
Towards Robust Dense Visual Simultaneous Localization

and Mapping (SLAM)

by

Juan M. Falquez

M.Sc., The George Washington University, 2009

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

2018

This thesis entitled:
Towards Robust Dense Visual Simultaneous Localization and Mapping (SLAM)

written by Juan M. Falquez
has been approved for the Department of Computer Science

Professor Christoffer Heckman

Professor Nisar Ahmed

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Falquez, Juan M. (Ph.D., Computer Science)

Towards Robust Dense Visual Simultaneous Localization and Mapping (SLAM)

Thesis directed by Professor Christoffer Heckman

Long-term autonomy is the dream of many roboticists – and if a robotic system can be

split into three main categories: perception, planning and control – then the biggest challenges

to achieve this dream are undoubtedly faced in perception. Large scale environments that change

with time – due to normal operations or even lighting changes – are typical situations the robot

would encounter. As such, a Simultaneous Localization and Mapping (SLAM) system that is robust

enough to handle many of these conditions is desired.

The objective of this dissertation is to present components that would lead to a robust dense

visual SLAM system. It starts by exploring 3D reconstruction algorithms, showing distinctions

between local and global methods and presenting an incremental and adaptive global method

designed to create depth maps as a robot navigates in space.

It then introduces the concept of sensor fusion, where multiple sensors are joined to provide

a higher degree of tracking accuracy. It compares different visual SLAM systems – dense and semi-

dense – and shows how the inclusion of an Inertial Measurement Unit (IMU) aids considerably in

tracking. It then uses this localization framework in a large scale volumetric mapping system, and

shows results for both indoor and outdoor environments using real world datasets.

Finally, it explores different error metrics used in direct photometric optimization – the

foundation of dense tracking systems. It introduces the Normalized Information Distance (NID),

an entropy based metric that is shown to achieve high localization success rate and accuracy even

in the face of extreme lighting differences.

Dedication

To my family.

v

Acknowledgements

My doctorate has been a story of a journey more so than a destination, both in the sense

of research – changing focus area; and location – moving from DC to Colorado. However, all

throughout this journey the people that I have met and left behind have undoubtedly left a mark

in me. From all the professors at The George Washington University who first embarked me on

this journey, to the professors at the University of Colorado who welcomed me and made me feel

at home in Boulder.

I have also been fortunate to have worked with a great group of people in our lab. I am

grateful to all the post-docs that not only have I had the privilege to work with but can also count

as friends. And of course, to all my colleagues in the lab who are too numerous to list here, but each

and everyone have certainly been with me providing guidance and support to carry me through

this long journey.

Finally, I would like to thank my advisor Gabe Sibley for guiding me and having created this

extraordinary research environment that allowed me to meet and collaborate with amazing people

around the world, as well as work on cutting edge projects with top tech companies.

Contents

Chapter

1 Introduction 1

1.1 Thesis Outline . 4

1.2 Publications . 6

2 Preliminaries 7

2.1 Parametric Dense 3D Reconstruction . 8

2.1.1 Local vs Global Methods . 14

2.1.2 Depth Uncertainties . 16

2.2 Dense Visual Tracking . 18

2.2.1 Image Alignment . 19

2.2.2 Forward vs Inverse Approach . 22

2.2.3 Efficient Second Order Minimization . 23

2.2.4 Direct Visual Odometry . 24

2.3 Relative vs Absolute Maps . 30

3 Incremental and Adaptive Front-End Fusion 32

3.1 Introduction . 32

3.2 Background . 33

3.3 Methodology . 35

3.3.1 Incremental . 37

vii

3.3.2 Adaptive . 39

3.4 Results . 40

3.4.1 Timings . 42

3.4.2 Iterative Method . 42

3.4.3 Adaptive Window . 45

3.5 Conclusion . 46

4 Inertial Aided Direct Methods for Robust Visual Tracking 49

4.1 Introduction . 49

4.2 Methodology . 50

4.2.1 Generating Photo-Realistic Visual-Inertial Synthetic Data 51

4.2.2 Visual-Inertial Tracking . 53

4.2.3 Evaluation Method . 56

4.3 Results . 57

4.3.1 Frame-Rate . 59

4.3.2 Shutter Speed . 60

4.3.3 Image Resolution . 60

4.3.4 Pixel Count . 62

4.3.5 Image and Depth Noise . 63

4.3.6 Number of Iterations and Computation Time 64

4.4 Conclusion . 66

5 Large Scale Dense Visual-Inertial SLAM 69

5.1 Introduction . 70

5.2 Rolling Grid Based Volumetric Map . 71

5.3 Visual-Inertial Tracking . 73

5.4 Results . 75

5.5 Conclusion . 77

viii

6 Towards Robust Dense Visual SLAM 80

6.1 Introduction . 80

6.2 Background . 85

6.2.1 Information Entropy . 85

6.2.2 Mutual Information . 86

6.2.3 Normalized Information Distance . 87

6.3 Methodology . 88

6.4 Evaluation Method . 91

6.5 Results . 94

6.6 Conclusion . 99

7 Conclusion 101

Bibliography 104

Appendix

A Lie Group Generators 112

A.1 Special Orthogonal Group SO(3) . 112

A.2 Special Euclidean Group SE(3) . 112

ix

Tables

Table

2.1 Commonly Used M-Estimators . 28

3.1 Algorithm Parameters . 41

4.1 Average Number of Iterations Per Frame . 66

4.2 Average Estimation Time Per Frame . 66

6.1 NID-GN Configurations . 94

6.2 Successful Estimates for Tsukuba Dataset . 94

6.3 Successful Estimates for ETHZ-CVG Dataset . 97

Figures

Figure

1.1 Dense techniques are robust against extreme motion blur and specular reflections,

as seen in the images on the bottom left and center. The reconstructed depth map

using a stereo algorithm is seen on the bottom right. Dense approaches are also

globally accurate leading to better overall tracking results. 2

2.1 A typical General Purpose Graphical Processing Unit (GPGPU) has thousand of

cores, each capable of computing a set of instructions called a kernel. One of the

largest GPU manufacturers is NVIDIA Corporation, and GPU above is based on

their latest Pascal architecture: the GTX 1080Ti with 3584 cores. Image from

NVIDIA Corporation, http://www.nvidia.com/ . 8

2.2 Multi-view reprojection of a feature onto a stereo rig. The focal points of the left

camera (a) and right camera (b), along with the 3D point of the feature, create

a plane that cuts the image planes creating the epipolar line [dotted line in (b)].

The 3x3 patch of the feature is compared with pixels on the epipolar line to find

the correspondence that, along with the baseline, is used to calculate depth. With

Structure from Motion (SfM), the baseline can be considered as a transform through

time (c). 10

xi

2.3 Census example: (a) Shows a 3x3 section of the image, while (b) is the output of the

census transform for this patch. The center pixel is compared against its neighboring

pixels, yielding an 8-bit binary signature of ”00111100”. The choice of operator { <,

<=, >, >= } and the order of the bit encoding does not make a difference, as long

as it is consistent throughout its use. 12

2.4 A synthetic dataset (a) generated to simulate data captured from a monocular cam-

era operating on an Unmanned Aerial Vehicle (UAV) flying around a structure. The

resulting depth map estimated using DTAM (b), and the covariance extracted using

the method above (c). Areas with low texture have higher uncertainty, as expected. 18

2.5 The template image is initialized at a particular pixel position in the input image. As

the image alignment algorithms iterates, the template image is warped (translated,

rotated, scaled, skewed, etc.) over the input image until convergence. 20

2.6 The relative map is comprised of frames connected via edges (yellow line on the

map). During normal operation, the system accumulates drift (left) that is quite

noticeable during a loop closure event (right). 30

2.7 After a loop closure is detected, the system performs a pose graph relaxation which

globally reduces the error in the map. 31

3.1 Block diagram of the system. An image is first captured, and then the relative

pose is estimated using whole image alignment. Given this pose, the cost volumes

are transformed and the photometric error with the current image is added to the

volume. Finally, scene depth values are estimated through the optimization. 37

xii

3.2 A top down view of the cost volume at frame N (a) and a visual depiction of how

the cost volume is transformed to a new cost volume at frame N+1 (b). Darker

areas correspond to smaller photometric errors, indicating a surface. These values

are mapped via a trilinear interpolation onto the new cost volume in (c). Any voxels

of the cost volume in frame N+1 which are not contained in the previous cost volume

are marked as invalid. 38

3.3 Example of how the cost volume is expanded or contracted depending on estimated

inverse depth ranges from the sparse tracker. A trilinear interpolation is used to

expand/reduce the cost volume. 40

3.4 Mean Error versus ω as it contributes to the incremental update of the cost volume.

A value of 1.0 would yield the maximum contribution. 41

3.5 Images from the Tsukuba sequence with their corresponding depth maps generated

with this approach. The first depth map is of inferior quality, as it corresponds to

the start of the sequence where there is limited data and little movement. 43

3.6 Precision and completeness curves of the algorithm versus a 30 frame windowed ver-

sion of DTAM. Precision is the percentage of estimates that are within certain error

from the ground truth. Completeness is the percentage of ground truth measure-

ments that are within certain error of estimated depth values. 44

3.7 Mean depth error of DTAM versus this method with respect to the number of com-

parisons performed, where the aggregation of the incremental cost volume counts as

an extra comparison. 45

3.8 Mean depth error for this algorithm (red) and DTAM (green) running under the

same time constraint; the equivalent of using two image comparisons. 45

3.9 (a) shows scene minimum and maximum depths per frame in the Tsukuba dataset.

(b) shows how the mean error is improved by using an adaptive window. 46

xiii

3.10 Point cloud (a), depth map (b), created from images (c) in a live data sequence using

this algorithm. The scene depicts a camera scanning a bookshelf in a living room

environment. High levels of fidelity, as those provided by volumetric approaches to

3D reconstruction, are important for robotic interaction in indoor environments. . . 47

4.1 Examples of photo-realistic images generated by POV-Ray using the University of

Colorado’s Janus supercomputer at different frame-rates: (a) 15 FPS, (b) 30 FPS,

(c) 60 FPS and (d) 120 FPS. To model motion blur, the luminance integration is

done in irradiance space and then transformed back to intensities. 51

4.2 A windowed bundle adjuster takes frame-to-frame relative estimates, and its cor-

responding covariance, as binary constraints and jointly optimizes poses with inte-

grated inertial measurements. The sensor rig calibration file, which contains camera

intrinsics as well as the camera-to-IMU transform, is also provided. 55

4.3 A comparison segment is the metric used to compare different camera frame rates,

with the minimum size being set by the slowest frame rate: 15 FPS. Thus, at 15

FPS the comparison segment is comprised of only 1 odometry segment, for 30 FPS

it is composed of 2, for 60 FPS it is composed of 4, up to 8 odometry segments for

the 120 FPS case. 57

4.4 Figure (a) shows the figure-8 trajectory used in all experiments, with blue being the

ground truth trajectory and light blue being the estimated trajectory. Figure (b)

shows the edges of the scene in Figure 4.1 which are the only pixels used in the

semi-dense implementation. 58

4.5 Frame-Rate vs Error: Rotation (a) and translation (b) errors at different frame-rates.

(Logarithmic scale in the Y-axis.) . 59

4.6 Shutter Speed vs Error: Shutter speeds/exposure times are adjusted for a high frame-

rate camera in order to effectively lower its capture rate and simulate blur. (Loga-

rithmic scale on both axes.) . 61

xiv

4.7 Image Resolution vs Error: Trajectory error at different image resolutions. (Loga-

rithmic scale on the Y-axis.) . 61

4.8 Pixel Count vs Error: The graph shows the pixel contribution for the visual odometry

engine’s optimization against the trajectory error. 62

4.9 Noise vs Error: Pose errors as noise is added to the image (a) and depth map (b).

Unlike in most of the previous experiments, fully dense methods seem to perform

poorly when sufficient noise (σ > 0.06) is added to the depth map. 65

5.1 An example of the Grid SDF. In this example, the grid is comprised of (8 ∗ 8 ∗ 8)

cells. The GPU memory of a cell is not initialized (gray cells) until there is actual

information available, in which case a small voxel sub-cube is initialized (red cells).

This allows for an efficient use of memory to only areas where there is actual depth

information. 72

5.2 After system initialization, the proposed system localizes the pose of cameras and

incrementally reconstructs the scene with a rolling SDF scheme. Portions of the

scene that are out of the camera view will be streamed from the GPU memory to

the CPU memory (or the hard disk) directly. 73

5.3 Errors from the vision system (ev) are formed by compounding the estimated relative

transforms with world poses. Similarly, inertial errors (eI) are formed by integrat-

ing inertial measurements. Uncertainties (shown as ellipsoids) are used to weigh in

residuals for the estimation of the state parameters: world poses comprised of a trans-

lation (p) and rotation (q) vector (Xwp = [pwp qwp]
T), velocities (Vw), accelerometer

biases (ba) and gyroscope biases (bg). 75

5.4 The stereo camera pair and IMU sensor head on top of the Clearpath Husky robotic

platform. This particular system is not autonomous, but is operated remotely via

joystick. 76

xv

5.5 An example of the reconstruction result for an indoor office scene (a) and a top-down

view of the final map of the trajectory (b). 78

5.6 An example of the reconstruction result for an outdoor scene from 7000 stereo frames

(approximately 75 million vertices). a - b) Reconstruction detail of a scene with

both shadow and harsh illumination, and snow on the ground. c) An overview of

the camera path. 79

6.1 Example images of the same scene with two illumination profiles: an indoor office

fluorescent lighting, and one with bright sunlight coming from the window (Tsukuba

dataset). 82

6.2 The resulting error images of the photometric optimization: (a) pure direct photo-

metric image alignment with no robust lighting technique, (b) with zero-normalized

cross correlation and (c) with global affine illumination. The blue-red heatmap high-

light areas with high (red) and low (blue) errors, with pixels rejected by the robust

norm marked as yellow, and pixels discarded due to under/over saturation marked

as black. 83

6.3 Entropy diagrams of two non independent random variables. The information com-

mon between the two random variables is called mutual information, and is denoted

as I(X;Y). 87

6.4 Two cases which have the same mutual information I(X1;Y1) = I(X2;Y2) (purple

areas), yet with different joint entropies H(X1, Y1) 6= H(X2, Y2) (captured by the

brackets). 88

6.5 The image is split into cells, for each of which the NID cost is computed. This grid

approach also has the advantage that due to the cell spatial distribution, inconsisten-

cies can be down-weighted or rejected since the histograms generated are restricted

to only a particular area of the image. 89

xvi

6.6 The grid cell approach preserves the histogram consistency regardless of reprojection

errors due to incorrect depth estimates or outliers, like for example new objects in

scene. For the case of the whole image NID, the final histograms between the top

and middle row will not match correctly. With the grid cells, however, the cells that

are affected can easily be down-weighted or rejected and as such preserve the original

histogram (bottom row). 91

6.7 Example images from the ETH Zurich - CVG dataset. Light transitions (on/off)

occur throughout the camera trajectory, and for each such pair the reference and

live images are alternated, thus yielding 2 test cases for every image pair. 93

6.8 Sample images from the Tsukuba daylight sequence that experience extreme over

saturation, and thus, data loss. 95

6.9 Average/max/min estimation time (in seconds) between the different NID algorithms

for the Tsukuba dataset. The red dotted line represents the BFGS average. 96

6.10 Average/max/min translation error (in meters) and rotation error (in radians) be-

tween the different NID algorithms for the Tsukuba dataset. 96

6.11 Average/max/min estimation time (in seconds) between the different NID algorithms

for the real world dataset. The red dotted line represents the BFGS average. 98

6.12 Average/max/min translation error (in meters) and rotation error (in radians) be-

tween the different NID algorithms for the real world dataset. 98

Chapter 1

Introduction

Simultaneous Localization and Mapping (SLAM) has been a well-studied topic for the last

couple of decades. Even so, researchers around the world are still developing new approaches today.

This is in part possible by advancements in technology, not only in terms of computational power

but also with the introduction of new sensors like for example, Light Detection and Ranging devices

(LIDARs) or structured-light/time-of-flight cameras.

One of the earliest autonomous navigation systems was the Stanford Cart, developed by

Hans Moravec [64] in 1979 as completion for his doctoral work. The system utilized a single TV

camera that, by sliding it on a 50cm track, created stereoscopic views. These were then used to

create a map, extracting 30 features and finding their correlation over multiple views. The features

were then triangulated to estimate their 3D position, which were then used to estimate the cart’s

position. Systems like these, where only a sparse set of features are tracked over time, were popular

decades ago in particular for their relative low use of processing power.

In recent years, however, a significant shift has been made by the SLAM community towards

the use of what are called dense methods. Unlike their sparse counterpart, where features were

indirectly matched through visual codes called descriptors, dense algorithms operate directly over

the whole image. This has many advantages both in terms of tracking and mapping.

For instance, dense methods have been proven to be robust against extreme motion blur as

seen in work published by [70] and [56], and seen in Figure 1.1. Furthermore, while sparse methods

are very sensitive to outliers, the use of the full image for tracking makes dense methods particularly

2

robust against adverse sensing conditions. It also has the extra benefit that, given they require a

full 3D reconstruction of the scene, dense systems lead to better and more complete maps as shown

by [69], [84], [44] and [106].

Figure 1.1: Dense techniques are robust against extreme motion blur and specular reflections, as
seen in the images on the bottom left and center. The reconstructed depth map using a stereo
algorithm is seen on the bottom right. Dense approaches are also globally accurate leading to better
overall tracking results.

Dense methods, however, suffer from some drawbacks; the most notable one being that they

are computationally very expensive. Sparse methods operate on a few hundred pixels for each

image. In contrast, dense methods need to process over 300,000 pixels for a 640x480 resolution

image, which quickly becomes intractable as the image resolution is increased.

Nevertheless, the advances in General Purpose Graphics Processing Units (GPGPUs) in the

past few years and the highly parallelizable nature of the SLAM problem has allowed researchers

3

to develop implementations capable of running in real-time like those developed by [105], [104] and

[71]. Real-time performance is of great importance in many fields, particularly robotics. Many

state of the art algorithms in computer vision, like those used for image segmentation for example,

often require hours to process individual frames. Although the results are often impressive, the time

requirements of these algorithms prevent their usage in robotic platforms. The trade-off between

precision versus performance has always been a compromise roboticists have had to make.

This is evident with a new and recent line of research that focuses on what are called semi-

dense methods. Like dense, they are a direct method that operate over photometric data. However,

the main difference lies in the amount of pixels used: semi-dense only employs pixels with high

information (i.e. high gradient areas of the image). The results shown by the work of [22] and [21],

and studied in detail in Chapter 4, show that its tracking performance is comparable to fully dense

methods. One of the downfalls of semi-dense, however, is that it is not capable of providing a full

reconstruction of the scene which is often a necessity in some robotic tasks like manipulation, path

planning or obstacle avoidance.

Recently, multi-modal approaches to SLAM have become the norm. In these cases, the system

not only operates with visual information from cameras but also fuses other sensor information

like Inertial Measurement Units (IMUs), Light Detection and Ranging devices (LIDARs), Global

Positioning System (GPS), wheel odometry, etc. These systems not only show higher accuracies

but also resilience to failures that would affect a single sensor system if it were exposed to adverse

conditions sensitive to that particular sensor [56].

Even more recent, long-term autonomy – both in the areas of mapping and tracking – has been

an area of great interest, in particular studying its effects on dense systems. The main limitation

of dense algorithms is that they operate directly on photometric information, which means they

are extremely sensitive to any change in illumination. Since scene lighting changes with time, this

is an intrinsic problem pertinent to long-term autonomy. Recent techniques have been created to

mitigate some of these problems, yet this is still an area of active research area.

The objective of this thesis is to go down the journey of dense visual SLAM, starting with its

4

foundations – the theory behind dense 3D reconstruction, the concept of whole image alignment,

the different implementations and metrics used in visual-only systems, and then continue towards

more robust versions of dense visual SLAM which make use of multiple sensors jointly optimized

in what is often called sensor fusion.

This work provides a roadmap for a robust dense visual SLAM system that could be applied

to a robotic platform. As such, it is imperative that all the algorithms presented here are capable

of operating close to real time and on computing platforms that can be stored on board the robot

itself. There is a long journey between theory and practice, especially when attempting to close

the loop: that is, to have a truly autonomous system capable of sensing, planning and acting. This

thesis will only scratch the surface of a fully autonomous robot designed for long-term autonomy,

focusing only on the perception component of it – specifically, the mapping and localization.

1.1 Thesis Outline

Chapter 2 provides a theoretical background that covers the basic concepts necessary to

better understand subsequent chapters. It will first start by explaining the concepts of dense 3D

reconstruction, providing a quick survey between local and global methods and briefly explaining a

technique to obtain depth uncertainties for global methods. It will then go into the theory behind

dense visual tracking, talking about the image alignment algorithm which is the basis for all direct

methods for visual tracking. A quick overview of the forward and inverse compositional approach

is presented, and the Efficient Second Order Minimization technique is derived which speeds-up

convergence when performing image alignment. Finally, a quick distinction is performed between

different mapping representations; specifically, a global versus relative representation. This chapter

is particularly important as it familiarizes the reader with the notational conventions and equations

commonly used throughout this thesis.

Chapter 3 presents an incremental and adaptive front-end fusion system capable of provid-

ing accurate 3D reconstructions of the world using a monocular camera. The algorithm expands

on previous volumetric variational approaches for 3D reconstruction by providing two main key

5

features. The first is a novel incremental method for updating the cost volume which removes the

need of keeping hundreds of multi-view comparison images, thus reducing the overall processing

time and memory storage of the system. The second feature is a method for dynamically adapting

the minimum and maximum depth limits of the cost volume as it adjusts to changes in scene depth,

thus achieving optimum resolution in the 3D reconstruction.

Chapter 4 gives an evaluation of different direct methods for computing frame-to-frame mo-

tion estimates of the most commonly used multi-sensor rig: a camera capable of providing images

and depth maps, and an inertial measurement unit (IMU). In particular, semi-dense and fully dense

tracking methods – with and without the aid of an IMU – are compared to see how they perform

with respect to changes in image resolution, shutter speed, frame-rates, as well as image and depth

noise. This chapter starts to give insight into how the addition of multiple sensors can lead towards

robust dense visual SLAM.

Chapter 5 jumps into an actual implementations of multi-sensor dense SLAM. It presents a

visual-inertial system capable of mapping large areas using a clever volumetric map representation

that only allocates memory when needed. One of the limitations of this representation, however,

is that it only stores geometric information and not the actual photometric information necessary

for map registration. Crucially, the system is able to leverage inertial measurements for robust

tracking when visual measurements do not suffice. Results demonstrate effective operation with

simulated and real data, and both indoors and outdoors under varying lighting conditions.

Finally, Chapter 6 tackles the problem of making visual SLAM more robust to extreme

illumination changes by comparing tracking algorithms that use different error metrics. A novel

algorithm is introduced which speeds-up considerably the computation time of a whole image

alignment optimization using the Normalized Information Distance (NID) metric, an entropy based

metric proven to be robust to illumination changes.

All of these chapters together create the components necessary to achieve robust dense visual

simultaneous localization and mapping.

6

1.2 Publications

Most of the work described in this thesis appeared in the following publications:

Incremental and Adaptive Front-End Fusion [27]

Juan M. Falquez, Vincent Spinella-Mamo and Gabe Sibley

IEEE International Conference on Robotics and Biomimetics (ROBIO) 2014

Large Scale Dense Visual Inertial SLAM [56]

Lu Ma, Juan M. Falquez, Steve McGuire and Gabe Sibley

International Conference on Field and Service Robotics (FSR) 2015

Inertial Aided Dense & Semi-Dense Methods for Robust Direct Visual Odometry [26]

Juan M. Falquez, Michael Kasper and Gabe Sibley

IEEE International Conference on Intelligent Robots and Systems (IROS) 2016

Robust Dense Visual SLAM Using Spatially Consistent Normalized Information Distance

Juan M. Falquez and Christoffer Heckman

Under submission, International Symposium on Experimental Robotics (ISER) 2018

and was developed in part while collaborating with the following industrial partners:

Toyota - Autonomous Vehicle Research Program

Research grant for robust perception for autonomous driving.

MITRE Corporation

Research grant for uncertainty estimation for joint dense structure from motion.

Google - Advanced Technology and Projects (ATAP)

Project Tango, a mobile platform for indoor navigation, 3D mapping and augmented reality.

Canvas Technology

Autonomous mobile vehicle for end-to-end delivery of goods in industrial settings.

Chapter 2

Preliminaries

This chapter will present the notational conventions and equations commonly used through-

out this thesis, as well as briefly provide a background of some core concepts necessary to better

understand the work presented here. In particular, two areas will be covered: parametric dense 3D

reconstruction and whole image alignment. Both of these concepts go hand-in-hand, since together

they form the basis of dense visual tracking.

As it will be seen in subsequent chapters, the quality of depth maps provided by the 3D

reconstruction algorithms directly affect the accuracy of the localization system. Furthermore, for

robotic applications the accuracy and completeness of the depth maps is of great important since

they provide a geometric understanding of the scene the robot is operating on; they are used to

figure out how to manipulate objects, how to traverse through a particular area, what are obstacles,

etc.

With regards to whole image alignment, a quick survey will be presented starting with tem-

plate matching, then explaining the forward and inverse compositional/additive approaches for the

optimization, going through the efficient second order minimization technique which speeds up con-

verge, and finally presenting particular implementations of systems that use whole image alignment

in different modes for visual tracking.

8

2.1 Parametric Dense 3D Reconstruction

Cameras are great sensors to use in robotic platforms, since they capture a massive amount

of data of the scene the robot is operating in. Cameras with millions of pixels are the norm these

days, in particular due to their relatively inexpensive price. In contrast, LIDARs can cost up to

tens of thousands of dollars and provide a much sparser view of the world – typically 32 to 64

beams.

With this amount of data, however, comes a very high computational cost. Processing

millions of pixels is time consuming, though thankfully, with the recent adoption of General Purpose

Graphical Processing Units (GPGPUs) and the high parallelizable nature of many computer vision

algorithms, it is now possible to process this amount of information in real time.

Figure 2.1: A typical General Purpose Graphical Processing Unit (GPGPU) has thousand of cores,
each capable of computing a set of instructions called a kernel. One of the largest GPU manufac-
turers is NVIDIA Corporation, and GPU above is based on their latest Pascal architecture: the
GTX 1080Ti with 3584 cores. Image from NVIDIA Corporation, http://www.nvidia.com/

With GPUs, the algorithm can now be split by the amount of cores available effectively

having one core perform computation over one pixel; be that for reconstruction, or state estimation.

Comparing this to typical CPUs where the highest core count is 8 or 16 if hyper-threaded, it is

clear how the orders of magnitude increase of cores has pushed the boundaries of computer vision

in the past years.

9

This is particularly true for 3D reconstruction algorithms, which allow the estimation of the

geometry of the scene – for each pixel – based on multiple camera views. These views can be

comprised of a rig that synchronizes multiple cameras separated by a fixed and known baseline

(for example, a stereo camera rig), or a single moving camera that creates a baseline through time.

This last method of reconstructing a scene is often called Structure from Motion (SfM).

Regardless of the rig used, the basis of all 3D reconstruction algorithms is the same: the

correlation between one pixel in one image is found with that of another image from a different

viewpoint, and given these two measurements and their baseline, a simple triangulation calculation

can be performed to infer depth. Several metrics can be used to find the best match, but the most

common one is a direct comparison of the photometric value of each pixel via absolute differences

or squared differences. However, because a pixel is such a small discretization of space – especially

in high resolution cameras – a support region is often used to disambiguate them. For example, a

3x3 ”patch” centered around the pixel can then be compared using the Sum of Absolute Differences

(SAD), by which all the differences in pixel intensities within the support region are summed. The

minimum score is considered the best match for this particular pixel.

To understand better 3D reconstruction algorithms, a fundamental concept in multi-view

geometry is required and that is the idea of the epipolar line. Figure 2.2 shows images from a

stereo rig, in which a feature in 3D can be seen projected on two images. The two focal points

of each camera, which is the point at which the light rays meet, and the 3D point in space for

the observed feature, create a plane that cuts through both image planes. The intersection of this

plane on the image plane is a line, which is the epipolar line. The importance of this line is that:

an observed feature in one image is guaranteed to be found on the epipolar line of the other image

– assuming the feature is in view.

In general, 3D reconstruction algorithms perform an exhaustive search which makes them

very inefficient. By using the concept of the epipolar line, however, the search can be constrained

only to this line rather than the whole image. This is still computationally expensive, since the

10

Figure 2.2: Multi-view reprojection of a feature onto a stereo rig. The focal points of the left
camera (a) and right camera (b), along with the 3D point of the feature, create a plane that cuts
the image planes creating the epipolar line [dotted line in (b)]. The 3x3 patch of the feature is
compared with pixels on the epipolar line to find the correspondence that, along with the baseline,
is used to calculate depth. With Structure from Motion (SfM), the baseline can be considered as
a transform through time (c).

support region patch is slid along this line to find the best match. Higher patch sizes provide better

support regions, but at a cost of a higher computational cost. For example, at the most typically

used patch size of 3x3, there are still 9 comparison needed to be made per pixel.

This is exacerbated even more when not using rigs with a fixed baseline. In a dual camera

stereo rig for example, the camera extrinsics – that is, their 6 degree of freedom translation and

rotation (pose) – are previously estimated and an image warp is performed via a pre-computed

Lookup Table (LUT) such that the epipolar lines fall on the same row for each image. This process

is called scan-line rectification. Thus, if a feature is observed in a particular row on the left image,

the epipolar plane cuts the right camera’s image plane on that same row. This has many advantages:

the first, the memory is kept contiguous and bounded by maximum one row. The second and most

11

important advantage is that no linear interpolations for the pixels are necessary. The patch is

slid over the other image exactly at the center of each pixel coordinate, thus the differences can

be performed over each pixel as is. If, however, the cameras were rotated in such a way that the

epipolar line no longer traverses a single row but encompasses multiple rows, an interpolation is

required for all the pixels in the patch. In the case of the 3x3 patch, a bi-linear interpolation for

each of the 9 pixels times the total amount of pixels in the image can quickly become intractable.

Aside from computational limitations, parametric 3D reconstruction algorithms suffer from

other challenges. Illumination changes, in particular with moving camera or a rig with an extremely

wide baseline, can be very difficult to overcome. Since the Sum of Absolute Difference (SAD) or Sum

of Squared Differences (SSD) scores each patch directly by their photometric value, illumination

changes due to light variations or multi-path phenomena (like for example glare) can often mis-

correlate pixels such that their estimated depth is incorrect.

Several techniques exist to alleviate illumination changes in scenes, like for example applying

Zero Normalized Cross Correlation (ZNCC) by which the scene’s mean intensity is subtracted to

each pixel which in turn is then divided by the standard deviation. This aids in adjusting the

brightness of the image due to variations in lighting and exposure conditions.

Another similar technique is called Global Affine Illumination (AI) [49]. In this method, two

extra parameters are added to the optimization: a scale α and a bias β parameter that is applied to

each pixel ~u with intensity value I such that the new intensities I∗ are adjusted as seen in Equation

2.1:

I∗(~u) = (1 + α)I(~u) + β (2.1)

Both of these techniques have a major drawback in that they assume that the illumination

change is globally consistent. It is often the case that lighting conditions affect the scene differently

in different areas, depending on the geometry of the scene (e.g. multi-path), the camera position

(e.g. non-lambertian reflections) or the material properties of the objects within it (e.g. albedo).

12

Therefore, adjusting the photometric values globally throughout the image would not capture these

intricacies.

A technique that precisely tries to overcome this limitation, and is by far one of the most

robust techniques available, was introduced by Zabih and Woodfill in 1994, called the census trans-

form [109]. Whereas the Sum of Absolute Difference (SAD), or even the Sum of Squared Differences

(SSD) directly operate over the photometric values of pixels, census converts each pixel into a bi-

nary signature that encodes whether a pixel’s photometric value is lower or not compared to its

neighboring pixels. This has the advantage that it encapsulates local consistencies of illumination

changes, rather than assuming a global illumination transform.

For example, in the case of a 3x3 patch, the center pixel is compared with its 8 neighboring

pixels to create a binary signature as seen in Figure 2.3.

(a) (b)

Figure 2.3: Census example: (a) Shows a 3x3 section of the image, while (b) is the output of
the census transform for this patch. The center pixel is compared against its neighboring pixels,
yielding an 8-bit binary signature of ”00111100”. The choice of operator { <, <=, >, >= } and
the order of the bit encoding does not make a difference, as long as it is consistent throughout its
use.

Given the fact that each pixel is now a binary signature, a direct subtraction can no longer

be applied to find correlations. This is due to the fact that the position of the bits no longer has

any meaning, but rather the actual value of the bit itself. Thus, the Hamming distance is used as

a metric of similarity by which the number of matching bits in the binary signature are counted in

order to provide the final score.

Even with robust techniques such as census, mismatches can still occur in many cases. This

13

could be due to ambiguity in the scene (repeated patterns, texture-less areas, etc), or simply by the

existence of depth discontinuities at occlusion boundaries. In the latter case, given the movement

of the camera, it is often the case that certain features around the occlusion boundary appear in

one image but not in the other. Therefore, the mis-correlations are not due to mis-matches but

rather the lack of valid data altogether for the feature being matched.

As such, it is important to have methods that can detect or at least mitigate when incor-

rect depth estimates are performed. One such technique is what is called left-right matching, or

sometimes called jealous matching. With this method, not only is the pixel on one image matched

against another, but the converse is also applied. In the case of a stereo rig, for example, if the

left camera is the reference camera then the pixel on the left image is matched against those in the

right. When a match is found, the reverse occurs: the matched pixel on the right image is now

used to find a match against the left image. If on both passes, the left-to-right and right-to-left

pixel coordinates agree, then the match is considered valid. This is a very reliable method, but

sadly incurs a high computation cost since in effect now each correlation search is doubled.

Another technique which is less expensive but similarly effective is filtering out matches that

are ambiguous. With this technique, not only is the best score kept but also the second-best score.

If the best score is not sufficiently different with respect to the relative error with the second-best

score, then the whole match is discarded. This technique is particularly good in scenes where there

is a lot of aliasing in the image (for example, repeated patterns often found on carpets), or on the

other hand, in cases where there is extremely low texture (like for example, a white wall).

There is a balance between rejecting and accepting matches, since it has a direct effect in

the completeness of the depth map generated for the scene. Completeness measures how ”full” the

depth map is: for images of a particular resolution, there is an expectation that the all pixels that

reproject onto two or more image views have an estimated depth associated with it. The ratio of

actual depth estimates versus total pixels is the completeness of the depth map.

Precision is also an important factor since it measures how good the depth estimates are.

Completeness and precision curves are typical metrics used in 3D reconstruction algorithms, since it

14

is important to have both precise and good coverage of the scene especially for robotic applications.

More of these metrics will be seen later in Chapter 3.

2.1.1 Local vs Global Methods

It should also be noted that dense 3D reconstruction algorithms can be broadly classified into

two categories: local and global methods. Local methods work over a small support region and

typically are faster at the cost of being less accurate. So far, the theory explained in this section

is the basis of local methods where correlations are found. For example, an actual implementation

of a local method is the Efficient Large-Scale Stereo Matching (ELAS) [35] algorithm.

This algorithm still performs a search over the epipolar line, but it takes advantage of first

estimating depth for a sparser subset of highly salient features – that typically are better for

correlations – and creating a triangular surface that connect these features in the image. This

triangle is used as a prior, restricting the search window for those pixels within it to the depth

values of the previously estimated salient features (i.e. the vertices of the triangle). By limiting

the search space, the algorithm can perform fast depth estimates, even for high resolution images,

in real-time.

In contrast to local methods, global methods minimize a global cost/energy function that

combine data and smoothness terms that take into account the whole image. The data term is the

information available from the images themselves, and as such is similar in this respect to local

methods. While in local methods a patch is used around each pixel, in global methods only the pixel

itself is used as data. This alleviates some of the problems at occlusion boundaries, but also loosens

the depth estimation by not having a support region. This is where the smoothness term comes

in, which is a regularizer term in the optimization and which connects each pixel of the image with

each other – thus, each depth estimate is no longer independent, but it is interconnected through

this term to the rest of the pixels in the image. As such, global methods are very accurate, but are

also more computational and memory intensive than their local counterpart.

Some examples of global methods seen later in this work are Dense Tracking and Mapping

15

(DTAM) [70] and Semi-Global Matching (SGM) [40].

DTAM works by creating a cost volume for a particular scene, and then having a single moving

camera capture multiple viewpoints at different baselines. These images are then aggregated in the

cost volume, where each slice of the volume corresponds to a depth hypothesis. An optimization

is then performed over this cost volume, finding the minimum cost for both the data term (actual

pixel difference) and the smoothness term. For DTAM, and for many other 3D reconstruction

algorithms, the smoothness term is a constraint added to each pixel such that the depth or disparity

value estimated for that pixel should be similar to those pixels around it; in short, it penalizes depth

discontinuities. The assumption is that depth in the scene is smooth, and that the values of depth

for pixels close to another should be similar. For DTAM in particular, the smoothness term is

weighted based on the gradient of the image: this smoothness constraint is loosened if the gradient

is high, thus it assumes that neighboring pixels close in intensity should have similar depth values.

A limitation of DTAM is that its 3D reconstruction capabilities are bounded to this initial

cost volume, which is not resized nor does it move in space. In Chapter 3, a variation of DTAM

is presented called Incremental and Adaptive Front-end Fusion (IAFEF) which is capable of both

incrementally updating the cost volume as the camera moves through the environment and also

adaptively change its minimum and maximum bounds to capture changes in scene depth.

Semi-Global Matching (SGM), unlike DTAM, does not require multiple views of the scene

but typically operates only with an image pair from a stereo rig. As such, it can take advantage of

the scan-line rectification to quickly correlate pixels and, like other algorithms, uses a smoothness

term that penalizes discontinuities – in this particular case, disparity discontinuities. Also, while

DTAM’s error is directly calculated based on the photometric information of each pixel, SGM

uses the census transform and Hamming distance as the error metric. Finally, the novel approach

of SGM is the way the algorithm operates: it computes the cost along several paths and then

aggregates them at the end. The typical SGM implementation performs eight different sweeps on

the reference image, two horizontal ones (left and right), two vertical ones (up and down), and four

diagonal ones. Thus, the algorithm can easily be parallelized by running each path independently

16

in a multi-core architecture.

2.1.2 Depth Uncertainties

Having already generated depth maps, the next step is to find an uncertainty for each depth

value. A way to achieve this is to formulate a joint cost function from all images that contribute

to the depth estimation, and use a non-linear optimization solver to minimize the total reprojec-

tion cost between the reference image and all other images that have seen the same point. The

photometric reprojection cost which minimizes the difference between the reference image Ir and

support images Is, is given by:

rR =
∑

s

∑

i

Is(F(Tsr[uir ρ(uir)]
T))− Ir(uir) (2.2)

where F is the nonlinear camera projection function going from 4D coordinates to a 2D pixel

location, [uir ρ]T is a 4D homogenous vector comprising of the 3D back-projected ray and the

inverse depth, Tsr is the transform from the reference frame to the support frame, uir is the ith

ray of the reference frame and ρ(uir) is the inverse depth along the ray uir. Tsr is represented as

a 7 degree of freedom SE3 transform: a 4 degree of freedom rotation (quaternion notation) and a

3 degree of freedom translation.

The double sum indicates that the residual is formed by projecting every point of the reference

image into all other support images that have seen that point to form the photometric error. In the

case of an algorithm that uses a stereo rig (e.g. ELAS or SGM), this would be simply the reference

image (left image) reprojected onto only one support image (right image). For DTAM or IAFEF,

the number of support images would be much higher (tens to hundreds).

The smoothness term in the global methods add an additional term, the depth map regular-

izer, which serves to ensure that areas with low gradient information are estimated based on the

high gradient areas that surround them. In the case of DTAM, for example, to properly reflect

the uncertainties associated with the generated depth map, the denoising cost terms must also

17

be included in the total residual. The depth map regularization residual for DTAM is defined as

follows:

rD =
∑

i

g(uir)∇ρ(uir) (2.3)

where ∇ρ(uir) is the gradient of the depth map evaluated at ray uir and g(uir) is a term that

modulates the influence of the regularization based on the image gradient. As explained previously,

this modulation term serves to reduce the influence of the regularization term where there are strong

image gradients, as they may correspond to edges in the scene.

In order to evaluate rD in a nonlinear optimization environment, the derivatives of the depth

map gradient must be formulated as a function of optimization parameters as seen in Equation 2.4:

∇ρ(u) =
∂ρ

∂u
+
∂ρ

∂v
= ρ(uu+)− ρ(u) + ρ(uv+)− ρ(u) = ρ(uu+) + ρ(uv+)− 2ρ(u) (2.4)

where ρ(uu+) and ρ(uv+) are the neighboring rays of the base ray ρ(u) in the u and v image direc-

tions respectively, and are used as a finite difference approximation to the depth map gradient, as a

functional representation is not available. The depth map values at these rays are also parameters

in the optimization which allows the calculation of the Jacobian of rD in a nonlinear optimization

setting. The total cost minimized during the optimization is therefore:

r = rR + rD (2.5)

This equation (2.5) is then solved using a maximum likelihood estimation framework, as no

prior information is assumed over the calibration parameters.

Each term rRi and rDj is computed as a cost term and given to a non-linear solver. The full

system Jacobian, J, is calculated and then used to compute the uncertainties. The update to the

parameter vector ∆x is obtained by solving the equation:

(
JTJ

)
∆x = JT r (2.6)

18

Finally, the parameter uncertainty can be estimated from the problem Hessian estimate as

follows:

C =
(
JTJ

)−1
(2.7)

As this is an expensive operation given the number of parameters in the problem, other

methods can be used to solve for specific columns of the covariance matrix C rather than a full

uncertainty [25].

(a) (b)

(c)

Figure 2.4: A synthetic dataset (a) generated to simulate data captured from a monocular camera
operating on an Unmanned Aerial Vehicle (UAV) flying around a structure. The resulting depth
map estimated using DTAM (b), and the covariance extracted using the method above (c). Areas
with low texture have higher uncertainty, as expected.

2.2 Dense Visual Tracking

In the previous section, several type of 3D reconstruction algorithms were presented. It is

important to understand how these algorithms work, since the depth maps generated by them play

a critical part in dense visual tracking.

19

A typical SLAM system alternates between a mapping and a tracking step. The decoupling

of these steps has the effect of compounding errors, since any errors accrued in tracking will be

added to the 3D estimation and vice-versa. There are ways to mitigate this, however. In sparse

SLAM, for example, depth estimates of features are constantly updated as they are tracked while

moving in the scene, or even updated in batch form during a Bundle Adjustment [102, 19] step.

Bundle adjustment has been the de facto technique used in past years to reduce error globally, and

can be considered as a large but sparse geometric parameter estimation problem: the geometric

error between the projected 3D landmark and its corresponding 2D measurement is minimized. In

short, it is a joint optimization that simultaneously refines the map and poses, and often times, the

camera parameters as well.

Dense methods, however, do not have this advantage mostly due to the way the 3D estimation

of the scene for dense methods works; e.g. a fully dense reconstruction fully interconnected via the

smoothness term. As such, typically only the most current depth map is used at any given time in

dense systems. It is, therefore, important that this depth map is as precise as possible in order to

obtain a higher quality localization from the tracking system. This is particularly true in the case

of monocular SLAM, or even a stereo system that fuses data through time, since any errors in the

localization system has a direct impact on the precision of the depth map.

In the next section, it will be shown exactly how the depth map is used on the basis of all

dense tracking systems: whole image alignment.

2.2.1 Image Alignment

The first use of image alignment was developed by Bruce Lucas and Takeo Kanade in 1981

for estimating optical flow [55]. Since then, it has been used in many other areas in computer vision

including: visual tracking [9, 38], mosaic construction [90], medical image registration [11] and face

coding [5, 17].

The basis to image alignment is gradient descent, where the goal is to align a template image

to an input image (Figure 2.5). Minor differences in implementations exist, however, depending

20

if the estimated parameters are added (additive approach) or incrementally warped (composi-

tional approach), if the update is evaluated at the image or template side (forward versus inverse

approach), or even what kind of step is performed during the gradient descent: Newton, Gauss-

Newton, steepest-descent or Levenberg-Marquardt[6].

Template Image

Input Image

Initial Estimate

Figure 2.5: The template image is initialized at a particular pixel position in the input image. As
the image alignment algorithms iterates, the template image is warped (translated, rotated, scaled,
skewed, etc.) over the input image until convergence.

The general equation for image alignment can be written as a least squares optimization:

∑

i

[I(ω(ui,p))− T (ui)]
2 (2.8)

where I is the input image and T is the template image, ω is a warping function that takes each

pixel coordinate u and warps it by the parameters p for all pixels i. In short, it is performing

the Sum of Squared Differences (SSD) of the photometric values between the input image and the

template image.

The warping function ω(u,p) maps each pixel coordinate u from the template image to

a sub-pixel coordinate on the input image. The warping parameters p = (p1, p2, ..., pn) provide

different types of warps. For example, a parameter vector p = (p1, p2) can be used for optical flow

to capture the adjustments in the pixel’s horizontal (uu) and vertical (uv) coordinates:

21

ω(u,p) =




uu + p1

uv + p2


 (2.9)

In general, the warping functions can be as complex as desired accepting any number of

parameters. They can be applied to 2D problems, like the optical flow example seen above or for

estimating homographies, and they can also be applied to 2.5D or 3D problems. For example, when

tracking an image patch in 3D an affine warp can be considered:

ω(u,p) =




1 + p1 p3 p5

p2 1 + p4 p6







uu

uv

1




(2.10)

The Lucas-Kanade algorithm, as this method has been named, assumes an initial estimate

of p and then solves for the incremental parameters ∆p, minimizing the following cost function:

C(∆p) =
∑

i

[I(ω(ui,p + ∆p))− T (ui)]
2 (2.11)

with respect to ∆p and iteratively incrementing p:

p← p + ∆p (2.12)

until an exit condition is found and the optimization is considered converged. These exit conditions

typically are a combination of: low relative update ∆p, total error increasing or simply a maximum

number of iterations reached. It should be noted that the ’+’ symbol in Equation 2.12 does not

necessarily imply an addition, but can be any method – for example, a compounding operator –

that can update the parameters p.

The cost function is linearized by performing a first order Taylor expansion:

C(∆p) ≈
∑

i


I(ω(ui,p))− T (ui)︸ ︷︷ ︸

C(0)

+∇I ∂ω
∂p︸ ︷︷ ︸

J(0)

∆p




2

(2.13)

22

where C(0) is the cost function evaluated at 0, J(0) is the Jacobian of the cost function evaluated

at 0, ∇I =
(
∂I
∂uu

, ∂I
∂uv

)
is the gradient of the image evaluated at ω(u,p) and ∂ω

∂p is the Jacobian of

the warp function itself; that is:

∂ω

∂p
=



∂ωu
∂p1

∂ωu
∂p2

... ∂ωu
∂pn

∂ωv
∂p1

∂ωv
∂p2

... ∂ωv
∂pn


 (2.14)

Minimizing Equation 2.13 is a least square problem and has a close formed solution derived

by applying the chain rule as follows:

2
∑

i

[
∇I ∂ω

∂p

]T [
I(ω(ui,p))− T (ui) +∇I ∂ω

∂p
∆p

]
(2.15)

Setting Equation 2.15 to zero and solving for ∆p gives:

∆p = −H−1
∑

i

[
∇I ∂ω

∂p

]T
[I(ω(ui,p))− T (ui)] (2.16)

where H is the Gauss-Newton approximation to the Hessian matrix:

H =
∑

i

[
∇I ∂ω

∂p

]T [
∇I ∂ω

∂p

]
(2.17)

The estimated update of ∆p in Equation 2.16 is applied using Equation 2.12 at every iteration

of the Lucas-Kanade algorithm. Since the image gradient is evaluated depending on the warp

function, which in turn depends on p, the Jacobian must be re-evaluated at every iteration since

p is being constantly updated by the optimization.

2.2.2 Forward vs Inverse Approach

The cost function in Equation 2.11 has the update term ∆p on the input image. This update

parameter can be understood as the warping step necessary for the input image to better match

the template during the least squares optimization. However, as explained in the previous section,

since the image gradient and the warping function both have p as a dependency, it is necessary to

re-calculate their values at each iteration.

23

The cost function, however, can be re-written with the update term on the template side:

∑

i

[T (ω(ui,∆p))− I(ω(ui,p))]2 (2.18)

The warping function now appears on both terms, although the derived equations only have

the template term since that is where the update parameter ∆p appears. This means, in effect,

that the update parameters estimated represents the direction to warp the template image in order

to better match the input image. Thus, for the parameter update to remain the same – that is,

the warp applied only to the input image as seen in Equation 2.12, then the inverse of the update

needs to be applied. Therefore, instead of applying the update to bring the template image closer

to the input image, the inverse update is applied in order to bring the input image to match the

template:

p← p + ∆p−1 (2.19)

This is called the inverse approach, in contrast to the forward approach in which both the

parameter and the update appear on the same term. The advantage is that, as before, only the

input image is warped but the updates are estimated based on the template only. As such, the

Jacobian need not be re-calculated as the optimization runs and the warp function only needs to

be applied to estimate the final error.

2.2.3 Efficient Second Order Minimization

The Efficient Second Order Minimization (ESM) algorithm was developed for 2D image

alignment [7, 58], and can be thought of as a technique that joins both the forward and inverse

approaches together. The main idea is to use a second order Taylor expansion of the cost function

obtaining:

C(∆p) ≈ C(0) + J(0)∆p +
1

2
∆pTH(0)∆p (2.20)

24

where, as seen before in Equation 2.13, C(0) and J(0) are the cost function and Jacobian evaluated

at 0, respectively, and H(0) is the Hessian (Equation 2.17). Another first order expansion is done,

this time on the Jacobian, to obtain:

J(∆p) ≈ J(0) + H(0)∆p (2.21)

By plugging Equation 2.21 into Equation 2.20, the ESM cost function is obtained:

C(∆p) ≈ C(0) + J(0)∆p +
1

2
[J(∆p)− J(0)] ∆p (2.22)

= C(0) +
1

2
[J(∆p) + J(0)] ∆p (2.23)

The problem with Equation 2.23 is that to evaluate J(∆p), the value of ∆p needs to be

known – which is precisely the parameter being estimated. However, one advantage that the image

alignment problem has is that: even though the solution is not known, how the image looks at the

solution is known; it is precisely the template image being matched to.

Furthermore, this can be extended to assume that the gradient of the warped input image

at the solution is the same as the gradient of the template image. Thus, the Jacobian of ESM is

comprised of a mixture of the gradients of the two images: the input image and the template.

JESM =
1

2
(∇I +∇T)

∂ω

∂p
(2.24)

By having access to this extra source of information, ESM has shown to converge faster than

by using either the forward or the inverse approaches individually.

2.2.4 Direct Visual Odometry

Image alignment is great for template matching, but what happens when the image being

matched is not a sub-set of the original image but rather the same size? This is the basis for whole

image alignment, and the foundation of direct visual odometry. By applying the Lucas-Kanade

25

algorithm to two consecutive images moving through time, a relative transform (i.e. pose) can

be estimated between these two frames. The warping function would be written such that its

parameters are the 6 degree of freedom parameters of a pose in 3D space: (x, y, z) for translation

and (θx, θy, θz) for roll, pitch and yaw angles.

As mentioned before, the images used can be two consecutive images in time: the current

image (Icur) compared to the previous image (Ipre), in which case frame-to-frame tracking is per-

formed. The problem can also be generalized so that a particular reference image (Iref or Ir) – like

for example, a keyframe – can be used as a basis of comparison against the most recent live image

(Ilive or Il). This notation will be used in subsequent chapters, always with the assumption that

the most recent image is labeled ”live” or ”current”.

The cost function for whole image alignment is based off the Lucas-Kanade Equation 2.11,

the difference lying on the particulars of the warp function and the fact that the parameter p now

is the 6-DOF pose being estimated:

C(∆p) =
∑

i

[Il(ω(ui,p + ∆p))− Ir(ui)]2 (2.25)

where Il is the live image, Ir is the reference image. The warping function is defined as follows:

ω(ui,p + ∆p) = π−1
(
K T (p) T (∆p) K−1 ◦ui dui

)
(2.26)

Homogeneous coordinates are used which increase the pixel vector coordinate size by one,

such that
◦
ui =




ui

1


. The reverse operation, the de-homogenization function, converts back

homogeneous coordinates to 2D pixels and is depicted by π−1:

π−1




a

b

c




=



a
c

b
c


 (2.27)

K is the 3x3 camera intrinsics matrix which describes the mapping between 3D points in the

26

world to 2D image coordinates, T is the function that converts the 6-DOF Cartesian coordinates p

into a homogeneous transform matrix (4x4 or 3x4), and dui is the depth of pixel ui obtained from

a previously estimated depth map.

The derivative of the cost function of Equation 2.25 is:

∂Il(a)

∂a

∣∣∣∣
a=π−1

(
K T (p) T (0) K−1 ◦

ui dui

) ∂π−1(b)

∂b

∣∣∣∣
b=K T (p) T (0) K−1 ◦

ui dui

K T (p)
∂T (∆p)

∂∆p

∣∣∣∣
∆p=0

K−1 ◦ui dui

(2.28)

where T (0) is the 4x4 identity matrix I4, ∂Il is the gradient of the live image, ∂π−1 is the derivative

of the de-homogenization function of Equation 2.27 given by:

∂π−1 =




1
c 0 − a

c2

0 1
c − b

c2


 (2.29)

and ∂T (∆p) is the derivative of the homogeneous transform around its 0 provided by the Lie Group

generator:

∂T (∆p)

∂∆pi

∣∣∣∣
∆pi=0

= geni SE(3) (2.30)

The Lie group is heavily used in robotics and computer vision, providing a series of trans-

formation matrices in 3D: rotation matrices belonging to the Special Orthogonal Lie group SO(3)

and rigid body transformation matrices belonging to the Special Euclidean Lie group SE(3). The

derivative of these group elements around its 0 are trivially formed which facilitates calculations.

To find the complete list of the generators used in this work, please refer to Appendix A.

2.2.4.1 Iteratively Reweighted Least Squares

It is often the case that the data for dense image alignment contains noisy data that can

influence the optimization negatively. This could be due to incorrect data from the depth map

estimates either due to mis-correlations or occlusion boundaries, or directly on the image itself

27

from pixel noise introduced by the image sensor, lens aberrations like distortion and vignetting, or

even movements of the objects in the scene, which would skew the estimated pose of the camera.

Therefore, a way to down-weight or even reject completely outliers is highly desirable. Sparse

visual odometry systems typically use the Random Sample Consensus (RANSAC) [30], which is a

non-deterministic algorithm that fits a model to a random subset of the measurements and tests

all other sample points labeling them as inliers and outliers if they fit the model or not.

Doing RANSAC on thousands and millions of sample points, however, would be too compu-

tationally expensive, so dense methods typically rely on robust norms which quantify the amount

by which the predicted value deviates from the actual value. These type of estimators are called

M-Estimators, and the dense cost function of Equation 2.25 in this form would look as follows:

C(∆p) =
∑

i

ρ (Il(ω(ui,p + ∆p))− Ir(ui)) (2.31)

where ρ is the robust norm function. Instead of minimizing this new cost function directly, an

iteratively reweighted least squares problem can be solved instead where each pixel’s influence is

weighted by their residual r [112]:

C(∆p) =
1

2

∑

i

ϑ
(

[Il(ω(ui,p + ∆p))− Ir(ui)]2
)

(2.32)

where ϑ is the weight function defined by an influence function ψ as follows:

ϑ(r) =
ψ(r)

r
, ψ(r) =

∂ρ(r)

∂r
(2.33)

For the typical least squares optimization, the influence function ψ(r) = r which equates to

the influence value increasing as the residual increases. Thus, by using this influence on equation

2.33, it can be seen that the weight for each pixel for the regular least squares is ϑ(r) = 1. Thus,

the regular least squares optimization can be seen as a special case of the iteratively reweighted

least squares with an L2 norm influence. Table 2.1 shows the most commonly used robust norms

28

and their corresponding weight and influence functions [112]. It should be noted that some robust

norms accept a parameter c which controls the influence factor.

Table 2.1: Commonly Used M-Estimators

Type ρ(r) ϑ(r) ψ(r)

L2 r2/2 r 1

L1 |r| sgn(r) 1
r

Cauchy c2

2 log
(

1 + (r/c)2
)

r
1+(r/c)2

1
1+(r/c)2

Huber

{
if |r| < c
if |r| >= c

{
r2/2

c(|r| − c/2)

{
r

c sgn(r)

{
1

c/ |r|

Tukey

{
if |r| <= c
if |r| > c

{
c2

6

(
1−

[
1− (r/c)2

]3)

c2

6

{
r
[
1− (r/c)2

]2
0

{ [
1− (r/c)2

]2
0

Which influence function to use depends on the application, as each has its advantages and

disadvantages. The L1 norm provides a linear influence with respect to the residual error, while

L2 tends to be aggressive as the residual increases. Huber is a popular one in computer vision

as it is a mixture of L2 if the error is below the parameter c and L1 if above. Finally, Tukey is

particularly attractive at completely rejecting certain measurements since its influence goes to zero

if the residual is higher than the parameter c. Throughout this dissertation, Tukey is the norm

typically applied for dense visual tracking unless otherwise noted.

2.2.4.2 Error Metrics

In the beginning of this section, it was shown that direct visual odometry works by minimizing

the photometric error of two images since it is assumed that the illumination changes between

images close in time remains the same – this is what is called the brightness constancy assumption.

This works well when doing visual odometry, which estimates the pose of the camera frame-to-

frame, since the changes in the scene’s illumination are minimal between two captured images – in

particular with a high frame rate camera.

29

Frame to frame tracking, however, is not ideal since it drifts over time and thus it is desired

to localize the camera with respect to a map instead. That is the essence of SLAM: not only to map

an environment but also to localize against it. However, the brightness constancy assumption does

not hold with long-term maps since illumination changes continually from day to day (morning,

afternoon, evening) and is dependent on certain external conditions like weather (clouds, rain,

snow) or even seasons (summer vs winter). As such, a direct photometric minimization is often

inadequate in these kind of situations.

There are ways to mitigate this, however. Some recent work have changed the error metric

from a photometric error to one which is more robust to illumination changes. The most obvious

choice is using the census transform. However, using census directly is not easy since as mentioned

in Section 2.1, the value of the whole census transform itself does not have any meaning but rather

the individual bit values themselves. And using a typical bit comparison metric, like for example

the Hamming distance, is not ideal since it is not continuous. Thus, what the authors of the work

in [2] proposed is to use each bit independently as a different channel or ”plane”. Furthermore,

each bit is interpolated during the reprojection in order to find the error per bit which is then

aggregated with the rest of the census bits to calculate the final error for that pixel. The downside

to using this technique, however, is that the computation per pixel has now been incremented

by the number of bits in the census transform used. Thus, for the typical 3x3 census window, 8

additional comparisons would need to be made per pixel.

Another technique proposed was using the Normalised Information Distance (NID) metric

[53, 75, 98]. This technique makes use of mutual information [57, 103] which has been shown to be

robust in the alignment of multi-modal images, in particular for medical applications. The images

are converted into histograms, which are then aligned using an entropy metric. This method,

however, is extremely computationally expensive and can be sensitive to noise in the depth map.

As it has been shown in this section, whole image alignment is the foundation of dense

methods for visual odometry and even though the base cost function is rather simple, the complexity

lies in the type of warping function used, how robust it is against noise and outliers and what type

30

of error metric is used. The pipeline for the localization component in SLAM is first the depth map

generation and then the image alignment algorithm. In the next section, a brief overview will be

given on SLAM’s second component: mapping.

2.3 Relative vs Absolute Maps

One of the biggest questions in SLAM is what type of map to use. A relative map is a

map that is locally consistent, and is typically represented as a pose graph where each frame is

connected with an edge that contains the estimated relative transform between that edge and its

neighboring edges. The advantage of this representation is that the map is malleable: changes in

the measurements between these frames, either from new observations or a batch optimization, can

easily be applied and the frames would all be updated accordingly. Depth estimates attached to

this frame – be that in the form of sparse depth/inverse depth points, a full depth map or point

cloud – will naturally move in 3D space as the reference frame is adjusted.

For example, Figure 2.6 shows a visualization of a relative map from the KITTI dataset [34]

using stereo DTAM as the depth map reconstruction algorithm. The system slowly drifts with

time, however when using techniques like loop closure detection and pose graph relaxation (PGR),

the global error is drastically reduced (Figure 2.7).

Figure 2.6: The relative map is comprised of frames connected via edges (yellow line on the map).
During normal operation, the system accumulates drift (left) that is quite noticeable during a loop
closure event (right).

31

Figure 2.7: After a loop closure is detected, the system performs a pose graph relaxation which
globally reduces the error in the map.

The disadvantage of relative maps, as can be seen, is that errors are compounded when the

map is lifted to an absolute representation. So even though it is locally consistent, the map is not

globally consistent without some extra optimizations.

This is in contrast to the absolute representation of a map, in which it is globally consistent.

Such a map is typically represented in a volumetric data structure like octomap [42], which is a

type of occupancy octree map, a voxel based signed distance function (SDF) [56, 44] or a large

pointcloud with millions of vertices [104, 107, 108]. However, these maps have a large memory

footprint and are typically extremely computationally intensive if any updates are made – like for

example, during loop closures.

Chapter 3

Incremental and Adaptive Front-End Fusion

In the previous chapter, a brief survey of 3D reconstructions algorithms was provided and

in particular two methods were explained: local methods, which operate on pixels independently

typically by employing a support region (i.e. a patch), and global methods which use the informa-

tion in the whole image to estimate the depth for each pixel. Specifically, the DTAM algorithm

was introduced and the use of a cost volume to estimate depth of a scene. This chapter presents

a modification of the DTAM algorithm, targeted in particular to moving robotic platforms, that is

capable of both incrementally updating the cost volume as the camera moves through the environ-

ment and also adaptively change its minimum and maximum bounds to capture changes in scene

depth.

3.1 Introduction

Sparse algorithms were the de facto localization and reconstruction methods back in the 80s.

And even though 3D reconstruction has been a very well studied area in computer vision for the

past decades, it is only in the past few years that dense 3D reconstruction has been possible given

the advances in computational power with the introduction of GPUs as seen in Chapter 2.

This has been instrumental in the recent proliferation of robotic research, since robots require

full spatial information about an environment in order to interact with it. For example, a robot

moving in a retirement home would need to have an accurate reconstruction of the scene it is

looking at in order to navigate safely and assist individuals in everyday tasks. Enabling this on

33

mobile robotics, however, requires fast algorithms with low memory requirements.

Previously, 3D reconstruction of a scene from multiple images using a monocular camera -

known as Structure from Motion - has been shown using both local and global methods [88]. In

particular, global methods using variational techniques over a cost volume have shown impressive

results for indoor environments [70]. Despite their ability to reconstruct the scene with a high level

of fidelity, however, these methods are generally both computationally and memory intensive which

makes them hard to implement in mobile robotic platforms.

In this section, a global method which provides good scene reconstructions of indoor environ-

ments while minimizing computational and memory requirements is presented[27]. The algorithm

provides dense reconstruction of scenes by incrementally adding new frames into a moving cost

volume that is constantly being updated, and, adaptively changing the cost volume’s boundaries

in order to adjust to changes in scene depth.

3.2 Background

Perhaps the first work showing how duality methods could be applied to variational problems

is presented in [8]. By representing the problem as an inequality, the Primal-Dual Hybrid Gradient

(PDHG) from linear programming can be applied to optimizations involving regularization. One

of the first applications of this method to vision problems was the formulation of the ROF (Rudin,

Osher, and Fatemi) model for denoising [82]. These duality methods have been applied to more

generic computer vision problems as well [4]. In order to increase the speed of convergence of these

algorithms, adaptive step sizes can be used [10]. Further work in speeding up primal-dual hybrid

gradients is shown in [36] by creating highly adaptive step sizes in performing the iterations.

The authors of Dense Tracking and Mapping in Real-Time (DTAM) [70] have shown that

the data term used in these techniques can be represented volumetrically; that is, the cost volume

stores a sum of photometric errors in a volumetric representation, where each voxel represents a

sum of photometric errors for a set of comparison images at a specific depth and pixel coordinate.

This volumetric method, however, introduces a non-convex component in the global optimization.

34

In general, the primal-dual hybrid gradient method for global optimization is confined to convex

functions [10]. To overcome this limitation, DTAM proposes alternating the primal-dual update

steps with a finite search over the cost volume to determine the minimum. The optimization is also

augmented by a quadratic relaxation term, as described in [96]. However, this volumetric approach

has two major limitations.

The first limitation is the discretization of space. Increasing the number of voxels representing

depth increases the precision of the system, i.e. a finer discretization in depth. This finer level of

discretization, however, incurs a higher computation cost. Every additional level of discretization

requires not only an additional calculation of the photometric error when constructing the cost

volume, but also an additional step in the search through the cost volume performed at every

iteration.

The second limitation is that the boundaries set on the cost volume, namely the minimum

and maximum depths, can alter the quality of reconstruction if not properly set. For example,

a far scene with short boundaries will have poor reconstruction. This is impractical in robotic

applications, since it is known that depth ranges may change greatly as a robot navigates through

the environment. For example, a robot scanning a desk at close range would require different depth

ranges to one that is navigating down a long corridor. A static boundary on the cost volume results

in incorrect estimates for depth with the changing scene. It is possible, however, to adaptively

expand and contract the volume by sampling the scene and obtaining a rough distribution of depth

values. By limiting the volume to only visible depth areas, the system achieves optimum depth

resolution.

In addition to the above problems, the reconstruction is performed over a set of images with

an associated set of relative poses, selecting one image to serve as a reference image and the others

serving as comparison images. To be useful for mobile robotics, however, the depth needs to be

calculated with respect to the most current frame. The cost volume must then be constructed

based on this reference image. This means that as the robot moves forward the cost volume needs

to be recomputed at every new frame. This computation, and storage, becomes prohibitive as the

35

number of frames fused is increased.

The next section shows that an iterative and adaptive method for forming the cost volume

can be used to overcome the above mentioned problems.

3.3 Methodology

The same global formulation for depth optimization as the one proposed in [70] is used,

parameterizing in inverse depth, namely:

E =

∫

Ω
g(~u) ||∇ξ(~u)| |ε +

1

2θ
(ξ(~u)− α(~u))2

+λC(~u, α(~u))dx

(3.1)

where E is the total cost over the image domain and ~u is the pixel coordinate, ~u : Ω→ R2.

The first term in (3.1) is a regularizer which enforces second order smoothness over the inverse

depth, ξ. The regularizer is scaled by a weighting function which serves to reduce the regularization

where there is a large image gradient. The weighting function g(~u) is defined by:

g(~u) = e−α|∇Ir(~u)|β2 (3.2)

Here, α and β are constants selected to vary how much the image gradient, ∇Ir(~u), impacts the

weighting of the regularizer. The regularizer selected is a Huber norm of the gradient of inverse

depth at a pixel coordinate, ||∇ξ(~u)| |ε.

The last term in (3.1) is the data term, which is the value of the cost volume at a specific

inverse depth and pixel coordinate scaled by a factor λ. The cost at a specific pixel and inverse

depth location is the sum of photometric errors between a reference image and a set of comparison

images, as defined below.

C (~u, ξ(~u)) =
1

Im
Σm

∣∣∣Ir(~u)− Im(~W (~u, ξ(~u)))
∣∣∣ (3.3)

where ~W warps the pixel coordinate from the reference image Ir into each of m comparison images

36

Im, assuming some estimated inverse depth value ξ(~u). ~W is defined as:

~W (~u, ξ) = Π


KTmr

1

ξ(~u)
K−1




~u

1





 (3.4)

where Π is a de-homogenization function, K is the camera matrix and Tmr is the estimated pose

between the comparison image and the reference image.

Finally, as described in [96], the original cost C and the regularizer are decoupled via an

auxiliary variable, α(~u). This appears as the second term in (3.1), which shows the coupling of the

estimated inverse depth ξ(~u) and the auxiliary variable α(~u). The variable θ enforces the amount of

coupling, with a smaller θ enforcing stricter coupling. During a PDHG optimization, θ is reduced

at every iteration, thereby driving the original inverse depth term and auxiliary depth variables

together.

The volumetric representation described above assumes some discretization of inverse depth,

starting from a minimum inverse depth ξmin (furthest scene depth) up to a maximum inverse depth

ξmax (closest scene depth).

The system alternates between dense tracking and depth estimation. Dense tracking is per-

formed using a 2.5D Lucas-Kanade style minimization of photometric errors [6, 13] using the depth

maps estimated at each step. Since the system starts without any depth map, a semi-dense monoc-

ular estimation pipeline similar to [31] is used to bootstrap the dense reconstruction algorithm.

After the system is initialized, a sparser version of the algorithm continues to run in the back-

ground tracking fewer points. These points are then used to adapt to scene depth, where the

minimum and maximum depth estimates from the sparse tracker are used to set the bounds on the

new cost volume. This new volume is then populated by a linear interpolation of the old volume.

The transformation of the cost volume and rescaling is done in a single step. After transformation,

depth estimation is then performed by an optimization in accordance with a pixel-wise gradient

ascent/descent in the dual/primal spaces.

37

3.3.1 Incremental

The novel component of this work involves how the cost volume is computed from frame to

frame. To remove the requirement of keeping multiple images and multiple transforms between

the images, a single cost volume is used which is incrementally transformed into the most current

reference frame. This assumption is valid as long as the relative motion from frame to frame is small

and is a common situation encountered in indoor environments, especially for cameras running at

30 frames per second or more.

Capture Estimate Transform

AddOptimize

Figure 3.1: Block diagram of the system. An image is first captured, and then the relative pose
is estimated using whole image alignment. Given this pose, the cost volumes are transformed and
the photometric error with the current image is added to the volume. Finally, scene depth values
are estimated through the optimization.

Incrementally refining the cost volume from frame to frame is illustrated as a multistep

process, shown in Figure 3.1. In the first step, a new image is captured. In the estimation step,

the newly acquired image and the previous estimate of depth with its associated intensity image

are used to determine the relative pose of the camera using an RGBD optimization based on the

Efficient Second Order Minimization (ESM) technique as described in [49]. In the transformation

step, the estimated relative pose is used to reinterpret the cost volume from the perspective of

the current frame. As illustrated in Figure 3.2, a new cost volume is placed on top of the old

cost volume. The values of the new cost volume are calculated via a trilinear interpolation. Any

locations which do not overlap are marked as invalid and are not taken into consideration during

the optimization. Once the cost volume is transformed into the new frame, data from the current

38

(a) (b) (c)

Figure 3.2: A top down view of the cost volume at frame N (a) and a visual depiction of how the cost
volume is transformed to a new cost volume at frame N+1 (b). Darker areas correspond to smaller
photometric errors, indicating a surface. These values are mapped via a trilinear interpolation onto
the new cost volume in (c). Any voxels of the cost volume in frame N+1 which are not contained
in the previous cost volume are marked as invalid.

image is added.

In computing the traditional cost volume, the sum of all the photometric errors are stored

in an Error Volume (EV) which is normalized by the total number of images used, maintained

by the Frame Count Volume (FV). That is, separate volumes are used to track the photometric

errors and the number of images used to calculate that error. A Normalized Cost Volume (NCV)

is then created by dividing the error by the number of frames that have reprojected for every pixel

and inverse depth location, as shown in (3.5). The NCV is calculated on-demand by the depth

estimator and is no longer needed after the optimization ends. The only volumes that are carried

throughout the scene are the EV and FV.

NCV (~u, ξ(~u)) =
EV (~u, ξ(~u))

FV (~u, ξ(~u))
(3.5)

Once the EV and FV are transformed to the new frame, the photometric error of the

last image with respect to the current image, C(~u, ξ(~u)), is calculated and then added into the

corresponding pixel and inverse depth location in the cost volume. The frame count for that

location is then incremented by one. For any points that do not reproject, there will be neither

an additional cost term nor any addition to the corresponding frame count volume. In order to

overcome problems associated with occlusions, we down-weight the previous data exponentially, as

39

shown in the equations below.

EVnew(~u, ξ(~u)) = C(~u, ξ(~u)) + ωEVprev(~u, ξ(~u))

FVnew(~u, ξ(~u)) = 1.0 + ωFVprev(~u, ξ(~u))

(3.6)

Further details regarding the weight parameter ω and its influence in the cost volume fusion process

can be seen in Section 3.4.

3.3.2 Adaptive

As mentioned before, previous volumetric approaches use a constant sized cost volume. If

improper bounds are chosen for discretization of the cost volume along inverse depth, either a

significant portion of the information will be disregarded, or the cost volume will be larger than

the scene to be reconstructed. In either case, this leads to a poor scene reconstruction. In other

words, the bounds of the cost volume are subject to the following two problems:

(1) Over Sizing: A lack of data in the near or far region of the cost volume indicates that

there is no reprojection for that choice of inverse depth and that the boundaries of the cost

volume should be narrowed. This is done by increasing ξmin and/or decreasing ξmax.

(2) Under Sizing: A large percentage of the data in the near or far regions of the cost volume

indicates that there is potentially more scene information outside of the bounds as set and

that ξmax should be increased or ξmin decreased, respectively.

The bounds of the volume, namely ξmin and ξmax, can be dynamically altered in order to

increase the resolution and accuracy based on the data provided by the sparse system running in

parallel introduced in Section 3.3. The reason for relying on a secondary system is that it not

possible for any volumetric representation to correctly infer depth values if the volume bounds are

set incorrectly in the first place. The minimum and maximum depth estimates from the sparse

tracker are used to set the scene maximum inverse depth and minimum inverse depth, respectively,

as seen in Figure 3.3.

40

Once the desired range of the cost volume is estimated, ξmin → ξmax, it is now possible to

use the same transform function to warp the cost volume to fit the new space. Any areas of the

cost volume that do not fall within the old volume are marked as invalid.

Figure 3.3: Example of how the cost volume is expanded or contracted depending on estimated
inverse depth ranges from the sparse tracker. A trilinear interpolation is used to expand/reduce
the cost volume.

3.4 Results

The algorithm was tested with both simulated and real data. For the simulated runs, the

Tsukuba dataset [59] was used, a very popular dataset that provides ground truth depth and has a

high variance of depth throughout the sequence. For the live data, a PointGrey Bumblebee camera

set in single image (non-stereo) mode was used and a living room scene was captured. As an error

metric, both the average absolute difference between the estimated depth and the ground truth, as

well as the completeness and precision curves, are provided.

In order to test how well the reconstruction algorithm alone performs, any errors associated

with pose estimation and scale ambiguities were removed by using the ground truth poses. The

algorithm parameters from Table 3.1 were used when evaluating the reconstruction method. To

test the adaptability of the algorithm to depth changes in the scene, a simplified version that only

performs incremental volume updates, but does not dynamically adapt to changes in depth, was

used. The incremental only algorithm is designated by Incremental Front-End Fusion (IFEF) to

41

differentiate from the full system that is both Incremental and Adaptive (IAFEF).

Table 3.1: Algorithm Parameters

α β ε λstart θstart θend ω

100 1.6 10−4 1.0 1.0 10−5 0.5

The final parameter in Table 3.1, ω, controls the contribution to the incremental update

of the cost volume as shown in (3.6). This value is directly related to the amount of potential

occlusions in the scene given viewpoint changes. Ideally, the value should be as high as possible

in order to obtain the maximum contribution from previous estimates into the new estimate. The

mean error with different values of ω for a section of the dataset that experiences high viewpoint

changes was plotted as seen in Figure 3.4.

Although a value of 0.7 seems to give the best performance for this particular test sequence,

for the general case a value of 0.5 was selected as it is believed to be a conservative value of ω for

any type of scene.

300 320 340 360 380 400
0

0.5

1

1.5

2

Frame Number

M
e

a
n

 E
rr

o
r

[m
e

te
rs

]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3.4: Mean Error versus ω as it contributes to the incremental update of the cost volume. A
value of 1.0 would yield the maximum contribution.

42

3.4.1 Timings

The time that it takes to transform the cost volume is the same as the time to add an image

to the cost volume. This is expected, as the operations are essentially the same: they both require

an evaluation at every pixel and inverse depth position in the cost volume. In other words, the

time it takes to construct the cost volume for DTAM is dependent on the number of comparison

frames to be fused, O(M). On the other hand, since there is only a single comparison image in

this method, the time to transform and add the most recent image remains constant, O(1).

Therefore, the speed-up in this implementation is most noticeable as the number of compar-

ison images is increased. Regular DTAM uses hundreds of comparison images, but even with a

basic 30 window implementation it can be seen that there is a 15x speed-up in the construction of

the cost volume: 30 additions to a cost volume as opposed to the time it takes to transform the

volume and add a single image.

3.4.2 Iterative Method

An initial qualitative depth map reconstruction is shown in Figure 3.5. For actual error

measurements, completeness and precision curves are computed by comparing a pure incremental

approach (IFEF) with a 30 windowed DTAM implementation. This means that the algorithm does

not store any additional frames, but rather transforms the volume and fuses the current frame

at every step. As seen in Figure 3.6, IFEF slightly under-performs compared to a full windowed

version of DTAM, but at a 15x speed-up gain. This is not unexpected, as the pure incremental

algorithm only fuses small baseline images, whereas DTAM has both small and wide baselines in

the comparison window.

To perform a fair comparison against DTAM, a windowed implementation that contains

a mixture of small to large baseline images was used. The algorithm is inherently capable of

supporting this hybrid approach, as the cost volume aggregation can happen whenever frames drop

out of the selected window. This still has the advantage of a speed-up, as long as the window

43

Figure 3.5: Images from the Tsukuba sequence with their corresponding depth maps generated
with this approach. The first depth map is of inferior quality, as it corresponds to the start of the
sequence where there is limited data and little movement.

selected is kept small. This feature in the algorithm has the extra-benefit of giving fine control to

the user, choosing performance over accuracy depending on the situation. The result can be seen in

Figure 3.7, where the above procedure was tested by adjusting the comparison window and seeing

how the error changes with different window sizes.

Similarly, a comparison was performed whereby both algorithms were constrained to run

44

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

Error [meters]

C
o

m
p

le
te

n
e

s
s
 [

%
]

IFEF

DTAM30

(a)

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

Error [meters]

P
re

c
is

io
n

 [
%

]

IFEF

DTAM30

(b)

Figure 3.6: Precision and completeness curves of the algorithm versus a 30 frame windowed version
of DTAM. Precision is the percentage of estimates that are within certain error from the ground
truth. Completeness is the percentage of ground truth measurements that are within certain error
of estimated depth values.

under the same time limit. To do this, DTAM was run with the number of comparison selected

to yield the equivalent time it takes this algorithm to run; that is, two frames. This comparison is

shown in Figure 3.8 and illustrates that the incremental cost volume aggregates more information

than the two frame window set of DTAM. As can be seen, the algorithm consistently outperforms

DTAM from frame to frame. This is an indication of the advantage of using the incremental

method, which aggregates all previous data.

45

3 4 5 6

0.3

0.32

0.34

0.36

0.38

0.4

0.42

Number of Comparisons

M
e

a
n

 E
rr

o
r

[d
e

p
th

]

DTAM

IFEF

Figure 3.7: Mean depth error of DTAM versus this method with respect to the number of com-
parisons performed, where the aggregation of the incremental cost volume counts as an extra
comparison.

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

Frame Number

M
e

a
n

 E
rr

o
r

[m
e

te
rs

]

IFEF

DTAM2

Figure 3.8: Mean depth error for this algorithm (red) and DTAM (green) running under the same
time constraint; the equivalent of using two image comparisons.

3.4.3 Adaptive Window

In order to test the adaptability of this algorithm, the window size was changed on every

tenth frame using the information from the sparse tracker running in the background. As can be

46

seen in Figure 3.9, the Tsukuba dataset is a particularly challenging set for a fixed cost volume size

implementation, such as DTAM, given the large variations in scene depth. Using the estimated

depths from the sparse features, a marked improvement in the general depth estimates can be seen.

0 200 400 600 800 1000 1200 1400 1600
0

5

10

15

Frame Number

D
e

p
th

 [
m

e
te

rs
]

Min Depth

Max Depth

(a)

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

Frame Number

M
e

a
n

 E
rr

o
r

[m
e

te
rs

]

IFEF

IAFEF

(b)

Figure 3.9: (a) shows scene minimum and maximum depths per frame in the Tsukuba dataset. (b)
shows how the mean error is improved by using an adaptive window.

3.5 Conclusion

This work has shown two improvements in volumetric approaches for depth estimation. The

first is that it is possible to incrementally update the cost volume representation from frame to

frame. This incremental approach reduces the memory and computational time required to recon-

47

Figure 3.10: Point cloud (a), depth map (b), created from images (c) in a live data sequence using
this algorithm. The scene depicts a camera scanning a bookshelf in a living room environment. High
levels of fidelity, as those provided by volumetric approaches to 3D reconstruction, are important
for robotic interaction in indoor environments.

48

struct a 3D scene from a multi-view stereo and provides depth estimates at the most current frame.

In order to maintain a constant memory footprint and computation cost during reconstruction, it

is shown that for small displacements it is possible to maintain a single cost volume and simply

transform it into the most current frame. This re-calculation allows to continually estimate depth

in the most recent frame. Results, like those seen in a live sequence in Figure 3.10, show that

this approach is comparable, and in most cases, surpasses traditional volumetric approaches where

hundreds of frames need to be stored and re-calculated at every step.

It has also been shown that it is possible to dynamically change the bounds of the cost volume

to produce better estimates of the scene geometry. This enables mobile robots to operate in indoor

environments with wide ranges of depth values, by only selecting the minimum and maximum depth

bounds required to fit the scene in view.

A shortcoming of this algorithm is that it only fuses small baseline images. The original

DTAM implementation uses a combination of small and large baselines, starting by first fusing the

small baselines to provide an initial but less accurate depth estimate and finalizing by adding the

larger baseline images to refine the estimates. A modification of this algorithm can be to carry a

small subset of images from different baselines and add them in reverse order: closest to farthest.

Other improvements can be done to this algorithm which would speed up the depth estimation

process itself, which is the biggest hurdle now that the time required to build the cost volume has

been reduced. Some work has been done with Signed Distance Functions (SDFs), which makes it

easy to raycast the depth seen from a particular viewpoint. After the pose is estimated by the

tracker, it is possible to use this pose estimate to generate an initial depth map of the scene given

the viewpoint change. This depth map can therefore be used as an initial value, effectively seeding

the depth optimization by reducing the need to iterate through all the slices of the cost volume to

find the minimum energy. This has the advantage of allowing to increase the number of slices of

the cost volume, which is desirable in order to achieve a finer granularity for the depth estimates,

without incurring the penalty of a higher computation time.

Chapter 4

Inertial Aided Direct Methods for Robust Visual Tracking

As explained in Chapter 2, the depth map plays a critical part in the localization component of

a SLAM system. In this chapter, a more in depth study is done on the issues that affect tracking: not

only external factors like image or depth map noise related to sensor, lens aberrations or calibration

issues, but also internal camera settings like image resolution and frame rate. Furthermore, a new

sensor is introduced to aid the visual tracking: the Inertial Measurement Unit (IMU). This is the

next step towards robust dense visual SLAM.

4.1 Introduction

Over the past few years there has been a proliferation of different varieties of SLAM methods

for robotic platforms. Recently, many approaches have been developed for direct visual odometry

ranging from fully dense methods [70, 107, 47] to semi-dense[22, 87], and even hybrid approaches like

semi-direct [31]. Even more recent, methods that combine cameras and Inertial Measurement Units

(IMUs) to some degree – either tightly coupled or loosely coupled – have been produced[56, 50].

These have been shown to provide higher accuracy compared to visual-only methods. An in-depth

analysis, however, has not been made which can shed light on how robust these systems are and

under what circumstances they provide better performance.

To this end, a framework to compare visual odometry systems in an unbiased way that also

permits exact repeatability is desired. Previous work [39] performs a similar study for cameras

and uses a fully dense localization pipeline. The authors conduct an in-depth characterization of

50

camera physics, light and even noise, and analyze how this affects image formation at different

frame-rates. Their experiments lead to quantitative conclusions about frame-rate selection when

taking tracking performance into consideration.

This section will present a method similar in spirit, though focused on studying the latest

techniques in direct visual odometry including those that make use of inertial measurement units.

In particular, a comparison between fully dense versus semi-dense methods and study how the

addition of an Inertial Measurement Unit (IMU) in the sensor rig contributes to the estimation

result. This information is very useful in many applications, particularly in robotics, when it is

often unclear what is the best sensor to use for a particular situation.

4.2 Methodology

To perform an accurate and unbiased evaluation of any tracking system, a framework that

allows repeatability must be created, especially one that allows to easily modify multiple param-

eters. This is particularly true when using an Inertial Measurement Unit (IMU) because the rig

must follow the exact same trajectory, at the exact same acceleration, every time.

Furthermore, having complete ground truth data in order to compare results is highly desir-

able. This includes camera and IMU positions, velocities, sensor biases and noise characterization.

High quality depth maps are also desirable, since having very accurate 3D reconstructions of the

scene removes any unwanted bias from using a particular 3D reconstruction algorithm. Finally,

as it will be seen in the evaluation method in Section 4.2.3, in order to fairly compare different

experiments the system should be capable of synchronizing image capture at exact pre-determined

positions in the trajectory. To guarantee this in a real life setting, the camera capture would have to

be synchronized with a robotic arm or pan-tilt unit in order to obtain the same trajectory segments

for all experiments.

Given all of these requirements, a synthetically generated dataset that models real life sensors

as closely as possible seems to be the clear solution. The challenge now lies in how to produce a

sensor rig trajectory that can generate valid IMU measurements and a way to render photo-realistic

51

images.

It first starts by recreating a rig based on sensors available in real life and that are commonly

used: The camera is a 2.2MP monochrome camera, with a maximum frame rate of 170FPS, and is

based on the Ximea MQ022MG-CM. The inertial measurement unit with sample rates of 200Hz is

based on a MicroStrain 3DM-GX3.

4.2.1 Generating Photo-Realistic Visual-Inertial Synthetic Data

(a) (b)

(c) (d)

Figure 4.1: Examples of photo-realistic images generated by POV-Ray using the University of
Colorado’s Janus supercomputer at different frame-rates: (a) 15 FPS, (b) 30 FPS, (c) 60 FPS and
(d) 120 FPS. To model motion blur, the luminance integration is done in irradiance space and then
transformed back to intensities.

52

To generate simulated IMU and camera data, a spline must first be defined representing the

motion of the sensor rig. For this study, a simple path that resembles a figure-8 pattern is used such

that it excites all 6 degrees of freedom. The total duration of the motion is 7.07s, in which the IMU

travels a total of 1.76m with a maximum linear speed of 0.36m/s. As the spline is C2-continuous,

the second derivative of the rig’s position can be used to compute its acceleration data, which is

sampled at 200Hz.

Each simulated camera captures images at a resolution of 800x600, which are rendered using

a simple pinhole camera model with a horizontal field of view of 80◦, and an aspect ratio of 0.75.

Additionally the camera is offset from the IMU by the translation vector t =

(
0.1 −0.05 0.05

)

and rotated +0.03 radians about each axis to provide a non-trivial and more realistic rig configu-

ration. POV-Ray[73], an open-source path-tracing tool, is used to render the camera images. The

scene to be rendered is a small office environment, created by artist Jaime Vives Piqueres[77], con-

sisting of several desks, chairs, and bookshelves. Images are rendered with the highest POV-Ray

quality-level at 3200x2400 and then down-sampled to 800x600.

In order to simulate motion blur, the keyframes are rendered at each camera position sampled

at 120Hz. Keyframes are rendered with a modified version of POV-Ray, as used in [39], which

additionally outputs depth values. With these depth values, each pixel location is reprojected at

the next keyframe to compute the distance traveled in pixel-space. A new sample rate is then

selected such that the greatest observed motion over the entire path is no greater than 0.5 pixels.

This ensures combined images yield smooth, continuous streaks of motion-blur. For the selected

scene and camera path, this results in a sample rate at just over 1400Hz.

Using the computed path and sample rate a total of 10,188 rendered images are required. A

single image at the selected resolution takes 15-17 minutes to render on a Intel i7-2.5GHz computer.

This would require an estimated 120 days to render all images in the sequence. For this reason, 50

nodes from the University of Colorado’s Janus supercomputer were allocated to render all 10,188

images in 3 days time.

Once all the images are rendered,a sequence of blurred images for each camera is created

53

as dictated by their dimensions, frame-rate and shutter speed. All images that would have been

captured while the simulated camera’s shutter is open will be blurred together into a single image.

Instead of directly averaging images in intensity space, the average is done in irradiance space,

having converted from the rendered intensities using a common image sensor. In this case, the the

agfacolor-futura-100CD camera response function was used as defined in [37].

To maintain a relative constant illumination at different exposure times, the camera gain

parameter was simulated to compensate for dim images captured at low shutter speeds. Image

noise was therefore added in order to emulate the effects of gain variations.

4.2.2 Visual-Inertial Tracking

Tracking is performed in a loosely coupled sliding windowed dense visual-inertial bundle

adjuster [45]. The bundle adjuster receives as input relative constraints between poses from the

visual odometry engine as well as IMU measurements to form visual and inertial residuals.

4.2.2.1 Visual Residuals (ev)

Visual only frame-to-frame tracking is performed in a 2.5D Lucas-Kanade[6] style photometric

minimization using the Efficient Second Order minimization [49] technique:

ev =
∑

i

ρ (Icur(ω(ui,p + ∆p))− Iprev(ui), c) (4.1)

where ρ is the Tukey robust error norm function with parameter c. The previous image Ipre, and its

corresponding depth map, are used to compute the photometric error ev of a re-projected point onto

the current live image Icur through a warping function ω that takes camera calibration parameters

(intrinsics), the pixel position ui, depth dui and an SE(3) transform parametrized with p as seen in

(4.1). The relative transform between the previous and current frame, Tcp = T (p), is the transform

to be estimated and is initialized either as identity I4, which corresponds to the previous camera

position, or is seeded with the integration of the IMU measurements received between the last

captured frame and the current frame.

54

If the visual estimation engine is initialized at the previous camera location, a coarse-to-fine

approach must be used in order to guide the optimization to the basin of convergence. This is

done by creating an image pyramid, where each level corresponds to a decimated image (half the

resolution) of the image in the level below. This effectively acts as a smoother in the cost function.

For these experiments, an image pyramid of 4 levels was used.

The optimization iterates over all pixels through each pyramid level, updating the pose

estimate at each step. The optimizer performs a maximum of 50 iterations at each pyramid level,

or can exit early if either of two conditions are met: the norm of the full pose update is less than

1e−5 or the error is increasing. Except for situations with extreme image or depth noise, as seen

in Section 4.3, it is very unlikely that the optimization exits due to reaching the upper limit of 50

iterations.

Finally, the visual frame-to-frame relative transform Tcp estimated by the optimization is

transferred into the IMU’s reference frame – which is the privileged frame – and added into the

bundle adjuster as a binary constraint.

4.2.2.2 Inertial Residuals (eI)

Inertial measurements between frames are integrated forming residuals against the estimated

poses as seen in Figure 4.2. Each pose in the bundle adjuster contains world poses comprised of

a 3-DOF translation and 4-DOF rotation vector (quaternion parametrization). It also stores a

3-dimensional velocity vector and two 3-dimensional vectors for the accelerometer and gyroscope

biases. The residuals are formed between the estimated parameters and the integrated state as

seen in (4.2).

55
Integrated Inertial Measurements

Tic

y

x

z

y

x

z

y

x

z

y
x

z

y

x

z

y

x

z

Inertial
Trajectory

Camera
Trajectory

Tic

Tic

IMU-Camera
Transform

Relative Binary Constraints

C2
C3

T12

T23

I1

I2

I3

C1

Figure 4.2: A windowed bundle adjuster takes frame-to-frame relative estimates, and its corre-
sponding covariance, as binary constraints and jointly optimizes poses with integrated inertial
measurements. The sensor rig calibration file, which contains camera intrinsics as well as the
camera-to-IMU transform, is also provided.

eI =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




pwp − p̂

log
(
q−1
wp ⊗ q̂

)

vw − v̂

bg − b̂g

ba − b̂a




∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

(4.2)

where (pwp − p̂) is the translation residual, log
(
q−1
wp ⊗ q̂

)
∈ R3 calculates the rotation residual in

so(3), (vw − v̂) is the velocity residual, and (bg − b̂g) and (ba − b̂a) are the gyro and accelerometer

bias residuals respectively.

The rig trajectory described in Section 4.2.1 was generated to excite at least 2 axes at any

given time. Given the size of the sliding window and the unambiguity of scale from using metric

depth maps, no marginalization or conditioning is performed as all parameters are observable.

The bundle adjuster requires an initialization phase in which the initial velocities of all the

poses, as well as the accelerometer and gyroscope biases, must be estimated prior to making use of

56

the IMU. This includes any inertial measurement integrations used for seeding the visual odometry

engine. As such, the system relies on visual only estimations for the first few frames. For the

experiments, an initial window of 30-60 frames was used to bootstrap the bundle adjustment,

which then maintains a sliding window of 15 frames.

4.2.3 Evaluation Method

There are different ways of evaluating the accuracy of SLAM systems. Typical methods

include open loop accuracy, where a trajectory loop is performed in such a way that the initial and

final poses are the same. The error, in this case, is the difference between the initial and final poses.

This clearly has a major drawback since it does not take in consideration the full trajectory, and a

system that serendipitously ends up in the same place it started, or one that never estimated any

movement, will show low error when in reality the trajectories might not match.

An alternate metric is to measure poses from a world coordinate frame, and the final error is

the summation of all the errors between the estimated poses and the ground truth poses. This also

has a some drawbacks since estimation systems usually provide relative and not absolute global

poses. To obtain global poses, the relative estimates must be compounded together in a chain.

This means, however, that errors are also compounded: a system that performs a poor estimation

in the beginning of the chain will continue to show high errors even if the subsequent estimates

were very accurate.

Finally, another metric would be to use the mean relative pose error. All the relative pose

errors are added together, and divided by the total number of estimates. This also has some prob-

lems, in particular if a comparison between cameras operating at different frame-rates is desired.

It is clear that a high frame-rate camera will incur lower mean relative pose errors compared to

a slower frame-rate camera, simply by virtue that the slower camera will have to estimate larger

transforms at each step.

A method that overcomes all of these shortcomings, and is the metric used in this work,

is to compute errors by considering only the relative transformations between certain key poses,

57

as introduced in [52]. This is particularly useful in rigs with different sensor modalities, since all

error calculations are based on the corrected trajectory of the robot. Since the robot will follow

the exact same path for every experiment, segments of the trajectory which are common in all

experiments can be chosen. In this way, a total trajectory error can be computed based on the

common segments all the experiments share.

In particular for all of the experiments performed in this work, the segments of the slowest

camera – that is, 15 Frames Per Second – were chosen to be the comparison segments given that

all other camera frame-rates are divisible by this rate. Thus, for the 15 FPS camera each single

segment corresponds to a frame-to-frame transformation, for 30 FPS it is the compounding of 2

frames, for 60 FPS the compounding of 4 frames and for 120 FPS the compounding of 8 frames

(Figure 4.3). The final error, therefore, is the accumulation of these individual segment errors over

the whole trajectory.

15 FPS

30 FPS

Comparison Segment

60 FPS

120 FPS

Figure 4.3: A comparison segment is the metric used to compare different camera frame rates, with
the minimum size being set by the slowest frame rate: 15 FPS. Thus, at 15 FPS the comparison
segment is comprised of only 1 odometry segment, for 30 FPS it is composed of 2, for 60 FPS it is
composed of 4, up to 8 odometry segments for the 120 FPS case.

4.3 Results

The following are the results of the experiments that were conducted by permuting different

parameters in the camera and the optimization engine. This yielded hundreds of experiments

58

which were all identically replicated and over the exact same trajectory, executed on fully dense

and semi-dense tracking algorithm implementations.

Both of these methods run the same optimization code, with the only difference being in the

number of pixels that contribute to the solution. Whereas in the fully dense all pixels are used

in the pose estimate, for semi-dense only the edges are utilized (Figure 4.4). The experiments are

further expand by analyzing the influence of the IMU in the estimation results.

(a) (b)

Figure 4.4: Figure (a) shows the figure-8 trajectory used in all experiments, with blue being the
ground truth trajectory and light blue being the estimated trajectory. Figure (b) shows the edges
of the scene in Figure 4.1 which are the only pixels used in the semi-dense implementation.

It should be noted that when using the IMU, the estimates are those obtained from the

bundle adjuster after it has been initialized. Furthermore, the initialization of the visual odometry

engine when using the IMU is done by integrating the inertial measurements between the last and

the current frame instead of using an image pyramid.

Finally, even though the errors seem relatively small in some experiments, it should be noted

that these errors are the accumulated per trajectory, which is approximately 1.8 meters. For a

robotic platform traveling hundreds and thousands of meters at a time, a difference of millimeters

or centimeters for every couple of meters traveled adds up to considerable error.

59

4.3.1 Frame-Rate

In this experiment, images are generated at different frame-rates (15, 30, 60 and 120 FPS) as

seen before in Figure 4.1. The rotation error (in radians) and the translation error (in meters) can

be seen in Figure 4.5. As expected, all methods incur high error at slower frame-rates; the highest

being semi-dense. The use of an IMU undoubtedly helps throughout the different frame-rates, more

so on the rotation component rather than the translation. This is not surprising since, unlike the

gyroscope, the accelerometer requires a double integration.

Another interesting observation is that as the frame-rate increases the difference between

fully dense and semi-dense, and even both methods aided with an IMU, decreases considerably to

become almost indistinguishable.

15 30 45 60 75 90 105 120
FPS

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
0.22

E
r
r
o

r

(
r
a

d
ia

n
s
)

Dense
Dense + IMU
Semi-Dense
Semi-Dense + IMU

(a)

15 30 45 60 75 90 105 120
FPS

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

E
r
r
o

r

(
m

e
t
e

r
s
)

Dense
Dense + IMU
Semi-Dense
Semi-Dense + IMU

(b)

Figure 4.5: Frame-Rate vs Error: Rotation (a) and translation (b) errors at different frame-rates.
(Logarithmic scale in the Y-axis.)

60

4.3.2 Shutter Speed

The shutter speed of the camera is now adjusted. This is done by simulating a camera

at a particular frame-rate and adjusting the exposure time between the capture interval accord-

ingly. This allows generating images at different shutter speeds, and the effects of blur in the pose

estimation, while maintaining a fixed frame-rate, can be analyzed.

For this particular experiment, a frame-rate of 15 FPS was selected. The capture interval

at this frame-rate is 0.0667 seconds. As explained in Section 4.2.1, blur is simulated by averaging

images in irradiance space; the longer the exposure time, the more images are averaged. Different

exposure times were selected, in particular those that correspond to the higher frame-rates studied

here: From the initial 15 FPS, through 30 FPS (0.0333s), 60 FPS (0.0167s), 90 FPS (0.0111s) up

to 120 FPS (0.0083s).

This experiment allows to better discern the nature of the error reduction in the previous

section, where the frame-rate was adjusted. By maintaining a constant frame-rate, any other factors

implicit in cameras that operate at different rates – the most obvious being the distance traveled

between two image captures – can be factored out.

Figure 4.6 shows the result of the experiments assuming constant illumination. It can be seen

that as the exposure time is decreased, and thus also image blur, the estimation error decreases

down almost comparable to the camera operating at 120 FPS as seen in the previous section.

4.3.3 Image Resolution

For the next experiments, the image resolution is adjusted from the nominal 800x600 down

to 400x300, 200x150 and 100x75. Since the blur observed by down-sampling a blurry image is not

the same as the blur observed in an image from a camera natively capturing at a lower resolution,

the blurred images have to be re-generated with these new dimensions. That is, first downsampled

to the correct image size and then averaged in irradiance space at this resolution.

Figure 4.7 shows the results of this experiment. It can be observed that as the image resolution

61

0.005 0.009 0.013 0.017 0.025 0.035 0.045 0.055 0.066
Shutter Speed (ms)

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

E
rr

o
r

(m
e

te
rs

)

Dense
Dense + IMU
Semi-Dense
Semi-Dense + IMU

Figure 4.6: Shutter Speed vs Error: Shutter speeds/exposure times are adjusted for a high frame-
rate camera in order to effectively lower its capture rate and simulate blur. (Logarithmic scale on
both axes.)

is increased, so does the accuracy of all methods. Furthermore, given the shape of this graph it can

be seen that further higher resolutions would continue to achieve better results.

100x75 200x150 400x300 800x600
Image Resolution

0.05

0.15

0.25

0.35

0.45

0.55

E
rr

o
r

(m
e

te
rs

)

Dense
Semi-Dense
Dense + IMU
Semi-Dense + IMU

Figure 4.7: Image Resolution vs Error: Trajectory error at different image resolutions. (Logarithmic
scale on the Y-axis.)

62

4.3.4 Pixel Count

The objective of this experiment is to analyze how the percentage of pixel contributions

affects estimation errors. For this, the estimation starts from a semi-dense implementation (which

contains approximately 5-10% of image pixels for this particular scene) and slowly increase the

number of pixels contributing on the visual engine’s optimization up to 100% which corresponds to

a fully dense method. The pixels are chosen starting from those with the highest gradient, which

are the ones where semi-dense operates, up to non-edge pixels which are randomly selected until

the specified percentage of pixels is reached.

All the runs at different frame-rates (15, 30, 60 and 120 FPS) are averaged to obtain the

graph in Figure 4.8. It is very interesting to see how the pose error quickly tapers down after

only 30% of pixel contributions, and overall as have been seen throughout all the experiments,

the difference between fully dense (100%) and semi-dense (5-10%), within each plot, is not very

considerable.

10 20 30 40 50 60 70 80 90 100
Pixel Count (%)

0.052

0.054

0.056

0.058

0.06

0.062

0.064

0.066

0.068

E
rr

o
r

(m
e

te
rs

)

Visual Only
Visual + IMU

Figure 4.8: Pixel Count vs Error: The graph shows the pixel contribution for the visual odometry
engine’s optimization against the trajectory error.

63

4.3.5 Image and Depth Noise

This final experiment studies how noise in the image and the depth map affect accuracy

throughout the different methods being studied here. Image noise, which corresponds in particular

to camera and shot noise, is typically seen when using a cheap camera sensor, setting a high gain

value or capturing images with very low illumination. 3D reconstruction, on the other hand, is not

only correlated directly to image quality and as such affected by image noise, but it also has its own

noise characteristics: systemic errors in the 3D reconstruction algorithms (for instance, the use of

a smoothing function), bad camera calibration or improper baseline for a given scene, all affect the

quality of the reconstruction which in turn affect localization accuracy.

In all the runs so far, noise has been added to the data, including inertial measurements,

to simulate measurement noise and thus make the experiments more realistic. For the IMU, the

noise was modeled from the MicroStrain 3DM-GX3 sensor and was added to the ground truth

measurements obtained by sampling the C2-continuous curve. This noise was then propagated as

sensor uncertainties through the estimation model.

For this particular experiment, the image noise σ was increased in piecemeal fashion from an

intensity value of 1 up to 35 (for the 8-bit, greyscale image with maximum value of 255) and the

depth noise σ from 0.01 meters up to 0.5 meters. The results can be seen in Figure 4.9.

From the image noise graph, in sub-figure (a), it can be seen how the use of the IMU con-

siderably helps in maintaining a low pose error and overall, the fully dense method surpasses the

semi-dense in accuracy. Interestingly enough the reverse is seen in sub-figure (b). Throughout all

of these experiments, the tendency has been for the fully dense method to have overall a higher

accuracy compared to the semi-dense method. However, in the case of a noisy depth map, the

semi-dense method seems more robust.

At closer inspection, it can be seen that using only edges for the semi-dense method makes

the whole system more robust against depth noise. For semi-dense, a noisy depth measurement

would reproject in an area off the edge which would incur in a very high photometric error that

64

would be down-weighted by the robust norm. This is also shared with a fully dense method. The

difference, however, lies in the other pixels that are contributing to the fully dense estimation.

Those pixels are in texture-less areas of the image, so a noisy depth value will most likely still fall

in the same texture-less area, producing a small photometric error. Thus, the estimate will not be

down-weighted by the robust norm and will be erroneously taken in consideration by the optimizer.

It is the addition of these erroneous measurements that eventually diverge the fully dense method

from the correct solution.

4.3.6 Number of Iterations and Computation Time

One of the most interesting results throughout these experiments is related to the number

of iterations required for the visual odometry engine, and in particular, the per frame estimation

time.

The number of iterations and estimation times were averaged throughout the different frame-

rates, obtaining an average count of iterations and computation time required per frame as seen in

Tables 4.1 and 4.2. Computation times were calculated by using a multi-threaded CPU implemen-

tation of the dense/semi-dense visual odometry engine and bundle adjuster, running on an Intel i7

2.5GHz computer. As such, the performance is not real time as expected if the implementations

were written for a GPU, but it does guarantee consistency throughout the experiments.

In Table 4.1 several interesting points stand out. First, the number of iterations decreases as

the frame-rate increases, regardless of the method used. This is not surprising, since the estimation

engine does less work due to the fact that the images are closer in time.

Another interesting point is that the number of iterations for semi-dense is higher than that

of a fully dense method. Since fully dense methods make use of more information, it can be inferred

that its estimation steps are “better” in that they get closer to the solution faster at each iteration

compared to semi-dense.

Finally, a very noticeable point is how the number of iterations is reduced drastically by

65

1 8 15 22 29 35
Image Noise (σ)

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

E
rr

o
r

(m
e

te
rs

)

Dense
Dense + IMU
Semi-Dense
Semi-Dense + IMU

(a)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Depth Noise (σ)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
rr

o
r

(m
e

te
rs

)

Dense
Dense + IMU
Semi-Dense
Semi-Dense + IMU

(b)

Figure 4.9: Noise vs Error: Pose errors as noise is added to the image (a) and depth map (b).
Unlike in most of the previous experiments, fully dense methods seem to perform poorly when
sufficient noise (σ > 0.06) is added to the depth map.

taking advantage of the IMU seeding. Since the visual odometry engine is no longer required to

perform a coarse-to-fine approach via an image pyramid, the number of iterations overall is reduced

by more than half.

The use of an IMU to initialize visual odometry also reflects in lower estimation times, as

66

seen in Table 4.2. This is more noticeable when comparing visual only dense with inertial aided

dense, since each iteration in a fully dense method is computationally very expensive. This is due

to the fact that it has to iterate through the whole image, which for a 800x600 resolution image

consists of 480,000 pixels. In contrast, semi-dense methods only make use of around 5-10% of an

image. Interestingly, even though the number of iterations of semi-dense was higher than that of a

fully dense method, as seen in the previous table, the estimation time is still considerably less.

Table 4.1: Average Number of Iterations Per Frame

Method
FPS

15 30 60 120

Dense 14.6 14.1 13.9 13.8
Dense + IMU 6.2 5.0 3.1 2.4
Semi-Dense 16.2 15.5 15.3 15.0

Semi-Dense + IMU 6.3 5.2 3.5 2.8

Table 4.2: Average Estimation Time Per Frame

Method Time (ms)

Dense 73.09
Dense + IMU 54.30
Semi-Dense 22.97

Semi-Dense + IMU 20.84

4.4 Conclusion

A series of experiments were conducted in order to gain a better understanding of the different

direct visual odometry methods, particularly those that make use of inertial measurement units.

Throughout these experiments it has been seen that, as suspected, fully dense methods perform

better under many situations. The exception occurred in the case when noise was added to the

depth map.

It was also seen that the addition of an inertial measurement unit undoubtedly helps in

67

maintaining low pose errors, especially in the presence of extreme motion blur incurred by low frame-

rate cameras or long exposure times. However, throughout the different experiments a common

trend could be seen: with a high enough frame-rate, and therefore low image blur, all methods

seem to perform relatively similar.

This is particularly important in cases when computation time is a big factor. Compared to

fully dense methods, semi-dense takes almost 3x less time while achieving comparable results under

low blur conditions. This relatively high accuracy at considerably low pixel count is possible due to

the fact that semi-dense operates only on edges, which are the pixels with the highest information

in an image.

Similarly, the inclusion of an IMU increases the accuracy of the system especially in areas

with high camera movement. An additional advantage of using an IMU is that it removes the need

to use an image pyramid, saving considerable computation cycles by guiding the visual odometry

engine to the convergence basin. The optimizer would only need to perform a couple of iterations

to refine the integrated pose provided by the IMU.

It should be noted that the way the IMU was used in this paper, specifically through a sliding

window bundle adjuster where visual odometry constraints are added as binary constraints, is only

one particular implementation of a visual inertial tracker and it would not be surprising that a

different implementation – for instance, a filter based tracker – would yield different results. It

would be hard to see, however, those differences being too significant.

While these early findings are certainly insightful, it should be noted that not all the possible

properties found in real-life settings were modeled. The work chose to focus instead on the properties

that are intrinsic to the sensor rig (frame rate, resolution, etc.), rather than visual phenomenon

that are typically corrected prior to any estimation such as vignetting and lens distortion.

In short, the results can be summarized as follows: For applications that require very high

accuracy, an inertial aided fully dense method is the best choice. It provides the highest accuracy,

especially in the presence of extreme motion blur, while at the same time being faster than a vision-

only fully dense method by making use of the IMU seeding. The elbow in the curve, especially

68

when considering computation time, is without a doubt an inertial aided semi-dense algorithm. It

still provides a good degree of accuracy while being extremely efficient. Finally, for applications

that will not encounter extreme camera motions or alternatively if a camera that supports very

high frame-rates is used, a vision only approach would suffice for most general situations.

Chapter 5

Large Scale Dense Visual-Inertial SLAM

The previous chapter presented a study between different direct methods for tracking, in

particular a comparison between fully dense and semi-dense methods was presented and how the

camera characteristics like image resolution and frame rate affected localization accuracy. Also, a

secondary sensor was introduced into the mix: the Inertial Measurement Unit (IMU) which aided

in tracking especially during fast camera motions with high amount of blur. The experiments

presented were conducted over synthetic data, due to the necessity of having repeatability and

ground-truth information.

Furthermore, with previous systems, the maps tended to be relatively small in size and

limited to a single scene (a desk or a room) up to a full floor of an office building. Large scale

mapping, especially with dense maps, are rare and typically an area left only for autonomous vehicle

researchers. However, its application in any robotic platform is fundamental. The next section will

therefore present a large scale dense SLAM system for a robotic platform, capable of operating in

large environments and even outdoors in adverse weather conditions due to the resilience of the

multi-sensor approach of visual plus inertial localization. The system uses a global representation

of a map, based on a voxel hashing technique [56], and stores only geometric information of the

scene – that is, 3D data – rather than photometric information which would be necessary for a full

map registration using a dense system.

70

5.1 Introduction

Large scale SLAM is an important research area in robotics and computer vision, since for

a robot to be useful it needs to be able to operate autonomously long-term in a potentially large

environment. Perhaps the most popular approaches to large scale SLAM are point cloud based

[72, 29, 100]. Normally, such approaches use a point cloud to reconstruct the scene and cannot

reconstruct connected surfaces. These approaches fuse the individual point clouds from different

views and present the final reconstruction result as a point cloud as well. However, this has the

drawback that it requires much more memory for storage and also it is incapable of providing the

connected surface component which is important for planning and control of robotic platforms.

Dense SLAM with volumetric representation have been popular in recent years [69, 43, 46].

Such techniques use a Truncated Signed Distance Function (TSDF) to represent the scene surface

and incrementally refine it with the registered depth frames. Meanwhile, similar approaches have

also been proposed in monocular SLAM [70, 15]. Usually, these approaches use a fixed amount

of GPU memory for tracking and reconstruction; this hard constraint limits the size of the recon-

structed scene and cannot be used for large scale dense SLAM.

Several systems have been proposed in order to reconstruct large scale scenes with volumetric

approaches. [110, 97] proposed an octree based approach for indoor dense SLAM. [80, 104, 28] used

a fixed bounded volume to represent portions of the scene and incrementally reconstruct it with

a rolling scheme. However, these approaches mostly focus on the indoor scene and uses RGB-D

sensors, which cannot perform outdoor SLAM due to their sensitivity to sunlight. They also rely

heavily on the Iterative Closest Point (ICP) algorithm for tracking – that is, in short, point cloud

alignment – which is not suitable for outdoor environments due to the lower quality of the depth

maps from the stereo sensors when operating outside. Besides, a combined ICP + photometric

tracking approach [80] may also fail if the scene only contains simple geometric or color information.

In this section a new large scale dense visual inertial SLAM system is presented that does not

rely on active depth sensing but uses a stereo rig to generate 3D depth maps. The system uses a

71

rolling grid fusion scheme which effectively manages GPU memory and is capable of reconstructing

a fully dense scene online.

The system obtains depth maps using the Efficient Large Scale stereo matching [35] described

in Chapter 2, and simultaneously localizes the camera based on whole image alignment and inertial

data while reconstructing the scene with SDF fusion. The system automatically saves and loads

data from device, host memory and hard disk, and generates a mesh (.obj, .dae, .ply formats)

of the large scene (e.g. 20 millions vertices) in seconds. Given these components, a wide range

of applications can be developed, especially in robotics where the proposed system is capable of

providing high fidelity meshes of any outdoor environment for use in path planning and control.

The most similar approaches to the one presented in this section are [104, 71, 89, 79]. There

are, however, key methodological differences:

(1) This approach focuses on outdoor scenes and uses stereo data while [104, 71, 79] use an

active sensor (i.e. Kinect) and mainly focus on indoor scenes.

(2) The system uses a dense visual inertial stereo system for tracking while others rely solely

on cameras, either via an ICP or photometric alignment approach.

(3) This approach uses a simple rolling grid SDF pipeline for reconstruction while [71, 79] used

a hashing scheme, [104] used a rolling SDF scheme and [89] uses a fix grid volume scheme.

5.2 Rolling Grid Based Volumetric Map

This section will briefly cover the map representation of this method in order to better

understand the tracking system described in the next section. The system uses a rolling grid based

volumetric representation, namely the Grid SDF, to reconstruct a 3D model of the scene in the

current camera view.

An SDF, or Signed Distance Function, is a function that determines the distance of a given

point to a particular boundary (i.e. a surface), with the sign determining if the point is inside or

outside the boundary. It is a frequently used data representation for 3D spaces, and can be used

72

as a global map that stores geometric information of a scene. In voxel form, each voxel stores the

sign and distance to the closest surface. It typically requires allocating memory for each voxel,

regardless of how close it is to the surface.

The Grid SDF proposed here, however, can be considered as a hybrid: each cell in the grid

may or may not contain data, and if it does, then memory is allocated for a smaller SDF voxel

cube (Figure 5.1).

Figure 5.1: An example of the Grid SDF. In this example, the grid is comprised of (8 ∗ 8 ∗ 8) cells.
The GPU memory of a cell is not initialized (gray cells) until there is actual information available,
in which case a small voxel sub-cube is initialized (red cells). This allows for an efficient use of
memory to only areas where there is actual depth information.

Each cell in the Grid SDF is a small NxNxN dimensional TSDF (Truncated Signed Distance

Function) volume and contains a pointer to GPU memory. The Grid SDF contains (xg, yg, zg) cells

in each dimension. Assuming that the resolution of each voxel is rv, the maximum size of the scene

in each dimension is the number of cells in that dimension times the size of the SDF. For example,

for the x dimension this means:

rx = rv ∗N ∗ xg. (5.1)

The values of xg and yg are usually selected depending on the horizontal and vertical field

73

System initialization Tracking Reconstruction
Device - Host

Streaming

Input Stereo Images

Ray Casting

Figure 5.2: After system initialization, the proposed system localizes the pose of cameras and
incrementally reconstructs the scene with a rolling SDF scheme. Portions of the scene that are out
of the camera view will be streamed from the GPU memory to the CPU memory (or the hard disk)
directly.

of view of the camera, and zg is based on the maximum depth measurement desired. This can be

selected dependent on the maximum expected scene depth, or ideally, thresholded by the maximum

depth uncertainty desired given the rig’s stereo baseline. Notice that when initializing the grid,

the system does not allocate any GPU memory for any cell. For a more detailed description of the

rolling grid SDF representation, please refer to the original paper [56].

5.3 Visual-Inertial Tracking

Tracking is performed in a windowed dense visual inertial joint optimizer similar to a visual

inertial bundle adjuster [45]. Visual-only frame-to-frame constraints are transformed into the IMU

frame and added into the joint optimizer as binary constraints. Inertial measurements between

frames are integrated forming residuals against the estimated poses. Velocities and IMU biases are

also estimated, and are carried through in the sliding window. The camera to IMU transform Tic is

previously calibrated offline and does not change during the run as the sensors are rigidly attached

to the rig.

As seen before, visual tracking is performed by a Lucas-Kanade [6] style whole-image align-

ment algorithm via the Efficient Second Order Minimization (ESM) technique [49], and a 6-DOF

74

camera transform is estimated by minimizing the photometric error (ev) between a reference image

and the current live image:

eV =
∑

i

ρ (Ilive(ω(ui,p + ∆p))− Iref (ui), c) (5.2)

where ω is the warping function as defined in Chapter 2:

ω(ui,p + ∆p) = π−1
(
K T (p) T (∆p) K−1 ◦ui dui

)
(5.3)

The pixel ui in the reference frame is back-projected using the camera matrix K−1 and the

associated depth value dui obtained by the ELAS stereo reconstruction algorithm. The 3D point is

then transferred into the live frame via the estimated transform, Tlr = T (p), and projected through

K onto the live camera.

The pose covariances from the visual tracking system are then added into the joint optimizer,

which runs once a sufficient number of frames and inertial measurements are obtained. The co-

variance of the inertial residual between two consecutive frames is dependent on the number of

measurements between images, and as such must be carried forward during the integration process

(Figure 5.3). Details about inertial integration and error propagation can be found in [45].

Inertial residuals eI between the parameters and the integrated state take the form of:

eI =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




pwp − p̂

log
(
q−1
wp ⊗ q̂

)

vw − v̂

bg − b̂g

ba − b̂a




∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

(5.4)

where (pwp − p̂) is the translation residual, log
(
q−1
wp ⊗ q̂

)
∈ R3 calculates the rotation residual in

so(3), (vw − v̂) is the velocity residual, and (bg − b̂g) and (ba − b̂a) are the gyro and accelerometer

bias residuals respectively.

75

.. . .
eIn+1

eVn+1
eIn+2

eVn+2




Xwpn

Vwn

bgn
ban







Xwpn+1

Vwn+1

bgn+1

ban+1







Xwpn+2

Vwn+2

bgn+2

ban+2




.

Figure 5.3: Errors from the vision system (ev) are formed by compounding the estimated rela-
tive transforms with world poses. Similarly, inertial errors (eI) are formed by integrating inertial
measurements. Uncertainties (shown as ellipsoids) are used to weigh in residuals for the estima-
tion of the state parameters: world poses comprised of a translation (p) and rotation (q) vector
(Xwp = [pwp qwp]

T), velocities (Vw), accelerometer biases (ba) and gyroscope biases (bg).

A total of 15 parameters per frame are estimated during the sliding window optimization: 6

for pose parameters, 3 for velocities, 3 for accelerometer biases and 3 for gyroscope biases. Initial

velocities, as well as the biases, are estimated and kept up to date as the sliding window shifts during

execution. Given the size of the sliding window and the unambiguity of scale from the stereo vision

system, no marginalization or conditioning is done on the sliding window as all parameters are

observable.

The dense visual inertial tracker initially performs visual odometry only using a coarse to

fine approach via an image pyramid. After a minimum number of image frames are acquired, the

sliding window is used and the image pyramid is no longer required, since the IMU is capable of

seeding the visual odometry optimization by providing a hint of the camera pose. The window size

used for all experiments was 15, with the minimum number of frames being 10.

5.4 Results

The proposed system is tested by a hand held camera and a ClearPath Robotics Husky robot

(Figure5.4) with two Ximea (MQ013MG-ON) gray scale cameras and a Microstrain 3DM-GX3-35

Inertial Measurement Unit (IMU). The camera intrinsics as well as sensor extrinsics are calibrated

76

offline with a method similar to [54], and the rigid sensor rig is attached to the robot via a T-mount.

(a)

(b)

Figure 5.4: The stereo camera pair and IMU sensor head on top of the Clearpath Husky robotic
platform. This particular system is not autonomous, but is operated remotely via joystick.

The inclusion of inertial data enhances visual tracking in general, and in particular during fast

77

camera movements and low textured areas. The addition of the IMU also speeds up visual tracking,

since the typical coarse-to-fine pyramid scheme used in visual odometry is no longer required once

the system has been bootstrapped. Instead, the visual tracking is initialized with an estimated

pose given by the integration of inertial measurements from the last frame up to the point where a

new image is captured. In this way, only a refinement in the form of a few iterations at full image

resolution is required for the final pose estimate.

5.5 Conclusion

A large scale dense visual inertial SLAM system based on a rolling grid fusion scheme was

presented. The proposed system manages the space into small volume grids and only allocates

GPU memory for cells if data exists. A large scale dense mapping solution is obtained via a rolling

grid scheme with simple index computation while the device and the host memory automatically

stream between each other in order to reuse the GPU memory. Depending on the requirements of

an actual application, the system utilizes stereo cameras in both indoor and outdoor scenes.

The system is tested in several outdoor and indoor scenes under different lighting (illumi-

nation changes), weather (e.g. snow, sunny), and motion conditions and shows promising results.

The main contributions of the paper are: a new large scale outdoor dense mapping system based

on stereo data and a new dense visual inertial dense tracking pipeline.

Although the system is robust to many real-world conditions, it has a main limitation: the

final reconstruction and tracking results depend heavily on the quality of the depth images which can

be improved by using global methods which have been proven to produce better reconstructions

[40, 41]. The system also does not handle loop closures, which would increase considerably the

tracking and therefore the final reconstruction.

78

(a)

(b)

Figure 5.5: An example of the reconstruction result for an indoor office scene (a) and a top-down
view of the final map of the trajectory (b).

79

(a)

(b)

(c)

Figure 5.6: An example of the reconstruction result for an outdoor scene from 7000 stereo frames
(approximately 75 million vertices). a - b) Reconstruction detail of a scene with both shadow and
harsh illumination, and snow on the ground. c) An overview of the camera path.

Chapter 6

Towards Robust Dense Visual SLAM

So far throughout this dissertation, all the tracking systems presented have been operating

as visual-only or visual-inertial odometry : that is, the system performs frame to frame or frame to

keyframe localization but registering against a map – be that pre-mapped at a different time or

even registering against a recently traversed area – has not been accomplished.

There is a considerable amount of effort to register against a map, especially one that changes

constantly either due to changes in illumination (time of day, seasons, weather, etc.) or simply by

the dynamic nature of the environment. This last is particularly challenging, and is one of the

currently active research areas in computer vision in order to accomplish true long-term autonomy.

This next chapter introduces the final component towards robust dense visual SLAM, and a

key component in long-term autonomy: a system capable of registering against a map, even in the

event of extreme illumination changes.

6.1 Introduction

Direct visual odometry[70, 49] works by minimizing the photometric error of two images since

it is assumed that the illumination changes between images close in time is small—this is what is

called the brightness constancy assumption. This works well for visual odometry, which estimates

the 3D pose of the camera frame-to-frame, since the changes in the scene’s lighting is minimal

within a short time interval, especially with a high frame rate camera.

Frame-to-frame tracking, however is not ideal due to natural drift over time. Instead it is

81

desirable to localize the camera with respect to a prior map. This is the essence of simultaneous

localization and mapping (SLAM): not only to map an environment but also to localize against it.

However, the brightness constancy assumption does not hold with long-term maps since illumination

changes continually from day to day (morning, afternoon, evening) and is dependent on certain

external conditions like weather (clouds, rain, snow) or even seasons (summer vs. winter). As such,

a direct photometric minimization is often inadequate in these kind of situations.

While some work exists to create maps that handle well these changes, like for example

experienced based mapping [12] or localizing against a navigation sequence [63], these techniques

mitigate the problem by simply using redundant information and storing all the different conditions

in maps that are co-registered.

A far better approach is for the map to store a generative model of the scene, in particular

light sources and material properties. Most of this line of work, however, only consider distant

lights and Lambertian surfaces [111] and are extremely computationally intensive which make

them unsuitable for real time applications.

By far, the most common techniques involve folding in the illumination robustness directly

into the image registration optimization. This is done by either adding additional constraints that

model lighting variance, or by simply using robust photometric error functions. For a comprehensive

study of the different error functions used for whole image alignment, the reader is referred to [74].

An example of such a technique is applying Zero Normalized Cross Correlation (ZNCC) [20]

by which the scene’s mean intensity is subtracted to each pixel which in turn is then divided by the

standard deviation. This aids in adjusting the brightness of the image due to variations in lighting

and exposure conditions. Another similar technique is the Global Affine Illumination (AI) [49]. In

this method, two extra parameters are added to the tracking optimization: a scale α and a bias β

parameter that is applied to each pixel’s intensity when calculating the photometric error.

These techniques have a major drawback in that they assume that the illumination change

is globally consistent. It is often the case that lighting conditions affect the scene differently in

different areas, depending on the geometry of the scene (e.g. multi-path), the camera position

82

(e.g. non-Lambertian reflections) or the material properties of the objects within it (e.g. albedo).

Therefore, adjusting the photometric values globally throughout the image would not capture these

intricacies (Figure 6.1).

Figure 6.1: Example images of the same scene with two illumination profiles: an indoor office
fluorescent lighting, and one with bright sunlight coming from the window (Tsukuba dataset).

Figure 6.2 shows the resulting error images for the same scene when lighting conditions

change. In this case, the glare from sunlight coming from the office window to the right is modeled,

which is not unlike real life day/night lighting changes in a typical office environment. The difference

between the error images, when comparing a pure photometric minimization versus when a robust

lighting technique like ZNCC or GAI is applied, is very noticeable. For the pure photometric

minimization, most of the right side of the image is being rejected by the robust norm (pixels

labeled yellow) with areas of high error (pixels labeled red). Zero normalized cross correlation

performs slightly better, yet when the mean and standard deviation offsets are applied, the image

quickly over-saturates (pixels labeled black, top area). Finally, global affine illumination handles

the lighting difference better, under-saturating a small area of the image (the computer monitor)

and rejecting only half of the top section due to the robust norm.

One error function that is robust against this non-uniform lighting limitation, and is one of the

most popular techniques used in computer vision, is called the Census transform [109]. Whereas

83

(a)

(b)

(c)

Figure 6.2: The resulting error images of the photometric optimization: (a) pure direct photometric
image alignment with no robust lighting technique, (b) with zero-normalized cross correlation and
(c) with global affine illumination. The blue-red heatmap highlight areas with high (red) and low
(blue) errors, with pixels rejected by the robust norm marked as yellow, and pixels discarded due
to under/over saturation marked as black.

84

the Sum of Absolute Difference (SAD), or even the Sum of Squared Differences (SSD) directly

operate over the photometric values of pixels, Census converts each pixel into a binary signature

that encodes whether a pixel’s photometric value is lower or not compared to its neighboring pixels.

This has the advantage that it encapsulates local consistencies of illumination changes, rather than

assuming a global illumination transform.

However, given the fact that each pixel is now a binary signature, a direct subtraction can

no longer be applied to find correlations. This is due to the fact that the position of the bits no

longer has any meaning, but rather the actual value of the bit itself. Thus, the Hamming distance

is used as a metric of similarity by which the number of matching bits in the binary signature are

counted in order to provide the final score.

A major disadvantage of using the Hamming distance in optimizations is that it is not

continuous. Thus, what the authors of the work in [2] proposed is to use each bit independently as

a different channel or plane. Furthermore, each bit is interpolated during the reprojection in order

to find the error per bit which is then aggregated with the rest of the Census bits to calculate the

final error for that pixel. The downside to using this technique, however, is that the computation

per pixel has now been incremented by the number of bits in the Census transform used. Thus, for

the typical 3x3 Census window, eight additional comparisons would need to be made per pixel.

A hybrid technique that combines whole image alignment with a generative model was pre-

sented in [62], in which model-based tracking parameters were optimized along with the visual

odometry parameters. The system relied in augmented reference images, which are synthetic views

generated from multiple keyframes. This requires, however, that the scene geometry between

keyframes does not change which is unrealistic for long-term autonomy where a map is constantly

in flux.

More recently, the Normalized Information Distance (NID) metric [53, 98, 75] was proposed.

This technique makes use of mutual information [57, 103] which has been shown to be robust

in the alignment of multi-modal images, in particular for medical applications. The images are

converted into histograms, which are then aligned using an entropy metric. This method, although

85

far superior to others, is extremely computationally intensive and can take up to three orders

of magnitude more than the typical photometric minimizations; even those with robust lighting

techniques.

In this section, a novel algorithm is introduced which speeds-up considerably the computation

time of a whole image alignment optimization using the Normalized Information Distance (NID)

metric. The algorithm converts the typical NID problem into a least squares type optimization,

using the conventional Gauss-Newton method to solve. This has many advantages: the rate of

convergence has now become near quadratic, which allows to a much faster convergence; a covari-

ance matrix for the estimate can be easily extracted, which is extremely useful in other SLAM

algorithms like pose graph relaxations or sensor fusion; and finally, techniques to characterize the

solution can be easily applied to validate the estimate without the need to run it through a com-

plex classifier. Furthermore, unlike other implementations that make use of NID, our algorithm is

capable of coping with errors in reprojection due to the spatial distribution of cells in the image: a

bad reprojection in a cell can be down-weighted or even rejected without affecting the total error.

6.2 Background

6.2.1 Information Entropy

To better understand the Normalized Information Distance, the concept of entropy and mu-

tual information must first be explained.

Entropy can be thought of as a measure of uncertainty or randomness in a system. Conversely,

it can be thought of as the amount of information in a system. An event that has a very high

probability of occurring conveys no information, whereas one that is very unlikely conveys a lot of

information – when it occurs.

Consider the case of tossing a coin. If the coin is fair, the probability of obtaining heads or

tails is equal: exactly 1/2. This coin has the maximum entropy, and as such any event – be that

heads or tails – will provide the maximum amount of information. However, if the coin had two

86

heads and no tails, then its entropy would be zero since the outcome can be predicted perfectly:

always heads. As such, the outcome of a toss with this coin provides no information.

Entropy H of a random variable X is defined as:

H(X) =
∑

x∈X
PX(x)IX(x) (6.1)

where PX(x) is the probability mass function and IX(x) is the information content defined as:

IX(x) = log

(
1

PX(x)

)
. (6.2)

Information entropy is typically measured in bits, sometimes called shannons, although it

can also be measured in natural units, or nats, or even in decimal digits called dits. The unit of

the measurement depends on the base of the logarithm that is used to define the entropy.

It is important to note that, in general, entropy is not a function of the values the events

represent but rather a function of their probabilities. In the case of the coin example described

above, the entropy quantity remains the same irrespective of the label assigned to each event (heads

or tails) as long as the probabilities remain the same. This has the nice side-effect that entropy is

independent of the amount of data used to generate the distribution.

6.2.2 Mutual Information

Entropy can also be extended to two random variables to measure the amount of information

obtained about one random variable, through the other random variable. This is what is called

mutual information. Figure 6.3 shows a graphical representation of two random variables and their

entropy.

H(X) and H(Y) are the individual entropies for the correlated random variables X and Y ,

represented by the red and blue circles. H(X,Y) is the joint entropy and is the area contained by

both circles, while H(X|Y) and H(Y |X) are the conditional entropies. The purple is the mutual

87

H(X,Y)

H(X) H(Y)

H(X|Y) H(Y|X)

I(X;Y)

Figure 6.3: Entropy diagrams of two non independent random variables. The information common
between the two random variables is called mutual information, and is denoted as I(X;Y).

information I(X;Y), and can be considered as a measure of similarity between the two random

variables. Formally it is defined as:

I(X;Y) = H(X) +H(Y)−H(X,Y) (6.3)

where,

H(X,Y) =
∑

x∈X, y∈Y
PXY (x, y) log

(
1

PXY (x, y)

)
(6.4)

As can be seen from the previous equation, mutual information is maximized as the two

circles overlap completely with each other. In contrast, variables that are independent have circles

that do not overlap and as such convey no mutual information.

6.2.3 Normalized Information Distance

One of the biggest issues with mutual information is that it is not a true metric as it does

not satisfy the triangle inequality.

Consider the case of Figure 6.4. In this example, both cases have the same amount of mutual

information I(X1;Y1) = I(X2;Y2), yet with different joint entropies H(X2, Y2) < H(X1, Y1). It is

desirable to disambiguate between the two cases, and have a distance that captures D(X1, Y1) <

D(X2, Y2).

88

H(X1,Y1) != H(X2,Y2)

I(X1;Y1) = I(X2;Y2)

H(X1) H(X2)H(Y1)
H(Y2){ {

Figure 6.4: Two cases which have the same mutual information I(X1;Y1) = I(X2;Y2) (purple
areas), yet with different joint entropies H(X1, Y1) 6= H(X2, Y2) (captured by the brackets).

The Normalized Information Distance (NID) precisely tries to overcome this limitation by

normalizing the variation of information by the joint entropy; and unlike mutual information, it is

a true metric ∈ [0, 1]. Formally, NID is defined as:

NID(X,Y) =
H(X,Y)− I(X;Y)

H(X,Y)
(6.5)

and obtaining the final NID cost by using Equation 6.3 on Equation 6.5 above:

NID(X,Y) =
2H(X,Y)−H(X)−H(Y)

H(X,Y)
(6.6)

6.3 Methodology

Pascoe et al. [76, 75] were one of the first to propose a dense tracking system that directly

minimizes a single global NID cost. The optimization uses the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) algorithm, which is a quasi-newton method by which the Hessian is iteratively approxi-

mated from the gradient and provides robustness by using a line search. Although the algorithm

shows promising results for scenes with extreme illumination changes, the convergence rate of

BFGS is extremely slow. Furthermore, since the images are converted into a single histogram,

89

inconsistencies due to outliers cannot be handled like typical direct photometric methods could.

Thus, instead of minimizing a single cost, this work proposes to use NID as an image distance

measure instead that provides multiple residuals, and therefore the problem can be rewritten to

use the conventional Lucas-Kanade[6] whole image alignment formulation (see Section 2.2.1). As

such, a second-order optimization method like Gauss-Newton can be used to yield near quadratic

convergence rates. Furthermore, the optimization is now capable of providing its true covariance

matrix, which is important for other SLAM algorithms like pose graph relaxation and sensor fusion.

To achieve this, the image is now split into cells, for each of which a NID cost is computed.

The optimization is looking to minimize the summation of the NID costs for all cells in the image

(Figure 6.5).

NID(0,0) NID(0,1) NID(0,2) NID(0,3) …

NID(1,0) NID(1,1) NID(1,2) NID(1,3)

NID(2,0) NID(2,1) NID(2,2) NID(2,3)

NID(N,N)

. . .

…

Figure 6.5: The image is split into cells, for each of which the NID cost is computed. This grid
approach also has the advantage that due to the cell spatial distribution, inconsistencies can be
down-weighted or rejected since the histograms generated are restricted to only a particular area
of the image.

A typical Lucas-Kanade whole image alignment formulation is written as follows:

arg min
p

D (ω (Icur,p) , Iref) , (6.7)

where p ∈ SE(3) is the six degree-of-freedom pose being estimated, Icur : Ω→ R+ and Iref : Ω→

90

R+ are the current and reference images respectively, and ω is the warping function that transforms

the current image using the estimated parameters p.

Finally, D in Equation (6.7) is a measure of distance and as such must be designed to meet

certain conditions:

• Non-negativity: D(X,Y) ≥ 0

• Equivalence: D(X,Y) = 0 ⇐⇒ X = Y

• Symmetry: D(X,Y) = D(Y,X)

• Triangle Inequality: D(X,Y) +D(Y,Z) ≥ D(X,Z)

For the conventional photometric image alignment algorithm, the distance metric is the

summation of the squared errors for each pixel in the image. This work posits that the NID

operation defined in Equation (6.6) provides a robust result to brightness inconstancy:

DNID(X,Y) =
2H(X,Y)−H(X)−H(Y)

H(X,Y)
(6.8)

where, H(X) and H(Y) are the individual entropies of the images X and Y whose distributions

are calculated by a sampling method using bins. H(X,Y) is the joint entropy.

The NID cost only requires computing the joint distribution, since the individual distribu-

tions can be calculated by marginalization. A sampling method is performed to construct each

distribution, represented as a K-bin histogram, with the final joint distribution being of size KxK.

Finally, the spatial distribution of cells in the image provides additional benefits with regards

to histogram consistency. For the single residual NID case, it is possible to construct a problem by

which the cost is minimal over the entire image regardless of how the image is warped due to the

fact that all reprojections fall under a single histogram. For example, imagine the simple case of

blocking the camera such that a third of the image is black. Regardless of how the image is warped,

the joint entropy will be the minimum at some incorrect transform since the bad observations were

already added to the histogram. However, with the cell based approach the position of the black

91

area of the image will only affect the cells it reprojects into, and as such, the histograms of the other

cells will not be affected. Thus, a technique to down-weight or reject high errors could mitigate the

influence of these erroneous cells yet still achieve the same original histogram (Figure 6.6).

Figure 6.6: The grid cell approach preserves the histogram consistency regardless of reprojection
errors due to incorrect depth estimates or outliers, like for example new objects in scene. For the
case of the whole image NID, the final histograms between the top and middle row will not match
correctly. With the grid cells, however, the cells that are affected can easily be down-weighted or
rejected and as such preserve the original histogram (bottom row).

6.4 Evaluation Method

To evaluate the algorithm, experiments were conducted on the Tsukuba dataset [59] (Figure

6.1). This dataset is comprised of 1800 image pairs, ground truth depth maps, disparity and

occlusion maps, as well as their corresponding camera poses. The images are colored images, having

a 640x480 resolution. The dataset simulates a 30 FPS camera trajectory moving for one minute

inside an indoor office environment. It provides four different lighting conditions: fluorescent, which

models a typical office environment with homogeneous lights and no external light sources; daylight,

similar to the previous but in addition it provides an external source of light from the windows

simulating direct sunlight; lamp, which simulates the office with all ceiling lights turned off with

92

the exception of desk lamps; and finally flashlight, which simulates a completely dark environment

while having a flashlight on top of the rig as it moves through the scene.

Since the last two lighting conditions (flashlight and lamps) are not common environments

seen in a typical robotic application, the experiments were only conducted between daylight and

fluorescent lighting. A reference trajectory is selected with one lighting condition, and a live

trajectory with the opposite lighting condition. Frame to frame estimates are performed such

that frame N from the reference trajectory is used to estimate the pose of frame N+1 of the live

trajectory frame. When choosing which lighting environment to use as the reference trajectory,

either daylight or fluorescent lighting, it was noted that the results were almost equivalent and as

such the average of the two was used instead when showing these results.

In order to asses the validity of the algorithm in real world settings, experiments were con-

ducted on images from the ETH Zurich - Computer Vision and Geometry Group’s dataset [74]

(Figure 6.7). This dataset contains 640x480 resolution images of the same scene in multiple light-

ing conditions. It is comprised of RGB-D data obtained from a color camera and depth information

from a Kinect sensor, with ground truth poses obtained from a motion capture system. Unlike the

Tsukuba dataset where identical camera trajectories were captured with different lighting condi-

tions, the dataset has a single camera trajectory and instead the lights are turned on and off at

different points. 35 such transitions were detected, and the experiments were conducted on both

transitions, on→ off and off → on, thus yielding 70 test cases.

Pose errors were estimated independently for the translation and rotation components: the

Euclidean distance (`2-norm), was used to estimate the translation error while the Infinity norm

(`∞-norm) was used to estimate the rotation error. In average, the camera moves approximately 2.8

centimeters in translation and 0.015 radians in rotation between each frame; some areas exclusively

with high amount of camera rotation while others with only translation.

Finally, since in some experiments a comparison is performed between pure photometric

methods and those using normalized information distance, a pass criteria shared by all of them

93

(a) (b)

Figure 6.7: Example images from the ETH Zurich - CVG dataset. Light transitions (on/off)
occur throughout the camera trajectory, and for each such pair the reference and live images are
alternated, thus yielding 2 test cases for every image pair.

must be defined. Thus, a frame is considered to have been successfully estimated if the result of

the optimization marks it as such and if the final relative pose error is less than 0.5.

For the algorithm presented here, the experiments were performed by adjusting the number

of cells the image was split into. As such, the original NID algorithm which makes use of the BFGS

optimization is labeled as NID-BFGS, while the technique used here is labeled as NID-GN based

on the Gauss-Newton optimization. Cell sizes were estimated based on the number of splits applied

to each dimension in a recursive manner. Thus, 1 split means the image is divided by two, 2 splits

means the image is divided twice – one to obtain halves, and then another to obtain quarters, and

so on.

Thus, NID-GN3 is the label for the configuration of the algorithm which contains three splits.

Table 6.1 shows the number of splits for each configuration, and the corresponding number of cells

and cell size.

It should be noted that NID-GN1 is not tested since this would yield an under-determined

system, having only 4 residuals. As the number of splits is increased, the cell resolution is lowered

up to the point that no clean split can be performed after 5. Thus, all experiments were performed

between 2 to 5 splits, yielding 16 to 1024 residuals.

94

Table 6.1: NID-GN Configurations

Configuration Splits Num Cells per Dimension Total Num Cells Resolution of Cell

NID-GN1 1 2 4 320x240
NID-GN2 2 4 16 160x120
NID-GN3 3 8 64 80x60
NID-GN4 4 16 256 40x30
NID-GN5 5 32 1024 20x15

Finally, for all NID versions of the algorithm (both BFGS and GN) the number of bins used to

create the histograms that represent the distributions was K = 16. As such, the joint distribution

is a matrix of size 16x16.

6.5 Results

For the Tsukuba dataset, when choosing which lighting environment to use as the reference

trajectory, either daylight or fluorescent lighting, it was seen that the results were similar and as

such the average of the two runs was used yielding a total of 3600 test cases.

Table 6.2 shows the percent of successful estimates of the different algorithms used with

different number of cell splits (see Table 6.1). Overall the amount of successful estimates for all

algorithms is still low, barely half, which shows that the underlying brightness constancy assumption

for dense whole image alignment is not valid with extreme illumination changes. This is partly due

to how challenging the dataset is, with some sections of the trajectory showing extremely over-

saturated pixels which lead to loss of information (Figure 6.8).

Table 6.2: Successful Estimates for Tsukuba Dataset

NID-BFGS NID-GN2 NID-GN3 NID-GN4 NID-GN5

45.00% 19.44% 36.11% 45.56% 49.44%

As a comparison, pure photometric only yields 28.33% success rate for the whole trajectory

so it is clear that the Normalized Information Distance metric is more robust to these extreme

95

Figure 6.8: Sample images from the Tsukuba daylight sequence that experience extreme over
saturation, and thus, data loss.

illumination changes – yielding more than 20% higher success rate.

From Table 6.2 it is also interesting to see how the success percentage of NID-GN increases

as more splits are done. This is not unexpected, as the least squares optimization has a higher

number of measurements to work with. With NID-GN2, having only 16 measurements, the percent

of success is lower than even photometric or bitplanes. NID-GN3 surpasses the regular photometric

variants, although it still is lower than the NID baseline using BFGS. However, NID-GN4 quickly

levels the playing field and NID-GN5 even surpasses the baseline.

Focusing on the NID variants, Figure 6.9 shows the average/max/min times for the whole

trajectory. The baseline NID-BFGS takes in average 11.70 seconds per frame, whereas the NID-GN

variants take in average 4.75 seconds, with the slowest (NID-GN4) taking 5.24 seconds. Overall

this technique achieves a speedup of almost 2.5x compared to the baseline NID implementation.

Finally, Figure 6.10 show the average/max/min translation and rotation errors of the full

trajectory. As expected, NID-GN5 achieves the least amount of error for both translation (0.524

centimeters) and rotation (0.0025 radians), compared to the other cell based variants since it uses

a much larger number of observations (1024). NID-BFGS, however, yields the smallest error: 0.456

centimeters in translation and 0.0016 radians in rotation. The belief is that this is due to the way

BFGS works, in that it dynamically adjusts the step size at each iteration and as such is able to

achieve a higher resolution at the convergence basin.

96

BFGS GN2 GN3 GN4 GN5
0

5

10

15

20

25

30

T
im

e
(s

ec
on

d
s)

Estimation Time

BFGS Avg

Figure 6.9: Average/max/min estimation time (in seconds) between the different NID algorithms
for the Tsukuba dataset. The red dotted line represents the BFGS average.

BFGS GN2 GN3 GN4 GN5
0

0.5

1

1.5

2
·10−2

E
rr

or
(m

et
er

s)

Translation Error

BFGS Avg

BFGS GN2 GN3 GN4 GN5
0

1

2

3

4

5
·10−2

E
rr

or
(r

a
d

ia
n

s)

Rotation Error

BFGS Avg

Figure 6.10: Average/max/min translation error (in meters) and rotation error (in radians) between
the different NID algorithms for the Tsukuba dataset.

Interestingly, the expectation would be for the errors to decrease as the number of cells

increases yet this is not the case for all configurations. The reasoning for this behavior is that

configurations with more cells end up estimating more images correctly; many of which could not

even be estimated by previous configurations. It is fair to assume that these frames failed in other

97

methods because they were very challenging and as such, even when passing the acceptance criteria

described above, the estimate would still incur a high amount of error, skewing the average.

This is particularly visible with the rotation errors, where the maximum errors for NID-GN4

and NID-GN5 are clearly outliers compared to the other configurations. As such, it is not easy to

perform a fair comparison of errors between all of these configurations.

With regards to the ETH Zurich - CVG real world dataset, the experiments show similar

results to those seen from the Tsukuba dataset.

Table 6.3: Successful Estimates for ETHZ-CVG Dataset

NID-BFGS NID-GN2 NID-GN3 NID-GN4 NID-GN5

57.14% 61.43% 62.86% 75.71% 57.14%

Table 6.3 shows the percent of successful estimates for the different algorithms. It is inter-

esting to see that, unlike the Tsukuba dataset, the number of successful estimates does not always

increase as the number of cells is increased. Upon further investigation, the belief is that – similar to

optical flow – the algorithm is very sensitive to initialization especially as the cell size is decreased.

This was corroborated when the optimization was initialized to some percentage of the solution,

rather than at identity, in which case NID-GN5 reaches the same level as NID-GN4 with regards

to number of successful estimates.

The average time for NID-BFGS was similar as applied to Tsukuba, given that they both

have the same image resolution and camera movements: 10.48 seconds. The NID-GN variants take

in average 5.66 seconds, with the slowest taking 6.21 seconds (Figure 6.11). Overall this technique

achieves a speedup of almost 1.8x compared to the BFGS implementation.

Finally, Figure 6.12 show the average/max/min translation and rotation for the real world

dataset. As with the Tsukuba dataset, BFGS achieves the highest precision: 0.591 centimeters of

error in translation and 0.0089 radians in rotation. In contrast, the best NID-GN implementation

achieved 0.70 centimeters of error in translation, and 0.0092 radians in rotation. This is an error

98

BFGS GN2 GN3 GN4 GN5
0

2

4

6

8

10

12

14

16

18

T
im

e
(s

ec
on

d
s)

Estimation Time

BFGS Avg

Figure 6.11: Average/max/min estimation time (in seconds) between the different NID algorithms
for the real world dataset. The red dotted line represents the BFGS average.

BFGS GN2 GN3 GN4 GN5
0

0.5

1

1.5

2

2.5
·10−2

E
rr

or
(m

et
er

s)

Translation Error

BFGS Avg

BFGS GN2 GN3 GN4 GN5
0

1

2

3

·10−2

E
rr

or
(r

ad
ia

n
s)

Rotation Error

BFGS Avg

Figure 6.12: Average/max/min translation error (in meters) and rotation error (in radians) between
the different NID algorithms for the real world dataset.

difference of only 0.11 centimeters and 0.0003 radians.

99

6.6 Conclusion

In this chapter, an algorithm that makes use of the Normalized Information Distance (NID)

metric for whole image alignment was introduced. The algorithm splits the image into cells, each

counting as an observation for a least squares style Gauss-Newton optimization. The NID metric

was shown to be robust to extreme illumination changes, achieving almost 20% higher estimation

successes when compared to conventional photometric algorithms.

The algorithm also achieved an average 2x speedup compared to a baseline NID implementa-

tion that made use of the BFGS optimization. Multiple configurations of the cell-based algorithm

were tested, each achieving comparable errors to the baseline NID-BFGS implementation.

Although the BFGS variant still had the highest accuracy, the difference is negligible: a

translation error in average of 0.085 centimeters and a rotation error of 0.0006 radians. Thus, the

compromise seems to be a loss of 3-6% of precision for a 1.8-2.5x increase in performance and a

higher estimation success percentage for the whole trajectory.

The spatial distribution of cells over the whole image also provides additional benefits with

regards to histogram consistency, since for the case of a single NID cost any erroneous observations

– either due to depth errors, occlusion boundaries or new objects in the scene – will affect the joint

histogram. By having cells distributed through the whole image, these inconsistencies can be down-

weighted or even rejected guaranteeing that the cost will only be minimal if all the non-rejected

cell costs are minimal.

An interesting observation from the results obtained is that the amount of successful estimates

for all algorithms is low. This shows that – even though NID performs well under extreme light

conditions – the underlying brightness constancy assumption for dense whole image alignment has

its limits. It is very likely that as generative models mature and are capable of jointly estimating

light sources, material properties and scene geometry in real time, that approaches that incorporate

model parameters into the tracking optimization will yield far better results and would be capable

of handling all type of light conditions.

100

It is left as future work to test if the performance trend – precision and success percentage –

continues to increases as more cells are used. The biggest limitation is image resolution, in which

case a dataset with much higher resolution would have to be generated. To mitigate the initialization

problems seen with the ETHZ-CVG dataset, a coarse-to-fine approach could be implemented by

which initial estimates are done with a small number of cells and as the optimization converges the

number of cells is increased.

Also, the algorithm presented here did not make use of a robust norm since the scenes in

datasets tested were static. However, it should be trivial to add a robust norm to the optimization

such that cells with high cost would be down-weighted or even rejected. This situation can occur

in highly dynamic scenes, where objects have moved between frames and as such the appearance

of each cell is different. In such cases, the inclusion of a robust norm would mitigate estimation

inaccuracies.

Finally, the algorithm performance could also be improved by the way it is implemented:

the joint distribution and cost computations are done sequentially. The cell based approach easily

separates the construction of the problem into logical units that can be easily parallelized: each

cell can be launched on its own CUDA thread, for example.

Chapter 7

Conclusion

The focus of this thesis has been to show a journey towards robust dense visual Simultaneous

Localization and Mapping (SLAM). The goal is for any researcher to read this work and be able to

obtain the necessary tools and concepts to implement their own robust dense visual SLAM system.

It first starts with 3D reconstruction, which plays a vital part not only in the accuracy of

the tracking system but it is also necessary in robotic applications in order to interact with the

environment, avoid obstacles and plan. A general survey of different parametric 3D reconstruction

algorithms was provided, and in particular an incremental and adaptive front-end fusion system

was presented. This method was capable capable of providing accurate depth maps of the world

and expanded on previous volumetric variational approaches for 3D reconstruction by providing

two main key features. The first was a novel incremental method for updating the cost volume

which removed the need of keeping hundreds of multi-view comparison images, thus reducing the

overall processing time and memory storage of the system. The second feature was a method for

dynamically adapting the minimum and maximum depth limits of the cost volume as it adjusts to

changes in scene depth, thus achieving optimum resolution in the 3D reconstruction.

Finally, a technique that can provide depth uncertainties was briefly described. Having

metric uncertainties for the depth map is invaluable, as it allows the propagation of error through

the SLAM system to obtain the correct pose covariance. This also makes it easier when fusing data

from multiple sensors, by keeping the uncertainties in meaningful units.

After, the second component of SLAM was studied: tracking, in particular a survey of dif-

102

ferent direct methods for localization was presented. Direct methods are the foundation of dense

systems, since they operate directly over image data rather than indirectly through the use of

features and descriptors like their sparse counterpart. Many hybrid systems have been proposed

lately; for example, fully dense, semi-dense and semi-direct. The study compared the tracking

performance of these methods for computing frame-to-frame motion estimates. It also introduced

the most commonly used multi-sensor rig: a camera capable of providing images and depth maps,

and an inertial measurement unit (IMU). The different direct tracking methods – with and without

the aid of an IMU – were compared to see how they performed with respect to changes in image

resolution, shutter speed, frame-rates, as well as image and depth noise. The results of this study

gave insight into how the addition of multiple sensors can lead towards a more robust dense visual

SLAM.

As for mapping, a robust dense visual SLAM system should be able to operate in large scale

environments. A method was presented, which made use of a volumetric map representation and

visual-inertial tracking that showed promising results – both in terms of 3D reconstruction quality

and tracking accuracy – for both indoor and outdoor environments.

Overall different map representations were presented, and the distinctions between absolute

and relative maps were discussed. The choice of map representation is important when building a

SLAM system, as each representations has its strengths and weaknesses. Some are more malleable,

able to more easily adjust to corrections when performing global techniques like loop closures and

pose graph relaxations. Others provide richer geometric reconstructions of the world.

Regardless of the representation used, it is important for the system to be able to localize

against this map. Since dense visual SLAM systems rely on photometric data, it is therefore

imperative that the map is able to store this information while being robust against illumination

changes due to time of day (morning, afternoon, evening) or seasons (summer, winter). It should

also be capable of being adaptive and being robust against dynamic objects in the environment as

things move (people, pallets, shelving, etc).

To this end, several metrics were presented that showed robustness to lighting changes. In

103

particular, the Normalized Information Distance (NID) showed impressive results in extreme light-

ing conditions with over-saturated components. A least square style optimization using an image

cell approach was presented, which achieved high localization recall in comparison to the conven-

tional direct photometric methods. It also achieved very high accuracy both in translation and

rotation error. Although the optimization is not fast enough yet to be used in a front-end system,

it can be used as a much slower asynchronous back-end that performs map co-registrations and

loop closures.

To conclude, this work provides all of the necessary components to create a robust dense

visual simultaneous localization and mapping system – yet the road is still a long one. Although

new techniques are available to provide some resilience to lighting changes – a common situation

seen in long-term autonomy – the biggest advancement in photometric optimizations is just on the

horizon: light estimation and material properties of the scene.

With this new information, a map that truly captures light sources, intensities, the geometric

information of the scene as well as the material properties of objects, not only would provide

high fidelity in tracking and reconstruction, but also move robotics a step closer to true scene

understanding.

Bibliography

[1] Sameer Agarwal, Noah Snavely, Steven M. Seitz, and Richard Szeliski. Bundle adjustment
in the large. In Proceedings of the 11th European Conference on Computer Vision: Part II,
ECCV’10, pages 29–42, Berlin, Heidelberg, 2010. Springer-Verlag.

[2] Hatem Alismail, Brett Browning, and Simon Lucey. Bit-planes: Dense subpixel alignment of
binary descriptors. arXiv preprint arXiv:1602.00307, 2016.

[3] Hatem Alismail, Brett Browning, and Simon Lucey. Direct visual odometry using bit-planes.
arXiv preprint arXiv:1604.00990, 2016.

[4] Jean-François Aujol. Some first-order algorithms for total variation based image restoration.
Journal of Mathematical Imaging and Vision, 34(3):307–327, 2009.

[5] Simon Baker and I Matthews. Lucas-kande 20 years on: A unifying framework: Part 1.
Technical Report CMU-RI-TR-02-16, Carnegie Mellon University Robotics Institute, 2002.

[6] Simon Baker and Iain Matthews. Lucas-kanade 20 years on: A unifying framework.
International journal of computer vision, 56(3):221–255, 2004.

[7] Selim Benhimane and Ezio Malis. Real-time image-based tracking of planes using effi-
cient second-order minimization. In Intelligent Robots and Systems, 2004.(IROS 2004).
Proceedings. 2004 IEEE/RSJ International Conference on, volume 1, pages 943–948. IEEE,
2004.

[8] A Bermúdez and C Moreno. Duality methods for solving variational inequalities. Computers
& Mathematics with Applications, 7(1):43–58, 1981.

[9] Michael J Black and Allan D Jepson. Eigentracking: Robust matching and tracking of
articulated objects using a view-based representation. International Journal of Computer
Vision, 26(1):63–84, 1998.

[10] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex prob-
lems with applications to imaging. Journal of Mathematical Imaging and Vision, 40(1):120–
145, 2011.

[11] Gary E Christensen and Hans J Johnson. Consistent image registration. IEEE transactions
on medical imaging, 20(7):568–582, 2001.

[12] Winston Churchill and Paul Newman. Experience-based navigation for long-term localisation.
The International Journal of Robotics Research, 32(14):1645–1661, 2013.

105

[13] Andrew I Comport, Ezio Malis, and Patrick Rives. Accurate quadrifocal tracking for robust
3d visual odometry. In Robotics and Automation, 2007 IEEE International Conference on,
pages 40–45. IEEE, 2007.

[14] Alejo Concha and Javier Civera. Dpptam: Dense piecewise planar tracking and mapping
from a monocular sequence. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ
International Conference on, pages 5686–5693. IEEE, 2015.

[15] Alejo Concha, Wajahat Hussain, Luis Montano, and Javier Civera. Manhattan and piecewise-
planar constraints for dense monocular mapping.

[16] Alejo Concha, Giuseppe Loianno, Vijay Kumar, and Javier Civera. Visual-inertial direct
slam. In Robotics and Automation (ICRA), 2016 IEEE International Conference on, pages
1331–1338. IEEE, 2016.

[17] Timothy F. Cootes, Gareth J. Edwards, and Christopher J. Taylor. Active appearance models.
IEEE Transactions on pattern analysis and machine intelligence, 23(6):681–685, 2001.

[18] Mark Cummins and Paul Newman. Fab-map: Probabilistic localization and mapping in the
space of appearance. The International Journal of Robotics Research, 27(6):647–665, 2008.

[19] Amaël Delaunoy and Marc Pollefeys. Photometric bundle adjustment for dense multi-view 3d
modeling. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014),
pages 1486–1493. IEEE, 2014.

[20] Luigi Di Stefano, Stefano Mattoccia, and Federico Tombari. Zncc-based template matching
using bounded partial correlation. Pattern recognition letters, 26(14):2129–2134, 2005.

[21] J. Engel, T. Schöps, and D. Cremers. LSD-SLAM: Large-scale direct monocular SLAM. In
European Conference on Computer Vision (ECCV 2014), September 2014.

[22] J. Engel, J. Sturm, and D. Cremers. Semi-dense visual odometry for a monocular camera.
In IEEE International Conference on Computer Vision (ICCV 2013), Sydney, Australia,
December 2013.

[23] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse odometry. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2017.

[24] C. Engels, H. Stewenius, and D. Nister. Bundle adjustment rules. In Photogrammetric
Computer Vision, 2006.

[25] Ryan Eustice, Hanumant Singh, John Leonard, Matthew Walter, and Robert Ballard. Vi-
sually navigating the rms titanic with slam information filters. In Proceedings of Robotics:
Science and Systems, Cambridge, USA, June 2005.

[26] J.M. Falquez, M. Kasper, and G. Sibley. Inertial aided dense & semi-dense methods for robust
direct visual odometry. In International Conference on Intelligent Robots and Systems (IROS
2016), 2016.

[27] J.M. Falquez, V. Spinella-Mamo, and G. Sibley. Incremental and adaptive front-end fusion.
In IEEE International Conference on Robotics and Biomimetics (ROBIO), 2014.

106

[28] Ross Finman, Thomas Whelan, Michael Kaess, and John J Leonard. Efficient incremental
map segmentation in dense rgb-d maps. In Robotics and Automation (ICRA), 2014 IEEE
International Conference on, pages 5488–5494. IEEE, 2014.

[29] Nicola Fioraio and Kurt Konolige. Realtime visual and point cloud slam. In Proc. of
the RGB-D workshop on advanced reasoning with depth cameras at robotics: Science and
Systems Conf.(RSS), volume 27, 2011.

[30] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Commun. ACM,
24(6):381–395, June 1981.

[31] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. Svo: Fast semi-direct monocular
visual odometry. In Proc. IEEE Intl. Conf. on Robotics and Automation, 2014.

[32] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust multiview stereopsis. IEEE
Trans. Pattern Anal. Mach. Intell., 2010.

[33] Dorian Gálvez-López and Juan D Tardos. Bags of binary words for fast place recognition in
image sequences. IEEE Transactions on Robotics, 28(5):1188–1197, 2012.

[34] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics:
The kitti dataset. International Journal of Robotics Research (IJRR), 2013.

[35] Andreas Geiger, Martin Roser, and Raquel Urtasun. Efficient large-scale stereo matching. In
Asian Conference on Computer Vision (ACCV), 2010.

[36] Tom Goldstein, Ernie Esser, and Richard Baraniuk. Adaptive primal-dual hybrid gradient
methods for saddle-point problems. arXiv preprint arXiv:1305.0546, 2013.

[37] M.D. Grossberg and S.K. Nayar. What is the Space of Camera Response Functions? In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume II, pages
602–609, Jun 2003.

[38] Gregory D Hager and Peter N Belhumeur. Efficient region tracking with parametric models of
geometry and illumination. IEEE transactions on pattern analysis and machine intelligence,
20(10):1025–1039, 1998.

[39] Ankur Handa, Richard A. Newcombe, Adrien Angeli, and Andrew J. Davison. Real-time
camera tracking: When is high frame-rate best? In Computer Vision - ECCV 2012 - 12th
European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings,
Part VII, pages 222–235, 2012.

[40] Heiko Hirschmuller. Accurate and efficient stereo processing by semi-global matching and
mutual information. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 2, pages 807–814. IEEE, 2005.

[41] Heiko Hirschmuller. Stereo processing by semiglobal matching and mutual information.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(2):328–341, 2008.

[42] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram Burgard.
OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Autonomous
Robots, 2013.

107

[43] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe, Pushmeet
Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison, et al. Kinectfusion:
real-time 3d reconstruction and interaction using a moving depth camera. In Proceedings of
the 24th annual ACM symposium on User interface software and technology, pages 559–568.
ACM, 2011.

[44] O. Kahler, V. A. Prisacariu, C. Y. Ren, X. Sun, P. H. S Torr, and D. W. Murray. Very high
frame rate volumetric integration of depth images on mobile device. IEEE Transactions on
Visualization and Computer Graphics (Proceedings International Symposium on Mixed and
Augmented Reality 2015), 22(11), 2015.

[45] N. Keivan and G. Sibley. Realtime simulation-in-the-loop control for agile ground vehicles.
In Towards Autonomous Robotic Systems (TAROS 2014), pages 276–287. Springer, 2014.

[46] Maik Keller, Damien Lefloch, Martin Lambers, Shahram Izadi, Tim Weyrich, and Andreas
Kolb. Real-time 3d reconstruction in dynamic scenes using point-based fusion. In 3D
Vision-3DV 2013, 2013 International Conference on, pages 1–8. IEEE, 2013.

[47] Christian Kerl, Jurgen Sturm, and Daniel Cremers. Dense visual slam for rgb-d cameras. In
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, pages
2100–2106. IEEE, 2013.

[48] Georg Klein and David Murray. Parallel tracking and mapping for small ar workspaces.
In Proceedings of the 2007 6th IEEE and ACM International Symposium on Mixed and
Augmented Reality, ISMAR ’07, pages 1–10, Washington, DC, USA, 2007. IEEE Computer
Society.

[49] Sebastian Klose, Philipp Heise, and Alois Knoll. Efficient Compositional Approaches for
Real-Time Robust Direct Visual Odometry from RGB-D Data. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), November 2013.

[50] Laurent Kneip, Margarita Chli, Roland Siegwart, Roland Yves Siegwart, and Roland Yves
Siegwart. Robust real-time visual odometry with a single camera and an imu. In BMVC,
pages 1–11, 2011.

[51] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wolfram Burgard.
g 2 o: A general framework for graph optimization. In Robotics and Automation (ICRA),
2011 IEEE International Conference on, pages 3607–3613. IEEE, 2011.

[52] Rainer Kümmerle, Bastian Steder, Christian Dornhege, Michael Ruhnke, Giorgio Grisetti,
Cyrill Stachniss, and Alexander Kleiner. On measuring the accuracy of slam algorithms.
Auton. Robots, 27(4):387–407, 2009.

[53] Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul MB Vitányi. The similarity metric. IEEE
transactions on Information Theory, 50(12):3250–3264, 2004.

[54] Steven Lovegrove, Alonso Patron-Perez, and Gabe Sibley. Spline fusion: A continuous-time
representation for visual-inertial fusion with application to rolling shutter cameras. In BMVC,
2013.

[55] Bruce D Lucas, Takeo Kanade, et al. An iterative image registration technique with an
application to stereo vision. 1981.

108

[56] L. Ma, J.M. Falquez, S. McGuire, and G. Sibley. Large scale dense visual inertial slam. In
Field and Service Robotics Conference (FSR 2015), 2015.

[57] Frederik Maes, Dirk Vandermeulen, and Paul Suetens. Medical image registration using
mutual information. Proceedings of the IEEE, 91(10):1699–1722, 2003.

[58] Ezio Malis. Improving vision-based control using efficient second-order minimization tech-
niques. In Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International
Conference on, volume 2, pages 1843–1848. IEEE, 2004.

[59] Sarah Martull, Martin Peris, and Kazuhiro Fukui. Realistic cg stereo image dataset with
ground truth disparity maps. ICPR workshop TrakMark2012, 111(430):117–118, 2012.

[60] Christopher Mei, Gabe Sibley, Mark Cummins, Paul Newman, and Ian Reid. Rslam: A sys-
tem for large-scale mapping in constant-time using stereo. International journal of computer
vision, 94(2):198–214, 2011.

[61] Christopher Mei, Gabe Sibley, Mark Cummins, Paul M Newman, and Ian D Reid. A constant-
time efficient stereo slam system. In BMVC, pages 1–11, 2009.

[62] Maxime Meilland, A Comport, Patrick Rives, and INRIA Sophia Antipolis Méditerranée.
Real-time dense visual tracking under large lighting variations. In British Machine Vision
Conference, University of Dundee, volume 29, 2011.

[63] Michael J Milford and Gordon F Wyeth. Seqslam: Visual route-based navigation for sunny
summer days and stormy winter nights. In Robotics and Automation (ICRA), 2012 IEEE
International Conference on, pages 1643–1649. IEEE, 2012.

[64] Hans P. Moravec. The Stanford cart and the CMU rover. Springer, 1990.

[65] Jack Morrison, Dorian Gálvez-López, and Gabe Sibley. Scalable multi-device slam. 2014.

[66] John G Morrison, Dorian Gavez-Lopez, and Gabe Sibley. Scalable multirobot localization
and mapping with relative maps: Introducing moarslam. IEEE Control Systems, 36(2):75–85,
2016.

[67] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a versatile and
accurate monocular slam system. IEEE Transactions on Robotics, 31(5):1147–1163, 2015.

[68] Richard A Newcombe and Andrew J Davison. Live dense reconstruction with a single moving
camera. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on,
pages 1498–1505. IEEE, 2010.

[69] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim, An-
drew J. Davison, Pushmeet Kohli, Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon.
Kinectfusion: Real-time dense surface mapping and tracking. In Proceedings of the 2011
10th IEEE International Symposium on Mixed and Augmented Reality, ISMAR ’11, pages
127–136, Washington, DC, USA, 2011. IEEE Computer Society.

[70] Richard A. Newcombe, Steven J. Lovegrove, and Andrew J. Davison. Dtam: Dense tracking
and mapping in real-time. In Proceedings of the 2011 International Conference on Computer
Vision, ICCV ’11, Washington, DC, USA, 2011. IEEE Computer Society.

109

[71] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Marc Stamminger. Real-time 3d
reconstruction at scale using voxel hashing. ACM Transactions on Graphics (TOG), 32(6):169,
2013.

[72] Andreas Nüchter, Kai Lingemann, Joachim Hertzberg, and Hartmut Surmann. 6d slam3d
mapping outdoor environments. Journal of Field Robotics, 24(8-9):699–722, 2007.

[73] POV-Ray: The Persistence of Vision Raytracer. http://www.povray.org/, 2013.

[74] Seonwook Park, Thomas Schöps, and Marc Pollefeys. Illumination change robustness in direct
visual slam. In ICRA, 2017.

[75] Geoffrey Pascoe, Will Maddern, Michael Tanner, Pedro Piniés, and Paul Newman. Nid-slam:
Robust monocular slam using normalised information distance.

[76] Geoffrey Pascoe, William P Maddern, and Paul Newman. Robust direct visual localisation
using normalised information distance. In BMVC, pages 70–1, 2015.

[77] Jaime Vives Piqueres. http://www.ignorancia.org/en/, 2013.

[78] M. Pizzoli, C. Forster, and D. Scaramuzza. Remode: Probabilistic, monocular dense re-
construction in real time. In International Conference on Robotics and Automation (ICRA
2014), pages 2609–2616. IEEE, 2014.

[79] Victor Adrian Prisacariu, Olaf Kähler, Ming Ming Cheng, Julien Valentin, Philip HS Torr,
Ian D Reid, and David W Murray. A framework for the volumetric integration of depth
images. arXiv preprint arXiv:1410.0925, 2014.

[80] Henry Roth and Marsette Vona. Moving volume kinectfusion. In BMVC, pages 1–11, 2012.

[81] Cyril Roussillon, Aurélien Gonzalez, Joan Solà, Jean-Marie Codol, Nicolas Mansard, Simon
Lacroix, and Michel Devy. Rt-slam: a generic and real-time visual slam implementation. In
International Conference on Computer Vision Systems, pages 31–40. Springer, 2011.

[82] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise
removal algorithms. Physica D: Nonlinear Phenomena, 60(1):259–268, 1992.

[83] Renato F Salas-Moreno, Richard A Newcombe, Hauke Strasdat, Paul HJ Kelly, and An-
drew J Davison. Slam++: Simultaneous localisation and mapping at the level of objects.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1352–1359, 2013.

[84] R.F. Salas-Moreno, B. Glocken, P.H.J. Kelly, and A.J. Davison. Dense planar slam. In IEEE
International Symposium on Mixed and Augmented Reality (ISMAR 2014), 2014.

[85] Keir Mierle Sameer Agarwal. Ceres Solver: Tutorial & Reference. Google, November 2012.

[86] Davide Scaramuzza and F Fraundorfer. Tutorial: visual odometry. IEEE Robotics and
Automation Magazine, 18(4):80–92, 2011.

[87] Thomas Schops, Jakob Engel, and Daniel Cremers. Semi-dense visual odometry for ar
on a smartphone. In Mixed and Augmented Reality (ISMAR), 2014 IEEE International
Symposium on, pages 145–150. IEEE, 2014.

110

[88] Steven M Seitz, Brian Curless, James Diebel, Daniel Scharstein, and Richard Szeliski. A
comparison and evaluation of multi-view stereo reconstruction algorithms. In Computer
vision and pattern recognition, 2006 IEEE Computer Society Conference on, volume 1, pages
519–528. IEEE, 2006.

[89] Sunando Sengupta, Eric Greveson, Ali Shahrokni, and Philip HS Torr. Urban 3d semantic
modelling using stereo vision. In Robotics and Automation (ICRA), 2013 IEEE International
Conference on, pages 580–585. IEEE, 2013.

[90] H-Y Shum and Richard Szeliski. Construction of panoramic image mosaics with global and
local alignment. In Panoramic vision, pages 227–268. Springer, 2001.

[91] G. Sibley, C. Mei, I. Ried, and P. Newman. Adaptive relative bundle adjustment. In Robotics:
Science and Systems, 2009.

[92] Gabe Sibley. Relative bundle adjustment. Department of Engineering Science, Oxford
University, Tech. Rep, 2307(09), 2009.

[93] Gabe Sibley, Larry Matthies, and Gaurav Sukhatme. Sliding window filter with application
to planetary landing. Journal of Field Robotics, 27(5):587–608, 2010.

[94] Gabe Sibley, Christopher Mei, Ian Reid, and Paul Newman. Planes, trains and automobilesau-
tonomy for the modern robot. In Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pages 285–292. IEEE, 2010.

[95] Gabe Sibley, Christopher Mei, Ian Reid, and Paul Newman. Vast-scale outdoor navigation
using adaptive relative bundle adjustment. The International Journal of Robotics Research,
29(8):958–980, 2010.

[96] Frank Steinbrucker, Thomas Pock, and Daniel Cremers. Large displacement optical flow
computation withoutwarping. In Computer Vision, 2009 IEEE 12th International Conference
on, pages 1609–1614. IEEE, 2009.

[97] Frank Steinbrucker, Jurgen Sturm, and Daniel Cremers. Volumetric 3d mapping in real-time
on a cpu. In Robotics and Automation (ICRA), 2014 IEEE International Conference on,
pages 2021–2028. IEEE, 2014.

[98] Alex Stewart. Localisation using the Appearance of Prior Structure. PhD thesis, University
of Oxford - New College, 2014.

[99] Hauke Strasdat. Local Accuracy and Global Consistency for Efficient Visual SLAM. PhD
thesis, Imperial College London, October 2012.

[100] Hauke Strasdat, Andrew J Davison, JMM Montiel, and Kurt Konolige. Double window opti-
misation for constant time visual slam. In Computer Vision (ICCV), 2011 IEEE International
Conference on, pages 2352–2359. IEEE, 2011.

[101] Hauke Strasdat, JMM Montiel, and Andrew J Davison. Real-time monocular slam: Why
filter? In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages
2657–2664. IEEE, 2010.

111

[102] Bill Triggs, Philip McLauchlan, Richard Hartley, and Andrew Fitzgibbon. Bundle adjustment
– a modern synthesis. In Vision Algorithms: Theory and Practice, LNCS, pages 298–375.
Springer Verlag, 2000.

[103] Paul Viola and William M Wells III. Alignment by maximization of mutual information.
International journal of computer vision, 24(2):137–154, 1997.

[104] T. Whelan, H. Johannsson, M. Kaess, J. Leonard, and J. McDonald. Robust tracking for
real-time dense rgb-d mapping with kintinuous. 2012.

[105] T. Whelan, M. Kaess, M.F. Fallon, H. Johannsson, J.J. Leonard, and J.B. McDonald. Kintin-
uous: Spatially extended KinectFusion. In RSS Workshop on RGB-D: Advanced Reasoning
with Depth Cameras, Sydney, Australia, Jul 2012.

[106] T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker, and A. J. Davison. ElasticFusion:
Dense SLAM without a pose graph. In Robotics: Science and Systems (RSS), Rome, Italy,
July 2015.

[107] Thomas Whelan, Hordur Johannsson, Michael Kaess, John J Leonard, and John McDonald.
Robust real-time visual odometry for dense rgb-d mapping. In Robotics and Automation
(ICRA), 2013 IEEE International Conference on, pages 5724–5731. IEEE, 2013.

[108] Thomas Whelan, Michael Kaess, Hordur Johannsson, Maurice Fallon, John J Leonard,
and John McDonald. Real-time large-scale dense rgb-d slam with volumetric fusion. The
International Journal of Robotics Research, 34(4-5):598–626, 2015.

[109] Ramin Zabih and John Woodfill. Non-parametric local transforms for computing visual
correspondence. In European conference on computer vision, pages 151–158. Springer, 1994.

[110] Ming Zeng, Fukai Zhao, Jiaxiang Zheng, and Xinguo Liu. Octree-based fusion for realtime
3d reconstruction. Graphical Models, 75(3):126–136, 2013.

[111] Li Zhang et al. Shape and motion under varying illumination: Unifying structure from
motion, photometric stereo, and multiview stereo. In Computer Vision, 2003. Proceedings.
Ninth IEEE International Conference on, pages 618–625. IEEE, 2003.

[112] Zhengyou Zhang. Parameter estimation techniques: A tutorial with application to conic
fitting. Image and vision Computing, 15(1):59–76, 1997.

Appendix A

Lie Group Generators

A.1 Special Orthogonal Group SO(3)

gen0 =




0 1 0

−1 0 0

0 0 0




gen1 =




0 0 −1

0 0 0

1 0 0




gen2 =




0 0 0

0 0 1

0 −1 0




A.2 Special Euclidean Group SE(3)

gen0 =




0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0




gen1 =




0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0




gen2 =




0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0




gen3 =




0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0




gen4 =




0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0




gen5 =




0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0




