). Color information is a very

strong cue for object recognition, but it is also subject to radical degradation in presence of strong

11

Chapter 2. 3D Tracking : State of the Art

illumination variations. As this work mainly focuses on industrial scenarios, we employ gray-scale

images, since they can be used in the most general situations and allow for a reduced computational

cost.

3D tracking methods usually employ some kind of prior information about the object, about its

geometry (e.g. CAD model) and/or about its appearance (textured 3D models, templates, keypoints

mapped on the object surface, etc.). The pose estimation is usually performed across sequences of

subsequent frames such as videos, hence the term tracking. For all the methods presented in this

thesis, each frame is treated independently and temporal consistency can be enforced a posteriori
or employed for making the estimation faster and more accurate. The first method aligns incoming

images with registered key-frames, while the second follows the so-called tracking-by-detection
paradigm, where the object is independently detected on each frame. Other methods exist, based

on the so-called temporal tracking paradigm, aiming at retrieving the incremental displacement

of an object between subsequent frames of a video sequence. These methods are usually faster

than tracking-by-detection methods, but suffer from drawbacks such as drift and the need of

initialization and re-initialization whenever the tracking is lost.

2.1 Related Work

The literature on 3D tracking is vast; many different approaches have been proposed and the state-

of-the-art is rapidly evolving, also thanks to the recent introduction of low-cost depth sensors and to

recent advances in deep learning techniques. Nonetheless, vision-based tracking remains an open

problem, because of the numerous nuisances that may intervene: these may be caused by physical

features of the target object, such as specular materials, non-textured surfaces, configurable or

articulated objects, and by features of the surrounding environment, such as occlusions, scenes

with clutter or ambiguous patterns, poor illumination conditions or varying lighting.

Other relevant challenges concern the scalability for simultaneous detection of multiple objects,

reduction of computational and memory footprint, lack of offline data for training, and category-

based tracking, that is, focusing on a generic instance of a given category (e.g. a car, a chair, a

horse) rather than on a single physical object. While some state-of-the-art methods allow to cope

with some of the mentioned difficulties, no existing technique allows to simultaneously overcome

all of them. In this section we present the most relevant work in 3D tracking, discussing the main

advantages and disadvantages of the different methods.

2.1.1 Edge-based Methods

One of the earliest research direction for 3D tracking relies on edges and image contours. Edge-

based methods usually represent a 3D object as a set of control points regularly sampled along

a wire-frame 3D model of the object [11, 12, 13, 14]. The control points are projected onto the

image using a prior pose estimation; then, for each control point, a 1D search is executed in the

direction perpendicular to the predicted edge, to find the strongest image gradient close to it, which

is assumed to be the new position of the edge, as shown in Figure 2.1, (a) (d). The new pose

12

2.1. Related Work

estimate is calculated by minimising the distance from the control points to the actual image edge

found, and tracked over time using temporal filtering, such as a Kalman filter [11].

The main pitfall of edge-based methods is the ambiguity of the primitives employed for tracking,

since contour information is much more ambiguous than other local features such as keypoints. This

makes edge-based methods particularly sensitive to spurious results and local minima. Possible

techniques for alleviating the nuisance of ambiguous edge matching include the use of a RANSAC

matching scheme [15], employing robust estimators [13, 16] or using a particle filter for the

simultaneous evaluation of multiple hypotheses [14]. However, edges and contours are relatively

fragile in practice, and sensitive to large occlusions, clutter, and light changes. For example, in the

environment depicted in Figure 5.1, the object contours are perturbed by their reflections on the

metallic surface and the contours of the specularities in the background.

2.1.2 Keypoints-based Methods

More recently, keypoint-based methods became popular [17, 18, 19]: keypoints can be extracted

and matched more reliably than contours, since they can be efficiently characterized by the

surrounding texture by mean of local, invariant descriptors [20, 21, 22, 23, 24, 25]. These methods

usually represent the object as a set of local features detected on a textured model, such as the

popular SIFT keypoints [26]. At run time, keypoints are detected on the images and matched to

those of the pre-computed object models; detection and pose estimation are executed based on the

retrieved correspondences.

The main limitation of keypoint-based methods is that they can only be employed if the objects are

textured enough; moreover, as for other local features, reliably matching keypoints across images

becomes problematic in presence of clutter and repetitive, locally ambiguous patterns, such as

screws, grids or bundles of wires.

Some works combine keypoints with edges [27, 28]; however, as discussed above, extracting and

matching edges remains delicate. Since keypoints can be reliably matched under heavy viewpoint

changes, as opposed to narrow baseline methods as optical flow or dense image alignment, [29]

tries to combine the best of both worlds: sparse, keypoints-based pose estimation is computed

along with a dense pose estimation, based on frame-to-frame optical flow and the optical flow

computed employing rendered images of the model. Simple forward/backward consistency check

is used to select either the sparse and or the dense result. However, their setup requires a stereo

configuration, which limits the applicability of a 3D tracker.

2.1.3 Region-based Methods

Besides keypoints, silhouettes and region based methods have also been proposed. In [31, 32], 3D

tracking problem is considered as joint 2D segmentation and 3D pose estimation problem, and

the method looks for the pose that best segments the target object from the background. Contours

and edges are used in [33] with multiple hypotheses to provide robust pose estimation. Partial

13

Chapter 2. 3D Tracking : State of the Art

(a) (b) (c)

(d) (e) (f)

Figure 2.1 – Edge-based tracking: (a) the pose of a wire-frame 3D model is estimated on an

incoming frame (d) based on image edges (from [13]). Keypoint-based tracking: (b) a set of

keypoints detected on a textured object surface are matched with those detected on incoming

frames (e) a. Template matching: LINEMOD templates (c), build from RGB-D images, are

employed for detecting non-textured objects in cluttered environments (f) (from [30]).

aFrom: http://visp-doc.inria.fr/doxygen/visp-daily/tutorial-detection-object.html

occlusions, however, are difficult to handle with such approaches. In Chapter 6 we compared our

part-based method with [32] on sequences with highly occluded objects, our tests confirm that

relying on image regions is not robust for the scenarios considered in this thesis.

2.1.4 Dense Image Alignment Methods

With the growing computational power of modern devices, dense image alignment approaches [34,

35, 36, 7, 37, 38, 39] have become very attractive. These methods look for the pose of an input

image by aligning the pixels of this image with those of a registered template: the alignment is

typically performed by iteratively minimizing some distance function, such as the sum of squared

differences, of the location intensities.

Although computationally more expensive than methods based on local features, they can exploit

most of the image information without being limited to contour or keypoints features. Therefore,

they can properly handle poorly textured objects, and they are more robust with respect to local

artifacts induced, for example, by specularities, or ambiguous patterns. Since we developed a 3D

tracking framework based on dense alignment, we will discuss in detail this kind of approaches in

Chapter 4. Our own framework will be detailed in Chapter 5.

14

2.1. Related Work

2.1.5 Depth-based Methods

The development of inexpensive 3D sensors such as the Kinect has recently sparkled different

approaches to 3D object detection. Depth data are appealing for several reasons: for example, the

pose estimation problem can be cast as the problem of aligning two 3D point clouds, for which

several well-established methods exist [40]. Moreover, occlusion reasoning becomes easier than

on monocular images, since occlusions necessarily lie in front of the object [41].

[42, 43] use votes from pairs of 3D points and their normals to detect 3D objects. The popular

LINEMOD tracker [44, 30] uses surface normals extracted from depth images and edge orientations

from RGB images as template features for dealing with poorly textured objects. Using a fast

matching scheme the incoming image is matched against thousands of such template features

corresponding to different viewpoints of the object to robustly detect its presence. Despite its

robustness to clutter and light changes, according to our experimental results, this approach is

sensitive to occlusions, a key-requirement in our context. [45] shows that substantial performances

gain in terms of accuracy and computational efficiency can be achieved by assigning different

weights to different regions of the LINEMOD templates, learnt with a discriminative approach;

moreover, rather than testing each image against all the templates, cluster of templates are built,

and cascade classifiers are trained to check if an image must be checked against the templates of

each cluster. Nonetheless, these improvements only partially alleviate the sensitivity to occlusions

of LINEMOD tracker.

Most recent depth-based methods leverage the power of machine learning for better performances,

and are discussed below.

2.1.6 Learning-based Methods

Spreading of learning-based methods revolutionized many areas of Computer Vision, including 3D

tracking. Several approaches showed that it is possible to learn a regression model relying images

to 3D poses. [46] describes an online learning framework for real-time estimation of 3D poses, but

it is limited to planar targets. [47] uses a decision tree applied to RGB-D images. [48] learns a

regression model based on random forests relying the change of appearance between a template

and an image with the change of the object pose. The method has been demonstrated both for

tracking of planar surfaces based on RGB images and for 3D object tracking based on depth images.

Each pose parameter is estimated independently by a different forest; moreover, different forests

must be trained for different points of view uniformly sampled on a sphere around the object. At

run time, the forests for the viewing point closest to the previously predicted pose are selected for

the incoming frame. [49] improves this method for temporal tracking of 3D objects based on depth

images; more in particular, a huge number of viewpoints is sampled on a geodesic sphere around the

object, and a very simple regressor made by a single tree is learnt for each viewpoint and for each

pose parameter. At testing time, multiple trees from the closest predicted viewpoint are employed

for predicting the object motion. Although this method achieves impressive computational and

memory efficiency and fair performances in presence of moderate occlusions, it has only been

demonstrated on depth images. Moreover, their temporal tracking paradigm needs initialization

15

Chapter 2. 3D Tracking : State of the Art

for first frame of the sequence and every time the tracking is lost, as opposed to our part-based

approach described in Chapter 6, which is based on a tracking-by-detection paradigm.

In [50] co-training with hough forests are used for multi-object detection. Co-training has the

advantage of avoiding the need for background/negative training data; however, at testing time

it requires multiple passes over the trained forest to predict the location and pose of the object.

Moreover, since negative data are not employed for training, it is unclear how this method can

perform in the presence of similar looking clutter in the background. The employed features,

consisting in pairwise comparisons of gradient-based template maps, are replaced in [51] by

features learnt by a sparse auto-encoder; moreover, authors of [51] show how the next best view

can be predicted within their framework for a refining the pose estimation.

[52] proposed a learning-based framework processing point clouds, that, as opposed to raw depth

images, are scale invariant and can be easily obtained from online fusion algorithms [53] that

reduce noise and fill missing data. After edgelet features are detected over 3D shapes, feature

vectors are obtained by computing their dominant orientations over a grid of voxels, and employed

for training a soft label Random Forest classifier. The output of the classifier is a set of soft-

assigned pose labels, plus a label predicting the probability of the presence/absence of the object

for each voxel. Resilience to occlusions is achieved employing feature-aware features (special

values are assigned to the feature vector components corresponding to occluded voxels), while

the discriminative power of the detector in presence of clutter and similar distractor objects is

enhanced with an iterative training scheme that enlarges the margin between object and non-object

classes.

In [54] objects are detected employing an intermediate representation in the form of a dense 3D

object coordinate labelling, as previously done for related tasks as human pose estimation [55] and

camera localization [56]. A random forest is trained for predicting for each pixel its probability

of belonging to a given object, as well as the 3D object coordinate labels. An energy function

comparing the acquired depth image, the object coordinates and the object probability predicted

by the random forests with, respectively, depth images, object coordinates and object silhouettes

rendered under different poses is minimized using a robust optimization scheme for obtaining the

final pose and location of the object on the image. The original deterministic energy formulation

is replaced by a score predicted by a Convolutional Neural Network in [57], while a real-time

tracking framework based on this approach and a temporal particle filter in the pose space is

proposed in [58].

The intermediate object coordinate representation is shown to work for both textured and texture-

less objects, in presence of light changes and in presence of moderate occlusions. Recently, the

method has been successfully improved exploiting auto-context random forests to work exclusively

based on monocular images in [59]. The approach of [59] is closely related to our part-based

method presented in Chapter 6, since it predicts 3D poses based exclusively on monocular images

and the object coordinates can be somehow interpreted as densely sampled parts; the two methods

should be considered complementary, the former more adapted to small, poorly textured objects

such as the ones of the LINEMOD dataset [44], the latter for highly occluded objects with a small

number of discriminative parts, such as the ones of the datasets described in Section 6.6.2.

16

2.1. Related Work

2.1.7 Deep Learning-based Methods

Methods based on deep learned architectures are currently disclosing new, unprecedented capabili-

ties for many different Computer Vision tasks, including 3D tracking.

Deep models are employed in [60] for real-time large scale localization and 3D pose estimation in

open spaces starting from monocular images. The 6 degrees of freedom of the pose are directly

predicted by a Convolutional Neural Network (CNN), employing quaternion parametrization

for rotations. Similarly as the approach proposed in Chapter 6, the pose is obtained solving a

regression problem with CNNs; on the other hand, predicting the pose based on the whole image

is appropriate for scene localization, while, for object tracking, our method only exploits detected

parts of the object for being resilient to large occlusions.

Discriminative deep descriptors are learnt in [61] for object detection and pose estimation. The

descriptors are predicted by a CNN trained enforcing that the distance between descriptors is large

when the descriptors represent different objects, and directly related to the distance between the

poses when the descriptors are from the same object. A similar idea is proposed [62], where a

deep siamese network is trained, taking as input pairs of images and enforcing that images having

dissimilar poses should be mapped into distant feature representations. In both works, object

detection and pose estimation are performed on nearest neighbor search over a set of templates in

the feature space, similarly as done in LINEMOD [44]. This strategy is claimed to work better

than direct pose regression in [62], due to the limits of existing pose representations. Our pose

representation introduced in Chapter 6 provides an elegant solution, allowing, among others, for

direct, efficient pose regression.

An approach combining template matching and deep learning for object recognition is proposed

in [63]. This work shows that the performances of a standard CNN for object recognition can be

boosted by employing prior knowledge about the object. More in particular, a so-called template

layer is added after the convolutional network layers, sparsifying their output by performing

element-wise multiplication with pre-computed object template masks. The sparsified features

are treated by a classifier whose output is the probability of the presence of the object and a

soft-assigned pose label. Therefore, the pose is computed from pre-computed quantized poses

employing the soft-assigned pose labels, for example taking the pose with the largest label or

computing a weighed sum over the best scored poses. The sparsifying effect of the hard-coded

template masks enforces learning of better structured features and sensibly boosts accuracy. At the

best of our knowledge, this method has only been demonstrated on depth-based input.

2.1.8 Part-based Methods

Representing objects as a collection of parts has been exploited since the early days of modern

Computer Vision, with the introduction of aspect graphs models [64]. Recently, the notion of parts

naturally arose in works focusing on category level object recognition, such as [65, 66], where

characterizing common parts of object categories like cars or bikes is beneficial for recognizing

class instances from very different viewpoints. Moreover, a coarse viewpoint estimation can be

17

Chapter 2. 3D Tracking : State of the Art

computed as a-side result. [67, 68, 69] focus on 3D viewpoint classification at a category level,

building object parts from clusters of local features and learning about the 3D spatial relations

among parts.

Many works were motivated by the success of the Deformable Part Models [70] developed for

2D detection, which were exploited for coarse viewpoint estimation in [71] and successfully

extended to 3D, for example in [72] and [73]. [74] also performs 3D tracking through part-based

particle filtering. [66] learns part-based appearance models of object classes and the 3D geometric

relationship between parts using synthetic 3D models; at testing time, the detections of parts are

verified and checked against the 3D geometric information, also providing a coarse viewpoint

estimation. [75] uses contours as parts. In [76], 3D shared parts are learned employing both

synthetic images rendered from CAD models and real images for fine pose estimation.

In general, these works only provide coarse viewpoint estimation, since they focus on object

categories; moreover, they are not robust to occlusions of some of the parts, especially because the

2D location of the part is solely considered to constrain the object pose. Some of them assume

homographies and planar parts [77, 46, 74]. Finally, they usually require huge computational

resources, making them un-suited for time-critical applications. Our part-based 3D tracking

framework described in Chapter 6 overcomes these limits; more in particular, it is able to directly

infer 3D poses also from a single part, without any assumption on the shape of the parts.

2.1.9 Large Scale Pose Estimation Methods

A recent class of methods exploits deep learning for solving large-scale, category-based recognition

problems. Coarse 3D poses are predicted by a CNN classifier in [78] for indoor objects such as

chairs and beds from 3D normal maps, based on the output of the fine-grained object segmentation

of [79]. An approach for detection and fine pose estimation of objects trained on a wide number of

CAD models retrieved on the internet is described in [80].

In [81], a fine-grained CNN classifier is trained employing millions of synthetic images created

rendering 3D models to simultaneously predict the category and the pose of an object. A similar

approach is proposed in [82], that additionally predicts the location of category-specific keypoints

on the images.

A key-issue for this kind of methods is the need of huge amounts of annotated training data;

generating synthetic data from CAD models is a scalable, effective approach, but it requires to

bridge the gap between the limited realism quality of the rendered images and the real images.

Some methods, such as [76], address this problem training on both mixed real and synthetic images;

others focus on rendering as realistic as possible images [83, 81]; others, such as [84], propose

to directly learn domain adaptation functions for comparing features extracted for real and for

synthetic images.

Unfortunately, at the moment, the accuracy of the predicted poses and the computational efficiency

are not suited yet for applications such as Augmented Reality; moreover, these approaches typically

require massive amounts of training data, which are often unavailable in our setups: therefore, their

18

2.1. Related Work

application to the scenarios considered in this thesis would be impractical at best.

2.1.10 SLAM

Finally, a very active and related field is SLAM (Simultaneous Localization and Mapping) [85, 39,

86, 87]. In this approach, 2 threads run concurently, one computing a sparse or semi-dense map of

the surrounding environment consisting of 3D points, and the other tracking the camera motion

in the map across a video sequence. The map is updated online exploiting new observations on

the tracked frames. The camera motion and the 3D map may be iteratively refined with bundle

adjustment strategies.

Modern methods follow two main paradigms, either feature-based SLAM or direct SLAM. Feature-

based systems such as the famous PTAM [85] and the more recent ORB-SLAM [87], are built

upon the detection and matching of sparse features on the image; as a consequence, the resulting

3D maps consist in sparse 3D points. These methods carry all the advantages and the limitations of

tracking based on sparse features: resilience to occlusions, invariance to wide viewpoints changes,

but reduced reliability for poorly textured environments. On the other hand, direct SLAM methods,

such as DTAM [39] or LSD-SLAM [86], align subsequent frames and build maps employing

dense or semi-dense image alignment methods, so that the resulting maps consist of semi-dense

point-clouds, as shown in Figure 2.2. They are more adapted to deal with poorly textured surfaces.

A very interesting feature of SLAM systems is that they do not require any prior 3D knowledge,

but on the other hand they only provide a relative pose, defined up to a scale; this is not suitable

for many Augmented Reality applications. In Section 6.7.2 we give an example of how an object

detection pipeline and a SLAM system can be combined for practical applications.

(a) (b) (c)

Figure 2.2 – (a) Part-based tracking: a car is modeled as a set of aspect parts and their reprojections

under different viewpoints, from [74]. (b) Large scale detection and pose estimation from a large

dataset of 3D models, from [80]. (c) The semi-dense 3D map reconstructed with the SLAM

method [86], shown as colored points projected to the incoming frame.

19

Chapter 2. 3D Tracking : State of the Art

2.2 Addressing Challenges in Industrial Environments

As pointed out above, the state of the art is in 3D tracking is broad, and no established paradigm

exists, yet, able to undertake all the challenging conditions encountered in the considered envi-

ronments, resumed in Section 1.1. So, different techniques are suitable for addressing different

challenges.

2.2.1 Non-textured Objects; Ambiguous Patterns

When dealing with poorly textured objects or locally ambiguous patterns such as grids, bundles of

wires, and so on, methods based on local features become unreliable. Typical solutions consist

in holistic approaches, such as those based on dense image alignment or on template matching.

When applicable, exploiting depth information is a valuable option in those cases where color

information becomes ambiguous.

2.2.2 Specularities and Illumination Artifacts

Several works attempt to make dense image alignment more robust in presence of challenging

illumination effects: [88] extends a dense image alignment approach, adding terms in the objective

function in order to explicitly estimate some illumination parameters; this has the obvious drawback

of increasing the search space and the optimization complexity. In [89], the tracked surface, such

as a CD cover, is split into patches and normalize the patches independently. Although this

significantly improves the robustness, it is not clear how to split an arbitrary surface, especially

in 3D. Relying on illumination invariant features, such as the Descriptor Fields introduced in

Chapter 5 achieves good results at reasonable burden.

Rather than treating specular artifacts as nuisance, other kinds of methods, exploit them to improve

the accuracy of the registration [90, 91]; interestingly, such approaches achieve a great accuracy,

but typically work only in controlled environments.

Learning-based methods, typically achieve illumination invariance by providing rich learning

datasets showing the target objects under as varied illumination conditions as possible. The

generalization capabilities of the employed methods becomes crucial for achieving illumination

invariance, since the amount of learning data is limited and generating accurate synthetic data

under different lighting conditions is challenging.

2.2.3 Occlusions and Clutter

Resilience to occlusions is a key-requirement of tracking methods, since occlusions are likely

to occur in a wide number of scenarios. Occlusions on well textured object can be successfully

handled by methods based on local features, such as keypoints, discussed above; some methods

attempt at explicit occlusion modeling [92, 93], but besides adding considerable computational

20

2.3. Conclusion

complexity, these approaches are usually limited to specific scenarios, such as objects standing

on a plane, hand-held objects or cars on the road. More recent approaches discussed below

achieve robustness to occlusions by learning occlusion-aware features [52] or employing mixed

local-global object representations [54]. Our part-based approach aims at being intrinsically robust

to occlusions by relying on a minimal part of the object appearance.

2.3 Conclusion

In this chapter we discussed the most representative works of state-of-the-art, along with their

main advantages and limitations. Despite the great variety of proposed techniques, some trends

can be identified in the current research directions; among them:

• The growing power of computational devices allows traditional frameworks such as dense

image alignment or template matching to be exploited for 3D tracking.

• The appearance of new sensing technologies, such as depth sensing cameras, is pushing

forward the capabilities of 3D tracking technologies. On the one hand, the current limits

of depth sensors, such as their limited accuracy and resolution, their failure in presence

of specular surfaces and in outdoor environments, or the lack of such tools on commodity

mobile devices, will arguably be overcome in next years; on the other hand, it still makes

sense to focus on monocular 3D tracking, not only because nowadays it is employable in

a wider range of situations, but also because extending methods working with monocular

images to depth data is usually much easier than the other way round.

• Learning and, more recently, deep learning-based techniques have arisen as powerful and

effective tools for solving not only large-scale problems involving massive amounts of

data but also geometric problems such as 3D object tracking. Nonetheless, as we show in

Chapter 6, care should be taken in order to exploit the full potential of these tools, not only

in terms of training procedures and architecture optimization but also in terms of model

formulation.

• Most probably, at least for some time the only general-purpose, flexible, universal vision

machine available will be the human brain; but it is a fact that interactions among techniques

for solving different classical computer vision tasks, such as object category recognition,

instance detection, pose estimation, SLAM, model-based 3D tracking, non-rigid tracking,

and so on, are going to become more and more strictly overlapped; therefore, any new

proposed approach should account for potential generalizations and interactions with other

methods and tasks. More considerations about that will be presented in Chapter 7.

In the next chapter, we will describe the mathematical framework in which our 3D monocular

tracking problem is formulated, before giving an overview of dense image alignment methods in

Chapter 4 and describing our proposed frameworks and their applications in Chapters 5 and 6.

21

Mathematical Framework

After describing the motivations and the main applications of this work in Chapter 1 and a relevant

selection of state-of-the-art work in Chapter 2, in this chapter we introduce the mathematical

background of our work.

Since its first rigorous formulation during Italian Renaissance in XIV century, perspective projec-

tion has been extensively studied and employed in a wide range of domains, and it is currently used

for modeling the image formation process in modern cameras in almost the totality of Computer

Vision algorithms. We give an overview of the image formation model employed for all the

methods proposed in this work, based on perspective geometry, in Section 3.2.

Despite its great accuracy in describing the mapping from real world objects to their represen-

tations on images, the perspective camera model is difficult to handle because of its non-linear

nature; for this reason, several 3D tracking methods employ affine approximations, described

in Section 3.3. Such approximations greatly simplify tracking problems, but unfortunately, as

discussed in Section 3.3, they can only be employed in particular situations, that do not correspond

to the scenarios considered in this work. In chapter 6, we will discuss the properties of different

pose representations under different projection models.

Another fundamental and delicate aspect about 3D tracking is how to parametrize 3D poses,

especially rotations. Several parametrizations exists, with different pros and cons: in Section 3.5

we describe the parametrization we employ for all the methods described in this thesis, the

exponential map representation, briefly outlining its advantages over alternative representations.

In the next section we outline the main notations employed in this thesis.

3.1 Main Notations

The main notations employed in the remainder of this work are summarized in Table 3.1. In

general, scalars are represented by plain characters, while matrices and vectors are boldface. Two

related vectors, one belonging to the 3D world and the other to the image plane, are referred to

23

Chapter 3. Mathematical Framework

with the same letter, respectively upper and lower case (e.g. an image pixel x representing a 3D

point X). Images are generally described as bi-variate functions mapping a bi-dimensional pixel

location x to its intensity value I(x). Since we mainly deal with grayscale images, we consider all

images are made by a single channel, unless explicitly specified, such as in Appendix A.5.

Notations employed within a single chapter are resumed at the beginning of the chapter.

symbol domain meaning

X R3 3D point

x R2 pixel

R R3×3 Rotation matrix

t R3 Translation vector

K R3×3 internal calibration matrix

C R3 camera center

I R3×3 3 by 3 identity matrix

P(·) R3 → R2 perspective projection

I(·) R2 → R Mono-channel image

(·)� − Transposed matrix or vector

(·)−1 − Inverse of square matrix

O(·) R Computational complexity

Table 3.1 – Main notations employed in this thesis.

3.2 Perspective Camera Model

Mathematically, image formation can be described as a non-linear mapping from the Euclidean 3D

space to the 2D image plane. Since the goal of 3D tracking is to infer information about the object

pose based on its representation on an image, the mathematical model describing the physical

image formation process is of crucial importance: all methods will attempt, at some point, to

estimate some of the parameters of this model, or to invert it.

In this section we present the perspective projection model, the most widely employed image

formation model. The camera is modeled as a pinhole camera, and the image formation process as

a perspective projection. Most cameras differ from a pinhole camera for many aspects, in particular

for the use of lenses, so that the perspective camera model is just an approximation of the physical

image formation process. Some additional effects are taken into account by employing distortion

models on top of the perspective projection, as described in Section 3.4, while other physical

phenomena (such as chromatic aberration) are usually neglected in 3D tracking domain.

For sake of simplicity, in this thesis we only give an operative description of all the presented

projection models; we refer the interested reader to [94] for a thorough description in a rigorous

24

3.2. Perspective Camera Model

mathematical framework with details on their analytical properties.

Figure 3.1 – Perspective projection model: a rigid transformation maps a 3D point X in the object

reference system (red) in the camera reference system (green). The internal camera matrix K
encodes the parameters of the projection from the 3D camera reference system to the 2D image

plane (blue). The center of projection C coincides with the origin of the camera reference system;

the optical axis is defined as the straight line perpendicular to the image plane passing through C.

As shown in Figure 3.1, a perspective projection is defined by a plane, the image plane, and a 3D

point C, the center of projection. A generic 3D point X is mapped to a point on the image plane,

given by the intersection between the image plane itself and the straight line relying X with the

center of projection C. The line passing by C and perpendicular to the image plane is usually

referred to as the optical axis.

More in particular, the mapping P between a point X ∈ R3 in the 3D world reference system and

its representation x ∈ R2, x = P(X) on an image can be expressed as the composition of 3 main

steps:

• 3D Rigid Motion: the first step is a change of coordinates of the 3D point X from the world

reference system to another reference system, called the camera reference system, with the

rigid motion

Xcam = RX+ t, (3.1)

where R ∈ R3×3 is a rotation matrix and t ∈ R3 a translation vector; R and t are often

referred to as the camera pose; the origin of the camera reference system has its origin

located in the center of projection, and the 3D coordinates of the center of projection in

the world reference system can be easily computed by the relation : 0 = RC+ t, so that

C = −R−1t. Adopting a widely employed convention in Computer Vision, we suppose

that the z-direction of the camera reference system corresponds to the optical axis, and that

points with a positive z value lie in front of the camera.

• Camera Matrix Multiplication: the 3D point in the camera reference system is multiplied

by the so-called internal camera matrix K, that contains the camera internal parameters (or

25

Chapter 3. Mathematical Framework

camera intrinsic parameters):

x̃ = [U, V, Z]� = KXcam; (3.2)

the internal camera matrix only depends on the camera physical and mechanical properties,

and it is structured as follows:

K =

⎡⎢⎢⎣
fu s cu

0 fv cv

0 0 1

⎤⎥⎥⎦ ; (3.3)

fu and fv are the scale factors from the world/camera reference systems to the image

reference system, in the u and v- coordinates directions respectively; they are proportional to

the focal length of the camera. Pixel c = [cu, cv]
�, also called the principal point, represents

the intersection between the optical axis and the image plane in the image reference system.

s is called the skew, and it’s non zero only if the axis of the image reference system are

non-perpendicular. All the coefficients of the internal camera matrix only depend on the

camera physical properties, so they are usually estimated offline during a calibration step
and supposed to be known when performing 3D tracking. For more details about internal

calibration, see, for example, [95].

• Projection: Finally, the 2 coordinates of the pixel on the image are given by dividing the

first 2 coordinates of x̃ by the third coordinate:

x = P(X) = [u, v]� = [U/Z, V/Z]�. (3.4)

Notice that the first step only depends on the camera pose in the 3D world reference system; the

second only depends on the camera physical properties, and the third directly originates from the

perspective projection model.

We point out that, due to Equation (3.4), inverting the projection P(·) without further constraints

is only possible up to a scale factor. Moreover, there are 2 distinct non-linearities arising in the

perspective projection P(·): the first is the division of Equation (3.4); the second one is concealed

in Equation (3.1): the rotation matrix R has 9 coefficients, but only 3 degrees of freedom. So,

when estimating the camera pose, it usually suited to employ some minimal parametrizations for

rotations, such as the Euler angles or the exponential map representation described in Section3.5,

instead of dealing directly with the 9 unknown matrix coefficients; unfortunately, the mapping

from minimal rotation parametrizations to rotation matrices is non-linear.

The alternative camera models presented in the next section provide affine approximations of the

full perspective model.

26

3.3. Approximate Camera Models

(a) (b)

(c) (d)

Figure 3.2 – The full perspective projection model (a) and its approximations. (b) Orthographic

projection. (c) Weak perspective projection. (d) Para-perspective projection. A point X on an

object is mapped into a pixel x on the image plane; the plane Z = Z0 intersects the object center

G; the projection of G and another object point X2 are shown on the image plane, as well.

3.3 Approximate Camera Models

Affine perspective models have been introduced for approximating the full perspective projection

model, simplifying the computations. Their main drawback is their limited domain of application:

they can only be employed under some specific hypothesis, detailed below, that do not generally

hold for the user cases considered in this work.

For a survey and in-depth analysis on several camera models see, for instance, [94]. We compare

three affine camera projection models with the full perspective model introduced above; for sake

of clarity, we consider a simplified framework where R = I and t = 0, so that X̃ = X; moreover,

we assume that the internal calibration matrix is of the following form:

K =

⎡⎢⎢⎣
f 0 0

0 f 0

0 0 1

⎤⎥⎥⎦ , (3.5)

27

Chapter 3. Mathematical Framework

In this case, depicted in Figure 3.2-(a), the image coordinates of the full perspective projection of a

3D point X = [X,Y, Z]� are given by:

u = f
X

Z
, v = f

Y

Z
. (3.6)

Generalization to other cases is straightforward.

Orthographic Projection This approximation is the simplest projection model, in which the

X and Y components of the 3D points are straightforwardly mapped to the u and v coordinates on

the image plane:

u = X, v = Y. (3.7)

This model does not even take into account the scaling objects undergo when projected on images.

Weak perspective Projection In this affine projection model, the image coordinates are

given by

u = f
X

Z0
, v = f

Y

Z0
(3.8)

where f/Z0 is a fixed scaling factor. This projection model can be interpreted as an orthographic

projection on an intermediate plane parallel to the image plane, the reference plane, followed

by a scaling from the reference plane to the image plane. This model is usually employed for

approximating the full perspective model for objects lying far from the camera center and close to
the optical axis, taking Z0 as the mean depth of the object points.

Para-perspective Projection This affine projection model can be interpreted, similarly as

the weak perspective model, as a projection on an intermediate plane parallel to the image plane,

the reference plane, followed by a scaling from the reference plane to the image plane. for the weak

perspective model, the projection from the object to the reference plane is done along parallel lines,

but in this case they are not parallel to the optical axis. The para-perspective projection model gives

a good approximation of the full perspective model for objects that lie far from the camera but not

necessarily close to the optical axis. In this case, after defining a a point X0 = [X0, Y0, Z0]
�, that

can be thought as the center of the object points, the para-perspective projection of each object

point X = [X,Y, Z]� would be:

u =
f

Z0

(
X − X0

Z0
(Z − Z0)

)
v =

f

Z0

(
Y − Y0

Z0
(Z − Z0)

)
, (3.9)

that is, lines of the linear projection on the reference plane would be parallel to the line passing by

the camera center C and X0. It can be shown that the weak and the para-perspective model are

finite order developments of the full perspective projection, respectively of zero-th and first order.

28

3.4. Distortion Models

One interesting feature shared by all the described models is their affine structure: more in

particular, taking an affine projection Pa(·), an arbitrary 3D point Xref and its representation on

the image plane xref = Pa(Xref), then for any 3D point X:

Pa(X+Xref) = xref + Pa(X); (3.10)

we refer to this property as translation invariance, and further discuss its importance in Chapter 6.

Translation invariance, of course, does not hold for the full perspective model.

3.4 Distortion Models

As pointed out above, the perspective camera model describes the image formation process for a

pinhole camera; more in particular, it is a rectilinear projection, where straight lines in the scene

are mapped to straight lines on the image. The same holds for its approximations described in

Section 3.3. The use of photographic lenses introduces a deviation from the rectilinear projection,

called distortion. Wide angle lenses especially suffer from this phenomenon.

Distortion is usually modeled as a 2D image deformation taking place after the image formation

by perspective projection; the distortion parameters are usually estimated during the camera

calibration step, so that, at run time, the distortion on acquired images is compensated and the

perspective projection model is used on the un-distorted image. Let xdist = [udist, vdist]
� be an

observed, distorted pixel, and x̌dist = [ǔdist, v̌dist]
� its normalized representation, so that :

udist = cu + fuǔdist

vdist = cv + fvv̌dist (3.11)

(3.12)

where cu, fu, cv, fv, are coefficient of the internal calibration matrix of Equation (3.3). Let

x = [u, v]� and x̌ = [ǔ, v̌]� be the corresponding un-distorted pixels. The distortion is usually

separated in 2 different component, radial and tangential distortion,such that:

x̌dist = x̌+ ∂xradial + ∂xtangential. (3.13)

The radial distortion is usually modeled as:

∂xradial =
(
1 + k1r

2 + k2r
4 + . . .

)
x̌, (3.14)

where r = ||x̌|| =
√
ǔ2 + v̌2. The tangential distortion can be expressed as:

∂xtangential =

[
2p1ǔv̌ + p2(r

2 + 2ǔ2)

p1(r
2 + 2v̌2) + 2p2ǔv̌

]
. (3.15)

As pointed out above, the distortion parameters k1, k2, p1, p2 are usually estimated during the

internal calibration phase.

29

Chapter 3. Mathematical Framework

3.5 Exponential Map Parametrization for 3D Rotations

Throughout this work, we employ the same minimal representation for 3D rotations, given by

the so-called exponential map representation. Given an orthonormal basis of R3, the set of 3D

rotations SO(3) is represented by all the square matrices R ∈ R3×3 such that:

RR� = I, det(R) = 1, (3.16)

where I is the 3 × 3 identity matrix and det(·) denotes the matrix determinant. SO(3) forms a

group under the operation of composition.

Alternatively, a rotation of the 3D point X around axis represented by the one-norm vector v ∈ R3

by an angle of θ radians can be represented by the 3D vector θv. This representation, referred to as

axis-angle representation, has the advantage of being a minimal parametrization, since it only has

3 degrees of freedom as opposed to the 9 coefficients of a rotation matrix or the 4 components of a

unit quaternion. On the other hand, the matrix representation is the most suited one for applying a

rotation to a 3D vector. Other representations can be used for representing 3D rotations, such as

unit quaternions and euler angles; we refer to the excellent survey [96] for a thorough comparison

of the different representations, while we describe more in detail the axis-angle representation
here, since it is our parametrization of choice.

The exponential map is the non-linear mapping from the axis-angle representation to the rotation

matrices; more in particular, given a a rotation vector θv = θ[vx, vy, vz]
� such that ||v|| = 1, the

corresponding rotation matrix is given by:

R =

⎡⎢⎢⎣
2(v2x − 1)s2 + 1 2vxvys

2 − 2vzcs 2vxvzs
2 + 2vycs

2vxvys
2 + 2vzcs 2(v2y − 1)s2 + 1 2vyvzs

2 − 2vxcs

2vxvzs
2 − 2vycs 2vyvzs

2 + 2vxcs 2(v2z − 1)s2 + 1

⎤⎥⎥⎦ , (3.17)

where s = sin(θ/2) and c = cos(θ/2). The null rotation (θ = 0) is mapped to R = I. The

inverse mapping, also referred to as log map, allows to pass from the matrix representation to the

axis-angle representation:

θ = acos

(
trace(R)− 1

2

)
(3.18)

v =
1

2 sin(θ)

⎡⎢⎢⎣
R32 −R23

R13 −R31

R21 −R12

⎤⎥⎥⎦ , (3.19)

where trace(·) denotes the sum of the diagonal elements of a matrix and Rij is the element of the

i−th row ang j−th column of R. With a slight and widely employed abuse of terminology, in the

remainder of this work we will refer interchangeably to the "exponential map representation" of a

3D rotation and to the axis-angle representation. The exponential map representation has been

mainly employed for all the work presented in this thesis, thanks to its several advantages over

alternative representations:

30

3.6. Conclusion

• it remains free from gimbal lock for rotations of magnitude up to 2π; this makes it suitable

for iterative optimization algorithms, provided that the steps at each iteration are small

enough.

• As observed above, the exponential map uses a minimal parametrization for SO(3); this

makes optimization more efficient and does not require to enforce explicit constraints on the

parameters, as it must be done, for instance, when using unit quaternions.

3.6 Conclusion

In this chapter we described the main mathematical tools employed for all the methods proposed

in this thesis. More in particular, we adopt a full perspective model despite its non-linear nature,

since approximated projection models can not be employed in the scenarios we consider. As

for the representation of 3D rotations, several parametrizations are currently employed, such as

quaternions, Euler angles and exponential map: arguably, the latter is the most suitable for our

purposes, thanks to its nice analytical properties. In the next chapter, we will give a thorough

description of dense image alignment methods, the framework employed by the method described

in Chapter 5.

31

Dense Methods for Image
Alignment and their Application to
3D Tracking

The first method for 3D tracking proposed in this thesis is based on a global image alignment

framework and on a robust dense descriptor. In this chapter we present an overview of the main

paradigms for global image alignment, while our robust descriptor and quantitative evaluations of

our method will be detailed in the next chapter.

Recently, methods for image alignment based on global optimization problems have undergone

a regain of interest for their accuracy and robustness, thanks to the growing power of modern

computing devices, with applications such as image stitching, pose estimation, optical flow, object

tracking, face coding, and others. In this chapter we present a survey on the most common classes

of iterative optimization methods proposed since the seminal work of Lucas and Kanade [34]. A

first overview of the main optimization schemes was presented in a unifying framework in the

excellent survey from Baker and Matthews [7]. Following its footsteps, we present here an updated

analysis of the most relevant dense image alignment methods, providing a synthetic description of

the existing algorithms, highlighting both theoretical aspects and implementation issues. Some

relevant updates are presented with respect to [7], more in particular:

• The Efficient Second-order Method [97], which was absent from [7], is described in the

same framework, in Section 4.4.

• Other recent extensions and related methods for dense image alignment, appeared since the

publication of [7], are described in Section 4.7.

• We describe a complex, non-linear warp allowing the application of dense image alignment

methods to 3D tracking of non-planar targets in Section 4.6, discussing the applicability and

implementation issues of each method for this particular application.

All the presented methods allow to estimate a generic, parametrized 2D warp mapping a reference

image usually referred to as the template to a deformed image. Commonly employed warps include

33

Chapter 4. Dense Methods for Image Alignment and their Application to 3D Tracking

2D translations, rotations, affine deformations and homographies.

4.1 Dense Image Alignment

Let T, I be 2 images, seen here as functions returning the value of the luminous intensity for a

given pixel location x:

T, I : R2 → R; x �→ T (x), I(x). (4.1)

T will denote a “reference image”, or “template”; I will denote an input image.

Let F be a family of warps, parametrized by n parameters stored in a vector p:

W : R2 × Rn → R2, (x,p) �→ W(x,p). (4.2)

Furthermore, we introduce an explicit notation for the warped image Ip:

Ip(x) = I(W(x,p)) ∀x ∈ D, (4.3)

where D ⊂ R2 the domain of the reference image T .

As shown in Figure 4.1, image alignment consists in estimating the parameters pI of the warp

mapping the reference image T (template) over an input image I , such that T (x) = IpI (x) =

I(W(x,pI)).

Figure 4.1 – The image alignment problem.

This problem can be modelled through the following optimization problem:

pI = argmin
p

∑
x

(
I(W(x,p))− T (x)

)2

, (4.4)

where the sum is extended over all, or a dense subset of, the pixels of the template. Even for

very simple warps, the optimization problem (4.4) is highly non-linear because of the presence

of the functions T (·), I(·), and it is usually solved by iterative methods. On the other hand,

this approach does not need to detect nor match any local image features, which makes dense

34

4.2. Optimization Framework

methods particularly suited for aligning images with low textures or repetitive patterns. Examples

of frequently employed families of warps are 2D and 3D translations, in-plane and out-of-plane

rotations, affine warps, and homographies.

For sake of clarity, in this chapter we only consider mono-channel images, e.g. grayscale images;

straightforward generalization of the presented methods to multi-channel images, such as RGB or

RGB-D images, is described in Appendix A.5.

4.2 Optimization Framework

All the iterative algorithms presented in this chapter share the same basic structure. At iteration c,

given the current estimate of the parameters pc, they:

1. seek for an increment δp of the current parameters, that minimizes a non-linear objective

function F (δp) somehow related to Equation (4.4);

2. approximate the non-linear objective function using a finite order development, and obtain a

closed-form formula for δp;

3. update the current estimate of the parameters using the computed value of δp.

The above steps are iterated until some stopping criterion is met, such as ||δp|| < εtol for a

threshold εtol selected by the user. The methods differ because of the kind of objective function

employed (additive or compositional), because of the direction of the warping (forward or inverse),

and because of the kind of approximation employed (a second order development for the Efficient

Second-order Method, a first-order one for the other methods).

Depending on the different choices, the methods can be applied to different classes of warps,

and have different computational costs and convergence properties. This is discussed in the next

sections.

Comparative tables of all the methods described in this chapter are provided in Appendix A.6.

4.3 First Order Methods

The methods presented in this section employ a first-order development of several variants of the

objective function on Equation (4.4), as opposed to the Efficient Second-order Method described

in Section 4.4.

35

Chapter 4. Dense Methods for Image Alignment and their Application to 3D Tracking

4.3.1 Forward Additive Algorithm

The most widespread dense image alignment method is the well-known Lucas-Kanade algorithm

proposed in [34]. At iteration c, given a current estimate of the parameters pc, we seek for an

increment of the parameters δp that minimizes the approximation of the objective function:

FFA(δp) =
∑
x

(I(W(x,pc + δp))− T (x))2. (4.5)

According to the classification proposed in [7], this is a forward method, because it seeks for

an update of the warp of the image, and it is additive, because the update is summed to the

current estimate of the parameters. The outline of this Forward Additive algorithm is schematically

represented in Figure 4.2.

Figure 4.2 – The Forward Additive algorithm. The current warp W(x,p) for a pixel x is repre-

sented as a red arrow, the updated warp as a blue arrow.

Approximate Solution: Equation (4.5) is a non-linear function with respect to δp, so we

approximate it by computing a first-order Taylor expansion of I(W(x,pc + δp)) with respect to

the second argument of W around pc:

FFA(δp) ≈
∑
x

(I(W(x,pc)) + JFA(x,pc)δp− T (x))2; (4.6)

JFA(x,pc) is the n× 1 Jacobian matrix of FFA:

JFA(x,pc) = ∇I(W(x,pc))
∂W(x,p)

∂p

∣∣∣∣
p=pc

, (4.7)

where ∇I is the gradient of I; the second term of Equation (4.6) is a quadratic form with respect

to δp; by setting its derivative equal to zero, it is possible to obtain the following closed-form

solution for δp:

δp = H(pc)
−1

∑
x

JFA(x,pc)
�(T (x)− I(W(x,pc)), (4.8)

where H(pc) =
∑

x JFA(x,pc)
�JFA(x,pc).

36

4.3. First Order Methods

Parameters Update: After computing an increment δp using Equation (4.8), the current

estimate of the parameters is updated with the following additive rule:

pc+1 = pc + δp. (4.9)

Assumption on the Set of Warps: The only requirement for the warps W(x,p) ∈ F is to

be differentiable with respect to p.

Computational Complexity: The main steps of the FA algorithms are summarized in Algo-

rithm 1. The computational complexity of each step is reported as a function of the number of

parameters n and the number of pixels of the template N .

Algorithm 1 Forward Additional algorithm

while ||δp|| > ε do
Compute JFA(x,pc) for all x ∈ D with Equation (4.7) O(nN)
Compute H(pc) =

∑
x JFA(x,pc)

�JFA(x,pc) O(n2N)
Compute δp with Equation (4.8) O(nN + n3)
Update the parameters using Equation (4.9) O(n)

end while

One iteration of the FA algorithm has a computational complexity of:

O(n2N + n3) (4.10)

Note that, for usual applications, n ≤ 10, and N ∈ [103, 105].

4.3.2 Forward Compositional Algorithm

An alternative algorithm is the Forward Compositional algorithm (FC), proposed in [98]. At

iteration c, given the current estimate of the parameters pc, we seek for an increment of the

parameters δp minimizing

FFC(δp) =
∑
x

(I(W(W(x, δp),pc))− T (x))2; (4.11)

employing a compositional approach instead of the additional approach of Equation (4.5) can lead

to better computational performances than the FA algorithm, while, under some assumptions, the

convergence properties of the two methods are equivalent, as discussed in Appendix A.2. The

update of the warp provided by the FC algorithm is represented in Figure 4.3

Approximate Solution: Assuming that W(x,0) = x, a first-order Taylor expansion of

I(W(W(x,p),pc)) around p = 0 yields:

FFC(δp) ≈
∑
x

(I(W(x,pc)) + JFC(x,pc)δp− T (x))2, (4.12)

37

Chapter 4. Dense Methods for Image Alignment and their Application to 3D Tracking

Figure 4.3 – Updated warp in the Forward Compositional algorithm. The warp increment W(x, δp)
is shown as a green arrow.

where

JFC(x,pc) = ∇I(W(x,pc))
∂W(y,pc)

∂y

∣∣∣∣
y=x

∂W(x,p)

∂p

∣∣∣∣
p=0

, (4.13)

where the last term on the right does not depends on pc and can be pre-computed.

As done in Section 4.3.1 for the FA algorithm, by deriving the quadratic form of Equation (4.12)

with respect to δp and setting the derivative equal to zero yields:

δp = H(pc)
−1

∑
x

JFC(x,pc)
�(T (x)− I(W(x,pc))), (4.14)

where H(pc) =
∑

x JFC(x,pc)
�JFC(x,pc).

Parameters Update: Once an approximate solution δp for the minimization problem (4.11)

has been found with Equation (4.14), the warp is updated with the compositional rule:

W(x,pc+1) = W(W(x, δp),pc). (4.15)

If an explicit expression for pc+1 from Equation (4.15) cannot be found, then it is possible to

estimate it, for instance, by computing W(x,pc+1) for a subset of the pixels and then fitting a

regression model to the correspondences {x ↔ W(x,pc+1)}.

Assumptions on the Set of Warps: In order to compute the updated warp at each iteration,

the composition of 2 admissible warps must be an admissible warp, that is, F must be closed with

respect to composition. Moreover, in order to compute JFC(x,pc), all warps W ∈ F must be

differentiable. Finally, we require that the identity is an admissible warp, so that W(x,0) = x

(after a re-parametrization if needed, as for the warp described in Section 4.6). That is, F should

form a semi-group of differentiable warps.

Computational Complexity: The main steps of the FC algorithms are resumed in Algo-

rithm 2, along with the computational complexity of each step.

38

4.3. First Order Methods

Algorithm 2 Forward Compositional algorithm

Pre-compute
∂W(x,p)

∂p

∣
∣
∣
∣
p=0

, for all x ∈ D O(nN)

while ||δp|| > ε do
Compute JFC(x,pc) for all x ∈ D with Equation (4.13) O(nN)
Compute H(pc) =

∑
x JFC(x,pc)

�JFC(x,pc) O(n2N)
Compute H(pc)

−1 O(n3)
Compute δp with Equation (4.14) O(nN + n2)
Update the parameters using Equation (4.9) O(n2)

end while

Despite the fact that some quantities can be pre-computed, one iteration of the FC algorithm has

the same computational complexity as the FA algorithm:

O(n2N + n3) (4.16)

Actually, the complexity of the update of the warp depends on the family of warps, in Algorithm 2

the computational complexity for affine warps (O(n2)) is reported; for other kinds of warps the

computational cost of this step can change, but it usually it does not affect the global complexity

estimation for one iteration of the algorithm.

4.3.3 Inverse Compositional Algorithm

A major drawback of the forward algorithms is their heavy computational cost, since the matrix H

has to be re-computed at each iteration. A more efficient iterative method, the Inverse Composi-

tional algorithm (IC), has been proposed in [99]. Given the current estimate of the parameters pc,

the IC algorithm seeks an increment δp that minimizes

FIC(δp) =
∑
x

(T (W(x, δp))− I(W(x,pc)))
2; (4.17)

note that this objective function is very similar to that of the FC algorithm (4.11), but the roles of

the image and the template are switched. Rather than seeking for an incremental warp that makes

the warped image more similar to the template, the template is warped to make it more similar to

the current warped image. This trick allows to decrease the computational cost. The update of the

warp in the IC algorithm is shown in Figure 4.4

Figure 4.4 – Updated warp provided by the Inverse Compositional algorithm. The inverse of the

warp increment W(x, δp) is shown as a green arrow.

39

Chapter 4. Dense Methods for Image Alignment and their Application to 3D Tracking

Approximate Solution: As in the previous sections, to find an approximated objective

function, we perform a first order expansion of T (W(x,p)) around p = 0. Assuming that

W(x,0) = x and setting the derivative of the resulting quadratic form equal to zero yields:

δp = H−1
∑
x

JIC(x)
�[I(W(x,pc))− T (x)], (4.18)

where H =
∑

x JIC(x)
�JIC(x), and:

JIC(x) = ∇T (x)
∂W(x,p)

∂p

∣∣∣∣
p=0

. (4.19)

Note that JIC(x) and H do NOT depend on the current parameters estimate and can be pre-

computed once and for all at the beginning of the optimization.

Parameters Update: After computing δp with Equation (4.18), the current warp is updated

so that:

W(x,pc+1) = W(W(x, δp)−1,pc). (4.20)

As for the FC algorithm, if an expression for pc+1 can not be explicitly computed from Equa-

tion (4.15), it is possible to compute it by fitting a regression model to the correspondences

{x ↔ W(x,pc+1)}.

Assumptions on the Set of Warps: As for FC, we assume that the warps W ∈ F are

differentiable, that F is closed with respect to the composition and that the identity is an admissible

warp. Moreover, the warps should be invertible and F should be closed under the inversion. That

is, F must form a group.

Computational Complexity: The main steps of the IC algorithms and their computational

complexity are reported in Algorithm 3. As for the FC algorithm, the cost of the update of the warp

Algorithm 3 Inverse Compositional algorithm

Pre-compute JIC(x) with Equation (4.19) for all x ∈ D O(nN)
Pre-compute H =

∑
x JIC(x)

�JIC(x) O(n2N)
Pre-compute H−1 O(n3)
while ||δp|| > ε do

Compute δp with Equation (4.18) O(nN + n2)
Update the parameters using Equation (4.20) O(n2)

end while

depends on the family of warps, but generally it does not affect the global complexity estimation.

Thanks to the fact that H−1 and JIC(x) can be pre-computed, the computational complexity for

40

4.3. First Order Methods

one iteration of the IC algorithm is lower than that of the forward algorithms:

O(nN + n2). (4.21)

Notice that pre-computing H−1 is numerically less stable than solving a linear system involving

H at each iteration, but this does not represent a problem in most part of practical applications.

4.3.4 Inverse Additive Algorithm

An Inverse Additive algorithm (IA) has been proposed in [100], which has as a low computational

complexity as the IC algorithm while employing an additive update of the parameters. Unfortu-

nately, as we will see, this algorithm can only be applied to a very restricted set of warps. Given the

current estimate of the parameters pc, the IA algorithm finds an increment δp that approximatively

minimizes the same objective function as the Forward Additive algorithm:

FIA(δp) = FFA(δp) =
∑
x

(I(W(x,pc + δp))− T (x))2. (4.22)

Approximate Solution: We start from the first order expansion of I(W(x,pc + δp)) around

pc of Equation (4.6):

FIA(δp) ≈
∑
x

(I(W(x,pc)) + JIA(x,pc)δp− T (x))2, (4.23)

where:

JIA(x,pc) = JFA(x,pc) = ∇I(W(x,pc))
∂W(x,p)

∂p

∣∣∣∣
p=pc

. (4.24)

Assuming that the current parameters estimate is approximately correct, that is, I(W(x,pc)) ≈
T (x), the following approximation holds:

∂I(W(x,pc))

∂x
= ∇I(W(x,pc))

∂W(x,pc)

∂x
≈ ∇T. (4.25)

Injecting this approximation in Equation (4.24), yields:

JIA(x,pc) = ∇T (x)

⎛⎝∂W(x,pc)

∂x

⎞⎠−1

∂W(x,p)

∂p

∣∣∣∣
p=pc

. (4.26)

Minimizing the quadratic form (4.23), we find the closed-form solution for δp:

δp = H(pc)
−1

∑
x

JIA(x,pc)
�(I(W(x,pc))− T (x)), (4.27)

where H(pc) =
∑

x JIA(x,pc)
�JIA(x,pc). For keeping notations coherent, in the above

formula we replaced (I(W(x,pc))− T (x)) with (T (x)− I(W(x,pc)). This entails a change of

41

Chapter 4. Dense Methods for Image Alignment and their Application to 3D Tracking

sign of δp, so that, when updating the parameters estimate, the value of δp will be subtracted from

the current parameters estimate rather than added. To compute δp efficiently, we assume that:⎛⎝∂W(x,pc)

∂x

⎞⎠−1

∂W(x,p)

∂p

∣∣∣∣
p=pc

= Γ(x)Σ(pc) (4.28)

where Γ(x) is a 2× k matrix that is only function of the pixels coordinates on the template and

Σ(pc) is a k × n matrix depending on the current estimate of the parameters, for some integer

k > 0. Then, matrix H(pc) can be re-written as:

H(pc) = Σ(pc)
�H∗Σ(pc), (4.29)

where:

H∗ =
∑
x

(∇T (x)Γ(x))�(∇T (x)Γ(x)). (4.30)

For simplicity’s sake, we assume here that k = n and that Σ(pc) is invertible (see [100] for the

general case k �= n); then, the inverse of H(pc) becomes:

H−1(pc) = Σ(pc)
−1H−1

∗ Σ(pc)
−T ; (4.31)

and the expression in Equation (4.27) reduces to:

δp = Σ(pc)
−1H−1

∗
∑
x

(∇T (x)Γ(x))�(I(W(x,pc)− T (x)). (4.32)

This formula yields an update of the parameters with a lower computational complexity than the for-

ward algorithms, but under the very restrictive assumption that the composition of Equation (4.28)

can be explicitly computed.

Parameters Update: After computing δp with Equation (4.32), the current estimate of the

warp is updated with the additive rule:

pc+1 = pc − δp, (4.33)

where the minus is due to the change of sign introduced in Equation (4.27).

Assumptions on the Set of Warps: We assume that the warps W ∈ F are differentiable;

moreover, in order to find an expression for H∗ that does not depend on pc, one has to explicitly

find the decomposition of Equation (4.28). Moreover, in the general case, not only it is difficult to

find an explicit decomposition, but it is not even obvious that it exists. This makes the IA algorithm

usable with only a very limited set of warps in practical cases. In practice, authors of [100] show

that IA algorithm can be employed with 2D translations, 2D affine warps and “a small number of

42

4.4. A Second-order Method: ESM

esoteric non-linear warps” [7].

Computational Complexity: The main steps of the IA algorithms are reported in Algorithm 4.

The computational complexity of each step is reported as a function of the number of parameters n

and the number of pixels of the template N , supposing for sake of simplicity that k = n.

Algorithm 4 Inverse Additional algorithm

Pre-compute (∇T (x)Γ(x)) for all the pixels of the template O(nN)
Pre-compute H∗ using Equation (4.30) O(nN)
Pre-compute H−1

∗ O(n3)
while ||δp|| > ε do

Evaluate Σpc
−1 O(n2)

Compute δp with Equation (4.27) O(nN + n2)
Update the parameters using Equation (4.33) O(n)

end while

Assuming that evaluating the matrix Σ(p)−1 has a computational complexity of O(n2), then the

computational complexity of an iteration of the IA algorithm is:

O(nN + n2). (4.34)

4.4 A Second-order Method: ESM

All the iterative methods described above are based on a first-order development of the terms

appearing in the objective function. A priori, a second-order development should yield a more

accurate approximation, but computing the second order derivatives is computationally too expen-

sive for most applications. The Efficient Second-order Method (ESM) proposed in [97] allows to

iteratively minimize a second-order approximation of the objective function using only first-order

derivatives.

We start from same objective function as in the FC algorithm:

FESM (δp) = FFC(δp) =
∑
x

(I(W(W(x, δp),pc))− T (x))2; (4.35)

Approximate Solution: We perform the following second-order development around p = 0:

∑
x

(I(W(W(x, δp),pc))−T (x))2 ≈
∑
x

(I(W(x,pc))+JFC(x,pc)δp+
1

2
δp�Mδp−T (x))2,

(4.36)

43

Chapter 4. Dense Methods for Image Alignment and their Application to 3D Tracking

where:

JFC(x,pc) =
∂

∂q

(
I(W(W(x,q),pc))

)∣∣∣∣
q=0

(4.37)

M = M(x,pc) =
∂2

∂q2

(
I(W((W(x,q),pc))

)∣∣∣∣
q=0

. (4.38)

Now, let us assume that the following property holds for all the warps W ∈ F :

∃ε > 0 such that ∀δp ∈ Rn, ||δp|| < ε, then:

W(W(x, δp),p) = W(x,p+ δp) ∀p ∈ Rn.
(4.39)

Moreover, we assume here that I(W(x,pc)) ≈ T (x) and that δp is the (unknown) parameters

increment such that I(W(W(x, δp),pc)) = T (x).

Under these assumptions, the template jacobian ∂
∂q

(
T (W(x,q))

)∣∣∣∣
q=0

= JIC(x) can be approx-

imated with a first-order development of the image jacobian JFC(x,pc) around p = pc, yielding:

JIC(x) ≈ JFC(x,pc) +Mδp. (4.40)

In fact we have:

T (x) = I(W(W(x, δp),pc)) ⇔

T (x) = I(W(x,pc + δp)) ⇔

T (W(x,0)) = I(W(W(x,0),pc + δp)) ⇔

JIC(x) =
∂

∂q

(
T (W(x,q))

)∣∣∣∣
q=0

=
∂

∂q

(
I(W(W(x,q),pc + δp)))

∣∣∣∣
q=0

⇔

JIC(x) ≈ ∂

∂q

(
I(W(W(x,q),pc))

)∣∣∣∣
q=0

+
∂

∂p

∂

∂q

(
I(W(W(x,q),p)

)∣∣∣∣
p=pc, q=0

δp ⇔

JIC(x) ≈ JFC(x,pc) +Mδp,

From Equation (4.40) we compute the following approximation:

Mδp ≈ JIC(x)− JFC(x,pc); (4.41)

by employing it into the second-order development of the objective function of Equation (4.36),

44

4.4. A Second-order Method: ESM

we obtain a second-order approximation of the objective function, which can be computed using

only first-order derivatives of the warp:∑
x

(I(W(W(x, δp),pc))−T (x))2 ≈
∑
x

(I(W(x,pc))+JESM (x,pc)δp−T (x))2, (4.42)

where:

JESM (x,pc) =
JFC(x,pc) + JIC(x)

2
=

⎛⎝∇Ipc(x) +∇T (x)

2

⎞⎠∂W(x,p)

∂p

∣∣∣∣
p=0

. (4.43)

The minimum of the quadratic form of Equation (4.42) is reached for:

δp = H−1(pc)
∑
x

JESM (x,pc)(I(W(x,pc))− T (x)); (4.44)

where H(pc) =
∑

x JESM (x,pc)
�JESM (x,pc).

Parameters Update: After computing a δp minimizing an approximation of FESM (δp)

based on a second order development, we can update the warp as in the FC algorithm, using

Equation (4.15):

W(x,pc+1) = W(W(x, δp),pc). (4.45)

Assumptions on the Set of Warps: The same assumptions as the FC algorithm should

hold, more in particular that the warps W ∈ F are differentiable, that the identity is an admissible

warp and that F is closed with respect to the composition.

The assumption that the current estimate of the parameters is approximately exact and that

I(W(x,pc)) ≈ T (x) guarantees that the finite order development of Equation (4.40) is valid, and

that the parameters increment is the same as the one in Equation (4.36).

Moreover, in order to write the ESM parameters update equations, the cumbersome assump-

tion (4.39) has to hold. Notice that this assumption does not only depend on the family of warps,

but also on the parametrization chosen. If assumption (4.39) does not hold but F is a group of

differentiable warps, the formula provided by ESM is still correct up to the first-order, as shown in

Appendix A.4.

Computational Complexity: The main steps of the ESM and their computational complexi-

ties are resumed in Algorithm 5.

So, the computational complexity of one iteration of the ESM is the same as the forward algorithms:

O(n2N + n3), (4.46)

45

Chapter 4. Dense Methods for Image Alignment and their Application to 3D Tracking

Algorithm 5 Efficient Second-order Method

Pre-compute
∂W(x,p)

∂p

∣
∣
∣
∣
p=0

, for all x ∈ D O(nN)

Pre-compute ∇T O(N)
while ||δp|| > ε do

Compute JESM (x,pc) for all x ∈ D with Equation (4.43) O(nN)
Compute H(pc) =

∑
x JESM (x,pc)

�JESM (x,pc) O(n2N)
Compute H(pc)

−1 O(n3)
Compute δp with Equation (4.44) O(nN + n2)
Update the parameters using Equation (4.45) O(N)

end while

while, if the family of warps respects the assumptions specified above, ESM provides a more

precise parameters update, thus converging in less iterations.

4.5 Choice of the Appropriate Algorithm. Additive vs Compo-
sitional Approach

The algorithms described above mainly differ for their computational cost, for the assumptions

made on the set of warps and for the accuracy of the approximation of the objective function.

While in general cases each algorithm computes a different parameters update, it can be shown

that the 4 first-order algorithms are equivalent [7], in the following sense:

at a given iteration c, the 4 first-order algorithms provide the same updated warp

W(x,pc+1), up to a first-order development in the second argument of the warp.

In Appendix A.2 we show the equivalence of FA, FC and IC (we don’t treat the case of IA since

it’s limited interest for practical applications, the interested reader may refer to [7]). We observe

that ESM is equivalent to the other algorithms in the sense specified above, since it provides the

same update as FC up to the first order.

The choice of the correct algorithm for a practical problem depends, among others, on the following

factors:

• assumptions on the set of warps F ;

• comparison of the computational complexity for one iteration;

• comparison of the computational complexity of the updated parameters estimate.

If Assumption (4.39) holds, then ESM should converge in less iterations at a computational cost

comparable with that of the first-order forward algorithms. Unfortunately, this seldom happens,

with the important exception of the family of homographies (with an opportune parametrization).

As for the first-order methods, since usually FC does not improve much the computational efficiency

of FA, the choice is made between FA anc IC algorithms. The latter has a better computational

46

4.5. Choice of the Appropriate Algorithm. Additive vs Compositional Approach

complexity, but it requires to compute the inverse warp and to find an explicit update of the

parameters starting from the updated warp, so the effective computational cost should be compared

in practical cases.

Another important difference is that, while computing the matrix J, FA uses the gradient of the

image, while IC uses the gradient of the template. If for some reason, one between I and T is

much more affected by noise than the other, one should choose the algorithm that allows for the

less noisy computation of J.

In Section 5.3.3 we will provide an example of how different methods perform on a real scenario

for 3D tracking, and further discuss the optimal algorithm choice for this application.

Finally, we observe that, despite the fact that the additive and compositional algorithms yield to

equivalent results, they reflect two different ways of interpreting the problem of image alignment,

as depicted in Figure 4.5. In the first one, the “additive” point of view, a pixel x in the system of

reference of the template is progressively warped on the image for finding a pixel with the same

intensity. In the “compositional” point of view, at each iteration we compare 2 images T (x) and

Ip(x) in the same reference system, and iteratively look for an infinitesimal warp W(x, δp) such

that either Ip(W(x, δp)) is closer to T (x) (in FC), or T (W(x, δp)) is closer to Ip(x) (in IC).

This can be done by comparing the formulas of the compositional algorithms, FC and IC. The first

term of the jacobian matrix of the FC algorithm reported in Equation (4.13) corresponds to the

gradient of the warped image Ipc defined in Equation (4.3)

∇I(W(x,pc))
∂W(y,pc)

∂y

∣∣∣∣
y=x

= ∇Ipc(x). (4.47)

So, JFC(x,pc) can alternatively be computed as:

JFC(x,pc) = ∇Ipc(x)
∂W(x,p)

∂p

∣∣∣∣
p=0

. (4.48)

This expression is very close to that of JIC(x) reported in Equation (4.19):

JIC(x) = ∇T (x)
∂W(x,p)

∂p

∣∣∣∣
p=0

. (4.49)

Moreover, comparing the formulas for the computation of δp for FC (Equation (4.14)):

δp = H(pc)
−1

∑
x

JFC(x,pc)
�(T (x)− Ipc(x)), (4.50)

and for IC (Equation (4.18)):

δp = H−1
∑
x

JIC(x)
�(Ipc(x)− T (x)), (4.51)

it is possible to see that at a given iteration, the computation of δp is performed exactly in the same

way in the 2 compositional algorithms, except that the roles of T (x) and Ipc(x) are switched. This

47

Chapter 4. Dense Methods for Image Alignment and their Application to 3D Tracking

does not mean that the computed values of δp are the same for the 2 algorithms, they only provide

equivalent warps, as shown in Appendix A.2.

In Appendix A.1 we report a simple example of rigid 2D warp for illustrating the differences

among the different methods at implementation level. In the next Section, we describe more in

detail a family of warps employable for 3D rigid pose estimation, as we will detail in Chapter 5.

4.6 A Warp for 3D Tracking

In this Section, we present the family of warps shown in Figure 4.6, that will be employed in the

3D tracking framework described in Chapter 5 to estimate the 3D pose of an image in a general,

non-planar scene by aligning it against a template with known pose.

We employ the perspective projection described in Chapter 2 for mapping a point X ∈ R3 in the

3D world reference system to its representation x ∈ R2 on a picture: x = P(X). In this context,

the template T is given by an image showing a 3D scene with a known pose pT . The parameters

p ∈ R6 of the warp shown in Figure 4.6 describe the pose of camera for another image I showing

the same 3D scene (the actual pose of I is given by pT + p, so that W(x,0) = x).

We assume that all the internal parameters of both images are known. So, the pose of the image

can be estimated applying the methods described above for aligning T and I through the warp of

Figure 4.6. In order to compute the warp, the 3D structure of the scene (e.g. a 3D model) must be

known.

The inverse warp is depicted in Figure 4.7.

The warp W(x,p) of Figure 4.6 is not continuous with respect to the first argument in regions

close to occluding contours, while, for a given pixel x, it is differentiable with respect to p, since

∂W(x,p)

∂p
=

∂P(X,p)

∂p
. (4.52)

The composition of warps is easily computable, but the warp is closed with respect to composition

only for planar scenes, not in a general case. Moreover, W is only piece-wise differentiable with

respect to the first argument, since its spatial derivative
∂W(x,p)

∂x is well-defined only for pixels far

from occluding contours and representing locally smooth surfaces of the scene.

Moreover, although the warp is mathematically well-defined for all the pixels of T , a pixel x on T

and its corresponding pixel W(x,pI) on I may not represent the same 3D point X = P−1(x,pT)

if X is not visible in both images; in these cases, the inverse warp does not exist, either.

At iteration c, it is possible to check what are the pixels for which W−1 is well defined, by

checking that W(W(x,pc),pc)
−1 = x, but in practical cases this is un-necessary. If the poses of

T and I are not too far, the direct and inverse warp are well defined for most part of the pixels, and

the influence of badly warped pixels is limited.

48

4.6. A Warp for 3D Tracking

(a)

(b)

(c)

Figure 4.5 – Schematic representation of dense image alignment algorithms. (a): FA algorithm.

(b): FC algorithm (c) IC algorithm.

49

Chapter 4. Dense Methods for Image Alignment and their Application to 3D Tracking

Figure 4.6 – 3D warp between a template T with pose pT , and an image I , with pose pT + p.

Figure 4.7 – Inverse warp for 3D tracking.

If the template and the image share the same internal calibration matrix then W(x,0) = x. The

generalization to the case of different internal calibration matrices is treated in Appendix B.

For the compositional algorithms, at each iteration an explicit estimate of the updated parameters

pc+1 is needed, that can not be analytically computed starting from the W(x,pc+1). In practical

cases, it is possible to compute the updated warp W(x,pc+1) with Equation (4.15) or (4.20) for

a subset of the pixels of the template; then, since W(x,pc+1) = P(X,pT + pc+1), an explicit

estimate of pc+1 can be computed from the 3D-2D correspondences X ↔ P(X,pT + pc+1)

using, for instance, a PnP algorithm.

When computing the updated warp for the IC algorithm with Equation (4.20), the following

simplification holds:

W(W−1(x, δp),pc)

=P(P−1(P(P−1(x,pT + δp),pT),pT),pT + pc)

=P(P−1(x,pT + δp),pT + pc).

The IA algorithm is not employable with W, since no decomposition of the form of Equation (4.28)

is easily computable.

50

4.7. Extensions and Related Methods

As for application of ESM algorithm, assumption of Equation (4.39) does not hold, we introduce

an error in the second order terms, and ESM just provides a first-order method, as shown in

Appendix A.4. Nonetheless, we experimentally observed that applying ESM to 3D tracking often

entails a benefice: this can be explained by the fact that it relies on an average of the gradients of

the template and the image in the jacobian matrix, so that the influence of noise in the images is

reduced.

4.7 Extensions and Related Methods

The methods presented above have been extensively investigated and employed for many appli-

cations; their performances have been enhanced by some recent extensions and related methods.

Although hundreds of variants exist, and an exhaustive overview would be out of the scope of this

thesis, we present here a short description of the most relevant work, referring the interested reader

to the references for further reading.

Learnt Descent Directions All the iterative methods described above compute the update of

the parameters of the warp with the formula:

δp = α H−1
∑
x

J(x)� (T (x)− I(W(x,pc))), (4.53)

where H =
∑

x(J(x)
� J(x)), and

α =

{
1 for forward algorithms (FA, FC, ESM)

−1 for inverse algorithms (IA, IC).

The expression of matrix J for each method is given in Table A.2. The update can be rewritten as:

δp = αD r(pc), (4.54)

where r(pc) is a N− dimensional column vector, whose component for pixel x is given by:

(T (x)− I(W(x,pc)), and D ∈ Rn×N is a descent matrix that can either depend on the current

parameters estimate pc, as in the FC algorithm, or be constant, for instance in the IC algorithm. In

other words, at each iteration the methods presented above solve a regression problem, establishing

a relationship between the appearance changes from the template to the image and the changes of

the underlying geometric warp.

If the relationship was linear, a single iteration would be sufficient to solve the problem in closed

form. Unfortunately, as observed above, even if the considered warp is linear, non-linearities arise

because of the presence of the functions T (·), I(·), whose gradients must be estimated by finite

differences approaches, and iterations become necessary.

Motivated by this observation, some recent works [36, 101, 102, 103] propose to directly learn

matrix D from data in an offline step, employing supervised learning techniques. [36, 101] propose

51

Chapter 4. Dense Methods for Image Alignment and their Application to 3D Tracking

to learn, respectively, a constant and a series of descent matrices using least squares optimization

on training data; these methods are usually very effective in reducing the number of iterations

required when the initial guess is close enough to the sought optimum, but tend to fail in presence

of local optima.

For alleviating this problem, [102] proposes to split the parameters domain around the optimum

into several domains of homogeneous descent, and learn a series of descent matrices for each

domain of homogeneous descent. At testing time, when the choice of the appropriate matrix can

not be made deterministically, heuristics can be employed, such as computing parameters updates

employing all the matrices and selecting the one that yields the lower residual.

In all these approaches, the information about the employed warp is implicitly taken into account

via the provided learning data. In many cases, this may be a sub-optimal strategy, since of the 2

elements contributing to matrix D, that is, the image gradients and the warp jacobians, only the

former are noisy and irregular, while the latter can usually be analytically computed. Therefore,

the recent [103] proposes an extension of the IC algorithm, where the jacobian of Equation (4.19)

is expressed as:

JIC(x) = γ(x)
∂W(x,p)

∂p

∣∣∣∣
p=0

. (4.55)

and the weights γ(x) are learned employing supervised learning.

Other methods, instead of learning a regression matrix in Equation 4.54, directly employ non-linear

regression models δp = R(r(pc)), where R(·) is a non-linear function: for instance, [48] employs

random forests, showing a remarkable improvements of performances with respect to [36] for

tracking of planar surfaces in presence of occlusions.

These learning-based algorithms are shown to achieve better performances for some applications

such as face alignment; their major drawback with respect to deterministic methods is the need of

an offline learning step, which may be impractical in some situations. More complex regression

model can yield to better results; on the other hand, they may involve cumbersome learning steps,

delicate parameters tuning, and increased computational complexity; the optimal selection of the

algorithm depends on the particular application.

Effective Objective Function All the methods presented above minimize a non-linear least

squares loss function of the form (4.4) consisting in a sum of squared residuals (Sum of Squared

Differences, or SSD). Some alternatives forms of loss function have been proposed, such as

Normalized Cross Correlation (NCC) [104] and Mutual Information (MI) [105, 106, 107, 108] .

In [109], extensions of ICA and ESM for NCC and MI are proposed.

According to our experience, the use of NCC does not entail significant improvements over the use

of SDD if images are normalized prior to alignment and if suited descriptors are employed instead

of the image intensity. While MI has been shown to be the function of choice for multi-modal

alignment, MI-based objective functions usually have very well-defined optima in correspondence

of the true parameters, also in presence of extreme image nuisances given by light changes,

52

4.7. Extensions and Related Methods

occlusions, etc.; unfortunately, the basin of attraction of these optima is extremely narrow and

image smoothing does not always enlarge it [110]; moreover, MI-based optimization is much more

computationally intensive than SSD.

Another well-established practice for enhancing robustness consists in employing Mahalanobis

distance or a learnt quadratic error function [111] instead of plain SSD. We experimented employing

Mahalanobis distance in the approach described in Chapter 4, but no systematic improvement over

SSD was obtained in our experimental results.

Employing robust estimators [112] is another common practice to reject outliers by penalizing

too large residuals. Unfortunately, robust estimators are far from being a panacea; in addition to

slowing down the convergence speed, in some case they may even harm the convergence. Consider

the case of tracking poorly textured surfaces, one of the applications of interest for dense image

alignment; given the current parameters estimate p, a huge difference between the intensities

I(W(x,p)) and T (x) could be due to different reasons: for instance, the image appearance may

be corrupted, for instance by occlusions, even though p is a good estimate; or maybe the current

estimate p is not accurate and needs further refinement. It’s clear that in the first case the residual

should be discarded, while in the second case it should be considered in the optimization, since it

would drive the convergence towards the sought optimum much better than the noisy, low residuals

corresponding to poorly textured regions. Robust estimators can not discriminate between these

opposite situations, so their success highly depend on the considered case.

In [110], we compared different objective functions and descriptors for an image registration task

in the domain of non-rigid shape tracking. A qualitative comparison for a 3D tracking task is given

in Section 5.3.4.

Robust Dense Descriptors Another prominent research direction consists in replacing the

image intensities with densely sampled descriptors [113]. The optimization problem of Equa-

tion (4.4) is then replaced by:

F (p) =
∑
x

∥∥∥d(I,W(x,p))− d(T,x)
∥∥∥2, (4.56)

where d(I,x) is a function that returns a descriptor for location x in a generic image I .

While computing descriptors originally conceived for keypoint-based approaches, such as SIFT [20]

or HOG [114], for densely sampled image locations is effective but intractable for real-time

applications, some dense descriptors are suited for real time image alignment, as the Distribution

Fields (DFs) [115], our Descriptor Fields [9], or a recent adaption of Bit-Planes proposed in [116].

Replacing the image intensities by other densely sampled descriptors is a good practice we

recommend for most cases when employing dense image alignment: even simple, easily computed

descriptors can entail a huge performance gain over image intensities at negligible implementation

and computational efforts. We will extensively discuss and compare the effectiveness of different

descriptors in Chapter 5.

53

Chapter 4. Dense Methods for Image Alignment and their Application to 3D Tracking

Weighted Sums of Pixels It is interesting to notice that, in the classical formulations of

iterative algorithms, the sum of Equation 4.4 is extended to all the pixels of the template, or to a

dense, uniformly sampled subset; of course, not all the pixels are equally informative, so more

appropriate choices exist.

In the so-called Extended Lucas-Kanade approach [117], the Lucas-Kanade algorithm is re-

interpreted in a probabilistic framework for a 2D tracking application. Motivated by the observation

that the template usually contains not only the tracking target, but also un-informative background

pixels, the optimization is performed in an Expectation-Maximization framework. First, given

a discriminative model of the target, obtained, for exampled, running a foreground/background

segmentation on the template and computing histogram distributions for the foreground and the

background, it is possible to compute a prior distribution for the pixels of the image to belong to

the target based exclusively on their appearance, thus obtaining a probability image Itarget; then,

where at each iteration 2 steps are performed:

• Given the current parameters estimate p, the joint probability distribution P (hT (x), hI(x))

is estimated, where

hT (x) =

{
1 if x ∈ target on T

0 if x ∈ background on T
hI(x) =

{
1 if W(x,p) ∈ target on I

0 if W(x,p) ∈ background on I

• Given the estimated joint probability of target/background segmentation, an equation similar

to Equation (4.5) is optimized, where the sum is weighted by P (hT (x) = 1, hI(x) = 1)

and 2 terms are added in order to maximize the likelihood of warped image pixels to belong

to the foreground, based on the pre-computed distribution Itarget.

In [110] we proposed an alternative approach for 3D tracking of non-rigid surfaces. There, a

so-called relevancy score ω̃(x) is computed for each pixel x for reducing the influence of occluded

and lowly informative regions, and the optimization of Equation (4.4) is replaced by:

pI = argmin
p

∑
x

ω̃(x)

(
I(W(x,p))− T (x)

)2

. (4.57)

More details about this approach are described in Section 5.4.

On the one hand, it is clear that giving different weights to the pixels can be beneficial for the

robustness of the tracking. On the other hand, finding the optimal weights and the optimal warp

parameters is a chicken-egg problem; moreover, estimating the weights further increases the

computational complexity of the method, so the right balance should be sought, between accurate,

slow estimations and fast heuristics according to the application and to the computational resources

available.

Taking Motion Blur into Account In [118] an extension of ESM is proposed, for more

robust tracking in presence of motion blur. Instead of minimizing the objective function (4.35), the

54

4.8. Conclusion

ESM-BLUR algorithms considers a generalized image formation model, taking into account the

shutter opening time. More in particular, the following equation is minimized:

FESM−BLUR(δp) =
∑
x

(1

Δt

∫
τ∈Δt

I(W(W(x, δp(τ)),pc))dτ − T (x)
)2

, (4.58)

whereΔt is the shutter opening time. By assuming a linear motion model for the parameters and

taking a second order development as done for Equation (4.36), the same parameters update as

Equation (4.44) is obtained, where JESM is replaced by the following:

JESM−BLUR(x,pc) =
JFC(x,pc) + a(Δt)JIC(x)

2
(4.59)

where a(Δt) ∈ [1/2, 1] is a coefficient depending on the shutter opening time. Moreover, if the

latter is unknown, it can be added to the warp parameters and estimated for each incoming frame.

We refer the interested reader to [118] for further details.

4.8 Conclusion

In this chapter we presented a survey of the most common dense image alignment methods, and

described how they can be employed for 3D tracking. In the next chapter we will introduce the

Descriptor Fields, a dense descriptor proposed in [9], that can be employed instead of the image

intensities in the optimization in a robust 3D tracking framework, effective even in presence of

occlusions complex illumination artifacts.

55

Descriptor Fields for 3D Tracking

As described in Chapter 1, despite a long history of research in 3D tracking, it is still very

challenging to reliably register poorly textured, specular objects, and this represents a clear obstacle

to the development of Robotics and Augmented Reality applications in industrial environments,

where such objects can typically be found.

In this regard, the dense image alignment techniques introduced in Chapter 4 provide an attractive

framework,since they globally exploit most of the image information, even when local image

features such as interest points or edges are ambiguous.

However, current approaches typically rely on image intensities, which is prone to fail in presence

of non-Lambertian effects such as specularities, or when the objects do not exhibit convenient

textures. Moreover, a multi-scale approach is usually required for robust alignment, where low-pass

filters are applied to the signals to align. When employing image intensities, or a linear combination

of them, low-pass filtering rapidly deteriorates information.

In this chapter, we introduce a more robust local descriptor in place of the pixel intensities, that we

refer to as “Descriptor Fields”, that can be profitably employed in a 3D tracking framework.

As shown in Figure 5.1, our descriptor allows us to handle challenging imaging artifacts such as a

strong lamp light moving in a highly specular, poorly textured environment. Our descriptors are

computed from a small set of convolutional filters applied to the images, which makes it suitable

for real-time applications. However, instead of relying on the simple linear transformation of

the intensity signal issued by the convolutions, we apply a non-linear operation that separates

the descriptors’ positive values from the negative ones. Our experimental results show that this

operation is crucial for obtaining the best tracking performances.

This can be explained by the fact that, thanks to our non-linear operation, our Descriptor Fields

remain discriminant even after low-pass filtering. As a result, large Gaussian kernels can be used

to significantly broaden the region of convergence of the alignment optimization algorithms, which

is an important factor for robustness.

As a result, Descriptor Fields sensibly enhance performances of global image alignment for 3D

57

Chapter 5. Descriptor Fields for 3D Tracking

(a) (b) (c) (d)

Figure 5.1 – Given a partial 3D model of the environment such as the one shown in (a), we register

the input images by aligning them with one reference view of the environment (b). The virtual

teapot and the green virtual box correctly overlaid in the input image show that our approach

registered image (d) correctly, despite the strong lamp changing the illumination and partially

occluding the scene. By contrast, aligning the images based on the pixel intensities completely

fails, as shown in (c).

tracking, as shown in Section 5.3, in presence of heavy light changes, occlusions and other local

image artifacts; in Chapter 6 we will introduce a complementary approach, for tracking objects

undergoing extreme occlusions in cluttered environments, for which employing a global approach

may be problematic.

The matter covered in this chapter was originally published in [9], demonstrated at ISMAR [119]

and applied to deformable surfaces tracking in [110].

5.1 3D Tracking via Dense Image Alignment

Our camera registration framework relies on the dense image alignment techniques presented in

Chapter 4. In order to enhance convergence, we adopt a multi-scale scheme where optimization is

run at coarser scales first, and then refined at finer scales.

5.1.1 Optimization Framework

We assume that we have a partial 3D model of the scene such as the one shown in Figure 5.1(a),

and a small set of registered images T = {Ti} of this scene that we refer to as templates. 1 Given

an input image I , we estimate the camera pose p̂ for this image by aligning I with one of the

templates T . Information about 3D geometry could as well be available in the form of RGB-D

templates, or textured 3D models.

In the remainder of this chapter, we will consider a single template T . Depending on the application,

different strategies may be suitable for finding an appropriate T given I: for example, one could

select the template that maximizes the normalized cross-correlation with I , as in [85]; in [119] we

implemented a real-time tracking approach for planar surfaces based on the warping of a single

template, as described in Section 5.4. Alternatively, information about the previously registered

1We use the semi-automatic ImageModeler software to quickly register the templates in T and simultaneously obtain

the 3D model.

58

5.1. 3D Tracking via Dense Image Alignment

image can be exploited for effective selection of the best template. Finally, when allowed by

computational requirements, the optimization can also be performed employing different templates,

retaining the one that yields to the smallest residuals.

Alignment is done based on the iterative image alignment framework introduced in Chapter 4 and

the warp introduced in Section 4.6. This function backprojects image location x on the scene 3D

model using pT , the pose for template T , to find its corresponding 3D location, and returns the 2D

projection of this 3D location under pose p+ pT .

The pose parameters p̂ that transfer the image locations in T to locations in I are estimated by

minimizing the objective function introduced in Equation (4.56):

F (p) =
∑
x

∥∥∥d(I,W(x,p))− d(T,x)
∥∥∥2, (5.1)

where d(J,x) is a function that returns a descriptor for location x in a generic image J ; the final

estimate is taken as:

p̂ = argmin
p

F (p). (5.2)

The descriptor d(J,x) can be either a scalar, as considered in Chapter 4, or a multi-valued vector.

The implementation of the iterative minimization of Equation (5.1) for multi-valued descriptors is

explained in Appendix A.5.

In previous dense alignment works, d(I,x) is almost always taken to be I(x), the intensity in

image I at location x. The Distribution Fields method [115] considers a function that returns

a vector where all values are 0 but one, and which depends on the interval I(x) belongs to.

In Section 5.2 we will introduce an alternative dense descriptor for improved performances in

presence of complex illumination changes.

The minimization problem of Equation 5.2 can be solved with any of the iterative methods presented

in Chapter 4, such as the Lucas-Kanade (LK) algorithm [34, 7], the Inverse Compositional

Algorithm (ICA) [7], and the Efficient Second Order Method (ESM) [8].

5.1.2 Multi-scale Optimization

In practice, a multi-scale approach is used to optimize Equation (5.1) by considering the intermedi-

ate objective function:

F (p;σ) =
∑
x

‖Dσ(I,W (x,p))−Dσ(T,x)‖2, (5.3)

where, for a generic image J , Dσ(J,x) is a low-pass version of d(J,x):

Dσ(J,x) = Gσ ∗ d(J,x) (5.4)

59

Chapter 5. Descriptor Fields for 3D Tracking

with Gσ a Gaussian kernel of standard deviation σ. The optimization scheme starts with a large

value for σ, optimizes F (p;σ) to obtain a first estimate p̂ of the actual pose, decreases σ, optimizes

F (p;σ) again starting from p̂, and iterates for a fixed number of iterations.

This multi-scale optimization scheme is important in practice as low-pass filtering increases the

basin of convergence of Equation (5.3), but at the same time it degrades the localization of the

minimum of the original function in Equation (5.1). In our implementation, the optimization is

initialized with the camera pose for the template T . We use 4 scales, with σ initialized to a fixed

parameter σmax for the coarsest scale, and divided by 2 between each scale level.

The next section discusses how we compute the d function to improve the convergence when the

images exhibit challenging artifacts.

5.2 Descriptor Fields

As mentioned in the previous section, a very common choice for the function d(I,x), which

appears in Equation (5.1) and on which image alignment is based, is simply

d(I,x) = I(x), (5.5)

that is, the pixel intensity in image I at location x. However, this option is very sensitive to

complex light changes, especially in the absence of texture, as our evaluations presented in the

next section will show.

To improve robustness, [115] proposed to use instead a vector of the form:

d(I,x) = [φI0≤I(x)<I1 , φI1≤I(x)<I2 , . . . , φIK−1≤I(x)<IK]
� (5.6)

where

φb =

{
1 if b is true,

0 otherwise,
(5.7)

for a fixed number of quantization bins K. Thanks to this “explosion” of the image intensities,

large Gaussian kernels can be applied as in Equation (5.4) in a multiscale approach to broaden

the basin of attraction of the objective function, without blending the intensities together and

loosing the image information. Unfortunately, this approach can only handle moderate changes in

illumination, and failed on our test sequences.

While they have never been used for direct image alignment —to the best of our knowledge— it

seems interesting to use “local jets” for the d function [120, 121, 122, 123]. Local jets are vectors

often used as local descriptors and efficiently computed by convolving an image with a series of

filters:

d(I,x) = [(f1 ∗ I)(x), . . . , (fK ∗ I)(x)]�, (5.8)

60

5.2. Descriptor Fields

where the fi filters are typically Gaussian derivatives kernels. As shown in Figure 5.3, local jets

sensibly enhance performances in presence of illumination artifacts; but they do not prevent the

low-pass filtering process to degrade the signal information. In order to preserve information under

large smoothing, we considered the following sparsifying function, which is at the core of our

Descriptor Fields:

d(I,x) =
[
[(f1 ∗ I)(x)]+, [(f1 ∗ I)(x)]−, . . . , [(fK ∗ I)(x)]+, [(fK ∗ I)(x)]−

]�
, (5.9)

where the [·]+ and [·]− operations respectively keep the positive and negative values of a signal:

[x]+ =

{
x, if x ≥ 0

0, otherwise
, and [x]− = [−x]+. (5.10)

The descriptor given by Equation (5.9) is a sparsified version of the one of Equation (5.8), since it

has twice as many components, but half of its components for each pixel are zero. These operations

are simple but fundamental, and we found the last descriptor given by Equation (5.9) to be much

more effective than the first version of Equation (5.8), as exemplified in Figure 5.4: when strong

Gaussian smoothing is applied by the multiscale optimization described in Section 5.1, the intensity

signal flattens making it difficult to align across two images. The same phenomenon happens to

the local jet of Equation (5.8), where positive and negative values eliminate each other during the

low-pass filtering by a Gaussian kernel. By contrast, the descriptor of Equation (5.9) is much more

resilient, and stays discriminant after strong Gaussian smoothing. This yields an objective function

with a large basin of attraction and a well localized minimum, which is key for robustness of the

alignment.

In the next section, we illustrate more in detail the joint effect of smoothing and the non-linear

operation of Equation (5.10) for signal alignment on a 1D toy example; in Section 5.3 we report

extensive quantitative results on real images.

5.2.1 A 1D Example

In this section we illustrate a simplified example of how the alignment of 2 1D signals benefits from

the joint action of signal smoothing and the non-linear, sparsifying function of Equation (5.10).

Consider a 1D signal y1(x) and its noisy translated version y2(x) = y1(x+ p) + χ(x) depicted in

Figure 5.2 (a), where χ(x) is a white noise of standard deviation 0.025; samples of both signals

at regular intervals are stored in the column vectors y1 and y2. It is possible to retrieve the true

value of the translation parameter p applying a Gauss-Newton iterative scheme, equivalent to the

Lucas-Kanade algorithm described in Section 4.3.1. After setting an initial guess p0 = 0, at each

iteration c we update our guess as pc = pc−1 + δp, with :

δp = (J�
FAJFA)

−1
(
J�
FA(y2 − ypc

1)
)

(5.11)

61

Chapter 5. Descriptor Fields for 3D Tracking

(a) (b) (c)

Figure 5.2 – Applying Gauss-Newton descent algorithm for retrieving the translation of a 1D

signal. (a) a mono-dimensional signal y1(x) (red) and its noisy sampled translation y2(x) (green).

(b) Gauss-Newton optimization with 100 iterations. Intermediate estimates of the translated signal

are shown in blue, with darker nuances as the number of iterations increases. The optimization

converges to the true value. (c) If the initial guess p0 is too far from the true value of p, the

optimization converges to a local optimum.

where the components of the column vector ypc
1 are given by y1(x+ pc) and JFA is the column

vector containing the derivative of ypc
1 , obtained with finite differences.

The optimization will converge to the sought optimum p if p− p0 is small enough, otherwise it will

converge to a local optimum, or simply diverge, as shown respectively in Figure 5.2, (b) and (c).

For retrieving large displacements, a common strategy is to smooth the signals, as described for

images in Section 5.1.2 and as shown in Figure 5.3 (a),(b). Smoothing is beneficial for enlarging

the basin of attraction of the algorithm, but its averaging effect also corrrupts useful information.

Applying the non-linear, sparsifying function (5.9) to the signals before smoothing prevents

information destruction, leading to much faster convergence, as shown in Figure 5.3 (c). Moreover,

it is possible to apply larger smoothing and thus further enlarge the basin of convergence.

The 1D problem described in this section is a simplified example, but very analogous phenomena

are observed when dealing with real images, as explained in the next section. In Section 5.3 we

evaluate different descriptors obtained by several combinations of local jets and the non-linear

function of Equation (5.9), together with different optimization algorithms, on several challenging

video sequences.

5.2.2 An Example with Real Images

In Figure 5.4 we show the values of different d functions computed for images of a specular 3D

scene, and the values of the corresponding objective functions for a translation warp (see Eqs. (5.1)

and (5.3)). The values of different descriptors d have been sampled on 200 equi-spaced points

along the reprojections of a 3D line lying on the background in the 2 images shown in Figure 5.4

(a), (b). In the third column we show the resulting objective function for a 1D translation warp.

The expected location for the global minimum is marked with a red dot.

62

5.3. Experimental Results

(a) (b) (c)

Figure 5.3 – Applying Gauss-Newton descent algorithm for retrieving large displacements between

2 noisy sampled signals y1(x) and y2(x). The true displacement is p = 45, while p0 = 0. (a)

The retrieval is impossible for the raw signals, the optimization gets stuck from the first iteration.

(b) The optimization applied to signals smoothed with a 1D gaussian filter of standard deviation

σ = 20 converges in about 50 iterations: the smoothing enlarged the basin of attraction of the

algorithm. (c) The optimization applied to our Descriptor Fields smoothed with the same 1D

gaussian filter converges in less than 10 iterations: not only the optimization is faster, but also the

basin of attraction is further enlarged by applying the non-linear function (5.9)

.

Employing the raw intensity signals (c), (d), (e), the objective function exhibits local minima at

wrong locations. Low-pass filtering the intensities (f), (g), has the effect of erasing the local minima

from the objective function (h), but there is no minimum at the expected location, either. The

descriptor obtained convolving the intensity signals with the first derivative of a Gaussian kernel

(i), (j) is much more resilient to the local illumination artifacts, so that objective function computed

with local jets (k) has a minimum at the expected place; on the other hand, it also exhibits many

local minima. Low-pass filtering local jets (l), (m) makes the corresponding objective function

(n) smoother, but the global minimum is displaced at the wrong location, and a local minimum

appears. Finally, applying the non-linear [.]+ operation to the local jets as shown in (o), (p), and

smoothing them (r), (s) better preserves information, leading to the objective function (t), which is

much better suited for numerical optimization.

5.3 Experimental Results

In this section, we first describe the datasets we used to evaluate our approach and the evaluation

framework, and then present and discuss the results of the evaluation.

5.3.1 Datasets

We introduce a new dataset for the evaluation of 3D tracking algorithms on the challenging

environments we consider; the dataset shows two different environments:

63

Chapter 5. Descriptor Fields for 3D Tracking

• Experimental Setup Dataset: Figure 5.1 illustrates the first environment. It is made from an

experimental setup, where the background is covered with aluminum foil, and the foreground

is made of non-textured boxes. A lamp is moved freely in the scene. Since the aluminum

foil is very reflective, the images contain many specularities that move with the lamp. Also,

the lamp occasionally occludes the scene. We used only one template and the 3D model

made of 168 triangles shown in Figure 5.1 (a)-(b). We captured two video sequences. The

first one is made of 394 frames, the camera remains still, and the lamp is moved around. The

second video is made of 365 frames, and both the camera and the light source move.

• ATLAS Dataset: Figure 5.5 shows images from this second dataset. This dataset was

captured in the LHC particle detector of ATLAS experiment at CERN. We captured a first

video made of 209 frames with a fixed camera and a strong moving light source. The

second video is longer, with 683 frames, and is much more challenging. The camera moves

sometimes very fast, which results in motion blur. The light source generates very bright

specularities in an extremely dark environment. This mimics the conditions of images

captured by a camera mounted on the helmet of a worker in the ATLAS particle detector

at CERN. We used the very simple 3D model showed in Figure 5.5 (a) made of only 12

triangles, and 24 templates.

Moreover, in order to give an example of how our approach behaves in a Lambertian environment,

we report the results of the tests performed on a video sequence of 414 frames showing the popular

STOP sign of the METAIO Dataset [124] printed on a sheet of paper, with limited motion blur

and stable illumination conditions. For this sequence we employed the same workflow described

above, retrieving the full 3D pose with a 3D model (made of 2 triangles) and 11 templates.

We tested PTAM, the state-of-the-art SLAM method of [85], on the two specular scenes. After

several attempts, we managed to initialize the 3D tracking under ambient light; however, tracking

was lost as soon as a lamp was switched on. 2 This attests the difficulty of our datasets, and shows

that a feature point-based approach, such as PTAM, is not adapted.

To obtain the ground truth camera poses for our datasets, we had to register the images by

manually matching 3D points on the scene models with their 2D reprojections in the images,

and use these correspondences to estimate the camera poses with a PnP algorithm [125]. Our

testing datasets, as well as some supplementary material, are available on the project page at

http://cvlab.epfl.ch/research.

5.3.2 Evaluation Framework

We evaluated different possibilities for the d function in Equation (5.1) including the ones discussed

in Section 5.2. In the following, we will refer to them as:

• Intensity: the simple case when d(I,x) = I(x);

2The reported results are also shown on the spotlight video of [9], available at https://www.youtube.com/watch?v=

yw5hoImVuf8

64

5.3. Experimental Results

• Magnitude of image gradient: in this case, d is taken as d(I,x) =
√

(Gx ∗ I)(x)2 + (Gy ∗ I)(x)2,

the magnitude of the image gradient at location x. Like our descriptors, it is a non-linear

function of the image intensities;

• 1st-order local jet: the simple local jet d(I,x) = [(Gx ∗ I)(x), (Gy ∗ I)(x)]� as given in

Equation (5.8), where Gx and Gy are the first derivatives of the Gaussian kernel of standard

deviation 1.0;

• 1st- and 2nd-order local jet: the simple local jet as given in Equation (5.8), with f1 = Gx,

f2 = Gy, f3 = Gxx, f4 = Gxy, f5 = Gyy, the first and second derivatives of the Gaussian

kernel of standard deviation 1.0.

• 1st-order Descriptor Fields: in this case, d returns our descriptor as given in Equation (5.9),

with f1 = Gx and f2 = Gy, the first derivatives of the Gaussian kernel of standard deviation

1.0;

• 1st- and 2nd-order Descriptor Fields: in this case, d returns our descriptor as given in

Equation (5.9), with f1 = Gx, f2 = Gy, f3 = Gxx, f4 = Gxy, f5 = Gyy, the first and second

derivatives of the Gaussian kernel of standard deviation 1.0.

In all our experiments, the Distribution Fields method [115], as summarized in Equation (5.6),

performed badly whatever the values for n: it successfully registered no more than 10% of the

frames. This is due to the fact that local specularities heavily alter the distribution of pixels in the

bins of intensity histograms, so that Distribution Fields are totally unsuitable in presence of strong

local light changes, even if image intensities are normalized before computing the descriptors.

Before computing all the mentioned descriptors we first normalized the image intensities by sub-

tracting their mean and dividing them by their standard deviation, as it improved the performances

of all the methods.

Each of these descriptors was tested together with the Forward Additive (FA) algorithm described

in Section 4.3.1, the Inverse Compositional Algorithm (IC) described in Section 4.3.3, and the

Efficient Second Order Method (ESM) presented in Section 4.4. We optimized the parameters of

each method to obtain the best performances.

5.3.3 Evaluation

Table 5.1 summarizes the results of our experiments. We report the percentage of frames that were

correctly registered, together with the average number of iterations required for convergence. To

decide if a frame was correctly registered or not, we compute a rotation error Rerr and a translation

error terr. The rotation error is taken as the distance between the exponential maps for the estimated

pose and for the ground truth, and the translation error as the distance between the camera centers

for these two poses. If at least one of these errors is larger than a threshold, then we consider that

the frame is not correctly registered. We use εrot = 0.07 for the threshold on the rotation error, and

εtransl = 0.05 for the threshold on the translation error. As shown in Figure 5.6, the values of these

65

Chapter 5. Descriptor Fields for 3D Tracking

Descriptor
Optimization Lambertian Exp. Setup Exp. Setup ATLAS ATLAS

Method Env. Video Video #1 Video #2 Video #1 Video #2

FA 88.7 (16.2) 25.6 (48.7) 10.7 (76.5) 40.7 (70.3) 21.7 (44.6)

Intensity IC 16.0 (17.1) 42.1 (72.9) 22.2 (49.2) 88.6 (117.7) 19.3 (32.6)

ESM 72.7 (43.9) 34.7 (46.8) 21.9 (46.2) 36.8 (62.1) 22.5 (40.8)

Magnitude of FA 84.2 (22.) 52.0 (55.6) 81.0 (55.1) 99.5 (45.3) 33.6 (44.1)

image gradient IC 18.4 (16.7) 83.9 (71.9) 73.9 (45.4) 96.6 (27.2) 29.5 (31.7)

ESM 67.8 (31.3) 90.8 (30.5) 92.0 (43.1) 89.9 (33.3) 19.7 (28.4)

FA 85.2 (29.1) 75.6 (39.0) 52.3 (37.5) 100 (73.6) 31.5 (32.6)

1st-order local jet IC 28.3 (23.5) 73.0 (33.5) 50.1 (41.7) 100 (50.5) 23.4 (34.2)

ESM 78.3 (35.0) 75.6 (27.8) 49.5 (25.8) 100 (67.7) 24.7 (35.8)

1st- and 2nd-order FA 91.2 (27.4) 67.8 (49.0) 46.8 (45.4) 100 (36.1) 31.5 (31.3)

local jet IC 57.7 (20.5) 71.0 (40.7) 46.3 (63.6) 98.5 (37.7) 22.9 (27.7)

ESM 84.9 (26.0) 74.4 (34.2) 50.7 (33.6) 100 (27.9) 24.0 (21.3)

1st-order FA 89.3 (25.4) 85.0 (49.0) 87.9 (86.5) 100 (47.6) 39.4 (33.8)

Descriptor Fields IC 37.0 (22.4) 91.4 (51.7) 82.2 (66.3) 100 (29.9) 32.5 (27.4)

ESM 77.0 (38.6) 98.4 (30.4) 97.5 (36.9) 100 (51.3) 32.6 (21.3)

1st- and 2nd-order FA 93.3 (35.9) 76.1 (63.3) 89.3 (69.9) 100 (24.4) 39.0 (30.7)

Descriptor Fields IC 61.9 (23.6) 82.7 (47.2) 85.2 (62.3) 100 (22.7) 32.5 (24.7)

ESM 87.5 (33.9) 92.8 (42.4) 97.8 (39.4) 100 (19.0) 33.4 (18.5)

Table 5.1 – Experimental results. We give the percentages of correctly calibrated frames and the

average number of iterations in parentheses for each descriptor, each video sequence, and each

optimization method we considered. The best results for each video and each optimization methods

are in bold. Our Descriptor Fields consistently outperform the other descriptors.

66

5.3. Experimental Results

thresholds are not critical: when a frame is not correctly registered, the rotation and translation

errors tend to be very large.

As can be seen in the table, the results with our Descriptors Fields are consistently better than the

other approaches, for all the videos and the optimization methods.

In all the specular video sequences, our descriptor with first-order Gaussian derivatives outperforms

all other approaches based on first-order derivatives. Using both first- and second-order derivatives

can further improve performances at a higher computational cost.

Figures 5.7 and 5.8 show some images from our datasets augmented with virtual objects using

the poses estimated with our first-order Descriptor Fields. The virtual objects are consistently

integrated in the images, which assesses that the camera poses were correctly estimated.

An interesting question arising from the experimental results is, which alignment algorithm should

be chosen. As described in Section 4.5, the theoretical advantaged of some methods are only valid

when some regularity assumptions about the warps hold, but it is not the case here. Moreover, in our

case the computational cost of each iteration of the Inverse Compositional algorithm is comparable

to that of the other methods because inversion and composition of the warp of Figure 4.6 are

computationally expensive. We observed that IC algorithm performs better in the model video

sequences, where the template is made by a picture taken in a controlled environment, with good

lighting conditions and no motion blur; on the other hand, FA optimization performs better on the

ATLAS video sequences, where key-frames were extracted from videos and are noisy and blurred.

If it is not possible to know in advance whether the templates or the images will be more noisy,

then ESM is probably the most reliable choice, even for warps that violate assumption (4.39), since

it averages the image and template gradients. Otherwise, relying on the gradients of the less noisy

frames (those of the template for IC or those of the incoming frames for FA) would be a suitable

choice.

5.3.4 Evaluation of the Distance Function

As shown in Table 5.1, our Descriptor Fields consistently improve the performances of dense

descriptors across several optimization methods. We performed a further experiment in order

to verify that their efficacy does not rely on the choice of a particular distance function 3 in the

optimization functions (5.1) and (5.3). For the 2 images shown in the first line of Figure 5.4, we

computed the values of the objective functions:

F (p) = ρ
(
Idp,T

d
)
, F (p;σ) = ρ

(
IDσ
p ,TDσ

)
, (5.12)

where ρ is a distance function and, given a set of pixel locations x, Td and Idp are the column

vectors whose components are given, respectively, by d(T,x) and d(I,W(x,p)); similarly, the

components of the vectors TDσ and IDσ
p are given, by the smoothed descriptors Dσ(T,x) and

3Mathematically speaking, the term “distance function”could be applied only to SDD, which is a metric, while NCC

and MI are just “distance scores”. We employ this slight abuse of terminology since it does not lead to confusion.

67

Chapter 5. Descriptor Fields for 3D Tracking

Dσ(I,W(x,p)); we evaluated the following distance metrics:

• SSD: The Sum of Squared Differences is the distance metric employed for all the tests

reported in Table 5.1; it is widely employed thanks to its simplicity and efficiency of

evaluation. For 2 generic column vectors L = [L1, . . . , LN], and M = [M1, . . . ,MN], a it

is defined as:

SSD : ρ(L,M) =
(
L−M

)�(
L−M

)
. (5.13)

• NCC: The Normalized Cross Correlation between two column vectors L, M ∈ RN is

computed as:

NCC : ρ(L,M) =
(L− L̄)�(M− M̄)√

(L− L̄)�(L− L̄)
√
(M− M̄)�(M− M̄)

, (5.14)

where L̄ and M̄ are column vectors whose components are all equal to, respectively, L̄ =

1/N
∑

i Li and M̄ = 1/N
∑

iMi. NCC is always comprised between -1 and 1; with respect

to SSD, it is invariant to affine changes in intensity values, but it is slower to compute.

• MI: For computing the Mutual Information score, the components of the vectors L and M

are interpreted as sets of samples of two discrete random variables L and M , with probability

distributions pL and pM . Then, their Mutual Information [126] is defined as:

MI(L,M) =
∑
l,m

pLM (l,m) log

(
pLM (l,m)

pL(l)pM (m)

)
, (5.15)

where the sum is extended over all the possible values l,m taken by, respectively, L and

M , and pLM (l,m) = p(L = l ∩M = m) is the joint probability distribution of L and M .

Practically, the probability distributions are replaced by normalized frequency histograms

of the values of L and M: after fixing 2 sets of equally spaced bin centers l1, . . . , lNL
and

m1, . . . ,mNM
, with NL, NM << N (we employed NL = NM = 9 in all our experiments),

the probability distributions are estimated as:

pL(li) =
1

N

N∑
k=1

φδl(li − Lk)

pM (mj) =
1

N

N∑
k=1

φδm(mj −Mk)

pLM (li,mj) =
1

N

N∑
k=1

φδl(li − Lk)φδm(mj −Mk),

where φδ is the indicator function:

φδ(x) =

{
1 if |x| < δ

o otherwise,

68

5.3. Experimental Results

and δl = (l2− l1)/2, δm = (m2−m1)/2. When employing MI in iterative alignment, other

functions φ may be employed, such as Gaussians or B-Splines [127, 105], that implement

histogram soft assignment and make MI differentiable. MI is considered as very resilient

to illumination changes and is also the choice of reference for multi-modal alignment;

unfortunately, building the histograms is computationally very expensive, so that existing

approaches for MI-based 3D tracking [106, 128] are not suited for real-time applications.

We computed the value of the objective functions of Equation (5.12) for different values of p around

the ground-truth value, varying 2 of the translation parameters in the range [−10 cm, 10 cm], for 3

different descriptors, respectively image intensity, first-order local jets and first order Descriptors

Fields. For the smoothed descriptors, we employed a Gaussian filter with σ = 20 for all the metrics

and all the descriptors; results are shown in Figure 5.10.

Some interesting observations arise from the graphs. First, MI appears to be much more discrimina-

tive than the other metrics when close to the global optimum, while, unsurprisingly, NCC and SSD

behave in a qualitatively similar way. Unfortunately, MI is also much more expensive to compute,

and it is not suitable for real-time 3D tracking. Real-time is achieved in [105] for planar targets

tracking, coupled with an efficient inverse compositional optimization scheme that allows the

image histograms to be evaluated only once at the beginning of the optimization, while in [128]

a running time of about 4s per frame is reported for an application similar to ours (model-based

3D tracking). The effects of the Descriptor Fields are analogous for all the considered distance

functions: given a distance function,

• the global optimum is much better defined for Descriptor Fields than for other descriptors;

• smoothing the descriptors does effectively enlarge the basin of attraction of the sought

optimum, without degrading its original position.

5.3.5 Rotation Invariance

While extremely resilient with respect to illumination and translation changes, the Descriptor

Fields are not invariant with respect to in-plane rotation changes, as opposed, for example, to

the image intensity or to the magnitude of the image gradients. Nonetheless, depending on the

application, several solutions can be adopted in order to enhance the descriptor invariance.

For instance, in [119] we implemented a demo for real-time tracking of planar surfaces based

on dense image alignment and Descriptor Fields, as described in Section 5.4. There, a sequence

of video frames I0, I1, . . . , It, . . . are tracked against the first frame of the sequence, which is

employed as template. After estimating the parameters pt for frame It, we warp the template

with pt, then we align the next frame It+1 to the warped template Tt, estimating an incremental

warp pt→t+1 and we finally obtain the current parameters estimate through the compositional

update W(·,pt+1) = W(W(·,pt),pt→t+1). Notice that this tracking scheme guarantees that

the iterative alignment is performed between images with similar warps; at the same time, the

69

Chapter 5. Descriptor Fields for 3D Tracking

tracking is drift-free, since inaccuracies in the estimation of pt are compensated in the estimation

of pt→t+1.

In [110], we adopted a similar approach for tracking 3D deformable surfaces in the form of

triangular meshes: there, in order to compare pixel descriptors in the same, unrotated coordinate

system, the warp estimated for each frame is used to establish a local coordinate system for

each mesh facet; then, the template partial derivatives within each projected facet are rotated

according to the local coordinate system before computing the Descriptor Fields and aligning the

next incoming frame.

5.4 Applications and Further Developments

Since their original description in [9], we employed Descriptor Fields for several 3D tracking

applications, further validating their employability for several related purposes.

In [119], we implemented a demo for real-time 3D tracking of planar surfaces. A screenshot

is shown in Figure 5.9-(a). Based on the user’s keystroke, a template T is captured in a central

rectangular region of the screen and tracked along the successive frames acquired by a webcam;

the user can switch among several dense descriptors such as intensities, gradient magnitudes and

Descriptor Fields for a quick qualitative evaluation of the performances of each descriptor for

different kinds of surfaces. The code is publicly available4.

Figure 5.9-(b) shows an application for face tracking: a rigid 3D model of a human face is

deformed and superposed to the user’s face on monocular images captured by a webcam in real

time; the initial pose is computed by detecting facial landmarks, and refined using IC algorithm

and Descriptor Fields [129].

We implemented an application to 3D tracking of non-rigid surfaces in [110]. A dense alignment

pipeline is employed for tracking poorly textured deformable surfaces; a surface is modeled as a

3D triangular mesh and the mesh deformation is reconstructed based on dense iterative alignment

of monocular images. For this application, the optimization is sensibly more complex than for

rigid object tracking: the problem unknowns are no longer given by the 6 degrees of freedom

of the 3D pose of a rigid object, as for the rigid object tracking, but by the 3D coordinates of

some tens (or hundreds) of mesh vertices. Moreover, monocular 3D surface reconstruction is an

under-constrained problem, since different 3D shapes may have the same reprojection on the image

plane: additional constraints must be added to the minimization problem of Equation (5.1), such

as isometric deformation constraints, enforcing that the surface should not stretch or shrink, and

a regularization term that penalizes non-rigid deformations too fare from the template shape. In

this way, the optimization is well posed and any of the methods described in Chapter 4 can be

employed.

Another improvement proposed in [110] for enhancing robustness to occlusions and poorly textured

regions is to compute a so-called relevancy score ω̃(x) for each pixel x and employ the score as a

4https://github.com/albertoCrive/homographyTrackingDemo

70

5.5. Conclusion

weight for each term in the sum of Equation (5.1):

pI = argmin
p

∑
x

ω̃(x)

(
I(W(x,p))− T (x)

)2

. (5.16)

The relevancy score for pixel x is computed as:

ω(x) = max
δ

NCC
(
QT (x), QI(W(x, p̃) + δ)

)
, (5.17)

where p̃ is the best parameters estimate available, for instance the parameters estimated for the

previous tracked frame in a video sequence, NCC is the normalized cross-correlation introduced

in Equation (5.14), QT (·), QI(·) are small patches extracted around a pixel on image T and I ,

and δ = [δx, δy]
T is a pixel offset varying in a suited range (in [110] patches of size 26× 26 are

extracted, and δx, δy vary over a range of [−30, 30] pixels). Normalized weights ω̃(x) are obtained,

by rescaling the scores to lie in [0, 1] and clamping the values of the weights too far from the

average score for limiting the influence of outliers. This approach is shown to be effective for

reducing at once the influence of occluded and un-textured regions; on the other hand, it sensibly

increases the computational complexity of the optimization, so that it is not suited for real-time

applications.

5.5 Conclusion

In this chapter, we presented a local descriptor that makes dense alignment methods such as the

ones presented in Chapter 4 much more robust to various imaging artefacts. Descriptor Fields are

efficient and very simple to implement, so that it is very easy to integrate them into existing image

alignment algorithms, to improve their robustness. On the other hand, while our global approach

enhances robustness with respect to local image artifacts, its application may be problematic when

tracking small objects undergoing extreme occlusions. The approach presented in Chapter 6 aims

at resolving these issues employing a part-based approach. The two approaches are meant to be

complementary, the choice of the most suited method depending on the target application.

71

Chapter 5. Descriptor Fields for 3D Tracking

d Function First Frame Second Frame Objective Function

(a) (b)

I(x) [image intensities]

0 50 100 150 200 250
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 50 100 150 200 250
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−50 −40 −30 −20 −10 0 10 20 30 40 50
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

δx

(c) (d) (e)

(Gσ ∗ I)(x)
0 50 100 150 200 250

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 50 100 150 200 250

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

−50 −40 −30 −20 −10 0 10 20 30 40 50
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

δx

(f) (g) (h)

(Gy ∗ I)(x) [local jet]

0 50 100 150 200 250
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0 50 100 150 200 250
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

−50 −40 −30 −20 −10 0 10 20 30 40 50
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

δx

(i) (j) (k)

(
Gσ ∗ (Gy ∗ I)

)
(x)

0 50 100 150 200 250
−1

0

1

2

3

4

5

6

7

8
x 10−3

0 50 100 150 200 250
−6

−4

−2

0

2

4

6
x 10−3

−50 −40 −30 −20 −10 0 10 20 30 40 50
2

2.5

3

3.5

4

4.5

5

5.5
x 10−3

δx

(l) (m) (n)

[
(Gy ∗ I)

]+
(x)

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

−50 −40 −30 −20 −10 0 10 20 30 40 50
0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

δx

(o) (p) (q)(
Gσ ∗

[
(Gy ∗ I)

]+)
(x)

[Descriptor Fields]
0 50 100 150 200 250

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8
x 10−3

−50 −40 −30 −20 −10 0 10 20 30 40 50
2

3

4

5

6

7

8
x 10−3

δx

(r) (s) (t)

Figure 5.4 – Different d functions on a specular surface, and corresponding objective functions

for a translation of a 3D scene (see Eqs. (5.1) and (5.3)), as explained in Section 5.2.2. Second

and third column: value of different descriptors d sampled on 200 equi-spaced points along the

reprojections of a 3D line lying on the background in the 2 images (a) and (b). Last column:

objective function for these signals, with the expected location for the global minimum is marked

with a red dot.

72

5.5. Conclusion

(a) (b) (c) (d)

Figure 5.5 – (a) The 3D model we use for the ATLAS dataset. (b,c,d) Some images from the

second video sequence of this dataset. The images exhibit large and bright specular spots and

strong motion blur.

50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

1.2

1.4

frame index

ro
ta

tio
n

er
ro

r

50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

frame index

tra
ns

la
tio

n
er

ro
r

(a) (b)

Figure 5.6 – (a) Rotation and (b) translation errors over the second video sequence of the

Experimental Setup dataset, using ESM and our 1st-order Descriptor Fields. The horizontal lines

correspond to the thresholds used to detect incorrectly registered frames.

Figure 5.7 – Comparisons on our Experimental Setup dataset. First row: Using the image

intensities. Second row: Using our Descriptor Fields. The scene is augmented with the obligatory

teapot to visually attest the accuracy of the estimated poses. With our method, the teapot is correctly

added to the images, despite the moving lamp that changes the lighting and partially occludes the

scene. The full video is available on the project page at http://cvlab.epfl.ch/research.

73

Chapter 5. Descriptor Fields for 3D Tracking

Figure 5.8 – Comparisons on our ATLAS dataset. First row: Using the image intensities. Second

row: Using our Descriptor Fields. Despite the bright specularities and the motion blur, we can add

virtual labels at the right place in the images with our method. The full video is available on the

project page at http://cvlab.epfl.ch/research.

(a) (b) (c)

(d) (e) (f)

Figure 5.9 – Some applications of image alignment based on our Descriptor Fields, described in

Section 5.4. (a), (d) Real-time 3D tracking of planar surfaces; (b), (e) Real-time 3D face tracking

(images courtesy of Mahdi Rad). (c), (f) tracking of non-rigid surfaces.

74

5.5. Conclusion

SSD NCC MI

I

Gσ ∗ I

LJ

Gσ ∗ LJ

DF

Gσ ∗DF

Figure 5.10 – Comparison between different distance functions for image alignment. Shape

of the objective functions of Equation (5.12) for the 2 images shown in the first line of Figure 5.4 for

different values of p around the ground-truth value, varying 2 of the translation parameters in the

range [−10cm, 10cm]. The groundtruth parameters value lies in the middle of the xy plane, where

the optimization should end. Each column represents a different distance function, respectively the

SSD, the NCC and the MI. For easier comparisons, we flipped the z axis for NCC and MI. LJ are

the 1st-order local jet descriptor, DF are the first-order Descriptor Fields.

75

Robust 3D Tracking using Stable
Parts

In Chapter 5 we proposed a 3D tracking approach based on a dense image alignment framework

and a robust dense descriptor for enhancing robustness in presence of local artifacts issued from

illumination, occlusions, or locally ambiguous patterns. While relying on a dense image alignment

framework allows to effectively handle local artifacts and nuisances, it can fail when dealing with

objects undergoing extreme occlusions in cluttered environments. Moreover, some information

about the scene geometry must be known, such as the CAD model shown in Figure 5.1 (a). This

can become problematic for several common test cases, such as the electric box depicted in

Figure 6.1, tracked for an Augmented Reality application: the target object is only partially visible,

surrounded by an unknown, cluttered, environment with moving distractor objects; moreover,

it undergoes heavy occlusions, at such an extent that a wide part of the object itself, the inner

part of the box, acts as an occlusion: the disposition of the objects contained in an electric box

is generally unknown before run time; moreover, its content is likely to change at run time, for

instance when the user removes and replaces some parts during a technical intervention. Even

obtaining geometric information about most part of the target object would be challenging in these

conditions.

We tested the dense tracking framework described in Chapter 5 in this scenario, but failures

often arise, due to the extremely limited amount of image information that can be exploited for

tracking. As for the other state-of-the art methods described in Section 2, each of them has its own

weaknesses: Many of these approaches [42, 44, 54, 130] rely on a depth sensor, which would fail

on metallic objects or outdoor scenes; methods based on feature points [29, 131] expect textured

objects; those based on edges [132, 133] are sensitive to cluttered background; most of these

methods are not robust to huge occlusions.

In this chapter we describe a 3D tracking approach, that undertakes the challenge of tracking higly

occluded objects relying on the efficient detection of discriminative parts of the target object.

Relying on parts for 3D object detection has already been proposed in previous works [46, 72,

73, 76, 74]; the main novelty of our approach resides in a powerful representation of the pose of

77

Chapter 6. Robust 3D Tracking using Stable Parts

Figure 6.1 – Our part-based method in action during a demonstrative technical intervention at

CERN, Geneva. Detected parts are shown as colored rectangles. The appearance of the scene

constantly changes and undergoes heavy occlusions. Despite these difficulties, we accurately

estimate the 3D pose of the box, even if only one part is detected or in presence of false detections

caused by the cluttered environment.

each part. Some previous methods assume homographies [77, 46, 74] to represent a part pose,

however this can only applied to piece-wise planar objects, and it is not easy to combine the

homographies from several parts together to compute a better pose for the target object. Moreover,

feature point-based methods simply use the 2D locations of the feature points, which wastes very

useful information.

Our pose representation is represented by the 2D reprojections of a small set of 3D control
points, shown in Fig. 6.2. The control points are only “virtual”, in the sense they do not have to

correspond to specific image features nor to 3D prominent points on the object. Among others,

this representation is invariant to the image location of the part and only depends on its appearance.

We employ a Convolutional Neural Network (CNN) [134] to accurately predict the locations of

these reprojections, as well as the uncertainty of the location estimates.

78

(a) (b)

Figure 6.2 – Our representation of the 3D pose of an object part. (a) We consider seven 3D control

points for each part, arranged to span 3 orthogonal directions. (b) Given an image patch of the part,

we predict the 2D reprojections of these control points using a regressor, and the uncertainty of the

predictions.

In Section 6.3, we analyze in detail the theoretical underpinnings of why this representation is

more effective than alternative approaches; our experimental results confirm our analysis showing

a substantial performance gain when employing our part representation.

Our tracking pipeline consists in three main steps: Given an input image, we first run a detector

to locate each part on the image. As described in Section 6.2, we also use a CNN for this task,

but another detection method could be used. Then, we predict the reprojections of the control

points by applying a specific CNN to each detection hypothesis. This gives us a set of 3D-2D

correspondences, from which we can finally compute the 3D pose of the target object with a simple

robust algorithm.

This approach has several advantages:

• We do not need to assume the parts are planar, as was done in some previous work;

• we can predict the 3D pose of the object even when only one part is visible;

• when several parts are visible, we can combine them easily to compute a better pose of the

object;

• the 3D pose we obtain is usually very accurate, even when only few parts (possibly a single

one) are visible.

The algorithm described in this chapter has been implemented in the EDUSAFE Augmented Reality

Prototype described in Section 1.2.1, providing reliable rigid pose estimation for Augmented

Reality-based assistance to maintenance interventions at CERN.

The content of this chapter was previously published in [10] and in [135], and demonstrated at

CVPR 2016.

79

Chapter 6. Robust 3D Tracking using Stable Parts

6.1 Overview of the Method

Figure 6.3 – Main steps of our part-based algorithm. Given an input image, we detect reliable

parts of the target object, as explained in Section 6.2. After pruning the set of detection candidates

for removing erroneous detections, as described in Section 6.4.2, we predict a pose for each part

(Section 6.3); finally, we combine the estimations of all the detected parts for obtaining an accurate

pose of the target object (Section 6.4). Since more poses are computed starting from multiple prior

pose hypotheses, we select our final pose as explained in Sections 6.4.3 and 6.4.4. Each frame can

be tracked independently; the Extended Kalman filter described in Section 6.5 is employed when

tracking frames along a video sequence.

Our goal is to estimate the 3D pose of a known rigid object with respect to a projective camera

given an input grayscale image of the object. We assume the internal parameters of the camera are

known. Additionally, we assume that we are given some geometric information about the object,

such as a non-textured 3D model, and a set of manually labeled parts on it. A part is simply defined

as a discriminative region of the object, which can easily be detected on an input image. The object

model is only used for annotating the 3D location of the parts on the object and for computing the

silhouette of the object under different views, as described in Section 6.4.4. This allows us to use

extremely simple models, for example a parallelepiped for an electric box, or a cylinder for a food

can. We can thus neglect details that would be difficult or impossible to reconstruct, such as the

interior of the electric box depicted in Figure 6.1.

Ideally, the parts should be spread over the object. No assumption is made about their size: usually,

bigger parts are more discriminative, but smaller parts are less likely to be partially occluded. The

3D pose of the object is retrieved exclusively from its parts, while the appearance of the rest of the

object can freely vary with occlusions, clutter, etc., without affecting the final result. A very small

number of parts is required by our framework—in all our tests we employed at most 4 parts for an

object, and, in general, our objects of interest have very few discriminative regions, so we select

the parts by hand. For training our algorithm, we make use of a set of registered training images,

showing the parts under different poses and lighting conditions.

The main steps of the algorithm described in this chapter are illustrated in Figure 6.3. After

detecting several candidates for each of the parts of the target object, as described in Section 6.2,

we select the most likely candidates given a prior on the pose with the procedure explained in

Section 6.4.2. For each selected candidate, we estimate the 3D pose of the target part (Section 6.3)

and, if more than one part are visible, we combine the 3D poses computed for each part for

80

6.2. Part Detection

symbol meaning

i index of a training image

p index of a part

k index of a control point or its projection

l index of a detection candidate on a testing image

Cp 3D center of the p-th part

Ii i−th training image

cip projection of Cp in the i-th training image

Vpk k-th 3D control point of the p-th part

vipk projection of Vpk in the i-th training image

ĉpl l-th detection candidate for the projection of Cp in an input image

spl score for this detection

v̂pk prediction for the projection of Vpk (no outliers)

Spk covariance for prediction for the projection of Vpk (no outliers)

v̂pkl l-th prediction for the projection of Vpk in an input image

Q an image patch

Sq Size of image patch Q

I incoming image at test time

M number of components of the Mixture-of-Gaussians pose prior

(pm,Sm) average and covariance of the m-th component of the Mixture-of-Gaussians pose prior

p̂(m) pose estimated starting from the m-th component of the prior

p̂ final estimation of the pose

Table 6.1 – Main notations employed in Chapter 6.

estimating the pose of the target object (Section 6.4). Since several priors can be used at the same

time, we assign a score to each of the computed poses. This score depends on several cues, and is

also learned using linear regression (Sections 6.4.3 and 6.4.4). Finally, we select the pose with the

best score as our final estimation. When tracking frames across a video sequence, we employ the

Extended Kalman filter described in Section 6.5 in order to reduce the jitter and provide smoother

trajectories.

For sake of clarity, the main notations employed in this chapter are summarized in Table 6.1.

6.2 Part Detection

The first step of our pipeline is the detection of the visible object parts on the image. Different

methods could be employed for this step. Motivated by the recent success of the Convolutional

Neural Networks for object detection [136, 137, 138, 139], we use a CNN for predicting the parts

locations on the image, which appears to work also well for this task.

81

Chapter 6. Robust 3D Tracking using Stable Parts

In order to learn to detect the parts, we exploit a set of registered training images as the one shown

in Figure 6.4(a). We denote our training data as:

T =
{(

Ii, {cip}p , {vipk}pk
)}

i
, (6.1)

where Ii is the i-th training image, cip the projection of the center Cp of the p-th part on Ii, and

vipk the projection of the k-th control point of the p-th part on the image.

During an offline stage, we train a CNN with a standard multi-class architecture shown in Figure 6.5

to detect the parts. The input to this CNN is a 32 × 32 image patch Q, its output consists of

the likelihoods of the patch to correspond to one of the NP + 1 parts. We train the CNN with

patches randomly extracted around the centers cip of the parts in the training images Ii and patches

extracted from the background, and by optimizing the negative log-likelihood over the parameters

w of the CNN:

ŵ = argmin

NP∑
p=0

∑
Q∈Tp

− log softmax(CNNpart-det
w (Q))[p] , (6.2)

where Tp is a training set made of image patches centered on part p and T0 is a training set

made of image patches from the background, CNNpart-det
w (Q) is the NP + 1-vector output by the

CNN when applied to patch Q, and softmax(CNNpart-det
w (Q))[p] is the p-th coordinate of vector

softmax(CNNpart-det
w (Q)).

At run time, we apply this CNN to each 32× 32 patch in the input images captured by the camera.

This can be done very efficiently as the convolutions performed by the CNN can be shared between

the patches [140]. As shown in Figure 6.4, we typically obtain clusters of large values for the

likelihood of each part around the centers of the parts. We therefore apply a smoothing Gaussian

filter on the output of the CNN, and retain only the local maxima of these values as candidates for

the locations of the parts.

The result of this step is, for each part p, a set Sp = {(ĉpl, spl)}l of 2D location candidates ĉpl for

the part along with a score spl given by the value of the local maxima returned by the CNN. We

will exploit this score in our pose estimation algorithm described in Section 6.4. We typically get

up to 4 detections for each part on an input image.

For better robustness to illumination changes, we normalize the patches with a Difference-of-

Gaussians:

Q = (Gσ2 −Gσ1) ∗Q′ (6.3)

where Q′ is the original grayscale input patch before normalization, Gσ1 and Gσ2 are 2D Gaussian

kernels of manually selected standard deviations σ1 and σ2 respectively, and ∗ the symbol for

the product of convolution. We experimentally found this method to perform better than Local

Contrast Normalization, which is often the normalization method used with Convolutional Neural

Networks.

82

6.2. Part Detection

(a) (b)

(c) (d)

Figure 6.4 – Detecting the parts. (a) An input image of the box. (b) The output of the CNNpart-det

for each image location. Each color corresponds to a different part. (c) The output after Gaussian

smoothing. (d) The detected parts, corresponding to the local maxima in (c).

Figure 6.5 – Architecture of CNNpart-det for part detection. The last layer outputs the likelihoods

of the patch to correspond to each part or to the background.

83

Chapter 6. Robust 3D Tracking using Stable Parts

6.3 Part Pose Estimation

The second step of our pipeline consists in predicting the pose of each part, starting from infor-

mation about its local appearance, i.e. an image patch Q extracted on an image I around the

projection of the part center c.

6.3.1 Representation of the Part Pose

We now detail how we practically represent the pose of each part, for which different parametriza-

tions are possible. Selecting the part pose representation consists in seeking a function:

F : Q× R2 −→ SE(3) (6.4)

that, given an image patch Q ∈ Q and the part center c ∈ R2, computes the pose of the part

p = F(Q, c) ∈ SE(3) on image I; Q and SE(3) are, respectively, the space of the image patches

of size Sq × Sq, and the space of the 3D rigid transforms.

For a given c, F(·, c) should be insensitive to imaging changes due to noise, light conditions, etc.,

and it has no clear analytical form. A judicious choice is to train a non-linear regressor for robustly

approximating F(·, c), learning which appearance changes are induced by viewpoint changes.

Is it possible to train a regressor exclusively based on patches extracted on training images, without

any information about the position where each training patch was extracted on the image? In other

words, we seek for a pose representation F that can be decomposed as:

F(Q, c) = R(Q(Q), c), (6.5)

where Q(Q) is some representation of the pose of the patch that does not depend on the position of
the patch on the image, and R is a function that does not depend on the patch appearance, but on

the pose representation computed by Q and possibly from the position of the patch on the image c.

Under a full perspective model, the projection of a non-planar object part already encloses all

the information necessary for retrieving the full pose, so F(Q(Q), c) = F(Q(Q)). This is no

longer true when the dimension of the part along the axis perpendicular to the image plane is much

smaller than the depth, that is, the component of the distance between the camera and the object

part along the optical axis: in this case, the projection degenerates to an affine model such as those

described in Section 3.3, and it becomes impossible to retrieve the pose of the part represented on

a patch without knowing the position of the patch on the image. On the other hand, in this case, for

suited representations Q(Q) the dependence of the pose of a patch Q on its position on the image

F(Q(Q), ·) is a deterministic function.

A crucial point to address is how to define Q(·), that is, how to choose the most suitable represen-

tation for the pose of each part. Q should satisfy the following constraints:

• Combining the poses of an arbitrary number of parts must be easy and efficient;

84

6.3. Part Pose Estimation

• the pose representation should be equally valid under full perspective and under affine

projection assumptions;

• since we approximate Q with a regressor, the pose representation should be tied-in with the

regressor’s capabilities. For example, as our experimental results show, it is very hard for a

regressor to accurately estimate the scale or the depth of a part from a patch.

A priori, we can imagine several ways to represent the 3D poses of the parts:

• Homography: it is possible to use homographies for representing the pose of each part [77,

46, 74]. However, this assumes that the part surface is planar, and makes it difficult to merge

the individual pose estimations from the different parts.

• 3D Pose: Another possibility is taking the output of Q(Q) to consist in a 3D rotation and

a depth value for the patch center. It is then possible to retrieve the 3D translation as well,

from the location of the patch on the image and the predicted depth. However, it is not

easy to merge rotations for estimating the pose of the whole target object. Moreover, this

choice requires to predict the depth accurately from a single image patch, which appears to

be very difficult to do accurately in our experiments: among others, this task can become

ill-conditioned under affine projection assumptions.

• 3D Control points: Since our final solution is based on 3D control points, as already

mentioned, we could set the output of Q(Q) to be the 3D locations of the control points

in the camera reference system. In this case, estimating the pose becomes simple, since it

only involves computing the rigid motion between two sets of 3D points [141]. Moreover,

also combining the poses of the parts becomes a trivial task, as it boils down to computing

the rigid motion between multiple sets of 3D points. However, as it will be shown in

Section 6.6.4, accurately predicting the 3D points is difficult.

• 2D reprojections of 3D control points: This is the representation we proposed in [10]. The

part poses are represented as the 2D reprojections of a set of 3D control points. With this

representation, it is straightforward to combine the poses of an arbitrary number of parts,

by grouping all the 2D reprojections together and solving a PnP problem. Moreover, we

do not have to predict the depths or the 3D locations of the control points, which, as noted

above, is very difficult to do accurately. Finally, we notice that the representation is adapted

to both fully perspective and affine projection models. These advantages entail a significant

accuracy gain, as shown by our results in Section 6.6.4. The control points are purely virtual

and do not correspond to any physical feature of the parts, therefore we can freely set their

configuration. We evaluate different configurations in Section 6.6.5.

6.3.2 Prediction of the Reprojections of the Control Points

Once the parts are detected, we apply a regressor to the patches centered on the candidates ĉpl
to predict the projections of the control points for these candidates. We also implemented this

regressor as a CNN, and each part has its specific CNN. As shown in Figure 6.6, these networks

85

Chapter 6. Robust 3D Tracking using Stable Parts

Figure 6.6 – Architecture of the CNN CNNcp-pred-p predicting the projections of the control points.

take as input a patch of size of 64× 64. The output layer is made of 2NV neurons, with NV the

number of control points of the part, which predicts the 2D locations of the control points. We

train each of these CNNs during an offline stage by simply minimizing over the parameters w of

the CNN the squared loss of the predictions:

ŵ = argmin
∑

(Q,w)∈Vp

||w − CNNcp-pred-p
w (Q)||2 , (6.6)

where Vp is a training set of image patches Q centered on part p and the corresponding 2D locations

of the control points concatenated in a (2NV)-vector w, and CNNcp-pred-p
w (Q) is the prediction for

these locations made by the CNN specific for part p, given patch Q as input.

At run-time, we obtain for each ĉpl candidate, several predictions {v̂pkl} for the control points

projections. In addition, we can estimate the 2D uncertainty for the predictions, by propagating the

image noise through the CNN that predicts the control point projections [142]. Let us consider the

matrix:

SV = Jĉ(σI)J
�
ĉ = σJĉJ

�
ĉ , (6.7)

where σ is the standard deviation of the image noise assumed to be Gaussian and affect each image

pixel independently, I the 642 × 642 Identity matrix, and Jĉ the Jacobian of the function computed

by the CNN, evaluated at the patch centered on the candidate ĉ. Such a Jacobian matrix can be

computed easily with a Deep Learning framework such as Theano [143] thanks to the Chain Rule,

by multiplying the Jacobians of the successive layers of the network together. By neglecting the

correlation between the different control points, we can compute the 2× 2 uncertainty matrix Spk

for each control point k efficiently of part p, without having to compute the entire, and very large,

product in Equation (6.7):

Spk = σJpk
ĉ Jpk

ĉ

�
, (6.8)

where Jpk
ĉ is made of the two columns of Jĉ that correspond to the reprojection of the control

point k. An example of predicted control points is shown in Figure 6.2(b).

6.4 Object Pose Estimation

In this section, we detail how we use the predicted reprojections to robustly estimate the object

pose.

86

6.4. Object Pose Estimation

Figure 6.7 – Visualisation of the pose prior for an electric box: Projections of the box by each of

the 9 Gaussians centers pm.

As in previous work [144], we assume that we are given a prior on the pose p, in the form of a

Mixture-of-Gaussians {(pm,Sm)}. This prior is very general, and allows us to define the normal

action range of the camera. For example, the camera is unlikely to be a few centimetres from

the object, or more than tens of meters away, or facing the object upside-down. Moreover, the

pose computed for the previous frames can be easily incorporated within this framework to exploit

temporal consistency.

In the following, we will first assume that this prior is defined as a single Gaussian distribution

of mean and covariance (p0,S0). We will extend our approach to the Mixture-of-Gaussians in

Section 6.4.3.

6.4.1 Using a Single Gaussian Pose Prior

Let us first assume there is no outlier returned by the part detection process or by the control

point prediction, and that all the parts are visible. Then, the object pose p̂ can be estimated as the

minimizer of:

F (p) =
1

NV NP

∑
p,k

dist2(Spk,Pp(Vpk), v̂pk) + (p− p0)
�S−1

0 (p− p0) , (6.9)

where the sum is extended over all the control points of all the parts, and Pp(V) is the perspective

projection described in Section 3.2 of the 3D point V under pose p. v̂pk is the projection of control

point Vpk and Spk its uncertainty estimated as in Equation (6.8). Since we assume here that there

is no outlier, we dropped here the l index corresponding to the multiple detections that may occur

for a single part. dist(.) is the Mahalanobis distance:

dist2(S,v1,v2) = (v1 − v2)
�S−1(v1 − v2) . (6.10)

87

Chapter 6. Robust 3D Tracking using Stable Parts

F (p) is minimized using the Gauss-Newton algorithm initialized with p0. At each iteration, we

update the estimated covariance of the computed pose using the Extended Kalman Filter update

formula [142] when optimizing Equation (6.9).

6.4.2 Outlier Rejection for the Detected Parts

In practice, for the location of the p-th part, the detection procedure described in Section 6.2 returns

a set of hypotheses Sp = {ĉpl}l, among which at most one is correct. To reject outliers in detection,

we exploit the fact that for each part there is at most one true positive detection, and, similarly

to [144], we exploit the pose prior to select the most likely set of detections: For each part, after

ranking the candidates according to their score spl, we consider only the best three candidates;

after that, we form all the possible sets C = {ĉ1, . . . , ĉp, . . .} of detections containing at most one

candidate for each part. Given the pose prior p0, we evaluate all the sets of candidates C with the

following steps:

1. Select two random candidates ĉp1 , ĉp2 ∈ C, and translate the pose prior p0 to obtain a new

prior pTS
0 that best fits ĉp1 , ĉp2 . More exactly, we adjust the in-plane translation such that:

PpTS
0

(Cp1) + PpTS
0

(Cp2) = ĉp1 + ĉp2 (6.11)

and the off-plane translation component such that:

||PpTS
0

(Cp1)− PpTS
0

(Cp2)|| = ||ĉp1 − ĉp2 ||. (6.12)

2. We keep considering C only if all the detections it contains are consistent with the new prior.

This test can be formalized as:

∀ĉp ∈ C : ρp < T 2

with ρp = dist2(Ŝ0(Cp),PpTS
0

(Cp), ĉp)
(6.13)

where Ŝ0(Cp) = J S0J
�, with J the jacobian of PpTS

0
(Cp), is the covariance of the

projected control point PpTS
0

(Cp); we set the threshold T = 40 pixels in all our experiments.

3. If several sets C pass this test, we retain the one with the largest number of detected parts.

If several retained sets have the same number of points, we keep the one with the smallest

average error ρ = 1
|C|

∑
p ρp of its points.

4. Finally, we run the Gauss-Newton optimization of Equation (6.9) using the detections in the

retained set to obtain a pose estimate.

If the object of interest has a single part, we simply select the detection candidate with the highest

score.

88

6.5. Tracking Frames across a Video Sequence and Pose Filtering

6.4.3 Using a Mixture-of-Gaussians for the Pose Prior

In practice, the prior for the pose is in the form of a Mixture-of-Gaussians {(pm,Sm)}m with

M = 9 components. The prior we use for the BOX dataset is shown in Figure 6.7. We apply the

method described in Sections 6.4, 6.4.2 to each component, and obtain M possible pose estimates:

p̂(1), . . . , p̂(M).

6.4.4 Identifying the Best Pose Estimate

To finally identify the best pose estimate p̂ among the different estimates obtained with the Mixture-

of-Gaussians prior, we evaluate each p̂(m) using several cues. As it is difficult to combine cues of

different natures, our key idea here is to train a linear regressor to weight the contributions of the

different cues and predict a penalty.

More exactly, we use the scale difference δscale and the angle α between the quaternions for p̂(m)

and the corresponding component of the prior, the final value of the objective function F (p̂(m))

defined in Equation (6.9), and a score ξ(p̂(m)) measuring the correlation between the edges in the

image and the object contours after projection by p̂(m). ξ(p̂(m)) is computed as:

ξ(p̂(m)) =
∑
x

(
n(x) · [Iu(x), Iv(x)]�

)
, (6.14)

where n(x) is the unit normal of the projected object contour at pixel x, Iu(x) and Iv(x) are the

partial derivatives of the incoming image I at pixel x, and the sum is over the pixels x lying on the

re-projected contours of the object.

Offline, we create a training set generated from the training sequence by adding noise to the ground

truth poses, and computing the values of our different cues. For each sample, we compute a penalty

that is the sum of the euclidean norms of the rotation and translation components of the absolute

pose error [145] introduced by the noise. We can then train a linear regressor to predict this penalty

given our different cues. At run-time, we simply have to use the linear regressor to predict the

penalties of the pose estimates, and keep the one with the smallest penalty.

6.5 Tracking Frames across a Video Sequence and Pose Fil-
tering

When tracking an object across a video sequence, if a pose is estimated for a given frame, we add

it as a new component of the Mixture-of-Gaussians pose prior for the next frame. This allows us to

easily take advantage of temporal constraints within our framework. Moreover, we use a Kalman

Filter for reducing jitter and provide smoother trajectories.

89

Chapter 6. Robust 3D Tracking using Stable Parts

6.5.1 Extended Kalman Filter for 3D Tracking

In visual tracking, Kalman Filters typically treat images as observations. However, this requires

the linearisation of the imaging process with respect to the 3D pose, which can result in a

poor approximation. Therefore, we chose to consider our pose estimation method described in

Sections 6.1- 6.4 as a “black box”, and we treat the poses it predicts as observations for the filter,

alleviating the need for linearisation.

State Vector

We model the camera motion as a first order, discrete-time dynamic system, and the state vector at

time t is provided by the column vector of size 12:

st = [t�t , r
�
t , v

�
t , ω

�
t]

� , (6.15)

where tt is the translation component of the camera pose, rt is the exponential map representation

of the rotation component of the pose, vt is the linear velocity and ωt the angular velocity.

At each time step, our estimation of the system state is updated according to the available obser-

vations with the predictor-corrector scheme of Kalman Filters. First, the state estimate s̃t−1 and

its covariance S̃t−1 are updated with a motion model for predicting the state at current time s̃tt−1

and the covariance S̃t
t−1. Then, the observation of the current state is employed for correcting the

initial prediction and obtain the final state estimation s̃t.

Notations

For sake of clarity, we summarize here the notation convention employed for the Kalman filter

described in this section. For a given quantity x, then:

• x̃t−1 is the estimate of x at the end of step t− 1;

• x̃t
t−1 is the estimate of x at time t predicted by updating x̃t−1 according to some dynamic

model;

• x̂t is the observed value of x at step t, typically the camera pose predicted by the method

described above.

• x̃t is the final estimate of x at time t, obtained correcting x̃t
t−1 according to the observation

x̂t.

90

6.5. Tracking Frames across a Video Sequence and Pose Filtering

Predictor: State Update

The state at each time step is predicted from the estimate of the state at the previous time step using

the following motion model:

t̃tt−1 = t̃t−1 + δt ṽt−1

r̃tt−1 = ω̃t−1 ◦ r̃t−1 (6.16)

ṽt
t−1 = ṽt−1

ω̃t
t−1 = ω̃t−1 ,

where δt is the time difference between 2 subsequent time steps, ◦ denotes the composition of

rotations. Without loss of generality, we will take δt = 1.

The covariance of the state is updated using:

S̃t
t−1 = JupdateS̃t−1J

�
update +A , (6.17)

where Jupdate is the (12× 12)−jacobian matrix of the update (6.16), and A is given by :

A =

⎡⎢⎢⎢⎢⎢⎣
1
3aI 0 1

2aI 0

0 1
3bI 0 1

2bI
1
2aI 0 aI 0

0 1
2bI 0 bI

⎤⎥⎥⎥⎥⎥⎦ , (6.18)

where I is the (3 × 3)−identity matrix, and a and b are 2 parameters corresponding to the

incertitude about the temporal derivatives of the velocities. We empirically set a = b = 100 in all

our experiments. Interested readers can refer to [146] and its references for further details about

the derivation of matrix A.

Corrector: Taking into Account Observations

After computing a prediction of the current state and its covariance, we correct it taking into account

our observation, the pose p̂t. Since we cannot observe the velocities directly, their estimations

would stay indefinitely stuck in the initial state if we only use the motion model of Equation (6.16).

To avoid this problem, we compute the “observed” velocities as:

v̂t = (t̂t − t̃t−1)/δt and ω̂t = ω(r̃t−1, r̂t) ; (6.19)

91

Chapter 6. Robust 3D Tracking using Stable Parts

the angular velocity ω(r1, r2) between 2 consecutive rotations r1, r2 is estimated with the log

mapping of Equation (3.18):

R1 = R(r1) , R2 = R(r2) , δR = R2R
�
1 ,

θ = acos

(
trace(δR)− 1

2

)
, Ω =

θ

2δt sin(θ)
(δR− δR�) ,

ω(r1, r2) = [Ω32,Ω13,Ω21]
�,

where R(r) is the (3× 3)−rotation matrix corresponding to the rotation vector r, computed with

Equation (3.17) and Ωij denotes the element at the i-th row and j-th column of the 3× 3 matrix Ω.

We set ω = [0, 0, 0]� if ||θ|| is smaller than a threshold for preventing division by 0.

At first sight, Equation (6.19) may seem arbitrary: the observed velocities could be estimated

from the observed poses for 2 subsequent frames, that is, employing t̂�t−1 and r̂�t−1, instead

of, respectively, t̃t−1 and r̃t−1 in Equation (6.19). According to our experiments, this is not a

good choice, since pose observations for successive frames may be affected by jitter, so that

velocities estimated exclusively based on observed poses may lead to completely inconsistent

results; computing observed velocities with Equation (6.19) sensibly lowers the jitter nuisance.

As covariance of the observed state Ŝt, we employ a constant, diagonal covariance matrix:

Ŝt = α

⎡⎢⎢⎢⎢⎢⎣
I 0 0 0

0 I 0 0

0 0 βI 0

0 0 0 βI

⎤⎥⎥⎥⎥⎥⎦ , (6.20)

where we empirically set α = 10−3 and β = 10.

Finally, we simply apply standard Kalman update equations for correcting the state estimate:

y = ŝt − s̃tt−1

K = S̃t
t−1

(
S̃t
t−1 + Ŝt

)−1

s̃t = s̃tt−1 +Ky (6.21)

S̃t =
(
I12 −K

)
S̃t
t−1,

where matrix K is called the Kalman gain and I12 is the 12× 12 identity matrix.

Initialization - Outlier Rejection

For the first frame of the video sequence, we initialize the state vector estimate with p̂t and null

velocities. Special care must be taken in order to detect and reject outliers in the observed poses.

In practice, we use the following tests:

92

6.6. Experimental Results

• if an observed pose p̂t is not close to the last estimation p̃t−1, then it is probably an outlier

and should not be taken into account;

• if 2 consecutive observed poses p̂t−1 and p̂t are close to each other, then they are probably

not outliers, even if they are far from the last pose estimate.

If the observed pose p̂t is detected as an outlier according to these tests, we then set s̃t := s̃tt−1.

If outlier poses are observed for more than 3 frames in a row, we assume that tracking is lost.

Tracking is then automatically re-initialized with the observed pose as soon as 2 consecutive poses

are observed, sufficiently close to each other.

6.6 Experimental Results

In this section, after describing the datasets we use for evaluating our part-based method in

Section 6.6.2, we present and discuss the results of our evaluation. In Section 6.6.3 we assess

the effectiveness of our detector method, as well as that of the Diffference-of-Gaussians (DoG)

Normalization introduced in Section 6.2. In Section 6.6.4 we evaluate different pose representations

introduced in Section 6.3.1, showing that our representation based on the reprojections of control

points entails substantial performance gain. Then, in Sections 6.6.6 - 6.6.8 we present the results of

an extensive comparison with other methods, showing that our approach achieves state-of-the-art

performances on our challenging sequences.

6.6.1 Evaluation Protocol

In order to quantitatively evaluate the performances of a method on a video sequence, we com-

pute the rotation and translation components of the absolute pose error [145] for each frame,

and then trace their Cumulative Distribution Functions (CDF), as shown for example in Fig-

ures 6.14, 6.15, 6.16. The normalized Area Under Curve (AUC) score, defined as the integral of

the CDF curve divided by the maximum error (0.5 in all our graphs), is reported for facilitating

comparisons between methods, for example in Table 6.3. The translation error is in meters, while

the rotation error is a pure number. We employed CDF curves and AUC scores also for evaluating

the performances of different detectors in Section 6.6.3. In this case, the detection error is expressed

in pixels.

6.6.2 Datasets

At the best of our knowledge, no state-of-the-art method has been tested on objects undergoing

heavy occlusions and clutter as shown in Figure 6.1. For this reason, we run our extensive

evaluations on the datasets originally introduced in [10], consisting of both learning data and

testing video sequences representing several non-textured, highly occluded objects. The dataset

for each object includes a non-textured CAD model and the groundtruth pose. All the images are

93

Chapter 6. Robust 3D Tracking using Stable Parts

in the VGA resolution (640×480). For each dataset, we randomly select 3000 frames from the

training images as training set. We test our approach on the following datasets:

• BOX Dataset: The target object for this dataset is an electric box. In the test videos,

it is manipulated by a user, filled and emptied with objects, simulating, for example, a

maintenance intervention by a technician. The training images show the box on a uniform

background, with different objects inside and outside it. A CAD model is made by a simple

parallelepiped. We use 4 corners of the box as parts, as shown in Figure 6.9(a).

• CAN Dataset: The target object of this dataset is a food can. The label is completely

blank, and the top of the can is specular. Distractor objects are present in the scene and

large occlusions occur. Only the can lid breaks the the cylindrical symmetry of the object,

making the pose estimation almost ambiguous. We use the top of the can as a single part,

Figure 6.9(b). A CAD model of the can is provided.

• DOOR Dataset: This datasets consists of one video showing a daily set-up where a non-

textured door is opened and closed by a user. Despite the apparent triviality of the sequence,

our tests show that it is very challenging to track the pose of the door along the full video,

when it moves on a cluttered background. For this dataset, we track the 3 parts shown in

Figure 6.9(c), the knob, the keyhole and the lock of the door. A simple CAD model of the

door is available as well.

The images of the training and testing videos of the datasets were registered using the ARUCO

marker tracking tool [147]. The markers on the test sequences were cropped or masked, so that

they could not influence detection and tracking performance when testing the methods.

We also manually labelled the ground-truth locations of the detected parts for all the test video

sequences of the original dataset presented in [10], so that more accurate experiments for evaluating

the detector can be performed, such as those presented in Section 6.6.3. The manually labelled

parts have also been employed for refining the ground-truth poses. Because of this, some of

the experimental results presented in this work may be numerically slightly different from the

ones reported in [10], although no substantial difference in the results has been detected. All

the refined datasets are publicly available at http://cvlab.epfl.ch/data/3d_object_

tracking.

6.6.3 Part Detection

Our pipeline does not depend on a particular choice of a detector for localizing the object parts

on the image. Nonetheless, the detector described in Section 6.2 provides an excellent trade-off

between speed and accuracy: We assess here our choice by comparing it with a state-of-the-art

detector, LINE-2D [44].1 In this case, we trained an instance of LINE-2D for each part, starting

from 32× 32 RGB patches surrounding the part of interest. The amount of learning data was the

same as for our CNN-based detector.

1For all the tests presented in this chapter, we employed the LINE-2D implementation provided by OpenCV-2.4.12.

Implementation of the authors was used for LSD-SLAM and PWP3D.

94

6.6. Experimental Results

Figure 6.8 – Qualitative results for our challenging datasets. Top: We track the box despite large

changes in the background and in the lighting conditions on both sequences of the BOX dataset.

Middle: Our method correctly estimates the 3D pose of the can using the can tab only. Bottom:
The pose of the door is retrieved starting from the door knob, the keyhole and the lock.

(a) (b) (c)

Figure 6.9 – Training images and control points we used for the BOX, the CAN and the DOOR

datasets. The center of each part is shown in yellow. Control points are zoomed for better

visualization.

95

Chapter 6. Robust 3D Tracking using Stable Parts

Experiment
BOX dataset Video #1 BOX dataset Video #2

Part #1 Part #2 Part #3 Part #4 Part #1 Part #2 Part #3 Part #4

CNNpart-det 0.82 0.75 0.89 0.94 0.45 0.80 0.43 0.82

CNNpart-det +DoG 0.87 0.88 0.90 0.95 0.44 0.90 0.74 0.92

LINE-2D 0.30 0.27 0.63 0.60 0.29 0.10 0.55 0.59

Table 6.2 – Detection error results for the BOX Dataset. We report the AUC scores for the detection

error relative to each part, as described in Section 6.6.3.

At test time, we kept the best 4 candidates in each image for each detector and computed the

detection error as the euclidean norm between the ground-truth position of the part on the image

and the closest detection candidate. The CDF curves for the BOX dataset are shown in Figure 6.10,

while AUC scores are reported in Table 6.2. We also assessed the importance of the DoG

normalization introduced in Section 6.2. For all parts, our detector consistently outperforms

LINE-2D, and the DoG normalization further increases performances in most of the cases.

In both videos, LINE-2D performs reasonably well on the upper corners of the box -parts #3

and #4- while the accuracy for the two other corners is much lower. This is probably due to

the fact that in our test dataset, the edges of the upper corners are often visible against a bright

background and their shapes are easily recognizable. We also observed that DoG normalization

is particularly effective for the Video #2, where the lighting conditions and the background are

completely different from the training videos, as opposed to the Video #1. Finally, we noticed that

the scores of all detectors for the Video #2, for the bottom-left corner (Part #1) is significantly

lower. This is probably due to the fact that at about half of the sequence a distractor object is very

close to the part, altering its appearance, and the shadow patterns change frequently around this

part. Still, we can accurately predict the pose of the target object pose because the other parts are

reliably detected.

6.6.4 Validation of the Part Pose Representation

To validate our part pose representation based on the 2D reprojections of 3D control points

introduced in Section 6.3, we trained several regressor CNNs for predicting the object pose of all

the frames of the first video of the BOX Dataset. Each CNN was trained to predict a different

part pose representation, which yields to different strategies to combine the contributions of the

different parts:

• Averaging Poses: The output of the CNN is a 3D rotation and a depth for each part. The

in-plane components of the translation are retrieved from the position of the patch on the

image. The full object pose is then obtained by averaging the parts poses. Rotations were

averaged as proposed in [148].

• 3D Control Points: The predicted representation is made by the coordinates of the 3D

96

6.6. Experimental Results

Error [pixels]
0 5 10 15

C
D

F(
x)

0

0.2

0.4

0.6

0.8

1

LINE-2D
CNNpart-det

CNNpart-det + DoG

(a) BOX - Video #1 - Part 1

Error [pixels]
0 5 10 15

C
D

F(
x)

0

0.2

0.4

0.6

0.8

1

LINE-2D
CNNpart-det

CNNpart-det + DoG

(b) BOX - Video #1 - Part 2

Error [pixels]
0 5 10 15

C
D

F(
x)

0

0.2

0.4

0.6

0.8

1

LINE-2D
CNNpart-det

CNNpart-det + DoG

(c) BOX - Video #1 - Part 3

Error [pixels]
0 5 10 15

C
D

F(
x)

0

0.2

0.4

0.6

0.8

1

LINE-2D
CNNpart-det

CNNpart-det + DoG

(d) BOX - Video #1 - Part 4

Error [pixels]
0 5 10 15

C
D

F(
x)

0

0.2

0.4

0.6

0.8

1

LINE-2D
CNNpart-det

CNNpart-det + DoG

(e) BOX - Video #2 - Part 1

Error [pixels]
0 5 10 15

C
D

F(
x)

0

0.2

0.4

0.6

0.8

1

LINE-2D
CNNpart-det

CNNpart-det + DoG

(f) BOX - Video #2 - Part 2

Error [pixels]
0 5 10 15

C
D

F(
x)

0

0.2

0.4

0.6

0.8

1

LINE-2D
CNNpart-det

CNNpart-det + DoG

(g) BOX - Video #2 - Part 3

Error [pixels]
0 5 10 15

C
D

F(
x)

0

0.2

0.4

0.6

0.8

1

LINE-2D
CNNpart-det

CNNpart-det + DoG

(h) BOX - Video #2 - Part 4

Figure 6.10 – Results of the experiment described in Section 6.6.3: detection error Cumulative

Distribution Functions (CDF) for the BOX dataset for different detectors. Top row: Video #1.

Bottom row: Video #2.

97

Chapter 6. Robust 3D Tracking using Stable Parts

control points shown in Figure 6.2 in the camera reference system. Since the 3D coordinates

of the control points in the camera system depend on the position of the patch on the

image, we employ the following indirect estimation: The output of the CNN consists in a

depth value for the center of the patch, and a set of offsets for all the other control points

{(δx/δz, δy/δz, δz)}k. The 3D locations of all the control points can be straightforwardly

retrieved from the predicted values. The poses of the parts are then estimated and combined

by computing the 3D rigid transform aligning the points in the camera and in the world

reference system in a least-square sense [149].

• 2D Reprojections of 3D Control Points: The output of the CNN is given by the coordinates

of the reprojections of the control points on the image patch, as described in Section 6.3. The

pose is computed by solving the PnP problem after gathering all the 3D-2D correspondences

given by all the parts.

The results are shown in Figure 6.11. The last choice entails a significant accuracy gain over the

previous ones.

The performance gap between the 3D Control Points and the 2D Reprojections of 3D Control
Points representations may seem somehow surprising, since 2 of the 3 predicted coordinates for

the 3D Control Points representation basically coincide with the ones of the 2D Reprojections
of 3D Control Points. This suggests that the regressor may not predict all the degrees of freedom

with the same accuracy.

In order to further investigate this aspect, we performed two other experiments:

• we evaluated the errors of the poses obtained replacing the predicted 2D reprojections of the

3D Control Points experiment by their ground truth (3D Control Points - GT X and Y)

values;

• instead of replacing the 2D reprojections by the ground truth, we replaced the depths by

their ground truth (3D Control Points - GT Depth).

In the first case, the results did not improve much over the 3D Control Points baseline. In the

second case, the results are equivalent to the ones of 2D Reprojections of 3D Control Points (for

sake of clarity, the 3D Control Points - GT Depth curve is not shown in Figure 6.11). This shows

that predicting the depths is a much more difficult task than predicting the 2D locations.

6.6.5 Virtual Points Configuration

In order to assess the influence of the number and configurations of control points on the accuracy

of our method, we tested the configurations shown in Figure 6.13 on the CAN dataset. We created

different configurations with an increasing number of virtual points, and disposed them regularly

around the part center.

98

6.6. Experimental Results

0 0.1 0.2 0.3 0.4

CD
F(

x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Averaging Poses
3D Control Points
3D Control Points - GT X and Y
2D Reprojections of 3D Control Points

(a) Rotation error CDF: BOX - Video #1

0 0.1 0.2 0.3 0.4

C
D

F(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Averaging Poses
3D Control Points
3D Control Points - GT X and Y
2D Reprojections of 3D Control Points

(b) Translation error CDF: BOX - Video #1

Figure 6.11 – The rotation and translation error Cumulative Distribution Functions (CDF) on the

BOX dataset, Video #1 for the parametrizations of the part poses presented in Section 6.6.4. Our

pose representation entails a substantial performance gain.

Rot. error [.]
0 0.1 0.2 0.3 0.4

CD
F(

x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4vp
5vp (coplanar)
7vp
7 vp-Far
9vp
13vp

(a) Rotation error CDF: CAN - Video #1

Transl. error [m]
0 0.1 0.2 0.3 0.4

CD
F(

x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4vp
5vp (coplanar)
7vp
7 vp-Far
9vp
13vp

(b) Translation error CDF: CAN - Video #1

Figure 6.12 – Rotation and translation error Cumulative Distribution Functions (CDF) for the

configurations of virtual points shown in Figure 6.13 for the CAN dataset-Video #1. Best results

are obtained by the configurations spanning the 3 orthogonal axes. Increasing the number of virtual

points does not improve results above 7 virtual points.

The comparison is performed on the CAN dataset, probably the most challenging one, because

the object of interest is tracked using a single part, so we expect the pose estimation results to be

particularly sensitive to the disposition and number of control points. We trained one regressor

for each of the configurations shown in Figure 6.13 from the same learning data, and run the

pose estimation for each configuration, starting from the same detection candidates for the can lid.

Results are shown in Figure 6.12. In general, we observed that:

• configurations spanning the 3 orthogonal directions perform better than planar configura-

tions;

• increasing the number of control points improves results up to 7 points, while no noticeable

improvement is obtained by using configurations with more points.

99

Chapter 6. Robust 3D Tracking using Stable Parts

(a) (b) (c) (d) (e) (f)

Figure 6.13 – Different configurations of control points tested on the CAN dataset, with (a) 4

control points spanning the 3 axes; (b) 5 co-planar control points; (c) 7 control points spanning the

3D axes; (d) 9 control points disposed in the center and on the corners of a cube; (e) 13 control

points disposed in the center and on the corners of an icosahedron; (f) 7 control points spanning

the 3 axes, with a larger spacing.

Experiment
BOX dataset CAN dataset DOOR dataset

Video #1 Video #2 Video #1 Video #2 Video #1

nb. of frames 892 500 450 314 564

LSD-SLAM 0.37 - 0.61* 0.48- 0.63 0.17 - 0.29 0.38 - 0.48 0.50 - 0.38

PWP3D 0.10 - 0.20* 0.16 - 0.52 0.13 - 0.64 0.13 - 0.51 0 - 0

LINE-2D 0.34 - 0.41 0.34 - 0.44 0.20 - 0.62 0.29 - 0.65 0.13 - 0.14

Our method [10] 0.75 - 0.85 0.57 - 0.85 0.35 - 0.85 0.51 - 0.70 0.72 - 0.61

Our method - KAL 0.78 - 0.86 0.65 - 0.88 0.36 - 0.86 0.51 - 0.70 0.79 - 0.66
Our method - DoG 0.76 - 0.85 0.80 - 0.88 0.42 - 0.92 0.52 - 0.74 0.76 - 0.69

Our method - KAL+DoG 0.78 - 0.86 0.82 - 0.90 0.42 - 0.93 0.55 - 0.75 0.76 - 0.70

Table 6.3 – Experimental results for our part-based framework. We report the AUC scores for the

rotation and the translation errors for the five video sequences of our datasets. A star (*) after the

scores indicates that the method was re-initialized with the groundtruth for frame 500. We report

results of our method as originally implemented in [10], as well as with the contributions of the

Kalman filter (KAL) and the patch normalization (DoG). Both improvements sensibly enhance

performances on all datasets.

6.6.6 Comparison against the State-of-the-Art

We compared our approach with three state-of-the-art methods, LINE-2D [44], PWP3D [32] and

LSD-SLAM [86]. LINE-2D proceeds using very fast template matching. PWP3D is an accurate

and robust model-based 3D tracking method based on segmentation. LSD-SLAM is a recent,

powerful and reliable SLAM system: amongst other things, it does not require prior 3D knowledge,

while we know the 3D locations of the control points and their appearances. The comparison

should therefore be taken with caution, as this method does not aim to achieve exactly the same

task as us. Nevertheless, we believe the comparison highlights the strengths and weaknesses of the

compared methods.

For every test video, we compare the poses computed by each method for all frames. Following the

evaluation framework in [145], we align each of the trajectories with respect to the same reference

system. In each test, the templates for LINE-2D were extracted by the same images we employed

for training our method. PWP3D was manually initialized using the ground-truth pose data, while

100

6.6. Experimental Results

0 0.1 0.2 0.3 0.4

C
D

F(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LSD-SLAM (restart)
PWP3D (restart)
LINE-2D
Our method
Our method + KAL
Our method + DoG
Our method + KAL + DoG

(a) Rotation error CDF: BOX - Video #1

0 0.1 0.2 0.3 0.4

C
D

F(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LSD-SLAM (restart)
PWP3D (restart)
LINE-2D
Our method
Our method + KAL
Our method + DoG
Our method + KAL + DoG

(b) Translation error CDF: BOX - Video #1

0 0.1 0.2 0.3 0.4

C
D

F(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LSD-SLAM
PWP3D
LINE-2D
Our method
Our method + KAL
Our method + DoG
Our method + KAL + DoG

(c) Rotation error CDF: BOX - Video #2

0 0.1 0.2 0.3 0.4

C
D

F(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LSD-SLAM
PWP3D
LINE-2D
Our method
Our method + KAL
Our method + DoG
Our method + KAL + DoG

(d) Translation error CDF: BOX - Video #2

Figure 6.14 – The rotation and translation error Cumulative Distribution Functions (CDF) on the

BOX dataset. (a),(b): comparative results for Video #1: LSD-SLAM and PWP3D were both

re-initialized with the groundtruth at frame 500. (c),(d): comparative results for Video #2. Here the

DoG normalization is particularly effective in compensating light changes and entails a significant

performance gain.

LINE-2D, LSD-SLAM and our method do not require any initial pose.

6.6.7 Training Details

Our CNNs were trained employing Stochastic Gradient Deschent with a batch size of 128 samples

and 60 epochs; learning rate was set to 0.01 for all the models. Each original learning set was

augmented with synthetic examples obtained randomly translating, scaling and rotating patches

extracted from real images; the final size of each learning set was 500 000 patches for detection,

and 300 000 for estimation of the part poses.

6.6.8 Results

Quantitative results of our tests are shown in Table 6.3. LINE-2D, LSD-SLAM, and PWP3D

actually fail very frequently on our sequences, drifting or loosing track.

In the BOX dataset, on the longest of our video sequences, we also re-initialized LSD-SLAM and

101

Chapter 6. Robust 3D Tracking using Stable Parts

0 0.1 0.2 0.3 0.4

C
D

F(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LSD-SLAM
PWP3D
LINE-2D
Our method
Our method + KAL
Our method + DoG
Our method + KAL + DoG

(a) Rotation error CDF: CAN - Video #1

0 0.1 0.2 0.3 0.4

C
D

F(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LSD-SLAM
PWP3D
LINE-2D
Our method
Our method + KAL
Our method + DoG
Our method + KAL + DoG

(b) Translation error CDF: CAN - Video #1

0 0.1 0.2 0.3 0.4

C
D

F(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LSD-SLAM
PWP3D
LINE-2D
Our method
Our method + KAL
Our method + DoG
Our method + KAL + DoG

(c) Rotation error CDF: CAN - Video #2

0 0.1 0.2 0.3 0.4

C
D

F(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LSD-SLAM
PWP3D
LINE-2D
Our method
Our method + KAL
Our method + DoG
Our method + KAL + DoG

(d) Translation error CDF: CAN - Video #2

Figure 6.15 – The rotation and translation error Cumulative Distribution Functions (CDF) on the

CAN dataset - Video #1 (a), (b), and Video #2 (c), (d). Notice the poor scores of all methods for

the rotation estimation on this dataset, due to the symmetrical appearance of the food can.

0 0.1 0.2 0.3 0.4

C
D

F(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LSD-SLAM
PWP3D
Linemod
Our method
Our method + KAL
Our method + DoG
Our method + KAL + DoG

(a) Rotation error CDF: DOOR - Video #1

0 0.1 0.2 0.3 0.4

C
D

F(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LSD-SLAM
PWP3D
Linemod
Our method
Our method + KAL
Our method + DoG
Our method + KAL + DoG

(b) Translation error CDF: DOOR - Video #1

Figure 6.16 – The rotation and translation error Cumulative Distribution Functions(CDF) on the

DOOR dataset - Video #1.

102

6.7. Applications and Further Developments

PWP3D using the ground-truth pose at roughly half of the video, but their accuracy over the whole

sequence remains outperformed by our method. LINE-2D, on the other hand, often fails matching

the templates not only when the contours of the box are occluded, but also because its appearance

is constantly changed by objects put inside and outside it. CDF curves for the rotation and the

translation errors for all the methods are shown in Figure 6.14.

For the CAN dataset, we use a single part to track the full object. In the first video the silhouette of

the can is seldom occluded: LINE-2D and PWP3D achieve similar performances, while the lack of

texture and the distractor objects make LSD diverge. In the second video, where occlusions occur

more often but the background color is different from the one of the can, LSD-SLAM performs

better. On both videos, our method consistently outperforms all other methods. Notice that all

methods have a quite bad score in retrieving the rotation on this dataset, probably because of the

symmetric shape of the object. Error CDF curves are shown in Figure 6.15.

In the DOOR dataset test, LSD-SLAM fails as soon as the door starts to move. LINE-2D fails

very often because of the ambiguous contours present in the scene. Finally, PWP3D immediately

looses tracking, while our method manages to track frames across the whole video. This result is

somehow surprising, since PWP-3D exploits the appearance of the whole door, while our method

just exploits a minimal part of its structure. We only use the CAD model for predicting contours

and evaluating the computed poses, as explained in Section 6.4.4. Error CDF curves for this dataset

are shown in Figure 6.15. On all datasets, the Kalman Filtering described in Section 6.5 and the

DoG normalization described in Section 6.2 entail a significant improvement of the performances.

6.6.9 Runtimes

Our current implementation on an Intel Core i7-4820K desktop with GeForce GTX 780 Ti takes

22 ms for the part detection, plus 30 ms to predict the control points for each detected part. The

pose estimation takes about 150 ms. Many optimizations are possible. For example, the control

point predictions for each part could be run in parallel.

6.7 Applications and Further Developments

Our part-based method was implemented within the final demonstrator of the EDUSAFE European

project described in Section 1.2.1. The implementation of the pipeline described above, operating

in the environment shown in Figure 6.1 runs at 5Hz on a laptop equipped Intel i7-4720HQ CPU,

Nvidia 980M GPU and 32GB RAM.

We considered different improvements for enhancing the accuracy of the method with respect to

the original implementation. Among them:

• We introduced a hard negative mining scheme for the detection network, iteratively running

the training, testing the networks over a cross-validation set and replacing 30% of the

negative training samples with the tested negatives samples which received the highest score

103

Chapter 6. Robust 3D Tracking using Stable Parts

for any of the parts. This procedure marginally improved the resilience of the detector in

presence of heavily cluttered scenes as the ones showed in Figure 6.1, without affecting the

testing time.

• We investigated the possibility of a multi-scale detection scheme by running the detector

over the same image cropped and resized at different scales; finally, this procedure was not

kept in the final implementation because of running time constraints, and the detections

shown in Figure 6.1 are obtained with a single-scale detector. Of course, a multi-scale

detection scheme can be employed without re-training when timing constraints allow it.

• We also experimentally verified that employing higher resolution images enhances the accu-

racy, especially at the detection stage. Nonetheless, this was un-feasible due to computational

constraints.

6.7.1 Articulated Objects

One of the advantages of our part-based framework is given by its flexibility, that makes it suited

to track, for example, articulated objects [150] and objects with symmetrical parts.

We tested our pipeline for tracking a pair of scissors based on the 2 parts shown in Figure 6.17-(a),

namely the scissors screw and one of the eye rings. This application offers several challenges:

besides the fact that the object is highly specular, one of the selected parts, the eye ring, is

symmetrical and is very similar to the other eye ring; nonetheless, the 2 eye-rings do not look

exactly the same (they are chiral), and distinguishing one from the other is essential for a correct

pose estimation.

This test cast new light on the limits and the potentiality of our method. In Figure 6.17-(b), (c) we

show the results of the pose estimation employing only a single part. As shown in Figure 6.17-(b),

the scissors screw can be reliably detected and the pose estimation is fair. As for the other object

part, as shown in Figure 6.17-(c), the detector selects the good eye ring, assigning to the other a

positive, but lower score; on the other hand, the pose estimation retrieved for this part is corrupted

because of the spherical symmetry of the ring.

Tracking results employing the 2 parts is shown in Figure 6.17-(d), (e), (f). Thanks to the flexibility

of the pose representation introduced in Section 6.3, we can still exploit some information about

the pose of a symmetric part: more in particular, when tracking based on 2 parts, we keep the

predictions for all the control points of the screw and only the 3 control points along the axis

of symmetry of the eye ring, that are reliably predicted, while we discard the others. In fact,

the projections of the control points lying out of the plane of symmetry are accurately predicted,

without the need of re-training the regressor.

Moreover, we can successfully track the articulated blade of the scissors adding a simple 1D

research on top of our method: first, we estimate the 3D pose of the first blade with the pipeline

described above, discarding a part of the control points for the symmetric eye ring; then, we

perform a simple exhaustive search over 25 equi-spaced angles ψ ∈ [0◦, 120◦], projecting the 3D

model of the second blade with an opening of ψ and we check if an eye-ring has been detected

104

6.7. Applications and Further Developments

(a) (b) (c)

(d) (e) (f)

Figure 6.17 – Tracking of articulated objects with our part-based framework. (a) 2 parts are

employed for tracking a pair of scissors. (b) Tracking results employing only the scissors screw.

Notice how the current implementation of our algorithm returns at most one instance of one object;

when only one part is employed, the detection with the highest score is selected. (c) Only the

eye ring is employed for the tracking: the pose estimation fails becase of the eye ring symmetry.

(d), (e), (f) rigid tracking employing 2 parts and estimation of the configuration of the articulated

object, as explained in Section 6.7.1.

close to the predicted location. If a detection was found, the value of ψ is retained. The estimated

position of the second blade is drawn as a straight line in Figure 6.17-(d), (e), (f).

6.7.2 Object Tracking and SLAM

As anticipated in Section 1.2, a prominent application of 3D object tracking that we propose is its

use in conjunction with localization systems, such as those provided by the most recent Augmented

Reality devices like the Microsoft Hololens [6]. In Figure 6.18 we show an example of our system

integrated with a state-of-the-art SLAM system, ORB-SLAM [87]. The SLAM system reconstructs

the sparse 3D map shown in Figure 6.18-(a) and tracks the camera motion in real time; nonetheless,

it does not perform any object recognition.

Our tracking pipeline, running in parallel, computes the object 3D pose in the camera reference

system, which is then employed for computing the Euclidean motion between the SLAM reference

system and the object reference system. Consecutive estimations of the Euclidean motion can be

averaged, or updated in a filtering framework such as the Kalman Filter described in Section 6.5.1.

Notice that, once the pose of the object is estimated correctly and if the object is not moving, we

no longer need to explicitly detect the object, instead, we can rely on the pose computed by the

105

Chapter 6. Robust 3D Tracking using Stable Parts

(a) (b)

Figure 6.18 – Integration of our object pipeline and a ORB-SLAM, as described in Section 6.7.2.

(a) The SLAM reconstructs a sparse 3D map of the environment and tracks the camera in real

time. (b) We compute the pose of a pre-defined target object in the SLAM map with our part-based

pipeline.

SLAM system, which makes the application extremely robust.

6.8 Conclusion

In this chapter, we introduced a 3D pose estimation pipeline, complementary to the one described

in Chapter 5: more in particular, instead of relying on the global appearance of the image for

improving resilience to local artifacts, it tracks small, stable parts of the target object leaving the

rest of the scene free to vary. The resulting method is thus extremely robust to occlusions and

clutter. Poses of each part are accurately estimated by a non-linear regressor and combined thanks

to the pose representation introduced in Section 6.3.1.

Our method has been demonstrated with both quantitative tests and a real-life application, the

EDUSAFE Augmented Reality Demonstrator at CERN, described in Section 1.2.1.

Although this framework can be considered a model-based method, the amount of object data

required is extremely reduced: besides training images showing the parts under different poses and

illumination conditions, all we need is to know the 3D position of the parts in the same reference

system, referred as the “object” reference system. If a full 3D model of the object is not available,

a simple approximation can be employed, such as a parallelepiped as a model of an electric box,

for rendering the object silhouette or a part of it under different poses. This makes the extension of

our tracking method to categories of objects rather than single instances a particularly appealing

and natural research direction, especially for those categories that are defined by specific sets of

parts, such as wheelsfor cars, handles for doors, windows for buildings, and so on.

In chapter 7, we further discuss about the main directions of our future research and some

possibilities for further improvements.

106

Conclusion

In this thesis we introduced two methods tackling the challenge of reliable 3D rigid object tracking

in industrial environments, based on complementary paradigms.

The first method exploits an iterative image alignment framework and a robust dense descriptor

for enhancing resilience to locally ambiguous patterns, occlusions, poorly textured objects and

local illumination artifacts, that we refer to as "Descriptor Fields". Our Descriptor Fields combine

the discriminative power of dense gradient-based convolutional features and a sparsifying non-

linear mapping for increasing the basin of attraction of classical iterative alignment methods. Our

experimental results show a substantial gain in terms of robustness and convergence rate, for

different optimization schemes and metrics. Their reduced computational cost makes them suited

for replacing luminous intensity in numerous tracking applications.

More generally, our results show how the image intensities, the de facto standard dense descriptor

employed in a wide number of state-of-the-art tracking methods, is far from being an optimal

choice, and wide performance gains can be obtained employing other descriptors, with little

implementation effort and computational overhead.

Although our dense descriptor sensibly enhances the robustness of dense image alignment frame-

works to local artifacts, their effectiveness is still limited in presence of highly occluded objects.

The second method we introduce bridges this gap, allowing to track objects undergoing extreme

occlusions in cluttered environments. It relies on the detection and pose estimation for stable parts

of the target object, leaving the rest of the scene and the object to freely vary without affecting

the quality of tracking. The pose of each part of the object is reliably predicted by a non-linear

regressor, also in presence of challenging illumination conditions and other local artifacts. A novel

representation for the pose of the parts, based on the 2D reprojections of a small number of control

points, allows to accurately predict and combine the poses of single parts for estimating the pose

of the full target object.

All the proposed methods are suited for real-time applications and time-critical tasks, requiring only

moderate computational resources. They have been designed for use in real-life scenarios, with

extreme attention to practical aspects such as limiting the number and the influence of parameters,

107

Chapter 7. Conclusion

or avoiding cumbersome learning steps requiring manual image labelling.

7.1 Future Work

Despite achieving state-of-the-art performance in real-life scenarios, our proposed techniques still

present several aspects in which they could be further improved.

Enhanced Descriptor Fields-based tracking: As for our approach based on dense image

alignment, we can identify 2 main research directions: the first consists in investigating the

design of more efficient, more robust dense descriptors: in principle, the sparsifying operation

of (5.9) could be applied to any densely sampled real descriptor, boosting the performances of

alignment. The main challenge here, lies in finding the appropriate balance between a reasonable

computational burden and improved robustness. Another promising research direction lies in

reducing the amount of offline computed data, extending our approach for online retrieval of

geometric data and key-frames in a way similar to SLAM systems.

Optimized architectures for object detection and pose prediction: As for the part-

based tracking framework, our implementation is currently based on 2 separate CNNs for the

detection of the parts and for the regression of their pose. While this has multiple advantages,

such as keeping the learning steps simpler and allowing for seamless substitution of the detection

technique when it is needed, employing a single CNN for predicting at once the likelihood of the

presence of a part on an image patch and its pose would be beneficial for reducing the computational

cost of the algorithm.

Category-level pose estimation: Another promising research direction lies in pushing the

limit of the variability allowed for the appearance of the tracked parts, for generalizing our part-

based tracker from object instances to object categories. Although this seems feasible, it has never

been directly experimented.

A unified tracking framework: More in general, our research confirmed that different track-

ing paradigms are more or less adapted in different situations. A very interesting and natural

research direction, then, is how to combine different paradigms. Our early attempts to refine the

pose issued by the part-based approach with a dense image alignment method did not success,

due to the extreme level of occlusions and clutter present in the considered scenes. A deeper

investigation in this direction, extending the tracking to take into account other cues such as local

features, could bring to a unified, general framework.

Object tracking vs SLAM: Finally, another related research direction is dictated by the

impressive advances in the field of localization and mapping techniques, thanks to the recent intro-

108

7.1. Future Work

duction of extremely powerful SLAM systems [86, 87] and of commodity devices for Augmented

Reality applications [6] that offer localization routines based on different sensing technologies.

It is our intention to push forward the efficient integration of our object recognition and tracking

algorithms and these localization tools, as described in Section 6.7.2. This would enable new,

exciting possibilities for Augmented Reality applications in a wide number of domains.

109

Appendix A: Additional Results for
Dense Image Alignment Methods

In this Appendix we report the proof of some of the results claimed in Chapter 4. After giving a

practical example of a simple warp in order to better illustrate the differences among the different

methods in Appendix A.1, in Appendix A.2 we report the proof of the equivalence of the first-order

methods described in Chapter 4. Then, in Appendix A.4 we demonstrate that if hypothesis of

Equation (4.39) does not hold, as it is the case for many commonly employed warps, then the ESM

method becomes a first order method. Finally, some comparative tables are shown in Appendix A.6

for the reader’s convenience.

A.1 An Example of Warp: 2D Rigid Deformation

In order to illustrate the differences among the alignment methods introduced in Chapter 4, we

show here a practical example of warp, a rigid 2D deformation. In Section 4.6 we describe a more

complex warp epmloyed for 3D pose estimation. Other examples (affine warps, homographies) are

reported in [7].

Let F be the family of rigid transforms of the plane parametrized by a vector of 3 parameters

p ∈ R3. At iteration c, given the current parameters pc = (θ, t1, t2)
�, the warp for a pixel x is

computed as:

W(x,pc) = Rpcx+ tpc =

[
cos(θ) −sin(θ)

sin(θ) cos(θ)

][
u

v

]
+

[
t1

t2

]
. (A.1)

the family of warps is closed with respect to the composition and to the inversion. The warps are

differentiable with respect to all the arguments; the derivative with respect to the parameters is

111

Appendix A. Appendix A: Additional Results for Dense Image Alignment Methods

given by:

∂

∂p
W(x,p) =

[
− sin(θ)u+ cos(θ)v 1 0

− cos(θ)u− sin(θ)v 0 1

]
, (A.2)

while ∂
∂xW(x,p) = Rp. Finally, we note that W(x,0) = x.

Forward Additive Algorithm: The assumptions for FA algorithm hold. Once the parameters

increment δp = (δθ, δt1, δt2) has been computed, the updated warp is given by:

W(x,pc+1) =

[
cos(θ + δθ) − sin(θ + δθ)

sin(θ + δθ) cos(θ + δθ)

][
u

v

]
+

[
t1 + δt1

t2 + δt2

]
, (A.3)

Forward Compositional Algorithm: Assumptions of FC algorithm are satisfied. Once the

parameters increment δp = (δθ, δt1, δt2) has been computed, the updated warp is given by:

W(x,pc+1) = Rpc(Rδpx+ tδp) + tpc ; (A.4)

After computing the updated rotation matrix Rpc+1 = RpcRδp and and the updated translation

vector tpc+1 = Rpctδp + tpc , we can explicitly estimate the updated parameters as, for example:

pc+1 =

[
cos−1((Rpc+1)11)

tpc+1

]
, (A.5)

Inverse Compositional Algorithm: the inverse of a rigid warp is a rigid warp; the inverse

warp is given by:

W−1(x,p) = RT
p(x− tp). (A.6)

At iteration c, once the parameters increment δp = (δθ, δt1, δt2) has been computed, the updated

warp is given by:

W(x,pc+1) = Rpc(R
�
δp(x− tδp)) + tpc , (A.7)

and we can explicitly update the parameters in an analogous way as the FC algorithm.

112

A.2. Equivalence of First-order Methods

Inverse Additive Algorithm: In order to apply Inverse Additive algorithm, we have to explic-

itly compute decomposition of Equation (4.28). Since:

⎛⎝∂W(x,pc)

∂x

⎞⎠−1

∂W(x,p)

∂p

∣∣∣∣
p=pc

=

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

]
·
[
− sin(θ)u+ cos(θ)v 1 0

− cos(θ)u− sin(θ)v 0 1

]
,(A.8)

it is not possible to decompose the above Equation in the product of 2 matrices Γ(x)Σ(p), and

thus the Inverse Additive algorithm can not be employed, even with this very simple warp.

Efficient Second-order Method: As can be observed comparing the warp updated with the

additional rule (Equation (A.3)) and that updated with the compositional rule (Equation (A.4)),

assumption (4.39) does not hold in this case, so ESM does not minimize a second-order approxi-

mation of the objective function. Nonetheless, as described in Section A.4, since the warps are

differentiable and form a group, ESM will provide a first-order method.

A.2 Equivalence of First-order Methods

The equivalence of the 4 first-order methods described in Chapter 4 (FA, FC, IC and IA) has been

shown in [7], in the sense that, at a given iteration, all the algorithms provide the same update for

the warp, up to a first order development in δp.

We show here only the equivalence of FA and FC algorithms, and that of FC and IC algorithms,

therefore showing that the 3 algorithms are all equivalent. Even if the same result holds for

IA algorithm, we don’t report demonstration here since IA is of little interest for most part of

applications (the interested reader may refer to [7] for further details).

A.2.1 Equivalence of FA and FC Algorithms

We can approximate the updated warp sought at each iteration of the FA algorithm with the

following first-order development:

W(x,pc+1) = W(x,pc + δp) ≈ W(x,pc) +
∂W(x,p)

∂p

∣∣∣∣
p=pc

δp. (A.9)

As for the FC algorithm, an analogous approximation gives:

W(x,pc+1) = W(W(x, δp),pc) ≈ W(x,pc) +
∂W(W(x,q),pc)

∂q

∣∣∣∣
q=0

δp. (A.10)

So, the values of δp minimizing FFA(δp) and FFC(δp) are the same (up to the first order) if

113

Appendix A. Appendix A: Additional Results for Dense Image Alignment Methods

∂W(x,p)
∂p

∣∣∣∣
p=pc

and
∂W(W(x,q),pc)

∂q

∣∣∣∣
q=0

share the same linear space, that is, if there is an invertible

matrix A ∈ R2×2 such that:

∂W(x,p)

∂p

∣∣∣∣
p=pc

= A
∂W(W(x,q),pc)

∂q

∣∣∣∣
q=0

. (A.11)

Actually, such matrix exists if the warps are differentiable and closed with respect to inversion and

composition (see Appendix A.3 for a proof). Therefore, since the optimal update is sought in the

same linear space, the updates of the warps computed by FA and FC at a given iteration are the

same up to a first-order development in δp.

A.2.2 Equivalence of FC and IC Algorithms

We start by interpreting the sum Equation (4.11) as an integral over the domain of the template D:

FFC(δp) =

∫
D

(
I(W(W(x, δp),p))− T (x)

)2

dx. (A.12)

The change of variables y = W(x, δp) gives:

FFC(δp) =

∫
W(D,δp)

(
I(W(y,p))− T (W−1(y, δp))

)2∣∣∣∣∂W−1(y, δp)

∂y

∣∣∣∣dy. (A.13)

We observe that W(D, δp) ≈ D up to a zero-th order, and that∣∣∣∣∂W−1(y, δp)

∂y

∣∣∣∣ = 1 +O(δp), (A.14)

since W(x,0) = x. Making the assumption that (I(W(y,p)) − T (W−1(y, δp))) (or, equiva-

lently, (I(W(W(x, δp),p))− T (x))) is O(δp), we can approximate Equation (A.13) up to the

first order ignoring the higher order terms in δp:

FFC(δp) ≈
∫
D

(
I(W(y,p))− T (W−1(y, δp))

)2

dy; (A.15)

this expression is formally identical to FIC(δp) of Equation (4.17) (interpreting the sum as an inte-

gral over the domain of the template), except for the inverse warp in the template T (W−1(y, δp)).

Since in the IC update rule of Equation (4.20) the warp of the template is inverted before composing

it with the current warp, we conclude that the updated warps computed by FC and IC are equivalent

up to a first order development in δp.

114

A.3. A Theorem about Groups of Differentiable Warps

A.3 A Theorem about Groups of Differentiable Warps

We prove here the following theorem, needed for demonstrating the equivalence of FA and FC

algorithms in Appendix A:

Theorem 1. Let F be a group of differentiable warps W : R2 × Rn → R2. Then, for any pixel
x ∈ R2, an invertible matrix A ∈ R2×2 exists (eventually depending on x), such that:

∂W(x,p)

∂p

∣∣∣∣
p=pc

= A(x)
∂W(W(x,q),pc)

∂q

∣∣∣∣
q=0

. (A.16)

In order to prove Theorem 1, we make use of the following:

Theorem 2. Let x ∈ R2 some fixed pixel, and F be a group of differentiable warps W : R2 ×
Rn → R2. Then a function φ : Rn → Rn : δp �→ δp′ = φ(δp) can be defined in some open
ball aroud the origin Bδ(0), such that:

• φ(0) = 0;

• φ is differentiable and invertible in Bδ(0);

• W(x,p+ δp) = W(W(x, φ(δp)),p) ∀p ∈ Rn;

Proof. First, we observe that there is a ε > 0 such that, for all δp ∈ Rn, δp ∈ Bε(0), there is

δp′ ∈ Rn such that:

W(x,p+ δp) = W(W(x, δp′),p) ∀p ∈ Rn; (A.17)

Since F is closed under inversion and composition, W−1(W(x,p+ δp),p) ∈ F , so there must

be some δp′ so that W(x, δp′) := W−1(W(x,p+ δp),p).

Then, we observe that,under the same assumptions, the inverse statement is also true, that is, there

is a ε̃ > 0 such that, for all δp ∈ Rn, ||δp|| < ε̃, there is δp′ ∈ Rn such that:

W(W(x, δp),p) = W(x,p+ δp′) ∀p ∈ Rn. (A.18)

Applying the Generalized Implicit Function Theorem ([151]) to the continuously differentiable

function F (δp, δp′) = W(W(x, δp),p)−W(x,p+ δp′), we deduce that a function φ : Rn �→
Rn : δp �→ φ(δp) = δp′ exists, which is differentiable and invertible in some open ball around

0 and such that φ(0) = 0.

Now, we notice that, given a p,q, r ∈ Rn, we have :

∂W(x,p+ q)

∂p
=

∂W(x,p+ q)

∂q
; (A.19)

115

Appendix A. Appendix A: Additional Results for Dense Image Alignment Methods

and:

∂W(W(x, r+ q),p)

∂r
=

∂W(W(x, r+ q),p)

∂q
. (A.20)

Now, let δp ∈ Rn small enough, so that we can define a function φ(δp) as in Theorem 2. We have:

∂W(x,p+ δp)

∂p

∣∣∣∣
p=pc

=
∂W(x,pc + δp)

∂δp
= (A.21)

∂W(W(x, δp′),pc)

∂δp′
∂δp′

∂δp
≈ ∇φ(δp)

∂W(W(x,q+ δp′),pc)

∂q

∣∣∣∣
q=0

. (A.22)

Finally, the statement of Theorem 1 is obtained by evaluating the above expression for δp = 0. So,

the invertible matrix A of Equation (A.16) is given by ∇φ(0): this shows that
∂W(x,p)

∂p

∣∣∣∣
p=pc

and

∂W(W(x,q),pc)
∂q

∣∣∣∣
q=0

share the same linear space, the tangent space of the manifold W(x,pc).

A.4 Relaxing Hypothesis of ESM

In order to apply ESM to a family of warps F , the cumbersome hypothesis of Equation (4.39)

must hold for all the warps in F :

∃ε > 0 such that ∀δp ∈ Rn, ||δp|| < ε, then:

W(W(x, δp),p) = W(x,p+ δp) ∀p ∈ Rn;

This seriously limits the practical applications of ESM, since only a restricted set of warps respects

this assumption. In this section we show that, if this hypothesis does not hold, but F is a group of

differentiable warps, then ESM looses the second-order accuracy and becomes first-order method

as FC.

As shown in Section 4.4, ESM is built computing a second-order development of the objective

function (Equation (4.36)) and replacing the second-order term of this expression with an approx-

imation based on the first-order development of the image jacobian JFC of Equation (4.40). If

assumption (4.39) does not hold, the development of Equation (4.40) is no longer valid; however,

it is possible to employ Theorem 2 for a quantitative estimate of the error done in ESM, showing

that ESM objective function approximation is still accurate up to the first order.

Let F a group of differentiable warps and δp ∈ Rn such that ||δp|| is small enough. Then, thanks

to Theorem 2, there’s δp′ = φ−1(δp) such that:

W(x,p+ δp′) = W(W(x, δp),p) ∀p ∈ Rn; (A.23)

116

A.5. Alignment of Multi-Channel Images

So, the development of Equation (4.40) becomes:

T (x) = I(W(W(x, δp),pc)) ⇔

T (x) = I(W(x,pc + δp′)) ⇔

T (W(x,0)) = I(W(W(x,0),pc + δp′)) ⇔

[
∇T

∂W(x,0)

∂p

]
=

∂

∂q

(
T (W(x,q))

)∣∣∣∣
q=0

=
∂

∂q

(
I(W(W(x,q),pc + δp′)))

∣∣∣∣
q=0

⇔

[
∇T

∂W(x,0)

∂p

]
≈ ∂

∂q

(
I(W(W(x,q),pc))

)∣∣∣∣
q=0

+
∂

∂p

∂

∂q

(
I(W(W(x,q),p)

)∣∣∣∣
p=pc, q=0

δp′ ⇔

[
∇T

∂W(x,0)

∂p

]
≈ JFC(x,pc) +Mδp′ ⇔

[
∇T

∂W(x,0)

∂p

]
≈ JFC(x,pc) +M∇φ−1(0)δp.

That is, using the approximation Mδp ≈
[
∇T ∂W(x,0)

∂p

]
− JFC(x,pc) in Equation (4.36), we

introduce an error:

e = (∇φ−1(0)− I))δp (A.24)

in the second-order term, so that the approximation of the objective function is correct only up to

the first order. If Assumption (4.39) holds, then φ is the identity function and the error is null.

A.5 Alignment of Multi-Channel Images

For sake of simplicity, in all the iterative methods described in Chapter 4 the images T, I are

considered to be mono-channel, for instance grayscale images. When appropriate, the same

methods can be straightforwardly applied to multi-channel images, extending all the sums to all

the channels of the image.

117

Appendix A. Appendix A: Additional Results for Dense Image Alignment Methods

SSD Distance Let L, T be two images with K channels1, respectively Lk,k=1,...,K and

Tk,k=1,...,K : the minimization of Equation (4.4) becomes:

pL = argmin
p

∑
x

(
L(W(x,p))−T(x)

)� (
L(W(x,p))−T(x)

)
, (A.25)

where L(·) = [L1(·), . . . , LK(·)]� and T(·) = [T1(·), . . . , TK(·)]�, are K × 1 arrays storing all

the channel values for a pixel. At implementation level, this can easily be achieved for images of

size W ×H with K channels, for example creating tiled mono-channel images of size KW ×H ,

where each tile of size W ×H contains the values for the corresponding channel, and conveniently

adjusting the range of the sum over the pixels. Of course some care should be taken, in order to

discard the spurious derivatives created at the borders between consecutive tiles.

Mahalanobis Distance A further variant of Equation (A.25) is given by the use of Maha-

lanobis distance; in this case the optimization problem becomes:

pL = argmin
p

∑
x

(
L(W(x,p))−T(x)

)�
Z

(
L(W(x,p))−T(x)

)
, (A.26)

where Z is a K ×K, positive definite matrix Z, usually taken as the inverse of the covariance

matrix of the images channels.

This case can be implemented similarly to the case of the SSD distance: in fact, since Z is

symmetric and positive definite, a matrix U exists, such that Z = U�U. So, the above problem is

equivalent to minimizing the following SSD problem:

pL = argmin
p

∑
x

(
L̃(W(x,p))− T̃(x)

)� (
L̃(W(x,p))− T̃(x)

)
, (A.27)

where L̃ = UL and T̃ = UT. This choice is also computationally efficient since L̃ and T̃ can be

precomputed, so that the computational cost for one iteration is the same as for problem (A.25).

A.6 Comparative Tables of Dense Alignment Methods

Table A.1 resumes all the algorithms described in Chapter 4, along with their computational

complexity, the order of approximation of the objective function and the hypothesis made on the

family of parametrized warps.

Table A.2 shows the formulas employed by each algorithm. All the algorithms seek for a parameters

increment δp, approximately minimizing an objective function F (δp). The parameters increment

1We denote the first multi-channel image L for avoiding confusion with the identity matrix I previously employed.

118

A.6. Comparative Tables of Dense Alignment Methods

Algo Order of Computational Assumptions on F
approx. Complexity

FA I O(n2N + n3) W(x,p) differentiable wrt p

FC I O(n2N + n3) W(x,p) differentiable. F is a semi-group

IC I O(n2N + n2) W(x,p) differentiable. F is a group

IA I O(n2N + n2) W(x,p) differentiable. Decomposition of Equation (4.28)

ESM II O(n2N + n3) W(x,p) differentiable. F is a semi-group. Hyp. of Equation (4.39)

Table A.1 – Computational complexity and assumptions on the family of warps for the algorithms

described in Chapter 4. The computational complexity for one iteration of each algorithm is given,

as a function of the number N of pixels of the template and the number n of parameters of the

warps. For common applications, N ∈ [103, 105] and n < 10.

δp is computed by all the methods with formula of Equation (4.53):

δp = α H−1
∑
x

J(x)� (T (x)− I(W(x,pc))), (A.28)

where H =
∑

x(J(x)
� J(x)), and

α =

{
1 for forward algorithms (FA, FC, ESM)

−1 for inverse algorithms (IA, IC).

119

Appendix A. Appendix A: Additional Results for Dense Image Alignment Methods

A
lgo

O
bjective

Function
A

pprox.
J

U
pdate

F
(δp

)
order

FA
∑

x
(I
(W

(x
,p

c
+
δp

))−
T
(x
))

2
I

J
F
A
=

∇
I
(W

(x
,p

c))
∂
W

(x
,p

c)
∂
p

p
c+

1
=

p
c
+
δp

FC
∑

x
(I
(W

(W
(x
,δp

),p
c))−

T
(x
))

2
I

J
F
C
=

∇
I
(W

(x
,p

c))
∂
W

(x
,p

c)
∂
x

∂
W

(x
,0
)

∂
p

W
(x
,p

c+
1)

=
W

(W
(x
,δp

),p
c)

IC
∑

x
(T

(W
(x
,δp

))−
I
(W

(x
,p

c)))
2

I
J
I
C
=

∇
T
(x
)
∂
W

(x
,0
)

∂
p

W
(x
,p

c+
1)

=
W

(W
(x
,δp

) −
1,p

c).

IA
∑

x
(I
(W

(x
,p

c
+
δp

))−
T
(x
))

2
I

[∇
I
∂
W

(x
,p
)

∂
p]

p
c+

1
=

p
c −

δp

E
SM

∑
x
(I
(W

(W
(x
,δp

),p
c))−

T
(x
))

2
II

J
E
S
M

=
J
F
C
+
J
I
C

2
W

(x
,p

c+
1)

=
W

(W
(x
,δp

),p
c)

T
ab

le
A

.2
–

F
o

rm
u

las
fo

r
th

e
u

p
d

ate
o

f
th

e
w

arp
estim

ate
fo

r
th

e
alg

o
rith

m
s

d
escrib

ed
in

th
is

ch
ap

ter.
T

h
e

su
m

s
are

ex
ten

d
ed

to
all

p
ix

els
x

o
f

th
e

tem
p

late,

w
h
ile

p
c

is
th

e
cu

rren
t

p
aram

eters
estim

ate
at

iteratio
n
c.

120

Appendix B: 3D Tracking with
Dense Image Alignment and
Different Internal Matrices

A fundamental hypothesis for employing the iterative algorithms introduced in Chapter 4, more

in particular the FC, the IC and the ESM algorithms, is that W(x,0) = x. When we use these

methods for 3D pose estimation as described in Chapter 5, employing the warp introduced in

Section 4.6, this is true only if the image and the template have the same internal calibration matrix.
1 If T and I have different internal calibration matrices (say, respectively, KT and KIM), one can

pre-warp the image and use Ĩ(x) = I(KTK
−1
IMx). Alternatively, as shown in Figure B.1, it is

possible to split the global warp in 2 parts, the warp W(x,p) estimated through image alignment,

that employs exclusively the template internal calibration matrix KT (in the red box in Figure B.1),

and an additional transformation Ŵ(x,p) = KIMK−1
T W(x,p) for reading intensity values on

the image. From the implementation point of view, this means there is no need of pre-warping the

image, but only:

1. employ KT to compute the warp derivatives and the jacobian matrices of the 3D warp;

2. use I(Ŵ(x,p)) instead of I(W(x,p)) for retrieving the luminous intensity values of the

image pixels. Notice that

I(KIMK−1
T PKT

(X,pT + p)) = I(PKIM
(X,pT + p)). (B.1)

1 For sake of simplicity, in this section we employ a slight abuse of notation employing the same notation for 2D

arrays such as x or W(x,p) and the corresponding quantities in homogeneous coordinates, that is 3D arrays obtained

appending 1 to the corresponding 2D quantity, for instance x̃ = [x� 1]�, W̃(x,p) = [W(x,p)� 1]�, since this does

not lead to confusion. We refer to [94] for an exhaustive description about the use of homogeneous coordinates and

their properties.

121

Appendix B. Appendix B: 3D Tracking with Dense Image Alignment and Different
Internal Matrices

Figure B.1 – Warp between a template T with internal calibration matrix KT and pose pT , and

an image I , with pose pT + p and internal calibration matrix KIM . Notice the difference with

Figure 4.6. Dependence of the projective transforms on the internal calibration matrix has been

highlighted: PK(X,p) = K(R(p)X+ t(p))

122

Bibliography

[1] D. Demir, S. Birecik, F. Kurugöllü, M. Sezgin, B. Bucak, B. Sankur, and E. Anarim, “Quality

inspection in pcbs and smds using computer vision techniques,” in Industrial Electronics,
Control and Instrumentation, 1994. IECON’94., 20th International Conference on, vol. 2.

IEEE, 1994, pp. 857–861.

[2] E. Saldaña, R. Siche, M. Luján, and R.Quevedo, “Review: computer vision applied to

the inspection and quality control of fruits and vegetables,” Brazilian Journal of Food
Technology, vol. 16, no. 4, pp. 254–272, 2013.

[3] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-eye coordination

for robotic grasping with deep learning and large-scale data collection,” CoRR, vol.

abs/1603.02199, 2016. [Online]. Available: http://arxiv.org/abs/1603.02199

[4] F. Bonin-Font, A. Ortiz, and G. Oliver, “Visual navigation for mobile robots: A survey,”

Journal of intelligent and robotic systems, vol. 53, no. 3, pp. 263–296, 2008.

[5] S. Henderson and S. Feiner, “Augmented reality in the psychomotor phase of a procedural

task,” in ISMAR. IEEE, 2011, pp. 191–200.

[6] “Microsort Hololens,” https://www.microsoft.com/microsoft-hololens/en-us, 2006, ac-

cessed: 2016-31-07.

[7] S. Baker and I. Matthews, “Lucas-Kanade 20 Years On: A Unifying Framework,” IJCV, pp.

221–255, March 2004.

[8] E. Malis, “Improving Vision-Based Control Using Efficient Second-Order Minimization

Techniques,” in ICRA, 2004, pp. 1843–1848.

[9] A. Crivellaro and V. Lepetit, “Robust 3D Tracking with Descriptor Fields,” in CVPR, 2014.

[10] A. Crivellaro, M. Rad, Y. Verdie, K. Yi, P. Fua, and V. Lepetit, “A novel representation of

parts for accurate 3d object detection and tracking in monocular images,” in ICCV, 2015.

[11] C. Harris and C. Stennett, “RAPID-a Video Rate Object Tracker,” in BMVC, 1990.

[12] D. G. Lowe, “Fitting Parameterized Three-Dimensional Models to Images,” PAMI, vol. 13,

no. 5, pp. 441–450, June 1991.

123

Bibliography

[13] T. Drummond and R. Cipolla, “Real-Time Visual Tracking of Complex Structures,” PAMI,
vol. 27, no. 7, pp. 932–946, July 2002.

[14] G. Klein and D. Murray, “Full-3D Edge Tracking with a Particle Filter,” in BMVC, 2006.

[15] M. Armstrong and A. Zisserman, “Robust Object Tracking,” in ACCV, 1995.

[16] L. Vacchetti, V. Lepetit, and P. Fua, “Combining Edge and Texture Information for Real-

Time Accurate 3D Camera Tracking,” in ISMAR, 2004.

[17] I. Skrypnyk and D. G. Lowe, “Scene Modelling, Recognition and Tracking with Invariant

Image Features,” in ISMAR, November 2004.

[18] L. Vacchetti, V. Lepetit, and P. Fua, “Stable Real-Time 3D Tracking Using Online and

Offline Information,” PAMI, vol. 26, no. 10, October 2004.

[19] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmalstieg, “Pose Tracking

from Natural Features on Mobile Phones,” in ISMAR, September 2008.

[20] D. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” IJCV, vol. 20, no. 2,

2004.

[21] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded Up Robust Features,” in ECCV,

2006.

[22] E. Rublee, V. Rabaud, K. Konolidge, and G. Bradski, “ORB: An Efficient Alternative to

SIFT or SURF,” in ICCV, 2011.

[23] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha, and P. Fua, “BRIEF: Com-

puting a Local Binary Descriptor Very Fast,” PAMI, vol. 34, no. 7, pp. 1281–1298, 2012.

[24] P. Alcantarilla, P. Fernández, A. Bartoli, and A. J. Davidson, “KAZE Features,” in ECCV,

2012.

[25] T. Trzcinski, M. Christoudias, and V. Lepetit, “Learning Image Descriptors with Boosting,”

PAMI, vol. 37, no. 3, pp. 597–610, 2015.

[26] A. Collet, M. Martinez, and S. Srinivasa, “The moped framework: Object recognition and

pose estimation for manipulation,” The International Journal of Robotics Research, 2011.

[27] E. Rosten and T. Drummond, “Fusing Points and Lines for High Performance Tracking,” in

ICCV, 2005.

[28] C. Choi, A. Trevor, and H. Christensen, “RGB-D Edge Detection and Edge-Based Registra-

tion,” in IROS, 2013.

[29] K. Pauwels, L. Rubio, J. Diaz, and E. Ros, “Real-Time Model-Based Rigid Object Pose

Estimation and Tracking Combining Dense and Sparse Visual Cues,” in CVPR, 2013.

[30] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, and N. Navab,

“Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in

Heavily Cluttered Scenes,” in ACCV, 2012.

124

Bibliography

[31] V. Prisacariu, A. Segal, and I. Reid, “Simultaneous Monocular 2D Segmentation, 3D Pose

Recovery and 3D Reconstruction,” in ACCV, 2012.

[32] V. Prisacariu and I. Reid, “PWP3D: Real-Time Segmentation and Tracking of 3D Objects,”

IJCV, vol. 98, pp. 335–354, 2012.

[33] G. Chliveros, M. Pateraki, and P. Trahanias, “Robust Multi-Hypothesis 3D Object Pose

Tracking,” in ICCV, 2013.

[34] B. Lucas and T. Kanade, “An Iterative Image Registration Technique with an Application to

Stereo Vision,” in IJCAI, 1981, pp. 674–679.

[35] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active Appearance Models,” PAMI, vol. 23,

no. 6, June 2001.

[36] F. Jurie and M. Dhome, “Hyperplane Approximation for Template Matching,” PAMI, vol. 24,

no. 7, pp. 996–100, July 2002.

[37] C. Mei, S. Benhimane, E. Malis, and P. Rives, “Efficient Homography-Based Tracking

and 3D Reconstruction for Single-Viewpoint Sensors,” TRA, vol. 24, no. 6, pp. 1352–1364,

2008.

[38] S. Lucey, Y. Wang, and J. F. Cohn, “Non-Rigid Face Tracking with Enforced Convexity and

Local Appearance Consistency Constraint,” IJCV, vol. 28, no. 5, pp. 781–789, 2010.

[39] R. Newcombe, S. Lovegrove, and A. Davison, “DTAM: Dense Tracking and Mapping in

Real-Time,” in ICCV, 2011.

[40] P. Besl and N. Mckay, “A Method for Registration of 3D Shapes,” PAMI, vol. 14, no. 2, pp.

239–256, 1992.

[41] D. Meger, C. Wojek, J. Little, and B. Schiele, “Explicit occlusion reasoning for 3d object

detection.” in BMVC, 2011.

[42] B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model Globally, Match Locally: Efficient and

Robust 3D Object Recognition,” in CVPR, 2010.

[43] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J. Kelly, and A. J. Davison,

“SLAM++: Simultaneous Localisation and Mapping at the Level of Objects,” in CVPR,

2013.

[44] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua, and V. Lepetit, “Gradient

Response Maps for Real-Time Detection of Textureless Objects,” PAMI, vol. 34, no. 5, pp.

876–888, 2012.

[45] R. Rios-cabrera and T. Tuytelaars, “Discriminatively Trained Templates for 3D Object

Detection: A Real Time Scalable Approach,” in ICCV, 2013.

[46] S. Hinterstoisser, S. Benhimane, N. Navab, P. Fua, and V. Lepetit, “Online Learning of

Patch Perspective Rectification for Efficient Object Detection,” in CVPR, 2008.

125

Bibliography

[47] K. Lai, L. Bo, X. Ren, and D. Fox, “A Scalable Tree-Based Approach for Joint Object and

Pose Recognition,” in AAAI, 2011.

[48] D. Tan and S. Ilic, “Multi-Forest Tracker: A Chameleon in Tracking,” in CVPR, 2014.

[49] J. Tan, F. Tombari, S. Ilic, and N. Navab, “A versatile learning-based 3d temporal tracker:

Scalable, robust, online,” in ICCV, 2015.

[50] A. Tejani, D. Tang, R. Kouskouridas, and T.-K. Kim, “Latent-Class Hough Forests for 3D

Object Detection and Pose Estimation,” in ECCV, 2014.

[51] A. Doumanoglou, V. Balntas, R. Kouskouridas, S. Malassiotis, and T. Kim, “6d object

detection and next-best-view prediction in the crowd,” in CVPR, 2016.

[52] U. Bonde, V. Badrinarayanan, and R.Cipolla, “Robust instance recognition in presence of

occlusion and clutter,” in ECCV, 2014.

[53] R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohli, J. Shot-

ton, S. Hodges, and A. Fitzgibbon, “KinectFusion: Real-Time Dense Surface Mapping and

Tracking,” in ISMAR, 2011.

[54] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and C. Rother, “Learning 6d

object pose estimation using 3d object coordinates,” in ECCV, 2014.

[55] J. Taylor, J. Shotton, T. Sharp, and A. Fitzgibbon, “The vitruvian manifold: Inferring dense

correspondences for one-shot human pose estimation,” in CVPR, 2012.

[56] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and A. Fitzgibbon, “Scene coordinate

regression forests for camera relocalization in rgb-d images,” in CVPR, 2013, pp. 2930–

2937.

[57] A. Krull, E. Brachmann, F. Michel, M. Y. Yang, S. Gumhold, and C. Rother, “Learning

Analysis-By-Synthesis for 6D Pose Estimation in RGB-D Images,” in ICCV, 2015.

[58] A. Krull, F. Michel, E. Brachmann, S. Gumhold, S. Ihrke, and C. Rother, “6-dof model

based tracking via object coordinate regression,” in ACCV, 2014.

[59] E. Brachmann, F. Michel, A. Krull, M. M. Yang, S. Gumhold, and C. Rother, “Uncertainty-

driven 6d pose estimation of objects and scenes from a single rgb image,” in CVPR, 2016.

[60] A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A Convolutional Network for Real-Time

6-DOF Camera Relocalization,” in ICCV, 2015.

[61] P. Wohlhart and V. Lepetit, “Learning Descriptors for Object Recognition and 3D Pose

Estimation,” in CVPR, 2015.

[62] A. Doumanoglou, V. Balntas, R. Kouskouridas, and T. Kim, “Siamese Regression Networks

with Efficient mid-level Feature Extraction for 3D Object Pose Estimation,” ARXIV, 2016.

[63] U. Bonde, V. Badrinarayanan, R. Cipolla, and M. Pham, “TemplateNet for Depth-Based

Object Instance Recognition,” ARXIV, 2015.

126

Bibliography

[64] J. Koenderink and A. van Doorn, “The internal representation of solid shape with respect to

vision,” Biological cybernetics, vol. 32, no. 4, pp. 211–216, 1979.

[65] A. Kushal, C. Schmid, and J. Ponce, “Flexible Object Models for Category-Level 3D Object

Recognition,” in CVPR, 2007.

[66] J. Liebelt and C. Schmid, “Multi-View Object Class Detection with a 3D Geometric Model,”

in CVPR, 2010.

[67] S. Savarese and L. Fei-fei, “3D Generic Object Categorization, Localization and Pose

Estimation,” in ICCV, 2007.

[68] H. Su, M. Sun, L. Fei-fei, and S. Savarese, “Learning a Dense Multi-View Representation

for Detection, Viewpoint Classification and Synthesis of Object Categories,” in ICCV, 2009.

[69] M. Sun, H. Su, S. Savarese, and L. Fei-Fei, “A multi-view probabilistic model for 3d object

classes,” in CVPR, 2009.

[70] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, “Object Detection with

Discriminatively Trained Part Based Models,” PAMI, vol. 32, no. 9, pp. 1627–1645, 2010.

[71] C. Gu and X. Ren, “Discriminative Mixture-Of-Templates for Viewpoint Classification,” in

ECCV, 2010.

[72] B. Pepik, M. Stark, P. Gehler, and B. Schiele, “Teaching 3D Geometry to Deformable Part

Models,” in CVPR, 2012.

[73] A. Shrivastava and A. Gupta, “Building Part-Based Object Detectors via 3D Geometry,” in

ICCV, 2013.

[74] Y. Xiang, C. Song, R. Mottaghi, and S. Savarese, “Monocular Multiview Object Tracking

with 3D Aspect Parts,” in ECCV, 2014.

[75] N. Payet and S. Todorovic, “From Contours to 3D Object Detection and Pose Estimation,”

in ICCV, 2011.

[76] J. Lim, A. Khosla, and A. Torralba, “FPM: Fine Pose Parts-Based Model with 3D CAD

Models,” in ECCV, 2014.

[77] K. Koser and R. Koch, “Perspectively Invariant Normal Features,” in ICCV, 2007.

[78] S. Gupta, P. Arbelaez, R. Girshick, and J. Malik, “Aligning 3d models to rgb-d images of

cluttered scenes,” in CVPR, 2015.

[79] S. Gupta, R. Girshick, P. Arbelaez, and J. Malik, “Learning Rich Features from RGB-D

Images for Object Detection and Segmentation,” in ECCV, 2014.

[80] M. Aubry, D. Maturana, A. Efros, B. Russell, and J. Sivic, “Seeing 3D Chairs: Exemplar

Part-Based 2D-3D Alignement Using a Large Dataset of CAD Models,” in CVPR, 2014.

[81] H. Su, C. Qi, Y. Li, and L. J. Guibas, “Render for CNN: Viewpoint estimation in images

using cnns trained with rendered 3d model views,” in ICCV, 2015.

127

Bibliography

[82] S. Tulsiani and J. Malik, “Viewpoints and keypoints,” in CVPR, 2015.

[83] X. Peng, B. Sun, K. Ali, and K. Saenko, “Learning deep object detectors from 3d models,”

in ICCV, 2015.

[84] F. Massa, B. Russell, and M. Aubry, “Deep exemplar 2d-3d detection by adapting from real

to rendered views,” in "CVPR", "2016".

[85] G. Klein and D. Murray, “Parallel Tracking and Mapping for Small AR Workspaces,” in

ISMAR, 2007.

[86] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-Scale Direct Monocular SLAM,”

in ECCV, 2014.

[87] R. Mur-Artal, J. Montiel, and J. Tardós, “Orb-slam: a versatile and accurate monocular slam

system,” IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[88] Y. Xu and A. Roy-Chowdhury, “Inverse Compositional Estimation of 3D Pose and Lighting

in Dynamic Scenes,” PAMI, vol. 30, no. 7, pp. 1300–1307, 2008.

[89] G. Silveira and E. Malis, “Real-Time Visual Tracking Under Arbitrary Illumination Changes,”

in CVPR, 2007.

[90] P. Lagger, M. Salzmann, V. Lepetit, and P. Fua, “3D Pose Refinement from Reflections,” in

CVPR, 2008.

[91] A. Netz and M. Osadchy, “Recognition using specular highlights,” PAMI, vol. 35, no. 3, pp.

639–652, 2013.

[92] Z. Zia, M. Stark, and K. Schindler, “Explicit occlusion modeling for 3d object class

representations,” in CVPR, 2013.

[93] E. Hsiao and M. Hebert, “Occlusion Reasoning for Object Detection Under Arbitrary

Viewpoint,” PAMI, vol. 36, no. 9, pp. 1803–1815, 2014.

[94] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cambridge

University Press, 2000.

[95] R. Szeliski, Computer Vision: Algorithms and Applications. Springer, 2011.

[96] F. Grassia, “Practical Parameterization of Rotations Using the Exponential Map,” Journal
of graphics tools, vol. 3, no. 3, pp. 29–48, 1998.

[97] S. Benhimane and E. Malis, “Homography-Based 2D Visual Tracking and Servoing,” The
International Journal of Robotics Research, vol. 26, no. 7, pp. 661–676, 2007.

[98] H.-Y. Shum and R. Szeliski, “Systems and Experiment Paper: Construction of Panoramic

Image Mosaics with Global and Local Alignment,” IJCV, vol. 36, no. 2, pp. 101–130, 2000.

[99] S. Baker and I. Matthews, “Equivalence and Efficiency of Image Alignment Algorithms,” in

CVPR, 2001.

128

Bibliography

[100] G. Hager and P. Belhumeur, “Efficient Region Tracking with Parametric Models of Geometry

and Illumination,” PAMI, vol. 20, no. 10, pp. 1025–1039, 1998.

[101] X. Xiong and F. D. la Torre, “Supervised descent method and its applications to face

alignment,” in CVPR, 2013.

[102] ——, “Global supervised descent method,” in CVPR, 2015.

[103] C. Lin, R. Zhu, and S. Lucey, “The conditional lucas & kanade algorithm,” ARXIV, 2016.

[104] G. Scandaroli, M. Meilland, and R. Richa, “Improving NCC-Based Direct Visual Tracking,”

in ECCV, 2012.

[105] A. Dame and E. Marchand, “Second-Order Optimization of Mutual Information for Real-

Time Image Registration,” IEEE Transactions on Image Processing, vol. 21, no. 9, pp.

4190–4203, 2012.

[106] G. Panin and A. Knoll, “Mutual Information-Based 3D Object Tracking,” IJCV, vol. 78,

no. 1, pp. 107–118, 2008.

[107] N. Dowson and R. Bowden, “A Unifying Framework for Mutual Information Methods for

Use in Non-Linear Optimisation,” in ECCV, 2006.

[108] P. Viola and W. Wells, “Alignment by Maximization of Mutual Information,” IJCV, vol. 24,

no. 2, pp. 134–154, 1997.

[109] R. Brooks and T. Arbel, “Generalizing inverse compositional and esm image alignment,”

IJCV, vol. 87, no. 3, pp. 191–212, 2010.

[110] D. Ngo, S. Park, A. Jorstad, A. Crivellaro, C. Yoo, and P. Fua, “Dense Image Registration

and Deformable Surface Reconstruction in Presence of Occlusions and Minimal Texture,”

in ICCV, 2015.

[111] M. Nguyen and F. D. la Torre, “Metric Learning for Image Alignment,” IJCV, vol. 88, no. 1,

pp. 69–84, 2010.

[112] K. Arya, P. Gupta, P. Kalra, and P. Mitra, “Image Registration Using Robust M-Estimators,”

PR, vol. 28, no. 15, pp. 1957–1968, 2007.

[113] E. Tola, V. Lepetit, and P. Fua, “A Fast Local Descriptor for Dense Matching,” in CVPR,

2008.

[114] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection,” in CVPR,

2005.

[115] L. Sevilla-lara and E. Learned-miller, “Distribution Fields for Tracking,” in CVPR, 2012.

[116] H. Alismail and B. Browning and S. Lucey, “Bit-planes: Dense subpixel alignment of binary

descriptors,” ARXIV, 2016.

[117] S. Oron, A. Bar-hillel, and S. Avidan, “Extended Lucas-Kanade Tracking,” in ECCV,

September 2014, pp. 142–156.

129

Bibliography

[118] Y. Park, V. Lepetit, and W. Woo, “Handling motion-blur in 3d tracking and rendering for

augmented reality,” IEEE transactions on visualization and computer graphics, vol. 18,

no. 9, pp. 1449–1459, 2012.

[119] A. Crivellaro, Y. Verdie, K. Yi, P. Fua, and V. Lepetit, “[demo] tracking texture-less, shiny

objects with descriptor fields,” in ISMAR, 2014.

[120] L. Florack, B. Romeny, M. Viergever, and J. Koenderink, “The Gaussian Scale-Space

Paradigm and the Multiscale Local Jet,” IJCV, vol. 18, pp. 61–75, 1996.

[121] C. Schmid and R. Mohr, “Local Grayvalue Invariants for Image Retrieval,” PAMI, vol. 19,

no. 5, pp. 530–534, May 1997.

[122] I. Laptev and T. Lindeberg, “Local Descriptors for Spatio-Temporal Recognition,” in Spatial
Coherence for Visual Motion Analysis, Lecture Notes in Computer Science, 2006.

[123] A. Larsen, S. Darkner, A. Dahl, and K. Pedersen, “Jet-Based Local Image Descriptors,” in

ECCV, 2012.

[124] S. Lieberknecht, S. Benhimane, P. Meier, and N. Navab, “A Dataset and Evaluation Method-

ology for Template-Based Tracking Algorithms,” in ISMAR, 2009.

[125] V. Lepetit, F. Moreno-noguer, and P. Fua, “EPnP: An Accurate o(n) Solution to the PnP

Problem,” IJCV, 2009.

[126] C. Shannon, “A mathematical theory of communication,” ACM SIGMOBILE Mobile Com-
puting and Communications Review, vol. 5, no. 1, pp. 3–55, 2001.

[127] P. Thévenaz and M.Unser, “Optimization of mutual information for multiresolution image

registration,” IEEE transactions on image processing, vol. 9, no. 12, pp. 2083–2099, 2000.

[128] G. Caron, A. Dame, and E. Marchand, “Direct model based visual tracking and pose

estimation using mutual information,” Image and Vision Computing, vol. 32, no. 1, pp.

54–63, 2014.

[129] M. Rad, “Robust 3D Face Registration in Video Stream,” Master’s thesis, Ecole Polytech-

nique Fédérale de Lausanne, Switzerland, 2014.

[130] S. Song and J. Xiao, “Sliding Shapes for 3D Object Detection in Depth Images,” in ECCV,

2014.

[131] N. Kyriazis and A. Argyros, “Scalable 3D Tracking of Multiple Interacting Objects,” in

CVPR, 2014.

[132] D. Damen, P. Bunnun, A. Calway, and W. Mayol-cuevas, “Real-Time Learning and Detec-

tion of 3D Texture-Less Objects: A Scalable Approach,” in BMVC, 2012.

[133] F. Tombari, A. Franchi, and L. D. Stefano, “BOLD Deatures to Detect Texture-Less Objects,”

in ICCV, 2013.

[134] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based Learning Applied to

Document Recognition,” IEEE, 1998.

130

Bibliography

[135] A. Crivellaro, M. Rad, Y. Verdie, K. Yi, P. Fua, and V. Lepetit, “Robust 3d object tracking

from monocular images using stable parts,” PAMI, 2016, "Submitted for publication".

[136] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet Classification with Deep Convolu-

tional Neural Networks,” in NIPS, 2012.

[137] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Overfeat: Inte-

grated Recognition, Localization and Detection Using Convolutional Networks,” in Interna-
tional Conference on Learning Representations, 2014.

[138] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image

Recognition,” in ICLR, 2015.

[139] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time

object detection,” in CVPR, 2016.

[140] A. Giusti, D. C. Ciresan, J. Masci, L. M. Gambardella, and J. Schmidhuber, “Fast Image

Scanning with Deep Max-Pooling Convolutional Neural Networks,” in ICIP, 2013.

[141] S. Umeyama, “Least-Squares Estimation of Transformation Parameters Between Two Point

Patterns,” PAMI, vol. 13, no. 4, 1991.

[142] G. Welch and G. Bishop, “An Introduction to Kalman Filter,” Department of Computer

Science, University of North Carolina, Technical Report, 1995.

[143] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow., A. Bergeron, N. Bouchard,

and Y. Bengio, “Theano: New Features and Speed Improvements,” in NIPS, 2012.

[144] F. Moreno-noguer, V. Lepetit, and P. Fua, “Pose Priors for Simultaneously Solving Align-

ment and Correspondence,” in ECCV, 2008.

[145] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A Benchmark for the

Evaluation of RGB-D SLAM Systems,” in IROS, 2012.

[146] A. Ude, “Filtering in a unit quaternion space for model-based object tracking,” Robotics
and Autonomous Systems, vol. 28, no. 2–3, 1999.

[147] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and M. Marín-Jiménez, “Auto-

matic Generation and Detection of Highly Reliable Fiducial Markers Under Occlusion,” PR,

vol. 47, no. 6, pp. 2280–2292, 2014.

[148] F. Markley, Y. Cheng, J. Crassidis, and Y. Oshman, “Averaging quaternions,” Journal of
Guidance, Control, and Dynamics, vol. 30, no. 4, pp. 1193–1197, 2007.

[149] D. Eggert, A. Lorusso, and R. Fisher, “Estimating 3D Rigid Body Transformations: A

Comparison of Four Major Algorithms,” Machine Vision and Applications, vol. 9, no. 5-6,

pp. 272–290, 1997.

[150] F. Michel, A. Krull, E. Brachmann, M. Y. Yang, S. Gumhold, and C. Rother, “Pose estimation

of kinematic chain instances via object coordinate regression,” in BMVC, 2015.

[151] H. Glöckner, “Implicit functions from topological vector spaces to banach spaces,” Israel
Journal of Mathematics, vol. 155, no. 1, pp. 205–252, 2006.

131

Professional Experience

•
•
•

Education

Skills and Qualifications

133

Grants & Honors

Academic Projects and Internships

Publications

Other Activities

134

