142 research outputs found

    Restricted Value Iteration: Theory and Algorithms

    Full text link
    Value iteration is a popular algorithm for finding near optimal policies for POMDPs. It is inefficient due to the need to account for the entire belief space, which necessitates the solution of large numbers of linear programs. In this paper, we study value iteration restricted to belief subsets. We show that, together with properly chosen belief subsets, restricted value iteration yields near-optimal policies and we give a condition for determining whether a given belief subset would bring about savings in space and time. We also apply restricted value iteration to two interesting classes of POMDPs, namely informative POMDPs and near-discernible POMDPs

    Uncertainty Management of Intelligent Feature Selection in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSN) are envisioned to revolutionize the paradigm of monitoring complex real-world systems at a very high resolution. However, the deployment of a large number of unattended sensor nodes in hostile environments, frequent changes of environment dynamics, and severe resource constraints pose uncertainties and limit the potential use of WSN in complex real-world applications. Although uncertainty management in Artificial Intelligence (AI) is well developed and well investigated, its implications in wireless sensor environments are inadequately addressed. This dissertation addresses uncertainty management issues of spatio-temporal patterns generated from sensor data. It provides a framework for characterizing spatio-temporal pattern in WSN. Using rough set theory and temporal reasoning a novel formalism has been developed to characterize and quantify the uncertainties in predicting spatio-temporal patterns from sensor data. This research also uncovers the trade-off among the uncertainty measures, which can be used to develop a multi-objective optimization model for real-time decision making in sensor data aggregation and samplin

    Accurate and discernible photocollages

    Get PDF
    There currently exist several techniques for selecting and combining images from a digital image library into a single image so that the result meets certain prespecified visual criteria. Image mosaic methods, first explored by Connors and Trivedi[18], arrange library images according to some tiling arrangement, often a regular grid, so that the combination of images, when viewed as a whole, resembles some input target image. Other techniques, such as Autocollage of Rother et al.[78], seek only to combine images in an interesting and visually pleasing manner, according to certain composition principles, without attempting to approximate any target image. Each of these techniques provide a myriad of creative options for artists who wish to combine several levels of meaning into a single image or who wish to exploit the meaning and symbolism contained in each of a large set of images through an efficient and easy process. We first examine the most notable and successful of these methods, and summarize the advantages and limitations of each. We then formulate a set of goals for an image collage system that combines the advantages of these methods while addressing and mitigating the drawbacks. Particularly, we propose a system for creating photocollages that approximate a target image as an aggregation of smaller images, chosen from a large library, so that interesting visual correspondences between images are exploited. In this way, we allow users to create collages in which multiple layers of meaning are encoded, with meaningful visual links between each layer. In service of this goal, we ensure that the images used are as large as possible and are combined in such a way that boundaries between images are not immediately apparent, as in Autocollage. This has required us to apply a multiscale approach to searching and comparing images from a large database, which achieves both speed and accuracy. We also propose a new framework for color post-processing, and propose novel techniques for decomposing images according to object and texture information

    Internet-based solutions to support distributed manufacturing

    Get PDF
    With the globalisation and constant changes in the marketplace, enterprises are adapting themselves to face new challenges. Therefore, strategic corporate alliances to share knowledge, expertise and resources represent an advantage in an increasing competitive world. This has led the integration of companies, customers, suppliers and partners using networked environments. This thesis presents three novel solutions in the tooling area, developed for Seco tools Ltd, UK. These approaches implement a proposed distributed computing architecture using Internet technologies to assist geographically dispersed tooling engineers in process planning tasks. The systems are summarised as follows. TTS is a Web-based system to support engineers and technical staff in the task of providing technical advice to clients. Seco sales engineers access the system from remote machining sites and submit/retrieve/update the required tooling data located in databases at the company headquarters. The communication platform used for this system provides an effective mechanism to share information nationwide. This system implements efficient methods, such as data relaxation techniques, confidence score and importance levels of attributes, to help the user in finding the closest solutions when specific requirements are not fully matched In the database. Cluster-F has been developed to assist engineers and clients in the assessment of cutting parameters for the tooling process. In this approach the Internet acts as a vehicle to transport the data between users and the database. Cluster-F is a KD approach that makes use of clustering and fuzzy set techniques. The novel proposal In this system is the implementation of fuzzy set concepts to obtain the proximity matrix that will lead the classification of the data. Then hierarchical clustering methods are applied on these data to link the closest objects. A general KD methodology applying rough set concepts Is proposed In this research. This covers aspects of data redundancy, Identification of relevant attributes, detection of data inconsistency, and generation of knowledge rules. R-sets, the third proposed solution, has been developed using this KD methodology. This system evaluates the variables of the tooling database to analyse known and unknown relationships in the data generated after the execution of technical trials. The aim is to discover cause-effect patterns from selected attributes contained In the database. A fourth system was also developed. It is called DBManager and was conceived to administrate the systems users accounts, sales engineers’ accounts and tool trial monitoring process of the data. This supports the implementation of the proposed distributed architecture and the maintenance of the users' accounts for the access restrictions to the system running under this architecture

    Linear superposition as a core theorem of quantum empiricism

    Get PDF
    Clarifying the nature of the quantum state Ψ|\Psi\rangle is at the root of the problems with insight into (counterintuitive) quantum postulates. We provide a direct-and math-axiom free-empirical derivation of this object as an element of a vector space. Establishing the linearity of this structure-quantum superposition-is based on a set-theoretic creation of ensemble formations and invokes the following three principia: (I)(\textsf{I}) quantum statics, (II)(\textsf{II}) doctrine of a number in the physical theory, and (III)(\textsf{III}) mathematization of matching the two observations with each other; quantum invariance. All of the constructs rest upon a formalization of the minimal experimental entity: observed micro-event, detector click. This is sufficient for producing the C\mathbb C-numbers, axioms of linear vector space (superposition principle), statistical mixtures of states, eigenstates and their spectra, and non-commutativity of observables. No use is required of the concept of time. As a result, the foundations of theory are liberated to a significant extent from the issues associated with physical interpretations, philosophical exegeses, and mathematical reconstruction of the entire quantum edifice.Comment: No figures. 64 pages; 68 pages(+4), overall substantial improvements; 70 pages(+2), further improvement

    Towards Name Disambiguation: Relational, Streaming, and Privacy-Preserving Text Data

    Get PDF
    In the real world, our DNA is unique but many people share names. This phenomenon often causes erroneous aggregation of documents of multiple persons who are namesakes of one another. Such mistakes deteriorate the performance of document retrieval, web search, and more seriously, cause improper attribution of credit or blame in digital forensics. To resolve this issue, the name disambiguation task 1 is designed to partition the documents associated with a name reference such that each partition contains documents pertaining to a unique real-life person. Existing algorithms for this task mainly suffer from the following drawbacks. First, the majority of existing solutions substantially rely on feature engineering, such as biographical feature extraction, or construction of auxiliary features from Wikipedia. However, for many scenarios, such features may be costly to obtain or unavailable in privacy sensitive domains. Instead we solve the name disambiguation task in restricted setting by leveraging only the relational data in the form of anonymized graphs. Second, most of the existing works for this task operate in a batch mode, where all records to be disambiguated are initially available to the algorithm. However, more realistic settings require that the name disambiguation task should be performed in an online streaming fashion in order to identify records of new ambiguous entities having no preexisting records. Finally, we investigate the potential disclosure risk of textual features used in name disambiguation and propose several algorithms to tackle the task in a privacy-aware scenario. In summary, in this dissertation, we present a number of novel approaches to address name disambiguation tasks from the above three aspects independently, namely relational, streaming, and privacy preserving textual data

    Strategies for defending the Principle of Identity of Indiscernibles: a critical survey and a new approach

    Get PDF
    The Principle of Identity of Indiscernibles (PII) is the focus of much controversy in the history of Metaphysics and in contemporary Physics. Many questions rover the debate about its truth or falsehood, for example, to which objects the principle applies? Which properties can be counted as discerning properties? Is the principle necessary? In other words, which version of the principle is the correct and is this version true? This thesis aims to answer this questions in order to show that PII is a necessarily true principle of metaphysics. To accomplish this task, the reader will find, in this thesis, an encyclopaedical introduction to the history of PII and to the reasons it matters so much, followed by a presentation of the most famous arguments against it and the defences used against these arguments. Then, the reader finds in-depth discussion of the minutiae involved in postulating the principle as to make clear what is in fact being attacked and defended. With these preliminaries solved, a deeper analysis of these defences is presented aiming to discover which is the most appropriate example to use against the attacks to the principle. This analysis allowed a classification of these defences in four families with different strategies within them. Finally, with these defensive strategies at hand we are able to confront alleged counterexamples to PII in Mathematics with the intention to test these defences
    corecore