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Summary

Transportation is fundamental to fulfilling our human needs and travel demand is widely
understood to be derived from the demand for activity participation. Transportation, much like
all other economic processes, consumes energy (and other resources) and causes environmental
interventions. The transport sector is a major contributor to Greenhouse Gas (GHG) emissions
and in consequence to global climate change. The transport sector is also an emitter of many air
pollutants causing respiratory and cardiovascular diseases among the affected populations which
may lead to premature mortality.

These impacts have caught the attention of policy makers, who have tried to avoid or mitigate
them using various policy options at their disposal. Often a broad range of transport policy
options exist including economic measures (e.g., taxes and subsidies), regulatory measures (e.g.,
emissions standards) or infrastructural measures (e.g., public transport infrastructures). These
decisions however come at a price (e.g., economic costs, ensuring enforcement etc.) and economic
pressures force policy makers to take decisions that are both effective and efficient. Policy makers
therefore desire an assessment of their alternative policy instruments and disciplines such as
transportation planning and Industrial Ecology (IE) have emerged to provide adequate modelling
approaches.

The CONNECTING project has taken on the challenge of proposing a modelling approach
to provide scientific information on environmental impacts for various future transport policy
scenarios. The project has led to the development of an Activity-Based Model (ABM) coupled
to a Life Cycle Assessment (LCA), where the ABM allows to simulate a Daily Activity Pattern
(DAP) for each individual of a population, while the LCA allows to assess the environmental
impacts of a range of available transport modes from a life cycle perspective. The coupling allows
to assess the environmental impacts of a population’s travel demand (derived from the need to
participate in daily activities) and is applied to a case study of French Cross-Border Commuters
(CBCs) working in Luxembourg.

However, without a thorough and systematic analysis of the uncertainties of such a large and
complex model, policy makers cannot be sure if the CONNECTING model’s results are meaningful.
Given this relevance and importance of Uncertainty Analysis (UA), the CONNECTING project
dedicates a work package – of which the present thesis is the result – to the development of a
framework towards UA of ABM/LCA coupled models. The aims of the present thesis are thus to
develop a framework to systematically identify where uncertainty is present in an ABM/LCA
coupled model and propagate the relevant uncertainties throughout the model to quantify the
uncertainty of the model outputs. This framework is then applied to the specific case study of
the CONNECTING project.

A first contribution of the present thesis is thus a new classification of uncertainty locations
for ABM/LCA coupled models, building on the results of a systematic literature review. At the
highest level the following uncertainty locations are distinguished: experimental frame, inputs,
model and outputs. Each of these locations is further broken down into more specific locations
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relating to parts of an ABM/LCA coupled model.
A second contribution of the present thesis is a set of three stochastic propagation schemes

(and various sub-schemes) building on Monte Carlo (MC) sampling. These schemes are formulated
for the two most widely addressed uncertainty locations of ABMs and LCA models (simulation
error and model parameters) to propagate uncertainty from each location individually, as well as
to perform joint propagation. The schemes, which are the first attempt to propagate uncertainty
throughout ABM/LCA coupled models, allow to make several novel and relevant analyses
operational, including assessing the magnitude of uncertainty stemming from both sub-models,
the propagation of uncertainty from individual choice facets of the ABM (i.e., activity type,
scheduling, location and mode choices) and accounting for dependencies among technosphere and
biosphere exchanges in the Life Cycle Inventory (LCI). Finally, the application of the framework
to the CONNECTING case study builds on the state-of-the art of uncertainty communication for
comparative LCA, for several distinct policy scenarios.

The results of the case study allow to draw several relevant conclusions with regard to
uncertainty analysis of ABM/LCA coupled models: (1) the conclusions of the model can be
affected by uncertainty, where uncertainty communication measures suggest that there might be
trade-off situations between different policy options (2) simulation error of the ABM part of the
model contributes marginally compared to the contribution of the LCA measured parameters; (3)
even though uncertainty stemming from the ABM part of the model is small, running the model
stochastically (versus deterministic results) can both affect the median model outputs as well as
the extent to which uncertainty potentially affects policy decisions.
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Chapter 1

Introduction

This chapter will provide an introduction to the content of the present thesis, as well as
the larger context it is embedded in. The aim is to establish the need for new and reliable
modelling approaches to quantify environmental impacts of transport systems, by relating human
travel demand to some of the most challenging environmental issues of our times. The thesis
constitutes a distinct work package of the CONNECTING project. While the CONNECTING
project aims at coupling an Activity-Based Model (ABM) and Life Cycle Assessment (LCA),
the thesis is focussed on developing an appropriate Uncertainty Analysis (UA) framework for
the CONNECTING model. The CONNECTING project is part of the FNR CORE program
(C14/SR/8330766).

In the following, section 1.1 will present the broader context, section 1.2 will present the
background of the CONNECTING project and the need for UA, before section 1.3 will elaborate
on the aims of the thesis and its structure.

1.1 General context

1.1.1 Passenger transport and environmental impacts

Transportation is fundamental to fulfilling our human needs. Jones (1983) links the motiva-
tions for our daily behaviour (i.e., participation to activities) to the satisfaction of our various
needs. Our daily activities (working, eating, recreational activities, etc.) in turn cause a need to
travel between them, if these activities are taking place in different locations and their utility
exceeds the travel dis-utility plus the utility from activities involving no travel (Jones, 1983;
Bowman and Ben-Akiva, 2001). The travel demand on an individual level and the observed
transport flows on the level of a population can thus be related to these activities and the utility
gained from them.

The travels between our daily activities are enabled by various transport modes, which
encompass the means of movement in space between different activity locations. Various categories
of passenger transport modes can be distinguished, e.g., air, water, and land transport. Focusing
on land transport modes, they can be further classified: with regard to their source of energy
(human, animal, fuels, electricity, etc.); whether these sources are renewable or non-renewable;
whether they are individual or collective; and with regard to the required infrastructure (e.g.,
rail or road transport). According to Eurostat (2017a), in the European Union (including the
United Kingdom) (EU-28) in 2014 over 80% of inland passenger-kilometres (pkm) were travelled
by means of passenger cars on roads. Road transport (passenger and freight) was responsible for
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2 Chapter 1. Introduction

roughly one third of the final energy consumption (defined as the total energy consumed by end
users) in the EU-28 in 2015, while other transport modes accounted for around 8%. While the
share of renewable energy sources in the transport sector as a whole has been gradually increasing,
in 2016 it still only reached 6.7% in the EU-28.

The processes involved in satisfying transport needs thus consume energy and much like
all economic processes they also cause environmental interventions (Hensher and Button, 2003).
These interventions can be defined as interactions between the economy (or technosphere) and
the environment (or biosphere), and include, e.g., emissions (to air, water, and soil), resource
extractions (mining minerals, drilling for oil, cutting down forests, etc.) and land use (urban,
agricultural, forestry, etc.) (EC, 2010). Road transport is a major source of Greenhouse Gas
(GHG) emissions (IPCC, 2015), atmospheric pollution (EEA, 2018a) and noise emissions (Fritschi
et al., 2011). However, the environmental interventions are not limited to the transport use,
but include the processes necessary for the production of the transport modes, such as resource
extraction and processing (e.g., steel, plastics and glass), and recycling and waste disposal once a
transport mode is no longer in use. The environment interventions thus occur during the entire
life cycle of transport modes and are not limited to their use phase.

The undesirable impacts of these interventions are usually classified as environmental, human
health or resource depletion impacts. Metals, rare-earth elements (i.e., neodymium or dysprosium
used in electric motors) and other valuable materials needed for the production contribute to
the scarcity of these resources. At the use phase fuel consumption contributes to the fossil
fuel depletion, while air pollution due to exhaust and tire wear emissions (i.e., nitrogen oxides,
ozone and particulate matter) cause respiratory and cardiovascular diseases among the effected
populations and may lead to premature mortality (EEA, 2018a). Finally, at the End-of-Life (EoL)
phase of transport modes, they cause waste generation and the release of hazardous substance
contributing to environmental and human health impacts (Vermeulen et al., 2011).

1.1.2 Activity-based modelling and the life cycle perspective

All along the life cycle, carbon dioxide emissions thus contribute to anthropogenic climate
change which increases pressures on many ecosystems diminishing their delivered services (IPCC,
2018). According to EEA (2018b) emissions from the EU-28 transport sector (including road and
aviation) have increased since 2014, while average CO2 emissions of newly registered passenger
cars in its territory have increased since 20171. Evaluating potential solutions, (e.g., electric
mobility) from a life cycle perspective allows to quantify not only the potential benefits in one
life cycle stage, (e.g., use phase) but also to take into account a possible burden shifting to other
phases, (i.e., to the production or EoL phases) or from one to other impact categories.

Some of these impacts have caught the attention of policy makers, who have tried to avoid or
mitigate them. Active policy instruments can be classified as information, economic and regulatory
(Vedung, 2017). Governments use information campaigns and platforms to encourage the use of
transport modes associated with lower impacts (e.g., the European Local Transport Information
Service (ELTIS)2). Economic instruments include taxes (e.g., most EU-28 member states apply
CO2 taxes to vehicle ownership/registration according to the European Automobile Manufacturers’
Association) and incentives or subsidies (e.g., offering an incentive to purchase a lower CO2-
emitting vehicle such as a Hybrid Electric Vehicle (HEV) or an Electric Vehicle (EV) instead
of an Internal Combustion Engine Vehicle (ICEV)). Regulatory instruments include emission
standards, control of technologies or operation and production standards (most prominently
the European emission standards have been introduced in 1992 and stricter limits have been

1https://www.eea.europa.eu/data-and-maps/data/co2-cars-emission-18
2http://www.eltis.org/
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introduced regularly since). Besides these policy instruments, infrastructural measures (e.g.,
charging stations and Public Transport (PT) infrastructures) are key to render transport modes
associated with lower impacts competitive with individual mobility using ICEVs.

These decisions however come at a price (e.g., economic costs, ensuring enforcement etc.)
and economic pressures force policy makers to take decisions that are both effective and efficient.
Policy makers therefore desire an assessment of their alternative policy instruments (e.g., potential
environmental benefits). Several research disciplines have evolved to produce such an assessment,
such as urban, regional and transportation planning (studying the urban land use in connection
with transportation systems and the impacts of policies on, e.g., economic, social and environmental
aspects), and Industrial Ecology (IE) (studying material and energy flows through industrial
systems and the related impact on the environment). In fact these two research fields are
complementary when faced with research questions on sustainable transitions of mobility, where
urban and transportation planning can link human decision making to transportation policies and
planning aspects of cities, while IE can answer questions about the environmental interventions
and impacts of these decisions.

In particular ABMs (having their roots in transportation planning) and LCA (stemming
from IE) have emerged as appropriate modelling approaches for policy support in their respective
domains. ABMs tackle the challenge of quantifying travel demand from a household or individual
perspective as the decision unit, taking into account interdependencies between various factors
underlying a Daily Activity Pattern (DAP) and allowing for higher temporal and spatial resolutions
than conventional (i.e., four-step) models (Rasouli and Timmermans, 2014a). In practice, ABMs
allow to assess a wide range of policy measures and scenarios related to the urban environment.
These policy measures and scenarios can range from more imminent ones, such as new parking
policies or toll strategies, to more long term ones, such as demographic change or shorter workdays
(Davidson et al., 2007).

LCA, following an internationally standardised method (ISO, 2006b; ISO, 2006a), has
emerged as an approach allowing to quantify all relevant emissions and resources consumed
associated to a good or service over its life cycle (from “cradle-to-grave”), and is used to evaluate
environmental policies (EC, 2010; Finnveden et al., 2009). This is achieved, by explicitly modelling
the processes responsible for resource extraction (“cradle”), production, use phase and disposal
or EoL (“grave”). Valuable policy recommendations regarding transport modes can be found in
recent publications, e.g., Hawkins et al. (2013) and Bauer et al. (2015) on the life cycle impacts
of passenger vehicles, where the importance of assessing potential burden shifting (by taking into
account all life cycle phases), as well as considering a range of scenarios regarding key assumptions
have been emphasized.

While both methodologies have their respective strength regarding policy support, their use
in practice depends on the trust decision makers can put in their results. One way to establish such
a trust is to thoroughly investigate all uncertainties potentially affecting the model conclusions
relevant to the policy decision. Possible outcomes and their associated probabilities of occurrence
are typically presented as a result of UA, in contrast to only having one single model outcome,
allowing to take decisions regarding the most effective policy measure based on such additional
information.

1.1.3 The case of Luxembourg

The Grand Duchy of Luxembourg situated between Germany, France and Belgium is con-
fronted to a particular situation with regard to passenger transport and urbanization. Luxembourg
has a high proportion of its workforce travelling each day across national borders (approximately
45% according to STATEC (2018)), while at the same time having the lowest share of its popu-
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lation living in cities (causing additional rural-urban commuting from the resident population).
Luxembourg also exhibited the fastest population growth between 2004 and 2014 among the
EU-28 (3.1% per year on average) (Eurostat, 2017b; Eurostat, 2017a). As such, the travel
behaviour of the commuting population is central to the mobility situation in Luxembourg and
the strong population growth is likely to cause additional mobility related challenges.

The main transport mode for commuters working in Luxembourg city is the car (Eurostat,
2017b). A recent study conducted among the resident and Cross-Border Commuter (CBC)
population shows that the car accounts for 73% of all home-work commutes (61% drivers and
12% passengers), while PT accounts for only 19% and slow mobility for 8% (MDDI, 2018).

In 2011 road transport in Luxembourg was responsible for 76% of nitrogen oxides emissions,
59% of fine particulate matter emissions and 56% of GHG emissions (Eurostat, 2014).

International obligations (e.g., the Paris climate agreement3), European directives (e.g., the
National Emission Ceilings Directive (NECD)4) and national goals to improve air quality and
reduce GHG emissions have sparked policy action to foster PT use, as well as increase the share
of EVs in the car fleet. Specifically, two objectives were set for 2020: 40’000 EVs in circulation
and 19% of all travel conducted by PT (MDDI, 2012). More recently new objectives for 2025
have been formulated, e.g., to achieve 22% home-work travels to be conducted by PT and to
increase the occupation rate of cars from 1.2 passengers per car (as measure for 2017) to 1.5
passengers per car. Several infrastructural projects have been launched to reach these objectives,
such as the extension of the new tramway in the city of Luxembourg connecting multi-modal
nodes, new charging infrastructures and incentives for HEVs and EVs, and the digitalization of
the PT and car pooling offer5 (MDDI, 2018).

Considering the high investments (especially of infrastructural measures), the question
arises which policy actions are most promising to reach such objectives to reduce environmental
interventions and avoid or mitigate the related impacts. The CONNECTING project – FNR
CORE program (C14/SR/8330766) – has taken on this challenge by proposing a modelling
approach to provide scientific information on environmental impacts for various future policy
scenarios.

1.2 Background

1.2.1 CONNECTING project

At the core the CONNECTING project is at the nexus of behavioural science and IE. Its
purpose is to assess the mobility policies of the Luxembourgish government with a specific focus
on CBCs living in the French border region, by quantifying environmental impacts related to
satisfying their transportation demand. The study period ranges from 2015 until 2025, for a set
of policy scenarios including: the business as usual (BAU ) scenario considering the most plausible
policy action and the GREEN scenario investigating policies in favour of a more sustainable
development.

The innovative aspects of the CONNECTING project include the development of an ABM to
simulate the population’s DAPs and the coupling of that ABM to a LCA of the available transport
modes. The developed ABM part of the model is composed of 4 sub-models generating the daily
activities, forecasting activity durations, activity locations and mode choices for the commuting
population. In order to assess the environmental impacts related to individual DAPs, the outputs
of the ABM are transformed into a demand for products and services from the transport system.

3https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
4https://www.eea.europa.eu/themes/air/national-emission-ceilings
5https://www.copilote.lu/
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The LCA part of the model allows to assess the environmental impacts from a life cycle perspective
of this demand for products and services, where the system specific processes are modelled using
regional data and projections. Overall, the CONNECTING model follows a Consequential Life
Cycle Assessment (C-LCA) approach in a broad sense, as outlined by Marvuglia et al. (2013).

1.2.2 The need for uncertainty analysis

In general, the role of models in the context of policy making is to assess the likely reactions
of the system to policy instruments under behavioural and structural constraints (Boulanger and
Bréchet, 2005). CONNECTING is no exception to this, where the results are planned to be used
in workshop settings as a planning tool, allowing for bi-directional feedback, e.g., feedback to
policy makers regarding the impacts of their policy measures as well as feedback to the modellers
regarding the realism of their approach. UA can play valuable roles in such a process. In this
section some of these roles, relevant in the context of the CONNECTING project, are presented.

As a first, UA can increase the trust decision makers place in a presented model and
ultimately lead to its use in practice. As argued in Cash et al. (2003), scientific information
in environmental assessments is likely to influence decisions when it is credible (scientifically
adequate), legitimate (respectful of divergent values) and salient (relevant to the decision-maker).
One way to address scientific adequacy and achieve high scientific quality is to perform UA,
allowing users of information to “assess its strength relevant to their purposes” (Funtowicz and
Ravetz, 1990). In practice, this means that during CONNECTING workshops model results will
be presented along with the associated uncertainty, taking into account the level of expertise of
the target audience, e.g., building on a progressive disclosure of information (Kloprogge et al.,
2007).

As a second, UA can help to guide model design, refinement and data collection during the
iterative process of model development and use (Morgan et al., 1990). The modelling process
with its UA is of iterative cyclic nature (Refsgaard et al., 2007; Baustert et al., 2018; Kolkman
et al., 2005). The results of one iteration (e.g., model development, case study results, UA and
Sensitivity Analysis (SA)) are used in subsequent iterations. When specific model components
are identified as contributing largely to the uncertainty of the outcome, hindering the modeller
and ultimately the decision-maker to draw relevant conclusions, additional or more specific data
can be collected or additional model refinements can be made to reduce the uncertainty from
these components. In the case of CONNECTING, this can be a valuable outcome of a workshop
or stakeholder interaction, especially if stakeholders have access to relevant data sources.

Finally, as a third, uncertainty estimates can constitute valuable information during the
decision making process itself. Policy makers provided with the probability of occurrence for each
possible outcome, rather than one single model outcome, can make informed decisions potentially
hedging away from undesirable outcomes.

Given the relevance and importance of UA, the CONNECTING project dedicates a work
package – of which the present thesis is the result – to the development of an UA framework for
ABM/LCA coupled models.

1.3 Aims and objectives of the Ph.D. project

The lack of an UA framework for sophisticated and complex C-LCA modelling approaches
(such as the CONNECTING model) is a recognized obstacle to their application (Whitefoot
et al., 2011). The aim of the present thesis is to address this challenge for ABM/LCA coupled
models. The CONNECTING model and scenarios will serve as a case study in this endeavour
and the work will thus focus on ABM/LCA coupled models in the context of mobility policies in
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Luxembourg.
The specific research question derived from the CONNECTING project proposal is:

How to quantify uncertainty of ABM and LCA, and how to perform the uncertainty propaga-
tion for the coupling of these two models, in the context of mobility policy support?

The thesis aims at providing the state-of-the-art on the type of modelling approaches and
respective UA methodologies. Further, the thesis aims at providing an uncertainty propagation
framework suitable for the specificities of the CONNECTING model. Finally, the developed
framework will be applied to the CONNECTING model.

Chapter 2 will present a literature review on both modelling approaches (ABM and LCA)
and on attempts to couple an Agent-Based Model (AgBM) to LCA. This work is partially based
on Baustert and Benetto (2017), but has been updated and elaborated on for the present thesis.
The aim of the chapter is to provide a broad background to readers unfamiliar with either ABMs,
LCA or both, and to establish the state-of-the-art on coupling attempts.

Chapter 3 will present a review on UA, both in general and focussed on ABMs and LCA.
While the chapter is partially based on Baustert and Benetto (2017) and Baustert et al. (2018),
it will introduce new uncertainty classifications for ABM/LCA coupled models and provide a
focussed quantitative review of UA efforts in both fields.

Building on the review of chapter 2, chapter 4 will present the CONNECTING model and
case study. This chapter is partially based on Mariante (2017) describing the development of the
ABM of CONNECTING, and Baustert et al. (2019) describing the coupling of the ABM part
and the LCA part of the CONNECTING model.

Building on the classifications and reviews of chapter 3, chapter 5 will present the advanced
UA framework and conducted analyses for the present thesis. The focus is set on addressing
uncertainty from all model parts (both separately and simultaneously) and communicating model
output uncertainties to experts and decision makers.

Chapters 6-8 will present the results of this thesis, following the application of the method-
ologies advanced in chapter 5. While chapter 6 is concerned with uncertainty stemming from the
ABM part of CONNECTING, chapter 7 focusses on uncertainty from the LCA part. Finally,
chapter 8 combines uncertainties from both model parts.

Finally, chapter 9 will provide a discussion and the conclusions to the present thesis.

6



Chapter 2

Review of LCA, ABMs and their
coupling

2.1 Introduction

Before reviewing the state-of-the-art of UA and describing the CONNECTING model in detail,
a better understanding of the applied modelling approaches and general modelling paradigms
needs to be established. The present chapter thus aims at providing a review on existing LCA and
ABM approaches. LCA is an internationally standardised methodology building on a framework
of distinct phases for which different computational methods and modelling approaches exist.
ABMs are models that share some features, yet differ in their rich variety of computational
structures and modelling approaches, and do not build on a common standardised framework.
As both activity-based modelling and agent-based modelling are relevant to this chapter (and the
thesis as a whole) it needs to be made clear that throughout this thesis, the acronym ABM will
be used for activity-based model as the specific approach used in the CONNECTING model,
while for the more general agent-based model paradigm the acronym AgBM is used.

When introducing LCA and ABMs, different approaches will be taken. For LCA the aim
is to deepen the understanding of the existing standardised framework and give an overview of
computational methods and modelling approaches. For ABMs, which have emerged as alternatives
to conventional trip-based approaches, the aim is to establish some common features and provide
an overview of existing modelling approaches.

Next, this chapter goes beyond the state-of-the-art by providing insights into the coupling
of ABMs and LCA. To this end, a more general stance will be taken by relating ABMs to the
AgBM paradigm. This will allow to review how AgBMs have emerged in IE and have been
coupled to LCA. The coupling of AgBMs and LCA is described in terms of the type, degree
and computational structure. The promises of coupling AgBMs and LCA are synthesised from
literature and a focussed review of coupling efforts similar to the CONNECTING model is
presented.

The structure of the chapter is as follows: section 2.2 introduces LCA; section 2.3 introduces
ABMs; and section 2.4 reviews the coupling of AgBMs with LCA. A short summary is provided
at the end of the chapter in section 2.5.

7
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2.2 Life cycle assessment

LCA is an internationally standardised method (ISO, 2006b; ISO, 2006a) which allows to
quantify all relevant emissions and resources consumed, and the related environmental impacts,
health impacts and resource depletion issues, that can be associated to a good or service over its
life cycle (EC, 2010).

The history of assessing the impacts of consumer products dates back to the late 1960s
and early 1970s (Guinée et al., 2010). It coincided with an increasing awareness about finite
raw materials and energy resources as well as environmental deterioration and predictions of
climate change. This was illustrated by the formation of the club of Rome and publications
such as Meadows et al. (1972). It was recognized that large shares of the environmental impacts
occur during the production, transportation and disposal of products, and not only during
their use. Thus the life cycle perspective for product comparison gained traction, with an ever
broadening scope of considered impacts and increasing depth with regard to the sophistication of
the underlying modelling (Guinée et al., 2010).

However, until the 1990s there was still a lack of a standardised approach and terminology
leading to large variations in results of studies with similar objectives, hampering a wider
application (Guinée et al., 2010). Thus, in the 1990s a number of guidelines and handbooks
were published (e.g., Heijungs et al. (1992) and Vigon et al. (1993)) which ultimately led to the
Society of Environmental Toxicology and Chemistry (SETAC) “Code of Practice” (Consoli, 1994)
and the involvement of the International Organization for Standardization (ISO) to formally
standardize the LCA “principles and framework” (ISO, 2006a) and “requirements and guidelines”
(ISO, 2006b).

It needs to be specified that the focus of the CONNECTING project as well as of this thesis
is environmental LCA and not social LCA (Jørgensen et al., 2007), Life Cycle Costing (LCC)
(Swarr et al., 2011) or Life Cycle Sustainability Assessment (LCSA) (Finkbeiner et al., 2010).
Therefore, the aim is not to address the economic or social aspects of a product or service, but
only the environmental pillar of sustainability.

A second point that needs to be clarified is the definition of the life cycle, which in the
CONNECTING project as well as the thesis follows a cradle-to-grave perspective (from resource
extraction over production and use phases to the EoL phase). Specific implications of cradle-to-
gate (from resource extraction to factory gate) or pure cradle-to-cradle (where the EoL phase is a
recycling process) perspectives are not discussed here.

2.2.1 Terminology

A product is any good (e.g., vehicle) or service (e.g., transport). Products are provided
by unit processes, the smallest elements transforming inputs into outputs, or product systems
which are collections of unit processes. In the case of passenger transport, the product systems
providing the service of transporting people from one location to another encompass many unit
processes, such as vehicle production, assembly, use, maintenance and disposal.

The system boundary specifies which unit processes are part of a product system and which
are not. The extraction and refining of fuel or production of electricity are usually viewed as part
of different product systems, which however provide necessary products for passenger transport.

If a unit process or product system provides two or more products they are referred to as
co-products. While nowadays such multi-output processes or product systems are less common in
the domain of transport, an historic example is a mixed train transporting both passengers and
goods.

Inputs and outputs can be characterised as: (1) elementary flows which are directly drawn

8
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from (or released to) the environment without previous (or subsequent) human transformation; (2)
intermediate flows which are product, material or energy flows occurring between unit processes;
(3) product flows occurring between product systems. Examples of elementary flows are tailpipe
emissions of vehicles such as carbon dioxide or nitrogen oxides. Intermediate flows occur, e.g.,
between unit processes contributing to vehicle component production and vehicle assembly.
Product flows occur, e.g., between product systems providing fuel and electricity to the transport
product system. The distinction between intermediate flows and product flows can however
be subjective at times as product systems can be subdivided into smaller product systems or
aggregated into larger ones depending on the specific context.

The functional unit allows for the quantification of the product performance and is the
reference unit. The reference flow is the output of a product system required to deliver the
functional unit. The functional unit can be defined as the provision of transport services to
a specific population in a region for a period of time, while the reference flow quantifies the
passenger-kilometres for each transport mode necessary to provide these transport services. LCA
is a relative approach structured around this functional unit, often used in comparative assertions
comparing the environmental performance of competing products (and their product systems)
delivering the same functions.

LCA focusses on environmental impacts of a product system (with economic and social impacts
considered out of the scope of LCA) aiming at considering all aspects of natural environment,
human health and resources. These impacts are categorized in so-called impact categories
representing environmental issues of concern (e.g., global warming potential, air pollution or
fossil depletion). For each elementary flow relevant to an impact category a corresponding
Characterisation Factor (CF) (derived from a characterisation model) allows to determine the
impact in units of impact category indicators.

Four LCA phases are distinguished in ISO (2006a): the goal and scope definition phase, the
inventory analysis phase (hereafter referred to as LCI), the impact assessment phase (hereafter
referred to as LCIA) and the interpretation phase. Sometimes the goal and scope definition phase
is treated as two separate phases: a goal definition phase and a scope definition phase (EC, 2010).

2.2.2 Four phases of LCA

The goal definition clearly states the intended application, reasons for carrying out the study
and target audience. A study can for example present new methodological advances for the
scientific community or investigate alternative processes to inform an industrial consortium about
the most environmental friendly options. The scope definition identifies and defines the object of
study in detail by defining, e.g., the product system and its functions, the functional unit, the
system boundary, the chosen impact categories and methods, the required data (type, quality
and sources), limitations and assumptions. When the object of study is a transport system, the
product system includes all transport processes contributing to providing the functional unit.
The relevant impact categories for a transport system could be respiratory disease and climate
change related. Finally, the type of modelling is defined distinguishing the attributional and
consequential approach. Section 2.2.5 will focus on both modelling approaches in more detail.
The goal and scope definition phase thus frames the rest of the LCA study and subsequent phases.

During the LCI phase, data collection, system modelling and calculations are done in line
with the goal definition and the requirements derived in the scope definition phase. This is done by
describing the product system as a collection of unit processes. Each unit process is characterized
by its inputs and outputs (or intermediate, product and elementary flows). Then, the collected
data is related to these unit processes and scaled to the reference flow of the functional unit after
validation, allowing to generate the results of the LCI analysis for the defined functional unit.

9
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Life cycle assessment framework

Goal and scope
definition

Inventory
analysis

Impact
assessment

Interpretation

Figure 2.1: ISO flowchart of LCA framework (ISO, 2006b)

Following the LCI phase, the LCIA phase relates the LCI results to the impact categories
selected in the scope definition phase and their impact category indicators. This is done by
assigning LCI results to impact categories and calculating their impacts in terms of units of
impact category indicators using Characterisation Factor (CF)s.

The existing computational methods for the LCI and LCIA phases will be introduced in
sections 2.2.3-2.2.4.

Finally, during the interpretation phase the results of the LCI and LCIA phases are considered
and conclusions, limitations and recommendations are provided, which are consistent with the
goal and scope definitions. It should be acknowledged that LCA is a relative approach intended
for comparison on the basis of the functional unit and indicating potential environmental effects.

The interpretation phase, together with all other LCA phases are embedded in an iterative
framework allowing for feedback between phases and modifications of the original goal and scope,
inventory, impact assessment and interpretation as shown in figure 2.1.

10
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2.2.3 Process flow diagram

To arrive at the life cycle impacts of a product or service, two different computational
problems have to be solved. First, the so-called inventory problem has to be solved, which is
defined as “the task of scaling all unit processes in the system in such a way that they exactly
produce the reference flow [...]” (Heijungs, 2010). Second, the environmental interventions and
related impacts of this system of scaled unit processes need to be assessed.

Two computational methods have coexisted for LCA. While early LCA studies relied primarily
on the process flow diagram (or sequential) approach, upon the emergence of the matrix inversion
approach, the latter has become increasingly popular and is used in many LCA software (e.g.,

Table 2.1: Unit process stand-alone data.

Process Amount unit

Raw material extraction
Inputs
Raw material 1 kg

Outputs
Raw material 1 kg
Carbon dioxide 10 kg

Energy provision
Inputs
fossil fuel 0.02 kg

Outputs
Energy 1 MJ
Carbon dioxide 0.06 kg

Product manufacturing
Inputs
Raw material 1 kg
Energy 100 MJ

Outputs
Product 1 kg

Product use
Inputs
Product 0.1 kg

Outputs
Waste 0.1 kg
Product function 1 unit

Product disposal
Inputs
Energy 5 MJ
Waste 1 kg

Outputs
Carbon dioxide 5 kg
Methane 2 kg

11
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Product system

Resource

Production

Use

End-of-life

Raw
material

Energy

500 kgCO2

315 kgCO2

Product
manufacturing

50 kgr 5’000 MJ

Product
use

50 kgp

Product
disposal

50 kgw 250 MJ

250 kgCO2

100 kgCH4

Figure 2.2: Process flow diagram of toy example.

openLCA1 or brightway22). While the matrix inversion approach has been applied before,
Heijungs and Suh (2002) introduce the first comprehensive and coherent overview. While this
section introduces the process flow diagram approach, the next section will introduce the matrix
inversion approach.

The process flow diagram approach consists of representing the system as a directed graph
where unit processes are represented as nodes and flows are represented as arrows. Next, the
unit process data is transformed into stand-alone data (e.g., inputs and outputs are scaled for a
standard unit of output for each sub-system), before sequentially moving upstream the graph
while scaling the inputs and outputs of each unit process to the amounts required by downstream
unit processes, until the entire product system exactly provides the functional unit (Lesage and
Muller, 2017). To illustrate the approach a very simple set of unit process stand-alone data is
listed in table 2.1.

To solve the inventory problem, each input and output in table 2.1 needs to be scaled in
order for the entire product system to produce a reference flow. Assuming that the functional
unit is “the provision of 500 product usages”, one can scale all flows for the entire life cycle of

1https://www.openlca.org/
2https://brightwaylca.org/
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2.2. Life cycle assessment 13

the toy example using plain algebra to arrive at the values in figure 2.2. Figure 2.2 thus shows
a simple process flow diagram, where each box (or node) corresponds to one unit process and
each arrow corresponds to a flow. The cradle-to-grave life cycle perspective is illustrated by
regrouping unit processes according to four life cycle phases (resource extraction, production, use
and EoL). The intermediate flows are represented by continuous arrows while the elementary
flows are represented by dotted arrows. For reasons of simplicity only carbon dioxide and methane
emissions are shown in figure 2.2 and not all elementary flows.

Now, the cumulative environmental interventions can be calculated. This is done by summing
the environmental intervention for each scaled unit process. In case of the toy example the life
cycle carbon dioxide emission can be assessed by summing all elementary carbon dioxide flows
over the life cycle in figure 2.2 resulting in 1065 kgCO2

. Using the same approach, the life cycle
emissions of methane arrive at 100 kgCH4 . It is apparent that in case of a large number of unit
processes and considered elementary flows this becomes an impractical task. However more
recently, this graph based approach has received new attention in order to make dynamic full
temporalization of LCA calculations operational (Pigné et al., 2019).

Several complications might arise, which are not covered in this simplistic example. For unit
processes that have more than one function, producing two or more co-products, multifunctionality
issues arise. These issues can be solved using one of three approaches: (1) sub-division into
smaller unit processes each having only one function; (2) partitioning (or allocation) of process
flows based on coefficients (e.g., mass-based, economic value-based, energy content-based, etc.);
(3) substitution where the impact of alternative processes yielding unused co-products (or similar
products) is subtracted from the impact of the unit processes. Once all multifunctionality issues
of a process diagram are solved, the cumulative environmental interventions can be computed as
shown above. Another issues occurs when the process flow diagram is not a directed acyclic graph
(DAG) and exhibits feedback loops. In such cases, the solution can be approached iteratively or
solved using infinite geometric progression as shown in Suh and Huppes (2005).

The second problem (computing the environmental impacts of the total environmental
interventions) can be solved by multiplying the LCI results with the respective CFs to arrive
at the environmental impacts for a specific impact category. In the toy example, to arrive at
the global warming potential impact measured in kgCO2equivalents, the life cycle emissions for
each GHG (e.g., carbon dioxide or methane) need to be multiplied with the corresponding CFs

(e.g., 1
kgCO2equivalents

kgCO2
or 37

kgCO2equivalents

kgCH4
). Taking into account both the carbon dioxide and

methane emissions of the toy example one arrives at a score of 4765 kgCO2equivalents for the chose
functional unit.

2.2.4 Matrix inversion approach

The matrix inversion approach builds on a matrix representation of the product system,
which resembles input-output analysis (e.g., Leontief (1986) and Duchin (1992)) as first presented
in Heijungs (1994) and further developed by Heijungs and Suh (2002). To this end unit process
stand-alone data are formulated as vectors, where process flows a and elementary flows b are
distinguished:

13



14 Chapter 2. Review of LCA, ABMs and their coupling

(
a
b

)
=



a1

...
ak
...
am

b1
...
bq
...
br


The convention is that inputs are negative and outputs are positive. All unit processes of a

product system can be represented as vectors, while the entire product system can be represented
as a matrix, where A is referred to as the technosphere matrix and B the intervention matrix,
containing the stand-alone data. The general form is presented by the left side matrix, while the
right side matrix contains the flows of the toy example presented in table 2.1:

[
A
B

]
=



a1,1 · · · a1,l · · · a1,n

...
...

...
ak,1 · · · ak,l · · · ak,n

...
...

...
am,1 · · · am,l · · · am,n

b1,1 · · · b1,l · · · b1,n
...

...
...

bq,1 · · · bq,l · · · bq,n
...

...
...

br,1 · · · br,l · · · br,n



=



1 0 −1 0 0
0 1 −100 0 −5.0
0 0 1 −0.1 0
0 0 0 1.0 0
0 0 0 0.1 −1.0

10 0.06 0 0 5.0
0 0 0 0 2.0
1 0 0 0 0
0 0.02 0 0 0



For a given functional unit, the final demand vector f contains the reference flows. Again
the final demand vector of the toy example is presented containing as a reference flow the 500
product usages:

f =



f1

...
fk
...
fm

 =


0
0
0

500
0


The matrix inversion approach allows to solve the inventory problem through inversion of

the technosphere matrix and multiplication with the final demand vector to yield the scaling
vector s which contains the amounts needed of each reference product to provide the functional
unit. Formula 2.1 holds true for squared technosphere matrices, where the number of processes
(or number of columns n) is equal to the number of products (or number of rows m). This is

14



2.2. Life cycle assessment 15

equivalent to solving the inventory problem in the process flow diagram, yet much more convenient
in case of a large amount of data.

s = A−1f (2.1)

The inversion of the technosphere matrix of the toy example yields:

A−1 =


1 0 1 0.1 0.0
0 1 100 10.5 5.0
0 0 1 0.1 0.0
0 0 0 1.0 0.0
0 0 0 0.1 1.0

 ,
and the scaling vector of the toy example can be derived by multiplication with the final

demand vector following equation 2.1. The values in the scaling vector s correspond to the values
in the process flow diagram figure 2.2. However, s contains the aggregated amounts across in the
whole product system, i.e., the second element is the sum of all energy consumptions needed to
provided the function unit, including the 5’000 MJ for manufacturing and 250 MJ for disposal:

s =


50

5250
50
500
50


By multiplying the intervention matrix with the scaling vector one can arrive at the results

of the LCI (the cumulative environmental interventions), where g is the intervention vector:

g = Bs (2.2)

In case of the toy example one can thus solve the inventory problem using equation 2.2:

g =


1065
100
50
105

 ,

where the first element corresponds to the life cycle carbon dioxide emissions, the second
element to the life cycle methane emissions, the third element ot the life cycle raw material
consumption and the final element to the life cycle fossil fuel consumption.

Finally, using the characterisation matrix Q which contains the CFs for all chosen LCIA
methods and all elements in the intervention vector, the impact vector h can be calculated. The
intervention vector contains the life cycle environmental impacts of each chosen impact category
the functional unit:

h = Qg, (2.3)

where for the toy example only the global warming potential impact category is considered.
Q thus contains the CFs for carbon dioxide and methane, while containing zeros for elementary
flows with no impact on climate:

Q =
[
1 37 0 0

]
,

15



16 Chapter 2. Review of LCA, ABMs and their coupling

and the final LCA results can be computed using equation 2.3:

h = 4765

Similar to what has been mentioned above, in case of processes with multiple co-products
a multifunctionality problems arises, which can be solved through allocation. This is of special
importance to the matrix inversion approach, as multifunctionality causes the technosphere matrix
to be rectangular. Specifically, as each process in the technosphere matrix is represented as a
column and each product as a row, a process producing two co-products causes an imbalance
of rows and columns thus leading to a non-squared matrix. Such a matrix cannot be inverted
as written in equation 2.1 and partitioning, substitution or more advanced solutions to invert
non-squared matrices are needed (see e.g., Marvuglia et al. (2009)).

While the occurrence of feedback loops pose a challenge to the process diagram approach, the
matrix inversion approach remains valid as long as the technosphere matrix is squared. However,
similar to multifunctional processes, some loops in the product system (e.g., closed loop recycling)
can lead to non-squared matrices also requiring, e.g., partitioning, substitution or the use of
pseudo-inverse in equation 2.4 (see, e.g., Heijungs and Frischknecht (1998)):

s = (ATA)−1AT f (2.4)

2.2.5 Attributional versus consequential approach

Two modelling approaches have emerged in literature and in the practice: Attributional
Life Cycle Assessment (A-LCA) and Consequential Life Cycle Assessment (C-LCA) (Weidema,
2003). The approaches differ in the research question they address, where A-LCA addresses
questions about the responsibility for a portion of the total environmental impact generated
by a product system (e.g., the impact of a specific product), C-LCA addresses questions about
the environmental consequences of a decision affecting a product system (e.g., purchasing an
additional product). A-LCA thus looks at products at a particular point in time for a given
amount of the functional unit (Rebitzer et al., 2004) and describes the environmentally relevant
physical flows to and from its life cycle and subsystems (Curran et al., 2005; Ekvall and Weidema,
2004; Russell et al., 2005). An A-LCA is suited for cases where the steady-state assumption
applies and the system can be described by average data in the technosphere matrix (Russell
et al., 2005), because the existing market remains unaffected by the studied LCA (fully elastic
market) (Marvuglia et al., 2013). As a consequence, the results scale linearly with the functional
unit (Rebitzer et al., 2004). However, when the LCA is supposed to inform on the consequences of
a change in demand for the functional unit underlying a decision process, A-LCA fails to describe
the direct and indirect related impacts (Weidema et al., 1999).

To overcome this limitation, C-LCA includes the impacts generated by all the systems
affected by the change in demand of the functional unit, also including processes affected through
market relationships and not through physical ones (Dandres et al., 2011; Vázquez-Rowe et al.,
2013; Marvuglia et al., 2013; Weidema, 1993). Also, C-LCA implies the integration of marginal
technology data in the LCI instead of average data, a concept first formulated by (Weidema,
1993) and further developed in several studies, e.g., (Ekvall and Weidema, 2004; Weidema, 2003;
Weidema et al., 1999). As a result, the LCA outcomes are no longer linearly dependent on the
functional unit due to the expansion of the system, which takes into account indirect effects
that occur outside of the original life cycle made of physical relationships between unit processes
(Ekvall, 2000). These indirect effects can even surpass the direct ones in some cases (Fargione
et al., 2008; Searchinger et al., 2008). This change oriented approach is argued to be better suited
to evaluate the environmental consequences of decisions (Tillman, 2000), especially when faced
with large scale decisions (Brandão et al., 2014).
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2.3. Activity-based modelling 17

Recently it is argued that market-based C-LCA falls short in cases of large systems affected by
non-marginal variations or systems exhibiting dynamics mainly driven by human behaviour, that
cannot be properly described by economic theory alone (Dandres et al., 2011; Marvuglia et al.,
2013). In these cases, methodologies are required that detach C-LCA from a purely market-based
approach and constitute the convergence of LCA with complex economic models and/or behaviour-
oriented methodologies (Earles and Halog, 2011; Marvuglia et al., 2013; Vázquez-Rowe et al.,
2013). The original market-based C-LCA is considered a special case of this broader interpretation
(Marvuglia et al., 2013). It is in this context that AgBM is seen as a promising modelling paradigm,
allowing to make behaviourally realistic approaches operational and capturing marginal effects
relevant for C-LCA studies. It is this broader definition of C-LCA modelling that is adopted in
this thesis and that is at the core of the CONNECTING project.

2.3 Activity-based modelling

This section is concerned with ABMs allowing to estimate travel demand. First, the
fundamental flaws of traditional trip-based approaches, which led to the development of the
activity-based approach, will be briefly touched upon. Next features and promises of ABMs will
be introduced. Finally, the different modelling approaches of ABMs will be discussed building on
existing classifications.

2.3.1 Flaws of conventional trip-based approaches

It is difficult to introduce the activity-based approach, without building on the criticism of
trip-based approaches which ultimately led to the development of many ABMs as conceptually
superior approaches to estimate travel demand. While an exhaustive review of these criticisms is
beyond the scope of these thesis, the synthesis of more fundamental works (Jones, 1983), as well
as recent reviews (Rasouli and Timmermans, 2014a) can help to gain the necessary insights.

The classic four step-modelling approach has been based on a sequence of largely independent
sub-models, and has been described as a special application of spatial interaction models (Rasouli
and Timmermans, 2014a). The four steps usually include (1) trip generation, (2) trip distribution,
(3) modal split and (4) traffic assignment.

Jones (1983) lists several simplifications of trip-based approaches such as four-step models:
(1) the daily context of travel is lost as trips are treated separately from others events; (2) the
order of travel is lost due to strong temporal aggregation; (3) the direction of travel is lost by
using production and attraction rather than specific origins and destinations; and (4) the linkage
between trips is lost (Jones, 1983). Similarly, Rasouli and Timmermans (2014a) formulate several
fundamental criticisms of four step-modelling including (1) the lack of integrity, (2) assumption
of independence between sub-models, (3) strong aggregate nature both in time and space, and (4)
lack of behavioural realism.

Theses flaws and simplifications potentially lead to biases when trying to forecast complex
behavioural responses to specific transport policy measures such as congesting pricing, teleworking
and ride sharing incentives (Jones, 1983; Rasouli and Timmermans, 2014a). It is in this context
that the activity-based approach was introduced to address these criticisms.

2.3.2 Features of ABMs

While there is no one framework and computational structure of ABMs, one can establish a
set of features encountered among such modelling efforts. The following set of features is based
on a qualitative selection, aiming at introducing such features of ABMs.
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18 Chapter 2. Review of LCA, ABMs and their coupling

A first feature of ABMs is that travel demand is derived from the demand for activity
participation (Damm, 1979; Wigan and Morris, 1981; Pas, 1985; Kitamura, 1988; McNally, 1996;
Ben-Akiva and Bowman, 1998; Bhat and Koppelman, 1999; Rasouli and Timmermans, 2014a).
Jones (1983) describes the role of travel as a “space-shifting mechanism” which allows people
to move between sites where they take part in activities. Activity participation in turn arises
from more fundamental human needs and desires, for which activities (a more tangible concept)
serve as a reasonable proxy in order to understand the derived travel behaviour (Jones, 1983).
Many ABMs ultimately aim at accounting for decisions of whether, where, when, for how long
and with whom an activity is conducted, which in turn affects the demand for travel (Axhausen
and Gärling, 1992; McNally and Rindt, 2007). A common example is the pursuit of employment,
which in many cases accounts for a large share of the daily activities of the active population.
With some exceptions (e.g., self-employment, home office or teleworking) the participation in
work related activities implies leaving the usual residence location to travel to the usual work
location. Besides work or other mandatory activities (e.g., sleeping and eating), people participate
in other discretionary activities (e.g., recreation) which might cause a demand for travel. Similar
to Davidson et al. (2007) and Davidson et al. (2011) this feature will be referred to as the
activity-based platform of ABMs.

A second feature of ABMs is the accounting for interdependencies of activities and travels,
forming tours and ultimately DAPs (Damm, 1979; Pas, 1985; Bhat and Koppelman, 1999;
McNally and Rindt, 2007; Chu et al., 2012; Rasouli and Timmermans, 2014a). Subsets of trips
between activities can be grouped together (often referred to as trip chaining) to form single
entities (or tours) beginning and ending in the same location, and providing a sequence, location
and timing of activities and travels. These tours become the basic elements of analysis (Golob
and Golob, 1982; Jones, 1983; Davidson et al., 2007; Pinjari and Bhat, 2011). The sequence of
tours and activities between tours (e.g., time at home) form the DAP (Jones, 1983; Davidson
et al., 2007). More or less complex interdependencies can be accounted for, such as dependencies
between different elements of the DAP, between elements of the DAP and the environment, or
consistencies, e.g., of transport modes within tours (Rasouli and Timmermans, 2014a). Similar to
Davidson et al. (2007) and Davidson et al. (2011) this feature will be referred to as the tour-based
structure of ABMs.

A third feature of ABMs is the focus on the individual or the household as the decision
making unit (Kitamura et al., 2000; Bradley and Bowman, 2006; Davidson et al., 2007; Davidson
et al., 2011; Rasouli and Timmermans, 2014a). Outcomes are based on behaviourally valid
autonomous decision structures on a micro level, assuring consistent and feasible individual or
household activity patterns (Jones, 1983; Kitamura et al., 2000; Davidson et al., 2007; Rasouli
and Timmermans, 2014a). Each decision unit (e.g., an individual) can be uniquely identified,
has individual attributes (e.g., age, gender or marital status) and makes crisp activity and travel
related decision (e.g., whether and where to participate in an activity) among discrete choices
based on deterministic or stochastic rules (Bradley and Bowman, 2006; Davidson et al., 2007;
Davidson et al., 2011). This usually implies using a population of decision units (e.g., individuals
or households) to model and simulate their individual complex travel behaviour, giving rise to
their collective travel behaviour on a contiguous temporal scale (Kitamura et al., 2000; Bowman,
2004). Similar to Davidson et al. (2007) and Davidson et al. (2011) this feature will be referred
to as the micro-simulation modelling of ABMs.

A fourth feature of ABMs is the explicit consideration of various constraints that channel
activity and travel behaviour (Jones, 1983; McNally, 1996; Ben-Akiva and Bowman, 1998; Chu
et al., 2012; Rasouli and Timmermans, 2014a). Hägerstrand (1970) first introduced a time-space
geography framework, formulating three groups of constraints: (1) channelling the individual
day paths within space-time prisms (the time-space volume within the reach of an individual
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2.3. Activity-based modelling 19

given posterior commitments and available transport modes, called capability constraints); (2) by
grouping several day paths to form bundles (defining where, when and for how long individuals
have to align their day paths to other paths, called coupling constraints); and (3) by passing
through or evading domains of restricted access (determined by individual access rights to locations
for specific periods of time called authority constraints). Individuals thus face their choices in the
context of such objective and additional subjective constraints acting on their sets of options (or
choice sets) by limiting them and ultimately shaping the possible individual DAP (Jones, 1983).
ABMs include such constraints to identify feasible/unfeasible DAPs or to limit choice sets, e.g.,
of possible activity locations using space-time prisms (Rasouli and Timmermans, 2014a). This
feature will be referred to as the constraint consistency of ABMs.

A fifth feature of many ABMs is the high temporal and spatial resolution (Jones, 1983;
Rasouli and Timmermans, 2014a). Besides the high resolution of ABMs with regard to the
representation of individuals in a population, many ABMs also allow for a high integrity and
resolution in terms of scheduling activities in time and space (Ben-Akiva and Bowman, 1998;
Bhat and Koppelman, 1999; Rasouli and Timmermans, 2014a). The temporal resolution of ABMs
can achieve continuous representation of time while spatial resolution typically is zip code areas
but can achieve parcel-level (Rasouli and Timmermans, 2014a). This feature will be referred to
as the spatio-temporal resolution of ABMs.

Finally, a sixth less common feature of ABMs is the accounting for the interdependencies
between behaviours of different individuals (Damm, 1979; Jones, 1983; Pas, 1985; Kitamura,
1988; Axhausen and Gärling, 1992; McNally, 1996; Bhat and Koppelman, 1999; Bradley and
Bowman, 2006; Rasouli and Timmermans, 2014a). This feature entails viewing the individual’s
travel behaviour in the context of the DAPs of others sharing the same fixed locations (e.g., usual
residence or work location) of the individual (Damm, 1979; Jones, 1983). Jones (1983) discusses
three categories of inter-personal linkages mainly from a household perspective where (1) greater
role specialisation occurs as individuals in a household take on the burden of some tasks for
the entire household (e.g., for grocery shopping) or have to take on additional responsibilities
for other individual (e.g., for children); (2) competition for resources occurs as some household
resources (e.g., household car) can be scarce and their availability to an individual is subject
to bargaining; and finally (3) joint activity participation causes tighter constraints on activity
scheduling as activity type, place and time have to be agreed upon, and a feasible common block
of discretionary time has to be found (e.g., due to coupling constraints). Such interdependencies
in travel decisions can be made operational in ABMs through specific variables (e.g., describing
the household composition) or more complex mechanisms (e.g., by modelling choices of one
individual conditional on those of another individual) (Kitamura, 1988; Bradley and Bowman,
2006). This feature will be referred to as the inter-personal linkage of ABMs.

2.3.3 Modelling approaches

A final aspect to shed light on is the modelling approach to implement the choice models and
constraints in an ABM. Rasouli and Timmermans (2014a) distinguish three different modelling
approaches: constraints-based models, utility-maximizing models and computational process models.

Rather than predicting individual DAPs, constraints-based models check the feasibility of
a DAP in a space-time context (Rasouli and Timmermans, 2014a). These models receive a list
of activities as inputs and using the space-time context (e.g., institutional constraints such as
opening/closing hours of potential locations or available transport modes and travel times) return
all possible activity agendas. An early example of such a constraints-based model is the Program
Evaluating the Set of Alternative Sample Paths (PESASP) model which is the first attempt to
operationalize the time-space geography framework advanced by Hägerstrand (1970). This model
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20 Chapter 2. Review of LCA, ABMs and their coupling

works with the DAPs of individuals and the environment described in time and space (including
e.g., authority constraints), and proceeds by estimating the number of possible trajectories of the
DAPs within the environment (Lenntorp, 1979). Another example is the Combinatorial Algorithm
for Rescheduling Lists of Activities (CARLA) which is similar to PESASP, but proceeds by
decomposing a DAP and examining the number of feasible ways to re-assemble it under a set of
constraints (Jones, 1983). Overall, constraints-based models are considered to be behaviourally
weak, especially with regard to their sensitivity to policies, while being well adapted to identify
infeasible DAPs in changing environments.

Utility-maximizing models are based on the premise that individuals maximize utility in
choosing alternative DAPs. While trip based approaches already include utility-maximizing
models, e.g., for mode choice, for ABMs falling under this category the complexity of these
discrete choice models is extended by accounting for interdependencies among choice facets at
the individual level. One example of such an utility-maximizing model is the Comprehensive
Econometric Micro-simulator of Daily Activity-Travel Patterns (CEMDAP), which constitutes
an econometric modelling systems for activity-travel pattern generation (Bhat et al., 2004).
The model proceeds by first predicting the participation in activities for individuals to satisfy
individual and household needs. Next, the predicted activities are scheduled to form complete
DAPs. Choice facets are implemented through econometric modelling such as regression, hazard
duration, multinomial logit or ordered probit models. These models can be combined with
concepts of constraints-based models, e.g., space–time prisms, to constraint the choice sets.
Taking a more general stance, utility-maximizing models could also be replaced by alternative
behavioural models (e.g., regret-minimizing models).

Finally, computational process models relax the strict and behaviourally unrealistic assump-
tion of utility-maximizing behaviour by including rule-based models to depict decision heuristics.
These models aim at mimicking the underlying decision-making process. The so-called A Learning
Based Transportation Oriented Simulation System (Albatross) is such a computational process
model, which predicts DAPs subject to various constraints (Arentze and Timmermans, 2004).
The system builds on a rule-based formalism (rather than utility maximizing theory) proceeding
through sequence of steps, each represented by a decision tree representing the heuristic decision-
making. While computational process models are usually associated with high behavioural realism,
some of their assumptions may built on a priori rather than empirical data (e.g., sequence of
choice facets) (Rasouli and Timmermans, 2014a).

The ABM part of the CONNECTING model is an utility-maximizing model, which will be
outlined in chapter 4. The coupling of the ABM part to a LCA is one of the main innovations
of the CONNECTING project, building on prior work of coupling AgBMs and LCA. In the
following, the literature on coupling such models will be reviewed.

2.4 Coupling AgBMs and LCA

The CONNECTING project is the first to aim at coupling ABM with LCA and thus no
prior example of such a coupling exists in literature. In contrast, examples of previous attempts
linking LCA and AgBM can be found. Therefore, an overview of the integration of AgBM and
LCA is presented.

2.4.1 Agent-based modelling

Agent-based modelling defines a class of simulations models that share a common modelling
paradigm. In contrast to LCA and ABMs, AgBMs can not be related to a specific field, instead
agent-based approaches have emerged in many disciplines including IE (Dijkema and Basson,
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2009; Dijkema et al., 2015) and urban planning (Perez et al., 2017). In general, agent-based
modelling is advocated as a modelling paradigm appropriate for complex systems, where the
following definition of complex systems is adopted:

“A system in which large networks of components with no central control and simple rules of
operation give rise to complex collective behaviour, sophisticated information processing, and
adaptation via learning or evolution (Mitchell, 2009).”

This definition suits as a description for the source system of CONNECTING, where a
large number of individuals take decisions regarding their DAPs. Their individual choices and
interactions with each other, as well as the physical transportation environment gives rise to
the complex transport flows on a regional level, while individuals are capable of adapting their
behaviour when confronted with changing conditions. It can thus be concluded that the aim of
the CONNECTING project is to model and simulate this complex system. While the specific
modelling approach of the CONNECTING project is an ABM (coupled with LCA), it can be
argued that all ABMs (exhibiting several of the features above) follow (at least in part) an AgBM
paradigm. To support this claim, first a short description of the AgBM paradigm is provided.

AgBMs allow for direct representation of agents, their interactions with each other and the
environment (Gilbert, 2008). They allow to model individual heterogeneity (e.g., in terms of
decision rules or attributes) and conduct experiments under condition of isolation without the
ethical or financial constraints encountered with human source systems (Gilbert, 2008). Demazeau
(1995) identifies four basic components of the AgBM paradigm: Agents, Environment, Interactions
and Organisation (AEIO) and describes these components as follows. Agents have simple or
more complex architectures and can be reactive, cognitive or both (hybrid). The nature of the
environment depends on the specific case but is often spatial. Interactions can range from speech
acts to interactions of physical nature. The organisation can be dynamic or governed by laws.
Macal and North (2005) further describe a typical AgBM using three elements:

� A set of agents, their attributes and behaviours.

� A set of agent relationships and methods of interaction: An underlying topology of connect-
edness defines how and with whom agents interact.

� The agents’ environment : Agents interact with their environment in addition to other
agents.

These three elements are clearly related to some of the features of ABMs, such as the
micro-simulation modelling. Other features of ABMs (the tour-based structure of travel and
activity-based platform) are specific examples of agent behaviours. A clear link can also be drawn
to agent relationships and interactions, where some ABMs model not only where, when and for
how long household members participate in activities, but also with and for whom they do so,
thus accounting for interactions between household members (inter-personal linkage). One can
thus conclude that ABMs falls (at least in part) under the AgBM paradigm.

Using AgBMs in contexts of relevance to IE originated in the 1990s. Axtell et al. (2001) argue
that AgBMs should explicitly model the incentives that realistic agents behaviourally face in
empirically credible environments, which is at the core of the phenomena studied in IE. Following
the call from Kraines and Wallace (2006) to apply AgBMs in LCA several authors present studies
of AgBM/LCA coupled models.

The challenge of studying complex systems in IE using AgBMs remains a relevant topic, e.g.,
Dijkema and Basson (2009), yet more recently a decrease of AgBMs in IE literature has been
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noticed, attributed to the difficult compatibility of AgBMs with material flow analysis and LCA
(Dijkema et al., 2015).

2.4.2 Coupling options

To address the challenges of coupling AgBMs and LCA, several authors have reviewed
coupling efforts and categorized different coupling options of both models, with Baustert and
Benetto (2017) suggesting: an AgBM feeding information to a LCA (AgBM enhanced LCA); a
LCA feeding information to an AgBM (LCA enhanced AgBM ); a coupling where information
flows in a loop between both models (AgBM/LCA symbiosis).

More recently Micolier et al. (2019) further conceptualise the type and degree of AgBM/
LCA coupling, distinguishing three types of coupling: model integration where one unique and
larger model is created; hybrid analysis where both models exchange data between each other;
and complementary use where two separate models are used in combination calculating results
separately. Further three degrees of coupling are distinguished: soft-coupling where aggregated
AgBM results at the end of the simulation are used as inputs to LCA; tight-coupling where AgBM
results are used at each time step as inputs to LCA; and hard-coupling where data is exchanged
between both models at each time step.

2.4.3 Computational structures

Baustert and Benetto (2017) details two computational structures of coupling options that
are found in literature, focussing on the LCA matrix approach described above.

On one side, authors such as Davis et al. (2009) see technology adopters (e.g., emerging
in a market) as agents. The authors draw the comparison of the LCI matrices and AgBM
network structures and conclude that they are fundamentally the same. As a consequence, rows
and columns (representing unit processes and reference products respectively) are added to the
technosphere matrix of the LCI foreground to represent these agents and their exchanges. The
technosphere matrix can grow and shrink in accordance with the number of agents, creating
dynamic supply chains. This extends the conventional LCI implementation which views the
supply chains and markets as being composed of fixed connections. Therefore, this computational
structure seems to be appropriate to address research questions about the impacts of structural
changes of markets and values chains.

On the other side, authors such as Querini and Benetto (2015) and Navarrete Gutiérrez
et al. (2015b) see actors (or users) as agents in a changing market or affected by an emerging
technology. These agents are not perceived as components in the computational structure of
the LCI. The role of the AgBM is to compute the demand of the system under the investigated
scenarios, thus rendering part of the final demand vector a function of the AgBM output. This
extends the current LCI implementation by simulating behavioural components and heuristic
aspects. This computational structure seems appropriate to answer questions about a change in
demand within a changing market or due to an emerging technology where the change is mainly
driven by the behaviour of the users. As a result, the computational structure of the LCI is not
significantly modified as the AgBM intervenes by providing more accurate scenarios of the future
evolution of the system following the change.

2.4.4 Promises

Several promises have been voiced with regard to the coupling of AgBMs and LCA, as
reviewed in Baustert and Benetto (2017). A first promise is that AgBMs can solve data scarcity
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issues, e.g., for emerging products or systems for which the necessary LCA data cannot be
gathered (Alfaro et al., 2010; Heairet et al., 2012; Bichraoui-Draper et al., 2015). This promise is
not specific to AgBMs, as it would also relate to any other modelling paradigms appropriate for
the specific source system. AgBMs however allow to model and simulate future supply chains
following the first computational structure; or the emergence of a product or service use among
a human population of agents following the second computational structure presented in the
previous section.

A second promise is that AgBMs can account for the micro-scale variability (e.g., for non-
homogeneous spatial conditions or among individuals of a populations) which is usually missed by
LCA (Bichraoui-Draper et al., 2015; Heairet et al., 2012; Querini and Benetto, 2013; Querini and
Benetto, 2014; Querini and Benetto, 2015). This can be related to the variability of preferences
and choices in the demand for product or services within a human population of agents, as well
as the variability of local production conditions for technology agents.

Finally a third promise is that AgBMs allow for the consideration of human-driven conse-
quential effects, especially when human behaviour is driving consequential effects relevant to a
LCA (Querini and Benetto, 2014). This can be related to ABMs, where besides the intended
policy impacts on the individual DAPs (e.g., higher share of PT usage among commuters),
secondary reinforcing or rebounding effects can occur in other parts of the DAPs (e.g., changing
car availability for other household members).

2.4.5 Review of AgBM/LCA coupled models

For a comprehensive review of efforts of coupling AgBMs and LCA both Baustert and Benetto
(2017) and Micolier et al. (2019) should be consulted. In this section a review of AgBM/LCA
coupled models is presented, focussing on modelling efforts that resemble the CONNECTING
model. Therefore, first the CONNECTING model is defined in terms of the three criteria: coupling
type, coupling degree and computational structure.

The coupling type of the CONNECTING model follows the hybrid analysis as described
in Micolier et al. (2019). While the CONNECTING model will still be composed of two
distinguishable sub-models (the ABM part and the LCA part), both models will interact in a
flexible combination. The flow of information however will be purely one directional, where the
outputs of the ABM are used as inputs to the LCA part. With regard to the degree of coupling
the CONNECTING model will follow a tight coupling, where for each time step of the ABM a
LCA will be conducted. Finally the computational structure will follow modelling efforts where
both sub-models interface at the final demand vector, describing human agents and their demand
for mobility services.

Out of the articles reviewed in Baustert and Benetto (2017) only few adopt a comparable
approach, with the work of Querini and Benetto (2013), Querini and Benetto (2014), and
Querini and Benetto (2015) focussing on the emergence of electric mobility among the commuting
population in Luxembourg, and the related environmental impacts of their mobility needs. In
contrast to CONNECTING, no ABM approach is chosen to determine travel demand for different
transport means and the focus of the model is on the long term choice of car ownership and
competing powertrains. LCA is used to describe each car type (in terms of car segment and
powertrain) from a life cycle perspective where a distinction is made between production, use
phase and EoL impacts. A hybrid analysis type of coupling is adopted using pre-calculated LCA
impacts. The coupling degree is a tight coupling, where on a monthly basis agents evaluate
whether or not to replace their current car and which car to buy based on a decision tree (taking
range constraints into account) and daily travel demands are determined based on assumptions.
The AgBM results are aggregated on a yearly scale in terms of the production of new and
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disposal of old vehicles and vehicle use for each car type, thus determining the reference flows
and ultimately the final demand vector of the LCA part. Using the pre-calculated LCA impacts,
the yearly impacts are computed.

A second effort that resembles the CONNECTING model in terms of the three criteria
is described in Navarrete Gutiérrez et al. (2015a), Navarrete Gutiérrez et al. (2015b), and
Marvuglia et al. (2016) simulating the evolution of the Luxembourgish agriculture sector, where
the agents perceive the results of a LCA and use them during the farm planning. Similar to the
CONNECTING model a hybrid analysis and tight-coupling is adopted. Farmer agents decide
on planting crops under the constraint of their assigned crop rotation scheme and according to
three types of behaviour: pure profit maximization, pure environmental concern (taking LCA
results into account, focussing on reducing CO2 emissions) and a mixture of the previous two. In
the LCA part of the model agricultural processes are described for each crop type planted in the
study region. For a subsidy scenario the variations in the cultivated area of each crop compared
to a reference scenario are determined on a yearly basis. These variations in the cultivated area
determine the system’s changes in demand for agricultural processes, which correspond to the
reference flows and ultimately the elements in the final demand vector.

While these two efforts are the most similar to the CONNECTING model, a wide range of
modelling efforts exist, covering most combinations of the presented coupling types, degrees and
computational structures. Most noticeably is the work of Davis et al. (2008), Davis et al. (2009),
and Davis et al. (2010), Nikolić (2009) and Miller et al. (2013) which are the first authors to couple
an AgBM to LCA and serve as an example of a hard-coupling following the first computational
structure. The main difference to the present work is their definition of agents as “technology
agents” in contrast to the human agents of the CONNECTING project.

2.5 Summary

The AgBM paradigm can be related to ABMs, where AgBM describes a modelling paradigm
with a broad range of applications, with some ABMs following this paradigm. However, ABMs
cannot be reduced to a specific application of the AgBM paradigm, as a rich variety of such
models can be encountered in literature (as shown in the review of this chapter), of which many
diverge from the AgBM paradigm.

Following the review of the relevant literature on the coupling of AgBMs and LCA, sev-
eral promises of this modelling approach have been identified and the types of coupling have
been distinguished. The CONNECTING model constitutes an ABM enhanced LCA, with a
computational structure where the system’s final demand is generated by the ABM and the
LCA describes the processes contributing to the required products and services to satisfy this
demand and the related environmental impacts. This constitutes a C-LCA approach, where
the consequential aspect is driven by the ABM comparing different scenarios, along with the
non-marginal consequences (i.e., travel mode switches).

Using an ABM to model the commuting behaviour in CONNECTING builds on several
of the promises of coupling AgBMs and LCA identified in the reviewed literature. Related to
the first promise (data scarcity), the ABM part allows to simulate input data in a bottom-up
manner for the subsequent LCA. The transport demand (for the various scenarios) are emergent
from the individual agent choices, defining the demand of the system for processes. Related to
the second promise (micro scale variability), the ABM allows to take into account variabilities
on an individual agent scale (e.g., generating individual DAPs), thus accounting explicitly for
variabilities in the commuter population, such as contrasting rural and urban areas both in the
demographic and physical transport environment. Finally, related to the third promise (human
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driven consequential effect), the ABM part of the CONNECTING model allows to model the
source system in great detail thus exhibiting strong explanatory power retracing environmental
impacts to individual or group decisions and potential interactions among agents.

The specific coupling type adopted in the CONNECTING projects also has some implications
for the analysis of uncertainty and thus for the present thesis. In fact the propagation of uncertainty
through the resulting integrated model is bound to follow the direction of the information flow
between both models. However as shown in the review, different AgBM/LCA coupling types
can be distinguished by the direction of the information flow. The specific coupling type is thus
relevant for the UA, more specifically the uncertainty propagation, where uncertainty propagates
along with the information flow. In CONNECTING this means that uncertainty propagates from
the ABM to the subsequent LCA and not vice-versa.

The next chapter will be concerned with presenting the concepts of uncertainty and UA
before reviewing the relevant literature on UA of ABMs and LCA with a focus on transport
modes.
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Chapter 3

Uncertainty analysis review

3.1 Introduction

Uncertainty occurs at the limits of our knowledge, where our information is either imperfect
or lacking. As uncertainty is a description of our state of information and by extension of our
knowledge, it refers to an epistemic situation. The study of uncertainty can be dated back as far
as the work ancient Greek philosophers such as Plato (and perhaps even further), who described
our incapacity to grasp the true nature of reality in his allegory of the cave. Ever since, scholars
have touched upon the subject, such as Descartes, Kant or Laplace. While A full review of
these historic efforts is beyond the scope of this thesis, Popper (1962) provides an invaluable
contribution on this subject.

The present chapter has a more narrow focus: uncertainty in modelling and simulation. More
specifically, the interest will be on the analysis of uncertainty in the model and on estimating its
effect on the simulation outcome. In contrast to a philosophical interest in uncertainty, practical
implications are at the centre of attention, stemming from the deep conviction that uncertainty
is becoming of increasing importance for science in general and sustainability assessment in
particular. The fourfold challenge that sparked the post-normal scientific movement, “facts
uncertain, values in dispute, stakes high and decisions urgent” (Funtowicz and Ravetz, 1990),
describes this new environment where science has to find ways to manage and communicate
uncertainty.

After providing an overview of the concept of uncertainty and UA, this chapter will pro-
pose a novel classification of uncertainty for ABM/LCA coupled models, building on existing
classifications of both fields. Next, systematic literature reviews are conducted to establish the
state-of-the-art of current UA practices applied to ABMs and LCA.

The chapter will take the following structure. Section 3.2 will give a brief overview of
uncertainty and introduce the new classification. In section 3.3 the purpose and steps of UA
are introduced. In the following two sections 3.4 and 3.5 the systematic literature reviews are
presented. Finally in section 3.6 the main content of the chapter is summarised.

3.2 Uncertainty

Uncertainty is generally understood to be “any departure from the (unachievable) ideal
of complete determinism” (Walker et al., 2003). More formally, an event Y is uncertain if the
Probability P (Y ) ∈ ]0, 1[.
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Uncertainty
nature
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epistemic

· · ·ambiguityignorance

Figure 3.1: Classification of uncertainty natures

Going beyond this definition, several efforts have been made to distinguish various dimensions
of uncertainty with respect to modelling and simulation. Starting with Walker et al. (2003) three
distinct dimensions have been proposed in the W&H framework :

� Nature - how the source of uncertainty relates to reality

� Location - where the uncertainty manifests itself within the model

� Level - what degree can be attributed to the uncertainty

Building on this initial work, several new and adapted classifications have been proposed,
e.g., Refsgaard et al. (2007) and Kwakkel et al. (2010). In the following, the three dimensions
will be rendered more tangible, by relating them to ABM/LCA coupled models. Of particular
interest will be the dimension termed “location” since several scholars have proposed specific
classifications of so-called uncertainty sources (often containing both locations and natures in a
single classification) for LCA and ABMs respectively.

3.2.1 Uncertainty nature

The first and most widely acknowledge dimension of uncertainty is the nature of uncer-
tainty. Usually two different uncertainty natures are distinguished, where uncertainty is either
epistemological (or epistemic) or it is ontological (or ontic). The former refers to uncertainty
due to imperfect or lacking knowledge about reality and can be reduced (at least in principle),
e.g., by gathering more information; while the latter refers to uncertainty due to the inherent
indeterminacy or randomness of reality itself and can not be reduced. For both uncertainty natures
subsets of manifold uncertainty sources can be defined, however an exhaustive and consensual list
of such sources does not exist.

In literature various other pairs of terms can be found. Epistemological uncertainty is
sometimes referred to as “knowledge uncertainty” or simply “uncertainty”, while ontological
uncertainty is referred to as “variability uncertainty”, “aleatory uncertainty” or simply “variabil-
ity”. Throughout this thesis the pair epistemic and ontic is used, as these terms agree best with
definitions focussed on the relation to reality and in consequences its reducibility.

In addition to these two natures of uncertainty, a third nature has been proposed by Warmink
et al. (2010): ambiguity. However an argument can be made that ambiguity is a subset of
epistemic uncertainty. Figure 3.1 gives an overview of the retained classification of uncertainty
natures, where for each, two examples of uncertainty sources are provided.
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Determining uncertainty as epistemic or ontic can be useful in several ways. As a first,
when guiding data collection efforts, steering these towards sources of epistemic uncertainty can
allow to efficiently reduce uncertainty of the outputs. Especially in the field of sustainability
assessment, where ever more complex models are employed, efficient data collection is becoming
of increasing importance. As a second, understanding the nature of uncertainty can have relevant
implications for the modelling itself, where ontic uncertainty might require stochastic modelling
while epistemic uncertainty could be dealt with UA of a deterministic model.

The most widely applied classification for managing uncertainty in LCA was proposed by
Huijbregts (1998) and later updated and extended by Björklund (2002) and Hauschild et al. (2017).
The classifications implicitly distinguished between epistemic (e.g., lack of data, relevance or
mistakes) and ontic uncertainty sources (e.g., spatial variability, temporal variability or variability
between sources and objects). Lack of data can be associated with, e.g., emerging technologies for
which LCI data might not exist, or might be proprietary and unavailable. Relevance uncertainty
refers to environmental relevance, accuracy or representativeness of an indicator towards an area
of protection, while mistakes include modelling wrong substances, processes or units. Spatial
variability occurs, e.g., due to variability of environmental states in space relevant to the LCIA,
such as population density, water availability or regional variability of LCI production conditions.
Temporal variability includes seasonal, weakly and daily variability in emission profiles and the
corresponding environmental burden. Variability between sources and objects occurs, e.g., due to
difference in technological processes serving the same function, or variability in ecosystem and
human characteristics causing variability in their sensitivity to substances.

Among the classifications for ABMs, Rasouli and Timmermans (2012) provide an extensive
description of various uncertainty sources, which can divided into epistemic sources (e.g., sam-
pling bias, survey design, mistakes or incomplete information) and ontic sources (e.g., inherent
variability). Sampling bias can occur, e.g., when travel behaviour of non-respondents strongly
diverges from those captured by the survey. Inadequate survey design may cause random or
systematic error, by failing to capture the relevant explaining factors of travel. Mistakes can
occur, e.g., due to ambiguous labelling of travel locations. Many model quantities can exhibit
variability, e.g., travel times can vary from day to day.

3.2.2 Uncertainty location

The second dimension of uncertainty, uncertainty location is concerned with where uncertainty
manifests itself within the model. Classifications of such locations can be both field specific, e.g.,
specific to travel demand modelling (de Jong et al., 2007) and LCA (Hauschild et al., 2017),
or more general as the classification by Walker et al. (2003). In the following first the general
classification is introduced, before relating it to the more field specific ones.

A first location of uncertainty is the modelling context and experimental frame (or simply
context and frame) (Walker et al., 2003). This location encompasses the definition of the conditions
under which the source system is observed and modelled. It includes, e.g., the definition of the
system boundary, time frame and each Quantities of Interest (QOI). The modelling context and
frame requires inevitable and uncertain modelling choices.

Most models are directed systems, which take in a set of inputs and produce a set of outputs.
These model inputs and outputs are locations of uncertainty, where the uncertainty in model
outputs stems from the uncertainty in other locations (Walker et al., 2003). Model inputs
represent, e.g., the state of the model environment, decision variables or other drivers of the
modelled system, which could be static or follow a scenario.

The term “model uncertainty” is used as an umbrella term for uncertainty locations within
the system boundary, encompassing the model structure, model parameters and model variables.
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Inputs Model Outputs

Figure 3.2: Inputs, outputs, parameters and variables are represented as circles. The model
structure is represented by edges. Contextual choices such as the system boundary are represented
as a rectangle with rounded edges.

Model structure designates the relationships formulated in the model between model quantities
(i.e., inputs, parameters, variables and outputs) and it is a location of uncertainty in case there is
doubt about the true model structure (Walker et al., 2003; Morgan et al., 1990). This structure
can be hierarchical, where each sub-model can form relationships among sub-model quantities and
at a higher scale of aggregation a model structure forms relationships among sub-model inputs
and outputs (Klir, 2013). Model parameters describe states of the modelled system assumed to
have a true value, while model variables describe states of the modelled system which are assumed
to be random, usually modelled stochastically causing simulation variability McKay et al. (1999).

Inputs, parameters, variables and outputs are sometimes described with the umbrella term
“model quantities” with Morgan et al. (1990) proposing an alternative classification of such
quantities proposing the following classes: empirical parameters, defined constants, decision
variables, value parameters, index variables, model domain parameters and output criteria. While
this classification is useful to determine how to characterise uncertainty of quantities and which
quantities are uncertain at all (constants and index variables are certain by definition) they do
not specify distinct locations. This classification is thus complementary to the one provided here.

Figure 3.2 shows a representation of a model, where the uncertainty locations introduced
above can be related to elements in the graph. Circles represent potentially uncertain quantities
(inputs, model parameters, model variables and outputs), arrows represent the model structure,
and contextual and framing choices such as the system boundary are represented by the rectangle
with rounded edges separating the model from its environment.

The classifications proposed for LCA usually include classes corresponding more or less to
those of general classifications (Huijbregts, 1998; Björklund, 2002; Lloyd and Ries, 2007; Hauschild
et al., 2017). A first uncertainty location is uncertainty due to (normative) choices, usually
occurring in the goal and scope definition phases of a LCA study (e.g., during the definition of the
functional unit and system boundaries or the choice of allocation procedures and LCIA methods).
A second, but less acknowledged location of uncertainty in LCA is model inputs, i.e., the quantities
in the final demand vector, which can be defined in the goal and scope definition, derived from
policy scenarios or generated from other models (i.e., by an ABM). Parameter uncertainty
encompasses all quantities in the technosphere, biosphere and characterisation matrices, as well
as LCIA weighting factors. Model (structure) uncertainty concerns uncertainty about the best
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Figure 3.3: Classification of uncertainty locations in ABM/LCA coupled models

functional form of the LCI and LCIA modelling, as well as the impact of conscious simplifications
(e.g., linearisation of non-linear or threshold dependent phenomena in the LCIA, or strong spatial
and temporal aggregation in the LCI modelling). While most classifications also include various
types of variability, these do not constitute specific locations in the model, but are rather sources
of ontological nature.

The classifications of uncertainty proposed for ABMs usually distinguish two broad location
classes: input uncertainty and model uncertainty (Hugosson, 2005; Cools et al., 2011; Rasouli
and Timmermans, 2012; Petrik et al., 2018). Input uncertainty is most concerned with the data
used as inputs to the ABM model such as socio-demographic and service level data. The second
broad category is model uncertainty, which in most classifications is used as an umbrella term
for several sub-classes. A first is model specification, which encompasses uncertainty about the
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functional form of the model, uncertainty from omitted variables and the simulation error. A
second sub-class is the model estimation, which describes the uncertainty about the true values
of the model parameters (which are usually estimated only for a sample and not the entire
population). Some authors classify the stochastic nature of ABMs causing simulation error as
separate class (Petrik et al., 2018), while others include it as a sub-class of the specification error.

To build a classification for ABM/LCA coupled models, the relevant locations for both
modelling approaches need to be identified and related to more general location classes both
models share. To this end, the general locations of: experimental frame, inputs, model and outputs
are selected as building blocks. Figure 3.3 shows these building blocks at the first level.

The location of model uncertainty is subdivided into the more specific sub-classes of model
specification, model estimation and simulation error. These sub-classes are shown at the second
level of figure 3.3.

At the last level of figure 3.3 the model specific locations of uncertainty are shown. The goal
& scope definition phase of an ABM/LCA coupled model is where the experimental frame of
the study is defined by taking many normative choices such as the definition of the functional
unit, system boundary, etc. This phase also includes choices regarding the ABM, such as the
appropriate synthetic population sample size.

The inputs to both models encompass the system’s final demand (which includes, e.g., ABM
outputs or policy scenario variables), as well as socio-demographic and service level inputs to the
ABM.

The model specification includes the functional form of the ABM (e.g., the chosen functional
form of the mode choice model), LCI (e.g., structure of the product system processes) and
LCIA modelling approaches, and the higher level integrating structure of the ABM sub-models
and ABM/LCA coupling. The second sub-class of model specification includes the parameter
and variable selection for ABM sub-models. The model estimation encompasses the calibrated
parameters of ABM sub-models (e.g., coefficients of the mode choice model), as well as the
measured parameters of the technosphere (e.g., transport mode fuel or electricity consumption),
biosphere (e.g., transport mode carbon dioxide emissions) and characterisation matrices (e.g.,
CFs to evaluate effects of nitrogen oxide emissions on human health). Finally, model uncertainty
includes uncertainty from random draws of individual choices.

3.2.3 Uncertainty level

The third and final dimension of uncertainty is the uncertainty level suggested by Walker
et al. (2003). More recently this dimensions has been subject to some adaptations by Kwakkel
et al. (2010) and it is generally understood to be the degree or severity of uncertainty ranging
from deterministic knowledge to total ignorance.

Linked to concepts such as the definition of risk and uncertainty by Knight (1921), the basic
idea is that some uncertainty is controllable and quantifiable, and some is not. Kwakkel et al.
(2010) introduce four levels of uncertainty to update the taxonomy of Walker et al. (2003), which
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are ultimately related to the scales of measurement introduced by Stevens (1946).
Level 1 or shallow uncertainty is described as uncertainty where both alternative states

and their likelihoods can be determined. This level is related to the ratio scale of measurement.
Shallow uncertainty can usually be described using probabilities, e.g., by attributing a probability
to an outcome or determining a probability distribution for a parameter.

Level 2 or medium uncertainty is described as uncertainty where alternative states can be
determined and their perceived likelihood can be ordered by rank. This level is related to the
ordinal scale of measurement. Medium uncertainty is sometimes described by developing rank
ordered scenarios, e.g., a median scenario and several outlier scenarios.

Level 3 or deep uncertainty is described as uncertainty where only alternative states can be
determined, but no likelihoods can be attached to these states (probability measure ignorance
Baustert et al. (2018)). This level is related to the nominal scale of measurement. Deep uncertainty
is sometimes described by developing scenarios (or story lines) perceived as equally likely.

Level 4 or recognized ignorance is described as uncertainty where no alternative states can
be determined (sample space ignorance (Giang, 2015)). No scale of measurement can be attached
to this level. Figure 3.4 shows the classification of levels of uncertainty found in literature.

3.3 Uncertainty analysis

3.3.1 Goal

The analysis of uncertainty is concerned with locating, identifying, characterising, treating
and communicating uncertainty of a model. Modern UA is conducted in an iterative and
participatory fashion, where modellers and stakeholders work closely together. Figure 3.5 gives
an overview of UA as a process.

Depending on the purpose of the model, UA can take different forms, where for proof-of-
concept and developing models it might be more interesting to investigate individual uncertainty
locations and their influence on the model outputs to guide future model development, once
models become decision support tools, UA aims at quantifying the confidence decision makers
can place in different options. The importance of UA is emphasized by Morgan et al. (1990)
stating that “without thorough and systematic modeling and analysis of the uncertainty of the
problem we can not be sure that the results of a model, especially a very large and complex one,
mean anything at all”.

UA usually starts with locating and identifying uncertainty in the model, by describing it, e.g.,
building on the three dimensions suggested by Walker et al. (2003). Building on this description,
uncertainty locations of interest are characterised quantitatively by assigning a mathematical
structure (e.g., a probability distribution) or qualitatively (e.g., building on scenario development).
Once uncertainty is characterized, uncertainty treatment (i.e., uncertainty propagation or SA)
allows to determine how the uncertainty locations affect the model outputs. Finally, uncertainty
needs to be communicated to stakeholders.

In the following, each of the distinguishable steps of UA depicted in 3.5 will be introduced in
more detail, each time referring to specific practices in both fields (ABMs and LCA).

3.3.2 Uncertainty location and identification

This steps relies on the main concepts introduced in section 3.2. The aim is the determine
the relevant uncertainty locations of the model to the specific goal of the study.

In LCA this usually relies on the classification of uncertainty sources, where the classification
advanced by Huijbregts (1998) is the most broadly applied. More recently, the “uncertainty
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Figure 3.5: Distinguishable steps of UA, considered as a participatory and iterative process. Note
that depending on the context, some steps or interactions might not be necessary. Adapted from
Baustert et al. (2018).

matrix” of Walker et al. (2003) was adapted for LCA purposes by Igos et al. (2018). The
classification of uncertainty locations and natures of Walker et al. (2003) are applied to three of
the four LCA phases (goal and scope definition, LCI and LCIA). Another example is the issue
matrix first introduced by Heijungs (1996), which maps uncertainty locations according to their
uncertainty level and sensitivity. Figure 3.6 shows the key issue matrix adapted from Hauschild
et al. (2017). While originally, it is used for parameters, it is argued to be generally applicable to
all locations.

The classification of uncertainty sources (e.g., Rasouli and Timmermans (2012)) introduced
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Figure 3.6: Key issue matrix adapted from Hauschild et al. (2017).

in section 3.2 corresponds to the state-of-the-art regarding uncertainty location and identification
of ABMs. In addition, Manzo et al. (2015) discusses the taxonomy of uncertainty proposed by
Walker et al. (2003) for transport models in general.

3.3.3 Uncertainty characterisation

Once uncertainty is located and identified, in order to perform the subsequent steps of
uncertainty treatment it needs to be described either in quantitative (numeric) or qualitative
(verbal) terms. The former entails representing the state of knowledge by assigning a mathematical
structure (e.g., a probability density function) to the uncertainty and specifying its parameters
(Roy and Oberkampf, 2012). The latter is applied in case the uncertainty cannot be captured in
such a mathematical structure (Refsgaard et al., 2007; Warmink et al., 2010; Bastin et al., 2013;
Beven et al., 2015).

The most widely applied quantitative language to represent uncertainty is probability theory
(Aven, 2010). Other quantitative theories can be found in literature, such as evidence theory,
possibility theory, set theory and quantitative scenarios (Helton et al., 2004; Chowdhury et al.,
2009; Aven and Zio, 2011). One prominent methodology of qualitative uncertainty characterisation
is the pedigree matrix of the Numeral, Unit, Spread, Assessment and Pedigree (NUSAP) scheme,
built on a set of linguistic criteria and expert judgement (Funtowicz and Ravetz, 1990). Qualitative
scenarios describe different possible outcomes in the form of consistent storylines allowing for
stakeholder involvement (Refsgaard et al., 2007; Beven et al., 2015), such as the concept of Shared
Socioeconomic Pathway (SSP) scenarios used for climate change research (O’Neill et al., 2014).

The appropriate characterisation usually depends on the location, nature and level of the
uncertainty. Morgan et al. (1990) provide an elaborate description for various locations arguing,
e.g., that uncertainty about the model structure should not be modelled probabilistically, while
uncertainty about quantities can be modelled in various ways depending on the specific nature of
uncertainty (e.g., epistemic uncertainty due to linguistic imprecision can be modelled using fuzzy
set theory).

In LCA, besides the appropriate characterisation of uncertainty locations, the high number
of measured parameters and inputs poses an additional challenge. The key issue matrix presented
shown in figure 3.6 caters to this by highlighting the most important locations of uncertainty and
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focussing on their characterisation. It is sometimes argued to characterize uncertainty iteratively,
where broad initial characterisations are updated for identified key issues (Huijbregts et al., 2001).

A second instrument broadly applied in the field of LCA is the pedigree approach which
is based on the NUSAP scheme. Data Quality Indicators (DQIs) are used in qualitative and
quantitative assessments of uncertainty, where quantitative distributions are derived from the DQIs
(Björklund, 2002). Two sorts of uncertainty and corresponding DQIs are distinguished: “basic”
uncertainty related to all sampled data (e.g., measurement error) and “additional” uncertainty
related to the data quality (i.e., reliability, completeness, temporal correlation, geographical
correlation, further technological correlation) (Weidema and Wesnæs, 1996). The appropriateness
of the quantitative use of the DQIs however may still be questioned (Henriksson et al., 2014).

For ABMs, the characterisation of uncertainty does not yet follow such standardised ap-
proaches. However, for utility-maximization models the concepts of random utility theory often
apply, allowing for a characterisation of uncertainty for individual choice models.

3.3.4 Uncertainty treatment

Two broad groups of methods of uncertainty treatment can be distinguished: uncertainty
propagation and sensitivity analysis (SA). Both types of analysis complement each other: uncer-
tainty propagation tries to quantify how uncertain an inference is, while SA estimates where this
uncertainty is coming (Saltelli and Annoni, 2010).

Uncertainty propagation allows to assess the cumulative effect of numerous uncertainty
locations on the model outputs. This usually relies on having a simulator, which allows to
execute model calculations. This simulators can be numerical or physical and potentially cause
some additional uncertainty. Methods to perform uncertainty propagation include analytical
propagation (e.g., using Taylor series expansion (Hong et al., 2010)), sampling methods which
can build on probability theory (e.g., such as Monte Carlo (MC) simulation), fuzzy set theory
(Baustert and Benetto, 2017) or set theory (e.g., factorial design based methods).

According to Hamby (1994) models can be sensitive to parameters in two ways: (1) the
contribution of the parameter uncertainty to the overall output variability; and (2) the change
in the output resulting from a change in the parameter value. Following these two possible
sensitivities, two applications of SA can be distinguished: (1) Contribution To Variance (CTV) to
quantify how much each uncertain parameter contributes to the output variance; and (2) Screening
to determine the significant parameters. While CTV tells the practitioner which parameters to
focus on, in order to efficiently reduce the uncertainty of the output and thereby improve the
model, screening can help to simplify the model itself or to reduce the number of parameters in
the UA (Björklund, 2002). Often the following two concepts are distinguished: Local Sensitivity
Analysis (LSA) that varies the parameters One-at-a-Time (OAT) while the others are fixed at
their nominal value; Global Sensitivity Analysis (GSA) that takes into account interactions by
varying parameters at the same time (Hamby, 1994; Saltelli et al., 2000).

A broad range of uncertainty treatment methods have been applied to LCA, and several
reviews have been published, e.g., Lloyd and Ries (2007), Baustert and Benetto (2017), and
Igos et al. (2018). These reviews show that uncertainty propagation based on MC simulations
(or more advanced sampling schemes such as Latin Hypercube Sampling (LHS) McKay et al.
(1979) or quasi random sampling based on Sobol or Halton sequences) is mostly applied, followed
by some methods of analytical uncertainty propagation and fuzzy set theory. In some cases
uncertainty propagation is complemented by SA, either to identify key issues before uncertainty
characterisation or to assess the CTV after uncertainty propagation.

Similar to LCA, MC simulations (or more advanced sampling schemes) are being applied
to ABMs. Rasouli and Timmermans (2012) reviews the efforts. Unlike in LCA, the range of
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applied methods is more narrow. This can be explained by the nature of many ABMs, for which
closed form expressions are often impractical (and in some cases impossible) to derive. As noted
in Baustert and Benetto (2017) the same applies to many AgBMs, making it difficult to apply
analytical approaches.

3.3.5 Uncertainty communication

A final step of one iteration of performing UA is uncertainty communication. This step aims
at synthesising the key findings of the uncertainty treatment results for the model stakeholders.
Different forms of uncertainty communication are distinguished in literature: verbal (e.g., high or
low), numerical (e.g., an interval or Coefficient of Variation (CV)), graphical (e.g., error bars) or
a combination of these (Wardekker et al., 2008; Petersen et al., 2013). The target audience and
their needs with regard to uncertainty information can influence the choice of a communication
form.

LCA as a relative approach is generally used in comparative assessments. Uncertainty
communication of comparative LCA is a of high interest and several measures have been proposed
and tested Mendoza Beltran et al. (2018a) and Heijungs (2021). Igos et al. (2018) further review
uncertainty communication frameworks for LCA such as the one proposed by Gavankar et al.
(2015).

3.4 Review: uncertainty analysis of LCA

The scope of review of UA in LCA is set to include studies that apply UA to LCA of
passenger transport systems (ranging from individual modes and their fuel cycles to the usage of
modes within larger systems). The review process is both quantitative and qualitative.

The literature search is initiated by keyword searches and complemented by first level
backward and forward searches of references, authors and keywords. Figure 3.7 shows the
resulting corpus of literature by date of publication and means of article identification in the
literature search.

3.4.1 Type of LCA

A majority of studies is focussed on private transport with only a few studies focussing on
PT modes (e.g., alternative bus fuel and engine types (Ercan and Tatari, 2015; Dreier et al.,
2018; Harris et al., 2018), bus fleet operation (Bi et al., 2018; Harris et al., 2020)) or other more
diverse topics (e.g., highway projects (Verán-Leigh et al., 2019) or large scale mobility scenarios
(Spielmann et al., 2005; Spielmann and Althaus, 2007; Spielmann et al., 2008)).

When looking in more detail at the studies focussing on private transport, the large majority
is focussed on investigating the impacts of alternative fuels (e.g., biofuels (Edwards et al., 2004;
Hsu et al., 2010)) or EVs and HEVs (e.g., Cox et al. (2018), Samaras and Meisterling (2008)).
A few studies focus on vehicle materials (e.g., lightweighting by replacing heavy materials with
lighter options (Geyer, 2008; Kelly et al., 2015; Pryshlakivsky and Searcy, 2017)) and one study
investigates the longevity of vehicles (Spielmann and Althaus, 2007).

As outline in chapter 2 at least two types of LCA can be distinguished: attributional and
consequential. Figure 3.9 summarizes the share of these LCA types within the corpus. The
majority of studies can be classified as attributional (building on average data, e.g., average
electricity mixes), with only four studies following a consequential approach.

Consequential aspects that are investigated include car replacement pathways in the Swiss
passenger car fleet (Spielmann and Althaus, 2007) and in Luxembourg (Querini and Benetto,
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Figure 3.7: Number of included studies per year and for both search means.

2015), as well as changes in the modal split of transport systems and rebound effects (Spielmann
et al., 2008). Geyer (2008) uses consequential system expansion to model scrap recycling in the
EoL phase.

As for the LCI phase, figure 3.10 shows that almost every study covers the use phase, thus
taking into account fuel or electricity consumptions and direct emissions relevant to, e.g., climate
change and air quality related impacts. The only study that does not explicitly cover the use
phase (Pryshlakivsky and Searcy, 2017) focusses on the material composition of vehicles.

Raw material and production phases are covered by 50% and 44% of studies respectively.
These phases can be of particular interest, e.g., when the impact of vehicle lightweighting is
assessed (Geyer, 2008; Kelly et al., 2015; Pryshlakivsky and Searcy, 2017) or when comparing
conventional ICEVs to alternative powertrains (Querini and Benetto, 2015; Cox et al., 2018).

Finally, the EoL phase is covered by only 28% of studies. The relative lower rate of coverage
of this phase is both due to the definition of the functional unit of many studies (e.g., focussing
on different fuel life cycles and omitting the EoL phases if they are identical for all options) and
studies claiming that this phase is of low relevance with regard to the impact categories of interest
(e.g., McCleese and LaPuma (2002) anticipate that the EoL phase has low air emissions and
energy consumption).

A final aspect of specific relevance to LCA studies of transport modes concerns the modelling
of the fuel life cycle. Specifically, one distinguishes Well-to-Tank (WTT) describing the life cycle
emissions occurring during the extraction of crude oil, the refining and provision at the pump),
Tank-to-Wheel (TTW) describing direct emissions occurring during the use of the transport
mode) and Well-to-Wheel (WTW) comprising both WTT and TTW. Studies only considering
WTT fuels cycles are not considered as they usually are focussed on fuel life cycles without
considering the actual transport modes. Most studies (94%) consider the broader WTW system
boundary, with only one study taking into account only TTW (or direct) emissions. As seen
above, one study does not consider the transport mode use phase.
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3.4.2 Uncertainty location and identification

Regarding uncertainty locations, figure 3.12 shows the share of studies addressing uncertainty
at each of the locations of the proposed classification for ABM/LCA coupled models. Note, that
some studies are dealing with uncertainty at multiple locations. There is a strong tendency to
deal with uncertainty in the model estimation part (specifically measured parameters in the LCI),
with only few other locations being addressed.

The high share of studies dealing with uncertainty in measured parameters, could be explained
by several factors, including the relatively easy and wide spread approaches to characterise
uncertainty in these locations (i.e., the pedigree approach), and its application to commercial
databases (i.e., ecoinvent1). With regard to model specification and simulation error, the fact
that they are not being addressed can be explained by the consensual function form of many LCA
studies and ISO standardisation, as well as the absence of randomness in textbook LCA studies.

Staring with studies that focus on the experimental frame, in Spielmann and Althaus (2007)
“ambiguous methodological decisions” regarding open-loop recycling are investigated, by testing
study results for multiple allocation approaches (cut-off versus system expansion). Messagie et al.
(2019) investigate the robustness of their comparison of different vehicle technologies towards the
usage of individualist, egalitarian and hierarchist based world view scenarios (Thompson et al.,
2018) for CFs of the “recipe” method (Huijbregts et al., 2017).

1https://www.ecoinvent.org/
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Figure 3.11: Share of studies for different fuel cycle modelling approaches.

Studies investigating uncertainty from model inputs focus on the demand side (final demand
vector) of the LCI. Spielmann et al. (2005) take into account uncertainty regarding so-called
mobility life styles, and the effect on the mobility demand for bus transport. Spielmann et al.
(2008) investigate uncertainty of the transport demand for different modes stemming from daily
mobility pattern in their study of high speed trains in Switzerland. Noshadravan et al. (2015)
use UA to compare conventional ICEVs and EVs under a broad range of use-phase scenarios.
Similarly Querini and Benetto (2015) take into account the variability of vehicle usage in their
study of EV market penetration. Dreier et al. (2018) account for a range of operation conditions
for conventional, hybrid-electric and plug-in hybrid-electric city buses as LCA inputs for their
study of bus routes in Curitiba, Brazil. Finally, Bi et al. (2018) assess the impact of uncertainty
in the operation (e.g., charging times) of an optimized charging infrastructure for electric buses
in Michigan, U.S..

Finally, the large majority of identified studies investigate uncertainty in measured parameters,
i.e., elements in the technosphere and biosphere matrices (in case the matrix inversion approach
is applied) and in general measured parameters of the modelled processes.

Several studies investigate the uncertainty within the fuel life cycle (often building on the
GREET model2) (Wang, 2002; Edwards et al., 2004; Wu et al., 2006; Subramanyan et al., 2008;
Hsu et al., 2010; Cai et al., 2013; Cai and Wang, 2014; Huo et al., 2015; Lu et al., 2016) for
various fuel and engine types taking into account uncertainty with regard to the provision of fuel

2https://greet.es.anl.gov/
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Figure 3.12: Share of studies addressing different uncertainty locations.

(WTT) and the usage (TTW). With the introduction of the second version of GREET other
phases of the vehicle life cycle are added and uncertainty is analysis by Abdul-Manan (2015)
and Ercan and Tatari (2015). Several other studies take into account the uncertainty in LCA
modelling parameters affecting use phase interventions (e.g., fuel consumption, vehicle weight and
tailpipe emissions) (Boureima et al., 2009; Messagie et al., 2010; Messagie et al., 2014; Messagie
et al., 2019).

In a series of publications, Spielmann et al. (2005), Spielmann and Althaus (2007), and
Spielmann et al. (2008) investigate the impact of uncertainty regarding future technology mixes
(e.g., car fleet composition) and electricity mixes on large scale transport systems.

Two connected publications, Cox et al. (2018) focussing on electric and autonomous mobility
and Mendoza Beltran et al. (2018b) focussing on electric mobility, account for uncertainties about
the future impacts of these transport modes. Cox et al. (2018) account for current and future
uncertainty with regard to EV weight, lifetime, aerodynamics, powertrain efficiency, battery mass
and other parameters. In Mendoza Beltran et al. (2018b) future electricity mixes are adjusted
according to large scale simulations of the IMAGE model (PBL, 2014).

With regard to electric mobility, uncertainty about two groups of parameters are broadly
accepted to be influential and treated. The first group of parameters relates to battery production
(e.g., mass, raw material composition, life time and production emissions) (McCleese and LaPuma,
2002; Cox et al., 2018; Harris et al., 2018). The second group of parameters relates to the
electricity production (e.g., GHG intensity and composition of future electricity mixes) (Samaras
and Meisterling, 2008; Noshadravan et al., 2015; Mendoza Beltran et al., 2018b).

Finally, several studies dealing with vehicle material composition and lightweighting analyse
uncertainty of LCA parameters such as material emission-intensity (i.e., emissions per weight)
(Geyer, 2008; Pryshlakivsky and Searcy, 2017), material substitution ratios and fuel reduction
values (Kelly et al., 2015).
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Figure 3.13: Share of studies applying uncertainty treatment

3.4.3 Uncertainty characterisation and treatment

The large majority of studies use probability theory to describe and treat uncertainty in
parameters, with only a few studies using set theory (e.g., minimum and maximum values).
Scenario analysis is often used to describe uncertainty about inputs or the experimental frame
(Spielmann et al., 2005; Spielmann and Althaus, 2007; Spielmann et al., 2008).

Figure 3.13 shows the share of studies for the different characterisation options and distin-
guishes studies that only apply uncertainty propagation from studies that apply both UA and
SA. Note that studies applying only SA without assessing the uncertainty in the model output
were excluded.

Regarding uncertainty propagation, another interesting aspect is the computational burden
of the stochastic modelling approaches. Figure 3.14 shows the reported number of iterations
for each study applying stochastic modelling (e.g., MC sampling) in case it is reported. The
number of iterations is plotted against the publication date of the study and ranges from 8 to
12’000. Computation times can depend on the size of the LCI model, i.e., if the matrix inversion
approach is applied, the number of rows and columns.

Another relevant aspect with regard to stochastic modelling is that LCI parameters of
transport modes can exhibit more or less complex dependencies. As acknowledged by Boureima
et al. (2009) fuel consumption is strongly correlated to vehicle weight as well as carbon dioxide
and sulphur dioxide tailpipe emissions, while showing no satisfying correlation with other tailpipe
emissions (e.g., nitrogen oxides or carbon monoxide). Similarly Cox et al. (2018) acknowledge
strong correlations among vehicle design parameters of EVs (e.g., battery mass and efficiencies)
and their energy consumption. Such correlations are either dealt with using multivariate sampling
(Subramanyan et al., 2008) or by explicitly modelling parameters dependencies among elements of
the technosphere and biosphere matrices where, e.g., fuel-related tailpipe emission values become
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a function of the sampled fuel consumption values.

3.4.4 Model outputs and uncertainty communication

Finally, uncertainty can be characterised for three different levels of output aggregation: life
cycle interventions (i.e., the intervention vector computed according to equation 2.2), midpoint
indicators (i.e., the impacts vector computed according to equation 2.3) and endpoint indicators
(usually computed from midpoint indicators using a weighting process). While life cycle interven-
tions will be affected by uncertainty from parameters in the technology and biosphere matrix,
they are unaffected by uncertainty from characterisation methods applied in the LCIA phase.
Midpoint and endpoint indicators however accumulate the uncertainty both from the LCI and
LCIA phases. However only one study explicitly treats uncertainty of the LCIA phase (Messagie
et al., 2019), although most studies report results at the midpoint level.
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Figure 3.16: Number of included studies per year and for both search means.

3.5 Review: uncertainty analysis of ABMs

The scope of the review was set to include studies that apply UA to ABMs. The literature
search and article selection follows the same systematic approach outlined for LCA in the previous
section. Figure 3.16 shows the identified studies by date of publication and means of identification
in the literature search. While more recent years suggest that there has been a cooling off
regarding the topic, there are still several new contributions since 2015 that could be identified.

3.5.1 Type of ABM

A first criteria to investigate is the repartition of ABM types among the identified studies.
Figure 3.17 shows the repartition among utility-based models, rule-based model and other models
(i.e., models that are more difficult to categorise). The corpus is skewed towards studies performing
UA for rule-based models.

In fact, most of these studies are focussed on uncertainty in the Albatross model Arentze
and Timmermans (2004) followed by studies of the Feathers model (Janssens et al., 2007) (which
in fact incorporates the core of the Albatross model) and one of the Ramblas model (Veldhuisen
et al., 2000b). For utility-based models, each of the five identified studies deals with a different
model, including the “San Francisco model”(Jonnalagadda et al., 2001), SacSim (Bradley et al.,
2010), the “Tel Aviv ABM” (Shiftan et al., 2004), the “New York activity-based microsimulation
model” and SimMobility (Adnan et al., 2016). Finally, for models which were not clearly in one
of the first two categories MATsim (Axhausen et al., 2016) and TRANSIMS (Smith et al., 1995)
are the most prominent models for which two studies each have been identified, followed by a
study of the Danish National Transport Model (NTM) (Rich et al., 2010). No studies could be
found for purely constraint-based models.
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3.5.2 Uncertainty location and identification

Regarding uncertainty locations, figure 3.18 shows the share of studies addressing uncertainty
for each of the locations of the proposed classification for ABM/LCA coupled models. Note, that
some studies are dealing with uncertainty of multiple locations. While there is a strong tendency
for studies to address the simulation error, other locations are much less addressed. Several
studies deal with uncertainty from the experimental frame (all of which address the sampling
error due to running the model with only a fraction of the population) (Kwak et al., 2012; Bekhor
et al., 2014; Petrik et al., 2018). A couple of studies address input uncertainty (e.g., uncertainty
of travel time data) (Rasouli and Timmermans, 2014b; Manzo et al., 2015), while only one study
addresses uncertainty of the model estimation (i.e., the estimated parameters) (Petrik et al.,
2018). No study dealing with uncertainty of the model specification (e.g., the functional form)
was found.

The high share of studies dealing with the micro simulation error could be explained
by the relative easy means to address this location. Some ABMs are stochastic by nature
where, e.g., random draws of individual choices are already in place causing the simulation
error. Uncertainty in other locations (e.g., the model specification) can be more challenging
to characterise (e.g., requiring the modelling of alternative model structures prior to running
simulations) or a consensual characterisation framework might not exist for the specific location
(e.g., model estimation). Another explanation could be, that stochastic models are argued to
require multiple simulation runs to reach stability and UA (or at least stability analysis) becomes
an integral part of the model results. This however should ultimately hold true for all relevant
uncertainty locations.

Studies exploring uncertainty in the experimental frame all focus on the so-called sampling
error. Kwak et al. (2012) investigate running the ALBATROSS model for 25%, 50% or 100% of
the internal population, and 2% or 4% for the external population. Bekhor et al. (2014) use the
Tel Aviv ABM to run simulations for sample sizes of 10%, 50% and 100% making the observation
that the sample size has an affects on the “stationary point” of results and showing that the
sampling error is proportional to the inverse of the square root of the sample size. Rasouli (2016)
runs the ALBATROSS model for sample sizes of 10%, 30% and 50% to investigate the uncertainty
in a range of outputs, concluding that an increase in sample size can dramatically reduce the
uncertainty. Finally, Petrik et al. (2018) use SimMobility to run simulations for sample sizes
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Figure 3.18: Share of studies treating different uncertainty locations.

of 5%, 10%, 20%, 30% and 50% of the total population, confirming the results of Bekhor et al.
(2014) regarding the relationship between error and sample size. Both Rasouli (2016) and Petrik
et al. (2018) find that the “elbow” of the curve is achieved around 30% of the total population,
where an additional increase in sample size allows to reduce uncertainty only to a lesser extent.

Input uncertainty is addressed by three studies. Rasouli (2016) investigates uncertainty in
land-use data (i.e., employment data), and Rasouli and Timmermans (2014b) investigate the
effect of uncertainty in service level data (i.e., travel times for selected routes), both for the
Albatross model. Manzo et al. (2015) focusses on large scale socio-economic drivers such as
population size, gross domestic product, employment, and fuel prices in the Danish National
Transport Model. Only Petrik et al. (2018) investigate uncertainty in the model estimation.
Their analysis is performed for 817 parameters of the 22 discrete choice models of Preday model,
which is part of the SimMobility framework. Following parameter screening, only the 100 most
influential parameters are included in the UA.

The largest share of studies investigate the simulation error. In utility-based ABMs the
randomness is coming from the error terms of discrete choice models, while for stochastic rule-
based ABMs it is coming from e.g., probabilistic decision tables. The earliest study found
investigating this location is Veldhuisen et al. (2000a) for the Ramblas model, where marginal
and conditional probability matrices are used to predict DAPs. Similar studies have since been
performed for the Albatross (Rasouli and Timmermans, 2013b) and Feathers models (Cools et al.,
2011). With regard to utility-based models Castiglione et al. (2003) investigate the uncertainty
stemming from the individual choice models of the San Francisco model and several studies since
have performed similar analyses Bowman et al. (2006), Vovsha et al. (2008), Bekhor et al. (2014),
and Petrik et al. (2018).

3.5.3 Uncertainty characterisation and treatment

Uncertainty characterisation is dealt with in a very homogeneous manner, with all studies
applying probability theory.

Figure 3.19 shows the uncertainty treatment methods applied, distinguishing studies that
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Figure 3.19: Share of studies applying uncertainty treatment

only apply uncertainty propagation from studies that apply both UA and SA. Note that studies
applying only SA without assessing the uncertainty in the model output were excluded according
to the criteria.

Among the large share of studies that apply only uncertainty propagation, all of them apply
some form of stochastic modelling (e.g., MC simulations), where sampling is conducted on inputs,
parameter or model variables. Only three studies conduct SA as a complement to the uncertainty
propagation. Most notability Petrik et al. (2018) use regression models to identify the most
influential parameters of the Preday model of the SimMobility framework.

Regarding uncertainty propagation, another interesting aspect is the computational burden
of the stochastic modelling approaches. Figure 3.20 shows the reported number of iterations for
each study investigating the simulation error. The number of iterations is plotted against the
publication date of the study and ranges from a couple of iterations to one thousand, with the
large majority of studies reporting 100 iterations or less. There can be a trade-off between the
necessary number of iterations to reach convergence of the model results and the computational
burden. Since the duration of a simulation, as well as the model convergence rate can vary
between different ABMs, it is not surprising that the number of simulations varies as well.

While all studies apply some form of stochastic modelling, a relevant difference among studies
reported is the specific sampling technique applied. Three relevant aspects of sampling will be
highlighted in the following.

As a first, taking into account dependencies between uncertain quantities. This usually builds
on sampling from a multivariate distribution which preserves correlations, rather than sampling
from each quantity independently. Assuming normal distributions Manzo et al. (2015) use
multivariate sampling for the Danish National Transport Model, taking into account statistically
significant correlations between model inputs (e.g., population size, gross domestic product,
employment, and fuel prices), which are determined from historic data. Petrik et al. (2018) apply
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Figure 3.20: Number of stochastic modelling iterations for studies investigating simulation error
from stochastic choice models.

multivariate sampling for the Preday model within the SimMobility framework, for parameters of
discrete choice models building on parameter estimates, their standard errors and correlations,
yielded by model calibration.

As a second, some sampling methods can cover the sampling space in a more efficient manner,
which usually aims at increasing the convergence rate of the UA and thus to have stable model
outputs and uncertainty measures with a lower number of model runs. This is especially important
for models with long computation times, such as ABMs. Manzo et al. (2015) and Petrik et al.
(2018) use LHS, a method of stratified pseudo-random sampling, for input and parameter sampling
respectively. Rasouli (2016) applies Halton draws, a method of quasi-random sampling, to sample
sequentially from nodes of the probabilistic decision tables of the Albatross model. Rasouli (2016)
also compares the outcome to those of a similar experimental design which uses regular MC
sampling, concluding that Halton draws allow to substantially reduce the required runs to get
stable results.

As a third, when performing UA for comparative assertions (e.g., when comparing the effect
of two or more policy scenarios) the difference in predictions should be a consequence of differences
in the compared scenarios and not due to the pseudo-random numbers. This implies some level of
“coordination” of the sampling procedures applied across scenarios. Specifically, with regard to
random number seeds, care has to be taken that a sampled input, parameter or specific decision
(e.g., the mode choice to arrive at the jth activity of the ith individual) is always based on the
same identical seed across scenarios for the same iteration, while varying across iterations. This
does not mean that the sampled input, parameter value or choice is the same, since the difference
in the compared scenarios can cause a difference in the quantity’s distribution parameters (e.g.,
higher or lower mean value) or in modelled utilities and explanatory variables of the discrete
choice model (e.g., the available transport mode and their travel times). This challenge and
potential solutions have been acknowledged by Bowman et al. (2006) and Vovsha et al. (2008).
Vovsha et al. (2008) discuss storing random seeds for each choice of each individual and re-use
the stored seeds for different scenarios. Bowman et al. (2006) assess the impact of this random
seed coordination, concluding that much of the simulation error for comparative assertions can
be removed by coordination.
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3.5.4 Model outputs and uncertainty communication

As acknowledged in Petrik et al. (2018), the level of output aggregation for which uncertainty
is characterised can differ among studies performing UA and is of specific interest to ABM/LCA
coupled models, where ABM outputs can become LCA inputs.

Three levels of outputs are distinguished: individual level outputs, regional level outputs
and system level outputs, such as the total amount of vehicle kilometres travelled.

Figure 3.21 gives an overview of the output levels for which uncertainty is characterised and
communicated in the reviewed articles.

Individual level outputs for which uncertainty is characterised include the average number
of trips (Castiglione et al., 2003; Cools et al., 2011; Bao et al., 2013; Bao et al., 2015; Rasouli
and Timmermans, 2014b; Petrik et al., 2018), distances travelled Cools et al. (2011), Rasouli
et al. (2012), Bao et al. (2013), and Bao et al. (2015), activity durations and travel times (Rasouli
and Timmermans, 2014b) observed per individual. Regarding uncertainty communication, most
noticeably is the work of Rasouli and Timmermans (2013c) who suggest a multidimensional
extension of the Levenshtein distance to measure uncertainty in predicted activity travel sequences.
Most of the other studies rely on statistical measures such as e.g., Standard Deviation (SD),
Coefficient of Variation (CV) or Confidence Interval (CI).

Regional levels for which uncertainty is characterised include the number of trip between
origins and destinations (Veldhuisen et al., 2000a; Castiglione et al., 2003; Vovsha et al., 2008;
Rasouli and Timmermans, 2013b; Rasouli and Timmermans, 2013c) or the number of trips
passing through network sections (e.g., in case traffic assignment is done) (Vovsha et al., 2008;
Lawe et al., 2009; Ziems et al., 2011; Kwak et al., 2012; Bekhor et al., 2014; Paulsen et al., 2018).
In terms of uncertainty measures and communication, graphical representations, e.g., using zonal
boundaries and colour scales to represent uncertainty levels as done by Rasouli and Timmermans
(2013b), can be a valuable tool to highlight spatial heterogeneities in uncertainty levels.

Finally, at the system level uncertainty is characterised, e.g., for the number of trips (Bowman
et al., 2006; Rasouli and Timmermans, 2013a; Manzo et al., 2015; Petrik et al., 2018), travelled
distances (Manzo et al., 2015; Bao et al., 2018; Petrik et al., 2018), travel durations (Bekhor
et al., 2014) or mode shares (Bowman et al., 2006; Rasouli and Timmermans, 2014b; Petrik et al.,
2018) at population level within the studied region.
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3.6 Summary

After reviewing the general classifications of uncertainty natures, locations and levels a new
classification for uncertainty locations of ABM/LCA coupled models is proposed in the first part of
this chapter. The classifications of both fields are therefore related to more the general framework
of Walker et al. (2003). The following uncertainty locations are distinguished: experimental frame,
inputs, model and outputs. For each of these locations, more specific sub-classes are specified.
The purpose of this new classification is to support systematic UA of ABM/LCA coupled models.

Next, a broad review on the distinguishable steps of UA is presented, introducing the concepts
of uncertainty location, identification, characterisation, treatment and communication. This
provides the background knowledge for the following review of UA conducted for LCA and ABMs,
as well as for the subsequent chapters introducing the CONNECTING model and the proposed
methodology of UA.

Two separate reviews of UA conducted for LCA of transport systems and ABMs are presented.
This approach is chosen, as currently no study exists conducting UA of an ABM/LCA coupled
model. The review of LCA conducted for 32 identified studies reveals that the large majority of
studies is focussed on individual transport modes and performs UA for parameter uncertainty.
Only few studies are focussed on other subjects (e.g., PT) and other uncertainty locations (e.g.,
experimental frame or inputs). The review of ABMs conducted for 23 identified studies reveals
that UA has been conducted for both rule-based and utility-based models. A large share of the
identified studies focusses on the simulation error caused by stochastic choice models. With
regard to the applied methods, stochastic modelling (e.g., MC simulations) is by far the most
popular, both for LCA and ABMs. However, there is a significant disparity with regard to the
number of iterations that are applied, which tends to be higher in LCA studies.
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Chapter 4

CONNECTING Model

4.1 Introduction

The CONNECTING project takes on the challenge of proposing a modelling framework
to provide scientific evidence of environmental impacts of future mobility policy scenarios in
Luxembourg, focussing on French CBCs. This chapter will elaborate on this modelling approach,
which was briefly introduced in section 1.2. The present chapter provides the most extensive
description of the CONNECTING model so far. The model constitutes a collaborative effort,
where the ABM part has originally been developed by Mariante (2017), while the LCA part and
coupling is presented by Baustert et al. (2019).

LCA introduced in chapter 2 is an internationally standardized approach and as such has
clear documentation requirements described in ISO (2006b) and ISO (2006a). This standard
defines the reporting requirements for the four LCA phases: the goal and scope definition phase,
inventory analysis phase, impact assessment phase and interpretation phase. While the final
interpretation phase will be covered in chapters 6-8, this chapter is concerned with reporting on
the first three phases.

However, as the CONNECTING project does not constitute a pure LCA study but aims at
advancing the LCA framework, simply following the ISO standard would insufficiently describe
the CONNECTING model especially, the ABM part and model integration. In order to both
report the essential parts of the ISO standard reporting requirements and adequately describe the
CONNECTING model, there will be a dedicated section to the ISO reporting, prior to describing
the CONNECTING model. The dedicated section will only include aspects not covered in the
following model description (i.e., the goal and scope definition phase).

Section 4.2 will present the ISO reporting on the goal and scope definition phase. Section 4.3
will describe all model variables and data sources, being followed by sections 4.4-4.5 presenting
the ABM and LCA structures respectively. Finally, section 4.7 will briefly introduce the scenarios
that will be investigated in the present thesis.

4.2 ISO reporting

In the following the goal and scope definitions for the LCA study will be discussed. This is
done according to the ISO standards of LCA (ISO, 2006b; ISO, 2006a). The description of the
LCI and LCIA phases are provided in sections 4.3.4-4.3.5 respectively.
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4.2.1 Goal of the study

The intended application of the CONNECTING model is to quantify environmental impacts,
with regard to air quality and climate change, of mobility policies from a life cycle perspective
taking into account uncertainty. The reason for carrying out the study is the novelty of the
proposed framework, which allows to couple individual DAPs to life cycle impacts. The intended
audiences are policy makers interested in comparing different policy scenarios towards a more
sustainable mobility system and scholars interested in the proposed modelling framework and its
systematic UA. Finally, results are intended to be used in comparative assertions and disclosed
to the public by means of peer-reviewed publications.

4.2.2 Scope of the study

The product system being studied is the trans-border transportation system (including
individual car and PT options) between France and Luxembourg.

The function of the trans-border transportation system is the provision of transport services
to all individuals within the CBC population and for all their activities conducted during a
regular work day. The provision of transport services for other populations (e.g., Luxembourgish
residents or commuters from other countries) is omitted.

The functional unit is to “meet the daily travel demand by French commuters working in
Luxembourg for 2015–2025”. The reference flow is derived by aggregation of the passenger-
kilometres (pkm) for each transport mode for a single work day over the commuting population.

The system boundary, determining the selection of included unit processes, encompasses all
motorized transport modes (individual car, train and bus) from cradle-to-grave (excluding slow
mobility as their impact is considered negligible compared to motorized mobility). In addition
the projected change of electricity mixes (the shares of different energy sources contributing to
the power grid) for Luxembourg and France are modelled (see section 4.7) for the study period.
For individual cars, fleet shares of different powertrains (diesel, gasoline, hybrid and electric cars)
are distinguished, as well as different emission standards for ICEVs (EURO3 and older, EURO4,
EURO5 and EURO6).

There is no particular allocation procedure necessary for the description of the product
system, as there are no co-products to be considered.

The selection of impact categories is consistent with the goal definition. The Environmental
Footprint (EF) (2013/179/EU) method derived from the International Life Cycle Data system
(ILCD) scheme, developed by the European Commission, is chosen. The specific impact categories
chosen are (1) the climate change global warming potential (GWP100) midpoint indicator,
measured in kilogram CO2-equivalents and; (2) respiratory inorganics human health effects
associated with exposure to PM2.5 midpoint indicator, measured in disease incidences. These
measures are the QOIs for decision makers produced by the CONNECTING model. The climate
change related effects will be simply referred to as GWP100, while the respiratory effects related
impacts will be referred to as R-E.

The interpretation is focused on the comparison of different mobility policy scenarios with
regard to the QOIs over the study period. The effectiveness of different types of policy investment
will be tested.

Data sources include manufacturer data for the production, emission standards, technical
reports and real-world measurements for the use phase, and existing databases for the disposal
of each transport mode. Prior LCA studies and databases serve as references. Strategic policy
documents are sources for the predictions of future car fleet shares and electricity mixes.

Several assumptions have to be highlighted for each product system. These assumptions
include production location, used electricity mixes (e.g., for charging EVs), lifetimes, occupancy
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rates and average fuel (or electricity) consumption rates.
There are several limitations regarding the LCI modelling. As a first, in reality electricity

mixes vary in time (e.g., solar power production is usually limited to the day and varies across
seasons) and different shares of electricity production sources imply different environmental
impacts. However, the CONNECTING model does not include a module to predict individual
charging patterns or hourly/seasonal electricity mixes, but relies on yearly average data. The
same issue relates to electric buses. A second limitation relates to the lack of regional specific data
for the LCIA. While CFs distinguish “urban” and “non-urban” emissions for R-E, the aggregated
nature of generated DAPs and the fact that no traffic assignment is performed, makes it difficult
to match elementary flows and CFs. This limitation does however not affect the GWP100 scores
as the impact of GHG emissions is usually independent of the location of emissions.

Data quality requirements include the temporal, technological and geographical coverage of
data. Especially the use phase of transport modes is relevant for the chosen QOIs, thus data for
fuel consumptions and emissions should be as recent as possible and the focus of data collection
efforts. With regard to geographical coverage, whenever possible data should be collected for the
French and Luxembourgish study region, especially regarding the CBC car fleet and the electricity
mix. Finally, the technologies covered should include the dominant transport modes used within
the study region, including PT modes and private vehicles. Overall, the collected data for the
CONNECTING case study is deemed representative using recent and regional specific sources for
fuel consumption, electricity mixes and car fleet composition (as described in section 4.3). The
used ecoinvent database covers all relevant transport modes, while recent publications are used
to complement (i.e., for hybrid cars). Chapter 5 will further detail the approaches applied to
characterise the uncertainty of all LCI data sources.

4.3 Variables and data

Five groups of variables are distinguished. These groups include variables related to the
commuting population, the Travel Analysis Zones (TAZs), the transport system, the transport
modes (constituting the LCI) and the environment (described by the LCIA). Each variable will
be given an unique identifier, as well as a short description. To avoid confusion, in subsequent
sections the unique identifier will often be complemented by a description of the variable. For
each variable a “domain” summarizing all possible states will be provided. Finally all data sources
are disclosed.

4.3.1 Commuting population

The commuting population is described by a set of variables related to individual and
household characteristics (hh), work characteristics (w) and their individual activity pattern (ap).
The following tables 4.1-4.3 summarize all variables.

First, individual and household variables are listed in table 4.1. These variables describe the
socio-demographic characteristics of the commuting population on the household level and are
assumed to be relevant predictors of their commuting behaviour. Most variables are of nominal
or ordinal scale, while the monthly household income is of interval scale, and age and the number
of cars per household are of ratio scale.

The education level variable builds on the French school system where “sec. tech./gen.”
designates graduation from “enseignement secondaire technique ou général”, “sec. prof.” des-
ignates graduation from “enseignement secondaire professionnel”, “bac tech./gen.” designates
a “Baccalauréat technique ou général”, “bac prof.” designates a “Baccalauréat professionnel”,
“B+3” designates “Baccalauréat + 1 to 3 years of higher education (e.g., DUT, DEUG, BTS
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or Licence)” and “B+4” designates “Baccalauréat + at least 4 years of higher education (e.g.,
Master degree, mâıtrise, doctoral degree or degree from a grande école)”. The classification used
for the settlement type variable is based on commonly used terms, e.g., terminology used by
the National Institute of Statistics and Economic Studies (INSEE), classifying settlement types
ordinally by population size. Respondents ultimately classify their settlement based on these
provided classes.

Table 4.1: Individual and household variables. In the variables domains “NA” is used to designates
“No Answer”. C is a set containing an identifier for each TAZ in the study region (i.e., each
commune).

ID Description Domain

hh1 Gender 1: male
2: female
3: NA

hh2 Age x ∈ N
hh3 Marital status 0: not married

1: married
2: NA

hh4 Children 0: No
1: Yes
2: NA

hh5 Education level 1: primary
2: sec. tech./gen.
3: sec. prof.
4: bac tech./gen.
5: bac prof.
6: B+3
7: B+4
8: other
9: NA

hh6 Settlement type 1: hamlet
2: village
3: town
4: city
5: big city
6: NA

hh7 Occupancy status 1: owner or co-owner
2: tenant
3: parents/friends
4: other
5: NA

hh8 Number of cars x ∈ N
hh9 Monthly household income [e] 1: x ≤ 2000

2: 2000 < x ≤ 3000
3: 3000 < x ≤ 4000
4: 4000 < x ≤ 6000
5: 6000 < x ≤ 8000
6: x > 8000
7: NA

hh10 Household location c ∈ C
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In table 4.2 the work related variables are listed for the commuting population. These
variables describe the usual work location and employment characteristics. Again most variables
are of nominal or ordinal scale, with the exception of working hours which are specified per week
on a ratio scale.

The parking availability variable was derived from several survey questions and is based on
the respondents perception, where no quantification of what constitutes “close by” was given in
the survey. The travel reimbursement variable distinguishes three answers, where either travel
expenses are not reimbursed (“No”), the employee have access to a “company car” or the employee
is at least partially reimbursed for his travel expenses by PT or private car (“reimbursement”).

Finally in table 4.3 the DAP related variables are listed for the commuting population.
These variables describe what activities the commuters are engaged in, for how long, travel times
between these activities, locations and transport modes. Activity duration and travel time, as
well as the available time budget and total number of daily travels are of ratio scale, the departure
time is of ordinal scale, and activity types, locations and transport modes are of nominal scale.
Activity and travel durations are derived from time indications (departure and arrival times)
recorded in the survey. The time budget is a calculated variable, recording the remaining amount
of time until midnight in minutes.

“PT” is public transport, which is a multi-modal combination of bus and train (where slow

Table 4.2: Work related variables. In the variables domains “NA” is used to designates “No
Answer”. C is a set containing an identifier for each location in the study region (i.e., each
commune).

Variable Description Domain

w1 Working hours 1: Defined by employee
2: Defined by employer
3: Defined jointly
4: NA

w2 hours/week x ∈ N : 1 ≤ x ≤ 40
w3 Type of profession 1: senior manager

2: engineer
3: armed forces
4: middle mgmt.
5: administration
6: service providers
7: agriculture
8: industry
9: assembly workers
10: non-qualified
11: NA

w4 Parking availability 1: at work
2: close by
3: no availability
4: NA

w5 Travel reimbursement 1: No
2: company car
3: reimbursement
4: NA

w6 Workplace location c ∈ C
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mobility is assumed as mode to reach the main mode and for transfers). “car+PT” is the same as
“PT”, with the exception that the mode car is used to reach the stop of the first PT mode. The
activity type variable distinguished 10 categories, with “leisure” activities including e.g., sport
or cultural activities, “service” activities including e.g., doctor visits, bank related activities or
taking part in training courses, and “work” activities also including work related travels. The
“end” state designates that no subsequent activity is conducted. Finally, in the model the total
number of daily trips apj,8 corresponds to the number of trips conducted by an individual and
is capped to a maximum of 6 (corresponding to a maximum of 7 activities since the first daily
activity does not require a prior trip to reach it). This maximum of 6 trips was chosen because
the large majority of DAPs observed in the survey are composed of 6 trips of less.

The main data source for this group of variables is the survey data stemming from the

Table 4.3: Activity pattern related variables. Where j is the index indicating the activity. In the
variables domains “NA” is used to designates “No Answer”. C is a set containing an identifier
for each TAZ in the study region (i.e., each commune).

Variable Description Domain

apj,1 Activity type 0: end
1: pick up/drop off
2: at home
3: work
4: outside meal
5: shopping
6: service
7: visit friends/family
8: go for a walk
9: leisure activity
10: other
11: NA

apj,2 Activity duration [min] x ∈ N
apj,3 Activity location c ∈ C
apj,4 Travel duration [min] x ∈ N
apj,5 Transport mode 1: car

2: bus
3: train
4: slow mobility
5: car+PT
6: PT
7: other
8: NA

apj,6 Time budget [min] x ∈ N : 0 ≤ x ≤ 1440
apj,7 Departure category 1: 00 : 00 ≤ x < 06 : 00

2: 06 : 00 ≤ x < 08 : 00
3: 08 : 00 ≤ x < 10 : 00
4: 10 : 00 ≤ x < 16 : 00
5: 16 : 00 ≤ x < 18 : 00
6: 18 : 00 ≤ x < 20 : 00
7: 20 : 00 ≤ x < 24 : 00
8: NA

apj,8 Total number of trips x ∈ N : 1 ≤ x ≤ 6
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“Enquête Mobilité des Frontaliers (EMF)” conducted between November 2010 and January 2011
by CEPS/INSTEAD in collaboration with the university of Strasbourg (Schmitz et al., 2012;
Schmitz and Gerber, 2011). The survey constitutes a representative spatially stratified sample
conducted among CBCs from all neighbouring regions of Luxembourg, where initially 40’000
surveys were sent out. This first phase was focussed on the socio-demographic characteristics
(e.g., housing, household composition and level of education) of the CBC population, as well as
characteristics related to daily travels (e.g., daily activities, car park and travel distance). This
first phase had 7’235 respondents, for which a second survey phase was conducted to deepen the
understanding of their mobility to which roughly half of the initial responds replied 1.

Using the survey, the values of the variables described in tables 4.1-4.2 are determined, where
each ith survey respondent is characterized by a vector describing his household (HHi) and work
(Wi) related variables:

HHi = [hh1, hh2, hh3, · · · , hh10]

Wi = [w1, w2, w3, · · · , w6]

Next a matrix describing the DAPs for each respondent is used, where each row corresponds
to the jth activity and each column to a variable describing the DAP for a maximum of 7 activities
(note that travel related variables such as travel duration are not defined for j = 7, as there is no
subsequent travel to activity 7):

APi =



ap1,1 · · · ap1,8

...
...

apj,1 · · · apj,8
...

...
ap7,1 · · · ap7,8


4.3.2 Travel analysis zones

The TAZs are characterized by a set of variables describing the attractiveness characteristics
(tz ) of each zone (i.e., commune) in the study region.

Table 4.4 shows the attractiveness related variables for the TAZ. These variables describe
e.g., the number of available establishments to conduct certain activity types as well as the
more general population density. All variables are of ratio scale. Where the service index is a
normalised score accounting for, e.g., public, health care, child care or leisure related services at
the communal level.

The data related to these variables is based on multiple sources. To derive the population
density the population data [population/commune] for each commune is based on census data for

Table 4.4: Variables describing the TAZ.

Variable Description Domain

tz1 Number of restaurants x ∈ N
tz2 Number of supermarkets x ∈ N
tz3 Service index x ∈ N
tz4 Population density x ∈ R|x > 0

1https://statistiques.public.lu/catalogue-publications/cahiers-CEPS/2012/hors-serie-FR.pdf
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Luxembourg2 conducted by Institute of Statistics and Economic Studies of the Grand Duchy of
Luxembourg (STATEC) and for France3 conducted by INSEE. Commune surface data is derived
from GIS based calculations using the Luxembourgish open data platform4 and ADMINEXPRESS
data5 for French communes. Commune coordinates (longitudes and latitudes) are based on their
centroids derived from GIS data. The number of restaurants, supermarkets and the service index
are based on the “base permanentes des équipements”6 for France and the “Observatoire du
Développement Spatial”7 for Luxembourg.

All communes c in C of the study region are characterized by a set TZc:

TZc = [tz1, tz2, tz3, tz4]

Figure 4.1 shows all TAZs of the study region and their respective population density.

4.3.3 Transport system

The transport system is described by a set of variables (ts) related to travel times and travel
distances between location pairs for all transport modes. Table 4.5 shows the variables for each
of the motorized transport modes. Again “PT” and “car+PT” describe the multi-modal options,
where travel distances are further subdivided by mode. These variables describe performance of
the transport system for the different transport modes available to the commuting population.
All variables are of ratio scale.

Data sources for variables in table 4.5 for the PT system are described using General Transit
Feed Specification (GTFS) data provided by the Luxembourgish open data platform8 and the
French Multimodal Information System of French region Grand Est called “Fluo”9 and the
supporting agencies of the Lorraine. These GTFS files include detailed time table and stop
locations for all public transport modes in the study region. The files from both data sources

Table 4.5: Variables describing the transport system.

Variable Description Domain

ts1 Travel time car [min] x ∈ N
ts2 Travel distance car [km] x ∈ N
ts3 Travel time bus [min] x ∈ N
ts4 Travel distance bus [km] x ∈ N
ts5 Travel time train [min] x ∈ N
ts6 Travel distance train [km] x ∈ N
ts7 Travel time PT [min] x ∈ N
ts8 Travel distance PT [km] x ∈ N
ts9 Travel time car+PT [min] x ∈ N
ts10 Travel distance car+PT [km] x ∈ N

2http://www.statistiques.public.lu/fr/population-emploi/rp2011/caracteristiques-personnelles/

index.html
3https://www.insee.fr/fr/statistiques/1280956
4https://data.public.lu/fr/datasets/limites-communales-historiques-1/
5http://professionnels.ign.fr/donnees
6https://www.insee.fr/fr/metadonnees/source/serie/s1161/
7https://amenagement-territoire.public.lu/fr/strategies-territoriales/

observatoire-developpement-spatial.html
8https://data.public.lu/en/search/?q=gtfs
9https://www.fluo.eu/
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Figure 4.1: Study region with population density of all TAZs.

(from Luxembourg and France) have been combined for the CONNECTING project to describe
the cross-border PT system.

To describe the road network the tool “geofabrik”10 is used which provides the open-
streetmap11 data for the study region.

Travel times and distances between each possible Origin-Destination (OD) pair and for each
transport mode (private car, single PT modes and multi-modal modes) are calculated using an
opentripplanner (otp)12 which uses the created GTFS files and road network.

Each OD pair of the communes c in the study region C is characterized by a set of values
(TSo,d) (where o is the identifier of the origin commune and d the identifier of the destination
commune):

TSo,d = [ts1, ts2, ts3, ..., ts10]

10https://www.geofabrik.de/
11https://www.openstreetmap.org/
12http://www.opentripplanner.org/
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The transport system as a whole can be described by multiple OD matrices (one for each
variable in table 4.5), where each row represents an origin and each column a destination. As an
example, the matrix for car travel times (ts1) can be written as follows:

ODts1 =



ts11,1
ts11,2

· · · ts11,d
· · ·

ts12,1
ts12,2

· · · ts12,d
· · ·

...
...

...
ts1o,1

ts1o,2
· · · ts1o,d

· · ·
...

...
...


4.3.4 Transport modes

The transport modes are characterised by a set of variables describing their production, use
and disposal, as well as interventions with the environment. The following table exemplifies the
variables for one product system considered in CONNECTING, describing domains for a generic
“individual car” product system.

All variables can be scaled to relate to 1 life cycle, 1 vehicle-kilometre (vkm) or 1 passenger-
kilometres (pkm), where assumptions have to be made about the life cycle performance (e.g.,
total travelled distance, average occupancy, etc.). In case of the CONNECTING LCI all transport
modes are scaled to relate to 1 vkm before being aggregated to car or PT fleets. Once aggregated
to the fleet level, unit processes are scaled to relate to 1 pkm.

Variables such as car maintenance (or assembly) are provided as unit processes (marked with
unit [-] in table 4.5) for 1 life cycle (or for the assembly of 1 car). Variables for car components
such as the powertrain, glider or battery are provided per kilogram produced (assuming a certain
composition of metals, plastics etc.).

To further illustrate the life cycle perspective and embedding of product systems in the
technosphere, figure 4.2 shows the product system presented in table 4.6, where product/waste
flows between unit processes within the car product system and between the car product system
and other product systems are represented by arrows. Elementary flows between the car product
system and the biosphere (i.e., b1, b2, b3, etc.) are represented by dashed arrows. The system
boundary of the car product system is shown as well as the three life cycle phases. As the
product system includes are large number of unit processes and flows, it is impractical to show a
comprehensive product system here.

The LCI modelling thus encompasses all data needed for the processes of each transport
product system (e.g., bus or train) from a life cycle perspective, as well as the upstream and
downstream product systems which provide the inputs to or receive outputs from these transport
product systems.

Specifically, the car inventories are based on the ecoinvent LCA database13, where fuel
consumptions and related emissions have been updated using regional specific data from the
Luxembourgish data platform14. In addition, fuel consumption data (which is determined from
official driving cycle data) is corrected using the correction factors published in the most recent
report issues by the International Council on Clean Transportation (ICCT)15. For hybrid electric
cars the inventories from ecoinvent were adapted according to Raykin et al. (2012). Car fleet
composition is modelled based on a cohort model (where a cohort is modelled for all powertrains
and emission standards) the modelling effort first presented in Baustert et al. (2019) will be
outlined in section 4.7. The bus inventories are based on specific manufacture data from (Transport

13https://www.ecoinvent.org/
14https://data.public.lu/
15https://theicct.org/
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& Environment, 2018). Finally the train LCI data relies on the existing ecoinvent LCA database16.
To describe the upstream product system (e.g., primary energy production, resource mining etc.)
the ecoinvent version 3.5 “cutoff” database is used.

Following the notation of Heijungs and Suh (2002), the LCI data is structured in two matrices,
the technosphere matrix A containing the technosphere exchanges (e.g., a1 of table 4.6) and
biosphere matrix B containing the biosphere exchanges (e.g., b1 of table 4.6). These matrices
contain the exchanges both for the transport product system data described above as well as the
data from ecoinvent.

Table 4.6: Car inventory variables. Where under Prod. production inputs; under Use use phase
inputs; under Disp. disposal/emission outputs to the technosphere; and under Air, Water and
Soil the outputs to the biosphere are listed.

Variable Description Domain

Prod.
a1 Car powertrain [kg] x ∈ R
a2 Car glider [kg] x ∈ R
a3 Car battery [kg] x ∈ R
a4 Car assembly [-] x ∈ R
...

Use
a5 Maintenance [-] x ∈ R
a6 Fuel [kg] x ∈ R
a7 Road [m·year] x ∈ R
...

Disp.
a8 Manual dismantling [-] x ∈ R
a9 Used car powertrain [kg] x ∈ R
a10 Used car glider [kg] x ∈ R
a11 Used car battery [kg] x ∈ R
a12 Used tyre [kg] x ∈ R
...

Air
b1 Carbon dioxide [kg] x ∈ R
b2 Particulates, < 2.5 µm [kg] x ∈ R
b3 Nitrogen oxides [kg] x ∈ R
...

Water
b4 Cadmium [kg] x ∈ R
b5 Chromium [kg] x ∈ R
b6 Lead [kg] x ∈ R
...

Soil
b7 Cadmium [kg] x ∈ R
b8 Chromium [kg] x ∈ R
b9 Lead [kg] x ∈ R
...

16https://www.ecoinvent.org/
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Figure 4.2: Life cycle perspective of the car product system. The car product system is composed
of a set of unit processes (e.g., powertrain production) which spread over the three life cycle
phases (production, use and EoL). The product system takes input product flows from other
product systems which are upstream of the value chain (e.g., raw material extraction processes).
The product system has some output flows (e.g., intermediate products) which can be used by
downstream processes. Elementary flows can enter a product system (e.g., crude oil) or leave a
product system (e.g., emissions to air, water and soil) from or to the biosphere.

Section 2.2.4 introduces the generic notation for the matrix inversion approach which was
adapted from Heijungs and Suh (2002) (only changing indexation to avoid confusion with other
indices of the ABM sub-model). In the technosphere matrix A each column corresponds to
a technosphere unit process and each row to the reference product, where element ak,l is the
exchange between the kth process and the lth process. In the case of CONNECTING there is only
one reference product for each unit process, leading to a squared matrix with n rows and columns.
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While the ecoinvent database includes 16’022 unit processes, the CONNECTING foreground
includes 64 additional unit processes leading to n=16’086.

A =



a1,1 · · · a1,l · · · a1,n

...
...

...
ak,1 · · · ak,l · · · ak,n

...
...

...
an,1 · · · an,l · · · an,n


In B each column describes the intervention of a unit process with the biosphere, where each

column in B corresponds to a column in A, together representing one unit process such as the
one shown in table 4.6. Each row in B corresponds to an elementary flow (e.g., CO2) from or
to the environment. Element bq,l is the qth elementary flow of the lth process from or to the
biosphere. The total number r of elementary flows (and rows of A) depends on the specific LCI
and its coverage of environmental interventions. In case of CONNECTING 4’321 elementary
flows are covered leading to r=4’321.

A =



b1,1 · · · b1,l · · · b1,n
...

...
...

bq,1 · · · bq,l · · · bq,n
...

...
...

br,1 · · · br,l · · · br,n


Finally, the demand of the transport system for processes is formulated in the final demand

vector, which in case of the CONNECTING model contains the distances of each modelled
transport mode (as well as potentially the demand for every other reference product in A):

f =



f1

...
fk
...
fn


where element fk is the demand for the kth reference product in A, and f has the same

length as A (i.e., one demand for each product in A). In case of CONNECTING there is an
element fk for each transport mode (i.e., car, bus and train) containing the system’s demand
in pkm. Since in the case of the CONNECTING model the functional unit only considers the
satisfaction of transport needs all other elements in f are equal to zero.

4.3.5 Environment

The environment is described by the CFs, which describe the sensitivities to the emissions of
the transport system. The term environment is used here in a broad sense similar to the term
biosphere. Section 4.2 details which specific impact methods are chosen.

Focusing on GWP100 table 4.7 presents the variables describing the CFs of this impact
category. While there are more than 100 such variables (according to the IPCC), only the most
relevant for mobility are listed here.
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For the two midpoint impact categories chosen for this thesis (ic) two vectors ic1 and ic2
can be defined, each vector containing a CFs for each qth elementary flow (cfq).

Taking the example of GWP100 from table 4.7, ic1 contains the a cf for each elementary
flow in B (where some of the 4321 elementary flows will have no effect on climate change and
thus have a values of zero):

ic1 =
(
cf1 · · · cfq · · · cfr

)
The CFs for both chosen methods (GWP100 and R−E) can be combined in the characteri-

sation matrix Q (in our case two rows, one for each method):

Q =

[
ic1
ic2

]

4.4 ABM model structure

In this section the functional form of the ABM part of the CONNECTING model will be
introduced describing how the variables are related to each other. The ABM part of CONNECT-
ING is based on a collection of sub-models which together allow to generate the DAP of an
agent in the synthetic population. Originally this was developed in Mariante (2017) for the
CONNECTING project. In the following a summary of the original description is provided.

First the generation of the synthetic population is described. Next the choice models are
introduced. First, the ABM generates a schedule of activity types, their durations and durations
of travels among these activities. This schedule constitutes the sequence of activities and the time
allocated for each activity and each travel. The activity type and duration models introduced
in the following are executed alternately, where activity type models take as inputs the outputs
predicted by activity and travel duration models and vice versa.

Building on the schedule of activities and travels, next a location choice model generates
the activity locations taking into account the allocated times for activities and travel. Finally, a
mode choice model is used to predict the mode choice for each travel to complete the activity
pattern APi of each ith individual.

At the end of this section the CONNECTING ABM is qualified with regard to the ABM
features introduced in chapter 2.

Table 4.7: Environment variables (CFs) describing the climate change global warming potential
(GWP100) of various environmental interventions. The unit for all listed CFs is kilogram
CO2-equivalents per kilogram emitted substance

Variable Description Domain

Air
cf1 Carbon dioxide x ∈ R
cf2 Methane x ∈ R
cf3 Dinitrogen monoxide x ∈ R
...

64



4.4. ABM model structure 65

4.4.1 Synthetic population

The basic idea of generating the synthetic population data is to get the variable values for the
commuting population (for variables in tables 4.1-4.2) by sampling from multivariate probability
distributions of a representative sample preserving essential statistical features of the population
data.

For the CONNECTING model, the approach to generate the synthetic population was
developed by Mariante (2017). The R package “synthpop” (Nowok et al., 2016) is used to perform
the sampling of all work and household related variables, with the exception of the home and
usual work locations. To determine these locations, a list of locations pairs (home-work locations)
is created based on the survey, from which locations are bootstrapped with replacement for each
individual in the synthetic population. The synthetic population is generated for the year 2015
and updated yearly to account for population growth.

4.4.2 Activity type

The activity type generation is based on Multi-Nominal Logistic (MNL) models. To this end
MNL models for each jth activities (apj,1, where index 1 denotes that activity type is the first
column in APi of the ith individual) are estimated. ap1,1, the first activity, is always assumed to
be of state “Home”. The following equation shows the general formula of the MNL models used
to estimate subsequent activity types:

Uapj,1=at = βj,0,at +
∑

id∈ATj,hh

βj,hhid,at · hhid

+
∑

id∈ATj,w

βj,wid,at · wid

+ αj,1,at · apj−1,1

+ αj,2,at · apj−1,2

+ αj,3,at · apj,6
+ εj,at

(4.1)

where apj,1 is the type of the jth activity (which correspond to the domain of apj,1 in table
4.3 excluding ’NA’). To make the selection of household (hhid) and work related variables (wid)
explicit the sets ATj,hh and ATj,w are used (where ATj specifies that these are the sets for the
activity type model of the jth activity).

ATj,hh = {1, 2, 3, 4, 5, 6, 7, 8, 9}, indicating that gender (hh1), age (hh2), marital status (hh3),
children (hh4), education level (hh5), settlement type (hh6), occupancy status (hh7), number of
cars (hh8) and monthly household income (hh9) are all chosen as predictors for the jth activity
type of the ith individual.

ATj,w = {2, 3, 5}, indicating that number of working hours per week (w2), the type of
profession (w3) and the travel reimbursement (w5) were retained as relevant predictors as well.

Finally, the activity type of the previous activity in the sequence of predicted activity types
(apj−1,1), duration of the previous activity (apj−1,2 estimated by the activity duration models
presented in section 4.4.3) and the current time budget (apj,6) are predictors stemming from the
already predicted facets of an individual’s DAP.

All α and β are coefficients, where one set of coefficients is estimated for each jth activity
type model, each predictor variable (e.g., hh1) and each activity type at. Finally, εj,at designates
the error term.
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4.4.3 Activity duration

The activity duration models are based on Cox proportional-hazard models (Cox, 1972).
In contrast to the activity type models, the response of these models are not discrete but a
continuous durations predicted for each jth activity (apj,2, where index 2 denotes that activity
duration is the second column in APi of the ith individual). This will be expressed in terms of a
transition hazard from state a (i.e., current activity) to state b (i.e., next travel), as a function of
time t and explanatory variables:

λab(t,HHi,Wi, APi) = λ0ab(t) · exp(βj,0 +
∑

id∈ADj,hh

βj,hhid
· hhid

+
∑

id∈ADj,w

βj,wid
· wid

+ αj,1 · apj,1
+ αj,2 · apj−1,4

+ αj,3 · apj,6

(4.2)

The transition from an activity to the subsequent trip marks the end of the activity episode
and the time interval between the start of the activity and the transition is the activity duration.
λ0ab is the unspecified baseline hazard function.

Similarly to the activity type model, the sets ADj,hh and ADj,w containing the indices for
the specific household and work related variables chosen as predictors are defined (where ADj

specifies that these are the sets for the activity duration model of the jth activity). Ultimately,
the selection of household and work related variables is the same as for the activity type models
introduced in the previous section.

In addition several predictors from the DAPs have shown to be significant: the current
activity type (apj,1), the previous travel duration (apj−1,4) and the current time budget (apj,6).

All α and β are coefficients representing the relative risk against the baseline hazard, where
one set of coefficients is estimated for each jth activity duration model and each predictor variable
(e.g., hh1).

4.4.4 Travel duration

The travel duration models are defined similarly, expressing a transition hazard from state b
(i.e., current travel) to state a (i.e., next activity) as a function of time t and explanatory variables
to predict for travel from each jth activity (apj,4, where index 4 denotes that travel duration is
the fourth column in APi of the ith individual):

λba(t,HHi,Wi, APi) = λ0ba(t) · exp(βj,0 +
∑

id∈TDj,hh

βj,hhid
· hhid

+
∑

id∈TDj,w

βj,wid
· wid

+ αj,1 · apj,1
+ αj,2 · apj+1,1

+ αj,3 · apj,2
+ αj,4 · apj,6

(4.3)

The transition from a travel to the subsequent activity marks the end of the travel episode
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and the time interval between the start of the travel and the transition is the travel duration.
λ0ba is the unspecified baseline hazard function.

Similarly to the activity type and duration models, the sets TDj,hh and TDj,w containing
the indices for the specific household and work related variables chosen as predictors are defined
(where TDj specifies that these are the sets for the travel duration model for travels departing
from the jth activity). Ultimately, the selection of household and work related variables is the
same as for the activity type and duration models introduced in the previous sections.

In addition several predictors from the DAPs have shown to be significant: the activity
type at the travel origin (apj,1), the activity type at the travel destination (apj+1,1), the activity
duration at the travel origin (apj,2) and the current time budget (apj,6).

All α and β are coefficients representing the relative risk against the baseline hazard, where
one set of coefficients is estimated for each travel duration model and each predictor variable
(e.g., hh1).

In both cases (activity and travel duration models) survival functions can be derived as
follows:

P (apj,2 > t) = exp(−Λab(t)) (4.4)

P (apj,4 > t) = exp(−Λba(t)) (4.5)

where Λab and Λba are cumulative hazard functions:

Λab(t) =

∫ t

0

λab(x)dx (4.6)

Λba(t) =

∫ t

0

λba(x)dx (4.7)

4.4.5 Activity location

Different conditional logistic models (called conditional since utilities are expressed in terms of
characteristics of the alternative locations rather than attributes of the individuals) are estimated
for four state categories of activity types (apj,1): (1) outside meal, (2) shopping, (3) service
(including the states service and leisure activity) and (4) other (including the states pick up/drop
off, friends/family, go for a walk and other). Note that the other activity types are assumed
to have fixed locations, where for each individual i work activities are assumed to take place at
w6, while home activities are assumed to take place at hh10 (both the usual work w6 and home
location hh10 are generated during the synthetic population generation). The first activity type
is always home, thus the first location is always hh10.

In the following the utility functions for these four models are presented. For each model,
the utility of each possible destination c ∈ Cj , for the travel from the jth activity, is a function of
alternative specific variables. Note that for each location model presented in this section, the
choice set Cj is constrained, where based on the variables in TZc only those communes c are
retained, that allow that activity type apj,1 is conducted (e.g., Cj for outside meal excludes
communes where tz1 = 0).

First, the model for outside meal activities uses the number of restaurants (tz1), as well as
car travel times (ts1) from the previous location o (or apj−1,3) to each alternative c of the choice
set Cj , and from each location to the location of the next fixed activity (nf). The next fixed
activity is defined as the next activity in the sequence of predicted activities, which is either of
type “at home” or “work”. If there is no subsequent fixed activity the location hh10 is assumed.
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Car travel times are used here as a proxy for the detour of each location from the home-work
trajectory of the ith individual. The resulting utility function is:

U(apj,3 = c) = β1 · tz1,c + β2 · ts1o,c
+ β3 · ts1c,nf

+ εj,c (4.8)

Second, the model for shopping activities uses the number of supermarkets (tz2), as well
as car travel times (ts1) from the current location o (or apj−1,3) to each alternative c of the
choice set, and from each alternative to the location of the next fixed activity (nf) as explanatory
variables. In addition it uses the available time as an explanatory variable, which is calculated
from the travel and activity durations (ap2 and ap4) predicted by the duration models introduced
in sections 4.4.3-4.4.4, as well as the resulting travel times for each alternative (ts1). The resulting
utility function is:

U(apj,3 = c) = β1 · tz2,c + β2 · ts1o,c

+ β3 · ts1c,nf

+ β4 · (apj,2 + apj−1,4 + apj,4 − ts1o,c − ts1c,nf
)

+ εj,c

(4.9)

Third, the model for service activities uses the services index (tz3), as well as car travel times
(ts1) from the current location to each alternative of the choice set, and from each alternative to
the next fixed activity as explanatory variables. Similar to the model for shopping activities the
available time is used as predictor. The resulting utility function is:

U(apj,3 = c) = β1 · tz3,c + β2 · ts1o,c

+ β3 · ts1c,nf

+ β4 · (apj,2 + apj−1,4 + apj,4 − ts1o,c
− ts1c,nf

)

+ εj,c

(4.10)

Finally, the model for other activities uses the population density (tz4), car travel times (ts1)
from each alternative to the next fixed activity and the available time as an explanatory variable.
The resulting utility function:

U(apj,3 = c) = β1 · tz4,c + β2 · ts1o,c

+ β3 · ts1c,nf

+ β4 · (apj,2 + apj−1,4 + apj,4 − ts1o,c − ts1c,nf
)

+ εj,c

(4.11)

For all models, the choice probability of a specific activity location loc can be estimated as
follows:

P (apj,3 = loc) =
exp(U(apj,3 = loc))∑
c∈Cj

exp(U(apj,3 = c))
(4.12)

4.4.6 Travel mode

The final models used to generate the individual DAPs are the mode choice models, for the
six potential travels. The following equation shows the general formula of these models:
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U(apj,5=mo) = βj,0,mo +
∑

id∈MOj,hh

βj,hhid,mo · hhid

+
∑

id∈MOj,w

βj,wid,mo · wid

+ αj,1,mo · apj,1
+ αj,2,mo · apj+1,1

+ αj,3,mo · apj,5
+ αj,4,mo · apj,7
+ αj,5,mo · apj,8
+ αj,6,mo · tsmoo,d
+ εj,mo

(4.13)

where apj,5 is the used travel mode from the travel origin location (apj,3 or o) to the
destination activity location (apj+1,3 or d) out of the possible travel modes mo defined (which
correspond to the domain of apj,5 in table 4.3 excluding ’NA’). apj,1 is the activity type at the
travel origin and apj+1,1 is the activity type at the travel destination. To make the selection of
household (hhid) and work related variables (wid) explicit, the sets MOj,hh and MOj,w are used
(where MOj specifies that these are the sets for the mode choice model of the travel departing
from the jth activity).

MOj,hh = {1, 2, 3, 4, 6, 8, 9}, indicating that gender (hh1), age (hh2), marital status (hh3),
children (hh4), settlement type (hh6), number of cars (hh8) and monthly household income (hh9)
are chosen as predictors.

MOj,w = {1, 2, 4, 5}, indicating that the flexibility of working hours, (w1), number of working
hours per week (w2), parking availability at the work location (w4) and the travel reimbursement
(w5) were retained as relevant predictors.

ap1,5 is the mode chosen for the first travel, apj,7 is the departure category, apj,8 is the
total number of travels conducted and tsmoo,d is the travel time of transport mode mo from the
location of the origin o (or apj,3) to the activity location of the destination d (or apj+1,3).

All α and β are coefficients, where one set of coefficients is estimated for each transport
mode models, each predictor variable (e.g., hh1). Finally, εj,mo designates the error term.

4.4.7 Distance generation model

A small part of the CONNECTING model is concerned with deriving travel distances from
the population’s DAPs. For each recorded travel in the DAP of the ith individual (APi) starting
from the jth activity, the origin o corresponds to apj,3 and the destination d corresponds to
apj+1,3. Using the mode apj,5 the travelled distance can be recovered from the corresponding
distance OD matrix (e.g., for travels by car ts2o,d

).

A final demand vector f i can be derived for the ith individual by aggregating travelled
distances for each mode across all travels in APi, where f i is a function of the individual’s DAP
APi and the transport system TSo,d: f i(APi,TSo,d). f corresponds to the system’s demand for
transport processes, and can be derived by aggregating over the entire population:

f =
∑

i∈POP
fi(APi, TSo,d) (4.14)

where POP is the entire commuting population.
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4.4.8 Model classification

Building on the review of chapter 2 and the introduced ABM features, the CONNECTING
ABM is classified as a simple modelling effort exhibiting some of the basic features of an ABM.
Specifically, the model clearly builds on an activity-based platform, deriving travel from the
demand for activity participation. The model first schedules activities prior to determining
locations and transport modes. Then, the travelled distances are derived from each individual
DAP. The model also accounts for some simple interdependencies of activities and travels, e.g.,
accounting for a time budget or detours from the home-work axis. The model can be classified
as a micro-simulation model, viewing individual commuters as the decision making unit. While
the spatial resolution is rather low (based on administrative bounds of communes), the temporal
modelling is high (in minutes). However, two of the features mentioned in chapter 2 are less
pronounced as the model does not show a strong set of constraints and does not feature inter-
personal linkage (e.g., among household members). With regard to the AgBM paradigm, the
CONNECTING ABM can not be classified as a full fledged AgBM. Specifically, the model does
model a set of agents and their attributes (commuters in the synthetic population). The model
also has an environment (i.e., the transport system) within which agents exhibit their behaviours
(i.e., generating individual DAPs). However, while agents interact with the environment, there
is no interaction among agents themselves and thus a key element of the AgBM paradigm is
missing.

4.5 LCA model structure

In the following a brief description of the structure of the LCA part of CONNECTING is
provided, building on the structure of the ABM part and its outputs.

4.5.1 Life cycle inventory model

Once the final demand vector f has been determined, the LCI model of CONNECTING can
be executed. The matrix inversions approach presented in chapter 2 allows to solve the inventory
problem as follows:

g = BA−1f (4.15)

4.5.2 Life cycle impact assessment model

Finally the LCIA model of CONNECTING can be executed, yielding the QOIs to the decision
makers in vector h:

h = Qg (4.16)

The LCA model is implemented using the python package brightway2 (Mutel, 2017).

4.6 Limitations

The CONNECTING model has several limitations that need to be acknowledged. These
limitations related to the available data, simplifications with regard to the ABM and LCA and
limitations with regard to the coupling of both model parts.

A first limitations relating to the survey data, is that there is no distinction between car
driver and car passenger in the travel diaries. This limitation of particular relevance for the LCI
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modelling, since the share of drivers and passengers in the population could allow to estimate
car occupation rates. In the present model occupations rates are based on literature values (i.e.,
MDDI (2018)) and remain static for the study period.

A second limitations relating to the travel time data, is that travel times are often dependent
on the time of day (e.g., peak hour travel times by car are usually longer). Such detailed and
dynamic travel time data was however unavailable for the study region. Only car travel times
account for congestion, but remains static. This limitation also extends to the modelling of travel
duration, where the CONNECTING ABM estimates the allocated time towards travel between
two activities based on a range of predictors.

A third limitations, is that no travel cost data was collected for the study region. Travel cost
is usually a predictor of mode choice. This also to some extend limited the scenario modelling,
where policy action on the cost of public transport could not be included in the scenario modelling.

A fourth limitations relating to the mode and location choice modelling, is that the CON-
NECTING model performs this sequentially, rather than jointly modelling this in a hierarchical
manner, as suggested by some scholars (Castiglione et al., 2015).

A fifth limitation relating to coupling is the aggregated nature, where at this point only
aggregated travelled distances are used as inputs to the LCA part of the CONNECTING model.

4.7 Future scenarios

Two classes of scenarios are distinguished here: (1) scenarios which represent large scale
changes outside of the control of transportation policy makers such as the population growth or
change in electricity mixes in the study regions; (2) policy scenarios within control of transportation
policy makers including the evolution shares of different powertrains in the private car fleet and
the evolution of travel times within the PT system.

4.7.1 Population growth

The evolution of CBCs in the study region has been studied by the National Institute of
Statistics and Economic Studies of the Grand Duchy of Luxembourg (STATEC) over the past
decades. Building on medium and long term macroeconomic projections of STATEC Baustert
et al. (2019) builds three population scenarios to be used by CONNECTING model.

Projections which are based on medium term demographic modelling STATEC (2019) until
2023 and long term macroeconomic projections Haas and Peltier (2017) until 2060. The share of
French commuters is assumed to remain stable (around 50%). The scenarios used from Haas and
Peltier (2017) assume a yearly economic growth rate of 3% and a yearly increase of the workforce
of around 10’000. Varying shares of the CBC population in the workforce (33%, 50% and 66%)
are applied to arrive at low, baseline high projections. For the purpose of this thesis, only the
baseline scenario is considered, not considering high and low scenarios.

Figure 4.3 shows the strong increase of CBC population projected by STATEC, with the
number of commuters from France increasing from around 85’000 in 2015 to around 120’000 in
2025.

4.7.2 Electricity mix

A second factor, considered exogenous is the electricity mix within the study region, which
influences the environmental impacts of all transport modes relying on electricity from the grid
(e.g., trains, electric buses and electric cars).

71



72 Chapter 4. CONNECTING Model

Figure 4.3: Projections of CBC population working in Luxembourg by country of residence from
2000 projected until 2060 Baustert et al. (2019).

The current and future electricity mixes for Luxembourg and France are shown in table
4.8 and are assumed to evolve linearly between 2015 and 2025. The initial values of 2015 are
extracted directly from the ecoinvent database. The final values of 2025 are derived based on
several expert assumptions.

In Luxembourg an increase in natural gas and wind power generation is observed domestically,
while imports (namely from the coal-intensive German mix) are decreasing. In France the objective
of reducing nuclear power to 50% in the national mix is reached in 2030, entailing a share of
about 64.5% in 2025 from this source, which is assumed to be replaced by wind and hydro power.

Table 4.8: Projected evolution of electricity mixes from 2015 to 2025 as presented in Baustert
et al. (2019).

Country Luxembourg France
Electricity Source (%) 2015 2025 2015 2025

Photovoltaics 0.0 0.0 0.8 0.8
Coal 0.0 0.0 1.6 0.0
Hydro 12.2 12.0 12.9 19.8
Natural gas 0.0 20.0 0.6 0.0
Oil 0.0 0.0 0.1 0.0
Wind 0.8 10.0 3.0 14.9
Nuclear 0.0 0.0 78.5 64.5
Combined Heat and Power 13.9 15.0 1.1 0.0
Imports 73.1 43.0 1.5 0.0
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4.7.3 Fleet shares

The two scenarios for the emergence of electric mobility have been modelling in Baustert
et al. (2019), following a stock-flow cohort modelling approach presented in Fridstrøm et al. (2016)
and building on French fleet data published by the Portail statistique de la Grande-Région17.
Given an initial age distribution in year y of vehicles for each powertrain (and emissions standard)
type ct and 30 age classes ac (vehicles are assumed to be decommissioned after 30 years), the
stock of vehicles A for each combination of ac and ct for year y+1 can be derived as follows:

Ay+1
ct,ac+1 = Ayct,ac[1 + γct,ac+1], (4.17)

where γ is derived based on the cumulative survival probability curves published in Fridstrøm
et al. (2016) based on historic car fleet data.

As inputs to the model, projected yearly market shares of all different powertrain types ct
are used. These market shares determine the stocks of new vehicles Act,ac=0 for each ct, entering
the car fleet each year. Equation 4.17 is then applied to each of these stocks for sub-sequent years.
For these market shares two scenarios are developed following (1) the French Environment and
Energy Management Agency (ADEME ) and (2) the Third Industrial Revolution initiative (TIR)
of Luxembourg.

The results of the cohort model are align to the available ct classes in the CONNECTING
LCI, as both scenarios provided a higher level of detail with regard to powertrains than present in
the LCI database. Figure 4.4 shows the resulting fleet shares building on historical data starting
in 2010 and projecting future fleet shares until 2050. For each year y on the x axis, the share of a
each Ayct (sum across all age classes) corresponds to the thickness of the corresponding coloured
area with the sum of all shares summing to 100% in each year. (e.g., in 2050 the TIR scenario
projects a that 84% of the car fleet are Battery Electric Vehicles (BEVs), 14% are Plug-in Hybrid
Electric Vehicles (PHEVs) and the remaining shares are diesel and gasoline cars).

While the outcomes for both scenarios strongly differ by 2050, for the study period of the
CONNECTING project (2015-2025), both scenarios only start to differ somewhat towards the
end, with the TIR showing a stronger increase of BEVs and PHEVs compared to the ADEME
scenario. Another significant difference between both scenarios is the phase-out of diesel vehicles,
which progresses much faster for the TIR scenario, while the ADEME scenario projects a still
significant share of diesel vehicles in 2050.

4.7.4 Public transport evolution

The second dimension of policy scenarios concerns the PT system variables ts.
Building on the original OD matrices developed for 2015 based on the data sources (i.e.,

GTFS data) introduced in section 4.3.3 two separate trajectories until 2025 are modelled. These
trajectories model additional direct trans-border bus lines (requiring no transfer) to cover rural
areas of the French region and connect them to the city of Luxembourg and Esch-sur-Alzette
(the two major centres of attractions in Luxembourg), and Bettembourg and Foetz which are
locations of co-working hubs targeting French commuters.

In addition, express bus lines (without intermediate stops) are added to connect communes
with a high number of CBCs to the city of Luxembourg and Esch-sur-Alzette. These additional
bus lines affect the “bus” mode, as well as the multi-modal “PT”, and “car+PT” mode partially
based on bus transfer. The implementation of both the higher coverage of rural areas and express
bus lines is spread evenly (adding roughly the same amounts of bus lines each year) over the study

17http://www.grande-region.lu/
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(a)

(b)

Figure 4.4: Evolution of fleet shares for different engine types for the CBC population. (a) shows
the evolution for the ADEME scenario. (b) shows the evolution for the TIR scenario. Baustert
et al. (2019) further details the scenarios and modelling approach.

period. Bus lines for communes with a high shares of CBCs are prioritised, based on STATEC
data18 shown in table 4.9.

Specifically, the first trajectory is the business-as-usual (or BAU ) scenario which aims at
representing an average policy investment affecting travel times and distances in each OD matrix.
This scenario applies additional trans-border bus lines for all communes with at least 450 CBCs
(table 4.9), while applying express bus lines for communes with at least 1’000 CBCs.

The GREEN scenario aims at representing a policy in favour of a more sustainable develop-
ment (e.g., a broader coverage of the study region with trans-border bus lines and express bus

18https://data.public.lu/fr/datasets/r/b69301c0-8b67-46d6-9746-924f73652bd3
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Table 4.9: Number of CBCs per French commune in 2015 for communes with at least 450 CBCs.

Commune Number of commuters

Thionville 6’500
Metz 3’660
Yutz 2’400
Villerupt 2’290
Longwy 2’190
Hettange-Grande 2’140
Audun-le-Tiche 2’110
Hayange 2’110
Fameck 1’550
Florange 1’540
Mont-Saint-Martin 1’150
Terville 1’060
Algrange 950
Hussigny-Godbrange 930
Ottange 850
Hagondange 790
Herserange 780
Réhon 760
Guénange 750
Amnéville 720
Lexy 700
Volmerange-les-Mines 700
Nilvange 660
Maizières-lès-Metz 600
Uckange 600
Cosnes-et-Romain 580
Aumetz 560
Haucourt-Moulaine 550
Cattenom 550
Mondelange 540
Gorcy 530
Boulange 530
Rombas 510
Talange 510
Serémange-Erzange 510
Tressange 500
Longuyon 480
Audun-le-Roman 470
Saulnes 470
Zoufftgen 460
Longlaville 450
Thil 450
Bertrange 450
Fontoy 450
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lines). For this scenario trans-border bus lines are applied for all communes in the study regions
with express bus lines being applied for all communes with more than 450 CBCs (table 4.9).
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Chapter 5

Methodology

5.1 Introduction

In this chapter the methodologies applied to characterise, treat and communicate uncertainty
of the CONNECTING model are presented. Together with the classification of uncertainty
introduced in chapter 3 this builds the core of the UA framework developed in this thesis. The
formulation of the methodology aims at being applicable not only to ABM/LCA coupled models,
but also AgBM/LCA coupled models.

No prior study has addressed the topic of UA in ABM/LCA coupled models. Knowledge
about the relevant uncertainty locations is thus limited and the literature review in chapter
3 was conducted for UA of ABMs and LCA separately. However, findings of the literature
review indicate which locations are most addressed in both fields and which characterisation and
treatment options can be considered appropriate and feasible.

The most addressed uncertainty locations revealed by the literature review are the simulation
error and measured parameters for ABMs and LCA respectively. The proposed framework will
aim at prioritising these locations. This choice is motived by the fact that in both fields there are
established methods to address these locations and that the present framework aims at catering to
the broad audience of practitioners attempting similar modelling efforts. However, the treatment
of all locations is discussed.

Uncertainty characterisation will be based on probability theory. This choice is motivated
both by the findings of the review where for both ABMs and LCA probabilistic approaches are
well established. Since in the case of the CONNECTING model it is impractical to derive a closed
form expression (Rasouli and Timmermans, 2013a), this limits the choice of feasible uncertainty
treatment methods (excluding e.g., analytical uncertainty propagation). Since ABMs are usually
stochastic by nature, stochastic modelling approaches (i.e., MC simulations) are also appropriate
to treat uncertainty in ABM/LCA coupled models in general. The challenge that arises is: how
to combine model runs of both sub-models to propagate uncertainty systematically.

ABMs exhibit uncertainty in outputs at different levels of spatial and temporal resolution
(e.g., at the level of individual DAPs, more aggregated OD matrices and TAZs, or system level
outputs) (Petrik et al., 2018). In case of the CONNECTING model the ABM and LCA part
intersect only at system level (where ABM outputs at system level become LCA inputs) (Baustert
et al., 2019). The proposed framework will thus focus at this type of coupling.

With regard to LCA this thesis is focused on the LCI phase and its impact on the uncertainty
of outputs at midpoint indicator level, with uncertainty of the LCIA phase considered out of the
scope. While uncertainty of CFs can be relevant, uncertainty information is scarce with many
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LCIA methods only publishing single value CFs. If the underlying LCIA model to derive these
factors in unavailable, it becomes near to impossible to derive reasonable estimates of uncertainty
information to make UA for the LCIA phase operational.

In the following, section 5.2 will provide a nomenclature for ABM/LCA coupled models to
formally describe the research design. Section 5.3, 5.4 and 5.5 will introduce the framework and
research design including uncertainty characterisation, propagation and communication. Finally,
section 5.6 summarised the key findings of the chapter.

5.2 Nomenclature

In this section a new nomenclature is introduced to relate uncertainty locations and their
characterisation to both parts of the CONNECTING model. Similar efforts can be found for
AgBMs (e.g., Navarrete Gutiérrez (2012)) to organize simulations and are applied here in the
context of UA. A concrete instance of a model (and its sub-models) is defined as a model for
which uncertainty locations have a determined state. Specifically this means that the model has
a defined functional form and that all parameters (measured and calibrated) take defined values.
Similarly, a concrete instance can be defined for model inputs and the experimental frame.

A special case of a model’s concrete instances is one, where the chosen functional form
represents a reference case and parameters take their so-called nominal value. This concrete
instance is referred to as nominal concrete instance and provides a reference to which results
of other concrete instances can be compared to. Similarly, nominal concrete instances can be
defined for model inputs and the experimental frame.

For the ABM M (such as the ABM part of CONNECTING), with a set of parameters PM ,
a set of variables VM , which is executed for each household (or individual) within a synthetic
population (potentially for several time steps), a concrete instance Mu can be defined. PM
contains, e.g., calibrated parameters of individual choice models, while VM contains the random
draws for individual choice models. For a concrete instance Mu the set ΩMu contains the defined
parameter values. A set sv, containing random seeds for each potential random draw during a
simulation, can be used to create a result instance rMu

sv
of Mu. The nominal concrete instance of

M is defined as M∗sv where each parameter in PM takes the nominal value in ΩM∗ . In addition,
M∗s∗ is defined as the nominal concrete instance of M , where each random choice event results in
its most likely outcome.

The nomenclature of a LCA model L (such as the LCA part of CONNECTING) can be
defined analogously, with a set of parameters PL containing all elements of the technosphere,
biosphere and characterisation matrices (as well as potentially additional parameters modelling
dependencies between different process parameters). For a concrete instance Lw the set ΩLw

contains the defined parameter values. Unlike M , L does usually not encompass any random
elements, thus for a concrete instance Lw one and only one result instance rLw can be computed.
The nominal concrete instance of L is defined as L∗, with each parameters in PL taking its value
defined in ΩL∗ .

Both M and L can have inputs describing, e.g., outside drivers affecting the modelled system.
The definition of such inputs is of course dependent on the perspective, e.g., from the perspective
of the sub-model L the set rMu

sv
contains inputs, while from the perspective of the sub-model

M they are outputs. Taking the perspective of the ABM/LCA coupled model a set I is defined,
containing the inputs considered exogenous to both models. Similar to the parameters, concrete
instances of input vectors can be defined and the same holds true for decisions taken in the
experimental frame.

Figure 5.1 illustrates the nomenclature for one concrete instance of an ABM/LCA coupled
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I

Mu

rMu
sv

Lw

rMu
sv
Lw

Figure 5.1: The execution of a model run for one concrete instance of an ABM/LCA coupled
model is represented. Given a set of inputs I and a set sv containing random seeds for each
potential random choice Mu produces a set of ABM results rMu

sv
(i.e., activity-travel pattern for

a synthetic population). The model outputs of Mu become inputs to the LCA model part Lw

which allows to produce a set of final model outputs rMu
sv
Lw .

model. The flow of information (from left to right) is represented by edges passing through the
sub-models represented by squares. The stochastic nature of the ABM part is represented by the
forking of the information path (where alternative possible “paths” are represented by dashed
lines). The results of the ABM part are reproducible by re-using the same set of random seeds sv.
The nominal concrete instance of an ABM/LCA coupled model corresponds to both sub-models
in their nominal concrete instance state.

Building on this nomenclature, the UA framework is presented in the following. The three
steps of uncertainty characterisation, uncertainty propagation and uncertainty communication
are presented.

5.3 Uncertainty characterisation

The focus of the proposed framework is on model uncertainty stemming from measured
parameters and the simulation error. Other uncertainty locations will be discussed at the end of
this section.

5.3.1 ABM sub-model

The ABM part of CONNECTING is an utility-based ABM composed of logistic and Cox-
hazard models. Each of these models aims at representing a choice component as a result of
a human decision-making process. The ABM generates individual DAPs in time and space.
Decisions include whether or not to conduct an activity, when to start an activity, where to
conduct an activity and which mode of transport to use to arrive at the activity location. These
choice models are generally composed of explanatory variables, calibrated parameters and (in
case of logistic models) error terms, and allow to determine the state of a dependent variable
(Castiglione et al., 2015). A detailed description of all choice models is presented in chapter 4.

Realistically, choices can only be predicted up to a probability of occurrence and in conse-
quence choice models are not deterministic models (predicting one crisp choice) but rather choice
probabilities for possible outcomes (Castiglione et al., 2015). In case of some logistic models (i.e.,
MNL modelling) the Independence of Irrelevant Alternatives (IIA) assumption is applied, where
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choice probabilities are assumed independent of other “irrelevant” alternatives.
For all MNL models of the CONNECTING model presented in chapter 4 the following

general expression can be formulated (Castiglione et al., 2015):

Uout = βout · xi = β0,out + β1,out · x1,i + . . .+ βe,out · xe,i + . . .+ εout (5.1)

where Uout is understood to be the utility of outcome out, xe,i represents the eth explanatory
variable for observation i, βe,out is the marginal utility associated with the eth explanatory
variable and outcome out, and εout is the error term capturing to impact of unobserved variables
on outcome out. Applying the assumption that error terms are independent and identically
distributed (i.i.d.) random variables following an extreme value type 1 (EV 1) distribution, the
probability of outcome out can be derived (Castiglione et al., 2015):

P (Yi = out) = P (Uout + εout > Ualt + εalt,∀alt 6= out) =
eβout·xi∑
∀alt e

βalt·xi
(5.2)

where εout and εalt are the error terms for alternative outcomes alt. Probabilities for
conditional logistic models can be formulated is similar fashion, as done in Mariante (2017) for
the CONNECTING model.

The second group of models used in the ABM part of CONNECTING is the Cox-hazard
model to determine activity and travel durations. Again a general expression can be formulated
(Mariante, 2017):

λab(t,Xi) = λ0(t)eα·xi (5.3)

where xi is a set containing explanatory variables for observation i and α contains the
estimated parameters associated with each explanatory variable and representing the relative risk
against the baseline hazard. Survival functions can be derived (Mariante, 2017):

P (Xi > t) = e−Λab(t)) (5.4)

where Λab is the cumulative hazard function:

Λab(t) =

∫ t

0

λab(x)dx (5.5)

5.3.2 LCA sub-model

Focussing on the LCA part of the CONNECTING model, the main locations of uncertainty
to be addressed are the elements (i.e., measured parameters) of the technosphere and biosphere
matrices representing the inputs and outputs of the unit process data, describing the transport
modes and related processes.

Chapter 4 introduces the measured parameters of the unit process data and details data
sources. In total 63 unit processes are modelled with 1’803 inputs and outputs representing
exchanges among each other, the background database (i.e., ecoinvent) and the environment.
Their large number makes it impractical to derive detailed uncertainty distributions for all
parameters. The so-called pedigree approach, which builds on a set of DQIs, allows to efficiently
estimate uncertainty distributions for such a large number of quantities.

The original approach was adapted for LCA and introduced in Weidema and Wesnæs (1996).
The underlying premise is that the reliability of LCA results depends on the uncertainty present
in data, as well as the quality of the data. Therefore data quality management must be an
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integral part the analysis. Data quality is assessed and reported for each set of data using a set
of DQIs, which are subsequently interpreted as additional uncertainty. Some indicators might be
unit process specific (e.g., age related indicators), while others are specific to individual flows.

In this thesis five semi-quantitative DQIs, each having levels ∈ [1, 2, 3, 4, 5], are applied to
the measured parameters of the CONNECTING LCI (exceptions include, e.g., market shares
which have to sum 1 and for which more advanced methods would be required). These five
indicators are based on the original indicators advanced in Weidema and Wesnæs (1996) and are
also applied to the most recent versions of ecoinvent database (Muller et al., 2014):

� reliability

� completeness

� temporal correlation (temporal)

� geographic correlation (geographic)

� further technological correlation (technological),

Where the reliability indicator relates to the data source, acquisition methods and verification
procedures. Data could be acquired by empirical measurements or expert judgement implying
different levels of quality. E.g., in the CONNECTING LCI, fuel consumption data from official
driving cycle measurements are corrected to account for the bias compared to real world emissions.
The reliability of data sources for emissions and correction factors are assessed.

The completeness indicator relates to the representativeness of the sample. Data could be
available for the entire population or only a subset. E.g., in CONNECTING fuel consumption data
is available for almost every vehicle in the Luxembourgish car fleet, implying a high completeness.

The temporal indicator relates to the correlation between the year of data collection and the
year of the LCA study. Data could be available from recent studies adequately capturing current
industrial efficiency levels, or older data failing to do so. E.g., in the CONNECTING LCI fuel
consumption data for cars are based on the most recently available Luxembourgish car fleet data.
For transit modes ecoinvent data is used, which have been collected several years prior to the
CONNECTING study period, implying a slightly lower temporal correlation.

The geographical indicator relates to the correlation between the location of data collection
and the defined data location in the goal and scope definition phase of the study. Data might
be available for the defined data location or for a location with more or less similar conditions.
In CONNECTING, Luxembourgish fuel consumption data is used to describe the car fleet of
the French CBC population, as no location (or population) specific data is available, implying a
slightly lower geographical correlation.

Finally, the technological indicator relates to the correlation between the data of the measured
process and the defined process. Data might be available for the investigated process or a similar
process. E.g., in the CONNECTING LCI the emission data for vehicles falling under the EURO6
emission standard are largely based on the data from EURO5 vehicles (correcting for specific
differences of both emission standards), since EURO6 datasets were not available during the data
collection phase of the project, implying a slightly lower technological correlation.

For each indicator and level ∈ [1, 2, 3, 4, 5] a so-called uncertainty factor (UF ) has to be
determined quantifying the additional uncertainty due to the data quality. Uncertainty factor
values for the five DQIs have been published and updated for the ecoinvent database and the
most recent values are summarised in table 5.1.

These uncertainty factors are usually referred to as additional uncertainty factors, either
added to the empirically derived uncertainty of a flow or (in case empirical data is not available)
to uncertainty derived from the basic uncertainty factors shown in table 5.2.
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To calculate the Geometric Standard Deviation (GSD) of a flow from both types of uncertainty
(basic and additional) the following equation can be applied:

σ2
g = e

√
(ln(UF1)2+ln(UF2)2+ln(UF3)2+ln(UF4)2+ln(UF5)2+ln(UFbase)2), (5.6)

where UF1, UF2, ... UF5 correspond to the five additional uncertainty factor values (e.g.,
table 5.1) and UFbase to the basic uncertainty factor value (e.g., table 5.2).

Following the initial publication of these expert-based uncertainty factors, several authors
have published there own empirical-based factors, i.e., Ciroth et al. (2013) and Muller et al. (2016),
where Bayesian inference is used to update the original expert-based factors by systematically
combining them with other information (e.g., stemming from other databases). In Muller et al.
(2016) these factors are published and compared to the original values. Furthermore, additional
uncertainty factors are published not only for generic processes, but also for specific process
categories (e.g., agriculture, combustion, transportation, etc.).

Of particular interest are the categories of combustion and transportation processes. Table
5.3 presents the updated additional uncertainty factors for combustion processes, where increasing
(red) and decreasing (green) values compared to the generic expert factors are highlighted.

Table 5.4 presents the updated additional uncertainty factors for transportation processes,
again highlighting increasing (red) and decreasing (green) values.

The implications of the differences between both sources of uncertainty factors on the
model output uncertainty will be evaluated in this thesis. A python data package is developed
containing both expert-based and empirical-based uncertainty factors. To apply the different
categories (e.g., combustion, transport, agricultural, etc.) of basic and additional uncertainty
factors to corresponding LCI processes, a mapping between the International Standard Industrial
Classification of all economic activities (ISIC)1 and the uncertainty factor categories (e.g.,
transportation, agricultural or manufacturing) is used.

After attributing data quality levels to the five indicators for all data in the CONNECTING
LCI, uncertainty distributions can be derived. First formula 5.6 allows to derive the GSD.
Following Muller et al. (2014), log-normal distributions (the most common distribution type in
the CONNECTING LCI) are then defined by:

f(x, µg, σg) =
exp(

−(ln x−lnµg)2

2 ln2 σg
)

√
2π lnσg

, (5.7)

where σg is the GSD and µg the geometric mean.
Finally, a relevant aspect revealed during the literature review in chapter 3 is the dependency

among inputs and outputs of unit processes of transport modes, in particular during the use phase
where fuel consumptions and airborne tailpipe emissions (e.g., CO2) can be strongly correlated.

Table 5.1: Ecoinvent default additional uncertainty factors as contribution to the square of the
Geometric Standard Deviation (GSD).

Indicator level 1 2 3 4 5

Reliability (UF1) 1.00 1.05 1.10 1.20 1.50
Completeness (UF2) 1.00 1.02 1.05 1.10 1.20
Temporal (UF3) 1.00 1.03 1.10 1.20 1.50
Geographic (UF4) 1.00 1.01 1.02 1.05 1.10
Technological (UF5) 1.00 1.05 1.20 1.50 2.00

1https://ilostat.ilo.org/resources/methods/classification-economic-activities/
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To account for the effect of these dependencies two separate sampling types are employed,
one where uncertainty is independently sampled for inputs and outputs of unit processes (referred
to as independent sampling) and one where fuel related emissions for all transport modes with
internal combustion engines are derived from sampled fuel consumptions and emission factors
defined per mass of burned fuel (referred to as dependent sampling). Fuel dependent emissions
include the afore mentioned carbon dioxide, sulphur dioxide, dinitrogen monoxide, ammonia,
heavy metals (e.g., cadmium, copper, chromium, lead, mercury, nickel, selenium and zinc) and
Polycyclic Aromatic Hydrocarbons (PAH).

Table 5.2: Ecoinvent basic uncertainty factors (UFbase); c: combustion emissions; p: process
emissions; a: agricultural emissions. “NA” is used to designates “Not applicable”.

input / output group c p a

demand of:
Thermal energy, electricity, semi-finished products,
material, waste

1.05 1.05 1.05

Transport 2.00 2.00 2.00
Infrastructure 3.00 3.00 3.00

resources:
Primary energy carriers, metals, salt 1.05 1.05 1.05
Land use occupation 1.50 1.50 1.10
Land use transformation 2.00 2.00 1.20

pollutants emitted to water:
BOD, COD, TOC, DOC, inorganic compounds (NH4,
PO4, NO3, Cl, Na, etc)

NA 1.50 NA

Individual hydrocarbons, PAH NA 3.00 NA
Heavy metals NA 5.00 1.80
Pesticides NA NA 1.50
NO3, PO4 NA NA 1.50

pollutants emitted to soil:
Oil, hydrocarbons total NA 1.50 NA
Heavy metals NA 1.50 1.50
Pesticides NA NA 1.50

pollutants emitted to air:
CO2 1.05 1.05 NA
SO2 1.05 NA NA
NMVOC total 1.50 NA NA
CO2 1.50 NA NA
NOx, N2O 1.50 NA 1.40
CH4, NH3 1.50 NA 1.20
Individuals hydrocarbons 1.50 2.00 NA
PM>10 1.50 1.50 NA
PM10 2.00 2.00 NA
PM2.5 3.00 3.00 NA
Polycyclic aromatic hydrocarbons (PAH) 3.00 NA NA
CO, heavy metals 5.00 NA NA
Inorganic emissions, others NA 1.50 NA
Radionuclides (e.g., Radon-222 NA 3.00 NA

83



84 Chapter 5. Methodology

5.3.3 Other locations

While the focus of this thesis is on dealing with parameter uncertainty and the simulation error
(the most addressed locations for both sub-models) other locations outlined in the classification
proposed in chapter 3 will be qualitatively discussed here.

One prominent source of uncertainty in the experimental frame is the sampling error occurring
for many ABMs, due to running the model with only a fraction of the population. This has been
extensively investigated in literature, e.g., by Kwak et al. (2012), Manzo et al. (2015), and Petrik
et al. (2018). In case of the CONNECTING model however all simulations are based on the
entire synthetic population, following the projections of CBCs living in France and working in
Luxembourg from 2015 until 2025.

To some extent input uncertainty is investigated through the scenarios (e.g., share of EVs
in the CBC population’s car fleet and projections of CBCs over the study period). However,
uncertainty of other inputs (e.g., changes in future socio-demographic variables) can significantly
contribute to output uncertainty as shown in de Jong et al. (2007). Uncertainty in these inputs can
be addressed by means of scenario analysis or stochastic modelling (if appropriate distributions
can be derived), similar to the stochastic propagation schemes advanced in section 5.4. At the
interface of the ABM and LCA part of CONNECTING, the output uncertainty of the ABM
becomes input uncertainty to the LCA. This uncertainty is characterised by means of uncertainty
treatment (i.e., the uncertainty propagation schemes presented in section 5.4).

Another uncertainty location not addressed in the present work is ABM estimation (i.e.,
calibrated parameters of individual choice models). This has been addressed for ABMs in Petrik
et al. (2018), deriving uncertainty distributions for all estimated parameters and performing
stochastic modelling. Their findings together with the framework advanced in the present thesis
provide a basis to address uncertainty in ABM parameters for ABM/LCA coupled models.

Finally, there is model specification uncertainty (e.g., about the functional form of the ABM
and LCA part of CONNECTING as well as the integrating structure) as an uncertainty location.
Different types of discrete choice models and different sets of selected explanatory variables

Table 5.3: Updated values for additional uncertainty factors of combustion processes based on
Muller et al. (2016), as contribution to the square of the GSD.

Indicator level 1 2 3 4 5

Reliability (UF1) 1.00 1.06 1.12 1.18 1.69
Completeness (UF2) 1.00 1.02 1.05 1.10 1.20
Temporal (UF3) 1.00 1.08 1.27 1.72 1.75
Geographic (UF4) 1.00 1.08 1.11 1.66 1.65
Technological (UF5) 1.00 1.04 1.04 1.50 1.89

Table 5.4: Updated values for additional uncertainty factors of transportation processes based on
Muller et al. (2016), as contribution to the square of the GSD.

Indicator level 1 2 3 4 5

Reliability (UF1) 1.00 1.05 1.10 1.20 1.50
Completeness (UF2) 1.00 1.02 1.05 1.10 1.20
Temporal (UF3) 1.00 1.16 1.26 1.26 1.15
Geographic (UF4) 1.00 1.01 1.02 1.05 1.10
Technological (UF5) 1.00 1.05 1.20 1.50 2.00
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would results in different sets of predicted activity-travel patterns. At the beginning of the
CONNECTING project different types of mode choice modelling (e.g., using Bayesian networks)
have been tested and Mariante (2017) also tests various types of econometric modelling options
and constraints, however the current selection of models are considered to be the best fit. With
regard to model specification of the LCI of CONNECTING, the overarching structure follows the
matrix approach outlined in chapter 2. Uncertainty with regard to this overarching structure
(such as uncertainty resulting from the simplistic assumption of linearity) is beyond the scope of
this thesis.

5.4 Uncertainty treatment

Uncertainty propagation using stochastic modelling is used as the most appropriate and
feasible method. To this end sampling needs to be somewhat coordinated, for which a so-called
random seed factory is defined in section 5.4.1.

In total three uncertainty propagation schemes are then outlined in this section to propagate
parameter uncertainty (scheme 1), the simulation error (scheme 2) and both locations simultane-
ously (scheme 3). These schemes serve to answer questions about the magnitude of uncertainty
stemming from these locations and affecting the model outputs (i.e., the QOIs defined in chapter
4).

5.4.1 Random seed factory

When running UA for multiple scenario an issue arises: how can one make sure that differences
between scenarios are not a result of different random seeds being passed to model components,
but purely a result of differences between the scenarios themselves. To this end, a seed generating
structure (hereafter referred to as “random seed factory”) is used, building on the work of Bowman
et al. (2006) and Vovsha et al. (2008). The purpose of the random seed factory is to make model
runs reproducible and solve the above mentioned issue.

For each random draw, e.g., to simulate the jth activity type choice of the ith individual, the
same random seed should be applied for this choice across all scenarios for the same model run. To
assure this, the random seed factory first randomly generates seeds (in case of the CONNECTING
model random integers) for each model run based on an initial master seed. Subsequently, the
factory uses these seeds to generate seeds for each choice model and ultimately for each potential
choice of each individual i. Using the same initial seed for each scenario will assure that for each
individual choice of a model run the same seed is used. Figure 5.2 illustrates the seed generation.

Similarly, when running LCA simulations for ABM results of different scenarios, again the
difference among final results should not be due to different random samples of parameter values
in the technosphere and biosphere matrices, but due to the differences in the scenarios. To assure
this, seeds are used in a manner that the same concrete instances of L are generated in the same
order for the UA of each scenario. This is done using the python package presamples2 which is
compatible with the brightway2 package (Mutel, 2017) used to perform the LCA calculations.

5.4.2 Sampling

While for the LCA sub-model of CONNECTING, sampling can be conducted simply by
randomly drawing values from the probability distributions of technosphere and biosphere

2https://presamples.readthedocs.io/en/latest/index.html
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Initial seed
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seed
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Activity duration
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· · ·

Activity 1
seed

Figure 5.2: Random seed generation by seed factory. Based on an initial seed, seeds are generated
for each model run, then for each individual choice model and ultimately for each potential choice.
The same seeds are generated across scenarios by using the same initial seed.

flows, sampling from the individual choice models of the ABM part of CONNECTING is more
challenging.

Helder et al. (2015) describe two alternative ways of sampling individual choices when
performing a microsimulation. In the following a brief description of both alternative sampling
methods is provided, based on Helder et al. (2015).

The first sampling method proceeds by sampling directly from the distributions of the error
terms (i.e., EV 1) for each possible outcome out, and then chooses the outcome with the highest
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utility Uout. This is repeated for each individual using the random seeds provided for each choice
(see section 5.4.1).

The second sampling method proceeds by determining all choice probabilities P (Yi = out)
for an individual according to equation 5.2. The probabilities of all possible outcomes allow then
to form a cumulative distribution function for that individual. Next, a random draw is made
from a standard uniform distribution, which is mapped onto the cumulative distribution function,
determining the individual’s choice. Similar to the first sampling method, this is repeated for
each individual using the random seed provided by the seed factory (see section 5.4.1) for each
choice. The present work applies this second method.

5.4.3 Scheme 1: Simulation error

The first scheme aims at propagation the simulation error from the stochastic choice models
of the ABM. It builds on the body of literature found in chapter 3 proposing methodologies to
propagate the simulation error, e.g., Rasouli and Timmermans (2013a), while adapting these
efforts to the new context of ABM/LCA coupled models. The following steps are applied. First,
the synthetic population is initialized for the study region (this step is perform using the same
random seed for each model run, thus always resulting in the identical population). Next the
uncertainty propagation starts:

1. The seed factory is initialised creating N sets sv of random seeds with v ∈ [1, ..., N ],
containing seeds for each potential choice of each choice model

2. Choice models are calibrated based on the survey data creating one nominal concrete
instance M∗

3. The ABM is run N times (once for each set of random seeds)

4. For each output rM∗
sv

of the ABM a LCA is run using the nominal concrete instance L∗

5. The output uncertainty measures are computed for each QOI

As noted above, the entire synthetic population is used for each model run (and each time
step), where the total number of model runs N is set to be 500 (which is consistent with what
has been observed in the literature review of ABM studies in chapter 3). Figure 5.3 illustrates
the general structure of the first scheme based on the nomenclature presented in section 5.2.

While previous efforts, e.g., Rasouli and Timmermans (2013a), have primarily focussed to
propagate the simulation error from all choice facets simultaneously, three sub-schemes of scheme
1 are defined in the following to allow for propagation of uncertainty from (1) individual ABM
sub-models, (2) combinations of 2 ABM sub-models and (3) all ABM sub-models.

Scheme 1-1 The first sub-scheme aims at investigating the uncertainty from individual choice
models. To this end one of the four ABM sub-models takes its stochastic state, with the remaining
sub-models taking their deterministic state (nominal concrete instance). This sub-scheme is
repeated for all four sub-models resulting in a total of 4·500 model runs.

Scheme 1-2 To investigate potential interaction effects among ABM sub-models with regard
to uncertainty, the second sub-scheme is repeated for all combinations of two ABM sub-models
taking their stochastic state, with the remaining two sub-models taking their deterministic state.
This sub-scheme is repeated for all six possible combinations resulting in a total of 6·500 model
runs.
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Figure 5.3: Scheme 1: Given a set of inputs I and N sets sv containing random seeds for each
potential random choice M∗ produces a set of ABM results rM∗

sv
. The model outputs of M∗

become inputs to the LCA model part L∗ which allows to produce a set of final model outputs
rM∗

sv
L∗ for each set sv.

Scheme 1-3 This final sub-scheme follows the general description of scheme 1, with all ABM
sub-models (activity type, duration, location and mode choices) taking their stochastic state. To
this end 500 model runs are required.

Figure 5.4 shows all scheme 1 sub-schemes, where in the Venn diagram the four coloured
rectangles represent each choice model being run stochastically. The intersections represent
multiple sub-models being run stochastically, i.e., scheme 1-3 is represented where all four
rectangles intersect.

5.4.4 Scheme 2: Parameter uncertainty

The second scheme aims at propagation the uncertainty of parameters of the LCA sub-models.
Stochastic modelling in LCA dates back to the work of Kennedy et al. (1996) and has been
applied to LCA in the context of mobility as shown in chapter 3 (e.g., Cox et al. (2018)). For
scheme 2 the following steps are applied during each model run. First, the synthetic population is
initialized for the study region (this step is performed using the same random seed for each model
run, thus always resulting in the identical population). Next the uncertainty propagation starts:

1. The seed factory is initialised creating N random seeds

2. Choice models are calibrated based on the survey data creating one nominal concrete
instance M∗s∗

3. The nominal concrete instance M∗s∗ of the ABM is run one time, where for each execution
of each choice model the most likely outcome is used

4. For the output rM∗
s∗
N LCA model runs are conducted, each time creating a new concrete

instance Lw by sampling all LCA parameters values according to the corresponding random
seed and the derived uncertainty distributions

5. The output uncertainty measures are computed for each QOI

Again, the entire synthetic population is used for each ABM run, while the total number
of model runs N is set to be 1’000 (which is at the lower end of what has been observed in the
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Figure 5.4: Venn diagram showing the three sub-schemes of scheme 1
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Figure 5.5: Scheme 2: Given a set of inputs I and N random seeds M∗ produces one simulation
result rM∗ . The model output of M∗ becomes the input to N concrete instances of the LCA
model part L, which allows to produce a set of final model outputs rM∗Lw for each wth seed.

literature review of LCA studies in chapter 3). Figure 5.5 illustrates the general structure of the
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Figure 5.6: Venn diagram showing the four sub-schemes of scheme 2

second scheme based on the nomenclature presented in section 5.2.
Four sub-schemes of scheme 2 are defined to assess the impact of the two sets of uncertainty

factor values (expert and empirical factors presented in section 5.3.2), as well as the impact
of accounting for dependencies among fuel consumption and tailpipe emissions (similar to e.g.,
Boureima et al. (2009)) on the uncertainty of both QOIs. The four sub-schemes correspond to all
possible combinations of uncertainty factors (referred to as expert and empirical) and sampling
methods (referred to as independent sampling and dependent sampling). For all four sub-schemes
in total 4·1’000 model runs are conducted.

5.4.5 Scheme 3: Simulation error and parameter uncertainty

Finally, the third scheme aims at propagating both the simulation error and the uncertainty
from parameters of the LCA. This is the first attempt to align MC runs of such coupled models.
The following steps are applied during each model run. First, the synthetic population is initialized
for the study region (this step is performed using the same random seed for each model run, thus
always resulting in the identical population). Next the uncertainty propagation starts:

1. The seed factory is initialised creating R sets sv of random seeds with v ∈ [1, ..., R],
containing seeds for each potential choice of each choice model and N random seeds for the
LCA

2. Choice models are calibrated based on the survey data creating one nominal concrete
instance M∗

3. The ABM is run R times (once for each set sv of random seeds)

4. Using bootstrapping with replacement, N ABM outputs are sampled from the R original
results and for each a corresponding concrete instance Lw is created by sampling all LCA
parameters values according to the corresponding random seed to conduct N LCA model
runs

5. The output uncertainty measures are computed for each QOI

Again, the entire synthetic population is used for the ABM runs, while the number of ABM
runs R is set to be 500 and the number of LCA model runs N is set to be 1’000. The bootstrapping
of step 4 allows to address the disparity of the feasible number of model runs between both
sub-models. In practice this means that 1’000 rM∗

sv
are randomly chosen (with replacement) out
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Figure 5.7: Scheme 3: Given a set of inputs I and R sets sv containing random seeds for each
potential random choice, M∗sv produces a set of ABM results rM∗

sv
. Next N random seeds are

generated to create N concrete instances of the LCA Lw and using bootstrapping with replacement
N corresponding ABM results are selected, allowing to produce a set of final model outputs
rM∗

sv
Lw for each wth seed in N .

of the 500 original results. These 1’000 bootstrapped results then serve as inputs to the 1’000
subsequent LCA model runs. The impact of this bootstrapping will be assessed in order to assure
that it does not cause major changes in the mean or spread of results.

This third scheme is only run for the setup where all choice models are set to their stochastic
state, the expert uncertainty factors and the independent sampling. Figure 5.7 illustrates the
general structure of the third scheme based on the nomenclature presented in section 5.2.

5.5 Uncertainty communication

Finally, uncertainty communication aims at communicating key findings of the UA to
stakeholders.

Three different objectives can be formulated and the corresponding uncertainty measures
can be introduced. As a first, when assessing the effect of uncertainty on a single scenario to
evaluate magnitude of different uncertainty locations the CV has been chosen, as it is normalised
by the mean (making it a comparable measure between QOI, scenarios and schemes).

The second objective is to assess the adequate number of model runs to perform for each
scheme. To this end, the convergence (percentage difference of the CV compared to the CV after
N model runs) is chosen. Rasouli (2016) has applied a similar approach, formulating a threshold
for the percentage difference of the CV compared to the CV after N model runs. This approach
however does not allow a conclusion whether or not convergence has been reached, as the relative
difference will always drop to zero after N model runs.

To further advance the state-of-the-art it is here proposed to add a second condition to the
approach of Rasouli (2016), where it is considered that convergence is reached if the percentage
difference of the CV is consistently lower than 5% prior to N/2 model runs. It has to be
acknowledge that both the threshold of 5% and the number of model runs by which this threshold
should be reached are arbitrary, however they can be set according to the wisdom of the modeller
or potentially requirements defined during the project definition phase. Using the second condition,
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there is now a real possibility of concluding that convergence in not reached and that potentially
additional model runs should be performed.

Finally, when applying UA in a comparative assertion to multiple scenarios, a variety of
measures have been proposed. Based on the measures applied and reviewed by Mendoza Beltran
et al. (2018a) it is chosen to use the modified Null Hypothesis Significance Test (NHST), the
Bhattacharyya coefficient and the discernibility score for all scenarios.

The modified NHST proposed by Mendoza Beltran et al. (2018a) builds on regular NHST,
which investigates if the mean (or median) of the relative impacts of two scenarios are statistically
significantly different from each other. A pair-wise difference per MC runs is computed for
each pair of scenarios and a paired t-test is performed to determine whether the mean of the
distribution of differences is significantly different from zero (which is the hypothesised mean
of the null hypothesis). The null hypothesis is then rejected or not, depending on the p-value
and the predefined significance level α. The modification to the standard NHST proposed by
Mendoza Beltran et al. (2018a) addresses the limitation of the null hypothesis which is theoretically
always rejected by simply increasing the sample size (in this case the number of MC runs). While
for standard NHST the null hypothesis assumes no difference between mean (or median) values,
the modified NHST includes an “at least as different as” in the null hypothesis, requiring a
standardized difference of means of at least 0.2.

A second complimentary measure applied in this thesis is the Bhattacharyya coefficient,
which is first proposed by Mendoza Beltran et al. (2018a) and applied by Heijungs (2021). It is a
measure of the amount of overlap between two statistical samples. To make the Bhattacharyya
coefficient operational, the values of the two samples that are being compared are split into a
chosen number of partitions (par), and the number of members of each sample in each partition
is computed. The Bhattacharyya coefficient can then be computed as follows:

BC(p,q) =
∑
∀par

√
pparqpar (5.8)

Where p and q are the two samples and ppar and qpar the numbers of members of each
partition par of p and q respectively.

Finally, a widely applied measure of uncertainty in comparative LCA is the discernibility
score, where a pair-wise comparison per MC run is made for each pair of scenarios, assessing
whether the results of one scenario are higher or lower than those of another scenario. The results
are expressed as, e.g., a percentage of MC runs for which a scenario has higher results than
another scenario.

5.6 Summary

This chapter introduces the uncertainty framework and research designs applied for the
CONNECTING model.

The main locations of uncertainty identified from the literature reviews are determined and
a new nomenclature for ABM/LCA coupled models is introduced. The nomenclature introduces
the notion of a (nominal) concrete instance of a model, which can be associated to a specific
result. The main purpose of this notion is to make specific mode runs traceable and reproducible.

For both sub-models, the uncertainty characterisation is outlined. For the ABM part of
CONNECTING the formulas to derive choice probabilities for the main types of choice models
are presented. For the LCA the broadly applied pedigree approach is introduced, and two sources
of uncertainty factors (expert-based and empirical-based) are compare, which are applied to the
CONNECTING LCI.
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Three schemes for the UA of the ABM simulation error (scheme 1), parameter uncertainty
in the LCA (scheme 2) and a combination of both (scheme 3) are detailed building on the
newly introduced nomenclature. These schemes and various sub-schemes allow for an in depth
investigation of these uncertainty locations.

Finally, based on the findings of the literature review in chapter 3 two additional issues and
their respective solutions are highlighted: (1) the proper usage of a random seed factory for UA
of multiple scenarios; (2) the investigation of parameter dependencies among inputs and outputs
of LCI unit processes.
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Chapter 6

Results of scheme 1 - ABM model
uncertainty

6.1 Introduction

As presented in chapter 3, both sub-models of the CONNECTING model have relevant
uncertainty locations that need to be systematically addressed. To this end, chapter 5 presented
a nomenclature and three schemes (with various sub-schemes) that allow to propagate model
uncertainty. This chapter will report on the results of scheme 1, which focusses on ABM
uncertainty.

Although model uncertainty encompasses uncertainty from model specification (e.g., un-
certainty about the functional form), model estimation (e.g., uncertainty about measures and
calibrated parameters) and the simulation error, this thesis will focus only on the simulation error
of the ABM part of CONNECTING. This choice is motivated by the fact that this is the most
addressed location found in the literature review in chapter 3 for ABMs.

As seen in chapter 4, the ABM part of CONNECTING can be classified as an utility-based
model, with error terms present in the utility functions. For each model run, random draws
from choice models can cause variations in the model output (i.e., different choices being made
by individuals in the synthetic population). The distributions of error terms depend on the
assumptions underlying the specific modelling chosen for a choice facet (as described in chapter
5).

The focus is set on uncertainty of system level outputs (rather than individual or sub-regional
outputs), namely the QOIs quantifying climate change related impacts (GWP100 ) and respiratory
effects related impacts (R-E ) for which uncertainty will be quantified and communicated as
outlined in section 5.5.

All schemes are applied to the CONNECTING model for two scenarios (BAU and GREEN )
of the PT system (reflecting two levels of investment into PT) and two scenarios describing the
evolution of electric mobility (ADEME and TIR) within the private car fleet. All combinations of
both scenario families are evaluated in the following, resulting in the four scenarios: BAU-ADEME,
BAU-TIR, GREEN-ADEME and GREEN-TIR.

In sections 6.2 a brief description of the nominal CONNECTING model results is presented,
showing the single score deterministic results for all scenarios. These results serve as a reference
for this and subsequent result chapters. Sections 6.3-6.4 will present the results of the three
sub-schemes of scheme 1, before a short summary is provided in section 6.5.
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6.2 Nominal model results

In this section a brief description of the results of the nominal model for the four policy
scenarios is provided. To this end a nominal concrete instance of both CONNECTING sub-models
is created, where “nominal concrete instance” (see nomenclature in chapter 5) is a model where
all model parameters take their nominal value and where each random choice event results in its
most likely outcome. This nominal concrete instance is run once resulting in the deterministic
results of the CONNECTING model.

6.2.1 ABM results

First, the intermediate results of the ABM are presented. The ABM part of CONNECTING
predicts a DAP for each individual in the synthetic population, where the two PT scenarios affect
individual choices, aiming at decreasing the usage of cars and increasing the usage of PT. Note,
that the two scenarios with regard to EVs (TIR and ADEME ) are not presented in this section,
as the share of powertrains in the car fleet will only affect the LCA and not the intermediate
ABM results.

Figure 6.1 shows the results of the ABM part of CONNECTING. To make the ABM results
(and subsequent LCA results) more relatable, the average travelled distances per individual are
calculated. In figure 6.1 the distances travelled by the two PT modes (bus and train), by car and
by slow mobility are shown. In 2015 the model predicts that per individual 64 kilometres (or 79%
of daily travel distances) are travelled by the mode of car, while bus, train and slow mobility only
account for a smaller share (together 21% of daily travel distances). Both scenarios achieve a
decrease of car usage. While the BAU scenario decreases the daily travelled distances by car to
around 58 kilometres (or 72% of daily travel distances) by 2025, the GREEN scenario achieves
a more substantial reduction to around 51 kilometres (or 65% of daily travel distances). Both
PT scenarios thus achieve a reduction of car usage, with the GREEN scenario showing a more
substantial reduction.

At the same time, the usage of bus and train increases for both scenario, with the GREEN
scenario (figure 6.1 (b)) showing a stronger increase than the BAU scenario (figure 6.1 (a)). The
mode of slow mobility remains unattractive for CBCs for both scenarios throughout the study
period, only accounting for a marginal share of the travelled distances. This is not surprising as
CBCs usually need to travel long distances to arrive at their work place, which is impractical
with slow mobility.

6.2.2 LCA results

Next, the CONNECTING model outputs (more specifically both QOIs) can be calculated
(shown in figure 6.2) using the travelled distances as inputs to the LCA part of CONNECTING.
In 2015 all scenarios show identical results, as the PT system and car fleets are identical as well.
2015 is thus the reference year after which scenarios diverge.

In figure 6.2 (a) one can see that all scenarios presented earlier in chapter 4 translate into a
reduction of the environmental burden with regard to GWP100. While in 2015, GHG emissions
are still above 17 kg per CBC for a all daily travels, the BAU-ADEME scenario can achieve a
reduction of 3% in 2020 and 8% in 2025. The BAU-TIR scenario shows a stronger reduction of
4% and 13% in 2020 and 2025 respectively. The highest reduction is achieved by the GREEN-TIR
scenario, for which impacts are reduced by 8% and 17% in 2020 and 2025 respectively.

The GREEN scenario thus systematically results in lower GWP100 impacts compared to
the BAU scenario, all else equal. However, in 2025 a lower investment in PT can be compensated
by a higher share of EVs, as the BAU-TIR scenario shows lower impacts (15.20 kgCO2 −Eq per
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(a) (b)

Figure 6.1: Evolution of travel demand per CBC by transport mode. The mode “Car” encompasses
all powertrains. (a) shows the results for the BAU scenario. (b) shows the results for the GREEN
scenario.

commuter) than the GREEN-ADEME scenario (15.27 kgCO2 − Eq per commuter) in figure 6.2
(a).

The TIR scenario also systematically results in lower GWP100 impacts compared to the
scenario ADEME, all else equal. This suggests that a higher share of EVs can in fact reduce GHG
emissions of a transport system from a life cycle perspective. However, the impact of electric
mobility only becomes apparent in 2025. In 2020 impacts of TIR scenarios are on average only
0.10 kgCO2 −Eq lower than ADEME scenarios, all else equal. In 2025 they are on average 0.85
kgCO2 − Eq lower. This can be explained by the differences in the car fleet shares between the
TIR and ADEME scenario, which are only marginal up to 2020, but increase for later study years,
as shown in figure 4.4.

In Figure 6.2 (b) the results for R-E, the second QOI, are shown. One can see that the
impacts per CBC are decreasing over the course of the study period for all scenarios, with the
GREEN scenario systematically showing lower R-E impacts compared to the BAU scenario.
Both BAU scenarios achieve impact reductions of 12% and 20% in 2020 and 2025 respectively.
Both GREEN scenarios achieve impact reductions of 14% and 22% in 2020 and 2025 respectively.

The TIR and ADEME scenarios seem to have no significant influence. In part this results
from the small differences between the fleet shares, as noted above for GWP. In addition, while
EVs do not have tailpipe emissions, they are responsible for emissions occurring during the
electricity production to charge the battery and emissions occurring during the raw material
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(a) (b)

Figure 6.2: Nominal model outputs for both QOIs. (a) shows GWP100 per CBC. (b) shows R-E
per CBC.

extraction (e.g., for battery components).
Based on the single score results in figure 6.2 decisions seem rather clear cut. Higher

investments in PT and higher shares of EVs in car fleets can reduce environmental impacts.
However, without an indication of the confidence that one can put into these results some
investments might ultimately be ill advised and not result in the desired outcomes. The following
sections will show how different uncertainty locations can affect both QOIs.

Following the results of the nominal model, the following sections 6.3-6.4 will present the
results of the three sub-schemes of scheme 1.

6.3 Sub-scheme 1-1: Separate treatment

Sub-scheme 1-1 focusses on individual choice facets of the ABM part of CONNECTING. For
each of the four choice models presented in chapter 4 a concrete instance of the CONNECTING
model is created and run 500 times. Each time one choice model is set run stochastically (with
changing random number seeds for each model run), while all other choice models are set to their
deterministic state (corresponding to their nominal concrete instance) where each random choice
event results in its most likely outcome.
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6.3.1 Output distributions

Tables 6.1 and 6.2 provide the descriptive statistics of the model outputs for both QOIs
respectively. Each table is sub-divided into sections for each ABM choice model, containing the
results of sub-scheme 1-1 for that choice model being run stochastically. For each model the
median, mean, SD and CV are provided. In 2015, the reference year, these statistics are identical
for all scenarios, while for later years they diverge increasingly.

A first notable aspect of the results in table 6.1 is, that mean and median values change for
different choice models being set to run stochastically.

Taking the nominal results presented in figure 6.2 as a reference, running the activity type
model stochastically results in (on average) -1.6% lower mean values, while running the location
model stochastically results in (on average) 2.8% higher mean values. For other choice models
similar behaviours can be observed, but to a lesser extend. Similar results are also observed for
the second QOI, R-E in table 6.2.

This phenomena can be explained in part by the definition of the nominal concrete instance
of the ABM part of CONNECTING, where each execution of a choice model results in the most
likely outcome (i.e., option with the highest utility). Taking the location model as an example,

Table 6.1: Descriptive statistics of uncertainty distributions of GWP100 scores in [kg CO2-eq] for
sub-scheme 1-1. Values are provided for each of the four ABM sub-models.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

Activity type model

Median 17.3 16.7 15.8 17.3 16.6 15.0 17.3 15.9 15.0 17.3 15.8 14.2
Mean 17.3 16.7 15.8 17.3 16.6 15.0 17.3 15.9 15.0 17.3 15.8 14.2
SD 0.020 0.017 0.016 0.020 0.017 0.015 0.020 0.017 0.015 0.020 0.017 0.014
CV [%] 0.118 0.102 0.100 0.118 0.102 0.099 0.118 0.105 0.102 0.118 0.105 0.100

Duration model

Median 17.5 17.0 16.1 17.5 16.9 15.2 17.5 16.2 15.3 17.5 16.1 14.5
Mean 17.5 17.0 16.1 17.5 16.9 15.2 17.5 16.2 15.3 17.5 16.1 14.5
SD 0.014 0.012 0.011 0.014 0.012 0.011 0.014 0.012 0.011 0.014 0.012 0.011
CV [%] 0.081 0.073 0.071 0.081 0.072 0.069 0.081 0.076 0.075 0.081 0.076 0.073

Location model

Median 17.9 17.4 16.6 17.9 17.3 15.7 17.9 16.7 15.8 17.9 16.6 14.9
Mean 17.9 17.4 16.6 17.9 17.3 15.7 17.9 16.7 15.8 17.9 16.6 14.9
SD 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
CV [%] 0.035 0.037 0.039 0.035 0.037 0.038 0.035 0.038 0.039 0.035 0.038 0.039

Mode choice model

Median 17.8 17.2 16.3 17.8 17.1 15.4 17.8 16.0 15.2 17.8 15.9 14.4
Mean 17.8 17.2 16.3 17.8 17.1 15.4 17.8 16.0 15.2 17.8 15.9 14.4
SD 0.011 0.009 0.010 0.011 0.009 0.009 0.011 0.009 0.009 0.011 0.009 0.009
CV [%] 0.059 0.055 0.059 0.059 0.055 0.056 0.059 0.056 0.059 0.059 0.056 0.056
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running it stochastically increases impacts compared to the nominal model. One explanation
for this could be, that the location model reduces utility for locations causing a longer detour
from the home-work axis of the individual (as seen in chapter 4). Thus, the most likely choice
tends to be close to the home-work axis, while running the location model stochastically will
allow individuals to choose any possible location (not necessarily the most likely one) with a
certain probability, even locations further away from the home-work axis. The stochastic model
can thus potentially result in longer detours for commuters, which will results in overall longer
travel distances and in consequence higher impacts.

A second notable aspect of the results in table 6.1 is that different choice models cause
different levels of uncertainty in the model outcome. The activity type model shows the highest
CV values (0.099%-0.118%), followed by the duration model (0.069%-0.081%) and the mode choice
model (0.059%-0.055%). The activity location model shows the lowest CV values (0.035%-0.039%)
compared to the other choice models. This ranking is confirmed by results in table 6.2 for the R-E
impacts, where the activity type model shows the highest CV values (0.095%-0.117%), followed by
the duration model (0.065%-0.080%) and the mode choice model (0.045%-0.057%). The activity
location model shows the lowest CV values (0.035%-0.035%).

These values can be in part explained by choice probabilities for a logit models derived

Table 6.2: Descriptive statistics of uncertainty distributions of R-E scores in 10−7 [disease
incidences] for sub-scheme 1-1. Values are provided for each of the four ABM sub-models.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

Activity type model

Median 9.4 8.3 7.6 9.4 8.3 7.6 9.4 8.1 7.4 9.4 8.1 7.4
Mean 9.4 8.3 7.6 9.4 8.3 7.6 9.4 8.1 7.4 9.4 8.1 7.4
SD 0.011 0.008 0.007 0.011 0.008 0.007 0.011 0.008 0.007 0.011 0.008 0.007
CV [%] 0.117 0.100 0.095 0.117 0.100 0.095 0.117 0.100 0.095 0.117 0.100 0.095

Duration model

Median 9.5 8.4 7.6 9.5 8.4 7.6 9.5 8.2 7.5 9.5 8.2 7.4
Mean 9.5 8.4 7.6 9.5 8.4 7.6 9.5 8.2 7.5 9.5 8.2 7.4
SD 0.008 0.006 0.005 0.008 0.006 0.005 0.008 0.006 0.005 0.008 0.006 0.005
CV [%] 0.080 0.069 0.065 0.080 0.069 0.065 0.080 0.071 0.067 0.080 0.071 0.066

Location model

Median 9.7 8.6 7.8 9.7 8.6 7.8 9.7 8.4 7.6 9.7 8.4 7.6
Mean 9.7 8.6 7.8 9.7 8.6 7.8 9.7 8.4 7.6 9.7 8.4 7.6
SD 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
CV [%] 0.035 0.036 0.036 0.035 0.036 0.036 0.035 0.036 0.036 0.035 0.036 0.036

Mode choice model

Median 9.6 8.5 7.8 9.6 8.5 7.8 9.6 8.3 7.6 9.6 8.3 7.6
Mean 9.6 8.5 7.8 9.6 8.5 7.8 9.6 8.3 7.6 9.6 8.3 7.6
SD 0.005 0.004 0.004 0.005 0.004 0.004 0.005 0.004 0.003 0.005 0.004 0.003
CV [%] 0.057 0.045 0.045 0.057 0.045 0.045 0.057 0.046 0.045 0.057 0.046 0.045
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according to equation 5.2. If all options in a choice set have similar utility to an individual,
they will also have similar probabilities of choice, while if some options have a higher utility
compared to other options they will have a higher probability of choice. If there is a high disparity
among the utilities (and in consequence the probabilities of choice) this will cause similar choices
across model runs and in consequence low variability among DAPs (especially if one option is
significantly more likely than all other options).

Taking the location model as an example, locations providing a high level of services will
have a significantly higher utility and in consequence higher probability of choice than locations
with a low level of services. In the study region there are only a few such locations, mainly the
cities of Luxembourg, Thionville and Metz. These locations will thus have a high probability of
choice, causing little variation among model runs. In addition, CBCs are more constrained by
their mandatory work activity which has a fixed location, thus causing no variation at all for
work location choices. In consequence, the location model exhibits a low level of uncertainty.

In case of the activity type model, choices can have similar levels of utility (and probability of
choice) to an individual, potentially resulting in longer or shorter DAPs. This causes a relatively
higher level of variation among DAPs and translates into a higher level of uncertainty in the
model outcomes (i.e., both QOIs).

A third notable aspect of the results in tables 6.1-6.2 is that for three of the four models
(activity type, duration and mode choice) the SD and CV values decrease for later simulation years.
This could be a result of increasing population numbers, similar to the effect of the simulation
error, where a larger sample of the population leads to a lower variability observed in the model
output.

Finally, a fourth notable aspect of the results in tables 6.1-6.2 is that the overall level of
uncertainty is low compared to the mean and median values, with all CV values being well below
1%. Individually, choice models do not cause high levels of variation in the systems environmental
impacts for CBCs.

6.3.2 Convergence

Following the descriptive statistics of both QOIs, next the convergence of CV values for
individual ABM choice models is investigated.

Convergence of activity type model The CV values for the activity type model are presented
as a function of the number of model runs in figure 6.3. After 500 runs, CV values in figure 6.3
correspond to the values previously shown in tables 6.1-6.2 for the activity type model. The CV
values are provided every 25 runs starting after 25 runs.

It can be observed that in absolute terms, the CV values do not exhibit much fluctuation or
strong upward or downward trends for any scenario or year. It seems that only a few runs are
necessary to arrive at reasonable estimates for CV values.

As these visual impressions can be misleading, a new convergence metric has been suggested
in chapter 5 of the present thesis. Similar to Rasouli (2016) it is assumed that convergence of a
measure is reached, once its percentage difference compared to the value of that measure after
N model runs is consistently lower than a selected threshold. As indicator of convergence, the
lowest number of runs required to reach convergence can be compared.

However, as noted in chapter 5 convergence will eventually always be reached (at the latest
for N runs), regardless of the chosen threshold. Therefore, a second condition was suggested in
this thesis: in order to assert that for a specific measure the model output has converged, the
lowest number of runs required must be lower than N/2.

Tables 6.3-6.4 show the lowest number of runs required to reach convergence of the activity
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(a) (b)

Figure 6.3: CV as a function of the number of model runs for sub-scheme 1-1 of the activity type
model. (a) shows the CV values for GWP100. (b) shows the CV values for R-E.

type model for both QOIs, using thresholds of 1% up to 10% relative difference. While for 2015
we can assert that the CV values have converged according to our criteria (i.e., reaching 5%
threshold within N/2 mode runs), both for 2020 and 2025 the criteria are not satisfied. Such a
claim could only be made for higher thresholds.

Convergence of duration model Next, convergence of the CV of both QOIs for sub-scheme
1-1 of the duration model is assessed. Figure 6.4 shows the CV as a function of the number
of model runs. As seen in the previous section, CV values are lower compared to those of the
activity type model. For the first 175 runs, CV values show a slight downwards trend before
stabilising around their final values.

Tables 6.5-6.6 show the lowest number of runs required to reach convergence of the duration
model. In contrast to the type model, we can assert that CV values have converged for all years
and scenarios and both QOIs as our criteria are always satisfied.

Convergence of location choice model Next, convergence of the CV of both QOIs for
sub-scheme 1-1 of the location model is assessed. Figure 6.5 shows the CV as a function of the
number of model runs. While CV values are the lowest among all choice models, there is a slight
upward trend that can be observed at least until 425 model runs.

Tables 6.7-6.8 show the lowest number of runs required to reach convergence of the location
model. Confirming the visual impression, the location model converges significantly slower than
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Table 6.3: Convergence for thresholds of 1-10% for GWP100, for sub-scheme 1-1 with activity
type sub-model is being run stochastically.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

1 372 428 432 372 428 431 372 433 435 372 433 432
2 268 407 388 268 407 388 268 417 394 268 417 393
3 253 381 346 253 381 346 253 285 334 253 285 334
4 130 333 295 130 333 295 130 277 285 130 277 285
5 126 278 278 126 278 278 126 258 277 126 258 278
6 120 270 268 120 270 269 120 196 257 120 196 257
7 107 254 248 107 254 248 107 191 194 107 191 230
8 103 176 126 103 176 125 103 152 189 103 152 189
9 95 150 124 95 150 123 95 103 150 95 101 150
10 41 103 120 41 103 112 41 99 122 41 98 120

Table 6.4: Convergence for thresholds of 1-10% for R-E, for sub-scheme 1-1 with activity type
sub-model is being run stochastically.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

1 372 449 466 372 449 466 372 432 466 372 432 466
2 263 413 397 263 413 397 263 412 400 263 412 400
3 237 388 381 237 388 381 237 382 385 237 382 385
4 122 343 347 122 343 347 122 288 346 122 288 346
5 111 284 334 111 284 334 111 279 303 111 279 303
6 105 275 281 105 275 281 105 271 280 105 271 280
7 101 264 275 101 264 275 101 256 275 101 256 275
8 94 247 254 94 247 254 94 188 255 94 188 255
9 32 150 115 32 150 115 32 95 122 32 95 121
10 18 103 101 18 103 101 18 93 97 18 93 97

Table 6.5: Convergence for thresholds of 1-10% for GWP100, for sub-scheme 1-1 with duration
sub-model is being run stochastically.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

1 453 447 445 453 447 417 453 380 460 453 380 460
2 363 364 405 363 364 405 363 310 376 363 310 376
3 343 356 364 343 356 364 343 205 362 343 205 362
4 121 143 362 121 143 362 121 201 187 121 201 188
5 117 128 149 117 128 150 117 149 152 117 149 152
6 115 120 146 115 120 147 115 143 148 115 143 148
7 96 117 143 96 117 143 96 138 143 96 138 143
8 68 114 137 68 114 138 68 129 138 68 129 138
9 67 99 128 67 99 128 67 125 122 67 125 125
10 66 88 117 66 88 119 66 119 117 66 119 118
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(a) (b)

Figure 6.4: CV as a function of the number of model runs for sub-scheme 1-1 of the duration
model. (a) shows the CV values for GWP100. (b) shows the CV values for R-E.

the activity type and duration models.
The location model does not satisfy the convergence criteria set for this thesis, as convergence

for a 5% threshold is only reached significantly after N/2 mode runs for all scenarios and years.

Table 6.6: Convergence for thresholds of 1-10% for R-E, for sub-scheme 1-1 with duration
sub-model is being run stochastically.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

1 449 447 417 449 447 417 449 446 405 449 446 405
2 362 385 408 362 385 408 362 356 364 362 356 364
3 326 356 362 326 356 362 326 205 200 326 205 200
4 129 155 166 129 155 166 129 201 158 129 201 158
5 121 150 156 121 150 156 121 157 154 121 157 154
6 119 147 151 119 147 151 119 150 149 119 150 149
7 115 137 148 115 137 148 115 147 146 115 147 146
8 99 127 144 99 127 144 99 143 143 99 143 143
9 96 119 138 96 119 138 96 137 137 96 137 137
10 62 115 119 62 115 119 62 125 115 62 125 115
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(a) (b)

Figure 6.5: CV as a function of the number of model runs for sub-scheme 1-1 of the location
model. (a) shows the CV values for GWP100. (b) shows the CV values for R-E.

Convergence of mode choice model Finally, convergence of the mode choice model is
assessed. Figure 6.6 shows the CV as a function of the number of model runs. CV values are
stabilising quickly after around 75 model runs for all scenarios and years.

Table 6.7: Convergence for thresholds of 1-10% for GWP100, for sub-scheme 1-1 with location
sub-model is being run stochastically.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

1 470 469 444 470 469 442 470 451 442 470 451 439
2 408 408 431 408 408 430 408 431 428 408 431 427
3 405 407 407 405 407 407 405 406 408 405 406 408
4 404 405 405 404 405 406 404 404 407 404 404 407
5 403 404 404 403 404 405 403 400 406 403 400 406
6 400 402 403 400 402 403 400 396 404 400 397 404
7 383 400 400 383 400 400 383 382 401 383 382 401
8 381 382 397 381 382 398 381 366 398 381 366 398
9 378 380 383 378 380 383 378 352 382 378 352 382
10 377 376 381 377 376 381 377 191 380 377 191 380
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(a) (b)

Figure 6.6: CV as a function of the number of model runs for sub-scheme 1-1 of the mode choice
model. (a) shows the CV values for GWP100. (b) shows the CV values for R-E.

Tables 6.9-6.10 show the lowest number of runs required to reach convergence of the mode
choice model. While in 2015 the model does not satisfy the convergence criteria set for this thesis,
for GWP100 the convergence criteria are satisfied in 2020 for all scenarios and in 2025 for the

Table 6.8: Convergence for thresholds of 1-10% for R-E, for sub-scheme 1-1 with location sub-model
is being run stochastically.

T (%) BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

1 469 469 446 469 469 446 469 450 436 469 450 436
2 407 426 433 407 426 433 407 431 425 407 431 425
3 405 407 407 405 407 407 405 406 408 405 406 408
4 403 405 405 403 405 405 403 405 407 403 405 407
5 400 404 404 400 404 404 400 401 406 400 401 406
6 383 402 403 383 402 403 383 399 404 383 399 404
7 382 400 401 382 400 401 382 381 401 382 381 401
8 380 382 397 380 382 397 380 376 400 380 376 400
9 377 380 382 377 380 382 377 355 381 377 355 381

10 376 377 380 376 377 380 376 190 378 376 190 378
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GREEN scenarios. For R-E they are satisfied for all scenarios in 2020 and 2025.
Overall, it seems that choice facets associated with higher levels of uncertainty, such as

activity type and duration, converge faster than choice facets with lower levels of uncertainty,
such as location and mode choices.

6.4 Sub-schemes 1-2 and 1-3: Simultaneous treatment

Following the results of sub-scheme 1-1, the results of schemes 1-2 and 1-3 are presented in
this section. For both sub-schemes combinations of choice models are set to run stochastically,
with (in case of sub-scheme 1-2) remaining choice models set to their deterministic state.

6.4.1 Output distributions

First, the empirical output distributions of sub-scheme 1-3 for both QOIs are shown in
figure 6.7, along with the median value indicators. Results of this sub-scheme are of particular
importance as this sub-scheme will be reused for scheme 3 (for which results are presented in

Table 6.9: Convergence for thresholds of 1-10% for GWP100, for sub-scheme 1-1 with mode
choice sub-model is being run stochastically.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

1 456 482 476 456 482 476 456 486 378 456 486 378
2 451 396 308 451 396 307 451 378 250 451 378 250
3 404 301 307 404 301 307 404 227 227 404 227 227
4 399 289 300 399 289 291 399 209 209 399 209 209
5 380 210 285 380 210 283 380 203 180 380 203 180
6 379 206 235 379 206 215 379 193 180 379 193 180
7 307 206 215 307 206 215 307 180 179 307 180 179
8 301 196 210 301 196 210 301 180 175 301 180 175
9 180 192 209 180 192 209 180 180 160 180 180 160
10 177 182 206 177 182 206 177 180 34 177 180 34

Table 6.10: Convergence for thresholds of 1-10% for R-E, for sub-scheme 1-1 with mode choice
sub-model is being run stochastically.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

1 461 477 473 461 477 473 461 478 431 461 478 431
2 456 435 282 456 435 282 456 451 412 456 451 412
3 451 376 272 451 376 272 451 318 209 451 318 209
4 400 220 236 400 220 236 400 301 75 400 301 75
5 396 209 235 396 209 235 396 226 74 396 226 74
6 379 206 215 379 206 215 379 208 72 379 208 72
7 374 194 215 374 194 209 374 193 71 374 193 71
8 301 185 206 301 185 206 301 180 69 301 180 69
9 209 181 192 209 181 192 209 180 67 209 180 68
10 192 180 181 192 180 181 192 169 49 192 169 49
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(a) (b)

Figure 6.7: Empirical distributions of both QOIs for sub-scheme 1-3. (a) shows GWP100 per
CBC. (b) shows R-E per CBC.

chapter 8) where both uncertainties of the LCA and ABM part are simultaneously propagated.
In both figures 6.7 (a) and (b) BAU scenario distributions are plotted towards the left, while
GREEN scenario distributions are plotted towards the right. In 2015 all distributions are identical,
as all model inputs, parameters and the sets of random number seeds are identical as well.

Figure 6.7 (a) shows the distributions for GWP100 impacts, with table 6.11 containing the
descriptive statistics. In 2020 and 2025 the distributions increasingly diverge with regard to their
median values, similar to the results shown in section 6.2 for the nominal concrete instance of the
CONNECTING model.

However, while the results of the nominal model in section 6.2 showed that in 2025 the
GREEN-ADEME has a higher GWP100 impacts than the BAU-TIR scenario, table 6.11 shows a
reversed ranking of median values for both scenarios in 2025.

Table 6.11 also shows that mean and median values for all years and scenarios are very close,
suggesting that all distributions are close to being symmetrical. CV values in table 6.11 range
from 0.109% to 0.127%. The GREEN scenarios show slightly higher CV values in 2020 and 2025
compared to the BAU scenarios.

Figure 6.7 (b) show the distributions for R-E impacts, with table 6.12 presenting the
descriptive statistics. While median values of BAU and GREEN scenarios diverge from each
other in 2020 and 2025, ADEME and TIR scenarios show little divergence, all else equal. As
seen for GWP100 distributions, mean and median values for each distribution are very close,
suggesting that all distributions are close to being symmetrical.
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CV values in table 6.12 are very close to CV values in table 6.11, suggesting that uncertainty
from choice models equally affects both QOIs. CV values also seem to behave similarly across
scenarios over time for R-E impacts.

Overall, GWP100 median values are on average 7% higher than results of the nominal model
shown in section 6.2 and R-E median values are on average 8% higher. This results from the
combined effect of choice models being run stochastically.

Besides the effects discussed in section 6.3, compared to sub-scheme 1-3 a higher share of
short (i.e., home-work-home) DAPs is present in results of nominal model. Short DAPs with
no discretionary activities result in shorter distances travelled over the course of the day and in
consequence lower associated environmental impacts. One explanation for the higher share of
short DAPs could be that in our nominal model each random choice event results in its most
likely outcome, even if probabilities are very close. Short DAPs are the most prominent in the
survey data of CBCs and often the most likely outcome chosen by the nominal model, while for
the stochastic model there is always a chance of generating a longer DAP.

For sub-scheme 1-3, one can conclude that for GWP100 the observed spread is often small
compared to the difference between scenarios, with the exception of the year 2020, where ADEME
and TIR scenarios overlap to some extent as shown in figure 6.7 (a). For R-E, ADEME and TIR
scenarios overlap almost entirely, all else equal, as shown in figure 6.7 (b).

Figures 6.8 and 6.9 show the CV values for all sub-schemes of scheme 1 using Venn diagrams.
In addition to previous results of sub-scheme 1-1 (shown in tables 6.1 and 6.2) and sub-scheme 1-3
(shown in tables 6.11 and 6.12) the results of sub-scheme 1-2 where combinations of two choice
models are set to their stochastic state are included. When results are encompassed in a rectangle
of a specific sub-model, this indicates that the sub-model was set to run stochastically. Figure
5.4 shown in the previous chapter further specifies which elements belong to which sub-scheme.
To give a visual impression of the magnitude of the uncertainty observed for each sub-schemes,
spheres are used, where the diameter is scaled according to the CV. In addition, a label indicating
the CV is provided underneath each sphere.

In figures 6.8 CV values for GWP100 are shown. A first notable aspect is that the results of

Table 6.11: Descriptive statistics of uncertainty distributions of GWP100 scores in [kg CO2-eq]
for sub-scheme 1-3.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

Median 18.9 18.2 17.4 18.9 18.1 16.4 18.9 17.0 16.2 18.9 16.9 15.3
Mean 18.9 18.2 17.4 18.9 18.1 16.4 18.9 17.0 16.2 18.9 16.9 15.3
SD 0.023 0.021 0.019 0.023 0.020 0.018 0.023 0.022 0.019 0.023 0.021 0.018
CV [%] 0.124 0.113 0.109 0.124 0.113 0.107 0.124 0.127 0.120 0.124 0.126 0.117

Table 6.12: Descriptive statistics of uncertainty distributions of R-E scores in 10−7 [disease
incidences] for sub-scheme 1-3.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

Median 10.2 9.1 8.3 10.2 9.1 8.3 10.2 8.9 8.1 10.2 8.9 8.1
Mean 10.2 9.1 8.3 10.2 9.1 8.3 10.2 8.9 8.1 10.2 8.9 8.1
SD 0.013 0.010 0.008 0.013 0.010 0.008 0.013 0.010 0.008 0.013 0.010 0.008
CV [%] 0.123 0.109 0.101 0.123 0.109 0.101 0.123 0.114 0.104 0.123 0.114 0.104
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Figure 6.8: Venn diagram showing the CV for GWP100, for sub-scheme 1-1, 1-2 and 1-3.

sub-scheme 1-3 suggest that uncertainty stemming from individual choice models is not additive,
but that there are damping effects when all choice models are set to run stochastically. Specifically,
the sum of CV (or SD) values of sub-scheme 1-1 of the four individual choice models, is more
than twice as large as the CV (or SD) values of sub-scheme 1-3 where all choice models are
simultaneously set to run stochastically.

For all results of sub-scheme 1-2 similar conclusions can be drawn. Taking the sub-scheme
1-2 where the activity type and duration models are set to run stochastically as an example, CV
values in figures 6.8 are only marginally larger than for sub-scheme 1-1 where only the activity
type model is set to run stochastically. In some cases of sub-scheme 1-2 (e.g., when the activity
type and mode choice models are set to run stochastically) CV values are even higher than those
of sub-scheme 1-3 when all choice models are set to run stochastically.

While such damping effects have been observed for four-step models in the past, this is the
first time a similar effect has been observed for ABMs of travel demand.

The results for the second QOI, R-E, in figure 6.9 are very similar to those of GWP100.

6.4.2 Convergence

Next, the convergence of the CV values is investigated for both QOIs focussing on sub-scheme
1-3. The CV values are presented as a function of the number of model runs in figure 6.10. After
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Figure 6.9: Venn diagram showing the CV for R-E, for sub-scheme 1-1, 1-2 and 1-3.

500 model runs, CV values range from 0.109%-0.127% and 0.101%-0123% for GWP100 and R-E
respectively, as previously shown in tables 6.11-6.12.

For all scenarios shown in figure 6.10, CV values stabilise quickly after only a couple of hundred
model runs, showing little fluctuation and no strong upward or downward trends afterwards.
One can see the effect of the seed factory, which keeps seeds coherent across scenarios and years,
resulting in a similar shape of all curves when comparing them for one QOI.

Table 6.13 shows the lowest number of model runs required to reach convergence for GWP100,
where thresholds for 1% up to 10% are used. For a threshold of 5% convergences is reached for at
most 193 model runs across scenarios, thus satisfying the convergence criteria.

Table 6.14 shows the lowest number of model runs required to reach convergence for R-E. For
a threshold of 5% convergences is reached for 113 (i.e., GREEN-ADEME and GREEN-TIR in
2020) up to 297 model runs (i.e., BAU-ADEME and BAU-TIR in 2025). While for the GREEN
scenarios, we can assert that CV values have converged, for the BAU scenarios in 2020 and 2025
our criteria are not satisfied. However, due to the high computational burden of the ABM part of
CONNECTING, increasing N is impractical.
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(a) (b)

Figure 6.10: CV as a function of the number of model runs for sub-scheme 1-3. (a) shows the CV
values for GWP100. (b) shows the CV values for R-E.

6.4.3 Further insights

Given the results of this chapter, we can now proceed by evaluating how much the simulation
error stemming from the stochastic choice models in the ABM could potentially affect policy
choices given the four alternatives. To this end we compute the three measures introduced in

Table 6.13: Convergence of GWP100 CV values for thresholds of 1-10% for sub-scheme 1-3.

T (%) BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

1 461 476 476 461 476 476 461 476 477 461 476 476
2 444 440 475 444 440 475 444 474 476 444 474 476
3 215 267 267 215 267 267 215 414 414 215 414 414
4 156 256 256 156 256 255 156 114 193 156 114 193
5 128 127 154 128 127 154 128 90 193 128 90 193
6 119 101 102 119 101 104 119 90 114 119 90 114
7 104 32 99 104 32 101 104 86 114 104 86 114
8 19 16 16 19 16 16 19 86 114 19 86 114
9 16 16 16 16 16 16 16 85 90 16 85 90

10 16 16 16 16 16 16 16 85 88 16 85 88
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Figure 6.11: Uncertainty communication measures for GWP100 for 2020 and 2025 are presented
for sub-scheme 1-3. The presentation has been adapted from Mendoza Beltran et al. (2018a).

section 5.5. Figures 6.11-6.12 show the results for sub-scheme 1-3. These measures and their
representation is based largely on Mendoza Beltran et al. (2018a).

Table 6.14: Convergence of R-E CV values for thresholds of 1-10% for sub-scheme 1-3.

T (%) BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

1 461 476 476 461 476 476 461 476 476 461 476 476
2 317 461 449 317 461 449 317 440 457 317 440 457
3 271 324 326 271 324 326 271 114 193 271 114 193
4 264 307 310 264 307 310 264 114 114 264 114 114
5 224 275 297 224 275 297 224 113 114 224 113 114
6 155 260 260 155 260 260 155 90 114 155 90 114
7 137 255 254 137 255 254 137 86 90 137 86 90
8 101 129 136 101 129 136 101 86 90 101 86 90
9 34 19 127 34 19 127 34 86 86 34 86 86

10 25 16 35 25 16 35 25 85 86 25 85 86
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Figure 6.12: Uncertainty communication measures for R-E for 2020 and 2025 are presented for
sub-scheme 1-3.

In the upper part of the figures 6.11-6.12 the results of the modified NHST are shown. For
each years, a matrix shows the comparison of each scenario (row) against every other scenario
(column), with the diagonal cells remaining empty (n.d.) as scenarios are not compared against
themselves. The modified NHST allows to assert whether or not differences in mean values of
two scenarios are statistically significant. Specifically, if one can reject the null hypothesis (that
mean values are the same) for a pair-wise comparison in figure 6.11, the matrix will state “Yes”,
otherwise the cell will state “No”. For both QOIs one can always assert the scenario mean results
are significantly different.

Next in the middle part of the figures 6.11-6.12 the Bhattacharyya coefficients are shown,
representing the overlap of distributions, where a coefficient of 0 means that the distributions do
not overlap at all, while a coefficient of 1 means that they overlap completely. While for GWP100
(figure 6.11) in 2020 only the GREEN-ADEME and GREEN-TIR show a slight overlap, for R-E
(figure 6.12) ADEME and TIR scenarios completely overlap, all else equal, showing scores of 1 or
close to 1.

Finally, the discernibility scores are shown in the bottom part of both figures. This measures
builds on a pair-wise comparison per MC run expressing the percentage of runs for which a
scenario (row) has lower results than another scenario (column). Discernibility scores can range
from 0% to 100%. For both QOIs results are clear cut, where GREEN scenarios have lower
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impacts than BAU scenarios for 100% of model runs and TIR scenarios have lower impacts than
ADEME scenarios for 100% of model runs, all else equal.

These measures are complementary, capturing different aspects of uncertainty relevant to
decision making. The modified NHST allows to assess the statistical significance of the difference
of mean values. The Bhattacharyya coefficients captures only the extent of the difference of
two distributions. Finally, the discernibility score complements both measures by indicating the
consistency of one scenario showing lower impacts than another scenario.

6.5 Summary

In this chapter the results of scheme 1, investigating the uncertainty of the ABM part of
CONNECTING have been presented. Three sub-schemes of scheme 1 were defined in chapter 5
with sub-scheme 1-1 propagating the uncertainty from individual choices models (i.e., activity
type, duration, location and mode choice). For sub-scheme 1-2 the simultaneous propagation
of uncertainty from two choice models is investigated, with the remaining choice models set to
their deterministic state (always resulting in the most likely choice for each individual). Finally
sub-scheme 1-3 propagated uncertainty from all four choice models simultaneously.

There are several notable aspects of the results of sub-scheme 1-1. As a first, running choice
models stochastically can lead to a shift in median (or mean) values compared to the results
of the nominal concrete instance. This has been observed for all four choice models. A second
notable aspect is that, with regard to the QOIs chosen, the level of uncertainty observed varies
across choice models, with the activity type model showing the highest level of uncertainty and
the location model showing the lowest level of uncertainty. A third notable aspect is that for the
present case study both SD and CV values decrease for later simulation years.

The most notable aspect of the results of sub-scheme 1-2 (confirmed by the results of scheme
1-3) is that uncertainty of individual choice models is not additive, where running two or more
choice models stochastically does not lead to the CV (or SD) values to be equal to the sum of
the CV (or SD) values of sub-schemes where the same individual choice models are set to run
stochastically. There seem to be damping effects for all combinations of choice models.

Finally, the most notable aspect of the results of sub-scheme 1-3 is the low overall level of
uncertainty observed for the ABM part of CONNECTING. CV values are consistently much
lower that one percentage point and uncertainty measures relevant for decision making (i.e., the
modified NHST, the Bhattacharyya coefficient and the discernibility score) show that in most
cases (with the exception of R-E impacts of ADEME and TIR scenarios) clear conclusions can
be drawn.
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Chapter 7

Results of scheme 2 - LCA
parameter uncertainty

7.1 Introduction

Following the results of scheme 1 presented in chapter 6, the present chapter will present the
results of scheme 2 (with its four sub-schemes), which aims at propagating uncertainty stemming
from the LCA part of CONNECTING.

While various uncertainty locations were classified for LCA in chapter 3, parameter uncertainty
showed to be the most addressed location in the quantitative review. For this reason it was decided
to focus on this location, more specifically on measured parameters present in the technosphere
and biosphere matrices.

To characterise parameter uncertainty in the LCA part of CONNECTING, the so-called
pedigree approach is applied. In literature, this approach often builds on expert based uncertainty
factors to derived uncertainty distributions based on DQIs (see chapter 5 for a more detailed
description of the methodology). More recently however, empirically based uncertainty factors
have been published for various process types (e.g., transport, combustion, etc.) to update these
expert based factors (Ciroth et al., 2013; Muller et al., 2016). The influence of using both types
of factors will be tested in this chapter.

The propagation of LCA parameter uncertainty builds on the results of the nominal concrete
instance of the ABM presented in chapter 6. Building on the findings of chapter 3, two types of
sampling are employed: sampling where tailpipe emissions are independently sampled from fuel
consumption (hereafter referred to a independent sampling) and sampling where fuel dependent
tailpipe emissions (e.g., carbon dioxide) are derived from the sampled fuel consumption values
(hereafter referred to a dependent sampling).

The four sub-schemes of scheme 2 result from combining different uncertainty factors and
sampling schemes. The sub-scheme 2-1 is uses the expert uncertainty factors from ecoinvent shown
in tables 5.2 and 5.1, where all technosphere and biosphere exchanges are sampled independently.
Sub-scheme 2-2 employs independent sampling, yet uses the expert uncertainty factors shown in
tables 5.3 and 5.4 to derive distributions. Sub-scheme 2-3 employs dependent sampling while
using expert uncertainty factors. Finally, sub-scheme 2-4 employs dependent sampling while
using empirical uncertainty factors. Figure 5.6 summarises the combinations of sampling and
uncertainty factors applied for the different sub-schemes. The number of runs for each sub-scheme
is chosen to be 1000. Across all sub-schemes the same random seeds are used for each LCI
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exchange. This allows to compare results across scenarios and years similar to the random seed
factory used for scheme 1.

Similar to the previous chapter, the focus is set on uncertainty of system level outputs,
namely the QOIs quantifying climate change related impacts (GWP100 ) and respiratory effects
related impacts (R-E ) for which uncertainty will be quantified and communicated as outlined in
section 5.5.

In the following sections 7.2-7.5 will present the results for the four propagation sub-schemes
of scheme 2 before a short summary is provided in section 7.6.

7.2 Sub-scheme 2-1

First, results of sub-scheme 2-1 are presented. These can be considered a reference for
subsequent results, as they build on the widely applied expert uncertainty factors and independent
sampling applied for most studies (as identified in chapter 3). Section 7.2.1 presents the output
distributions and statistics, section 7.2.2 presents the convergence of CV values and finally section
7.2.3 presents the uncertainty communication measures. This section structure will be retained
for subsequent sub-schemes.

7.2.1 Distributions

Figure 7.1 shows the empirical output distributions for all scenarios for sub-scheme 2-1.
As seen for scheme 1, BAU scenario distributions are plotted towards the left while GREEN
scenario distributions are plotted towards the left. In 2015 all distributions (and median values)
are identical, as all seeds and all model inputs and parameters are identical. For later years the
distributions and median values diverge. However, in contrast to results of scheme 1, figure 7.1
shows that there is substantial overlap of distributions in 2020 and 2025.

Table 7.1 provides the descriptive statistics for GWP100 distributions. One can see that
mean values are systematically larger than median values, indicating that distributions are right
skewed. This can also be seen visually in figure 7.1 (a), as distributions have a so-called “fat”
right tail. One reason for this could be that many parameters in LCI databases are modelled
using log-normal distributions, which are right skewed. CV values range from 5.49%-6.15% and
tend to decrease in 2020 (compared to 2015) before increasing again in 2025. SD values show a
similar behaviour for ADEME scenarios, while decreasing steadily for TIR scenarios.

Table 7.2 provides the descriptive statistics for R-E distributions. Again, mean values are
systematically larger than median values indicating that distributions are right skewed. CV values
are larger than for GWP100 ranging from 19.3%-21.8% and increase steadily for later study years.
However, this increase can be explained by the decreasing mean values, as the CV is the ratio of
the SD and the mean. While the SD values slightly decrease with time, so do the mean values.

Table 7.1: Descriptive statistics of uncertainty distributions of GWP100 scores in [kg CO2-eq] for
sub-scheme 2-1.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

Median 19.2 18.6 17.6 19.2 18.5 16.7 19.2 17.7 16.7 19.2 17.6 15.9
Mean 19.3 18.7 17.8 19.3 18.6 16.8 19.3 17.7 16.8 19.3 17.6 16.0
SD 1.11 1.05 1.09 1.11 1.04 1.01 1.11 0.98 1.01 1.11 0.97 0.93
CV [%] 5.77 5.64 6.15 5.77 5.62 5.98 5.77 5.51 5.98 5.77 5.49 5.82
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(a) (b)

Figure 7.1: Empirical distributions for both QOIs for sub-scheme 2-1. (a) shows GWP100 per
CBC. (b) shows R-E per CBC.

While in figure 6.7 (a) distributions of GWP100 are diverging somewhat for later years, in
figure 6.7 (b) the differences in median values of R-E among all scenarios seem small compared to
the observed spread. Uncertainty communication measures presented in section 7.2.3 will provide
further insights on scenario comparison.

7.2.2 Convergence

Next, the convergence of the CV values is investigated for both QOIs and for all scenarios
and years. In contrast to what was observed for uncertainty stemming from ABM sub-models,

Table 7.2: Descriptive statistics of uncertainty distributions of R-E scores in 10−7 [disease
incidences] for sub-scheme 2-1.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

Median 12.3 10.9 10.1 12.3 10.9 10.1 12.3 10.6 9.8 12.3 10.6 9.8
Mean 12.8 11.4 10.5 12.8 11.4 10.5 12.8 11.1 10.2 12.8 11.1 10.2
SD 2.46 2.32 2.30 2.46 2.31 2.23 2.46 2.20 2.18 2.46 2.20 2.12
CV [%] 19.3 20.4 21.8 19.3 20.3 21.3 19.3 19.9 21.3 19.3 19.8 20.8
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(a) (b)

Figure 7.2: CV as a function of the number of model runs for sub-scheme 2-1. (a) shows the CV
values for GWP100. (b) shows the CV values for R-E.

both QOIs show different levels of uncertainty with GWP100 showing CV values around 6% after
1000 model runs, while CV values for R-E are around 20% after 1000 model runs.

CV values of GWP100 in figure 7.2 (a) stabilise after a couple of hundred model runs,
showing little fluctuation and no strong upward or downward trends afterwards. However, CV
values of R-E in figure 7.2 (b) are still fluctuating somewhat after 500 and even 750 model runs.
For both QOIs one can see that curves have similar shapes resulting from controlling seeds across
years and scenarios.

These visual impressions are confirmed when computing the lowest number of model runs
required to reach convergence for thresholds from 1% up to 10%, shown in table 7.3 for GWP100.
For a threshold of, e.g., 10% convergence is reached for at most 141 model runs across scenarios.
For the more rigorous threshold of 5% chosen for this thesis, convergences reached for at most
341 model runs across scenarios.

Table 7.4 shows the lowest number of model runs required to reach convergence for R-E. For
a threshold of 10% convergence is reached for at most 118 model runs across scenarios. For the
more rigorous threshold of 5% convergences is reached for at most 472 model runs. We can thus
assert that the convergence criteria set for this thesis (i.e., reaching 5% threshold within N/2
model runs) are reached for both QOIs.
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7.2.3 Further insights

We can now proceed to evaluating how much the uncertainty stemming from the measured
parameters of the LCA affect policy choices given the four scenarios. To this end we compute
the three uncertainty communication measures introduced in chapter 5 in figures 7.3-7.4, for
sub-scheme 2-1.

Looking at the modified NHST, we can see that mean scenario values are significantly
different with the exception of GWP100 for BAU-TIR and GREEN-ADEME in 2025 (highlighted
green in figure 7.3). While for results of scheme 1 in chapter 6 the modified NHST always allowed
to assert that mean values are significantly different, this is thus not the case for scheme 2-1.

The Bhattacharyya Coefficient in the middle parts of figures 7.3-7.4 shows that there is a
strong overlap of between output distributions. This is especially true for R-E (showing values
close to one), but also for GWP100 (showing values consistently higher than 0.60). Overall the
differences between BAU and GREEN scenarios are larger than the differences between ADEME
and TIR scenarios, all else equal.

Finally, discernibility scores complete the comparison, where for GWP100 the results show
that BAU-TIR and GREEN-ADEME in 2025 are almost indistinguishable (confirming results of
the modified NHST). For R-E discernibility scores complement the modified NHST, providing
further detail. When comparing TIR to ADEME scenarios (all else equal), the higher shares of

Table 7.3: Convergence for thresholds of 1-10% for GWP100, for sub-scheme 2-1.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

1 935 942 946 935 941 941 935 941 945 935 940 940
2 302 345 621 302 345 464 302 345 624 302 345 624
3 220 338 371 220 338 345 220 338 381 220 338 371
4 220 220 345 220 220 345 220 337 345 220 317 345
5 127 141 341 127 141 337 127 141 341 127 141 338
6 112 136 317 112 136 220 112 136 337 112 136 220
7 64 127 178 64 127 178 64 127 176 64 127 172
8 63 127 172 63 127 171 63 127 172 63 112 171
9 60 76 141 60 76 141 60 76 141 60 76 141
10 59 76 141 59 76 141 59 76 141 59 76 141

Table 7.4: Convergence for thresholds of 1-10% for R-E, for sub-scheme 2-1.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

1 905 909 918 905 909 919 905 918 919 905 924 924
2 843 856 858 843 856 859 843 843 856 843 843 856
3 777 771 769 777 771 770 777 766 765 777 766 765
4 472 472 472 472 472 550 472 472 470 472 472 363
5 472 472 363 472 472 344 472 470 363 472 470 344
6 344 359 344 344 344 133 344 363 344 344 359 293
7 83 344 122 83 344 130 83 344 293 83 344 124
8 81 81 116 81 82 124 81 293 84 81 81 122
9 81 81 84 81 81 122 81 81 82 81 81 118
10 81 81 82 81 81 118 81 81 81 81 81 94
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Figure 7.3: Uncertainty communication measures for GWP100 for 2020 and 2025 are presented
for sub-scheme 2-1.

EVs in the car fleet cause a decrease in R-E impacts for around 65% of model runs, with 35% of
model runs suggesting the opposite. Comparisons of BAU and GREEN scenarios show higher
disparities, with GREEN scenarios showing lower R-E impacts in 84%-90% of model runs.

As seen for scheme 1, the complementarity of the three measures is shown, where the
modified NHST allows to identify that in the long term, there is no significant difference between
BAU-TIR and GREEN-ADEME with regard to GWP100. The Bhattacharyya coefficient shows
that differences of a somewhat larger extent can only be observed when comparing BAU-ADEME
to the GREEN-TIR scenario (at least for GWP100 ). Finally the discernibility scores confirm the
results of the modified NHST for GWP100, but also highlight that no scenario has consistently
lower or higher R-E impacts than any given competing scenario.

7.3 Sub-scheme 2-2

Sub-scheme 2-2 presented in this section focusses on the influence of using the updated
empirical uncertainty factors published by Ciroth et al. (2013) and Muller et al. (2016), while
still independently sampling fuel consumptions and tailpipe emissions.

122



7.3. Sub-scheme 2-2 123

2020 2025

BAU-ADEME

BAU-TIR

GREEN-ADEME

GREEN-TIR

BAU-ADEME

BAU-TIR

GREEN-ADEME

GREEN-TIR

BAU-ADEME

BAU-TIR

GREEN-ADEME

GREEN-TIR

B
A

U
-A

D
E

M
E

B
A

U
-T

IR

G
R

E
E

N
-A

D
E

M
E

G
R

E
E

N
-T

IR

B
A

U
-A

D
E

M
E

B
A

U
-T

IR

G
R

E
E

N
-A

D
E

M
E

G
R

E
E

N
-T

IR

Modified NHST

No Yes

Bhattacharyya Coefficient

0.00 0.25 0.50 0.75 1.00

Discernability Score

0% 25% 50% 75% 100%

n.d. Yes Yes Yes

Yes n.d. Yes Yes

Yes Yes n.d. Yes

Yes Yes Yes n.d.

n.d. Yes Yes Yes

Yes n.d. Yes Yes

Yes Yes n.d. Yes

Yes Yes Yes n.d.

n.d. 0.95 0.90 0.91

0.95 n.d. 0.91 0.91

0.90 0.91 n.d. 0.97

0.91 0.91 0.97 n.d.

n.d. 0.91 0.91 0.91

0.91 n.d. 0.90 0.90

0.91 0.90 n.d. 0.91

0.91 0.90 0.91 n.d.

n.d. 36% 10% 11%

64% n.d. 10% 10%

90% 90% n.d. 36%

89% 90% 64% n.d.

n.d. 35% 10% 10%

65% n.d. 16% 10%

90% 84% n.d. 35%

90% 90% 65% n.d.

Figure 7.4: Uncertainty communication measures for R-E for 2020 and 2025 are presented for
sub-scheme 2-1.

7.3.1 Distributions

Figure 7.5 shows the empirical output distributions of all scenarios for sub-scheme 2-2.
Visually, distributions are similar to those of sub-scheme 2-1 shown in figure 7.1. For both QOIs
prior to 2025 distributions overlap significantly. In 2025, at least for GWP100 in figure 7.5 (a),
one can see distributions diverge somewhat.

Table 7.5 provides the descriptive statistics for GWP100 distributions. Similar to what
has been noted for sub-scheme 1-2, mean values are systematically larger than median values
indicating that distributions are right skewed. CV values range from 6.00%-6.87% thus showing a
slightly higher level of uncertainty compared to sub-scheme 2-1 in table 7.1.

Table 7.6 provides the descriptive statistics for R-E distributions. Distributions are right
skewed, as seen before, while CV values ranging from 19.4%-21.9%. Sub-scheme 2-2 thus shows
higher CV (and SD) values for R-E compared to sub-scheme 2-1 in table 7.2.

7.3.2 Convergence

Next, the convergence of sub-scheme 2-2 is presented. Figure 7.6 shows CV values as a
function of model runs. Visually there are no notable differences to results of sub-scheme 2-1 in
figure 7.2.
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(a) (b)

Figure 7.5: Empirical distributions for both QOIs for sub-scheme 2-2. (a) shows GWP100 per
CBC. (b) shows R-E per CBC.

The lowest number of model runs required to reach convergence for sub-scheme 2-2 is shown
in tables 7.7-7.8. Comparing these values to those of sub-scheme 2-1, for a threshold of 5%,
convergence is reached slightly faster for sub-scheme 2-2. However for most scenarios differences
are small.

7.3.3 Further insights

Finally, the three uncertainty communication measures are computed for sub-scheme 2-2,
shown in figures 7.7-7.8.

Table 7.5: Descriptive statistics of uncertainty distributions of GWP100 scores in [kg CO2-eq] for
sub-scheme 2-2.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

Median 19.5 18.9 17.9 19.5 18.8 17.0 19.5 17.9 17.0 19.5 17.8 16.1
Mean 19.6 19.0 18.0 19.6 18.9 17.1 19.6 18.0 17.1 19.6 17.9 16.2
SD 1.24 1.16 1.24 1.24 1.15 1.16 1.24 1.08 1.15 1.24 1.07 1.08
CV [%] 6.31 6.10 6.87 6.31 6.08 6.77 6.31 6.02 6.73 6.31 6.00 6.63
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(a) (b)

Figure 7.6: CV as a function of the number of model runs for sub-scheme 2-2. (a) shows the CV
values for GWP100. (b) shows the CV values for R-E.

Uncertainty communication measures for GWP100 in figure 7.7 show no notable differences
to the results of sub-scheme 2-1 shown figure 7.3. While CV (and SD) values have increased
slightly for sub-scheme 2-2, the modified NHST shows identical results. The Bhattacharyya
Coefficients in the middle part of figure 7.7 show that the distribution overlap has increased for
sub-scheme 2-2 compared to sub-scheme 2-1. Changes in discernibility scores are very small,
showing only a slight change when comparing BAU-TIR and GREEN-ADEME in 2025.

Uncertainty communication measures for R-E in figure 7.8 show that there are a few notable
differences to the results of sub-scheme 2-1 shown figure 7.4. The most significant difference
can be observed for the modified NHST. While for sub-scheme 2-1 mean scenario values are

Table 7.6: Descriptive statistics of uncertainty distributions of R-E scores in 10−7 [disease
incidences] for sub-scheme 2-2.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

Median 12.5 11.1 10.2 12.5 11.1 10.2 12.5 10.8 10.0 12.5 10.8 9.9
Mean 12.9 11.5 10.7 12.9 11.5 10.6 12.9 11.2 10.4 12.9 11.2 10.3
SD 2.51 2.35 2.33 2.51 2.34 2.27 2.51 2.25 2.22 2.51 2.24 2.17
CV [%] 19.4 20.4 21.9 19.4 20.3 21.4 19.4 20.0 21.5 19.4 20.0 21.0
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always significantly different from each other, for sub-scheme 2-2 the null hypothesis is rejected
when comparing ADEME and TIR scenarios, all else equal. The results of the Bhattacharyya
Coefficients are only marginally different from results shown for sub-scheme 2-1. Discernibility
scores are consistent with the shift observed for the modified NHST, where for comparisons of
ADEME and TIR scenarios, scores move closer to 50%.

Comparing results of sub-schemes 2-1 and 2-2 shows that using different uncertainty factors
can lead to changes in the observed model output uncertainty. For the CONNECTING case study
results, updated empirical uncertainty factors increase uncertainty in the model outputs. This
increase in model output uncertainty can alter conclusions based on uncertainty communication
measures. Specifically, while we can assert for sub-scheme 2-1 that TIR scenarios lead to
statistically significant lower R-E impacts than ADEME scenarios, all else equal, this is not the
case for sub-scheme 2-2.

Table 7.7: Convergence for thresholds of 1-10% for GWP100, for sub-scheme 2-2.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

1 881 941 945 881 940 940 881 938 941 881 937 937
2 390 338 624 390 338 549 390 338 625 390 338 624
3 136 317 381 136 317 345 136 317 383 136 317 374
4 127 141 345 127 141 338 127 141 371 127 141 341
5 114 136 338 114 136 317 114 140 338 114 136 317
6 112 136 178 112 131 176 112 136 317 112 136 176
7 76 127 172 76 127 172 76 127 172 76 127 172
8 76 77 145 76 77 144 76 113 147 76 112 145
9 70 76 141 70 76 140 70 77 141 70 77 141
10 63 76 134 63 76 134 63 77 136 63 77 136

Table 7.8: Convergence for thresholds of 1-10% for R-E, for sub-scheme 2-2.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

1 905 917 919 905 918 920 905 924 924 905 924 925
2 842 856 859 842 856 859 842 843 856 842 842 856
3 771 771 770 771 771 770 771 766 765 771 766 764
4 472 472 470 472 472 550 472 472 364 472 472 363
5 470 472 363 470 470 130 470 470 363 470 363 293
6 344 344 344 344 344 124 344 344 344 344 344 122
7 81 344 116 81 81 121 81 344 293 81 293 118
8 81 81 82 81 81 117 81 81 81 81 81 82
9 81 81 81 81 81 82 81 81 81 81 81 81
10 81 81 81 81 81 81 81 81 81 81 81 81
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Figure 7.7: Uncertainty communication measures for GWP100 for 2020 and 2025 are presented
for sub-scheme 2-2.
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Figure 7.8: Uncertainty communication measures for R-E for 2020 and 2025 are presented for
sub-scheme 2-2.
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(a) (b)

Figure 7.9: Empirical distributions for both QOIs for sub-scheme 2-3. (a) shows GWP100 per
CBC. (b) shows R-E per CBC.

7.4 Sub-scheme 2-3

Sub-scheme 2-3 presented in this section focusses on the influence of dependently sampling
fuel consumptions and tailpipe emissions, while using the expert uncertainty factors.

7.4.1 Distributions

Figure 7.9 shows the empirical output distributions of all scenarios for sub-scheme 2-3. Again,
visually distributions are similar to those of sub-scheme 2-1 shown in figure 7.1 and sub-scheme
2-2 shown in figure 7.5.

Table 7.9 provides the descriptive statistics for GWP100 distributions. Similar to what has
been noted for sub-schemes 1-2 and 2-2, mean values are systematically larger than median values
indicating that distributions are right skewed. CV values range from 5.20%-5.57% thus showing a
slightly lower level of uncertainty compared to sub-scheme 2-1 in table 7.1.

Table 7.10 provides the descriptive statistics for R-E distributions. Distributions are right
skewed, as seen before, while CV values range from 19.3%-21.8%. These values are very close to
those seem for sub-scheme 2-1, suggesting that dependent sampling of fuel dependent emissions
does not influence uncertainty levels for R-E impacts. To some extent this results from the chosen
method, for which fuel dependent emissions are less relevant, than emissions that are not derived
from fuel consumption (i.e., nitrogen oxide emissions).

129



130 Chapter 7. Results of scheme 2 - LCA parameter uncertainty

It thus shows that dependent sampling, where fuel dependent emissions (i.e., carbon dioxide
emissions) result from the sampled values of fuel consumption, can reduce the level of uncertainty
of some model outputs (i.e., GWP100 ) while other outputs remain unaffected (i.e., R-E ).

7.4.2 Convergence

Next, the convergence of sub-scheme 2-3 is presented. Figure 7.10 shows CV values as a
function of model runs. Visually, results resemble those of sub-schemes 2-1 and 2-2.

The lowest number of model runs required to reach convergence using dependent sampling is
shown in tables 7.11-7.12. As seen for the CV values in table 7.10, there is no impact for R-E.
For GWP100 and a threshold of 5%, convergence is slower in 2015 and 2020, in 2025 (with a
higher share of EVs in the car fleet that do not have tailpipe emissions) convergence is similar
and in some cases faster than seen for to sub-scheme 2-1. The convergence criteria set for this
thesis are always satisfied.

7.4.3 Further insights

Finally, for sub-scheme 2-3 the three uncertainty communication measures are computed
and shown in figures 7.11-7.12.

With regard to GWP100 shown in figure 7.11 there are only minor differences compared to
results of sub-scheme 2-1 shown figure 7.3. While the results of the modified NHST are identical
to those of sub-scheme 2-1, the Bhattacharyya Coefficients suggest that the distribution overlap
has slightly decreased for sub-scheme 2-3 compared to sub-scheme 2-1. Changes in discernibility
scores are only marginal compared to sub-scheme 2-1.

With regard to the second QOI, R-E shown in figure 7.12 results are identical to those of
sub-scheme 2-1 shown figure 7.4. This is coherent with what has been seen for the uncertainty
distributions and convergence of R-E for sub-scheme 2-3.

Sampling fuel dependent tailpipe emissions in accordance with fuel consumptions can thus

Table 7.9: Descriptive statistics of uncertainty distributions of GWP100 scores in [kg CO2-eq] for
sub-scheme 2-3.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

Median 19.0 18.5 17.6 19.0 18.4 16.6 19.0 17.6 16.6 19.0 17.5 15.8
Mean 19.1 18.6 17.7 19.1 18.5 16.7 19.1 17.6 16.7 19.1 17.6 15.9
SD 1.03 0.99 0.98 1.03 0.98 0.92 1.03 0.92 0.91 1.03 0.91 0.85
CV [%] 5.40 5.32 5.57 5.40 5.30 5.49 5.40 5.21 5.44 5.40 5.20 5.36

Table 7.10: Descriptive statistics of uncertainty distributions of R-E scores in 10−7 [disease
incidences] for sub-scheme 2-3.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

Median 12.3 10.9 10.1 12.3 10.9 10.1 12.3 10.6 9.8 12.3 10.6 9.8
Mean 12.8 11.4 10.5 12.8 11.4 10.5 12.8 11.1 10.2 12.8 11.1 10.2
SD 2.46 2.32 2.30 2.46 2.31 2.23 2.46 2.20 2.18 2.46 2.20 2.12
CV [%] 19.3 20.4 21.8 19.3 20.3 21.3 19.3 19.9 21.3 19.3 19.8 20.8
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(a) (b)

Figure 7.10: CV as a function of the number of model runs for sub-scheme 2-3. (a) shows the CV
values for GWP100. (b) shows the CV values for R-E.

affect uncertainty levels of GWP100, however not to an extent that uncertainty communication
measures would lead to different conclusions with regard to the ranking of scenarios.

Table 7.11: Convergence for thresholds of 1-10% for GWP100, for sub-scheme 2-3.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

1 941 942 943 941 942 941 941 942 943 941 942 941
2 345 346 352 345 346 345 345 345 346 345 345 345
3 341 345 345 341 345 341 341 341 345 341 341 341
4 338 341 341 338 341 341 338 340 341 338 340 340
5 220 338 340 220 337 337 220 337 338 220 337 317
6 59 220 337 59 220 234 59 127 234 59 127 220
7 59 127 225 59 127 147 59 64 220 59 64 127
8 55 64 127 55 64 127 55 64 127 55 64 127
9 21 59 127 21 59 127 21 59 127 21 59 127
10 18 59 127 18 59 127 18 59 64 18 59 64
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Figure 7.11: Uncertainty communication measures for GWP100 for 2020 and 2025 are presented
for sub-scheme 2-3.

Table 7.12: Convergence for thresholds of 1-10% for R-E, for sub-scheme 2-3.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

1 905 909 918 905 909 919 905 918 919 905 924 924
2 843 856 858 843 856 859 843 843 856 843 843 856
3 777 771 769 777 771 770 777 766 765 777 766 765
4 472 472 472 472 472 550 472 472 470 472 472 363
5 472 472 363 472 472 344 472 470 363 472 470 344
6 344 359 344 344 344 133 344 363 344 344 359 293
7 83 344 122 83 344 130 83 344 293 83 344 124
8 81 81 116 81 82 124 81 293 84 81 81 122
9 81 81 84 81 81 122 81 81 82 81 81 118
10 81 81 82 81 81 118 81 81 81 81 81 85
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Figure 7.12: Uncertainty communication measures for R-E for 2020 and 2025 are presented for
sub-scheme 2-3.

7.5 Sub-scheme 2-4

Finally, sub-scheme 2-4 uses both the empirical uncertainty factors and employs dependent
sampling.

7.5.1 Distributions

Figure 7.13 shows the empirical output distributions of all scenarios for sub-scheme 2-4.
Distributions are visually similar those of previous sub-schemes of scheme 2.

Table 7.13 provides the descriptive statistics for GWP100 distributions. CV values range
from 5.51%-5.94% thus showing a slightly lower level of uncertainty compared to sub-scheme 2-1
in table 7.1. Overall, values are closer to those of sub-scheme 2-3 (applying dependent sampling)
than 2-2 (using empirical uncertainty factors).

Table 7.14 provides the descriptive statistics for R-E distributions. CV values range from
19.4%-21.9%. These values are identical to those of 2-2. For both QOI distributions are right
skewed.

Overall, results of sub-scheme 2-4 show that dependent sampling of fuel consumption and
tailpipe emissions has a stronger effect on uncertainty of GWP100, while for uncertainty of R-E
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(a) (b)

Figure 7.13: Empirical distributions for both QOIs for sub-scheme 2-4. (a) shows GWP100 per
CBC. (b) shows R-E per CBC.

using empirical uncertainty factors shows a stronger effect.
To summarize, figure 7.14 shows CV values for GWP100 contrasting dependent and inde-

pendent sampling, as well as both sets of uncertainty factors for all sub-schemes, where results
are encompassed in the rectangle indicating the specific sampling schemes and set of uncertainty
factors chosen. Figure 7.15 shows the CV values for R-E for all sub-schemes.

Table 7.13: Descriptive statistics of uncertainty distributions of GWP100 scores in [kg CO2-eq]
for sub-scheme 2-4.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

Median 19.2 18.6 17.7 19.2 18.5 16.8 19.2 17.7 16.8 19.2 17.6 16.0
Mean 19.3 18.7 17.8 19.3 18.6 16.9 19.3 17.8 16.9 19.3 17.7 16.1
SD 1.08 1.03 1.05 1.08 1.03 1.00 1.08 0.98 0.99 1.08 0.97 0.95
CV [%] 5.62 5.52 5.88 5.62 5.51 5.94 5.62 5.52 5.85 5.62 5.51 5.91
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Figure 7.14: The CV for GWP100.
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Figure 7.15: The CV for R-E.

7.5.2 Convergence

Next, the convergence of sub-scheme 2-4 results is presented. Figure 7.16 shows CV values
as a function of model runs.

The lowest number of model runs required to reach convergence is shown in tables 7.15-7.16.

Table 7.14: Descriptive statistics of uncertainty distributions of R-E scores in 10−7 [disease
incidences] for sub-scheme 2-4.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

Median 12.5 11.1 10.2 12.5 11.1 10.2 12.5 10.8 10.0 12.5 10.8 9.9
Mean 12.9 11.5 10.7 12.9 11.5 10.6 12.9 11.2 10.4 12.9 11.2 10.3
SD 2.51 2.35 2.33 2.51 2.34 2.27 2.51 2.25 2.22 2.51 2.24 2.17
CV [%] 19.4 20.4 21.9 19.4 20.3 21.4 19.4 20.0 21.5 19.4 20.0 21.0

135



136 Chapter 7. Results of scheme 2 - LCA parameter uncertainty

(a) (b)

Figure 7.16: CV as a function of the number of model runs for sub-scheme 2-4. (a) shows the CV
values for GWP100. (b) shows the CV values for R-E.

The convergence criteria set for this thesis are satisfied for all scenarios and years.

Table 7.15: Convergence for thresholds of 1-10% for GWP100, for sub-scheme 2-4.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

1 940 943 942 940 942 938 940 943 943 940 943 939
2 514 512 345 514 513 341 514 514 341 514 515 421
3 340 341 341 340 341 341 340 340 341 340 340 337
4 337 340 341 337 338 337 337 334 337 337 317 317
5 64 334 338 64 317 317 64 127 317 64 127 220
6 59 127 317 59 127 220 59 64 127 59 64 127
7 59 64 127 59 64 127 59 64 127 59 64 127
8 58 64 127 58 64 127 58 64 127 58 64 127
9 55 64 127 55 64 127 55 64 64 55 64 65
10 16 59 64 16 59 64 16 59 64 16 59 64
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Figure 7.17: Uncertainty communication measures for GWP100 for 2020 and 2025 are presented
for sub-scheme 2-4.

Table 7.16: Convergence for thresholds of 1-10% for R-E, for sub-scheme 2-4.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

1 905 917 919 905 918 920 905 924 924 905 924 925
2 842 856 859 842 856 859 842 843 856 842 842 856
3 771 771 770 771 771 770 771 766 765 771 766 764
4 472 472 470 472 472 550 472 472 364 472 472 363
5 470 472 363 470 470 130 470 470 363 470 363 293
6 344 344 344 344 344 124 344 344 344 344 344 122
7 81 344 116 81 81 121 81 344 293 81 293 118
8 81 81 82 81 81 117 81 81 81 81 81 82
9 81 81 81 81 81 82 81 81 81 81 81 81
10 81 81 81 81 81 81 81 81 81 81 81 81
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Figure 7.18: Uncertainty communication measures for R-E for 2020 and 2025 are presented for
sub-scheme 2-4.

7.5.3 Further insights

Finally, for sub-scheme 2-4 the three uncertainty communication measures are computed,
shown in figures 7.17-7.18.

With regard to GWP100 shown in figure 7.17, results of sub-scheme 2-4 are very similar
to those of sub-scheme 2-1. The combined effect of employing dependent sampling and using
empirical uncertainty factors thus shows little influence on the chosen uncertainty communication
measures.

With regard to the second QOI, R-E, shown in figure 7.18, the most relevant differences to
results of sub-scheme 2-1 can be observed for the modified NHST. Results of sub-scheme 2-4 are
identical to those of sub-scheme 2-2 suggesting that this QOI is sensitive to empirical uncertainty
factors, while showing little sensitivity to the sampling applied.

7.6 Summary

This chapter investigated the results of scheme 2, focussing on parameter uncertainty of
the LCA part of CONNECTING. More specifically, the chapter reported on the results of four
sub-schemes of scheme 2 investigating the influence of different uncertainty factors (expert based

138



7.6. Summary 139

and empirical based) used for the uncertainty characterisation and two different sampling methods
(independent and dependent sampling of fuel consumptions and tailpipe emissions).

There are notable aspects of the results that were observed for both QOIs. As a first,
uncertainty of LCA parameters results in higher CV values for both QOIs than shown for scheme
1 which aimed at propagating uncertainty stemming from random choice models. While for
scheme 1 CV values were lower than 1%, scheme 2 showed CV values around 5% and 20% for
GWP100 and R-E respectively.

Results of sub-scheme 2-2 reveal a second notable aspect. The usage of empirical uncertainty
factors rather than using the broadly applied expert factors for uncertainty characterisation, can
have a measurable impact on the model output uncertainty and ultimately on the conclusions
of uncertainty communication measures. This suggests that expert uncertainty factors cause an
underestimation of the level of model output uncertainty.

Similarly, a third notable aspect of results of scheme 2 is, that dependently sampling fuel
consumption and fuel dependent tailpipe emissions for ICEVs can change model output uncertainty
levels. Specifically, sub-scheme 2-3 applied dependent sampling, showing that this leads to a
decrease of CV values for GWP100, as carbon dioxide emissions for vehicles are now derived from
the sampled fuel consumption values. However, this does not lead to relevant changes in the
conclusions that can be drawn from the uncertainty communication measures.
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Chapter 8

Results of scheme 3 - ABM/LCA
combined uncertainty

8.1 Introduction

This chapter will present the results of scheme 3, the final uncertainty propagation scheme
advanced by this thesis. The scheme aims at simultaneously propagating uncertainty stemming
from the ABM and LCA parts of CONNECTING (or in general from an ABM/LCA coupled
model).

Scheme 3 build on previously applied schemes 1 and 2. More specifically, for the ABM
sub-scheme 1-3 is applied, where uncertainty is coming from all choice models (activity type,
duration, location and mode choice). For the LCA sub-scheme 2-1 is adopted using the expert
uncertainty factors for uncertainty characterisation and independent sampling.

However, a challenge arises as for schemes 1 and 2 the number of model runs is different.
Scheme 1 is constrained by the high computational burden of the ABM and therefore only 500
model runs were considered feasible. The review in chapter 3 shows that this is consistent with
recent efforts to propagate uncertainty of ABMs. Chapter 6 however indicates that when applying
the convergence criteria advanced by this thesis, a higher number of iterations would be preferable.
Scheme 2 is less constrained, as the computational burden of the LCA would allow for even higher
numbers of model runs. However, as seen in chapter 7, the convergence criteria set for this thesis
are satisfied using 1’000 model runs for scheme 2.

Scheme 3 advanced in chapter 5 proposes a simple solution to align model runs of the ABM
and LCA, building on a bootstrapping procedure. To this end, model runs from sub-scheme 1-3
are bootstrapped (with replacement) to reach the number of model runs applied for sub-scheme
2-1. Then, each ABM run is associated to a LCA model run, resulting in 1’000 model outputs.

Similar to the previous chapters, the focus is set on uncertainty of system level outputs,
namely the QOIs quantifying climate change related impacts (GWP100 ) and respiratory effects
related impacts (R-E ) for which uncertainty will be quantified and communicated as outlined in
section 5.5.

In sections 8.2 the results of the bootstrapping procedure will be evaluated and compared to
results of sub-scheme 1-3, to assert that relevant statistics are not affected. Then, section 8.3 will
present the results of scheme 3, before a short summary is provided in section 8.4.
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(a) (b)

Figure 8.1: Empirical distributions for both QOIs following bootstrapping of sub-scheme 1-3. (a)
shows GWP100 per CBC. (b) shows R-E per CBC

8.2 Bootstrapping

This section will report on the model outputs, after applying the bootstrapping procedure to
the ABM results of sub-scheme 1-3. The bootstrapping sampled 1’000 from the 500 model runs
with replacement. To calculate the QOIs, the nominal concrete instance of the LCA is used.

8.2.1 Distributions

Figure 8.1 shows the empirical distributions for both QOIs. When comparing the shapes to
those of figure 6.7 only small changes can be observed. Both the median and the spread seem to
be conserved.

In table 8.1 the descriptive statistics for GWP100 are provided. Mean and median values
are identical to those in table 6.11 for sub-scheme 1-3. Uncertainty measures show marginal
differences with some SD and CV values increasing slightly after bootstrapping.

In table 8.2 the descriptive statistics for R-E are provided. Again, mean and median values
are identical to those in table 6.12 for sub-scheme 1-3. Uncertainty measures also show marginal
differences, with some SD and CV values decreasing slightly after bootstrapping.

Overall, one can assert that bootstrapping did not strongly alter output uncertainty distribu-
tions.
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8.2.2 Convergence

Next, the convergence after bootstrapping is assessed. It has to be noted that bootstrapping
with replacement only inflates the number of model runs without adding new information. In
addition, the original order of model runs is not retained as model runs are sampled randomly
from the original 500 runs.

Figure 8.2 shows the CV values as a function of sampled model runs. Similar to what has
been observed for sub-scheme 1-3, CV values stabilize quickly showing no strong upwards or
downwards trends.

Tables 8.3-8.4 show the lowest number of model runs required to reach convergence for both
QOIs. The convergence criteria set for this thesis are reached for all scenarios are years.

Table 8.1: Descriptive statistics of uncertainty distributions of GWP100 scores in [kg CO2-eq]
following bootstrapping of sub-scheme 1-3.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

Median 18.9 18.2 17.4 18.9 18.1 16.4 18.9 17.0 16.2 18.9 16.9 15.3
Mean 18.9 18.2 17.4 18.9 18.1 16.4 18.9 17.0 16.2 18.9 16.9 15.3
SD 0.023 0.021 0.019 0.023 0.020 0.018 0.023 0.022 0.020 0.023 0.022 0.018
CV [%] 0.124 0.113 0.109 0.124 0.113 0.108 0.124 0.128 0.121 0.124 0.128 0.118

Table 8.2: Descriptive statistics of uncertainty distributions of R-E scores in 10−7 [disease
incidences] following bootstrapping of sub-scheme 1-3.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

Median 10.2 9.1 8.3 10.2 9.1 8.3 10.2 8.9 8.1 10.2 8.9 8.1
Mean 10.2 9.1 8.3 10.2 9.1 8.3 10.2 8.9 8.1 10.2 8.9 8.1
SD 0.013 0.010 0.008 0.013 0.010 0.008 0.013 0.010 0.008 0.013 0.010 0.008
CV [%] 0.123 0.108 0.101 0.123 0.108 0.101 0.123 0.113 0.102 0.123 0.113 0.102

Table 8.3: Convergence of GWP100 CV values for thresholds of 1-10% following bootstrapping
of sub-scheme 1-3.

T (%) BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

1 892 709 622 892 709 622 892 892 923 892 892 923
2 448 239 182 448 239 181 448 574 366 448 574 366
3 198 136 96 198 136 92 198 380 362 198 380 362
4 107 108 86 107 108 64 107 364 331 107 364 331
5 78 108 64 78 108 64 78 360 138 78 360 328
6 78 66 42 78 66 41 78 328 92 78 328 41
7 76 64 41 76 64 40 76 64 41 76 64 40
8 33 64 40 33 64 39 33 64 40 33 64 40
9 32 37 39 32 37 38 32 64 37 32 64 37

10 32 35 38 32 35 38 32 30 37 32 30 36
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(a) (b)

Figure 8.2: CV as a function of the number of model runs following bootstrapping of sub-scheme
1-3. (a) shows the CV values for GWP100. (b) shows the CV values for R-E.

8.2.3 Further insights

Finally, to investigate the influence of bootstrapping on the uncertainty communication
measures figures 8.3-8.4 show the results for the bootstrapped simulations. Comparing all measures

Table 8.4: Convergence of R-E CV values for thresholds of 1-10% following bootstrapping of
sub-scheme 1-3.

T (%) BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

1 619 815 677 619 815 677 619 863 890 619 863 890
2 447 257 613 447 257 613 447 574 576 447 574 576
3 239 244 200 239 244 200 239 369 535 239 369 535
4 87 235 124 87 235 124 87 364 361 87 364 361
5 76 149 84 76 149 84 76 360 85 76 360 85
6 41 137 80 41 137 80 41 244 85 41 244 85
7 41 124 78 41 124 78 41 133 85 41 133 85
8 34 107 77 34 107 77 34 85 84 34 85 84
9 33 66 75 33 66 75 33 84 80 33 84 80

10 32 64 64 32 64 64 32 80 77 32 80 77
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Figure 8.3: Uncertainty communication measures for GWP100 for 2020 and 2025 are presented
following bootstrapping of sub-scheme 1-3

to those of figures 6.11-6.12 for sub-scheme 1-3 one can notice only marginal differences for the
Bhattacharyya coefficients.

8.3 Scheme 3: Combined ABM/LCA uncertainty

Following the description of bootstrapped results of sub-scheme 1-3, the results of scheme 3
can be presented, which combines the bootstrapped ABM simulations with LCA simulations of
sub-scheme 2-1.

In order to combine uncertainty for both sub-models, each sampled ABM run is associated
to a LCA model run from sub-scheme 2-1.

145



146 Chapter 8. Results of scheme 3 - ABM/LCA combined uncertainty

2020 2025

BAU-ADEME

BAU-TIR

GREEN-ADEME

GREEN-TIR

BAU-ADEME

BAU-TIR

GREEN-ADEME

GREEN-TIR

BAU-ADEME

BAU-TIR

GREEN-ADEME

GREEN-TIR

B
A

U
-A

D
E

M
E

B
A

U
-T

IR

G
R

E
E

N
-A

D
E

M
E

G
R

E
E

N
-T

IR

B
A

U
-A

D
E

M
E

B
A

U
-T

IR

G
R

E
E

N
-A

D
E

M
E

G
R

E
E

N
-T

IR

Modified NHST

No Yes

Bhattacharyya Coefficient

0.00 0.25 0.50 0.75 1.00

Discernability Score

0% 25% 50% 75% 100%

n.d. Yes Yes Yes

Yes n.d. Yes Yes

Yes Yes n.d. Yes

Yes Yes Yes n.d.

n.d. Yes Yes Yes

Yes n.d. Yes Yes

Yes Yes n.d. Yes

Yes Yes Yes n.d.

n.d. 1.00 0.00 0.00

1.00 n.d. 0.00 0.00

0.00 0.00 n.d. 1.00

0.00 0.00 1.00 n.d.

n.d. 0.98 0.00 0.00

0.98 n.d. 0.00 0.00

0.00 0.00 n.d. 1.00

0.00 0.00 1.00 n.d.

n.d. 0% 0% 0%

100% n.d. 0% 0%

100% 100% n.d. 0%

100% 100% 100% n.d.

n.d. 0% 0% 0%

100% n.d. 0% 0%

100% 100% n.d. 0%

100% 100% 100% n.d.

Figure 8.4: Uncertainty communication measures for R-E for 2020 and 2025 are presented
following bootstrapping of sub-scheme 1-3

8.3.1 Distributions

Figure 8.5 shows the empirical distributions results from scheme 3. Overall, one can see
that results change compared to those of sub-scheme 2-1. While the spread seems less affected,
running the ABM stochastically has an effect on the median values (as outlined in chapter 6).

Table 8.5 shows the descriptive statistics for GWP100. Compared to results of sub-scheme
2-1, there is a slight increase in SD and CV values. Consistent with what has been observed for
sub-scheme 1-3 mean and median values increase with choice models being run stochastically
compared to sub-scheme 2-1 (which build on the nominal results of the ABM).

Table 8.6 shows the descriptive statistics for R-E. Similar conclusions as for GWP100 can be
drawn: there is a slight increase in SD and CV values as well as the expected increase in mean an
median values. For both QOIs one can observe that distributions are right skewed as seen before
for results of scheme 2. When comparing SD values of scheme 3 to those of sub-scheme 2-1 and
1-3 it seems that uncertainties stemming from the ABM and LCA are close to additive.

8.3.2 Convergence

Next convergence is assessed. CV only slightly increase due to the additional uncertainty
stemming from the ABM in figure 8.6 after 1000. Convergence seems to behave similarly to what
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(a) (b)

Figure 8.5: Empirical distributions for scheme 3 for both QOIs. (a) shows GWP100 per CBC.
(b) shows R-E per CBC

has been observed for scheme 2.
Tables 8.7-8.8 show the lowest number of iterations required to reach convergence for GWP100

and R-E respectively. The convergence criteria set for this thesis are satisfied for both QOIs.

8.3.3 Further insights

We can now proceed by evaluating how much the uncertainty stemming from both sub-models
could potentially affect policy choices given the four policy scenarios as seen for previous schemes.
To this end we again compute the three uncertainty communication measures.

Table 8.5: Descriptive statistics of uncertainty distributions of GWP100 scores in [kg CO2-eq] for
scheme 3.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

Median 19.5 19.3 19.0 19.5 19.2 18.0 19.5 18.0 17.7 19.5 17.9 16.8
Mean 19.6 19.4 19.1 19.6 19.3 18.0 19.6 18.0 17.8 19.6 17.9 16.8
SD 1.15 1.13 1.22 1.15 1.12 1.12 1.15 1.03 1.10 1.15 1.02 1.01
CV [%] 5.89 5.83 6.37 5.89 5.81 6.20 5.89 5.71 6.16 5.89 5.69 6.03
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(a) (b)

Figure 8.6: CV as a function of the number of model iterations for scheme 3. (a) shows the CV
values for GWP100. (b) shows the CV values for R-E.

The results for the modified NHST indicate that mean scenario values are all significantly
different from each other, including the comparison of BAU-TIR and GREEN-ADEME where
the null hypothesis could not be rejected for sub-scheme 2-1 in 2025.

The Bhattacharyya coefficient shows slightly lower values compared to scheme 2, especially
for GWP100. This suggests that distributions overlap less when taking into account uncertainty
from all sub-models.

Finally, the discernibility scores for GWP100 in 2020 confirm the changes compared to
scheme 2, where GREEN-ADEME now shows lower values than BAU-TIR for 95% of model
runs. This suggests that in the long term higher investments in PT perform consistently better

Table 8.6: Descriptive statistics of uncertainty distributions of R-E scores in 10−7 [disease
incidences] for scheme 3.

BAU-ADEME BAU-TIR GREEN-ADEME GREEN-TIR
2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

Median 12.4 11.4 10.9 12.4 11.5 10.9 12.4 11.1 10.6 12.4 11.1 10.6
Mean 12.9 12.0 11.4 12.9 12.0 11.4 12.9 11.6 11.1 12.9 11.6 11.0
SD 2.53 2.48 2.54 2.53 2.47 2.47 2.53 2.35 2.41 2.53 2.34 2.35
CV [%] 19.6 20.7 22.3 19.6 20.6 21.7 19.6 20.2 21.7 19.6 20.2 21.2
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than fostering a higher share of EVs in the car fleet.

8.4 Summary

.
In this chapter the third and final uncertainty propagation scheme presented in chapter

5 is applied to the CONNECTING model. Scheme 3 allows to combine propagation for both
sub-models of CONNECTING.

Prior to applying scheme 3 however, a bootstrapping procedure is used to increase the number
of model runs of the ABM to match the number of model runs of the LCA. The evaluation of
model outputs of the bootstrapped model runs shows that output distributions and uncertainty
communication measures are only marginally changed.

For results of scheme 3, both the effects of running ABM choice models stochastically
observed for scheme 1 and the effects running the LCA model stochastically seen for scheme 2

Table 8.7: Convergence for thresholds of 1-10% for GWP100, for scheme 3.

T (%) BAU-
ADEME

BAU-
TIR

GREEN-
ADEME

GREEN-
TIR

2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

1 936 942 947 936 942 942 936 942 946 936 941 942
2 234 345 621 234 345 621 234 345 625 234 345 625
3 220 338 352 220 338 345 220 341 373 220 341 371
4 220 337 345 220 317 341 220 337 345 220 337 345
5 114 220 338 114 220 337 114 220 341 114 141 338
6 112 141 317 112 141 220 112 141 337 112 141 317
7 64 136 178 64 136 178 64 136 178 64 136 178
8 60 127 172 60 127 172 60 127 172 60 127 172
9 59 76 145 59 76 147 59 112 147 59 112 147

10 59 76 141 59 76 141 59 76 141 59 76 141

Table 8.8: Convergence for thresholds of 1-10% for R-E, for scheme 3.

T (%) BAU-
ADEME

BAU-
TIR

GREEN-
ADEME

GREEN-
TIR

2015 2020 2025 2015 2020 2025 2015 2020 2025 2015 2020 2025

1 905 924 919 905 924 924 905 926 926 905 926 928
2 847 858 860 847 858 860 847 855 857 847 855 856
3 779 778 777 779 778 777 779 767 765 779 767 765
4 472 472 470 472 472 554 472 470 363 472 470 363
5 470 470 363 470 470 141 470 363 363 470 363 293
6 344 344 344 344 344 135 344 344 344 344 344 293
7 94 84 123 94 84 131 94 293 293 94 293 124
8 82 81 118 82 82 125 82 293 84 82 81 122
9 81 81 85 81 81 123 81 81 82 81 81 118

10 81 81 82 81 81 119 81 81 81 81 81 85
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Figure 8.7: The discernibility scores for GWP100 for 2020 and 2025 are presented for scheme 3.
The discernibility score indicates the percentage of iterations for which a scenario (row) has a
lower score than a given reference scenario (column).

can be observed. SD values observed for scheme 3 are close to the sum of SD values observed for
sub-scheme 1-4 and sub-scheme 2-1. Compared to scheme 2, mean and median values increase
(resulting from running choice model stochastically).

Finally, uncertainty communication measures for scheme 3 are altered compared to schemes
1 and 2. This suggests that only including both (and ultimately all) uncertainty locations can
provide a good assessment of model output uncertainty to decision makers.
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Figure 8.8: The discernibility scores for R-E for 2020 and 2025 are presented for scheme 3. The
discernibility score indicates the percentage of iterations for which a scenario (row) has a lower
score than a given reference scenario (column).
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Chapter 9

Conclusions

9.1 Introduction

In a context, where ever more complex C-LCA modelling approaches are being applied
to increasingly complex case studies, there are increasing concerns about whether or not such
endeavours can still allow to produce scientific outputs that can be trusted by decision makers
eager to identify robust policy measures. One broadly accepted tool to increase the trust that
can be placed in a model, is the systematic analysis of uncertainty that can potentially affect
the model output and in consequence the decision of a policy maker. The present thesis aims at
going beyond the state-of-the-art, by proposing an UA framework for C-LCA models, where the
consequential aspect is generated by an ABM approach of travel demand.

More specifically, the thesis is part of a larger multi-disciplinary project – the CONNECTING
project – which aims at developing such an ABM/LCA coupled model, where the ABM part
focusses on the CBC population living in France and working in Luxembourg and the LCA part
focusses on the available transportation modes, allowing these commuters to participate in their
daily activities. It is this model and the related case study that allows to apply the UA framework
developed in this thesis.

The CONNECTING model (much like all models) is merely the attempt to create an
isomorphic image of a perceived source system and each execution of the model is subject to
uncertainties. A single model execution allows to evaluate only one possible trajectory of the
modelled system, where uncertainties of epistemological and ontological nature affect both the
ABM part of the model, where thousands of individuals make choices about their DAPs, as
well as the LCA part of the model representing thousands of interconnected processes and their
exchanges with the natural environment. Only a large set of model executions allows to provide
a robust answer to the questions that decisions makers have about the behaviour of the modelled
system. UA is the organisation of these model executions, ultimately allowing to describe the
uncertainty in the model outputs.

ABM/LCA coupled models, such as the CONNECTING model, allow to generate a DAP for
each individual in the CBC population, determining what activities an individual conducts when,
where and which transport modes the individual uses to reach each activity location. While these
individual DAPs can be themselves evaluated, in case of the CONNECTING model they are
aggregated in time and space to compute the system’s demand for transport processes modelled
in the LCA part of the CONNECTING model. Using the matrix inversion approach of LCA
the demand can be translated into related impacts such as impacts on the environment, impacts
on human health or impacts on resource depletion. These are the QOIs of the CONNECTING
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project intended to be communicated to decision makers and in consequence the model outputs
for which uncertainty shall be quantified.

While the CONNECTING model is the first attempt to couple an ABM and LCA, it only
links both models at an aggregated scale, where only the total distances travelled at the population
level are currently used as inputs to the LCA. This limitation has some implications for the
UA, where uncertainty of the DAPs at a more disaggregated scale do not necessarily translate
into uncertainty of the chosen QOIs. Uncertainties at lower levels of aggregation however were
considered out of the scope of the present thesis.

Similarly, coupling ABMs and LCA opens up the possibility to not only assess the effect of
travel demand by coupling the ABM with the LCI but also assess coupling the ABM to the LCIA
(e.g., by modelling air quality and assessing exposure). This would imply that uncertainty of the
ABM would affect both LCA phases, however such a coupling was considered beyond the scope
of the CONNECTING project and can thus not be assessed in the present thesis.

In the following, the conclusions of the UA applied to the CONNECTING model and case
study will be structures according to two distinct subjects. As a first, section 9.2 will focus on the
UA framework and its application. Section 9.3 will focus on the implications of the uncertainty
in a decision making context. At the end a few final comments are provided to outline further
research.

9.2 Uncertainty analysis of ABM/LCA coupled models

Prior to proceeding with the analysis of uncertainty by performing model runs, the present
thesis dedicates a large portion to the description of ABM/LCA coupled models in general, the
CONNECTING model in particular and the review of UA of such models. While a re-iteration of
the first two subjects is of lesser interest to the conclusions of the present thesis, the conclusions
of the review of UA will allow to set the stage for the conclusions regarding the UA results.

In both fields individually, scholars have advanced frameworks for all steps of performing UA,
starting with the location and identification of uncertainty within the model, the characterisation
and treatment of that uncertainty to its communication. It goes without saying that a failure at
the uncertainty location and identification stage of UA will propagate to subsequent steps and can
potentially cause for irrelevant results, as important uncertainties are disregarded from the outset.
A proper set of uncertainty locations (elements of the model where the uncertainty manifests
itself), a description of uncertainty nature (epistemic or ontic) and level is thus primordial to a
successful UA. While uncertainty nature and level are already covered by generic classifications
such as Walker et al. (2003), uncertainty locations are usually more model specific and such
classifications have been advance both for LCA and ABMs. However, there is no such classification
for ABM/LCA coupled models and thus chapter 3 proceeds by proposing the first classification,
building on prior work of both fields. Going beyond ABM/LCA coupled models, especially in
the field of LCA the prominent classifications of so-called uncertainty sources are often ignorant
of the different dimensions of uncertainty (nature, location and level) as proposed by Walker
et al. (2003) and thus propose classifications that conflate these terms and concepts. While the
classification presented in the current thesis aims at being specific to ABM/LCA coupled models,
it could also be applied to textbook LCA studies proposing the following uncertainty locations:
experimental frame, inputs, model and outputs. Model uncertainty is used as an umbrella term
encompassing model specification, model estimation and the simulation error.

The present thesis thus evaluates uncertainty locations of the CONNECTING model, where
the most relevant locations are selected based on their prevalence in literature of UA for both
fields. This prevalence is assessed based on a quantitative and systematic literature review of
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UA of LCA studies of transport modes and of ABM case studies. The extensive and systematic
literature reviews on both subjects build on the screening more than 1’000 records each. The
most prevalent uncertainty locations are the simulation error of ABMs, as well as the measured
parameters of LCA present in the technosphere and biosphere matrices. Both are addressed
for over 90% of studies in the respective literature reviews and are thus selected to be made
operational by the uncertainty propagation schemes advanced by this thesis. It has to be noted
that the selection based on prevalence in the literature review can be questioned, and a selection
of locations potentially contributing most to the overall output uncertainty could also have been
made. However, the present thesis aims at catering to the largest possible audience by trying to
address the uncertainty locations that practitioners have focused on most.

Several other relevant aspects have been identified during the literature review, especially with
regard to the current uncertainty characterisation and treatment practice, and the implications
for the estimation of output uncertainties.

More specific to LCA, while many studies apply the pedigree approach to deal with the
impracticability of characterising the uncertainty of thousands of flows in the technosphere and
biosphere matrix only few studies assess the sensitivity towards competing uncertainty factors used
to derive uncertainty distributions. The present thesis presents the first case study assessment of
the impacts of two sets of uncertainty factors present in literature on the output uncertainty.

In addition, the literature review has revealed that only few studies have investigated the
impact of dependencies among uncertainty locations on the output uncertainty. Especially, LCA
parameters of unit processes can exhibit strong dependencies (i.e., fuel consumption and CO2

emissions). The present thesis presents one of the first fleet level case studies assessing the impact
of dependencies among fuel consumption and fuel related emissions on the output uncertainty.

Finally, while several studies assess the uncertainty of ABM outputs stemming from all choice
facets simultaneously, the present thesis investigates the uncertainty stemming from individual
choice models of the CONNECTING ABM on the QOIs, as well as stemming from combinations
of choice models, where other models are set to being run deterministically. No prior study
has attempted to systematically investigate uncertainty of individual and combinations of ABM
sub-models in this manner.

Three uncertainty schemes representing specific research designs are advanced by this thesis
propagating: (1) uncertainty from the ABM; (2) uncertainty from the LCA; and (3) uncertainty
from both the ABM and the LCA sub-model simultaneously. Next the three advanced schemes
are briefly described (a detailed description is presented in chapter 5):

Scheme 1 First, the synthetic population is generated always using the same random number
seed. Next, random seeds are generated for each potential decision of each individual of the
synthetic population to be fed to the choice models of the ABM, for each mode run. ABM
sub-models are calibrated based on the survey data. Next the ABM is executed N times and for
each execution a deterministic LCA is run to produce the QOIs. Finally, uncertainty measures
are computed for the outputs.

Scheme 2 First, the synthetic population is generated always using the same random number
seed. Next, N random seeds are generated, one for each planned model execution. ABM sub-
models are calibrated based on the survey data. Next the ABM is executed one time where
each sub-model is set to run deterministically. Then N LCA iterations are run using the N
random seeds and producing N model outputs. Finally, uncertainty measures are computed for
the outputs.
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Scheme 3 First, the synthetic population is generated always using the same random number
seed. Next, R random seeds are generated for each potential decision of each individual of the
synthetic population to be fed to the choice models of the ABM, for each mode run. Next, N
random seeds are generated, one for each planned LCA model execution. ABM sub-models are
calibrated based on the survey data. Next the ABM is executed R times. Using bootstrapping
with replacement, N model runs are sampled from the original R ABM runs. Then, for each
sampled ABM run a stochastic LCA is run to produce the QOIs. Finally, uncertainty measures
are computed for the outputs.

Two main output measures are used to assess the uncertainty in QOIs: (1) the CV defined
as the ratio of the sample SD and the sample mean; (2) the convergence where it is considered
that convergence is reached if the percentage difference of the CV after n iterations compared to
the CV after N simulations is consistently lower to a selected threshold.

The threshold for the convergence is set to 5%. The convergence measure is complemented
with a second condition in addition the threshold, where it is argued that in order for the
convergence measure to be able to arrive at the conclusion that a model has not converged, it
needs to be defined by which share of the executions the defined threshold has to be consistently
met. Here this share is conveniently set to N/2.

The results of scheme 1 for both measures allow for the drawing of following conclusions:

1. The simulation error of the ABM is relatively small (i.e., compared to the uncertainty from
LCA parameters), with CV values being consistently lower than 0.13%

2. The location choice model seems to contribute only marginally to the observed output
uncertainty of scheme 1, while the activity type and duration models contribute the most.
It seems that commuters are more constrained in their location choices or QOIs are less
sensitive to the uncertainty of these choices, at least at the aggregated scale.

3. With regard to the convergence, when all models are run stochastically the criteria are
met most of the time, while for individual models (especially the location choice model)
convergence seems significantly slower potentially requiring additional model runs.

4. Uncertainty does not seem to be additive in the sense that the sum of CV (or SD) values
when individual ABM sub-models are being investigated does not result in the CV (or SD)
values when all ABM sub-models are being run stochastically. This suggests that there
could be a damping effect due one or the combination of ABM sub-models being set to a
certain state (stochastic or deterministic).

5. ABM sub-models being set to run deterministically (or stochastically) can affect mean (or
median) values of output distributions. This results from the definition of the deterministic
state of a model (where deterministic means that the options with the highest utility are
chosen for each individual).

The results of scheme 2 allow for the drawing of following conclusions:

1. The uncertainty from the parameters of the LCA sub-model is substantially larger than the
simulation error stemming from the ABM. This suggests that the QOIs are more sensitive
to the uncertainty about the transport mode data, than to the uncertainty about individual
DAPs.

2. With regard to the two QOIs used throughout this thesis, uncertainty is larger for R-E than
for GWP100. This suggests that R-E is more sensitive to variations in emissions relevant
to human health, or that these emissions are more uncertain in the LCI or both.
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3. Output uncertainty for both QOIs (in terms of CV values and convergence) is not very
sensitive towards alternative uncertainty factor definitions or dependent sampling. The
current practice of using expert factors and independently sampling fuel consumption and
fuel related emissions does not significantly over- or underestimate the overall uncertainty.

4. However, uncertainty communication measures (which might be more relevant to decision
makes), i.e., modified NHST, Bhattacharyya coefficients and discernibility scores, can show
different outcomes especially with regard to the two sets of uncertainty factors used.

Finally, the results of scheme 3 allow for the drawing of following conclusions:

1. Bootstrapping the results of the ABM iterations of scheme 1, by increasing the amount
of outputs by a factor of 2 does not show significant impacts on the model outputs, their
uncertainty or the convergence of CV values. It seems thus appropriate to inflate the
number of model runs of the ABM part artificially to a certain degree if need be.

2. Comparing results of scheme 3 to those of scheme 1 and scheme 2 suggests the overall
uncertainty is close to being additive.

3. Uncertainty communication measures suggest that even though the uncertainty magnitude
from the ABM is small, running the ABM stochastically (rather than deterministically as
done for scheme 2) can have substantial effects due to changes in mean and median values.

4. Overall, the results of scheme 3 show that only the combination of multiple uncertainty
locations (stemming from both sub-models) allow to accurately present the reliability of
the model outputs.

9.3 Decision making under uncertainty

Following the conclusions with regard to the UA framework and application, this section
focusses on the conclusions with regard to decision making under uncertainty for ABM/LCA
coupled models.

The present thesis builds on uncertainty communication measures designed to facilitate
decision making based on UA of comparative LCA studies, where the selected measures (the
modified null hypothesis significance test, the Bhattacharyya coefficient and the discernibility
score) each cover different aspects of the effect of output uncertainty on decision making.

These measures are systematically applied to all possible scenario comparisons for the 4
policy scenarios (BAU-ADEME, BAU-TIR, GREEN-ADEME and GREEN-TIR) defined in
chapter 4. The modified NHST first proposed by Mendoza Beltran et al. (2018a) is a measure
that allows to assess the statistical significance of scenario means. It thus covers the significance
dimension of scenario comparison. The Bhattacharyya coefficient is a measure for the overlap
of output distributions, thus covering the extent dimension of scenario differences. Finally, the
discernibility score provides the percentage of iterations for which one scenario performs better
(i.e., shows a lower impact for a QOI) compared to another scenario covering the consistency
dimension of the scenario difference.

Based on the results of scheme 1, it can be concluded that the simulation error of the ABM is
only policy relevant to a lesser extent. Both the modified NHST and the discernibility score allow
for clear cut decisions, similar to the nominal results of the CONNECTING model. Only the
Bhattacharyya coefficient (or in other words the extent of differences among scenarios) suggests
that at least for comparisons of ADEME and TIR scenarios for R-E, these uncertainty sources
could potentially affect decision making.
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158 Chapter 9. Conclusions

Results of scheme 2 point towards the opposite conclusions for uncertainty from LCA
parameters. While all measures identify policy relevant uncertainties, especially the comparison of
the BAU-TIR and GREEN-ADEME scenario for GWP100 point towards an interesting trade-off
that is identified by all three measures. For many other comparisons often only one measure points
towards policy relevant uncertainties suggesting that only in the combination these measures are
robust, while single measures might lead to overlooking policy relevant uncertainty and making
an uninformed choice.

Finally, the uncertainty communication measures computed for scheme 3 reveal that even
though the simulation error stemming from the ABM is marginal, the effect of running the
model stochastically on the mean (or median) results can cause shifts in the relevance of output
uncertainties. In the present case, scheme 3 allows for more clear cut decisions compared to
scheme 2.

9.4 Final comments

While the present thesis has presented a substantial amount of results produced under
high computational burden it has only partially addresses the subject of UA of ABM/LCA
coupled models (or even AgBM/LCA coupled models). A large portion of the work went into
the conceptualisation of ABM/LCA coupled models necessary for UA, the literature review to
establish the state-of-the-art, as well as the more technical aspects regarding the implementation
of UA. In consequence the present thesis leaves much room for further work on the subject. In
the following a few research pathways will be outlined.

As a first, the present thesis deals with uncertainty locations most prevalent in literature
which are by no means the most relevant in terms of impact on the output or relevance to policy
makers. To identify the most relevant uncertainty locations (or key issues) SA methods have been
developed and successfully applied to a broad range of models (including ABMs, AgBMs and
LCA). Uncertainty locations such as inputs (i.e., transport system data), estimated parameters or
the model’s functional form could be systematically screened and/or their CTV could be assessed
by means of GSA.

While the focus of the present thesis is UA, model development of ABM/LCA coupled
approaches has only just begone, with much work left to be done. The current coupling of both
approaches, using aggregated system level outputs of the ABM to compute LCA results represents
only a fraction of the potential that could be reached. One concrete next step would be to assess
occupancy rates of transport modes at the ABM side and use them as inputs to LCA transport
mode processes. This could allow to assess policies aiming at increasing car sharing or assess
the efficiency of additional bus or train lines from an environmental point of view. A second
step could be to couple air quality models (which have already been coupled to ABM and LCA
respectively) to both models to further develop the coupling towards the LCIA phase. Finally
a third step could be to include long term choices such as car purchasing or disposal into the
system’s demand, allowing to couple more stages of the vehicle life cycle to the ABM.

A final research pathway outlined here is a focus on decision making based on UA outputs of
complex C-LCA models such as the CONNECTING model. While UA might be able to increase
the trust in such approaches, decision making requires additional methods and measures. In the
present thesis a few such measures have been presented, applied and interpreted. However several
other interesting concepts where considered out of scope. Robust decision making is such a tool,
which has yet to be applied to a LCA case study to steer decision makers towards an informed
choice.
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Hägerstrand, T. (1970). What about people in regional science? In: Papers of the Regional Science
Association. Vol. 24.

Igos, E., E. Benetto, R. Meyer, P. Baustert, and B. Othoniel (2018). How to treat uncertainties
in life cycle assessment studies? In: The International Journal of Life Cycle Assessment. doi:
10.1007/s11367-018-1477-1.

IPCC (2015). Climate change 2014: Mitigation of climate change. Tech. rep. Intergovernmental
Panel on Climate Change.

IPCC (2018). Special Report on Global Warming of 1.5 degree Celcius (SR15). Tech. rep.
Intergovernmental Panel on Climate Change, p. 792.

ISO (2006a). ISO 14040. In: Environmental management – Life cycle assessment – Principles
and framework.

ISO (2006b). ISO 14044. In: Environmental management – Life cycle assessment – Requirements
and guidelines.

166

https://doi.org/10.1007/s11367-013-0647-4
https://doi.org/10.1007/s11367-013-0647-4
https://doi.org/10.1007/s11367-010-0175-4
https://doi.org/10.1007/s11367-010-0175-4
https://doi.org/10.1021/es100186h
https://doi.org/10.1016/j.tra.2005.02.010
https://doi.org/10.1016/j.tra.2005.02.010
https://doi.org/10.1007/BF02978728
https://doi.org/10.1007/s11367-016-1246-y
https://doi.org/10.1016/j.atmosenv.2015.02.073
https://doi.org/10.1007/s11367-018-1477-1


Bibliography 167

Janssens, D., G. Wets, H. J. P. Timmermans, and T. A. Arentze (2007). Modelling Short-Term
Dynamics in Activity-Travel Patterns: Conceptual Framework of the Feathers Model. In: 11th
World Conference on Transport ResearchWorld Conference on Transport Research Society.

Jones, P. M. (1983). A new approach to understanding travel behaviour and its implications for
transportation planning. PhD thesis. Imperial College London.

Jonnalagadda, N., J. Freedman, W. A. Davidson, and J. D. Hunt (2001). Development of
Microsimulation Activity-Based Model for San Francisco: Destination and Mode Choice
Models. In: Transportation Research Record 1777.1, pp. 25–35. doi: 10.3141/1777-03.

Jørgensen, A., A. Le Bocq, L. Nazarkina, and M. Z. Hauschild (2007). Methodologies for social
life cycle assessment. In: The International Journal of Life Cycle Assessment 13.2, p. 96.
doi: 10.1065/lca2007.11.367.

Kelly, J. C., J. L. Sullivan, A. Burnham, and A. Elgowainy (2015). Impacts of vehicle weight
reduction via material substitution on life-cycle greenhouse gas emissions. In: Environmental
Science & Technology 49.20. Publisher: ACS Publications, pp. 12535–12542. doi: 10.1021/
acs.est.5b03192.

Kennedy, D. J., D. C. Montgomery, D. A. Rollier, and J. B. Keats (1996). Data quality. Stochastic
Environmental Life Cycle Assessment Modeling. In: The International Journal of Life Cycle
Assessment 2.4, pp. 229–239. doi: 10.1007/BF02978693.

Kitamura, R. (1988). An evaluation of activity-based travel analysis. In: Transportation 15.1-2,
pp. 9–34. doi: 10.1007/BF00167973.

Kitamura, R., C. Chen, R. M. Pendyala, and R. Narayanan (2000). Micro-simulation of daily
activity-travel patterns for travel demand forecasting. In: Transportation 27.1, pp. 25–51.
doi: 10.1023/A:1005259324588.

Klir, G. (2013). Facets of systems science. Vol. 7. Springer Science & Business Media.

Kloprogge, P., J. P. van der Sluijs, and J. A. Wardekker (2007). Uncertainty communication:
issues and good practice. Tech. rep. Copernicus Institute for Sustainable Development and
Innovation.

Knight, F. (1921). Risk, Uncertainty and Profit. University of Chicago Press.

Kolkman, M. J., M. Kok, and A. van der Veen (2005). Mental model mapping as a new tool
to analyse the use of information in decision-making in integrated water management. In:
Physics and Chemistry of the Earth, Parts A/B/C 30.4, pp. 317–332. doi: 10.1016/j.pce.
2005.01.002.

Kraines, S. and D. Wallace (2006). Applying Agent-based Simulation in Industrial Ecology. In:
Journal of Industrial Ecology 10.1-2, pp. 15–18. doi: 10.1162/108819806775545376.

Kwak, M.-A., T. A. Arentze, E. de Romph, and S. Rasouli (2012). Activity-based dynamic traffic
modeling: influence of population sampling fraction size on simulation error. In: International
Association of Travel Behavior Research Conference. Toronto, Canada, pp. 1–17.

Kwakkel, J. H., W. E. Walker, and V. A. Marchau (2010). Classifying and communicating
uncertainties in model-based policy analysis. In: International Journal of Technology, Policy
and Management 10.4, pp. 299–315. doi: 10.1504/IJTPM.2010.036918.

167

https://doi.org/10.3141/1777-03
https://doi.org/10.1065/lca2007.11.367
https://doi.org/10.1021/acs.est.5b03192
https://doi.org/10.1021/acs.est.5b03192
https://doi.org/10.1007/BF02978693
https://doi.org/10.1007/BF00167973
https://doi.org/10.1023/A:1005259324588
https://doi.org/10.1016/j.pce.2005.01.002
https://doi.org/10.1016/j.pce.2005.01.002
https://doi.org/10.1162/108819806775545376
https://doi.org/10.1504/IJTPM.2010.036918


168 Bibliography

Lawe, S., J. Lobb, A. Sadek, S. Huang, and C. Xie (2009). TRANSIMS implementation in
Chittenden County, Vermont: development, calibration, and preliminary sensitivity analysis.
In: Transportation Research Record: Journal of the Transportation Research Board 2132,
pp. 113–121. doi: 10.3141/2132-13.

Lenntorp, B. (1979). Das PESASP-Modell: seine theoretische Grundlegung im Rahmen des
zeitgeographischen Ansatzes und Anwendungsmöglichkeiten. In: Geographische Zeitschrift
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Navarrete Gutiérrez, T., S. Rege, and A. Marvuglia (2015a). Does having a green conscience
necessarily lead to green outcomes? Results from an Agent Based Model for agriculture in
Luxembourg. In: Adjunct Proceedings of the 29th EnviroInfo and 3rd ICT4S Conference.
Copenhagen, Denmark.

Navarrete Gutiérrez, T., S. Rege, A. Marvuglia, and E. Benetto (2015b). Introducing LCA
Results to ABM for Assessing the Influence of Sustainable Behaviours. In: Trends in Practical
Applications of Agents, Multi-Agent Systems and Sustainability, pp. 185–196.
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Larivé, J.-F. 35, 37
Larrea-Gallegos, G. 35
Lawe, S. 47
Le Bocq, A. 8

179



180 Bibliography

Leedal, D. 33
Lehmann, A. 8
Lenntorp, B. 19
Leontief, W. 13
Leopold, U. xi, 5, 6, 31, 32
Lesage, P. xv, 12, 79, 80, 82, 115, 120
Lifset, R. 20, 21
Liu, F. 37
Lloyd, S. M. 29, 34
Lobb, J. 47
Loubet, P. 21, 22
Lovric, M. 42
Lu, Z. 37

Ma, T.-Y. xii, xv, 6, 49, 58, 69–72, 75
Macal, C. M. 20
Macharis, C. 38
MacLean, H. L. 58
Mahieu, V. 35, 37
Majeau-Bettez, G. 3
Mann, M. K. 16, 35, 37
Manzo, S. 32, 42–45, 47, 82
Marchau, V. A. 26, 30
Mariante, G. L. xii, xv, 6, 49, 58, 62, 63, 69–72,

75, 78, 83
Martinson, H. 35
Marvuglia, A. 4, 15, 16, 21, 23
Masoni, P. 8
Matheys, J. 38, 39, 88
Mathur, R. 33
Maurice, B. 33
Mazzetti, P. 33
McCleese, D. L. 35, 38
McKay, M. D. 29, 34
McLellan, P. J. 33
McNally, M. G. 17, 18
MDDI 4, 69
Meadows, D. H. 8
Meadows, D. L. 8
Meisterling, K. 35, 38
Mendoza Beltran, A. xiii, 35, 38, 39, 86, 90,

111, 155
Messagie, M. 36, 38–40, 88
Meyer, R. 31, 34, 35
Micolier, A. 21, 22
Mierlo, J. V. 38
Miller, S. 28, 82
Miller, S. A. 22, 23
Mitchell, M. 20

Mitchell, R. B. 5
Monfort, J.-C. 37
Montgomery, D. C. 86
Morgan, M. G. 5, 29, 31, 33
Morris, J. M. 17
Morrison, J. D. 29
Morrow, W. R. 5
Moysey, S. 23
Muller, S. xv, 12, 79, 80, 82, 115, 120
Mutel, C. L. 35, 38, 39, 68, 79, 80, 83, 86

Nagel, K. 42
Narayanan, R. 18
Nativi, S. 33
Navarrete Gutiérrez, T. xii, xv, 6, 13, 21, 23,

49, 58, 69–72, 75, 76
Nazarkina, L. 8
Nielsen, A.-M. 16
Nielsen, O. A. 32, 42–45, 47, 82
Nieweglowski, R. 35, 37
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