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Abstract

This dissertation is ordered into three Parts. Part I is an investigation into identity,
indiscernibility and individuality in logic and metaphysics.

In Chapter 2, I investigate identity and discernibility in classical first-order
logic. My aim will will be to define four different ways in which objects can be
discerned from one another, and to relate these definitions: (i) to the idea of
symmetry; and (ii) to the idea of individuality.

In Chapter 3, the four kinds of discernibility are put to use in defining four
rival metaphysical theses about indiscernibility and individuality.

Part II sets up a philosophical framework for the work of Part III.

In Chapter 4, I give an account of the rational reconstruction of concepts, in-
spired chiefly by Carnap and Haslanger. I also offer an account of the interpretation
of physical theories.

In Chapter 5, I turn to the specific problem of finding candidate concepts of
particle. I present five desiderata that any putative explication ought to satisfy,
in order that the proposed concept is a concept of particle at all.

Part III surveys three rival proposals for the concept of particle in quantum
mechanics.

In Chapter 6, I define factorism and distinguish it from haecceitism. I then
propose an amendment to recent work by Saunders, Muller and Seevinck, which
seeks to show that factorist particles are all at least weakly discernible. I then
present reasons for rejecting factorism.

In Chapter 7, I investigate and build on recent heterodox proposals by Ghirardi,
Marinatto and Weber about the most natural concept of entanglement, and by
Zanardi about the idea of a natural decomposition of an assembly.

In Chapter 8, I appraise the first of my two heterodox proposals for the con-
cept of particle, varietism. I define varietism, and then compare its performance
against the desiderata laid out in Chapter 5. I argue that, despite its many merits,
varietism suffers a fatal ambiguity problem.

In Chapter 9, I present the second heterodox proposal: emergentism. I argue
that emergentism provides the best concept of particle, but that it is does so im-
perfectly; so there may be no concept of particle to be had in quantum mechanics.
If emergentism is true, then particles are (higher-order) properties of the assembly,
itself treated as the basic bearer of properties.
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Chapter 1

Introduction

What is a quantum particle? What properties and relations do they possess? It

is the aim of this dissertation to make some progress in finding out.

There has been discussion over many decades about the treatment of indis-

tinguishable (also known as ‘identical’) particles.1 This discussion has been in-

vigorated in the last few years, principally by Saunders’ (2003b) revival of the

Hilbert-Bernays account of identity (also briefly discussed by Quine) and his, and

later Muller’s and Seevinck’s (Muller and Saunders (2008), Muller and Seevinck

(2009)), application of it to quantum theory.

In short, Saunders saw that there is an error in the consensus of the previous

philosophical literature. That literature had shown that for any assembly of indis-

tinguishable quantum particles (fermions or bosons), and any state of the assembly

(appropriately (anti-) symmetrized), and any two particles in the assembly: the re-

duced density matrices (reduced states) of the particles (and so all probabilities for

single-particle measurements) were equal; and so were appropriate corresponding

two-particle conditional probabilities. This result strongly suggests that quantum

theory endemically violates the principle of the identity of indiscernibles: for any

two particles in the assembly are surely indiscernible.2

1Castellani (1998) is a valuable collection of classic and contemporary articles. French and
Krause (2006) is a thorough recent monograph.

2This consensus seems to have been first stated by Margenau (1944, pp. 201-3) and it is
endorsed and elaborated by e.g. French and Redhead (1988, p. 241), Butterfield (1993, p. 464),
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Saunders’ basic insight (2006, p. 7) is that the Hilbert-Bernays account provides

ways that two objects can be distinct, which are not captured by these orthodox

quantum probabilities: and yet which are instantiated by quantum theory. Thus

on the Hilbert-Bernays account, two objects can be distinct, even while sharing

all their monadic properties and their relations to all other objects. For they can

be distinguished by either:

(i) a relation R between them holding one way but not the other (which is called

‘being relatively discernible’);

(ii) a relation R between them holding in both directions but neither object

having R to itself (‘being weakly discernible’).

Saunders, and later Muller and Saunders (2008), argue that the second case (ii) is

instantiated by fermions: the prototype example being the relation R = ‘. . . has

opposite value for spin (in any spatial direction) to . . . ’ for two spin-1
2

fermions

in the singlet state. More recently, Muller and Seevinck (2009) have argued that

(ii) is instantiated by all particles. (I will propose a refinement of these results in

Section 6.3.)

Saunders’ proposals have led to several developments, including exploring the

parallel between quantum particles and spacetime points (e.g. Pooley (2006),

Caulton and Butterfield (2011), Muller (forthcoming)). But this is work for an-

other day. Here there will be enough to do focussing solely on quantum theory.

The Hilbert-Bernays account is a reductive account, reducing identity to a con-

junction of statements of indiscernibility. So this account is controversial: many

philosophers hold that identity is irreducible to any sort of qualitative facts, but

nevertheless wholly unproblematic because completely understood.3 This latter

view is certainly defensible, perhaps orthodox, once one sets aside issues about

and French (2006, §4). Massimi (2001, pp. 326-7) questions these authors’ emphasis on monadic
properties, but agrees that quantum mechanics violates the identity of indiscernibles when the
quantum state is taken to codify purely relational properties.

3For example, Lewis (1986, pp. 192-193). More generally: in the philosophy of logic, the
Fregean tradition that identity is indefinable, but understood, remains strong—including as a
response to the Hilbert-Bernays account: cf. e.g. Ketland (2006, p. 305 and Sections 5, 7).
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diachronic identity—as I will. But this is not a problem for me: for I am not com-

mitted to the Hilbert-Bernays account (and nor is Saunders’ basic insight about

weak discernibility in quantum theory)—in fact, I will support an interpretation

of quantum mechanics in which particles may be indiscernible. Besides, these con-

troversies do not undercut the rationale for my investigation (in Chapter 2) into

the kinds of discernibility; essentially because anyone, whatever their philosophy

of identity or their attitude to the identity of indiscernibles, will accept that dis-

cernibility is a sufficient condition for diversity (the ‘non-identity of discernibles’).

It cannot be denied that, with the resources of the Hilbert-Bernays account,

two objects previously thought indiscernible may yet be discernible (albeit merely

‘relatively’ or ‘weakly’). Nevertheless, the quantum particles discussed in very

nearly all of the philosophical literature (including the recent work by Saunders,

Muller and Seevinck) possess a feature which is intuitively like indiscernibility. The

consensus (shared by Saunders, Muller and Seevinck) is that quantum particles of

the same species—electrons, say—possess exactly the same monadic properties:

they are, as I shall say (in Section 2.3) ‘absolutely indiscernible’. The unfortu-

nate upshot of this is that no single one of them can be ‘picked out’ in language

or in thought, without appeal to some sort of ‘underlying’ or ‘non-qualitative’

property—namely, an haecceity.

But this result is intolerable. In the face of such a result, the correct response

can only be that something, somewhere has gone wrong. Thus I claim that a

fundamental mis-interpretation of quantum theory pervades the consensus. That

is, I claim that the consensus has mis-identified the representational relationships

between the quantum formalism and the physical world.

The interpretative proposal that leads to this intolerable result I call factorism.

Despite its unfamilar name, factorism is a familiar proposal. It says that particles

are the physical correlates of the labels of factor Hilbert spaces. I will distinguish

this from another doctrine, familiar in philosophy: haecceitism (Section 6.2). I will

agree that factorism is right for distinguishable systems—i.e. systems for which the

Indistinguishability Postulate is not imposed.4 Since such systems differ in, say,

4For a thorough discussion of the Indistinguishability Postulate, see French and Krause (2006,
pp. 131-149).
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intrinsic charge or mass, the labels can be taken as short for such distinguishing

properties. But this construal is not available for indistinguishable systems. Here,

the correlates of labels make very poor particles, for the reasons just given; and

thus I reject factorism. Indeed, as I will argue (Section 6.4), the factorist’s particles

are like that familiar abstraction of high-school statistics, ‘the average taxpayer’,

and factorism makes a reification error (what Whitehead (1925) called ‘the fallacy

of misplaced concreteness’) analogous to those who take the average taxpayer as

a real person.

I will therefore seek a successor to factorism. That is: I will seek a new account

of what a quantum particle is, and of how particles are represented in the formalism

of quantum theory. But how does this project proceed? How can one look for a

new concept without already knowing what one is looking for?

The answer is that we do, at least in part, know what we are looking for. (Oth-

erwise we could not even have suspected that the consensus was in such error.) We

have an intuitive notion of what a particle is, and there are other theories—namely,

classical mechanics and quantum field theory—whose interpretations provide, in

each of their own domains, a more precise and complete account. With an eye

on our cloudy, pre-theoretic notion, and on “neighbouring” theories’ accounts, we

may search the quantum formalism for objects more worthy of the name ‘particle’.

It is the work of Chapters 4 and 5 to set up the philosophical framework that will

make these rough ideas precise.

I will discuss two heterodox interpretative proposals for what these natural

candidates are. I call them varietism and emergentism. They both propose that

the real particles are the things of which the factorist’s “particles” are the average,

just as the average taxpayer encodes statistical information about a population of

real people.

Furthermore, both proposals make a break from the current debate in phi-

losophy of physics about whether quantum particles are discernible. We will see

that particles in the senses of varietism and emergentism will often be absolutely

discernible, contra the received consensus. But, regrettably, the weak discernibil-

ity results that in all states any two particles are weakly discernible (mentioned

above) will not carry over either to varietism or emergentism. Therefore, for both

10



varietism and emergentism, bosons and paraparticles may fail to be discernible at

all.

An important difference between varietism and emergentism is whether parti-

cles exist in all states of the assembly. According to varietism, there are particles

always, i.e. in all states of the assembly. But according to emergentism, there are

particles only sometimes, i.e. only in some states of the assembly. This prompts

a revision in our understanding of the relationship between an assembly and its

particles. I investigate these matters in Chapter 9.

To explain and assess my two anti-factorist proposals, I need first to present

(Chapter 7) some little-noted subtleties of entanglement for indistinguishable sys-

tems. Here I follow an analysis by Ghirardi, Marinatto and Weber (2002). The

leading idea is that the definition of entanglement must not appeal to factor-

space labels, since it must respect the requirement that all physical quantities be

symmetric (i.e. permutation invariant). This can be done, while meshing with

the familiar definition for distinguishable systems (namely, that a non-entangled

state is a separable, or product state). One defines a state of the assembly to be

non-entangled iff the symmetrization of some 1-dimensional projector on a factor

space has probability 1. Then the main result (Section 7.1) is, roughly speak-

ing, that a state is non-entangled iff it is the appropriate symmetry projection of

a product state (taken as including, for bosons, the case of a product of identi-

cal factors). (Here, ‘appropriate symmetry projection’ means, for fermions and

bosons, the familiar (anti)-symmetrization; and for paraparticles, projection onto

their subspace.) This implies, in particular, that fermionic states do not always

count as entangled; and bosonic states need not be product states to count as

non-entangled.

Later, in Section 7.2, I extend Ghirardi and Marinatto’s work by developing a

means of individuating—i.e., picking out from other constituents of the assembly—

a system, or collection of systems, qualitatively—i.e., in way that appeals not to

factor-space labels, but to single-system states. This development dovetails nicely

with recent work by Zanardi (2001). I then provide (Section 7.2.3) a recipe for

calculating reduced density operators for qualitatively individuated systems.

With Chapter 7’s results in hand, I can state and assess my two anti-factorist
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proposals: starting (in Chapter 8) with varietism. Roughly speaking, varietism

proposes that particles are those objects whose statistics are given by pure states

whenever (and only whenever) the assembly’s state is non-entangled in Ghirardi

and Marinatto’s sense. The proposal has many merits (reviewed in Section 8.2)

in terms of satisfying Chapter 5’s desiderata for the concept of particle. However,

this proposal founders on an ineliminable ambiguity (Section 8.3), for fermionic or

paraparticle states, in the specification of what these objects could be.

This ambiguity is troubling in three ways.

1. It is not a matter of philosophical argument or controvertible interpretation,

but follows from the results reviewed in Chapter 7.

2. It is an ambiguity, not between some handful of alternatives, but between

continuum-many: for a pair of fermions it is parameterized by points on the

Riemann sphere, i.e. by an extended complex number z ∈ C ∪ {∞}.

3. The ambiguity cannot be assimilated to the philosophically familiar cases,

such as reference to macroscopic bodies with vague spatial boundaries (Geach’s

(1980) and Unger’s (1980) ‘problem of the many’). Such cases are less trou-

bling because the rival disambiguations almost coincide, and we know the

parts whose shared containment underpins the near-total overlap of the rival

disambiguations. Neither of these features carry over for varietism’s disam-

biguated rival particles.

This leaves my third proposal, emergentism (Chapter 9). This has two leading

ideas, one philosophical and one physical. I believe the physical idea reflects the

practice of physics; the philosophical idea is more idiosyncratic.

The physical idea arises from my admission that factorism is correct for dis-

tinguishable systems. This prompts one to require that indistinguishable particles

should also be ‘label-able’. That is: which properties of the assembly count as par-

ticles is governed by which properties can act as labels. In general, these properties

must be qualitative, i.e. they correspond to states belonging to some basis in the

single-particle Hilbert space. Specifically which single-particle states they are will,

in general, depend on the state of the assembly; but they must be states in which
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no two separate degrees of freedom are entangled. In short: there is a preferred

basis problem which emergentism seeks to solve in the same way that nowadays

proponents of the Everett interpretation of quantum mechanics seek to solve the

traditional preferred basis problem: by appeal to the particular dynamical features

of the situation at hand (cf. e.g. Wallace (2003, 2010)).

The philosophical idea is that the basic objects of predication are not particles,

but something else: perhaps spatial regions or the entire assembly itself. Emer-

gentism then saves particles from being an additional ontological extravagance

by identifying them with higher-order properties of the basic object or objects,

whether spatial regions or the assembly. This proposal:

(i) accommodates the ambiguity about fermions and paraparticles which besets

varietism; but also

(ii) violates the desideratum that particles be the building blocks of assemblies,

in the sense (cf. Chapter 5) that particles’ properties and relations determine

all properties of the assembly: for the assembly may be in a state in which

there are no particles.

I conclude that emergentism is the winner in a poor field. There are two main

regrets. First, there seems to be no way of preserving the recent results about

weak discernibility (by Saunders, Muller, Seevinck, and here in Section 6.3) which

recently revived the debate about the discernibility of quantum particles. And

second, there seems to be no way to think of assemblies as being “built out of” the

emergentist’s particles. In this way, the emergentist sees the assembly as many

see the field in quantum field theory. Indeed: under emergentism, the assembly

of elementary quantum mechanics appears as nothing but the quantum field in

a particular limit of (what the textbooks call) conserved total particle number.

This leads to two surprises. First, particles under emergentism are also closer

to classical particles than the consensus has it. And second, if the arguments

in the following Chapters are right, then, in non-relativistic elementary quantum

mechanics, we already have reason enough to adopt an basic ontology of fields,

rather than particles.
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I emphasize at the outset that my focus is orthodox quantum mechanics. More

specifically, I set aside:

(i) heterodox cousins such as pilot-wave theory, with its distinctive (and at-

tractively straightforward!) meaning of ‘particle’, and dynamical reduction

models, as developed by Ghirardi and others (reviewed by Bassi and Ghirardi

(2003));

(ii) some programmatic responses in defence of varietism that would involve

changing the formalism (details in Section 8.3); and

(iii) thorough investigations of quantum field theory (QFT), although I will briefly

mention QFT in several places, particularly in Chapters 8 and 9.

I also give notice that I will not shed light on the measurement problem (as

the exclusion (i) above hints). What I will do is combine considerations about

logic, metaphysics, philosophical methodology and philosophy of language with

subtleties about entanglement and individuation—odd bedfellows, you may say!—

to state and assess three proposals of what is a quantum particle.

1.1 Prospectus

Here I give a short summary of the content of each Chapter.

This thesis is ordered into three Parts. Part I is a rather self-contained inves-

tigation into identity and indiscernibility in logic and metaphysics.

In Chapter 2, I investigate identity and discernibility in classical first-order

logic. My aim will will be to define four different ways in which objects can be

discerned from one another, and to relate these definitions: (i) to the idea of

symmetry; and (ii) to the idea of individuality.

In Chapter 3, the kinds of discernibility defined in the previous Chapter are put

to use in defining four rival metaphysical theses about identity and individuality.

These theses are linked to various positions in the extant literature on identity and

indiscernibility, and are compared by their commitments as to what, for each them,
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is possible. The Chapter concludes with a discussion of a heterodox semantics that

is more congenial to three of the four rival metaphysical theses.

Part II sets up a philosophical framework for the work of Part III. It gives an

account of what I am doing by asking the question: What is the best concept of

particle for quantum mechanics?

In Chapter 4 I give an account of the rational reconstruction of concepts, in-

spired chiefly by Carnap (1950) and Haslanger (2006). I also propose a way of

understanding the interpretation of physical theories. The idea of a representation

relation between mathematical and physical realms explains how a theory’s math-

ematical formalism is afforded physical content. This unifies the two projects of

theory interpretation and rational reconstruction.

In Chapter 5, I turn to the specific problem of finding candidate concepts of

particle. I present five desiderata that any putative concept ought to satisfy, in

order that the concept is a concept of particle at all. The role of these desiderata

is then demonstrated for single-system Hilbert spaces.

Part III surveys the three rival proposals for the concept of particle in quantum

mechanics.

In Chapter 6, I define factorism and distinguish it from haecceitism. I then

propose an amendment to recent work by Saunders, Muller and Seevinck, which

seeks to show that factorist particles are all at least weakly discernible. I then

present reasons for rejecting factorism.

In Chapter 7, I turn to more formal matters, and investigate recent heterodox

proposals by Ghirardi, Marinatto and Weber about the most natural concept of

entanglement. I link this work to Zanardi’s proposed conditions for natural de-

compositions of an assembly’s Hilbert space. I build on this work to develop a

means of ‘qualitatively individuating’ a system, and propose a recipe for calculat-

ing expectation values and reduced density operators for such systems.

In Chapter 8, I appraise the first of my two heterodox proposals for the con-

cept of particle, varietism. I define varietism, and then compare its performance

against the desiderata laid out in Chapter 5. I argue that, despite its many merits,

varietism suffers a fatal flaw.

15



In Chapter 9, I present the second of the two heterodox proposals for the

concept of particle, emergentism. I argue that emergentist provides the best con-

cept of particle, but that it is does so imperfectly; so there may be no concept of

particle to be had in quantum mechanics. If emergentism is true, then particles

are (higher-order) properties of the assembly, itself treated as the basic bearer of

properties.
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Part I

Identity in Logic and Metaphysics
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Chapter 2

Identity and indiscernibility in

logic

The main aim of this Chapter is to define four kinds of discernibility, inspired by

Quine (1976a) and Saunders (2003b), and investigate their formal interrelations.

These kinds of discernibility, and the formal results regarding them, are important

in their own right, and they will be useful in later Chapters. In Section 2.1, I

begin by laying down some stipulations about the philosophical terms I will use

in this Chapter and thereafter. Then in Section 2.2, I briefly discuss identity in

classical first-order predicate logic. In Section 2.3, I define the four kinds of dis-

cernibility, and investigate further what I call individuality. Finally (Section 2.4),

I present some interesting formal results which link certain kinds of discernibility

to permutations on the domain of quantification.

2.1 Stipulations about jargon

Here I make some stipulations about philosophical terms. I think that all of

them are natural and innocuous, though the last one, about ‘individual’, is a bit

idiosyncratic.

‘Object’, ‘identity’, ‘discernibility’ — I will use ‘object’ for the broad idea, in

the tradition of Frege and Quine, of a potential referent of a singular term, or
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value of a variable. The negation of the identity relation on objects I will call

(indifferently): ‘non-identity’, ‘distinctness’, ‘diversity’; (and hence use cognate

words like ‘distinct’, ‘diverse’). When I have in mind that a formula applies to one

of two objects but not the other, I will say that they are ‘discerned’, or that the

formula ‘discerns’ them. I will also use ‘discernment’ and ‘discernibility’: these are

synonyms; (though the former usefully avoids connotations of modality, the latter

often sounds better). Their negation I will call ‘indiscernibility’.

‘Individual’ — Following a recent tradition started by Muller & Saunders

(2008), I will also use ‘individual’ for a narrower notion than ‘object’, viz. an object

that is discerned from others by a strong, and traditional, form of difference—which

I will call ‘absolute discernibility’. Anticipating the following section, this usage

may be illustrated by the fact that a haecceitist (in my terms) would demand that

all objects be individuals, in virtue of each possessing its own unique property.

It is worth distinguishing cases according to whether the discernment is by an

arbitrary language or an ‘ideal’ one. That is: since the Hilbert-Bernays account

will be cast in a formal first-order language, and such languages can differ as to

their non-logical vocabulary (primitive predicates), our discussion will sometimes

be relative to a choice of such vocabulary. So, for example, an object that fails to

be an individual by the lights of an impoverished language may yet be an individual

in an ideal language adequate for expressing all facts (especially all facts about

identity and diversity). Therefore, one might use the term ‘L-individual’ for any

object which is absolutely discerned from all others using the linguistic resources

of the language L. The un-prefixed term ‘individual’ may then be reserved for

the case of ideal language. However, I will stick to the simple term ‘individual’,

since it will always be obvious which language is under consideration. In Chapter

3, I will use ‘individual’ in the strictly correct sense just proposed, since there I

envisage a language which is taken to be adequate for expressing all facts.

‘Haecceitism’ — Though the details will not be needed until Chapter 3, I

should say what we will mean by ‘haecceitism’ (a venerable doctrine going back to

Kaplan (1975) if not Duns Scotus!). The core meaning is advocacy of haecceities,

i.e. non-qualitative thisness properties: almost always associated with the claim

that every object has its own haecceity. But this core meaning is itself ambiguous,
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and authors differ about the implications and connotations of ‘haecceity’—about

how ‘thick’ a notion is advocated. Some discussion is therefore in order.

2.1.1 Haecceitism

At first sight, there are (at least) three salient ways to construe haecceitism.1 For

each, I give a description and one or more proponents. All three will refer to

possible worlds, and will use the language of Lewis’s (1986) metaphysics (though

it will not require a commitment to his form of modal realism, or to any form of

modal realism for that matter). The first is the weakest and the second and third

are equivalent; I favour the second and third (and prefer the formulation in the

third).

1. Haecceitistic differences. Following Lewis (1986, p. 221), we may take haec-

ceitism to be about the way possible worlds represent the modal properties of

objects. It is the denial of the following supervenience thesis: a world’s repre-

sentation of de re possibilities (that is, possibilities pertaining to particular

objects) supervenes on the qualitative mosaic, i.e. the pattern of instanti-

ation of qualitative properties and relations, within that world.2 Thus a

haecceitist allows that two worlds, exactly alike in their qualitative features,

may still disagree as to which object partakes in which property or relation.3

This version of haecceitism makes no further claims as to what exactly is left

out of the purely qualitative representations, and so it is the weakest of the

three haecceitisms. But since two qualitatively identical worlds may disagree

about what they represent de re, they must differ in some non-qualitative

1I owe much of the discussion here to my conversations with Jeremy Butterfield and Fraser
MacBride.

2This prompts the question, ‘What is a qualitative property or relation?’ That is not a
question I will here attempt to answer.

3Note that this is a stronger position than one that just allows duplicate worlds, that is,
several worlds exactly alike in their qualitative features. The existence of duplicate worlds does
not entail haecceitism in Lewis’s sense, since, for each individual, every world in a class of mutual
duplicates may represent the same dossier of de re possibilities. Lewis (1986, p. 224) himself
refrains from committing either to duplicate worlds or a “principle of identity of indiscernibles”
applied to worlds; though the question seems moot for anyone who does not take possible worlds
to be concretely existing entities.
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ways: ways which somehow represent (actual) objects in a way that does not

rely on how things are qualitatively (whether accidentally or essentially) with

those objects. There are two natural candidates for these representatives:

the objects themselves (or some abstract surrogate for them), divorced from

their qualitative clothing; or some non-qualitative properties which suitably

track the objects across worlds. These two candidates prompt the second

and third kinds of haecceitism (which, we argue below, are in fact equiva-

lent). I see no sensible alternative to these two candidates for the missing

representatives—though perhaps the difference could be taken as a primitive

relation between worlds. But haecceitism in my first sense does not entail

either of the haecceitisms below, though they each entail haecceitism in my

first sense of the acceptance of haecceitistic differences.

2. Combinatorial independence. Lewis’s definition was inspired by a definition

by Kaplan (1975, pp. 722-3); but Kaplan’s is stronger. It is phrased explic-

itly in terms of trans-world identification.4 But I believe there is a version of

haecceitism, clearer than Kaplan’s, defined in terms of combinatorial possi-

bility; a version which is still stronger than Lewis’s, but does not commit one

to claims about non-spatiotemporal overlap between worlds or trans-world

mereological sums.

According to this version of haecceitism, objects partake independently—

that is, independently of each other and of the qualitative properties and

relations—in the exhaustive recombinations which generate the full space of

possible worlds. For example: with a domain of N objects there are: 2N -

many possible property extensions (each of them distinct); 2N
2
-many distinct

binary relation extensions (each of them distinct); so the number of distinct

worlds5 containing N -objects, k monadic properties and l binary relations

(and no other relations), is 2kN+lN2
.

4Kaplan: haecceitism is ‘the doctrine that holds that it does make sense to ask—without
reference to common attributes and behavior—whether this is the same individual in another
possible world, that individuals can be extended in logical space (i.e., through possible worlds)
in much the way we commonly regard them as being extended in physical space and time, and
that a common “thisness” may underlie extreme dissimilarity or distinct thisnesses may underlie
great resemblance.’

5Or distinct equivalence classes of world-duplicates!
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Combinatorial independence would appear to favour the doctrine that ob-

jects “endure” identically through possible worlds, since it seems sensible to

identify property extensions with sets of objects, and the same objects are

added to or subtracted from the extensions in the generation of new worlds.

But trans-world “perdurance”—the doctrine that trans-world “identity” (in

fact a misnomer, according to the doctrine) is a relation holding between

parts of the same trans-world continuant—can be accommodated without

difficulty. (It is the commitment to there being a unique, objective trans-

world continuation relation, and therefore something for a rigid designator

to get a grip on, which distinguishes the perdurantist from those, like Lewis,

who favour modal talk of world-bound objects: cf. Lewis (1986, pp. 218-20).)

3. Haecceitistic properties. Perhaps the most obvious form of haecceitism—and

perhaps prima facie the least attractive—is the acceptance of haecceitis-

tic properties. According to this view, for every object there is a property

uniquely associated with it, which that object and no other necessarily pos-

sesses, and which is not necessarily co-extensive with any (perhaps complex)

qualitative property. An imprecise (and even quasi-religious) reading of these

properties is as “inner essences” or “souls” (hence the view’s unpopularity).

Perhaps a more precise, and less controversial, reading is that each thing pos-

sesses some property which “makes” it that thing and no other: a property

“in virtue of which” it is that thing (cf. Adams (1981, p. 13)). Whether or

not that is in fact more precise, this reading implies a notion of ontological

primacy—that the property comes in some sense “before” the thing—about

which I remain silent. But besides, I disavow this implication. I intend our

third version of haecceitism to be no more controversial than combinatorial

independence; in fact I take this version of haecceitism to be equivalent to

combinatorial independence.

When I say that, according to this view, there is a haecceitistic property

corresponding to each object, by ‘object’ is not meant ‘world-bound ob-

ject’, which would entail a profligate multiplication of properties. Rather,

these haecceitistic properties are envisaged as an alternative means to secur-

ing trans-world continuation (understood according to either endurantism or
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perdurantism). The motivation is as follows.

Throughout this thesis, I will be a quidditist, meaning that I take for granted

the trans-world identity of properties and relations. (I remain agnostic as to

whether this trans-world identity is genuine identity, i.e. endurance of qual-

ities; or whether there is instead a similarity relation applying to qualities

between worlds (either second-order, applying directly to the qualities them-

selves; or else first-order, applying to the qualities indirectly, via the objects

that instantiate them), i.e. perdurance.) So for the sake of mere uniformity,

haecceitism may be accommodated into my quidditistic framework by let-

ting a trans-world monadic property do duty for each trans-world object.

Haecceitism and anti-haecceitism alike can then be discussed neutrally in

terms of world-bound objects and trans-world properties and relations, the

difference between them reconstrued in terms of whether or not there are

primitive monadic properties which allow one to simulate rigid designation.6

This position may be characterized syntactically as one that demands that,

in a language adequate for expressing all facts, the primitive vocabulary

contains a 1-place predicate ‘Nax’ for each envisaged trans-world object

a.7 That a monadic property can do duty for a trans-world object—or,

to rephrase in terms of the object-language, that a monadic predicate can

do duty for a rigid designator—without any loss (or gain!) in expressive

adequacy, is well known (cf. Quine (1960, §38). Given a haecceitistic pred-

icate ‘Nax’, one can introduce the corresponding rigid designator by defi-

nition: a := ιx.Nax; and conversely, given a rigid designator ‘a’ and the

6Anti-quidditists (like Black 2000) can still use our framework, by populating the domain
of objects with properties and relations, now treated as the value of first-order variables, and
using the new predicate or predicates ‘has’, so that ‘Fa’ becomes ‘a has F ’ (cf. Lewis 1970b).
Anti-quidditism may then amount to what I later (Chapter 3) call ‘anti-haecceitism’, but applied
to these hypostatized qualities. However, this purported anti-quidditism must be “quidditist”
about the ‘has’ relation(s), a situation that clearly cannot be remedied by hypostatizing again,
on pain of initiating a Bradley-like regress. There is no space to pursue the issue here. But we
endorse the view of Lewis (2002) that ‘has’ is a ‘non-relational tie’, and speculate that, if it is
treated like a relation in the logic, then it is better off treated as one whose identity across worlds
is not in question—that is: treated “quidditistically”.

7To simplify, I assume that a haecceitist is a haecceitist about every object. This leaves
some (uninteresting) logical space between haecceitism and what we later characterise as anti-
haecceitism (see the end of Section 3.1).
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identity predicate ‘=’, one can likewise introduce the corresponding haec-

ceitistic predicate: ∀x(Nax ≡ x = a). We therefore urge the view that the

difference between the two stronger versions of haecceitism is merely no-

tational, meaning that the addition of the haecceitistic predicate ‘Nax’ to

one’s primitive vocabulary ontologically commits one to no more, and no

less, than the addition of the name ‘a’, together with all the machinery of

rigid designation.8

From now on, I will take haecceitism in a sense stronger than the first, Lewisian

version. The second and third, stronger versions are equivalent, but I favour

the notational trappings of the third version, i.e. the acceptance of haecceitistic

properties. Thus when I later ban names from the object-language (in Section

2.2.1), this ought to be seen not as a substantial restriction against the haecceitist,

but merely a convenient narrowing of notational options for the sake of a more

unified presentation. We simply require the haecceitist to express her position

though the adoption of haecceitistic predicates, though all are at liberty to—

indeed, all should—read each instance of the haecceitist’s ‘Nax’ as ‘x = a’.

A concern may remain: how can ontological commitment to a property be

equivalent to ontological commitment to a (trans-world) object? There is no mys-

tery, once we lay down some principles for what ontological commitment to prop-

erties involves. I take it that ontological commitment to a collection of properties,

relations and objects entails a commitment to all the logical constructions thereof,

because instantiation of the logical constructions can be defined away without

residue in terms of instantiation and the existence of the original collection. (For

example, for any object, the complex predicate ‘Fx∧Gx’ is satisfied by that object

8By saying that I intend the acceptance of haecceitistic properties to be equivalent to com-
binatorial independence, I do not intend to rule out as counting as a (strong) version of the
acceptance of haecceitistic properties the view described above, viz. that the haecceities are in
some sense ontologically “prior” to the objects, and serve to “ground their identity” (whatever
that may mean). That view would entail combinatorial independence between objects and other
objects, and between objects and the qualitative properties and relations (though not, of course,
between objects and their haecceities), and would equally well be served by rigid designators
as by the addition of haecceitistic predicates to the primitive vocabulary. The point is that
the second and third versions of haecceitism match completely in logical strength, so they are
equally consistent with more metaphysically ambitious views which seek to “ground” trans-world
identity in non-qualitative properties.
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just in case both ‘Fx’ and ‘Gx’ are satisfied by it.) So ontological commitment

to logical constructions is no further commitment at all. Now, ontological com-

mitment to certain objects is revealed clearly enough: one need only peer into

the domain of quantification to see if they are there. Ontological commitment

to complex properties and relations is equally straightforward, being a matter of

commitment to their components. But what about ontological commitment to the

properties and relations taken as primitive, i.e. not as logical constructions—what

does that involve? Well, since ontological commitment to objects is clear enough,

let us use that: let us say that ontological commitment to the primitive proper-

ties and relations is a commitment to their being instantiated by some object or

objects.

With these principles laid down, we can now prove that commitment to the

trans-world continuant a and commitment to the haecceitistic property, being a,

entail each other. Left to right: We can take two routes. First route: Commitment

to any object at all (i.e. a non-empty domain) entails commitment to the identity

relation, which is instantiated by everything. So commitment to the trans-world

continuant a entails commitment to the identity relation, since a = a. But the

property being a is just a logical construction out of the identity relation and the

trans-world continuant a, so commitment to the trans-world continuant a entails

commitment to the property being a. Second route: Commitment to the trans-

world continuant a entails commitment to the property being a being instantiated.

But that is just to say that commitment to the trans-world continuant a entails

commitment to the property being a. Right to left: Commitment to the property

being a entails either: (i) a commitment to its being instantiated (if taken as

primitive); or (ii) a commitment to the entities of which it is a logical construction

(if taken as a logical construction). If (i), then we are committed to something’s

being a, that is, the existence of a. If (ii), and ‘being a’ is understood properly

as containing a rigid designator, not as an abbreviated definite description à la

Russell, then we are committed to its logical components, i.e. the identity relation,

and a itself. QED.

To sum up: the acceptance of haecceitistic differences (the first version of haec-

ceitism, above) need not commit one to either combinatorially independent trans-
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world objects (our second version), or to non-qualitative properties that could do

duty for them (our third version), though the two latter doctrines are perhaps

the most natural way of securing haecceitistic differences, and may themselves be

considered as notational variants of each other. I stipulate that we mean by ‘haec-

ceitism’ one of the stronger versions, and for reasons purely to do with uniformity

of presentation, I stipulate that the advocacy of this stronger version of haecceitism

be expressed through the acceptance of haecceitistic properties. This version of

haecceitism will be further developed, along with three other metaphysical theses,

in Chapter 3.

2.2 A logical perspective on identity

So to sum up, our aim is to use the Hilbert-Bernays account as a spring-board so

as to give a precise “logical geography” of discernibility. This logical geography

will be in terms of the syntax of a formal first-order language. But we will also

relate our definitions to the idea of permutations on the domain of quantification,

and to the idea of these permutations being symmetries. These relations seem

not to have been much studied in the recent philosophical literature about the

Hilbert-Bernays account; and we will see that they turn out to be subtle—some

natural conjectures are false.9

2.2.1 The Hilbert-Bernays account

What I will call the Hilbert-Bernays account of the identity of objects, treated as

(the values of variables) in a first-order language, goes as follows; (cf. Hilbert and

Bernays (1934, §5) : who in fact do not endorse it!), Quine (1970, pp. 61-64) and

Saunders (2003a, p. 5)). The idea is that there being only finitely many primitive

predicates enables us to capture the idea of identity in a single axiom. In fact,

the axiom is a biconditional in which identity is equivalent to a long conjunction

of statements that predicates are co-instantiated. The conjunction exhausts, in

9We thank N. da Costa and J. Ketland for alerting us to their results in this area, which we
(culpably!) had missed. Further references below.
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a natural sense, the predicates constructible in the language; and it caters for

quantification in predicates’ argument-places other than the two occupied by x

and y.

In detail, we proceed as follows. Suppose that F 1
i is the ith 1-place predicate,

G2
j is the jth 2-place predicate, and H3

k is the kth 3-place predicate; (we will not

need to specify the ranges of i, j, k). Suppose that the language has no names, or

function symbols, so that predicates are the only kind of non-logical vocabulary.

Then the biconditional will take the following form:

∀x∀y
{
x = y ≡

[
. . . ∧ (F 1

i x ≡ F 1
i y) ∧ . . .

. . . ∧ ∀z
(
(G2

jxz ≡ G2
jyz) ∧ (G2

jzx ≡ G2
jzy)

)
∧ . . .

. . . ∧ ∀z∀w
(

(H3
kxzw ≡ H3

kyzw) ∧ (H3
kzxw ≡ H3

kzyw)

∧ (H3
kzwx ≡ H3

kzwy)
)
∧ . . .

]}
(HB)

(For primitive predicates, I will usually omit the brackets and commas often used to

indicate argument-places.) Note that for each two-place predicate, there are two

biconditionals to include on the right-hand side; and similarly for a three-place

predicate. The general rule is: n biconditionals for an n-place predicate.10

This definition of the Hilbert-Bernays account prompts three comments.

1. Envisaging a rich enough language:— The main comment is the obvious one:

since the right hand side (in square brackets) of (HB) defines an equivalence

relation—which from now on I will call ‘indiscernibility’ (or for emphasis:

‘indiscernibility by the primitive vocabulary’)—discussion is bound to turn

on the issue whether this relation is truly identity of the objects in the do-

main. Someone who advocates (HB) is envisaging a vocabulary rich enough

10We do not need to include explicitly on the right-hand side clauses with repeated instances of
x or y, such as (G2

jxx ≡ G2
jyy), since these clauses are implied by the conjunction of other relevant

biconditionals. For example, from ∀z(G2
jxz ≡ G2

jyz) we have, in particular, that (G2
jxx ≡ G2

jyx).

And from ∀z(G2
jzx ≡ G2

jzy) we have, in particular, that (G2
jyx ≡ G2

jyy). It follows that

(G2
jxx ≡ G2

jyy). A similar chain of arguments applies for an arbitrary n-place predicate.
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(or: a domain of objects that is varied enough, by the lights of the vocabulary

chosen) to discern any two distinct objects, and thereby force the equivalence

relation given by the right hand side of (HB) to be identity. This comment

can be developed in six ways.

(i) Indiscernibility has the formal properties of identity expressible in first-

order logic, i.e. being an equivalence relation and substitutivity. (Cf. Equa-

tion (2.1) in (i) of comment 3 below; and for details, Ketland (2009,

Lemma 12)).

(ii) Let us call an interpretation of the language, comprising a domain D

and various subsets of D,D2 etc. a ‘structure’; (since in the literature

on identity, ‘interpretation’ also often means ‘philosophical interpreta-

tion’). Then: if in a given structure, the identity relation is first-order

definable, then it is defined by indiscernibility, i.e. the right hand side

of (HB) (Ketland (2009, Theorem 16)).

(iii) On the other hand: assuming ‘=’ is to be interpreted as the identity

relation (cf. (i) in 3 below), there will in general be structures in which

the leftward implication of (HB) fails; i.e. structures with at least two

objects indiscernible from each other. We say ‘in general’ since from the

view-point of pure logic, ‘=’ might itself be one of the 2-place predicates

G2
j : in which case, the leftward implication trivially holds.

(iv) The last sentence leads to the wider question whether the interpreta-

tion given to some of the predicates F,G,H etc. somehow presupposes

identity, so that the Hilbert-Bernays account’s reduction of identity is,

philosophically speaking, a charade. This question will sometimes crop

up below (e.g. for the first time, in footnote 12); but I will not need to

address it systematically. Here I just note as an example of the question,

the theory of pure sets. It has only one primitive predicate, ‘∈’, and

the axiom (HB) for it logically entails the axiom of extensionality. But

one might well say that this only gives a genuine reduction of identity

if one can understand the intended interpretation of ‘∈’ without a prior

understanding of ‘=’.
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(v) There is the obvious wider question, why I restrict my discussion to

first-order languages. Here my main reply is twofold: (a) first-order lan-

guages are favoured by the incompleteness of higher-order logics, and I

am anyway sympathetic to the view that first-order logic suffices for the

formalisation of physical theories (cf. Boolos & Jeffrey (1974, p. 197);

Lewis (1970b, p. 429)); and (b) the Hilbert-Bernays account is thus

restricted—and though, as I emphasized, I do not endorse it, it forms a

good spring-board for discussing kinds of indiscernibility. There are also

some basic points about identity in second-order logic, which I should

register at the outset. Many discussions (especially textbooks: e.g. van

Dalen (1994, p. 151); Boolos & Jeffrey (1974, p. 280) take the principle

of the identity of indiscernibles to be expressed by the second-order for-

mula
(
∀P (Px ≡ Py) ⊃ x = y

)
: which is a theorem of (any deductive

system for) second-order logic with a sufficiently liberal comprehension

scheme. But even if one is content with second-order logic, this result

does not diminish the interest of the Hilbert-Bernays account (or of

classifications of kinds of discernibility based on it). For the second-

order formula is a theorem simply because the values of the predicate

variable include singleton sets of elements of the domain (cf. Ketland

(2006, p. 313)). And allowing such singleton sets as properties of course

leads back both to haecceitism, discussed in Section 2.1, and to (iv)’s

question of whether understanding the primitive predicates requires a

prior understanding of identity. In any case, I will discuss the princi-

ple of the identity of indiscernibles from a philosophical perspective in

Chapter 3.

(vi) Finally, there is the question what the proponent of the Hilbert-Bernays

account is to do when faced with a language with infinitely many primi-

tive predicates. The right hand side of (HB) is constrained to be finitely

long, so in the case of infinitely many primitives it is prevented from cap-

turing all the ways two objects can differ. Here I see two roads open to

the Hilbert-Bernays advocate: (a) through parametrization, infinitely

many n-adic primitives, say R1xy,R2xy, . . . may be subsumed under a

single, new (n+ 1)-adic primitive, say Rxyz, where the extra argument

29



place is intended to vary over an index set for the previous primitives;

and (b) one may resort to infinitary logic, which allows for infinitely

long formulas—suggesting, as regards (HB), in philosophical terms, a

supervenience of identity rather than a reduction of it. (I will consider

infinitary logic just once below, towards the end of Section 2.4.3.)

To sum up these six remarks: I see the Hilbert-Bernays account as intending

a reduction of identity facts to qualitative facts—as proposing that there

are no indiscernible pairs of objects. This theme will recur in what follows.

Indeed, the next two comments relate to the choice of language.

2. Banning names:— From now on, it will be clearest to require the language to

have no individual constants, nor function symbols, so that the non-logical

vocabulary contains only predicates. But this will not affect my arguments:

they would carry over intact if constants and function symbols were allowed.

As I see it, only the haecceitist is likely to object to this apparent limita-

tion in expressive power. But here, Section 2.1’s discussion of haecceitism

comes into its own. For even with no names, the haecceitist has to hand

her thisness predicates Nax,Nbx etc., with which to refer to objects by defi-

nite descriptions. Thus I propose, following Quine (1960, §§37-39), that we,

and in particular the haecceitist, replace proper names by 1-place predicates;

(each with an accompanying uniqueness axiom; and with the predicates then

shoe-horned into the syntactic form of singular terms, by invoking Russell’s

theory of descriptions).11 And as emphasised in Section 2.1, Nax etc. are to

be thinly construed: the predicate Nax commits one to nothing beyond what

the predicate a = x commits one to. Thus the presence of these predicates in

the non-logical vocabulary means that the haecceitist should have no qualms

about endorsing the Hilbert-Bernays account—albeit in letter, rather than

in spirit.12

11Then any sentence S =: Φ(a) containing the name a, where the 1-place formula Φ(x) contains
no occurrence of a, may be replaced by the materially equivalent sentence ∀x (Nax ⊃ Φ(x)), which
contains no occurrence of the name a. Note also that Saunders (2006, p. 53) limits his inquiry
to languages without names; but no Quinean trick is invoked. Robinson (2000, p. 163) calls such
languages ‘suitable’.

12For the spirit of the Hilbert-Bernays account is a reduction of identity facts to putatively
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A point of terminology: Though I ban constants from the formal language,

I will still use a and b as names in the meta-language (i.e. the language in

which I write!) for the one (or two!) objects, with whose identity or diversity

we are concerned. I will also always use ‘=’ in the meta-language to mean

identity!

3. ‘=’ as a logical constant?:— It is common in the philosophy of logic to dis-

tinguish two approaches by which formal languages and logics treat identity:

(i) ‘=’ is a logical constant in the sense that it is required, by the definition

of the semantics, to be interpreted, in any domain of quantification, as

the identity relation. Then for any formula (open sentence) Φ(x) with

one free variable x, the formula

∀x∀y (x = y ⊃ (Φ(x) ≡ Φ(y))) (2.1)

is a logical truth (i.e. is true in every structure). Thus on this approach,

the rightward implication in (HB) is a logical truth.

But the leftward implication in (HB) is not. For as discussed in com-

ment 1, the language may not be discerning enough. More precisely:

there are structures in which (no matter how rich the language!) the

leftward implication fails.13

(ii) ‘=’ is treated like any other 2-place predicate, so that its properties flow

entirely from the theory with which we are concerned, in particular

its axioms if it is an axiomatized theory. Of course, we expect our

theory to impose on ‘=’ such properties as being an equivalence relation

qualitative facts, about the co-instantiation of properties. Indeed: according to the approach
in which ‘=’ is not a logical constant (cf. comment 3(ii)), acceptance of (HB) entails that
the language with the equality symbol ‘=’ is a definitional extension of the language without
it. However, representing each haecceity by a one-place primitive predicate, accompanied by a
uniqueness axiom, assumes the concept of identity through the use of ‘=’ in the axiom: making
this reduction of identity, philosophically speaking, a charade. By contrast, if only genuinely
qualitative properties are expressed by the non-logical vocabulary, the philosophical reduction
of identity facts to qualitative facts can succeed—provided, of course, that the language is rich
enough or the domain varied enough.

13Such is Wiggins’ (2001, pp. 184-185) criticism of the Hilbert-Bernays account as formulated
by Quine (1960, (1970).
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(cf. Ketland (2009, Lemmas 8-10)). We can of course go further towards

capturing the intuitive idea of identity by imposing every instance of

the schema, eq. 2.1. So on this approach, the Hilbert-Bernays account

can be regarded as a proposed finitary alternative to imposing eq. 2.1, a

proposal whose plausibility depends on the language being rich enough.

Of course, independently of the language being rich: imposing (HB) in

a language with finitely many primitives implies as a theorem the truth

of eq. 2.1.14

To sum up this Section: the conjunction on the right hand side of (HB) makes

vivid how, on the Hilbert-Bernays account, objects can be distinct for different

reasons, according to which conjunct fails to hold. In Section 2.3, I will introduce

a taxonomy of these kinds. In fact, this taxonomy will distinguish different ways

in which a single conjunct can fail to hold. The tenor of that discussion will

be mostly syntactic. So I will complement it by first discussing identity, and the

Hilbert-Bernays account, in terms of permutations on the domain of quantification.

2.2.2 Permutations on domains

I will now discuss how permutations on a domain of objects can be used to express

qualitative similarities and differences between the objects. More precisely: I will

define what it is for a permutation to be a symmetry of an interpretation of the

language, and relate this notion to the Hilbert-Bernays account.

Definition of a symmetry

Let D be a domain of quantification, in which the predicates F 1
i , G

2
j , H

3
k etc. get

interpreted. So writing ‘ext’ for ‘extension’, ext(F 1
i ) is, for each i, a subset of D;

and ext(G2
j) is, for each j, a subset of D ×D = D2; and ext(H3

k) is, for each k, a

subset of D3 etc. For the resulting interpretation of the language, i.e. D together

14Hilbert and Bernays (1934, p. 186) show that ‘=’ as defined by (HB) is (up to co-
extension!) the only (non-logical) two-place predicate to imply reflexivity and every instance
of the schema, eq. 2.1. The argument is reproduced in Quine (1970, pp. 62-63).
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with these assigned extensions, we write I. I shall also call such an interpretation,

a ‘structure’.

Now let π be a permutation of D.15 I now define a symmetry as a permutation

that “preserves all properties and relations”. So I say that π is a symmetry (aka

automorphism) of I iff all the extensions of all the predicates are invariant under

π. That is, using o1, o2, ... as meta-linguistic variables: π is a symmetry iff:

∀o1, o2, o3 ∈ D, ∀i, j, k : o1 ∈ ext(F 1
i ) iff π(o1) ∈ ext(F 1

i ); and

〈o1, o2〉 ∈ ext(G2
j) iff 〈π(o1), π(o2)〉 ∈ ext(G2

j); and

〈o1, o2, o3〉 ∈ ext(H3
k) iff 〈π(o1), π(o2), π(o3)〉 ∈ ext(H3

k);

(2.2)

and similarly for predicates with four or more argument-places.16

Relation to the Hilbert-Bernays account

Let me now compare this definition with the Hilbert-Bernays account. For the

moment, I make just two comments, (1) and (2) below. They dispose of natural

conjectures, about symmetries leaving invariant the indiscernibility equivalence

classes. That is, the conjectures are false: the first conjecture fails because of the

somewhat subtle notions of weak and relative discernibility, which will be central

later; and the second is technically a special case of the first.17 In Section 2.4,

I will discuss how the conjectures can be mended: roughly speaking, we need

to replace indiscernibility by a weaker and “less subtle” notion, called ‘absolute

indiscernibility’.

15I note en passant that since a permutation is a bijection, the definition of permutation
involves the use of the ‘=’ symbol; so that which functions are considered to be permutations is
subject to one’s treatment of identity. But no worries: as I noted in comment 2 of Section 2.2.1,
this definition is cast in the meta-language!

16So a haecceitist (cf. comment 2 in Section 2.2.1) will take only the identity map as a
symmetry—unless they stipulate that haecceitistic properties are exempt from the definition of
symmetry.

17My two comments agree with Ketland’s results and examples (2006, Theorem (iii) and
example in footnote 17) or (2009, Theorem 35(a) and example). But I will not spell out the
differences in jargon or examples, except to report that Ketland calls a structure ‘Quinian’ iff
the leftward implication of (HB) holds in it, i.e. if the identity relation is first-order definable,
and so (cf. comment 1(ii) of Section 2.2.1) defined by indiscernibility, i.e. by the right hand side
of (HB).
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(1): All equivalence classes invariant?:— Suppose that we adopt the relativiza-

tion to an arbitrary language: so we do not require the language to be rich enough

to force indiscernibility to be identity. Then one might conjecture that, for each

choice of language, a permutation is a symmetry iff it leaves invariant (also known

as: fixes) each indiscernibility equivalence class. That is: π is a symmetry of the

structure I iff each member of each equivalence class ⊂ dom(I) is sent by π to a

member of that same equivalence class.

In fact, this conjecture is false. The condition, leaving invariant the indiscerni-

bility equivalence classes, is stronger than being a symmetry. I first prove the true

implication, and then give a counterexample to the converse.

So suppose π leaves invariant each indiscernibility class; and let 〈o1, o2, ..., on〉 be

in the extension ext(Jn) of some n-place predicate Jn. Since π leaves invariant the

indiscernibility class of o1, it follows that 〈π(o1), o2, ..., on〉 is also in ext(Jn). (For if

not, (HB)’s corresponding conjunct, i.e. the conjunct for the first argument-place

of the predicate Jn, would discern o1 and π(o1)). From this, it follows similarly

that since π fixes the indiscernibility class of o2, 〈π(o1), π(o2), ..., on〉 is also in

ext(Jn). And so on: after n steps, we conclude that 〈π(o1), π(o2), ..., π(on)〉 is in

ext(Jn). Therefore π is a symmetry.

Philosophical remark: one way of thinking of the Hilbert-Bernays account triv-

ializes this theorem. That is: according to comment 1 of Section 2.2.1, the propo-

nent of this account envisages that the indiscernibility classes are singletons. So

only the identity map leaves them all invariant, and trivially, it is a symmetry.

(Compare the discussion of haecceitism in footnotes 12 and 16.)

Counterexample to the converse: Consider the following structure, whose do-

main comprises four objects, which we label a to d. The primitive non-logical

vocabulary consists of just the 2-place relation symbol R. R is interpreted as

having the extension

ext(R) = {〈a, b〉, 〈a, c〉, 〈a, d〉, 〈b, a〉, 〈b, c〉, 〈b, d〉} .

Now let ‘=’ be defined by the Hilbert-Bernays axiom (HB). From this the reader
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can check that ‘=’ has the extension

ext(=) = {〈a, a〉, 〈b, b〉, 〈c, c〉, 〈d, d〉, 〈d, c〉, 〈c, d〉} ;

i.e. c and d are indiscernible. So ‘=’ is not interpreted as identity (cf. the relativiza-

tion of ‘=’ to the language, discussed in 3(ii) of §2.2.1). The relation ‘=’ carves the

domain into three equivalence classes: [a] = {a}, [b] = {b} and [c] = [d] = {c, d}.

Now consider the permutation π, whose only effect is to interchange the objects

a and b; i.e. π :=

(
abcd

bacd

)
≡ (ab). This permutation is a symmetry, since it

preserves the extension of R according to the requirement (2.2); yet it does not

leave invariant the equivalence classes [a] and [b] (Fig. 2.1).18

Figure 2.1: A counterexample to the claim that symmetries leave invariant the
indiscernibility classes. In this structure, drawn on the left, the permutation π
which swaps a and b is a symmetry; but a and b form their own separate equivalence
classes under ‘=’, as shown on the right.

(2): Only the trivial symmetry?:— Suppose now that in I, the predicate ‘=’ is

interpreted as identity; and that (HB) holds in I. So we are supposing that the

objects are various enough, the language rich enough, that indiscernibility in I is

identity. Or in other words: the indiscernibility classes are singletons. On these

suppositions, one might conjecture that that the only symmetry is the trivial one,

i.e. the identity map id : D → D. (Such structures are often called ‘rigid’ (Hodges

18Two remarks. (1): Agreed, this counterexample could be simplified. A structure with just a
and b, with ext(R) = {〈a, b〉, 〈b, a〉} has a, b discernible, but the swap a 7→ b, b 7→ a is a symmetry.
But this example will also be used later. (2) Accordingly, in the counterexample, (ab)(cd) would
work equally well: i.e. it also is a symmetry that does not leave invariant [a] and [b]. Looking
ahead: Theorem 1 in Section 2.4.1 will imply that {a, b} and {c, d} are each subsets of absolute
indiscernibility classes; in fact, each is an absolute indiscernibility class.
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(1997, p. 94)).)

In fact, this is false. Comment (1) has just shown that there are symmetries

that do not leave invariant the indiscernibility classes. Our present suppositions

have now collapsed these indiscernibility classes into singletons. So there will be

symmetries which do not leave invariant the singletons, i.e. are not the identity

map on D. To be explicit, consider the structure, and its indiscernibility classes,

drawn in Fig. 2.2.

Figure 2.2: A counterexample to the claim that if the indiscernibility classes are
singletons, the only symmetry is the identity map. In this structure, the indis-
cernibles of Figure 2.1 have been identified. a and b are still distinct (they are
discernible) but are swapped by the symmetry π.

2.3 Four kinds of discernment

I turn to defining the different ways in which two distinct objects can be discerned

in a structure. These kinds of discernment will be developed (indirectly) in terms

of which conjuncts on the RHS of the Hilbert-Bernays axiom (HB) are false in the

structure.19

19Other authors, notably Muller and Saunders 2008), consider the discernment of two objects
by a theory (say T ), so that the RHS of (HB), applied to the two objects in question, is a
theorem of T ; whereas our concern is the discernment of two objects in a structure. My focus
on structures is necessary: given our ban on names, the sentence expressing the satisfaction of
the RHS of (HB) by the two objects cannot even be written!
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2.3.1 Three preliminary comments

(1) Precursors: Broadly speaking, my four kinds of discernment follow the dis-

cussions by Quine (1960, 1970, 1976a) and Saunders (2003a, 2003b, 2006). Quine

(1960, p. 230) endorses the Hilbert-Bernays account of identity and then distin-

guishes what he calls absolute and relative discernibility. His absolute discernibility

will correspond to (the disjunction of) my first two kinds—and I will follow him

by calling this disjunction ‘absolute’. Besides, his relative discernibility will corre-

spond to (the disjunction of) my third and fourth kinds. But I will follow Saunders

((2003a, p. 5); (2003b, pp. 19-20); (2006, p. 5)) by reserving ‘relative’ for the

third kind, and using ‘weak’ for the fourth. (So for me ‘non-absolute’ will mean

‘relative or weak’.)20

(2) Suggestive labels: I will label these kinds with words like ‘intrinsic’ which

are vivid, but also connote metaphysical doctrines and controversies (e.g. Lewis

1986, pp. 59-63). I disavow the connotations: the official meaning is as defined,

and so is relative to the interpretation of the non-logical vocabulary.

(3): Two pairs yield four kinds: The four kinds of discernment arise from

two pairs. We begin by distinguishing between a formula with one free variable

(labelled 1) and a formula with two free variables (labelled 2).21 Each of these

cases is then broken down into two subcases (labelled a and b) yielding four cases

in all: labelled 1(a) to 2(b). We will also give the four cases mnemonic labels:

e.g. 1(a) will also be called (Int) for ‘intrinsic’.

The intuitive idea that distinguishes sub-cases will be different for 1 and 2. For

1, the idea is to distinguish whether discernibility depends on a relation to another

object; while for 2, the idea is to distinguish whether discernibility depends on an

asymmetric relation. Both these ideas are semantic, and even a bit vague. But the

20Quine (1976a, p. 113) defines what he calls grades of discriminability, which is a spectrum of
strength. Saunders (2006, pp. 19-20) agrees that there is such a spectrum of strength, although
in his (2003a, p. 5) he makes the three categories ‘absolute’, ‘relative’ and ‘weak’ mutually
exclusive. I say ‘kinds’ not ‘categories’ or ‘grades’ to avoid the connotation of mutual exclusion
or a spectrum of strength.

21We thank Leon Horsten for the observation that the notion of discernibility may be pa-
rameterized to other objects (so that, e.g., we might say that a is discernible from b relative
to c, d, . . .), which would involve formulas with more than two variables. The idea seems to us
workable, but we will not pursue it here.
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definitions of the sub-cases will be syntactic, and precise—and we will therefore

remark that they do not completely match the intuitive idea.

As announced in comment 2 of Section 2.2.1, a and b will be names in the

meta-language (in which I am writing) for the one or two objects with which we

are concerned.

2.3.2 The four kinds defined

1(a) (Int) 1-place formulas with no bound variables, which apply to only one of

the two objects a and b. This of course covers the case of primitive 1-place

predicates, e.g. Fx: so that for example, a ∈ ext(F ) but b /∈ ext(F ), or

vice versa. But we also intend this case to cover 1-place formulas arising by

slotting into a polyadic formula more than one occurrence of a single free

variable, while the polyadic formula nevertheless does not contain any bound

variables.

The intent here is to exclude formulas which quantify over objects other

than the two we are concerned with. So this case will include formulas such

as: Rxx and Fx ∧ Hxxx; (R,H primitive 2-place and 3-place predicates,

respectively; not abbreviations of more complex open sentences). But it will

exclude formulas such as ∀z(Fz ⊃ Rzx), which contain bound variables.22

I will say that two objects that do not share some monadic formula in this

sense are discerned intrinsically, since their distinctness does not rely on

any relation either object holds to any other. An everyday example, taking

‘is spherical’ as a primitive 1-place predicate, is given by a ball and a die.

Another example, with Rxy the primitive 2-place predicate ‘loves’ (so that

Rxx is the 1-place predicate ‘loves his- or herself’) is Narcissus ∈ ext(R ∗ ∗),
22Recall my ban on individual constants ((2) in Section 2.2.1). If we had instead allowed them,

this sub-case 1(a) would be defined so as to also exclude all formulas containing any constant,
including a and b. The exclusion of formulas such as Rcx, which refer to a third object, is
obviously desirable, given the intuitive idea of discernment by intrinsic properties. However,
the exclusion of formulas involving only the constants a and-or b may be more puzzling. My
rationale is that, for any formula of the type Rax, Rbx, etc. which is responsible for discerning
two objects, there will be an alternative formula (either Rxx or Rxy) which we would instead
credit for the discernment, and which falls under one of the three other kinds.
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but (alas) Echo /∈ ext(R ∗ ∗).

I shall say that any pair of objects discerned other than by 1(a)—i.e. dis-

cerned by 1(b), or by 2(a), or by 2(b) below—are extrinsically discerned.

1(b) (Ext) 1-place formulas with bound variables, which apply to only one of

the two objects a and b. That is: this kind contains polyadic formulas that

do contain bound variables. So it contains formulas such as ∀z(Fz ⊃ Rzx).

And a and b are discerned by such formulas if: for example, a ∈ ext(∀z(Fz ⊃
Rz∗)) but b /∈ ext(∀z(Fz ⊃ Rz∗)). I will say that they have been discerned

externally. An example, taking F = ‘is a man’, R = ‘admires’ is: Cleopatra

∈ ext(∀z(Fz ⊃ Rz∗)) but Caesar /∈ ext(∀z(Fz ⊃ Rz∗)). (Recall that I

reserve the term extrinsic to cover all three kinds 1(b), 2(a), 2(b): so

external discernment is more specific than extrinsic.)

The intent is that in this kind of discernment, diversity follows from the

relations the two objects a and b have to other objects. However, as I said in

(3) of Section 2.3.1, the precise syntactical definition cannot be expected to

match exactly the intuitive idea. And indeed, there are examples of external

discernment where the relevant value of the bound variable in the discerning

formula is in fact a or b, even though this is invisible from the syntactic

perspective. (In the example just given, the universal quantifier in ∀z(Fz ⊃
Rzx) quantifies over a domain that includes Caesar himself.)23

I will say that two objects discerned by a formula either of kind (Int) or of

kind (Ext) are absolutely discerned. Note that a pair of objects could be both

intrinsically and externally discerned. But since (Ext) is intuitively a “weaker”

form of discernment, I shall sometimes say that a pair of objects that are externally,

but not intrinsically, discerned, are merely externally discerned.

Interlude: Individuality and absolute discernment. I will also say that an object

that is absolutely discerned from all other objects is an individual or has individu-

23As to my ban on individual constants: if we had instead allowed them, this sub-case 1(b)
would be defined so as to also exclude formulas containing a and b, but to allow other constants
c, d etc., so as to capture the idea of discernment by relations to other objects. But as in the
case of bound variables, it could turn out that the “third” object picked out is in fact a or b.
Cf. footnote 22.
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ality. Note that if an object is an individual, some or all of the other objects might

themselves fail to be individuals (cf. figure 2.3).

Figure 2.3: An object’s being an individual requires its being absolutely discerned
from all others, but not their being absolutely discerned from anything else. Here,
c is absolutely discerned from both a and b, e.g. by the formula ∀z(Rzx ⊃ Rxz),
while a and b are themselves non-individuals.

Being an individual is tantamount to being the bearer of a uniquely instantiated

definite description: where ‘tantamount to’ indicates a qualification. The idea is:

given an individual, we take seriatim the formulas that absolutely discern it from

the other objects in the structure, and conjoin them and so construct a definite

description that is instantiated only by the given individual. The qualification

is that in an infinite domain, there could be infinitely many ways that a given

individual was absolutely discerned from all the various others: think of how a

finite vocabulary supports arbitrarily long formulas, and so denumerably many

of them. Thus in an infinite domain the above “seriatim” procedure might yield

an infinite conjunction—preventing a finitely long uniquely instantiated definite

description.24

I will examine absolute discernibility in Section 2.4. For the moment, I return

to our four kinds of discernibility: i.e. to presenting the last two kinds. End of

Interlude.

2(a) (Rel) Formulas with two free variables, which are satisfied by the two objects

a and b in one order, but not the other. For example, for the formulas Rxy

and ∃zHxzy, we have: 〈a, b〉 ∈ ext(R), but 〈b, a〉 /∈ ext(R); and 〈a, b〉 ∈
24A terminological note: Saunders (2003b, p. 10) says that an object that is the bearer of a

uniquely instantiated definite description is ‘referentially determinate’, and Quine (1976a, p. 113)
calls such an object ‘specifiable’. So, modulo my qualification about infinite domains, these terms
correspond to my (and Muller & Saunders’ (2008)) use of ‘individual’. Cf. also comment 1(vi)
in Section 2.2.1.
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ext(∃zH ∗ z•), but 〈b, a〉 /∈ ext(∃zH ∗ z•). Here the diversity of a and b

is an extrinsic matter (both intuitively, and according to my definition of

‘extrinsic’, which is discernment by any means other than (Int)), since it

follows from their relation to each other. But it is not a matter of a relation

to any third object. Following Quine (1960, p. 230), I will say that objects

so discerned are relatively discerned.

And as above, I will say that objects that are relatively discerned but neither

intrinsically nor externally discerned, are merely relatively discerned. Merely

relatively discerned objects are never individuals in my sense (viz. absolutely

discerned from all other objects).25

2(b) (Weak) Formulas with two free variables, which are satisfied by the two

objects a and b taken in either order, but not by either object taken twice.

For example, for the formulas Rxy and ∃zHxzy, we have: 〈a, a〉, 〈b, b〉 /∈
ext(R), but 〈a, b〉, 〈b, a〉 ∈ ext(R); and 〈a, a〉, 〈b, b〉 /∈ ext(∃zH ∗ z•), but

〈a, b〉, 〈b, a〉 ∈ ext(∃zH ∗ z•). (We say ‘but not by either object taken twice’

to prevent a and b being intrinsically discerned.) Again, the diversity of a

and b is extrinsic, but does not depend on a third object; rather diversity

follows from their pattern of instantiation of the relation R. I call objects

so discerned weakly discerned. And I will say that objects that are weakly

discerned but neither intrinsically nor externally nor relatively discerned (i.e.

fall outside (Int), (Ext), (Rel) above), are merely weakly discerned.

Objects which are discerned merely weakly are not individuals, in my sense

(since they are not absolutely discerned). Max Black’s famous example of

two spheres a mile apart (1952, p. 156) is an example of two such objects.

For the two spheres bear the relation ‘is a mile away from’, one to another;

but not each to itself. The irony is that Black, apparently unaware of weak

discernibility, proposes his duplicate spheres as a putative example of two ob-

25Note that this kind of discernment does not require the discerning formula, for example
Gxy, to be asymmetric for all its instances; i.e., we do not require ∀x∀y(Gxy ⊃ ¬Gyx). In this
I agree with Saunders (2003a, p. 5) and Quine (1960, p. 230). My rationale is that intuitively,
this kind of discernment does not require anything about the global pattern of instantiation of
the relation concerned. The same remark applies to (Weak) below, where now I differ from
Saunders (2003a, p. 5), who demands that the discerning relation be irreflexive. Nevertheless, I
adopt Saunders’/Quine’s word ‘weak’.
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jects that are qualitatively indiscernible (and therefore as a counterexample

to the principle of the identity of indiscernibles).26

I will also say that two objects that are not discerned by any of our four kinds

(i.e. by no 1-place or 2-place formula whatsoever) are indiscernible. For emphasis,

I will sometimes call such a pair utterly indiscernible. In particular, I will say

‘utter indiscernibility’ when contrasting this case with the failure of only one (or

two or three) of our four kinds of discernibility. Of course, utter indiscernibles are

only accepted by someone who denies the Hilbert-Bernays account.

2.4 Absolute indiscernibility: some results

In Section 2.2.2, we saw that a permutation leaving invariant the indiscernibility

classes must be a symmetry; then we gave a counterexample to the converse state-

ment, and to a related conjecture that if indiscernibility is identity, there is only

the trivial symmetry. But now that I have defined absolute discernibility (viz. as

the disjunction, (Int) or (Ext)), we can ask about the corresponding claims that

use instead the absolute concept. That is the task of this Section. (But its results

are hardly needed for the discussions and results in later Sections.)

I will prove that with the absolute concept, Section 2.2.2’s converse statement is

“resurrected”, i.e. a symmetry leaves invariant the absolute indiscernibility classes

(Section 2.4.1). Then I will give some illustrations, including a counterexample to

the converse of this statement (Section 2.4.2). Then I will show that for a finite

domain of quantification, absolute indiscernibility of two objects is equivalent to

the existence of a symmetry mapping one object to the other (Section 2.4.3).27

26That is, assuming that space is not closed. In a closed universe, an object may be a non-zero
distance from itself, so the relation ‘is one mile away from’ is not irreflexive, and cannot be
used to discern. French’s (2006, §4) and Hawley’s (2009, p. 109) charge of circularity against
Saunders (2003a) enters here: it seems that the irreflexivity of ‘is one mile away from’ relies on
the prior guarantee that the two spheres are indeed distinct; but their distinctness is supposed,
in turn, to be grounded by that very relation being irreflexive. The openness or closedness of
space would decide the matter, of course, but that too seems to stand or fall with the irreflexivity
or otherwise of distance relations—between spatial or spacetime points, if not material objects.
Cf. also comment 1(iv) in Section 2.2.1.

27Absolute discernibility and individuality are closely related to definability in a formal lan-
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But first, beware of an ambiguity of English. For relations of indiscernibility,

we have a choice of two usages. Should we use ‘absolute indiscernibility’ for just

‘not absolutely discernible’ (which will therefore include pairs of objects that are

discernible, albeit by other means than absolutely)? Or should we use ‘absolute

indiscernibility’ for some kind (species) of indiscernibility—as, indeed, the English

adjective ‘absolute’ connotes? (And if so, which kind should we mean?)28

I stipulate that I mean the former. Then: since absolute discernibility is a

kind of (implies) discernibility, we have, by contraposition: indiscernibility implies

absolute indiscernibility (in my usage). Since both indiscernibility and absolute

indiscernibility are equivalence relations, this implies that the absolute indiscerni-

bility classes are unions of the indiscernibility classes; cf. Figure 2.4. With this

definition, Section 2.4.1’s theorem will be: a symmetry leaves invariant the abso-

lute indiscernibility classes.

Figure 2.4: Preview to Section 2.4.1’s theorem. A generic symmetry π acting on
a domain must preserve the absolute indiscernibility classes (thick broken lines),
but may break the indiscernibility classes (thin broken lines). Note also that the
object at centre-bottom, alone in its absolute indiscernibility class and therefore
an individual, must be sent to itself under π.

Besides, for later use, I make the corresponding stipulation about the phrases

‘intrinsic indiscernibility’, ‘external indiscernibility’ etc. That is: by ‘intrinsic

guage; (for example, an object that is definable is an individual in the sense of Section 2.3.2’s
Interlude). The interplay between definability (and related notions) and invariance under sym-
metries is given a sophisticated treatment by da Costa & Rodrigues (2007), who consider higher-
than-first-order structures. Some of their results have close affinities with our two theorems; in
particular their theorems 7.3-7.7. As in footnote 9, I thank N. da Costa.

28This sort of ambiguity is of course not specific to discernment: it is common enough: should
we read ‘recalcitrant immobility’ as ‘not-(recalcitrant mobility)’ or as ‘recalcitrant not-mobility’?
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indiscernibility’ and ‘intrinsically indiscernible’, I will mean ‘not-(intrinsic dis-

cernibility)’ and ‘not-(intrinsically discernible)’, respectively; and so on for other

phrases.

2.4.1 Invariance of absolute indiscernibility classes

Recall that in Section 2.2.2, we saw that leaving invariant (fixing) the indiscerni-

bility classes was sufficient, but not necessary, for being a symmetry. That is:

Section 2.2.2’s counterexample showed that being a symmetry is not sufficient for

leaving invariant the indiscernibility classes. This situation prompts the question,

what being a symmetry is sufficient for. More precisely: is there a natural way

to weaken Section 2.2.2’s sufficient condition for being a symmetry—viz. indis-

cernibility invariance—into being instead a necessary condition? In other words:

one might conjecture that leaving invariant some supersets of the indiscernibility

classes yields a necessary condition of being a symmetry.

In fact, my concept of absolute indiscernibility is the natural weakening. (N.B.

The ban on names is essential to its being a weakening: allowing names in a

discerning formula makes (the natural redefinition of) absolute discernment equiv-

alent to weak discernment.) That is: being a symmetry implies leaving invariant

the absolute indiscernibility classes. Cf. Figure 2.4. I will first prove this, and

then give a counterexample to the converse statement: it will be similar to the

counterexample used in Section 2.2.2 against that Section’s converse statement.

Theorem 1: For any structure (i.e. interpretation of a first-order language): if

a permutation is a symmetry, then it leaves invariant the absolute indiscernibility

classes.

Proof: I will prove the contrapositive: I assume that there is some element a

of the domain which is absolutely discernible from its image b := π(a) under the

permutation π, and I prove that π is not a symmetry. (Remember that ‘a’ and

‘b’ are names in the metalanguage only; we stick to our ascetic object-language

demands set down in comment 2 of Section 2.2.1.29) So our assumption is that

29I am extremely grateful to Leon Horsten for making me aware of the problems with a previous
version of this proof, in which names were reintroduced into the object language.
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for some object a in the domain, with b := π(a), there is some formula Φ(x) with

one free variable for which a ∈ ext(Φ) while b /∈ ext(Φ), or vice versa (a /∈ ext(Φ)

while b ∈ ext(Φ)):

The proof proceeds by induction on the logical complexity of the absolutely

discerning formula Φ. From the assumption that a ∈ ext(Φ) iff b /∈ ext(Φ), I will

show that, whatever the main connective or quantifier used in the last stage of

the stage-by-stage construction of Φ, there is some logically simpler open formula,

perhaps with more than one (n, say) free variable, Ψ(x1, . . . xn), and some ob-

jects o1, . . . on ∈ D (not necessarily including a, and not necessarily n in number,

since maybe oi = oj for some i 6= j) such that we have: 〈o1, . . . on〉 ∈ ext(Ψ) iff

〈π(o1), . . . π(on)〉 /∈ ext(Ψ), where π(oi) is the image of oi under the permutation π.

That is, we continue to break Ψ down to logically simpler formulas until we obtain

some atomic formula whose differential satisfaction by some sequence of objects

and the sequence of their images under the permutation π directly contradicts π’s

being a symmetry.

The proof begins by setting Ψ := Φ(x) (so to start with, the adicity n of

our formula equals 1 and our objects oi comprise only a). We then reiterate the

procedure until we reach an atomic formula. Thus:—

Step one. We have that 〈o1, . . . on〉 ∈ ext(Ψ) iff 〈π(o1), . . . π(on)〉 /∈ ext(Ψ).

(Remember that to start with, we set n = 1 and o1 = a. And the ‘iff’ means only

material equivalence.)

Step two. Proceed by cases:

• If Ψ(x1, . . . xn) = ¬ξ(x1, . . . xn), then we have

〈o1, . . . on〉 ∈ ext(¬ξ) iff 〈π(o1), . . . π(on)〉 /∈ ext(¬ξ); that is,

〈o1, . . . on〉 ∈ ext(ξ) iff 〈π(o1), . . . π(on)〉 /∈ ext(ξ);

so ξ is our new, simpler Ψ.

• If Ψ is a conjunction, then we can write

Ψ(x1, . . . xn) =
(
ξ(xi(1), . . . xi(l)) ∧ η(xj(1), . . . xj(m)

)
,

where l,m 6 n and l + m > n, and i : {1, 2, . . . l} → {1, 2, . . . n} and

j : {1, 2, . . .m} → {1, 2, . . . n} are injective maps. First of all, we recognise

that
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〈o1, . . . on〉 ∈ ext(Ψ) iff 〈oi(1), . . . oi(l)〉 ∈ ext(ξ) and 〈oj(1), . . . oj(m)〉 ∈ ext(η).

Then, given step one, namely

〈o1, . . . on〉 ∈ ext(Ψ) iff 〈π(o1), . . . π(on)〉 /∈ ext(Ψ),

this is equivalent to

〈oi(1), . . . oi(l)〉 ∈ ext(ξ) and 〈oj(1), . . . oj(m)〉 ∈ ext(η) iff

〈π
(
oi(1)

)
, . . . π

(
oi(l)
)
〉 /∈ ext(ξ) or 〈π

(
oj(1)

)
, . . . π

(
oj(m)

)
〉 /∈ ext(η).

That is:

〈oi(1), . . . oi(l)〉 ∈ ext(ξ) iff 〈π
(
oi(1)

)
, . . . π

(
oi(l)
)
〉 /∈ ext(ξ), or

〈oj(1), . . . oj(m)〉 ∈ ext(η) iff 〈π
(
oj(1)

)
, . . . π

(
oj(m)

)
〉 /∈ ext(η).

So either the formula ξ(x1, . . . xl) or η(x1, . . . xm) is our new formula Ψ; with

adicity l, respectively m, replacing the adicity n; and the objects oi(1), . . . oi(l),

respectively oj(1), . . . oj(m) replacing the objects o1, . . . on. (This is an inclu-

sive ‘or’: if either formula suffices, imagine that only one is chosen to continue

the inductive procedure. Heuristic remarks: (i) It is only in this clause that

the process can reduce the number of variables occurring in Ψ, and hence

the number n of objects under consideration. (ii) The next three cases can

be dropped in the usual way, if we suppose the language to use just ¬,∧ as

primitive connectives.)

• If Ψ =
(
ξ ∨ η

)
, then continue with Ψ = ¬

(
¬ξ ∧ ¬η

)
.

• If Ψ =
(
ξ ⊃ η

)
, then continue with Ψ = ¬

(
ξ ∧ ¬η

)
.

• If Ψ =
(
ξ ≡ η

)
, then continue with Ψ =

(
¬
(
ξ ∧ ¬η

)
∧ ¬

(
η ∧ ¬ξ

))
.

• If Ψ(x1, . . . xn) = ∃zξ(z, x1, . . . xn), then we have, using ‘∗’ to mark the n-

component argument-place,

〈o1, . . . on〉 ∈ ext(∃zξ(z, ∗)) iff 〈π(o1), . . . π(on)〉 /∈ ext(∃zξ(z, ∗)).
So we have

〈o1, . . . on〉 ∈ ext(∃zξ(z, ∗)) and 〈π(o1), . . . π(on)〉 ∈ ext(¬∃zξ(z, ∗)), or

〈o1, . . . on〉 ∈ ext(¬∃zξ(z, ∗)) and 〈π(o1), . . . π(on)〉 ∈ ext(∃zξ(z, ∗)).
That is:

〈o1, . . . on〉 ∈ ext(∃zξ(z, ∗)) and 〈π(o1), . . . π(on)〉 ∈ ext(∀z¬ξ(z, ∗)), or

〈o1, . . . on〉 ∈ ext(∀z¬ξ(z, ∗)) and 〈π(o1), . . . π(on)〉 ∈ ext(∃zξ(z, ∗)).
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– The first disjunct entails that there is some object in D—call it c—for

which

〈c, o1, . . . on〉 ∈ ext(ξ) and 〈π(c), π(o1), . . . π(on)〉 ∈ ext(¬ξ), i.e.

〈c, o1, . . . on〉 ∈ ext(ξ) and 〈π(c), π(o1), . . . π(on)〉 /∈ ext(ξ).

(The second conjunct holds for π(c), since it holds for all objects in D.)

– The second disjunct entails that there is some object in D—call it d—

for which

〈π−1(d), o1, . . . on〉 ∈ ext(¬ξ) and 〈d, π(o1), . . . π(on)〉 ∈ ext(ξ), i.e.

〈π−1(d), o1, . . . on〉 /∈ ext(ξ) and 〈d, π(o1), . . . π(on)〉 ∈ ext(ξ).

(The first conjunct holds for π−1(d), since it holds for all objects in D.)

But we can give π−1(d) the name c; so that we can recombine the dis-

juncts and conclude that, for some object c in D, 〈c, o1, . . . on〉 ∈ ext(ξ) iff

〈π(c), π(o1), . . . π(on)〉 /∈ ext(ξ).

So the formula ξ(x1, . . . xn+1) is our new Ψ, n + 1 is our new adicity, and

c, o1, . . . on are our new objects. (Heuristic remark: It is only in this clause

that the process can increase, by one, the adicity of Ψ, and hence the number

of objects under consideration.)

• If Ψ(x1, . . . xn) = ∀zξ(z, x1, . . . xn), then continue with Ψ(x1, . . . xn) = ¬∃z¬ξ(z, x1, . . . xn).

(Heuristic remark: This case can be dropped in the usual way, if we suppose

the language to use just ∃ as the primitive quantifier.)

• If Ψ is an atomic formula, then:

– either Ψ = F 1
i for some primitive 1-place predicate F 1

i , in which case:

o1 ext(F 1
i ) iff π(o1) /∈ ext(F 1

i );

– or Ψ = G2
j for some primitive 2-place predicate G2

j , in which case:

〈o1, o2〉 ∈ ext(G2
j) iff 〈π(o1), π(o2)〉 /∈ ext(G2

j)

(I emphasize that this case includes the 2-place predicate G2
j being ‘=’,

i.e. equality);

– and so on for any 3- or higher-place predicates.
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Each case directly contradicts the original assumption that π is a symmetry

(cf. Equation (2.2)).

End of proof

Corollary 1: An individual is sent to itself by any symmetry.

Proof: Section 2.3.2 defined an individual as an object that is absolutely discerned

from every other object. So its absolute indiscernibility class is its singleton set.

QED.

This implies, as a special case, the “resurrection” of Section 2.2.2’s second

conjecture. That is, we have

Corollary 2: If all objects are individuals, the only symmetry is the identity

map.

2.4.2 Illustrations and a counterexample

I will illustrate Theorem 1 and Corollary 2, with examples based on those in

Section 2.2.2. Roughly speaking, these examples will show how Section 2.2.2’s

counterexamples to its two conjectures are “defeated” once we consider absolute

indiscernibility instead of utter indiscernibility. Then I will give a counterexample

to the converse of Theorem 1.

Theorem 1 illustrated:— In Section 2.2.2’s counterexample (1), a and b are

absolutely indiscernible. Thus Figure 2.5 illustrates the theorem.

Figure 2.5: Illustration of Theorem 1, viz. that a symmetry leaves invariant the
equivalence classes for the relation ‘is absolutely indiscernible from’. Here, the
symmetry π from Fig. 2.1 leaves invariant the absolute indiscernibility classes,
shown on the right.
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Corollary 2 illustrated:— I similarly illustrate Corollary 2 by modifying Section

2.2.2’s second counterexample, i.e. counterexample (2) (Figure 2.2) to Section

2.2.2’s second conjecture. The rough idea is to identify absolute indiscernibles;

rather than just utter indiscernibles (as is required by (HB)). But beware: iden-

tifying absolute indiscernibles that are not utter indiscernibles will lead to a con-

tradiction. Figure 2.2 (and also Figure 2.5) is a case in point: it makes true Rab

and ¬Raa, so that if one identifies a and b, one is committed to the contradiction

between Raa and ¬Raa. But by increasing slightly the extension of R, turn-

ing absolute indiscernibles into utter indiscernibles, we can give an illustration of

Corollary 2, based on Figure 2.2, which avoids contradiction. Namely, we require

that Raa and Rbb; this makes a and b utterly indiscernible, not merely absolutely

indiscernible. Then we identify a and b, yielding Figure 2.6.

Figure 2.6: Illustration of Corollary 2. When ‘is not absolutely discernible from’
is taken as identity, the only symmetry for each structure is the identity map.

Against the Theorem’s converse:— I turn to showing that Theorem 1’s converse

does not hold: there are structures for which there are permutations which pre-

serve the absolute indiscernibility classes, yet which are not symmetries. Consider

the structure in Figure 2.7.30 In this structure the relation R has the extension

ext(R) = {〈a, b〉, 〈b, a〉, 〈a, c〉, 〈b, d〉}. So as in Fig 2.1 (i.e. the counterexample in

(1) of Section 2.2.2), a, b are weakly discernible, and c, d are indiscernible. But

a and b are absolutely indiscernible. (Proof using Theorem 1: the permutation

(ab)(cd) is a symmetry, so {a, b} and {c, d} must each be (subsets of) absolute

indiscernibility classes.) Then the familiar permutation π, which just swaps a and

b, clearly preserves the absolute indiscernibility classes. Yet π is not a symmetry,

since e.g. 〈a, c〉 ∈ ext(R), but 〈π(a), π(c)〉 = 〈b, c〉 /∈ ext(R).

Figure 2.7 illustrates the general reason why the class of symmetries is a sub-

set of the class of permutations that leave invariant the absolute indiscernibility

classes. Namely: for a permutation to be a symmetry, it is not enough that it map

30I thank Tim Button for convincing me of this, and for giving this counterexample.
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Figure 2.7: A counterexample to the claim that if the absolute indiscernibility
classes are left invariant by the permutation π, then π is a symmetry.

each object to one absolutely indiscernible from it; it must, so to speak, drag all

the related objects along with it. For example, in Figure 2.7, it is not enough to

swap a and b; the objects “connected” to them, namely c and d respectively, must

be swapped too. (In more complex structures, we would then have to investigate

the objects “connected” to these secondary objects, and so on).

To sum up: this counterexample, together with Theorem 1 and the results of

Section 2.2.2, place symmetries on a spectrum of logical strength, between two

varieties of permutations defined using our notions of utter indiscernibility and

absolute indiscernibility. That is: for a given structure, we have:

π leaves invariant

the indiscernibility

classes

(cf. §2.2.2)
======⇒ π is a symmetry

(cf. Th. 1)
======⇒

π leaves invariant

the absolute

indiscernibility

classes

2.4.3 Finite domains: absolute indiscernibility and the ex-

istence of symmetries

For structures with a finite domain of objects, there is a partial converse to Section

2.4.1’s Theorem 1: viz. that if a and b are absolutely indiscernible, then there is

a symmetry that sends a to b. To prove this, we will temporarily expand the

language to contain a name for each object. I will also use the Carnapian idea of

a state-description of a structure (Carnap (1950, p. 71)). This is the conjunction

of all the true atomic sentences, together with the negations of all the false ones.

But for our purposes, the state-description should also include the conjunction of
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all the true statements of non-identity between the objects in the domain. This

will ensure that a map that I will need to define in terms of the state-description

is a bijection (and thereby a symmetry).

I see no philosophical or dialectical weakness in the proof’s adverting to these

non-identity statements. But I agree that the reason it is legitimate to include

them is different, according to whether you adopt the Hilbert-Bernays account of

identity or not. Thus the opponent to the Hilbert-Bernays account will include in

the state-description all the non-identity sentences holding between any two ob-

jects in the domain; for the state-description is to be a complete description of the

structure, so these non-identity facts should be included. For the proponent of the

Hilbert-Bernays account, on the other hand, facts about identity and non-identity

are entailed by the qualitative facts, in accordance with (HB). So a description of

a structure (in particular, a Carnapian state-description) can be complete, i.e. ex-

press all the facts, without explicitly including all the true non-identity sentences.

But it is also harmless to include them as conjuncts in the state-description.31

I will state the Theorem as a logical equivalence, although one implication (the

leftward one) is just a restatement of Section 2.4.1’s Theorem 1, and so does not

need the assumption of a finite domain.

Theorem 2: In any finite structure, for any two objects x and y:

x and y are absolutely indiscernible ⇐⇒ there is some symmetry π such that

π(x) = y.

Proof: Leftward : This direction is an instance of Section 2.4.1’s Theorem 1,

that symmetries leave invariant the absolute indiscernibility classes.

Rightward: Consider an arbitrary finite structure with n distinct objects,

o1, o2, . . . oi, . . . on in its domain D, and any two absolutely indiscernible objects

in that domain, o1, o2 (so we set x = o1, y = o2). We temporarily expand the

31Harmless, that is, provided the HB-advocate is clear-headed. Recall from comment 1 of
Section 2.2.1, that the proponent of the Hilbert-Bernays account assumes that the language is
rich enough, or that the domain is varied enough, for each object to be discerned in some way
(maybe: relatively or weakly) from every other. Thus one could also argue that this assumption
involves no loss of generality: for if it does not hold for a structure, then the indiscernible
objects are to be identified; or else—on pain of contradiction for the HB-advocate—the primitive
vocabulary is to be expanded so as to discern them, and the proof is then run again with a
structure of discerned objects.
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language to include a name ôi for each object oi.
32 Then:

1. Construct the state-description S of the structure. Thus for example, if the

language has just one primitive 1-place predicate F and one primitive 2-place

predicate R, define:

S :=
∧
i,j

Sij ∧
∧
i

Si ∧
∧
i<j

ôi 6= ôj ∧ ∀z0

(∨
i

z0 = ôi

)

where Sij :=

{
Rôiôj if 〈oi, oj〉 ∈ ext(R)

¬Rôiôj if 〈oi, oj〉 /∈ ext(R)

and Si :=

{
F ôi if oi ∈ ext(F )

¬F ôi if oi /∈ ext(F )
.

2. Define the n-place formula ς from S by replacing all instances of each name

with an instance of a free variable z1, ..., zn. Writing ô1
z1

for the substitution

of ô1 by z1 etc., we define:

ς := ς(z1, z2, . . . zn) := S

(
ô1

z1

,
ô2

z2

,
ô3

z3

, . . .
ôn
zn

)
.

Note that S is ς(ô1, ô2, ô3 . . . ôn).

3. From ς(z1, . . . zn), we define n one-place formulas, the ith being the “finest

description” of the ith object in D, i.e. oi, by existentially quantifying over

all but the ith variable, which is itself replaced by another variable, say x:

Σi(x) := ∃z1 . . . ∃zi−1∃zi+1 . . . ∃zn ς(z1, . . . zi−1, x, zi+1, . . . zn).

4. The structure clearly makes true Σ1(ô1), since it is entailed by S. But by

our assumption, o1 is absolutely indiscernible from o2. This means that o1

32Some readers—especially those worrying about our sudden use of names in the object-
language—may like to convince themselves that one achieves the same results if, within each
absolute indiscernibility class, names are permuted among their denotations. Therefore the
proof is invariant under permutations of non-individuals.
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and o2 satisfy the same one-place formulas. So the structure also makes true

Σ1(ô2). So S also entails Σ1(ô2).

5. We apply existential instantiation to every existential quantifier in Σ1(ô2).

Formally, this introduces n − 1 new names, say α1, ..., αn−1. But we know

(from the last conjunct in S) that there are at most n objects in D; so each

of the αk must name one of the o1, ..., on. And the non-identity conjuncts in

S also entail that any pair of names among the α1, . . . αn−1 denote distinct

objects, all of which are distinct from o2. Thus we infer that S entails the

sentence

ς(ô2, ôα(1), ôα(2) . . . ôα(n−1))

where the bijective map α : {1, 2, 3, . . . n− 1} → {1, 3, 4, . . . n} is defined by

the fact that for each k = 1, . . . n− 1 the new name αk refers to oα(k).

6. We now construct a map π onD using the sentences S and ς(ô2, ôα(1), ôα(2) . . . ôα(n−1))

as follows:

S ≡ ς( ô1, ô2, ô3, . . . ôn )

yπ yπ yπ · · ·
yπ

ς( ô2, ôα(1), ôα(2), . . . ôα(n−1) )

That is: π maps o1 to o2, and o2 to oα(1), and o3 to oα(2), and so on for all

the objects in D.

7. Then π is a bijection, since all the o2, oα(1), . . . oα(n−1) are distinct. And D

is the range of π. So π is a permutation. But by construction π is also a

symmetry. This is because: (i) it induces a map from the state-description

S to another state-description ς(ô2, ôα(1), ôα(2), . . . ôα(n−1)); (ii) the latter sen-

tence is entailed by the former and, since both are state-descriptions, both

sentences have maximal logical strength; so (iii) the sentences are materially

equivalent; and (iv) this material equivalence, together with their maximal

logical strength, entails that the extensions of all primitive predicates are

53



preserved under π. Thus π is the symmetry sought.

End of proof

I now sketch two examples showing the need for finiteness in the statement of

Theorem 2. The first uses a countable domain and is sufficient on its own to prove

the need for finiteness in Theorem 2; the second, which involves an uncountably

infinite domain, is unnecessary, but illustrative.

The countable example is familiar (e.g. Boolos & Jeffrey (1974, p. 191)). I use

the fact that first-order arithmetic, in the language LA with primitive symbols

s,+,×,33 is not ℵ0-categorical, by finding two elementarily equivalent but non-

isomorphic structures, which we then use to create a single structure with an

absolutely indiscernible pair not related by any symmetry. Take the standard

model of arithmetic N := 〈N, 0, sN,+N,×N〉 and a non-standard model N∗ :=

〈N∗, ∅, sN∗ ,+N∗ ,×N∗〉, where N∗ consists of an initial segment, whose first element

is an object ∅ and which is isomorphic to N, followed by countably infinitely many

Z-chains, densely ordered without a greatest or least Z-chain. (So N∗ has the same

order type as N + Z ·Q.)

We then create a new structure M = 〈N , 0, ∅, sM,+M,×M〉 := 〈N∪N∗, 0, ∅, sN∪
sN
∗
,+N ∪+N∗ ,×N ∪×N∗〉; (let us assume that the domains N and N∗ are disjoint,

so that ∅ 6= 0). Now, the structures N and N∗ are elementarily equivalent, so any

one-place formula in LA which is true of 0 in N is also true of ∅ in N∗, and vice

versa. So then any one-place formula in LA which is true of 0 in M will also be

true of ∅ in M, and vice versa.34 In that case, 0 and ∅ are absolutely indiscernible

in M. But N and N∗ are not isomorphic; therefore M has no symmetries which

map 0 to ∅ or vice versa. So we have two objects which are absolutely indiscernible

but which are not related by any symmetry.35

33Remember (comment 2 in Section 2.2.1) that I ban names from primitive vocabularies, so I
take LA not to contain 0, the name assigned to 0 (the number zero) in the standard model of
arithmetic, as a primitive. The standard results which I use here are not affected, for we can
introduce 0 by description, in terms of the other primitive vocabulary, i.e. 0 := ιx ¬∃y x = s(y).

34That is of course not to say that the same propositions will be true of 0 in M as in N (and
similarly for ∅ and N∗). In particular, the description proposed in fn. 33 as a definition of 0,
namely ιx ¬∃y x = s(y), is false of 0 in M, because the uniqueness claim fails; but of course the
description is also false of ∅ in M.

35If we expand LA to the infinitary language LA(ω1, ω) (which allows countably infinite con-
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Now I provide an example of an uncountably infinite structure in which two

objects a0 and b0 are absolutely indiscernible, but no symmetry maps one to the

other. In this example, there is just one 2-place relation R. We require that a0

bears R to each of denumerably many distinct a1, a2, . . . ai, . . .; and each of these

ai bears R only to itself.36 We also require that b0 bears R to each of continuum

many distinct b1, b2, . . . bj, . . .; and each of these bj bears R only to itself. Thus we

have:

ext(R) = {〈a0, a1〉, 〈a1, a1〉, 〈a0, a2〉, 〈a2, a2〉, . . . 〈b0, b1〉, 〈b1, b1〉, 〈b0, b2〉, 〈b2, b2〉, . . .} .

with

card({x : 〈a0, x〉 ∈ ext(R)}) = ℵ0 ; card({x : 〈b0, x〉 ∈ ext(R)}) = 2ℵ0 .

So a0 and b0 are each like the centre of a wheel, with relations to the ai, bj respec-

tively like their wheel’s spokes.

Figure 2.8: A structure with an uncountable domain in which two objects are
absolutely indiscernible, yet no symmetry relates them.

These different cardinalities imply that there is no symmetry π such that

junction and disjunction, but only finitary quantification), 0 and ∅ become absolutely discernible,
since we now have the linguistic resources to distinguish between the order types of N and N∗.
Specifically, if we define the relation x < y := ∃t(x + s(t) = y), and recursively define the
function s0(x) := x; sn+1(x) := s (sn(x)), then 0 and ∅ are absolutely discerned by the formula
Φ(x) := ∀y

(
x < y ⊃

∨
n∈ω y = sn(x)

)
, since 0 ∈ extM(Φ) but ∅ /∈ extM(Φ). Intuitively, the

formula Φ(x) says that every element greater than x lies only finitely far away from x.
36So the ais are weakly discerned from each other by ¬Rxy; and so will be distinct even for a

proponent of the Hilbert-Bernays account.
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π(a0) = b0 or π(b0) = a0. (Recall the discussion after Figure 2.7, at the end

of Section 2.4.2.) But on the other hand, the fact that the “only difference” be-

tween a0 and b0 is the order of the infinity of the objects to which they are related

means that they are absolutely indiscernible; for the Löwenheim-Skolem theorem

implies that no first-order Φ(x) can express this difference. More precisely: the

Löwenheim-Skolem theorem states that no set of formulas of a first-order language

has only models each with denumerably many objects. From this it follows that

no first-order Φ(x) can express the fact that a0 (and not b0) has only denumerably

many relata. And this implies that no first-order Φ(x) can discern a0 and b0; so

they are absolutely indiscernible.

So much by way of developing various results about absolute discernibility. I

now turn to metaphysical matters.
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Chapter 3

Four metaphysical theses

In this Chapter, I state and discuss four rival metaphysical theses, framed in terms

of Section 2.3.2’s four kinds. I will first define the theses and make some comments

about them (Section 3.1). Then I describe how they disagree in distinguishing

possibilities, with one thesis distinguishing two possibilities where another thesis

sees only one—thereby condemning the first as proposing a distinction without

a difference, or as trading in chimeras (Section 3.2). I will not be committed to

any of our four theses—my aim is merely to describe! In Section 3.3, I describe

a salient recarving of the four theses into two umbrella positions. One of these

positions, which I call structuralism, is of particular interest, since it prompts

formal procedures that are to be found in a variety of modern physical theories

(which is discussed in Caulton and Butterfield (2011)).

It will be obvious that several other metaphysical theses could be formulated

as readily as my four. But for my purposes, these are the salient ones.

In this Chapter, I shift focus from syntax and logic to semantics and ontology.

Accordingly, I imagine that all parties to the debate about identity and indiscerni-

bility envisage a language that is adequate for expressing all facts, in particular

facts of identity and diversity (Adams (1979, p. 7), Lewis (1986, §4.4)); and if

they adopt or even just consider the Hilbert-Bernays account, they will imagine

deploying it for such a language. (Agreed, the parties will differ about what this

language, in order to be adequate, must contain. In particular, I noted in com-
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ment 2 of Section 2.2.1 that the haecceitist will require the language to express

haecceities with predicates Nax,Nbx etc.)

I will make three further comments about this shift of focus. They concern,

respectively: how uncontentious I will be; the jargon I will use; and my ignoring

some modal issues.

(1): In (2) of Section 2.3.1, I officially disavowed any connotations that words

like ‘intrinsic’ or ‘external’ might have, while allowing ourselves to use them as

mnemonic labels. Now that we are entering on metaphysics, this disavowal is

muted, in so far as we I envisage an adequate language.

(2): Given the discussion of jargon at the end of Section 2.1, I now adopt

the term ‘individual’ in its fully proper sense, as defined in Section 2.3.2, as an

object that is absolutely discerned from all others, relative to the envisaged “ideal”

language which is adequate for expressing all facts. Thus ‘individual’ can be used

by all parties: though they may well differ about the vocabulary of this language,

and also about which objects (if any!) are individuals.

(3): I emphasise that I will not pursue all the issues about modality that

are raised by our theses and our comments on them. I will mention only briefly

and in passing some implications for the identity of objects across structures (our

formal representatives of “possible worlds”); I will not consider modal languages

and quantification over structures, and I will steer clear of the issue of essential

properties. Of course much of the literature is thus concerned. But I have plenty to

do, while setting aside these issues: this self-imposed limitation will be prominent

in some comments in Section 3.1, and in Section 3.2.

3.1 The four theses

The four theses fall into two pairs. Broadly speaking, each thesis of the first

pair is part of a reductive account of identity; while the third and fourth theses

are explicitly non-reductive about identity. (We will shortly see another, equally

good, way to sort the theses into pairs.)

For each thesis, I will mention an author or two who endorses it, or who is
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sympathetic to it. But beware: some authors formulate their positions in terms

of whether facts of identity and diversity are reduced to or grounded in other

facts (qualitative or not). But ‘reduced’ and ‘grounded’ are vague, and we will for

simplicity instead say ‘implied by’, etc.

The first pair are both versions of the Principle of the Identity of Indiscernibles

(PII), and both conform to the Hilbert-Bernays account of identity. The first is

strong; so I write SPII. It vetoes not only objects that are indiscernible one from

another, but also objects that are merely relatively or merely weakly discerned.

So it amounts to a substantial demand on the primitive vocabulary, that it be

rich enough to discern any pair of objects absolutely. (One might say: ‘discern

any pair of objects in any structure’. But as discussed in (3) just above, I will

not emphasise this sort of universal quantification over structures.) So, according

to this thesis, all objects are individuals. This thesis seems to be what Hacking

(1975) had in mind, given his treatment of his examples. Saunders (2003b, p. 17)

ascribes a strengthening of the view to Leibniz, in view of Leibniz’s thesis that

relational properties are always reducible to the intrinsic properties of the relata;

(cf. comment (2) at the end of this Chapter).1 Adams (1979, p. 11) says of what

appears to be SPII, that it is “a most interesting thesis, but much more than needs

to be claimed in holding that reality must be purely qualitative”.

The second is a weak version of PII: written WPII. It understands ‘indiscerni-

bility’ as covering all of our four kinds, i.e. as what I called at the end of Section

2.3.2, ‘utter indiscernibility’. So this weak PII corresponds to the leftward impli-

cation in (HB), that indiscernibility implies identity. Since this implication is the

contentious half of (HB), this weak PII is in effect a metaphysical statement of the

Hilbert-Bernays account. Like the first thesis, this amounts to a demand on the

primitive vocabulary, albeit a weaker one: viz. that it be rich enough to discern

any pair of objects, by one or other of our four kinds. In the words of Adams

(1979, p. 10), the demand on the primitive vocabulary is that each “thisness” be

‘analyzable into, equivalent with, or even identical with, purely qualitative prop-

erties or suchnesses.’ So, according to this thesis, there can be objects that are not

1The fact that absolute discernibility does not imply intrinsic discernibility, and therefore
that a “Leibnizian” SPII is a strengthening of SPII, was first pointed out by Ladyman (2007a).

59



individuals: objects that are only relatively or weakly discerned from at least one

other object. To put it as a slogan: there can be diversity without individuality.

My central examples of authors who advocate this thesis are Quine (1960, 1970,

1976) and Saunders (2003a, 2003b, 2006). Other authors who are, or who have

been, sympathetic are Robinson (2000), Ladyman (2005) and Button (2006).2

On the other hand, the third and fourth theses conflict with the Hilbert-Bernays

account, in spirit if not in letter. The third thesis is my version of Haecceitism,

introduced in Section 2.1.1. As I noted in footnote 12 of Chapter 2, the existence

of haecceities contradicts the spirit of the Hilbert-Bernays account.3 For the latter

seeks a reduction of identity to qualitative facts; whereas the haecceitist denies

that identity is in all cases reducible to qualitative facts—some pairs of objects

differ just by their non-qualitative thisnesses. I shall take my version of haecceitism

to hold that any pair of objects differ by their thisnesses, and thus are absolutely

discerned—so that every object is an individual. (This does not imply that the

discerning work is being done by properties rather than objects: recall our earlier

remarks in Section 2.1.1.) Authors who advocate this thesis include Kaplan (1975,

pp. 722-3; cf. footnote 4) and Adams (1979, p. 13). Cf. also Wittgenstein’s

Tractatus, remarks 2.013 and 4.27.4

I note en passant that the first and third theses—the strong version of PII, and

Haecceitism—are perhaps the two main traditional positions in the philosophy of

2Muller (forthcoming) offers an alternative definition of PII, in which a theory satisfies PII
iff T ` ∀x∀y (AutInd(x, y) ⊃ x = y), where ‘AutInd(x, y)’ is satisfied just in case x and y fail to
be even weakly discernible by properties and relations whose extensions are invariant under all
automorphisms (what I call symmetries). The idea is to impose a restriction on the properties
that are permitted to discern. (Note that it excludes haecceitistic properties, but fails to exclude
the use of the identity relation itself.) It is an alternative way to focus on the purely qualitative
properties and relations, other than our strategy of banning names. Therefore it is akin to my
WPII, except that Muller’s PII applies to theories rather than classes of structures.

3Agreed, my tactic of banning names, and instead using predicates Nax etc., enabled the
haecceitist to agree with the letter of the Hilbert-Bernays account.

4Remark 2.013: ‘Each thing is, as it were, in a space of possible states of affairs. This space
I can imagine empty, but I cannot imagine the thing without the space.’ I interpret this as
a commitment to the type of combinatorial independence described in paragraph 2 of Section

2.1.1. Also witness remark 4.27: ‘For n states of affairs, there are Kn =
∑n
ν=0

(
n
ν

)
[= 2n]

possibilities of existence and non-existence. Of these states of affairs any combination can exist
and the remainder not exist.’ The commitment to haecceitism may not be obvious from this
remark, but compare my discussion of a specific example in Section 3.2.1.
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identity. In terms of my usage of the term ‘individual’, they agree that all objects

are individuals. But they disagree about whether qualitative indiscernibility is

sufficient for being one and the same object (or equivalently, for them: one and

the same individual).

Finally, the fourth thesis accepts that a pair of objects can be merely relatively,

or merely weakly, discerned—but goes on to deny (HB)’s leftward implication.

That is, it denies that indiscernibles must be identical: there are pairs of objects

that are utterly indiscernible from one another. In other words: there are utter

indiscernibles. But unlike Haecceitism, this thesis does not permit non-qualitative

properties which could absolutely discern qualitatively indiscernible objects; so

not all objects are individuals. So unlike Haecceitism, this thesis is a denial of

the Hilbert-Bernays account in letter as well as in spirit. Here my ban on names

comes in particularly useful: according to the thesis under discussion, ‘x = y’ is

a legitimate primitive formula of the language, representing a particular relation

(namely identity); but ‘x = a’, which I demand be written as ‘∀y(Nay ≡ y = x)’,

is illegitimate: it represents no property at all, since there are no haecceitistic

properties.5

So far as I can tell, this fourth thesis has only recently been formulated, in

part in response to Saunders’ advocacy of WPII. Ladyman (2007a, p. 37) calls

this thesis ‘contextual ungrounded identity’. But I will label it QII, standing for

‘Qualitative Individuality with Indiscernibles’; (so here, the ‘II’ does not stand for

‘identity of indiscernibles’ !). Other formulations, close or identical to my QII, are

in: Esfeld (2004), Pooley (2006, ms.), Esfeld and Lam (2006), Ketland (2006),

Ladyman (2007a) and Leitgeb & Ladyman (2008).6 So this fourth thesis, QII, is:

5In Robinson’s (2000, pp. 163, 173) terminology, the appropriate language for a proponent
of QII is suitable, since it vetoes thisness predicates, but not extra-suitable, since it takes the
equality symbol as a primitive.

6I also think the quasi-set theory developed by Krause and co-authors (e.g. Krause (1992),
Dalla Chiara, Giuntini & Krause (1998), French & Krause (2006, Ch. 7), Krause and French
(2007) and da Costa & Krause (2007)) is a kindred position: ‘kindred’ since it allows objects to
be permuted without engendering any change (it is therefore apt to describe it as a theory of
non-individuals); but only kindred, i.e. not the same position, since it vetoes talking of identity
as a relation among such objects, i.e. ‘x = y’ is not a wff if x and y are taken to range over
so-called “m-atoms”.
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(i) like haecceitism, and unlike the two versions of PII, in that it disagrees

with the Hilbert-Bernays account (and also it denies any other reduction of

identity to qualitative facts); but also

(ii) like the weak version of PII, and unlike both the strong version and Haec-

ceitism, in that it allows there to be objects that are not individuals.

Note that while (i) corresponds to pairing the first two theses, in contrast to the

last two (as I announced at the start of this Section), (ii) corresponds to pairing

the first and third theses (both demand individuals, in our sense), in contrast to

the second and fourth theses (which both allow non-individuals, in my sense).

In my opinion, these two ways of pairing the theses are equally natural. Thus

we can consider the four theses as illustrating the four possible combinations of

answers to two equally natural Yes-No questions. Namely, the questions:

(a) Is indiscernibility sufficient for identity? (Or equivalently, the contrapositive:

is diversity (non-identity) sufficient for discernibility? Here ‘discernibility’ is

to mean ‘qualitative discernibility’, i.e. it excludes appeal to haecceities.)

(b) Is every object an individual (in our sense of being absolutely discerned from

every other object)?

Thus the four metaphysical theses can be placed in Table 3.1.

Is qualitative indiscernibility sufficient for identity?

Yes No

Is every object Yes SPII Haecceitism

an individual? No WPII QII

Table 3.1: Two questions and four metaphysical theses.

To sum up, here is the official statement of the four rival metaphysical theses.
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SPII : The Strong Principle of the Identity of Indiscernibles

Any two objects are absolutely discernible, in Section 2.3.2’s sense, by qual-

itative properties or relations. Therefore every object is an individual. The

possibility of objects discernible merely relatively or merely weakly is denied.

WPII : The Weak Principle of the Identity of Indiscernibles

Any two objects are discernible, through some 1- or 2-place formula involving

only qualitative properties and relations, according to the Hilbert-Bernays

axiom. The gap between discernibility and absolute discernibility allows for

objects which are non-individuals; such objects are either merely relatively

or merely weakly discernible.

Haecceitism :

Any object a has a haecceity Nax, a property with no other instances. (But

we construe each of these properties “thinly”: specifically, as identical with

the property expressed by ‘x = a’.) This means that the diversity of objects

is primitive in the sense that two objects need not be at all qualitatively

discernible. And every object is an individual. Individuality is also primi-

tive in the sense that an object’s absolute discernibility from all others may

rely solely on the haecceities, and need not involve qualitative properties or

relations.

QII : Qualitative Individuality with Indiscernibles

The diversity of objects is primitive in the sense that two objects can be

qualitatively utterly indiscernible. Individuality, by contrast, is not primi-

tive: each object’s individuality requires absolute discernment from all others

by purely qualitative properties or relations. The gap between diversity and

individuality allows non-individual objects. So a non-individual is either

merely relatively discernible, or merely weakly discernible, or else utterly

indiscernible, from at least one other object.

Finally, I emphasise that the four theses are not the only occupants of their

respective quadrants of logical space, as carved out by the two questions in the

Table. Examples are as follows.
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1. We saw already in Section 2.1 that there are different versions of haecceitism:

how thickly should haecceities be construed?

2. SPII affords another example. One can say Yes to both questions in different

ways than our SPII. One obvious way is by requiring every primitive pred-

icate of the envisaged adequate language to be 1-place.7 And my previous

discussion has shown two other less obvious ways:

(a) One could require that every object be specifiable in Quine’s (1976a)

sense (cf. the Interlude, and footnote 24, in Section 2.3.2);

(b) One could allow only those structures that have only the trivial sym-

metry, i.e. for which the identity map is the only symmetry. Corollary

2 of Theorem 1 (Section 2.4.1) means that in infinite domains this re-

quirement is weaker than all objects being individuals (i.e. my SPII).

For it is only in finite domains that they are equivalent (cf. Theorem 2

in Section 2.4.3).

3. WPII affords another example. That is: one can say Yes to ‘Is qualita-

tive indiscernibility sufficient for identity?, and No to ‘Is every object an

individual?’, other than by endorsing WPII. For one could allow relative

discernibles, but forbid structures containing mere weak discernibles.

4. Finally, QII affords another example. One can say No to both questions in

different ways than my QII: for example, by saying that only some objects

have haecceities—this again secures the No answers, that not all objects are

individuals, and that there are utter indiscernibles.

3.2 The theses’ verdicts about what is possible

I turn to illustrating exactly what structures each of our four theses permit, for

the simple case of exactly two objects a and b and one (qualitative) relation R.

7Such a language is envisaged by Saunders (2003b, p. 17) for a modern treatment of Leibniz’s
metaphysics. See also footnote 10.
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(This case will be complicated enough!) This exercise will be governed by three

main rules.

1. All the state-descriptions will have common elements which we will not show

explicitly. Specifically, every state-description contains conjuncts which con-

strain the cardinality of the domain to be two: (x 6= y ∧ ∀z(z = x ∨ z = y)),

with x and y bound by existential quantification. For WPII and SPII, the ‘=’

symbol is of course governed by the Hilbert-Bernays axiom (HB); for those

metaphysical theses, (HB) should be considered as an additional implicit

conjunct in the state-descriptions written below.

2. As usual, the haecceitist is asked to add two haecceitistic predicates, ‘Na’

and ‘Nb’, to the primitive vocabulary, one for each object, and associated

uniqueness conditions (again implicit in the state-descriptions below).

3. I characterise the structures syntactically; that is, by the logically strongest

sentences for which the structures are models. For finite structures, this

is equivalent to characterising structures up to isomorphism. So when we

“count the structures” allowed by each metaphysical thesis, we are in fact

counting the equivalence classes of mutually isomorphic structures. Some-

times I will say ‘structure’ when I mean ‘equivalence classes of structures’—

when counting it is useful only to mean the latter!

3.2.1 Haecceitism

I begin with Haecceitism, which will turn out to be the most “generous” meta-

physical position, in the sense of allowing more possibilities. The inclusion of the

haecceitistic predicates in the primitive vocabulary allows us always to discern the

two objects in any structure. Consider the state-description sentences

∃x∃y(Nax ∧Nby ∧ ±Rxx ∧ ±Rxy ∧ ±Ryx ∧ ±Ryy)

where ±Rxy designates either Rxy or its negation.8

8Here we see how our ban on names (comment 2 in Section 2.2.1) has not lost the haecceitist
any expressive power. This expression is equivalent, in a language with names, to the template
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A decision, for each of the R-formulas, whether it is asserted or denied, to-

gether with the haecceitistic uniqueness conditions, suffices to completely describe

a structure (up to isomorphism). There are 4 R-formulas, so there are 24 = 16

distinct (equivalence classes of) structures.

The structures may be partially ordered, according to which R-formulas are

asserted in their descriptions. That is: we can partially order, by ‘is a subset of’,

the power-set of the set ofR-formulas; this induces a partial order on the structures,

by associating each structure with the subset of R-formulas that are true in it. For

the Haecceitist case, this partial order produces a lattice of structures. (A lattice

is a partially ordered set, in which any two elements have a greatest lower bound,

and a least upper bound.) It is shown in Figure 3.1.

Figure 3.1: The lattice of distinct, permitted two-object structures, according to
the haecceitist.

In Figure 3.1, lines connecting structures indicate a single alteration in the

assertion/denial of an R-formula. The Figure also merits two further comments:

sentence (±Raa ∧ ±Rab ∧ ±Rba ∧ ±Rbb).
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1. It adopts an unusual convention about how to display the partial order. It

is usual to draw a lattice by putting all the elements that are immediately

greater than the least element together on a horizontal row (often called

‘rank’), above the least element; and all the elements that are immediately

greater than any of them, on a next higher rank; and so on. Figure 3.1

does not do that. Instead, I have chosen to display, using the four different

directions of the various upward lines (e.g. the four different lines emanating

from the least element), the four different truth-value flips that one can make,

so as to make more R-formulas true. (An example in tribute to Hitchcock

and Cary Grant: the direction North by North-West corresponds to affirming

the formula Rba.)

2. An assignment of a truth-value, 0 or 1, to each of the four R-formulas (a

“fourfold decision”), can be thought of as a vertex of the 4-dimensional unit

hypercube [0, 1]4 ⊂ IR4. There are 24 = 16 such vertices, and Figure 3.1 is a

parallel projection of the hypercube onto the plane of the paper.

Note how the use of haecceitistic predicates distinguishes structures that would

otherwise be equivalent. For example, the (equivalence class of) two-object struc-

tures picked out by the sentence

∃x∃y(¬Rxx ∧Rxy ∧ ¬Ryx ∧ ¬Ryy)

splits, for the haecceitist, into two equivalence classes: those specified by

∃x∃y(Nax ∧Nby ∧ ¬Rxx ∧Rxy ∧ ¬Ryx ∧ ¬Ryy)

and those specified by

∃x∃y(Nax ∧Nby ∧ ¬Rxx ∧ ¬Rxy ∧Ryx ∧ ¬Ryy) .

3.2.2 QII

The proponent of QII has no recourse to haecceitistic predicates, but still allows

the distinctness of the two objects to be primitive in the sense of allowing ut-
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ter indiscernibles. Her state-description sentences for describing the two-object

structures are

∃x∃y(x 6= y ∧ ±Rxx ∧ ±Rxy ∧ ±Ryx ∧ ±Ryy) .

The lack of any way to absolutely discern one object from the other, except by the

pattern of instantiation of R, means that the number of distinguishable structures

is less than the prima facie number, 16. Any choice of the combination of R-

formulas to assert that renders the two objects absolutely discernible is double-

counted, since we obtain an equivalent sentence by the interchange of the bound

variables x and y. Since there are two structures in which the objects are utterly

indiscernible, and two in which they are merely weakly discernible, and none in

which they are merely relatively discernible, we conclude that 16− 2− 2− 0 = 12

of our 16 prima facie allowable structures are double-counted. So there are in

fact only 2 + 2 + 12
2

= 10 distinct structures. The partially ordered set (unlike for

Haecceitism, it is not a lattice) of these structures is shown in Figure 3.2. (Note:

in accordance with our discussion, this Figure lacks names for the objects.) Thus

the effect of eliminating haecceitistic differences is to “fold over” the haecceitist’s

lattice, given in Figure 3.1, along its central vertical axis.

The result is no longer a lattice, since it is no longer the case that any two

structures have a unique join and meet. This seemingly unremarkable technical

result underlies a significant metaphysical one: namely that there is no unique

transworld identity relation. We can see this as follows. Take, for example, the

two (equivalence classes of) structures α and β that lie in the middle row of Figure

3.2. What is the supremum of these two structures, i.e. the structure in which all

the relations that hold in either of these two structure hold, and no more?

Without haecceitistic predicates, the answer depends on how else we decide

to cross-identify the objects. We cannot, as with Haecceitism, simply take the

union of ext(R) in each of the two structures (i.e. the union of two sets of ordered

pairs) to obtain a unique, new ext(R), since for QII (and WPII and SPII, below)

it is not a set of ordered pairs but an (isomorphism) equivalence class of such sets

that represents a single world—and the unions of two isomorphism equivalence
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Figure 3.2: The poset of distinct, permitted two-object structures, according to
the proponent of QII.

classes does not yield an isomorphism equivalence class. So we must employ an

alternative strategy: to form the union first, for two structures haecceitistically

conceived, and then to take equivalence classes under isomorphism. But which

pair of haecceitistically-conceived structures do we choose? Each of α and β is

an equivalence class containing two structures, so there are 2 × 2 = 4 pairs to

choose from, which, after taking equivalence classes, yields two candidates for the

supremum. They are γ and δ in Figure 3.2.

In other words: we must decide on some QII-acceptable way to cross-identify

the objects between structures. In our example, we could either take our transworld

individuals to be identified by the formulas ±Rxx, (yielding as supremum the

equivalence class δ), or by the formulas ±∃y(y 6= x & Rxy) (yielding as supremum

the equivalence class γ).

So under QII the partial order is not a lattice. But using formulas to cross-

identify objects between structures brings out four further differences from the

situation under Haecceitism: differences which will also be shared by WPII and
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SPII, below.

1. There is no uniquely salient option as to which qualitative properties and

relations ground the transworld identity relation.

2. One may need to use individuating formulas that are disjunctive in the prim-

itive vocabulary to cross-identify objects between structures whose equiva-

lence classes of properties- and relations-in-extension are disjoint. (Cf. e.g.

structures µ and ν in Figure 3.2. There are two rival candidate pairs for

trans-structural objects, and it is hard to say which cross-identification cri-

teria are most natural.)

3. Even allowing disjunctive individuating formulas, there will not always be

cross-identifying formulas, since at least one of the structures may contain

non-individuals (cf. e.g. any of the four unlabelled (i.e. leftmost) structures

in Figure 3.2 with any other in the poset). (In such a case, cross-identification

is anyway unnecessary to yield a unique supremum and infimum.)

4. Cross-identification of an object between structures by the same formula fails

to be transitive, since the formula may fail to be uniquely instantiated in ev-

ery structure. Therefore we shouldn’t, strictly speaking, speak of transworld

identity at all; and talk of counterparts à la Lewis (1986, Ch. 4) seems far

more appropriate.9

9On a related note, I thank Leon Horsten for drawing my attention to the fact, shown by
Quine (1960) and Føllesdal (1968), that the use of definite descriptions to individuate objects
in quantified modal logics leads to a collapse of modal distinctions, if we require that any two
definite descriptions which are actually co-instantiated are necessarily co-instantiated. This latter
requirement (which Quine (1960, p. 198) calls a ‘disastrous assumption’) is a last-gasp solution
to the problem of referential opacity for modal operators. I suggest an alternative, seemingly
more radical, escape: to veto as ill-formed any sentence in which modal operators are put in the
scope of a quantifier. This apparently onerous restriction means that first-order variables are
no longer rigid designators that come for free. I welcome this result: for Haecceitists this is no
restriction at all, since for transworld identification there is always the recourse to haecceitistic
predicates; and for everyone else transworld identification is provided for, if at all, by qualitative
matters.
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3.2.3 WPII

We saw that the QII proponent complains that the Haecceitist double-counts some

structures. The proponent of PII agrees with this accusation against Haecceitism,

but in turn complains that both the Haecceitist and the QII proponent “over-

count” some structures by counting them at all, i.e. by accepting them as possible—

or at least as possible two-object structures.

This equivocation between the elimination of two-object structures, and the

re-description of them as one-object structures corresponds to the two ways of

understanding the Hilbert-Bernays axiom (HB), discussed in comment 3 of Sec-

tion 2.2.1. On one hand, if we take ‘=’ as a logical constant, then we take the

specification of the cardinality of the domain as logically independent of the spec-

ification of the pattern of instantiation of the qualitative properties and relations,

and therefore as possibly in contradiction with it, taken in conjunction with (HB).

In such a case we take (HB) as eliminating these problematic structures. On the

other hand, if we take ‘=’ as defined by (HB), then we have no business fixing

the cardinality of the domain independently of the pattern of instantiation: the

problematic structures just mentioned are then construed as clumsily described

one-object structures. For definiteness, let us talk from now on of elimination

rather than re-description.

The proponent of PII has at her disposal for the specification of structures only

the state-description sentences

∃x∃y(±Rxx ∧ ±Rxy ∧ ±Ryx ∧ ±Ryy) .

But, as just discussed, the specifications obtained from these sentences are hostage

to the Hilbert-Bernays axiom (HB); consequently not all of them will describe

structures of as many as two objects. Those structures for which the PII proponent

is committed to identify the objects are excluded as genuine two-object structures.

Which structures these are depends on which version (strength) of the principle

of identity of indiscernibles (PII) is endorsed.

The most liberal PII proponent, the proponent of WPII (Weak PII), rules out

only those structures in which there are any utterly indiscernible objects. There
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Figure 3.3: The poset of distinct, permitted two-object structures, according to
the proponent of WPII.

are only two such structures in our example: viz. corresponding to all four of the

R-formulas being asserted, or all four being denied. This reduces the number of

distinct, permitted structures from QII’s ten to eight; see Figure 3.3.

3.2.4 SPII

The partially ordered set of structures permitted by WPII, Figure 3.3, is further

diminished if we endorse SPII: i.e. the strengthening of PII to eliminate structures

that contain absolute indiscernibles. Figure 3.3 has two such structures: those

in which the objects are merely weakly discernible. By eliminating these two

structures, we are left with only six distinct structures; see Figure 3.4.10 Note

that in the move from WPII to SPII, the elimination of structures cannot, as in

the move from QII to WPII, be instead understood as re-description. For, even

if we refrain from independently specifying the cardinality of the domain, a state-

description on its own may contradict the requirement that any two objects be

10Returning to the ‘Leibnizian’ proponent of SPII: if we follow Saunders’ (2003b, p. 17) idea
that the ‘Leibnizian’ requires all objects to be be intrinsically discernible, this would reduce the
number of permitted structures still further to four. These are the structures in which only one
of the two objects satisfy Rxx. I will discuss this view, which I call qualitative intrinsicalism, in
Section 3.3.
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absolutely discernible. This fact underscores the logical strength of SPII.

Figure 3.4: The poset of distinct, permitted two-object structures, according to
the proponent of SPII.

3.2.5 A glance at the classification for structures with three

objects

Finally, we glance at structures with three objects. The existence of a third object

means that we here get the “first”, i.e. most elementary, illustrations of exter-

nal discernibility in the intuitive sense that requires a third object. We also see

here the first cases of mere relative discernibility. There is no space for details; I

just report that, as in the preceding Subsections, one can count and classify the

structures according to each of their symmetries. Out of the 512 structures ac-

cepted by the Haecceitist, 420 have no non-trivial symmetries (and therefore lie in

isomorphism equivalence classes with cardinality 6), 84 have only pair-wise swaps

as non-trivial symmetries (with 3 structures per isomorphism equivalence class),

4 have only cyclic permutations as non-trivial symmetries (with 2 structures per

isomorphism equivalence class), and there are 4 totally symmetric structures (for

which isomorphism equivalence classes are singletons). 46 of the structures contain

indiscernible objects, 42 of which contain only two indiscernibles and 4 of which

contain three.
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From this information, we may compute the following totals:

Metaphysic Number of structures Breakdown of numbers

Haecceitism 512 = 420 + 42 + 42 + 4 + 2 + 2

QII 104 = 420
6

+ 42+42
3

+ 4
2

+ 2 + 2

WPII 88 = 420
6

+ 42
3

+ 4
2

+ 2

SPII 70 = 420
6

3.3 Structuralism and intrinsicalism

The four metaphysical theses just discussed have various similarities and differ-

ences, but one distinction in the logical space is of particular interest: I believe

it meshes with much of the recent logico-philosophical literature falling under

the buzz-words ‘structuralism’ and ‘structural realism’,11 and also with modern

philosophical discussions of physical theories—in particular, general relativity and

non-field-theoretic quantum mechanics.12

This distinction is about individuality (a main topic of Section 2.4): specifi-

cally, whether the individuality of an object relies on, or is associated with, quali-

tative and (typically) relational, differences to other objects; or whether instead an

object’s individuality relies on, or is always associated with, purely intrinsic differ-

ences (defined in Section 2.3.2; which may be qualitative or solely haecceitistic).

The position we wish to call structuralism holds that: either there may be objects

which are not individuals; or at least, if every object in every possible world is an

individual, then it is not in all cases due to differences which are purely intrin-

sic. So the denial of structuralism holds that every object, in every world, is an

individual due to purely intrinsic differences. We call this position (for want of a

better word) intrinsicalism.

Why are these positions philosophically salient? That is: what unites the

various, more specific views that fall under the umbrellas ‘structuralist’ or ‘intrin-

11See e.g. MacBride (2005), Button (2006), Ladyman (2005, 2007a), Leitgeb & Ladyman (2008)
and Ketland (2006, 2009).

12See e.g. Saunders (2003a, 2003b, 2006) Esfeld & Lam (2006), Pooley (2006), Ladyman
(2007a), Muller & Saunders (2008) and Muller & Seevinck (2009). Jeremy Butterfield and I
add to this discussion in Caulton & Butterfield (2011).

74



sicalist’? To this I have two answers: one historical, one philosophical. Firstly,

intrinsicalism encompasses what I believe are two central views which have dom-

inated, up until recently, philosophical debate about identity and individuality;

namely, haecceitism and a strengthening of SPII, in which all objects are taken to

possess a unique, though maybe very complex, individuating essence; (the ‘bundle

theory’ of objects being one such view: cf. Adams (1979, p. 7). On the other

hand, structuralism encompasses a variety of alternatives to intrinsicalism which

have recently been articulated.13

Secondly, a common feature of structuralist, as against intrinsicalist, views

is that they prompt a certain interpretation of, or even a revision of, traditional

formalisms in both semantics and physical theories. To end this Chapter and part,

I will briefly discuss this (Section 3.3.2). But first (Section 3.3.1), I relate these

two new positions to the four metaphysical theses of Section 3.1.

3.3.1 Relation to the four metaphysical theses

Structuralism, as I define it, includes some of our four metaphysical theses (roughly

two “and a half” of them), which may be linearly ordered on a spectrum, according

to their strictness, i.e. what they rule out. (This is already suggested by the

possible world diagrams of Section 3.2, in which we pass from haecceitism to SPII

by a successive vetoing of worlds.)

At the weak end of this spectrum we find QII, for which the numerical di-

versity of objects is accepted as primitive, just as it is by the haecceitist. QII is

structuralist both because it allows non-individuals and because it allows external

discernibility as a basis for individuality.

Along the way to the strong end of the spectrum, we find versions of structural-

ism that ground diversity, as well as individuality, in the differential instantiation

of qualitative properties and relations. In doing so, we find a commitment to the

13Hintikka & Hintikka (1983) present a similar dichotomy to our structuralism vs. intrinsical-
ism (which they call the “structural” and “referential system”, respectively), and bemoan the
bias towards intrinsicalism in the historical development of formal logic. I agree that the his-
torical dominance of intrinsicalism is unfortunate and unjustified; and note with interest their
psychological evidence (from studies with children) that the evidence may be sex-linked.
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Hilbert-Bernays account of identity; so here we find WPII. WPII is structuralist

both in allowing for non-individuals (though not indiscernible non-individuals) and

in allowing for external discernibility.

At the strong end of the spectrum, we find that our previous metaphysical

thesis, SPII, has been split. For SPII demands that every object be an individual.

This does not yet commit one to intrinsicalism: for intrinsicalism requires also that

the individuating properties be intrinsic. We may therefore distinguish between

an SPII which allows for objects individuated by merely external formulas—that

is, a structuralist SPII—and an SPII which does not allow for such objects—an

intrinsicalist SPII. To repeat the main idea: to deserve the label ‘structuralism’

(in my usage), the individuality of objects must in some cases involve their abso-

lute discernment by extrinsic, qualitative properties, not by intrinsic, qualitative

properties.14

Finally, I note that haecceitism is a form of intrinsicalism, since haecceities are

intrinsic individuating properties par excellence. Thus my taxonomy is summarised

in Figure 3.5, below.

3.3.2 The semantics of the structuralist

As we have seen, grounding individuality qualitatively has consequences for the

specification of possible states of affairs. Thus a structuralist cannot make sense

of what Lewis (1986, p. 221) called ‘haecceitistic differences’: differences to do

14I should point out that even intrinsicalist SPII has a whiff of structuralism about it. Con-
sider, for example, the three-object structure A := 〈{a, b, c}, FA, GA, HA〉, with three primitive
monadic predicates with extensions FA = {a, b}, GA = {b, c}, HA = {a, c}. This structure is
permitted under intrinsicalist SPII, the objects being individuated by the monadic predicates
F ∧G,G ∧H,F ∧H. The whiff of structuralism is obvious when we consider the combinatorial
theory of logical possibility, which takes the structure A to indicate the (logical) possibility of
other structures, some of which have a, b and c allocated to the extensions of F,G and H in ways
that do not secure their qualitative individuality—one such case is a, b, c ∈ ext(F ∧¬G∧¬H). It
should not come as a surprise that SPII (whether intrinsicalist or structuralist) restricts näıve,
combinatorially-conceived possibility, since the admissibility under SPII of affirming or denying
a given elementary proposition depends on global features of the structure description (namely,
whether certain other elementary propositions are affirmed or denied). Note that, in contrast,
QII and, perhaps, WPII do not restrict possibility in this way. For, as explained in Section 3.2.3,
QII and (given the reductionist attitude to identity) WPII may be taken as redescribing rather
than vetoing the structures permitted under unrestricted Haecceitism.
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Figure 3.5: Four metaphysical theses and two salient positions.

with which object occupies which role in the mosaic of qualitative matters of fact.

Since an object’s individuality is provided, if it all, by the role that it plays in the

structure of which it is a part, there simply is nothing else to grasp it with, that

could be used to give sense to, for example, the object swapping roles with another.

A structuralist simply does not agree with the haecceitist that a permutation of

objects “underneath” the mosaic makes any sense.

But here the structuralist runs up against an aspect of formal semantics (model

theory) which threatens to make her position hard to state. Model theory allows

without demur that an object may be individuated independently of its qualitative

role in a structure.15 Or think of Lewis’s (1986, p. 145) ‘Lagadonian’ languages, in

which objects are their own names. In philosophical terms, this trick ensures that

haecceities are always at hand to give sense to a permutation of “bare” objects

underneath the qualitative properties and relations. The same point applies in

physical theories. Permutations of the objects that the theory treats (e.g. particles

15This point is often emphasised in the philosophy of modality; a good early example is Kaplan
(1966).
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in classical mechanics or quantum mechanics) can be implemented on the theory’s

state space (e.g. a classical phase space, or quantum Hilbert space, for several

particles); and typically, a state is changed by such a permutation, i.e. its image

is a different state, even if the mosaic of qualitative properties and relations is

unchanged.

In response, the structuralist can adopt either of two approaches, which I now

briefly describe; (more details are in Caulton & Butterfield (2011)). The first

involves a certain interpretation of the usual formalism (of the formal semantics

or physical theory in question). The second involves revising the formalism.

First, the structuralist can accommodate the orthodox practice in model the-

ory and physical theory—that permutations of “bare” objects make sense—by an

interpretative move. That is, she can admit that such permutations typically in-

duce a different formal representation of a state of affairs: a different model in

the sense of model theory, or a different state in the physical theory’s state-space.

But she then expresses her position by saying that such a permutation does not

produce a representation of a distinct state of affairs.

On this view, it is misleading to say that model-theoretic structures, or states in

the state-space, represent possible states of affairs; for the representation relation is

not one-to-one, but many-to-one. Rather, a single state of affairs is represented by

the equivalence class of mutually isomorphic structures (states), the isomorphism

being given by a permutation of the ‘bare’ objects in the structure’s domain (a

permutation of the physical theory’s objects, e.g. particles). This ascent from

structures to equivalence classes suits a theory which seems “not to care” how

its objects are arranged under the mosaic of properties and relations, so long as

the same qualitative pattern is instantiated; such theories support a structuralist

intepretation.

The second approach proposes to keep the original structuralist prohibition

against permutations making sense, by revising the formalism. The idea is to

replace each equivalence class of isomorphic representations by a less structured

item, so that permutations do not make even a formal difference, or else can-

not be made sense of. It is well established, for both model theory and physical

theories. (See Belot (2001, p. 59) for a philosophical introduction.) Thus in ele-
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mentary model theory, it is straightforward to show that if we quotient a structure

by the indiscernibility relation, then: (i) the resulting structure is elementarily

equivalent to the given one; and (ii) in it, identity is first-order definable, namely

by indiscernibility—i.e. the leftward implication of (HB) holds (Ketland (2009,

Theorems 18, 20)). In physical theories (both classical and quantum), one consid-

ers the quotient of the state space (often called a reduced state-space) by various

equivalence relations (often going by the name ‘gauge-equivalence’)—not just by

isomorphisms induced by permutations of the underlying objects (particles). For

more details, from a philosophical perspective, cf. e.g. Belot (2003, especially §5)

and Butterfield (2006a, §§2.3, 7).

To close, I shall only note the situation for quantum mechanics, with isomor-

phisms induced by permutations of the underlying quantum particles. Here also

one can quotient: in effect, particles of the various possible symmetry types (in-

cluding paraparticles) can be represented in a “reduced Hilbert space” (in general,

of lower dimension than the original, “näıve” one) in which each particle permuta-

tion is represented either trivially or not at all. (We develop this topic in Caulton

& Butterfield (2011).) Here I note only that this second approach (unlike quasi-

set theory, cf. footnote 6) retains the orthodox ideas and methods of model theory

and classical logic, merely limiting their application to the favoured, i.e. quotient,

structures or states.

This concludes my purely logical and metaphysical study of identity and dis-

cernibility. I now turn to quantum mechanics and its interpretation. The concepts

and results forged in the foregoing two Chapters will be implemented in the follow-

ing Chapters to answer the question: What, in quantum mechanics, are particles?

But before I tackle that question specifically (in Part III), I need first (in Part

II) to lay down a philosophical framework which will make explicit what I take

questions of this sort to be asking, and how best to answer them.
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Part II

Representing particles
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Chapter 4

Concepts and representation

In this Chapter, I discuss philosophical preliminaries about the nature of our en-

quiry (Section 4.1) and the contrast between the mathematical and physical realms,

and how one represents the other (Section 4.2). This discussion was not necessary

for Part I, since those results may be taken as applicable for both mathemati-

cal and physical ontologies. However, for the purposes of interpreting a physical

theory, it is crucial to distinguish between one’s mathematical ontology and one’s

physical ontology. For, as I will argue, interpretation involves settling upon the

right relation between the two.

4.1 Concepts: analysis, explication and reform

In analytic philosophy, there is a strong tradition of conceptual enquiry; and there-

fore also, considerable debate about what such enquiry should involve and could

achieve. I will briefly locate our project in relation to this tradition and debate.

I will sketch three views of conceptual enquiry. I will soon say more about

what I take a concept to be, but as a first approximation we can take a concept

to be a division, i.e. a binary distinction, among some relevant domain of objects:

it gathers a subset of the domain as being similar to each other in some respect.

I briefly discuss the first two views (Section 4.1.1); but I will emphasize the third

view, due to Haslanger (2006), which I endorse (Section 4.1.2).
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4.1.1 The Moorean and Carnapian views

The first view of conceptual enquiry is the most traditional. It is often called

‘conceptual analysis’, but I will call it Moorean, after G.E. Moore. (But there

are countless recent distinguished practitioners e.g. Chisholm; and on reading

middle-period Plato, one might equally call it ‘Socratic’ !) One takes a concept

which seems to be central to our thought and language, and-or philosophically

important, and-or problematic: e.g. causation, perception, freedom, or duty. One

then endeavours, by considering the way the concept is used (especially how it is

expressed in our language), to give an definition of the concept (or term). The

definition is to be true to how the concept or term is in fact used. So it is an

analytic proposition in the usual (admittedly rough) sense of being true ‘in virtue

of the meanings of words’; and in particular, it must face no counter-examples.

It is also meant to reveal the connections between the concept or word and other

related ones: and to thereby give us a clearer view of how a whole group of our

concepts work, and of the sector of reality we use them to describe.

Of course, this view has several variants. For example, there is the view that

careful attention to the minutiae of linguistic usage can be revealing (a view pop-

ular in Oxford in the 1950s and ‘60s; cf. in particular Austin (1961)); or that

the philosophical problem is not ignorance of an analytic proposition or proposi-

tions, which is to be overcome by formulating definition(s) which face no counter-

examples, but is rather a sort of ‘intellectual headache’, which will be ‘cured’ by

carefully surveying the uses—and not by trying to formulate a general definition,

nor any other sort of general doctrine (a view associated with Wittgenstein (1953)).

But these variants share two main ideas, which I take as characteristic of the

Moorean view. Namely:

(i) Conceptual analysis is an ‘armchair’ i.e. non-empirical activity, closely tied

to the examination of language, and ‘intuitions’ about what we would say in

various imagined scenarios.

(ii) Conceptual analysis is descriptive, not reformative. It ‘leaves everything as

it is’, i.e. it reports how we use our words and concepts (either aiming to
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give, or ducking out of, generalizations, according to the variant), and does

not try to reform our use, not even to the extent of regimenting it.

The second view of conceptual enquiry, I call Carnapian, after Carnap (e.g. 1950).

Carnap rejects both of (i) and (ii), above. To take (ii) first: he is willing to reform

usage, for the sake of a better, in particular more precise, doctrine. To signal

this difference, he says he aims to give an explication, not analysis, of the concept

in question. And ‘explication’ harbours a systematizing ambition: he aims, not

so much for a single concept’s explication, or a handful of them, as for a theory,

tying together several philosophically central or problematic concepts. (The main

example in his own work was his theory of probability.)

As to (i): Carnap’s explication projects are to find the best language to fit a

particular scientific purpose. Sometimes (but not always), that means we must

look to our best scientific theories for guidance in finding superior replacements

for our old concepts. Nevertheless, the received concept—the concept in need of

explication—is conceived as available to armchair reflection.

The Moorean and Carnapian views have had a large influence. One obvious

case is ‘Canberra Plan metaphysics’ (cf. e.g. Braddon-Mitchell and Nola (2009))

and its inspiration, the writings of David Lewis: for example in his analytical

functionalism about mind (with its appeal to the ‘platitudes of folk psychology’;

cf. e.g. Lewis (1966)), and his analysis of causation (e.g. Lewis (1973)). I will also

be close to the general Carnapian idea, when endorsing the third view of conceptual

enquiry, viz. Haslanger’s; cf. Section 4.1.2. But I should first here register that

both Moore’s and Carnap’s ideas can be, and have been, doubted and denied.

In the first place, one can doubt the quality of the evidence supplied by intu-

itions about what we would say. Do academic philosophers’ intuitions match what

would in fact be said by people in the street, i.e. by the ‘folk’ whose concepts the

philosopher has set herself to analyse or explicate? Besides, the recent ‘experimen-

tal philosophy’ movement (Knobe and Nichols (2008) provide a recent collection

of work) has gathered a lot of evidence that what people say is so various as to

cast doubt on the existence of a communal, or common-sense, conceptual scheme

that could be articulated, even if questionairres supplement armchair reflection.
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In particular, what people say about some imagined scenario is often very sen-

sitive to exactly how the scenario is described, or how the question about it is

asked to them, or even their mood, or the topic of their preceding conversation.

Such sensitivity, and consequent variety, certainly suggests there is no stable body

of shared opinions or ‘intuitions’ of the type that philosophers in the Moorean

tradition usually invoke in support of their analyses.1,2

On the other hand, these considerations may be thought to be all grist to the

Carnapian mill: Carnap agrees that our received concepts are untrustworthy or

unsuited to scientific ends (Demopoulos (2007))—this is why we must engage in

projects of explication, with an eye on our scientific theories. However, explication

is philosophical, as opposed to scientific, work, and requires a great deal of recon-

struction of science as we find it. It may be argued that this process of ‘rational

reconstruction’ relies as much on intuitive judgements as the Moorean projects.

But I will not here try to answer these doubts or denials, even for our restricted

topic, the concept of a particle in quantum mechanics. I in fact think that, for

our topic at least, Haslanger’s view—her methodology of conceptual enquiry—is

sound; and that an empirical enquiry into how ‘particle’ and cognate or similar

words are used by quantum physicists would vindicate what I argue in Chapter

5 and later. I admit that these claims need to be defended. But I will not take

space in this Chapter to do so: sufficient unto the day is the work thereof!

4.1.2 Haslanger’s scheme

Haslanger’s view (2006) is a variant of the Carnapian view. Like Carnap, she

accepts that one can, even should, reform concepts and doctrines (rejecting (ii)

above); and, also like Carnap, she agrees that reform must pay attention to exter-

1Ladyman and Ross (2007, pp. 10-15) also argue against the unbridled use of intuition in
metaphysics, both on the grounds mentioned above, and because it fails to pay heed to the
deliverances of modern science.

2One might also cast doubt on the armchair conception of philosophical enquiry, by showing
it to be a contingent historical development. Thus Kusch (1995) describes how in Germany in
the period 1870-1930, the fact that psychology grew apart from philosophy, defining itself as an
experimental subject needing funding for laboratories etc. prodded philosophy into adopting a
contrasting self-definition, i.e. as armchair enquiry.
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nal, even empirical, matters (rejecting (i) above). But she develops this idea by

distinguishing not just two concepts, the received concept (Carnap’s explicandum)

and a proposed improvement (Carnap’s explicatum): but instead, three concepts.

(i): A trichotomy: Her trichotomy is based on considerations in philosophy of

language, about how a speaker, or a whole linguistic community, can be mistaken,

even self-deceiving, about what concept they operate with. In speaking, they may

avow that they use a certain concept; while the rest of their behaviour suggests, or

even shows, that they in fact operate with another concept. Often, and especially

in cases of self-deception, this other behaviour is the person’s actions: as the old

adage has it, actions speak louder than words. So we need to distinguish the avowed

concept (Haslanger calls it the ‘manifest’ concept) from the operative concept—

even before raising the question of improving on one or both of them. The proposed

replacement concept—a close cousin of Carnap’s explicatum—is what Haslanger

calls the target concept. This, then, is her trio of notions. And for her, the aim of

conceptual reform is always to bring both the avowed and operative concepts into

coincidence with the target concept.

However, I think that her distinction between the avowed and operative con-

cepts is not controversial. Many authors use some such distinction; though of

course they use different labels. Two examples from the (voluminous) literature in

philosophy of mind, on self-deception (so now setting aside morality and politics)

are Mellor (1977) and Dennett (1981, Chapter 16). Both take belief to be shown

primarily by how one acts (corresponding to Haslanger’s notion of the operative

concept, and to ‘actions speak louder than words’); while what one says reflects

what one believes that one believes (corresponding to Haslanger’s notion of the

avowed concept).

On the other hand, in expounding the details of Haslanger’s scheme, and in

applying it in Chapter 5 and beyond to the concept of particle, it will help to keep

in mind an uncontroversial scientific example of her trichotomy in action: that is,

an example of conceptual reform, or transition to a target concept, being prompted

by a perceived disparity between the avowed and operative concepts. (Haslanger’s

interest is in the reform of morally and politically charged concepts, such as ‘race’

and ‘parent’.) I take as my example (from many that could be chosen) the scrutiny
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of, and changes in, the concept of chemical element, that arose from the discovery

of isotopes.

(ii): An example: chemical elements: Thus the existence of isotopes entails that

defining elements (or just individuating them) in terms of their atomic weight will

yield a different classification scheme—a different periodic table—from defining

them in terms of their atomic number. The historical summary (at the risk of

gross over-simplification!) is that:

(a) before isotopes—or, indeed, electrons and protons—were discovered, the ba-

sic property guiding the (various) classifications of the elements was, due to

Mendeleev, atomic weight (Scerri and Worrall (2001, pp. 438-9)); but

(b) since chemical behaviour is correlated with the electronic configuration, and

therefore also with atomic number, rather than atomic weight (and chemists

of course focus on chemical behaviour), the discovery of isotopes prompted

chemists (after Moseley) to define elements in terms of atomic number (Scerri

and Worrall (2001, p. 439)).

So using Haslanger’s labels, we can say:

(a′) Before the discovery, the avowed concept of element tied it to atomic weight,

while the operative concept tied it to atomic number, and so to chemical

behaviour—or perhaps, tied it to some vague combination of weight and

number, and perhaps other properties.

(b′) Given the strict association of atomic number with chemical behaviour, the

target concept of element was tied to atomic number alone.

(c′) After the discovery of isotopes, chemists recognized the disparity in (a′) and

the truth of (b′); so they self-consciously adopted atomic number as their

new avowed and operative concepts, so that all three now coincided.

(iii): Subjective or objective?: The contrasting examples of race or parent

(which are Haslanger’s), and chemical element, raise another broad issue: whether

a concept—equivalently: the distinction it draws in its domain of objects, or the
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similarity it encodes—is subjective or objective. I deliberately choose these vague

words, since I will not need to choose between the various possible precise mean-

ings. Broadly speaking, ‘subjective’ means: relative to, or causally influenced by,

any of various, individual or collective, biological or historical or socio-cultural fac-

tors. So ‘objective’ means, broadly, not being thus relative or causally influenced.

But these glosses leave plenty of scope for debate about the details. For ex-

ample, suppose we say a concept is objective: the concept ‘carves nature at the

joints’, as the saying goes. Is that to mean that the concept is independent of the

theory in which concept is embedded? Or even independent of broader or more

general topics: such as (a) theories that are kindred to the given one, and (b)

the constitution of the human mind or community that formulated the theory?

And the same questions can of course be asked about the domain of objects, in

which our concept draws a distinction: how independent, if at all, is the domain’s

definition from the given theory, or from the broader topic of the enquiring human

mind or community?

I will (fortunately!) not need to decide these questions; though I would endorse

the common-sense view that the concepts of race and parent are ‘more subjective’

than that of chemical element or our concern, that of particle.3 But I need to raise

them since they of course bear on the idea of conceptual reform, and especially

that of the target concept. For the idea is that a concept different from (but no

doubt kindred to) both the avowed and operative concepts is more appropriate or

successful than they are for articulating the division/distinction/similarity at issue

in the relevant domain of objects. Often, especially in scientific or uncontroversial

contexts, the suggestion will be that the target concept is “more objective”, or

more objective in some desired regard, than the avowed or operative concepts.

But we need not always think of conceptual reform in this objectivist way. In

particular, if one thinks it too objectivist to think of a concept as encoding a di-

vision/distinction/similarity, one might express conceptual reform as: the target

3Selections from a vast literature include, from philosophy of science, Jardine (1986), and
Hacking (1999, Chapter 3); and from metaphysics, Lewis (1983) and Taylor (1993). For example:
Lewis advocates a very strongly objective conception of similarity that is independent of theory,
mind, society and indeed all contingency; Taylor replies that one can enjoy most of the benefits of
Lewis’ conception with a much less daring, in particular theory-relative, conception of similarity.
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concept being more appropriate or successful for the goals associated with the use

of the term. In any case, whether or not we think of conceptual reform objectivisti-

cally: adopting the target concept is meant to be an improvement. Thus Haslanger

calls the project of determining the target concept ameloriative (Haslanger (2006,

pp. 95-97)).

(iv): Norms: Mention of improvement raises the topic of normativity, i.e. the

involvement of norms in determining the target concept. (Of course, such norms

might not be subjective: only a strong, and probably false, subjectivism would

say that they must be. So this topic cuts across the topic of subjectivity vs.

objectivity.) I admit that there are such norms, but what these norms are will

vary from one case to another—so I do not try to spell them out, except to make

explicit two general considerations.

The first consideration is that the target concept should be in some sense

‘natural’. It is hard to pin down this requirement in general terms,4 since natu-

ralness need not be a simple matter of “carving nature at the joints”; nor need it

be a simple matter of suiting a particular anthropocentric end (Haslanger (2006,

p. 109-11)); cf. also comment (iii), above. However, I can be more specific for the

case of interpreting a physical theory. For a theory’s formalism comes with its

own standard of naturalness. The idea is to rule out gruesome interpretations of

the theory’s formalism, and ad hoc physical posits whose only role is to support

over-stretched interpretations.5

The second consideration is that the target concept is subject to the usual

canons of interpreting linguistic agents; particularly some form of the principle of

charity (Davidson (1970)). So we ought not to interpret uses of the operative con-

cept as too grossly in error, when compared with the proposed target concept. (If

particles turned out to be the sorts of things that never existed in laboratories, for

example, then that would make nonsense of a lot of what experimental physicists

say!) Of course, what counts as error, and to what degree error is to be tolerated,

4Belnap (1993, p. 117) offers the phrase, attributed to Alan Ross Anderson, that an explication
of a word, or its associated target concept, is “‘a good thing to mean” by the word’.

5This claim is intended to be neutral between Lewis’s (1983) dyed-in-the-wool realist commit-
ment to natural properties and relations, and Taylor’s (1993) more humble ‘T -cosy’ properties.
Cf. footnote 3.
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are questions best answered only in a specific context. However, I note here that:

(i) considerations of naturalness and interpretative charity may well come into

conflict; and (ii) the idea that moving to the target concept is an improvement

(ameloriative, in Haslanger’s jargon) depends on some significant degree of error

being tolerable, for otherwise we could hope to learn nothing from such a project.

I also stress that it is not only for the target concept that normativity enters. It

also enters in the determination of the operative concept. For the operative concept

has a good claim to be the current linguistic meaning of the term concerned; and

this also involves norms of interpretation, such as the principle of charity. Indeed,

here charity must be applied rather more stringently than in the case of the target

concept.

(v): A unique correct conceptual reform? No!: I will not claim to prove my

view, i.e. to show to all that emergentism, our third target concept, is the best

particle concept for the quantum mechanics of indistinguishable systems. Here,

there is both a general point, and a specific one. The general point is that most

philosophers, in particular analytic metaphysicians, agree that ontology is contro-

versial, since the criteria for assessing proposals—and therefore what counts as

relevant evidence—are not universally agreed.6 Undoubtedly there are cases—let

us call them the good cases—in which it is uncontroversial which concept is most

apt to explicate an old one. (The identification of genes, the unit of inheritance,

with more or less vaguely defined segments of a DNA strand may count as a good

case, as does my example of ‘element’, above.) There are also cases—let us call

them the bad cases—in which the general consensus is that the old concept is

better left buried, because there is no target concept to go to. (Here surely belong

phlogiston and the élan vital.) In between we have the hard cases, in which it

can only be a matter of stipulation whether we take the received concept to be

explicated or eliminated. (Perhap’s Lewis’s (1995) account of qualia falls into this

category.) The majority of cases in science may well be hard.

The specific point is that, as we will see in Chapters 8 and 9, even for our

circumscribed topic, viz. how quantum mechanics treats indistinguishable systems,

6Discussions include Sider (2001, Introduction) on the ontology of how objects persist through
time; and Oliver (1996) on the ontology of properties and relations.

89



there are no clear winners: ours is one of the hard cases. So in fact there are several

rival ontological pictures with various merits and de-merits, and it is a matter of

judgment how to weigh them. But my judgment will be that emergentism is best.

Nor do I claim that there is, or should be, some single best meaning for the

word ‘particle’: I allow that like many other physical concepts, e.g. least action

and entropy, the concept of particle is a bit vague and flexible—and should no

doubt be kept like that, both for convenience and for heuristic purposes.7

(vi): Neologisms: Finally, I should mention the topic of linguistic reform, i.e.

whether we should mint a new word for a new target concept. Note first that

projects of conceptual reform of course vary in many ways: for example, in how

much the avowed and operative concepts diverge from the target concept; and

in how unique is the target concept. Such considerations influence the decision

whether to preserve the original term, or to make a clean break by introducing a

new term. Good cases surely prompt the retention of the old vocabulary, while

bad cases prompt linguistic reform. In hard cases, Haslanger distinguishes between

what she calls ‘constructivists’, who favour retaining the old term, and ‘elimina-

tivists’ (also called: ‘error theorists’) who favour replacing it with a new term.

As to our own topic, the concept of a particle: I have announced that I will ar-

gue that nothing in quantum mechanics satisfies all the desiderata. In Haslanger’s

jargon, nothing satisfies all the strands of the avowed, or indeed operative, con-

cept. So any target concept must be substantially different from the avowed or

operative one: and the next Chapters are devoted to hunting for the best such

target concept. I will be a constructivist, not an eliminativist, about the term

‘particle’—that is, I will preserve the term for the modified concept (Haslanger

(2006, pp. 90-1). Indeed, even if we thought it best to change to a different term,

we would have to admit that ‘particle’ is so entrenched that it would be a mug’s

game to try and abolish it: witness the way that neologisms like ‘wavicle’ that

were invented so as to convey the un-particle-like, and even weird, behaviour of

7And I will accept that the jargon that ties ‘particle’ or ‘quantum particle’ to the factor
Hilbert spaces, and their labels, is so entrenched as to be unchangeable. I do not expect the
reader, even if convinced by this work, to never again say ‘particle’ or similar for the physical
correlate of a label of a factor Hilbert space: I admit that I often do this myself!
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so-called quantum particles, have never caught on.8

4.2 Physics, mathematics and language

In this Section, I make some specific comments about my conception of a physical

theory and its interpretation. This will clarify how I intend to apply the idea of

conceptual reform to the specific case of ‘particle’ in quantum mechanics. First

(Section 4.2.1), I separate a theory’s representational apparatus (mathematics)

from its ultimate subject matter (physics). Then (Section 4.2.2) I borrow—and

specialise—some important notions from intensional semantics to clarify my terms,

particularly ‘concept’. Then I turn (Section 4.2.3) to the representation relation

between a theory’s mathematical formalism and (putatively) physical entities, and

conclude with some brief remarks about physical properties (Section 4.2.4).

4.2.1 Two realms: the physical and the mathematical

One of my central claims below will be that a certain element of mathematical

formalism (a factor Hilbert space label, or, more properly, the position of a factor

Hilbert space in a tensor product) does not represent what it is ordinarily taken

to represent. I will also make some positive suggestions as to what pieces of math-

ematics represent what pieces of the physical world. To frame this discussion, I

need first to make some orienting and clarifying—but hopefully uncontroversial—

remarks about representation, and the realms that lie either side of the represen-

8In apolitical contexts (such as my project here), it is hard to disagree with Carnap that
the choice between constructivism and eliminativism can only be a convention; though in more
suasive/political contexts, other considerations may come into play, such as the desire to preserve
a way of speaking. In this connection, Haslanger argues that constructivism is often preferable
to eliminativism, since it allows us to give breathing space to “framework concepts” (roughly:
concepts whose employment is endemic and central), whereas elimination requires a “wholesale
adoption of a new conceptual scheme” (Haslanger (2006, p. 115)). But I reply that there can be
no substantive difference here: on both approaches one is adopting a new conceptual scheme; the
question is simply whether we make that plain by the adoption of new vocabulary, or whether
we engineer the appearance of continuity by preserving the old vocabulary. There may indeed
be political or suasive reasons to favour one approach over another, but semantic matters would
be the same no matter which approach is taken.
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tation relation: the physical and the mathematical.

I begin by endorsing the principle that, as Lewis (1992, p. 218), borrowing from

Bigelow (1988, pp. 132-133, 158-159), puts it, ‘truth supervenes on being’: or, as

Dummett (1991, p. 328) says, ‘The principle that, if a statement is true, there

must be something in virtue of which it is true, is a regulative principle that can

hardly be gainsaid.’ But I also maintain that this principle is not a substantive

metaphysical commitment, for example to truthmakers. Rather, I see it, like

Dummett, as a piece of philosophical methodological commitment, a ‘regulative

principle’ that is a precondition for the discussion of substantive claims, not itself

one of those claims.

The principle allows us to define a realm linguistically, i.e. as the subject matter

of a particular sphere of discourse. I assume that our linguistic practice may

usefully be divided into spheres of discourse. Then a realm is the minimal collection

of objects, properties, and whatever else, whose configurations suffice to determine

the truth or falsity—if anything does—of the sentences belonging to a single sphere

of discourse.9

Thus the physical realm determines the truth or falsity (if anything does) of

the sentences of a physical theory. It may contain quarks, electromagnetic fields

and quasars; it may also contain polymers, people, and beautiful symphonies;

it almost certainly contains Stern-Gerlach apparatuses, laboratory benches, and

bubble chambers. It may even contain (as advocated by Lewis 1986) possible

(i.e. non-actual) quarks, people and bubble chambers.

Similarly, the mathematical realm determines the truth or falsity (if anything

does) of the sentences of mathematics. It contains integers, topological spaces,

groups, sets and categories. Agreed, this list may double-count: for example,

perhaps the mathematical realm contains only sets or only categories. But that is

not a question I will need to address.10

9For a detailed account along this line, see Lewis (1988).
10Nor will I address the precise nature of the determination, by ontology, of truth or falsity.

In the case of physics, the prospects are still good that supervenience can do the job. However,
in the case of mathematics (along with many other spheres of discourse, such as ethics and
aesthetics), supervenience notoriously appears useless.
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I also make no commitment to realms being distinct, or to their overlapping or

not overlapping. On the contrary, it seems, for example, that physical discourse

shades off gradually and vaguely into discourse about everyday objects. In that

case the physical realm and the realm of everyday objects will no doubt overlap;

and they may well coincide. (As various authors, e.g. Healey (1978) and Ladyman

& Ross (2007, p. 44), point out, physics is essentially “imperialist”, since it is about

whatever anything is made of, or at least anything concrete.) Similarly, I am not

committed to the physical and mathematical realms being distinct. For all I know,

the mathematical realm may be physical, as would be the case if some version of

nominalist structuralism were true (e.g. Field (1980), though the term ‘nominalist

structuralism’ is Horsten’s (2007)). Or the physical realm may be mathematical,

as would be the case if ‘Blanket Pythagoreanism (Quine (1969, p. 59)) were true.

What is important for us is the role that mathematical and physical entities

play: specifically, the fact that mathematics is used to represent physical facts and

possibilities—perhaps indispensably. A popular, and tempting, image is of math-

ematical structures as being something like abstract ready-mades, to be plucked

off the Platonic shelf according to their suitability as representative surrogates for

the patterns in the concrete, physical world. This image makes a lot of commit-

ments that I wish to shirk, but two less controversial features of it that should be

preserved in understanding my project here are:

(i) the role of mathematical entities as representations (and the physical entities

as represented); and

(ii) the stipulative nature of the way that mathematical elements are picked out

or developed so as to serve those representational ends.

4.2.2 Language

One sphere of discourse that I have so far left out, but which is fundamental to my

project, is language itself. There are items that we (probably) only need to refer

to for the study of language, or allied topics such as theories of meaning. These

include linguistic items (such as words and sentences) and meanings; possibly also
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things like universals and possible worlds. But the subject matter of language also

includes everything else that can be talked, written, perhaps even thought, about.

For all these things are necessary to determine the truth or falsity of all sentences

about language and meaning. So the linguistic realm includes everything.

Let me be more specific about what a language is. I mean, roughly, the vari-

ous systems of linguistic expressions—also called ‘syntactic types’ or ‘signs’—and

the various rules for their concatenation. Words, terms, phrases and sentences—

conceived as types not tokens—are all signs. For examples, the numeral ‘2’ is a

sign, which refers to the number 2 (as it has just done!), and the noun-phrase

‘the numeral “2”’ is also a sign, which itself refers (in English) to a sign, viz. the

numeral ‘2’. Signs are syntactic types in the sense that the numeral ‘2’ is a sin-

gle, repeatable object—normally taken to be abstract—of which the preceding

instances (e.g. the very ink marks on the paper you are holding, or the collections

of coloured pixels on the screen you are looking at) are repeated tokens.

This notion of language is entirely syntactic: a specification of a language in

my sense does not include a specification of the referents or meanings of the signs

taken to be meaningful; i.e. it does not include an interpretation. Interpretations

ascribe to each sign of the language an item which codifies its contribution to the

truth-conditions of the sentences in which it occurs. Following Carnap (1956) and

Lewis (1970a), I call these items intensions.11 Interpretations will also ascribe,

to a privileged class of signs—notably, sentences and noun phrases—an extension.

Extensions constitute the existential commitments of the sentences of a language.

Intensions, being functions, are undoubtedly mathematical items, but I remain

agnostic about the ontology of possible worlds—i.e. about whether they are non-

actual, concrete things or actual, abstract things—and therefore I am agnostic

about what these mathematical items are made from. Extensions may be physical,

or mathematical; and, if there is anything else, then extensions may be those things

11In the (degenerate) case of a sentence, the intension codifies its own truth-conditions, and
may therefore be identified with a function from indices (each a specification of a possible world
and a context of utterance) to truth-values. A sentence’s extension is its truth-value; so, its
intension is a function from indices to possible extensions. This general scheme is repeated for
noun-phrases, whose extensions are objects, and whose intensions are therefore functions from
indices to possible objects. For a sketch of this type of semantics, see Carnap (1956) and Lewis
(1970a).
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too.

Intensions are a suitable precisification of what I mean by concept. Thus, when

I talk about the concept of particle throughout this paper, I can be taken to be

talking about some candidate intension (or some class of candidate intensions) for

the term ‘particle’. Purists may hesitate to identify concepts with intensions, tak-

ing them to belong to essentially separate ontological categories. But no matter:

my use of the term ‘concept’ is as adequately explained by the one-to-one asso-

ciation of intensions with concepts. I admit that the identification has only the

practical value of tidiness; so I can remain equivocal on the matter.

4.2.3 Representation

In Section 4.2.1, I separated (if only functionally) the mathematical and the phys-

ical realms by putting each at one side of a representation relation. Thus math-

ematical items represent physical items, or the circumstances of physical items:

mathematical quantities represent physical quantities; equations, i.e. relations be-

tween mathematical quantities, represent relations between physical quantities.

But representation is too widespread a relation to ground categorically the

mathematics/physics distinction, because it is a relation which can hold in ‘every

direction’: between items both of which are in either of the two realms, or between

items both of which are in one realm. Aside from the representation involved in

a physical theory, in which we use mathematical items to represent physical items

(e.g. when we provide equations of motion for a simple harmonic oscillator), we

also use physical items to represent mathematical items (e.g. when we write on a

blackboard in maths class). Equally, we use mathematical items to represent other

mathematical items (von Neumann ordinals represent the integers), and physical

items to represent other physical items (an orrery represents the planets of our

solar system).

Nevertheless, the interpretation of physical theories concentrates exclusively on

the representation of the physical by the mathematical. We have our mathematical

formalism; the task is to interpret it. Central to this task is the identification of

elements within the mathematical formalism which are genuinely representative
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of something physical, or at least hypothetically physical; in other words: the

identification of representative, as opposed to surplus, or redundant, structure. A

theory cannot be true or false of the physical realm without such representatives.

(A trivial caveat: it can be false if its mathematical formulation is inconsistent—

that much we can know prior to interpretation.)

But can’t anything represent anything else? In which case: how is the inter-

pretative project well-defined? If all we demand is the theory’s truth, isn’t success

too easy? (Cf. Putnam (1977, 1980).) The project is well-defined, given suitable

concessions. There are two possibilities to consider, concerning our familiarity

with the physical items being represented:

1. On the one hand, we may have semantic access to a given physical item that

is independent of, or at least detachable from, the theory in question. That

is, we may be able to refer to that item without recourse to the theory being

interpreted. (This access may, of course, be due to the representational

machinery of another theory that has already been interpreted.) In this

case, we may specify the representation relation by specifying the relata: the

mathematics of the new theory and the antecedently grasped physical item.

(Ideally, ascertaining a theory’s experimental claims involves setting down

the representational relation in this way. Of course, this is far from a simple

affair!—cf. Chang (1996).)

2. On the other hand, there may be no independent semantic access to a given

physical item, or at least we may know of no independent semantic access to

the item. (In fact it may be a familiar entity, unfamiliarly described.) In this

case, the laying down of the representation relation and the specification of

the represented physical item is the same act: the physical item is implicitly

defined as that which corresponds, one-to-one, to some specified representa-

tive mathematical structure. This “structural” definition is, for all we know,

the very best we can hope for (Poincaré (1905, p. 160-2)).

Here I connect with a recent wealth of literature that fall under the general

heading of Structural Realism.12 There is not space here to engage with this

12See e.g. Worrall (1989), Ladyman (1998, 2002, 2007b), Worrall and Zahar (2001), French
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literature, except to mention the link, and the suggestion (first made, about

physical objects, by Ladyman (1998, pp. 420-2)) that structural characteri-

sations of physical entities may be not just all we can know, but all there is

to know.

The important point for me is that stipulating the representation relation for

(apparently) unfamiliar physical entities is far from being a trivial exercise.

It involves postulating a physical ontology (whether structural or not) for

the representational mathematics to correspond to—in Lewis’s (1983, 1984)

jargon, it involves postulating an elite collection of natural properties and

relations. But this does not entail any realism about that ontology—since

the postulation of the physical ontology is hypothetical, dependent on the

theory being true. And I need make no commitment to the truth of a theory

in order to interpret it.13

I now connect my discussion of representation with my discussion of language,

in Secton 4.2.2 above. The connection is this: in a physical theory we use math-

ematical language to refer to mathematical items, whose representation relation

to the physical realm is specified as just described, by us, the interpreters. A

physical theory may therefore be usefully divided into two parts: (i) its formalism,

which consists of its language, in the sense of Section 4.2.2, and the mathematical

entities to which the expressions of that language immediately refer; and (ii) the

representation relation which holds between these mathematical entities and the

physical world and-or its hypothetical surrogates. In this picture, mathematical

language refers to the physical world by proxy, or by a ‘zig-zag’: first, by referring

to the mathematical entities in its formalism; and second, to the physical realm,

in virtue of the representation relation.

Typically, a theory’s formalism will be interpreted to represent modal features

of the physical world; and here I connect with general intensional semantics. For

this modal structure provides the raw materials to construct intensions, such as

the concept of particle.

and Ladyman (2003), Psillos (2006), Ladyman and Ross (2007).
13In this way, I retain my agnosticism between Lewis’s natural properties and Taylor’s “T -cosy”

properties, as mentioned in footnote 3.
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I will presently consider an explicit example. But first, I will list in general

terms the interpretative commitments that I will for granted, both in my example

and for the rest of the thesis.

1. As already indicated, I take myself to be giving a realist interpretation of

the quantum formalism. That means I take vectors of the Hilbert space to

represent physical states : which means, roughly speaking, temporal slices

of the physical world, i.e. the way things are at a particular time in three-

dimensional space. That means that I propose to take superpositions “seri-

ously”, i.e. as a feature of the physical world. “The way things are” is also

supposed to capture other degrees of freedom, such as spin, or another “in-

ternal space”. I do not interpret vectors of the Hilbert space as representing

e.g. dispositions for various measurement outcomes (except insofar as these

supervene on the occurrent features of the physical state already represented

by the vector), as in the Copenhagen interpretation (Wheeler/Zurek); or

our—or anyone else’s—subjective or ideally rational state of information,

except in so far as this may be gleaned from the physical facts.

2. Luckily for us, since I am interested here only in the quantum mechanics of

systems presumed to be microscopic, I do not need to commit ourselves to

any account about whether superpositions amplify to macroscopic bodies or

conscious observers. So I will not need to address the measurement prob-

lem. I will, however, make use of probabilities (especially in my technical

discussions in Chapter 7), so I assume that any solution of the measurement

problem will vindicate the Born rule.

3. I take the quantum formalism at face value; I will not add to it. Therefore I

put Bohmian intepretations of quantum mechanics to one side, for the most

part; although I will occasionally mention implications for the Bohmian, only

if these are interesting.

4. I take Hermitian operators to represent physical quantities, in the usual

way. For instance: if Q̂ represents the generalized position associated with

the co-ordinate x, so that (Q̂ψ)(x, y, . . .) = xψ(x, y, . . .), then P̂ defined

by (P̂ψ)(x, y, . . .) = −i~∂xψ(x, y, . . .) represents that system’s momentum
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along co-ordinate x. But I need only take the implication to go one way:

i.e. an operator represents a physical quantity only if it is Hermitian.

Let me now turn to our explicit example. In quantum mechanics the sentence

‘〈Q̂〉 = q’ ostensibly asserts a relation between two mathematical entities: the

Hermitian operator Q̂ and the real number q. Namely: that its trace (when

multiplied by a certain operator that represents the system’s state—which is here

left unspecified) is q. But suppose that we have specified that Q̂ represents the

distance of a certain particle, say, from the North-West corner of the laboratory

floor, projected along the skirting board of the East-facing wall; and that q is a

distance measured in metres. We also apply the Born rule, which specifies that

for any quantity Â and any state ρ, the mean value of Â is given by 〈Â〉ρ =

Tr(ρÂ). And we also stipulate that if no state is specified, context dictates that

we take as ρ the actual present state of the system. Thanks to these stipulations

about representation, ‘〈Q̂〉 = q’ says that the particle’s present mean distance from

the North-West corner of the lab floor, projected along the skirting board of the

East-facing wall, is q metres. Thus we have (partially) specified an intension14 for

the sentence whose extension—i.e. whose truth-value—is determined by the way

things happen to be (which may be established, at least in principle, and using

other, admittedly substantive, assumptions, by an appropriate measurement).

Returning to our specific project: the concept of particle, as applied in quan-

tum mechanics, will be an intension, which is fixed by specifying a function from

quantum mechanical states to physical objects (namely, particles!). Since quantum

mechanical states are represented mathematically, by vectors and density opera-

tors, what we seek is a general rule which tells us, for any such vector or density

14There are two subtleties which result from my proposed interpretation that I have suppressed
here. (1) I have substantially coarse-grained the intension: an intension is a function from indices
to extensions, but what I have just called a “intension” is a function from states (and contexts,
somewhat impoverished) to extensions. But no worries: a state—which we can take as a possible
world’s timeslice—defines the set of worlds which have that state as a temporal slice; and we
may treat values of the intension as constant over all variations of the context, except time. (2)
I have restricted the intension: the “intension” is only defined for worlds which obey quantum
mechanics (and which contain the particle, and the lab, in question). Whether this is a worry
will depend on one’s interpretative ambitions: surely it is no problem to leave the intension
undefined if quantum mechanics were false or the particle did not exist. But perhaps we would
prefer a physical interpretation that did not require the existence of our lab.
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operator, what that vector or density operator says about the particles: e.g. what

states they are in, how many there are, etc. It will obviously be a partial func-

tion, since it is restricted to quantum mechanical states, and so the corresponding

intension will be partial. It is also clear that the identification of the “correct”

function—i.e. the best target concept, in the sense of Section 4.1.2—will rely on a

lot of other interpretative work having already been done. But that, I submit, is

all right: my aim here is to tweak realist interpretations of the quantum formalism,

not to create a new one ab initio.

4.2.4 A note about physical properties

As I have said, the task of theory interpretation is to find the best representation

relation between the mathematical realm and the physical realm. It is therefore

important that physical entities, and the mathematical entities which may or may

not represent them, are kept at least conceptually distinct. However, there is

one collection of physical entities—the physical properties—which seem to make

trouble for this separation. The purpose of this Subsection is to clear up the

trouble.

The problem is that the entities often deployed to do duty for properties—

including physical properties—are mathematical objects. So, for example, some

authors (e.g. Carnap 1956) identify properties with functions from possible worlds

(or state-descriptions) to sets; others (e.g. Lewis 2002) identify them with sets (or

set-like objects,15 like classes), of any kind; and others still (e.g. Lewis 1970a)

identify them with functions from intensions to intensions.

I acknowledge the benefits of each identification and I agree that for any prop-

erty there is some intension, or some function, or some set (or set-like object), that

may play its role. Therefore I agree that intensions, functions from intensions to

intensions, and more generally sets, can indeed do duty for properties for various

purposes.

15The property of being a set that does not belong to itself cannot be identified with a set!
However, it may be identified with a proper class, which is for most intents and purposes “set-
like”.
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How then do I save all properties from being mathematical by default? There

are two main responses.

1. The most obvious move would be to acknowledge the benefits of the above

identifications but ultimately resist them. There is, for example, an alterna-

tive, venerable tradition of identifying properties (at least some properties)

with concrete universals (Murdoch (1970), Armstrong (1978)). Thus physical

properties are essentially non-mathematical, although mathematical items

(like those mentioned above) may represent them, for various purposes. This

move is tantamount to breaking my agnosticism (in Section 4.2.1) about the

overlap between the physical and mathematical realms.

2. Alternatively, I may accept any one of the identifications above, and admit

that physical properties so construed are in some sense an abstraction from

physical entities. However, even if I succumb to any of these identifications, I

must still give an account of what properties are abstractions from. Standard

moves are to take them as abstractions from primitive resemblance relations

holding between either particulars or tropes, or as abstractions from a prim-

itive distinction made between sets themselves, into natural and unnatural

(Lewis (1983, p. 14; 1986, pp. 64-9)). In this case, it is the resemblance rela-

tions themselves, or the natural/unnatural distinctions, that are represented

by the properties which have been identified with functions or sets. And the

difference between the former and the latter is sufficient to make the work

of theory interpretation non-trivial.

To sum up: physical properties do not make trouble for my account of theory

interpretation, even if they are identified with mathematical objects. This con-

cludes the set up of my general framework for conceptual reform. I now turn to

my specific project: the concept of particle.
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Chapter 5

Particles: what’s in a name?

In this Chapter I discuss the concept of a particle in general terms (Section 5.1).

This will build on the discussion in Chapter 4, especially Sections 4.1.2 and 4.2.3.

Included is a brief discussion of a famous proposal of Wigner’s (Section 5.1.2’s

interlude). Since I am aiming here to give an account of the general concept of

particle, I will treat classical and quantum mechanics equally. Finally, I special-

ize to a single elementary quantum mechanical system, (Section 5.2). This will

conclude (at last!) all the pre-requisites needed for my analysis, in Part III, of

assemblies of quantum systems, especially indistinguishable systems.

But first I must make a crucial distinction. This distinction is between the

operative concept of particle, as it is applied without reference to a particular

physical theory (let us call it the general operative concept of particle), and the

operative concept of particle-as-applied-in-quantum-mechanics (let us call it the

local operative concept).

The distinction is crucial because, as I will argue in Chapter 6, the use of the

term ‘particle’ in quantum mechanics—specifically in the context of indistinguish-

able systems—is in crisis: the local operative concept conflicts with the general

operative concept. Indeed, this observation will form the basis of my criticism of

factorism, since factorism holds that particles are the physical correlates of fac-

tor Hilbert space labels; and that, I contend, is true only for the local operative

concept.
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How can this be? Isn’t the local operative concept just the restriction of the

general concept to quantum mechanical worlds? No: the use of the term ‘parti-

cle’ outside of quantum mechanics suggests extensions to the quantum mechanical

realm which are subverted by the current use of the term within quantum me-

chanics. This is the spirit of my objection against factorism in Chapter 6, and

something which varietism and emergentism both seek to avoid. Thus the general

operative concept is what we need to provide desiderata for any putative target

concept, in order that the latter may be seen as an explication, specific to quantum

mechanics, of the former (cf. (iv) in Section 4.1.2). Let us now turn to outlining

the general operative concept.

5.1 Five desiderata for the concept of particle

Here I give a list of five constraints on, or desiderata for, any putative target

concept of particle. They are strands, or components, of the operative concept

of particle, which I have gleaned from the word’s use by physicists, philosophers

and philosophers of physics. (Admittedly, some of my evidence is introspective, in

Moorean fashion (Section 4.1), so I may be accused here of giving some aspects of

the avowed concept, in addition to the general operative concept.) I will devote

a Subsubsection to each desideratum (Sections 5.1.1 to 5.1.5). They are like con-

juncts that, taken together, constitute a functional definition of ‘particle’, i.e. an

intension to associate with the term ‘particle’.

This intension constrains our search for a target concept of particle as applied

in quantum mechanics in the following way: as much as possible, the target con-

cept ought to coincide with the restriction of this intention to quantum mechanical

worlds. The proviso that it coincide ‘as much as possible’ is meant to echo the con-

siderations from Section 4.1.2 above, that it may turn out (indeed, it will turn out)

that no intension that is natural in terms of the quantum mechanical formalism

will perfectly coincide with the restriction of this intension to quantum mechanical

worlds. And again: there may be no concept which satisfies, to a sufficient degree,

requirements of interpretative charity to physicists and philosophers of physics.
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I do not claim that my list of five desiderata is the uniquely best list one could

come up with. One might wish to lay down other constraints, or make some of my

five more precise. For example, I would like to draw attention to the vast physics

literature on solitons, in which a particle is taken to be essentially localised.1 I

make no such claim, but it is a natural strengthening of my second desideratum

(Section 5.1.2), namely that particles have location as a degree of freedom.

Nor do I claim that the five desiderata have equal weight. In Part III, I will

favour some of the constraints at the expense of others; that is, I give the con-

straints unequal weight.

5.1.1 Being physical

Our first constraint is that a particle is physical, in the sense discussed in Section

4.2.1. This I consider a compulsory (i.e. an indefeasible) component or strand,

of the concept of a particle. The role of this desideratum is to exclude candidate

target concepts which identify particles with what seem to be merely mathematical

artefacts of the formalism of quantum mechanics. (This will be the basis of my

criticism of factorism in Chapter 6.)

But I do not demand that particles turn out to be particulars, in the sense of

items of which properties are predicated, but which cannot themselves be predi-

cated of anything. That is, I allow that particles may be properties of something

else. This allowance will be welcome for three reasons.

1. It will be welcome for any view that takes spacetime points, and perhaps

regions (perhaps conceived as fusions of points), as the only particulars. For

such a view needs to take whatever is the material content of the universe—

particles, if such there be—as certain (perhaps higher-order) properties of

spacetime points or regions. Indeed one version of emergentism, which I will

consider in Chapter 9, proposes precisely this ontology.2

1For a physicists’ introduction, see Manton and Sutcliffe (2004). For a philosophers’ intro-
duction, see Teh (forthcoming).

2This ontology appears to be popular; supporters include Carnap (e.g. 1934, §82), Quine
(e.g. 1977) and Field (1980).
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2. This allowance does not prevent particles being objects in the ‘thin’ sense

(cf. Section 2.1) of Frege and Quine, i.e. potential values for first-order vari-

ables. In other words: whatever particles might be (whether particulars or

properties), they could not fail to possess self-identity, and so to be objects

in this thin sense. Thus I agree with some authors, such as (perhaps sur-

prisingly!) Quine (1970, p. 28) and Lewis (1970b, p. 429), that a property

(‘attribute’) can fall in the domain of (first-order) quantification. But I see

no reason to follow the Quinean orthodoxy that existential commitment must

be revealed by the contents of that domain alone. I reserve the right to use

predicates alone to refer to properties. These declarations mesh with the first

of the two responses to the problem of mathematically representing physical

properties, as discussed in Section 4.2.4 (but neither do I rule out the second

response).

3. This allowance has the advantage that it easily accommodates a denial one

may want to make—indeed, I will want to make, when defending emergen-

tism, in Chapter 9. Thus one may want to deny that particles exist in all

quantum mechanical worlds. That is, maybe there are states in an assembly’s

Hilbert space for which it would simply be false that there are any particles.

That is unpuzzling if particles are properties: for of course properties can be

a feature of some states of an object but not others. Agreed: this situation

would naturally lead us to ask of what, then, is an assembly an assembly?

I will return to this puzzle in Chapter 9.

The requirement that particles be physical is compulsory, but how do we tell

whether or not it has been satisfied? In essence this is a specific instance of the

more general question facing theory interpretation, namely: How do we separate

a theory’s representative content from its purely mathematical artefacts? There

is clearly no straightforward or complete answer to this question, but the task is

considerably easier if we have at least a partial idea of what we are looking for.

Thus, in the case of particles, we can appeal to the other four of our five desiderata.

In this way the five desiderata are mutually supporting. It is to the other four

desiderata that I now turn.
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5.1.2 Being located

A particle is the sort of thing that is located, at least in some approximate sense.

I will not need to be precise about what in general would count as ‘located in an

approximate sense’. It will be enough for me that classical mechanical particles

are located, and quantum particles have position probabilities, i.e. probabilities

to be found in various regions, were a position measurement made.

In more detail: It goes without saying for classical point particles, or the in-

finitesimal material points (also called: elements) in a classical continuous medium,

are located. In quantum theory, the wave mechanics of a single ‘particle’ makes us

familiar with the position representation: i.e. with (i) the state being represented

as a C-valued function on physical space, like a complex cousin of a classical scalar

field, and so (ii) the position-operator Q̂ being represented as multiplication—

i.e. (Q̂ψ)(x) = xψ(x)—and |ψ(x)|2 being a probability density for results of posi-

tion measurements.

I require particles to have location as a degree of freedom, but as I mentioned

in the preamble to this Chapter, I will not require them to be spatially localized.

I admit that this requirement has played a large role in the discussions of solitons

and relativistic quantum theories.3

I register that one might argue that my desideratum that particles have a

location makes redundant my previous desideratum that particles be physical. For,

while many may disagree with the common sense view of Aristotle’s time that

everything (physical) that exists must exist somewhere (Morison (2002, pp. 18-

19)), surely it is true that anything with a location is physical.

I am sympathetic to this claim—though there cases (such as phonons and cen-

tres of mass) that are by no means clear-cut! But there is a justification for listing

both desiderata separately, which can be expressed as a dilemma. The dilemma

concerns the identification of elements of the quantum formalism as representing

genuine particles (i.e. genuinely physical entities), or as mere mathematical arte-

3Cf. Malament (1996), Fleming and Butterfield (1999), Halvorson (2001) and Halvorson and
Clifton (2002) for the peculiarities of relativistic localization. I note that Fraser (2008) does not
take localizability as a necessary condition for particlehood in her treatment. However, Fraser
does lay down a necessary condition for particlehood which I have ignored, namely countability.
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facts. If you do not take having a location as sufficient for being physical, then

clearly both desiderata must be imposed. But if you take having a location to be

sufficient for being physical, then you will still face the problem of distinguishing

between mathematical elements which genuinely represent physical entities with

location, and elements which only seem to: as we shall see, many putatively phys-

ical objects can be associated with the appropriate mathematical state space. In

this case, we need to know first whether there is a genuinely physical object being

represented, before we can say that it has a location. Therefore it is still valuable

to list ‘being physical’ as a separate desideratum.

My inspiration for requiring particles to have location is a famous proposal

of Wigner’s for the definition of a concept related to that of particle, namely an

elementary system. Let me briefly discuss the Wigner’s proposal, and its relation

to our project.

Interlude: Wigner’s proposal

If one were to ask a practicing theoretical physicist today, ‘What is a particle?’, the

answer one is very likely to receive is ‘an irreducible representation of the Poincaré

group’, proposed by Wigner (1939). Does this not immediately provide us with

our target concept of particle? No, but let me explain.

Wigner’s proposal is an answer to a slightly different question. It was pro-

posed as a definition of ‘elementary system’, and I will not require that particles

be elementary (i.e. part-less) in this sense. (See also my discussion of composition-

ality below, in Section 5.1.4.) Nevertheless, Wigner’s proposal provides a useful

precisification of our requirement that particles be located.

For the uninitiated, Wigner’s proposal is extremely puzzling: how can an el-

ementary system, supposedly a physical object that bounces around in familiar,

three-dimensional space, be something as mathematical as an irreducible represen-

tation of a group? The puzzle is merely a result of abbreviation: fully expanded,

Wigner’s proposal is that (the mathematical representation of) an elementary sys-

tem’s state space supports an irreducible representation of the relevant spacetime

symmetry group. The Poincaré group is most often mentioned explicitly in this

context, since this is the group of transformations between inertial frames in special

relativity.
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Thus Wigner’s proposal says what an elementary system is by saying what

it can do: i.e., what physical states are available to it, given the kinematical re-

strictions incumbent on it due to the spacetime symmetries governing the physical

laws. It is inspired by the idea that an elementary system exists in space and has

no internal structure; so the only things that it can do within the confines of the

physical laws is to be translated, rotated and boosted with respect to the spacetime

background. Therefore its state space is generated by the spacetime transforma-

tions which are symmetries of the theory, and contains no further structure; so

it is irreducible. And there is no problem of Wigner’s proposal being mathemat-

ical in nature, since we expect that the modal profile of an elementary system be

represented by something mathematical, like a state space.

Particles need not be elementary systems, but some may be. Common to

both is their having location as a degree of freedom: this determines that the

relevant state space be a representation of the spacetime symmetry group. We

may borrow this aspect of the concept of elementary system for our purposes,

but drop the requirement of partlessness that constrains the state spaces to be

irreducible representations.

Therefore my desideratum that particles have location can be cashed out in

the following terms: any target concept must pick out as particles entities whose

modal profile is represented in the formalism by a state space that supports a

representation (reducible or irreducible) of the spacetime symmetry group.

The idea that particles need not be elementary systems is supported by the idea

of dressing in interacting quantum field theory.4 In that theory, it is a common

technique to simplify a physical problem by treating a “cloud” of what one first

construes as distinct systems—for example a “bare” electron surrounded by local

vacuum fluctuations—as a single system. Non-elementary particles also include

systems which are themselves thought of as made out of particles, such as protons

and neutrons. I return to the issue of dressing in Section 5.2.2.

The requirement that the formalism contain a representation of the space-

time symmetry group for each particle is perhaps also more familiar than it may

4For a philosophers’ introduction, see Mattuck (1992, Chs. 0-2).
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first sound. For example, for my special concern with composite systems: the

tensor product structure in quantum mechanics and the Cartesian product struc-

ture in classical mechanics—both used to represent assemblies of distinguishable

particles—fulfil this requirement straightforwardly. Important for us, however, is

the fact that less familiar structures may also fulfil this requirement. For example

(though there is no space here to pursue the matter in detail), the reduced config-

uration space still contains subspaces which support representations of the Galilei

group. This is important because in the case of interest for us—namely, quantum

mechanics for indistinguishable systems—the assembly’s state space, which is a

symmetric sector of a tensor product Hilbert space, has no obvious tensor product

structure. I will return to this matter in Section 7.2.

End of Interlude.

To conclude this Section, I stipulate that the desideratum that particles—or

any nearby surrogate for them—have a location be utterly non-negotiable.

5.1.3 Persisting over time

Particles do not just have a location. They are treated as spatiotemporal, that is,

persisting, entities. In classical mechanics, a point-particle has a trajectory : which

we can model as a map from an interval of time (some interval of real numbers)

into spacetime. This idea is generalised in quantum mechanics (in the Schrödinger-

picture position representation) to a map from a time to spatial wavefunctions.

The idea of particles as persisting entities may seem non-negotiable, but to a

philosopher it immediately suggests a nearby concept for which persistence over

time is denied: namely, particle-stages, which exist momentarily, i.e. at one time

only.

Here we meet the philosophical controversy over how to understand persistence

over time. According to endurantists (e.g. Wiggins (1980), Haslanger (1989), Mer-

ricks (1999)), an object at any two times is identical: it is ‘wholly present’ at all

and only those times at which it exists. According to perdurantists (e.g. Quine

(1976b), Lewis (1986, p. 210), Sider (2001), Hawley (2001)), a persisting object is

composed of temporal parts, any two of which from different times are distinct. I
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will endorse perdurantism, but there is no room here to defend my endorsement.

Particle-stages are thus minimally persisting temporal parts of a particle.

I also endorse Lewis’s view (1986, pp. 218-20) that, like world-bound objects

and their trans-world composites, object-stages are in a sense primary to their

trans-temporal composites. The sense in which they are primary is not ontological

but practical: both objects and object-stages exist “on an equal footing”; but while

it will always be useful to talk of object-stages when it is useful to talk of objects,

there are conceivable contexts in which it is not useful to talk of objects, but still

useful to talk of object-stages (Reichenbach (1958, §43); Butterfield (2006b, §4)).

Object talk breaks down in favour of object-stage talk when the world is un-

kind enough to provide no uniquely appropriate, non-overlapping trans-temporal

mereological sums of object-stages. Cases like these include unmanageable fission

and fusion of trans-temporal objects (Parfit 1971) but are not limited to these

examples. We will see, in Section 7.3 and Chapter 8, that quantum mechanical

worlds are unkind in this way, at least to the varietists’ and emergentists’ particles.

So here, the corresponding particle-stages may provide the best target concept.

To sum up (and looking ahead a bit): (i) by endorsing perdurantism and tem-

poral parts, we allow ourselves to take advantage of otherwise unfortunate circum-

stances in which talk of persisting objects is problematic, but talk of their temporal

parts is not; and (ii) I forewarn the reader that this unfortunate circumstance faces

us upon the rejection of factorism.

5.1.4 Composing assemblies

In both everyday life and science, we all believe (or at least avow!—cf. (i) in

Section 4.1.2) that countless familiar objects—like the solid objects that Austin

(1962, p. 8) jokingly called ‘moderate-sized specimens of dry goods’—are made of

particles. This yields our fourth desideratum for any target concept of particle: we

hope for a reasonable sense of ‘being made of’ according to which this claim comes

out true. I call this requirement ‘compositionality’ or ‘being compositional’. In

this subsubsection, I will sharpen this vague idea of something’s ‘being made of’

some other things. I will end by commenting on how particles being compositional

110



is compatible with: (i) holism of the kind much discussed in quantum philosophy;

and (ii) particles not being fundamental.

In philosophy, the most discussed and widely accepted notion of composition

is mereology.5 The mereological sense of an X ‘being made of’ some Y s is perhaps

the most direct sense possible: namely, identity. On this understanding, X is

made out of the Y s in virtue of X being the Y s. Each Y is part-identical to X by

its being a part of X. (In general, two objects are part-identical iff they share a

common part, but one need not be a part of the other.) The notion of mereological

composition as part-identity has recently been attacked (e.g. Yi 1999). But I will

accept it in this paper: in fact it will be useful to me in my discussion of varietism

in Chapter 8.

Although I accept mereological composition as a sense of ‘being made of’ that

is legitimate as a strand of the operative concept of particle, it is not the only

legitimate sense. It may turn out, for example, that the route from particles to the

familiar objects of everyday experience—Austin’s moderate-sized specimens of dry

goods—is rather less direct than simple part-identity. Two examples immediately

come to mind:

(i) Macroscopic objects are often thought to have vague boundaries, but mere-

ological fusions have boundaries that are as sharp as their parts.6

(ii) Applying mereology to a collection of entities technically requires those enti-

ties to comprise the basic ontology; but we may not wish to include particles

or macroscopic objects in our basic ontology; i.e. we may not want to quan-

tify over them. For example, a nominalist about properties may still wish

to treat either particles or macroscopic objects (or both) as properties. This

nominalist will have to construe talk of particles or macroscopic objects as

disguised talk about whatever concrete particulars are taken to exist. Then

it is hard to see how mereological fusions of particles could either make sense,

or else produce the correct candidates for macroscopic objects.

5For an introduction to mereological composition, see the classic paper by Leonard & Good-
man (1940).

6This is, of course, Unger’s (1980) and Geach’s (1980) problem of the many. I address a close
cousin of this problem in Chapter 8.
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So I turn to a natural alternative sense of ‘being made of’: namely, superve-

nience. The rough idea is to stipulate that X be made of some Y s iff X’s properties

supervene on Y ’s properties and relations. Some clarification is in order: I make

five comments.

1. Note that my proposal is only reasonable if the Y s in question exhaust X, in

the sense that there can be nothing which composes X which is not already

one of, or itself composed of, the Y s. For otherwise supervenience can easily

fail in cases of composition. Take a house, for example: it is composed

of its bricks, amongst other things, but the way things are with the house

could easily change without anything changing for the bricks—we might, for

example, replace all the windows.

2. The bi-conditional above is trivially satisfied if we range sufficiently liberally

over the properties of X and the Y s: e.g. if it is taken as a property of X that

X = X and the Y s are thus-and-so. Therefore I exclude relational properties

of X which make explicit reference to the Y s, and demand that the Y s’

properties and relations make no explicit reference to X. (X’s properties

may be reducible to the Y s’ properties and relations, but that is another

thing.) Another way of putting this is that Xs properties on one hand,

and the Y s’ properties and relations on the other, should belong to different

levels. Let us call the way things are with X the high-level facts, and the

way things are with the Y s the low-level facts.

3. Supervenience is covariance over worlds, and we require covariance over all

quantum mechanical “worlds”; i.e. all states in the assembly’s Hilbert space.

This is the most liberal quantification over worlds possible while still remain-

ing within the quantum mechanical framework. This is important, since su-

pervenience of a sort unsuitable for our purposes can often arise by restricting

the range of worlds one quantifies over. For example, if we restrict to only the

dynamically possible worlds, then in deterministic worlds (in virtue of the

dynamical laws), the properties instantiated at distinct Cauchy surfaces will

supervene on one another—yet we do not want to say that distinct Cauchy

surfaces compose one other!
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4. A superficial objection to my suggested precisification of ‘being made of’ is

that, as e.g. Horgan (1993, pp. 560-1) has pointed out, supervenience does

not exclude distinctness of the properties concerned: it is not a necessary

truth—still less an analytic truth—that covariance precludes distinctness. I

reply that the relation between supervenience and identity is a matter of

one’s conceptual scheme,7 and that anyone who denied identity in instances

of supervenience (where the quantification over worlds is sufficiently liberal)

should also deny that composition is a relation of part-identity. Either way,

composition may be cashed out in terms of supervenience.

5. Finally, I note that my supervenience understanding of composition is a

logical weakening of the mereological understanding, if we assume that the

properties of a mereological fusion supervene on the properties of and re-

lations between the mereological proper parts. This assumption is not an

axiom in, e.g. Leonard and Goodman’s (1940) calculus, but it is a feature of

Lewis’s modal framework.8

To conclude the discussion of compositionality, I will make three comments:

about how particles being compositional is compatible with: (i) holism of the kind

much discussed in quantum philosophy; (ii) particles not being fundamental; and

(iii) multiple realizability.

(i) Our notion of compositionality makes no restrictions on what the lower-

level facts mention, so long as they are purely lower -level facts: in particular they

7Lewis’s (e.g. 1983) implementation of Hume’s dictum, that there are no necessary connections
between distinct existences, commits him to the conclusion that supervenience implies at least
part-identity.

8This seemingly innocuous assumption vetoes a peculiar form of property dualism. A person
differs from a zombie, according to substance dualism, because the person has proper parts
(namely, a soul) that the zombie doesn’t, even though they may be physically identical. A
person differs from a zombie, according to one form of property dualism, because the person’s
proper parts bear non-physical properties, or relations to each other, that the zombie’s parts
don’t, even though, once again, they may be physically identical. What the assumption above
rules out is an alternative form of property dualism in which a person may differ from a zombie
only in the possession of a higher-level property (consciousness, say), despite being composed of
the same (physical and non-physical) proper parts, and despite those parts possessing the same
(physical and non-physical) properties and relations. Suffice it to say that I find this doctrine
bewildering, and I doubt that anyone has ever believed it.
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can be facts about relations between lower-level entities, as well as facts about the

lower-level entities’ intrinsic properties. This bears on so-called ‘quantum holism’:

that for many states of an assembly—namely, entangled states—the state does

not supervene on the intrinsic states of the assembly’s constituents (Teller (1986,

pp. 78-80)). This failure of supervenience has been taken as evidence against the

constituents’ existence “prior to” the assembly (Massimi (2001), Hawley (2009)).

(As we shall see in Chapter 9, I am sympathetic to this position, but not because

of the phenomenon of entanglement.)

But a more conservative response would be to take it—ceteris paribus—merely

as evidence for the existence of irreducible relations between the particles which

go to make up the assembly (Teller (1986, p. 80)). In fact, this response is also

available to those who stick to the narrow notion of composition as mereological

composition: for the properties of a mereological sum typically do not supervene on

the intrinsic properties of its parts. Therefore, our requirement of compositionality

does not exclude particles from being the constituents of an assembly, despite the

fact that their states typically fail to subvene the state of the assembly.

I should point out that this debate over holism in quantum mechanics assumes

the interpretative position that I deny for indistinguishable systems—namely, fac-

torism. But Teller’s point still stands (especially for distinguishable systems, for

which I endorse factorism). However, as we will see in Chapter 9, we are, after

all, forced to except a holism about quantum assemblies that cannot be overcome

by countenancing irreducible relations between constituents. It is ironic that the

states which prompt this holistic retreat are characterised, not by being entan-

gled, but rather by failing to exhibit a form of entanglement (cf. Section 8.3). To

anticipate: the culprit that compels holism is not entanglement, but the indistin-

guishability postulate.

(ii) The idea that particles are fundamental is in a way “complementary” to

the idea that macroscopic objects are made out of them. Compositionality looks

upward, as it were, in its claim that entities at higher levels are made of particles:

fundamentality looks downward, in its claim that particles are not themselves made

out of anything. But, as I mentioned in the Interlude in Section 5.1.2, above, I do

not take it as necessary that particles be ontologically fundamental.
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(iii) Finally, I note that the requirement that particles compose macroscopic

objects does not entail that they necessarily do so. That is: being composed out of

particles is consistent with being composed out of particles only contingently. This

is not just a philosophical side-remark: it will be important later, in Chapter 9,

where I entertain the idea that there are states of the assembly in which there are

no particles, and yet there is still the possibility for stable macroscopic structures

to emerge.

5.1.5 Being applicable across different theories

If possible, we should hope to arrive at a single concept of particle which vindicates

its use in a variety of physical theories. The ideal is that there be a single intension,

defined here by the five desiderata, whose restriction to the worlds of any theory

coincide with that theory’s most natural candidates for the particle concept. It

would be a shame to have to retreat to a collection of homonyms, each one indexed

to a particular theory, and all connected to each other by some sort of ‘family

resemblance’.

Prima facie, there is reason to be optimistic. Functional definitions offer the

promise of being general enough to be applicable in a variety of situations (in

our case, a variety of theories), and yet specific enough to pick out, in each of

those situations, a salient entity or category of entities (e.g. Lewis 1972). Giving

a functional definition of ‘particle’ falls significantly short of providing a reduction

of particle talk, independent of any particular theory. On the contrary: different

theories already provide what for each of them are eligible candidates for reference;

our functional definition then simply picks the candidates (if any) which satisfy

the definition, i.e. which (if any) of them are worthy of the name ‘particle’.9

It cannot be a component, or strand, of the concept of particle that it have inter-

theoretic applicability: a concept, being an intension, is supposed to determine a

unique extension in a variety of possible worlds and contexts, and extensions cannot

themselves have ‘inter-theoretic applicability’. Rather, inter-theoretic applicability

9We can, if we so wish, then investigate further to provide a complete account of what particles
in classical mechanics are like, or what particles in quantum field theory are like; but none of
this will compromise the fact that these will be investigations into the nature of particles.

115



is a desideratum for the concept itself, a constraint which guides the evaluation

of putative target concepts. Nevertheless, the constraint, like the three above, is

inspired by the actual use of the term ‘particle’, since it is certainly applied in a

way that is independent of any particular theory.

The obvious fleshing out of inter-theoretic applicability is as follows: if two

theories are connected by a relation of partial reduction in some limit, then the

particles of the reduced theory ought to coincide with the particles of the reducing

theory in that limit. Thus, for example, if classical particles have determinate

trajectories, then particles in quantum mechanics ought to be such that, in the

appropriate classical limit, they too have determinate trajectories. (It is precisely

this consideration, of course, that led Schrödinger (1926) to identify Gaussian wave

packets in quadratic potentials as the quantum analogues of classical particles;

cf. Landsman (2007, p. 429).) In this way, inter-theoretic applicability can be seen

as a generalisation of the correspondence principle.

It may suggested that, with inter-theoretic applicability as a desideratum, we

need only apply the other desiderata for one theory T , and let inter-theoretic

applicability do the rest for any other theory T ∗ in a relation of partial reduction

to T . Certain entities in T ∗ would then inherit particle-hood purely in virtue of

their acting like the particles of T in the limit in which T ∗ and T nearly coincide.

Away from this limit, T ∗’s entities could be as unlike particles as you please, and

yet they would still count as particles.

But I am more strict about our use of the term ‘particle’: for it seems more

natural to say of the above case, that T ∗’s entities are particles only in the limit

in which T ∗ nearly coincides with T . Therefore, I take the requirement of inter-

theoretic applicability as an additional desideratum on putative target concepts,

and not an excuse to relax the other desiderata. I must also treat it as a negotiable

desideratum amongst the other constraints: for we may be forced to be construc-

tivists (in the sense discussed in comment (vi) of Section 4.1.2, above) about the

concept of particle for a variety of theories, and we cannot expect different theories

to pull in the same direction.
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5.2 The desiderata for a single quantum system

To sum up the discussion in Section 5.1, and to introduce my main topic, quantum

mechanics, I report here how our five desiderata are largely satisfied by the elemen-

tary wave mechanics of a single system. This Section has two parts. In the first

part (Section 5.2.1) I state the usual surprises of elementary wave mechanics and

argue that, despite these, the Hilbert space of a single system represents a particle

according to our five desiderata. (This trival case, in which the indistinguishability

postulate does not apply, is the only one for which I endorse factorism.) However,

an interesting result will be that, even in this simple case, there will be differ-

ent natural interpretative moves to make; these will correspond to my later three

proposals, factorism, varietism and emergentism. The second part (Section 5.2.2)

discusses natural factorisations of Hilbert spaces, and the idea of dressing.

5.2.1 Satisfying the desiderata for “single-system” Hilbert

spaces

(i): Being physical. The idea that the vectors—or, more properly, the rays—

of the single system Hilbert space represent physical states is uncontroversial; the

question is whether we may say that the physical states are possessed by a particle.

Thus we are led immediately to consider the other four desiderata.

(ii): Being located. If we consider no other degrees of freedom, then the Hilbert

space for a single system is L2(R3) and is equipped with an algebra of quantities,

which includes the position and momentum operators Q̂, P̂ . We can then define a

family of unitary operators U(g), g ∈ G which comprise a unitary representation

of the group G of transformations which preserve the background spacetime. The

space generated by these transformations is the state space of a particle, as required

by the Interlude in Section 5.1.2.10

This simple situation becomes interestingly complicated if the “single-system”

Hilbert space incorporates more degrees of freedom—e.g. spin—so that the Hilbert

space is L2(R3)⊗C2s+1, for some non-negative half-integer s. In this case, different

10For details where G is the Galilei group, see e.g. Jordan (1969, Ch. 7).
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interpretative strategies part ways; (so here we glimpse the issues to come in Part

III). Some may continue to consider the full Hilbert space as representing the states

of a single particle; indeed this is the orthodoxy. However, this interpretative move

is not compulsory. Some interpretations may instead consider the Hilbert space

to have states which represent more than one particle at once, since the extra

degree of freedom gives “room” for more than one representation of the spacetime

symmetry group. For example, with each projector Ej onto a ray generated by

a unit vector |j〉 of the spin Hilbert space C2s+1, we may associate a distinct

representation U(G)⊗Ej of the Galilei group G.11 So any state in which the spin

and spatial degrees of freedom are entangled, i.e.

|ψ〉 =
∑
j

aj|φj〉 ⊗ |j〉 (5.1)

(where aj 6= 0 for j ∈ {j1, j2}, for some j1 6= j2), will yield different orbits under

action by each U(G)⊗Ej for j ∈ {j1, j2}. I.e., each Ej selects out the L2(R)⊗|j〉〈j|
copy of L2(R).

As we shall see later in Chapters 8 and 9, this interpretative proposal goes

hand in hand with using states, as opposed to Hilbert space labels, to individuate

particles—which is the hallmark of any interpretative strategy which I will (in Part

III) call anti-factorist. I emphasize that under this interpretation, individuation

by Hilbert space labels is rejected even in the case of a single system, where there

is only one Hilbert space label.

It may well be asked of proponents of these anti-factorist interpretative strate-

gies: If states in which the degrees of freedom are entangled represent more than

one particle, in what sense, then, are we still talking about a “single-system”

Hilbert space? The answer is that, while these states represent more than one

particle, each particle in one such state belongs to its own non-entangled “branch”

of the superposition. Thus for all states, it is still true that each non-entangled

branch contains only one particle. Equivalently, it is true both for the ortho-

dox interpretation, and the heterodox ones here outlined, that every state of the

Hilbert space is an eigenstate of the ‘total particle number’ operator, familiar from

11Note that these representations are not unitary, since the projectors Ej have no inverse.
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quantum field theory, with eigenvalue 1.

If the anti-factorist countenances the representation of more than one particle

in some states, then the question arises how particles are to be cross-identified

between states and between branches of a superposition. I postpone this important

discussion until Section 8.3.3, where I will have had the chance to more thoroughly

investigate anti-factorist interpretations.

(iii): Persisting over time. Proponents of factorism, who consider the “single

system” Hilbert space to represent a single particle—indeed, the same particle for

each state—can straightforwardly account for trans-temporal persistence. To see

this, note that in the position representation, one may conceive the particle as a

C-valued field, spread out over space. Since the states of the Hilbert space are

the configurations of this field, it is unproblematic to consider the field itself as

persisting over time. I note here that, for similar reasons, trans-temporal identifi-

cation is always unproblematic for the entire assembly, and that the case here is

special in that the assembly comprises only a single particle.

Proponents of what I have called the anti-factorist interpretation may account

for persistence equally easily, so long as the Hilbert space represents only the

spatial degree of freedom. If other degrees of freedom are included, then once

again the story becomes complicated, since the number of particles represented in

each state may not even be conserved over time—although note that the ‘total

particle number’ operator is a conserved quantity, since the number of particles

in each branch is conserved. Thus issues of trans-temporal identification for anti-

factorists overlap with issues of cross-identification between states and branches of

superpositions. Once again I postpone further discussion, until Section 8.2.3.

(iv): Composing assemblies. Composition is vacuously satisfied in this case,

since for each state—or, at least, for each branch of every state—the assembly

comprises only one particle.

(v): Being applicable across different theories. The various results pertaining

to the quantum/classical boundary for a single system are a vast subject, and so

deserve a separate treatment in their own right. Here I will merely refer to the

review by Landsman (2007) relating to both the ~ → 0 and N → ∞ limits. In
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particular, the role of coherent states in achieving the right coincidence between

the classical and quantum theories may suggest a strengthening of our desiderata

in Section 5.1—for example, to the demand that particles be localized. But I will

not pursue that line here. Recall (from Section 5.1.5) that I only require that the

quantum particle have an approximately classical trajectory for those states (in

fact they are coherent states) for which we can define a classical limit. The non-

classical behaviour of the quantum particle outside of that limit will not preclude

its deserving the name ‘particle’, so long as our five desiderata are satisfied.

5.2.2 Natural decompositions and dressing

Section 5.2.1’s invocation of L2(R3) set aside an important aspect of our topic, to

which I now turn. This will pick up on Section 5.1.4’s mention of dressing.

Recall that a Hilbert space can be factorized in many different ways! More

precisely, a Hilbert space of non-prime dimension can in general be factorized (with

factors of dimension greater than one!) in many different ways. And a Hilbert

space of denumerable dimension can be factorized, with factors of denumerable

dimension, in infinitely many different ways. Besides, these different ways are, in

general, physically significant. For example: For the second statement, recall the

isomorphisms, essentially due to Fourier analysis:

L2(R) ∼= L2(R2) ∼= L2(R)⊗ L2(R) (5.2)

where the final tensor product can be realized in infinitely many ways, by rotating

axes in R2. That is: it can be realized as either:

1. the square-integrable functions on the x-axis, tensored with the square-

integrable functions on the y-axis; or as

2. the square-integrable functions on the y = x line tensored with the square-

integrable functions on y = −x line; or as

3. the square-integrable functions on the line y = ax tensored with the square-

integrable functions on the line y = − 1
a
x, where 0 < a <∞;
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and so on. So quite apart from whatever subtleties beset the use of ‘particle’ for

indistinguishable systems—and such subtleties will be centre-stage later—we here

see the question: What counts as the, or at least, a physically natural factorization

of a quantum Hilbert space?

And we see that this is a question that arises even for what is usually called

a ‘single particle’, or for a pair of distinguishable such particles. Fortunately, I

will not need to address this question in full generality. But I should here register

three main ingredients of its answer: ingredients which I will sometimes mention, in

connection not only with factorism but also with my two other proposals, varietism

and emergentism.

(i) I should no doubt allow that the answer is not uniform; as indeed, the vague

phrase ‘physically natural’ suggests. Thus the answer could vary according to

the problem at hand. It might depend upon some salient physical quantity,

pre-eminently of course the Hamiltonian. It might even depend on human

interests: on what one is trying to calculate. These sorts of consideration

are familiar in the concept of dressing. Thus one can sometimes simplify a

problem by ‘dressing’ the system, i.e. one associates to the system degrees

of freedom that one initially considers external to it. Formally, this amounts

to revising how one factorizes the total Hilbert space. To anticipate: the

non-uniqueness of natural factorizations, for Hilbert spaces of assemblies of

indistinguishable systems, will eventually lead me to endorse emergentism,

in Chapter 9.

(ii) The example of dressing also brings in another main ingredient in the answer:

the idea of locality or—a better word—proximity. That is: if one adds

degrees of freedom, so as to define a bigger sub-system (in the formalism:

augmenting a factor space), one will normally add degrees of freedom that

are spatially localized at or beside the originally given sub-system.

(iii) The quantum information community has addressed the above question in

general terms, often emphasising how the physically natural factorization

depends on what interactions and measurements are operationally accessible

(cf. e.g. Zanardi (2001), Zanardi et al (2004)). This work will inform some
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significant new developments in Section 7.2, in which we seek natural factor-

izations of subspaces of an assembly’s Hilbert space, given the assumption of

the indistinguishability postulate.

This concludes our consideration of the “single-particle” case in quantum me-

chanics, and with it the outline of my general philosophical framework. We have

constructed a general functional definition of ‘particle’ which we will use to iden-

tify, within the quantum formalism, the most natural bearers of that name. In the

next and final Part, I will investigate three rival interpretative proposals, each of

which stakes its own claim as to what, exactly, quantum particles are.
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Part III

What is a quantum particle?
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Chapter 6

Against factorism

In Section 6.1, I define my first interpretative proposal, factorism. In Section 6.2,

I distinguish it from haecceitism: Section 6.2.1 defines haecceitism, and Section

6.2.2 establishes the distinction between these ‘isms’. Section 6.3 discusses the

recent debate on the fate in quantum mechanics of the principle of the identity

of indiscernibles. In that Section, I make some novel amendments to the propos-

als made by Muller and Saunders (2008) and Muller and Seevinck (2009), and

argue that the factorist should endorse the amended proposals. Then in Section

6.4, I reject factorism for indistinguishable (but not distinguishable) systems, by

appealing to the framework of Chapter 4, and to Chapter 5’s desiderata for the

concept of particle. The leading idea will be that the factorist’s particles are not

physical—they are a statistical construction, like the average taxpayer.

6.1 Factorism defined

Factorism says: Particles are the physical correlates of the labels of factor Hilbert

spaces. This view is orthodox: indeed, not just orthodox, but well-nigh univer-

sal. It is deeply entrenched in the way we all speak and think, and learn, about

quantum mechanics for more than one system. To explain this, and how the view

is nonetheless deniable, it will be clearest to begin by considering, first, a single

quantum system, and then distinguishable systems.

124



For a single quantum system, we recall Section 5.2: there, we accepted the

‘surprises’ of the quantum mechanics of one system (such as superpositions, states

being wave-functions, etc.), and agreed nevertheless to call the system a ‘particle’,

since our five desiderata (Section 5.1) were adequately satisfied.

Now consider an assembly of distinguishable quantum systems. This pair is rep-

resented using a tensor product Hilbert space
⊗

iHi. (We can take the systems to

be distinguished by properties not represented in the Hilbert space, for example

mass or charge.) Each factor Hilbert space Hi represents the space of pure states

for each particle. The full space of states—including the mixed states—for each

particle is then represented by D(Hi), the space of density operators defined on

Hi. Each of these spaces is subject to the conclusions reached for single systems in

Section 5.2.1, despite the surprises associated with non-product states. Factorism

takes the orthodox position there outlined—namely that each Hilbert space repre-

sents the possible states for a particle, so that each Hilbert space label may taken

to represent its corresponding particle.

I concur. I am happy to take this step: I agree that distinguishable particles

are the physical correlates of the labels of factor Hilbert spaces, in the usual tensor-

product formalism.

But factorism goes beyond this agreement. It says that the same goes for in-

distinguishable systems: that also for an assembly of indistinguishable systems,

particles are the physical correlates of the labels of factor Hilbert spaces. Or in

other words: although such an assembly is described by the symmetric or anti-

symmetric subspace of the tensor product (according as the systems are bosons

or fermions)—or for paraparticles: by a similar sort of subspace—this does not

disrupt the factor spaces’ labels referring to particles. Thus when one treats an

assembly using the symmetric or antisymmetric subspace (or an appropriate para-

particle subspace) of
⊗N

i Hi, factorism says that there are N particles, one for each

factor space, and the ith particle’s states are represented by the density operators

in D(Hi).

I agree that factorism is well-nigh universal, in the way we all speak and think

about indistinguishable systems. We all tend to call the subscripts i ‘particle

labels’, and to say ‘an assembly of N indistinguishable particles’; and so on. And
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I agree that this way of speaking is:

(i) convenient, not least because it meshes with what we all say about distin-

guishable systems—which I myself endorse; and

(ii) so entrenched that it would be difficult, if not impossible, to try and change

it if one disagreed with it (cf. fn. 7 in Chapter 4).

Nevertheless, I will disagree with it, in Section 6.4.

I end this Section with a clarifying remark about my denial of factorism. Re-

call that, according to my philosophical framework (see Section 4.2.3), a theory

comprises a formalism and an interpretation. The advantage of this is that we

may separate questions of physical significance from straightforward issues of ref-

erence. That point has particular application here, since I do not deny that the

mathematical expressions ‘Hi’, ‘D(Hi)’, etc. have referents. All should agree that

they do have referents: namely, certain mathematical objects. The point of con-

troversy is whether these mathematical objects represent anything, or anything

straightforwardly; i.e., whether they have physical correlates. Factorism says that

they do: they represent the states of particles. I disagree. Thus my criticism of

factorism is not so much that its particles don’t exist, but rather that they are

nothing but mathematical constructs. They cannot, therefore, really be particles,

since particles are physical.

6.2 Factorism and haecceitism

In this Section, I distinguish factorism from another doctrine, haecceitism, which

is more familiar in philosophy (both in metaphysics and philosophy of quantum

theory). I first introduce haecceitism (Section 6.2.1); and then contrast it with

factorism (Section 6.2.2). The leading idea of this contrast will be: factorism

is a proposal about what particles are (and thereby about what (some) physical

objects are); while haecceitism is a doctrine about how the identity or ‘which-is-

which-ness’ of objects, in particular of particles, contributes to the individuation

of states. So factorism, and later Sections’ other proposals for what particles are
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(varietism and emergentism), are in a sense prior to the question of haecceitism, in

that they specify the physical objects about which one can then assess doctrines

about ‘which-is-which-ness’; although haecceitism, as usually defined, presumes

factorism. Thus haecceitism will come up again in my later discussions of varietism

and emergentism.

6.2.1 Haecceitism defined

Haecceitism and its denial, anti-haecceitism, are instances of a general issue, which

relates to my discussion of representation in Section 4.2.3. In philosophers’ jargon,

the issue is whether a distinction is real, as against ‘merely verbal’, ‘spurious’ or a

‘distinction without a difference’. In the jargon of my philosophical framework, the

issue is whether there are redundancies in the representation of physical possibili-

ties by the mathematical objects in our theory’s formalism. That is, whether the

representation relation between mathematical states (vectors or rays of the Hilbert

space) and physical states (instantaneous “possible worlds”) is many-to-one. In

physics there is also the jargon of ‘gauge’: the issue in these terms is whether cer-

tain quantities are ‘gauge-invariant’ or ‘physical’, as against ‘gauge-non-invariant’,

or ‘gauge’, or ‘redundant’.

Having stated the general issue, we only need to specify the distinction with

which haecceitism is concerned. It concerns the action of permutations on states.

One envisages, in either classical or quantum mechanics, an assembly of N in-

distinguishable systems. The symmetric group SN acts on these N systems; and

there is a natural induced action on the space of states. In classical mechanics, the

space of states is the N -fold Cartesian product of the single-system phase space;

and in quantum mechanics, it is the suitably symmetrized N -fold tensor product

Sµ(
⊗N

i Hi), where the parameter µ registers whether we project onto the symmet-

ric (boson) or anti-symmetric (fermion) sector, or else one of the sectors of ‘mixed’

symmetry (paraparticles). The induced action of SN is of course permutations of

system labels (which are usually called, in factorist jargon, ‘particle labels’ !). We

can write, for a state s, be it classical or quantum: s 7→ π(s), π ∈ SN .

There may be some states that are wholly symmetric in the sense that their
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orbit under this action is a singleton set, i.e. contains only the state in question:

s = π(s),∀π ∈ SN . But the generic state will have a non-singleton orbit. (This is

so in both classical and quantum mechanics—see below.) So the question arises

whether all the elements of the orbit represent the same physical state of affairs.

Here of course we invoke the distinction between mathematical states s and the

physical states (sometimes dubbed, for emphasis: physical states of affairs) that

they represent.

Thus I define anti-haecceitism as always answering ‘Yes’ to this question. This

answer implements the intuitive idea of treating the underlying identity of each

system, the ‘which-is-which-ness’ of the systems, as merely gauge or verbal.

On the other hand, I define haecceitism as saying that distinct mathematical

states in an orbit represent distinct physical states. Intuitively, this implements

the idea that the underlying individuality of the systems is physical or real, but

this further claim is not required—cf. Section 6.2.2.

To link up with Part I: Note that my new definition of ‘anti-haecceitism’ is

logically stronger than the one I settled on in Section 2.1.1. My new definition

is the denial of haecceitistic differences (thereby coinciding with Lewis’s (1986,

p. 221) definition) rather than the denial of combinatorial independence; and,

as we saw, combinatorial independence entails haecceitistic differences, but not

vice versa. My new definition of haecceitism is therefore correspondingly weaker.

However, our new anti-haecceitism is still structuralist in the sense of Section

3.3; and our new haecceitism is intrinsicalist if one also assumes factorism, so

that Hilbert space labels are taken to represent an underlying individuality to the

systems.

Haecceitism, in our new sense, can be assessed in classical or in quantum me-

chanics. Finite-dimensional classical mechanics (e.g. of N point particles) is, so

far as I know, almost always formulated haecceitistically, i.e. so as to distinguish

states differing by a permutation of indistinguishable particles.1 And in infinite-

dimensional classical mechanics (i.e., the mechanics of continuous media—fluids

or solids), one must be a haecceitist (cf. Butterfield (2011, pp. 358-61)).

1Belot (2001, pp. 56-61) considers the anti-haecceitistic alternative.
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In quantum mechanics, it is conventional to impose the Symmetrization Postu-

late (SP): i.e. to require that particles all be bosons or all be fermions. This trivi-

alizes the assessment of haecceitism: only if we consider paraparticles (i.e. multi-

dimensional irreducible representations of the symmetric group SN) do haecceitism

and anti-haecceitism get clearly distinguished (Caulton and Butterfield 2011).

Thus a haecceitist says that if a vector (or ray) lying in such a multi-dimensional

irreducible representation is the image under a permutation operator of another,

then they represent different physical states. But the anti-haecceitist says that all

vectors (rays) in the given irreducible representation represent the same physical

state.

I am an anti-haecceitist about quantum mechanics (and of course haecceitists

about classical mechanics). My rationale is the usual, orthodox one; (at least:

usual and orthodox since the work of Messiah and Greenberg (1964)). Namely:

the indistinguishability of quantum systems implies that any physical (gauge-

invariant!) quantity Q must be symmetric i.e. permutation-invariant, as follows.

More precisely, indistinguishability implies, in the first instance, that quantum

expectation values are permutation-invariant, i.e. for any state-vector φ, and any

permutation operator P representing π ∈ SN : 〈Pφ|Q|Pφ〉 = 〈φ|Q|φ〉. But this

implies P †QP = Q, i.e. [P,Q] = 0: Q is permutation-invariant, also known as:

symmetric (French and Krause (2006, pp. 142-3)). This is called the Indistin-

guishability Postulate, (IP), by Messiah and Greenberg (1964).

It follows (by Schur’s Lemma) that any two vectors (rays) in a given irre-

ducible representation of SN give the same expectation value to any symmetric

(i.e. permutation-invariant) quantity. But I identify a physical state with an as-

signment of expectation values to all physical quantities (cf. comments 2 and 3 in

Section 4.2.3). So I conclude that any two such vectors (rays) represent the same

physical state. In short: I infer that anti-haecceitism is true.

I submit that almost all physicists and philosophers would agree with my anti-

haecceitism, and would agree with my rationale for it, based on (IP); and would

also agree that the contrast here, between classical haecceitism and quantum anti-

haecceitism, is the root of all the debate about ‘quantum identity’. In particu-

lar, anti-haecceitism prompts one to re-evaluate traditional philosophical doctrines

129



about identity and indiscernibility that were first formulated with the particles of

classical mechanics (or more generally, the objects of everyday life or of classical

physics) in mind. In the literature, the main focus has been on one such doctrine,

the principle of the identity of indiscernibles (PII); and in Section 6.3, I will review

the debate over this—it is a debate that assumes factorism.

Let me sum up. In the literature about identity and indiscernibility in quantum

mechanics, factorism is well-nigh universally assumed, while haecceitism is widely

rejected. This is itself enough to strongly suggest that factorism and haecceitism

are distinct, and thereby accomplish my present goal of distinguishing them. If

they were the same, how could so many wise authors have thought one could

endorse one and deny the other? But in the next Subsection I go into fuller detail

about their differences.

6.2.2 Factorism and haecceitism distinguished

The spirit of haecceitism is that the underlying identity, or ‘which-is-which-ness’ of

indistinguishable objects is a real, or physical, or non-gauge, matter. But in Sec-

tion 6.2.1, I defined haecceitism more narrowly and precisely, in terms of permuta-

tions of system-labels (in factorist jargon: particle-labels), in classical or quantum

mechanics, yielding a different physical state. It will be important here to keep

distinct the vague spirit of haecceitism and its precise definition in Section 6.2.1,

since it turns out that the precise definition expresses the spirit of haecceitism only

if factorism is assumed.

Consider: if the precise definition of haecceitism, in terms of system permuta-

tions, is to be true to the spirit of haecceitism, the system labels must represent

the objects whose which-is-which-ness the haecceitist wants to defend as real or

physical. Besides, these objects must be physical, not mathematical, in the philo-

sophical sense discussed in Section 4.2.1: for I am not concerned with haecceitism,

or its denial, about mathematical objects.

Now recall from Section 6.1 that factorism also is precisely the doctrine that the

system-labels represent physical objects that deserve the name ‘particles’. Thus

we see that haecceitism as defined in Section 6.2.1 implies—indeed one might say,
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presupposes—factorism.

But apart from this inference, haecceitism and factorism are independent.

There are two points here. First: there is the gap just noted between the spirit of

haecceitism and Section 6.2.1’s definition: so by adopting a different conception of

what the particles are, we can construct a different precisification of haecceitism

that does not entail factorism. As I mentioned at the start of Section 6.2, va-

rietism and emergentism will adopt such different conceptions, and so prompt a

renewed assessment of haecceitism. Furthermore, anti-factorists can separate out

Section 6.2.1’s doctrine from the spirit of haecceitism altogether, and ask the more

neutrally worded question, whether mathematical states differing only by a per-

mutation of system labels (whatever they represent, if anything) represent the

same physical state. This will no longer be a question about haecceitism, but con-

siderations of descriptive redundancy will still apply, and will favour the physical

identification of permuted mathematical states.

Second: factorism does not imply haecceitism, even in the narrow sense of Sec-

tion 6.2.1’s definition. I noted there that almost all philosophers of quantum theory

(and physicists, if they care to consider the issue!) are factorist anti-haecceitists.

So here we should beware of a non sequitur: from the formalism distinguishing

two factor Hilbert spaces, and their referring to particles (as factorism asserts),

to taking the distinct mathematical states related by a permutation (s and π(s)

in Section 6.2.1’s notation) to represent distinct physical states. Remember that,

anyway, the issue only arises for paraparticle states, since for bosons and fermions

even the mathematical states related by a permutation are identical.

So a factorist need not be a haecceitist. And, while haecceitism as usually

defined entails factorism, it does so in virtue of presuming it. In fact, what you

will accept as a precise definition of haecceitism depends on your interpretative

position about what the particles are. So there may be haecceitists who are not

factorists. I will address haecceitism again, in my treatments of varietism and

emergentism; but first I turn to a familiar topic within factorist quantum mechan-

ics: the discernibility of quantum particles.
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6.3 Factorism and discernibility

Here I review the recent philosophical debate about whether quantum particles

can be discerned. In that debate, all hands assume the factorist concept of a

particle—which I will deny. But despite this, I need briefly to review the debate:

for the ideas are needed both in Section 6.4’s rejection of factorism, and in my

later discussion of varietism and emergentism.

Throughout this Section, for the sake of charity and clarity, I will acquiesce

with the factorist orthodoxy, and use the term ‘particle’ to mean the physical

correlate of a factor Hilbert space.

6.3.1 The old orthodoxy

In short, the situation is this. Until about eight years ago, the orthodoxy was that

quantum particles (in the factorist sense) cannot be discerned, so that Leibniz’s

principle of the identity of indiscernibles fails. But then Saunders, later joined by

Muller and Seevinck, argued that they can be discerned: the springboard for these

arguments is the idea of weak discernibility, as articulated in the Hilbert-Bernays

account of identity (see Part I).

To explain this in more detail, it will be clearest to start with an earlier tra-

dition, from the founding fathers of quantum mechanics. This says that Pauli’s

exclusion principle for fermions—or better: symmetrization for bosons and anti-

symmetrization for fermions—means that:

(a) bosons can be in the same state; but

(b) fermions cannot be; so that

(c) PII holds for fermions but not bosons.

(For an expression of these three views, see e.g. Weyl (1928, p. 241).) In fact,

these claims can and should be questioned. Under scrutiny, each of (a) to (c)

fail (at least for factorist particles), and it seems that PII is pandemically false in

quantum mechanics.

132



For first: according to the factorist, two bosons or fermions that are con-

stituents of an assembly are absolutely indiscernible (in the sense of Section 2.3).

For any assembly of indistinguishable quantum systems (whether fermions or

bosons), and any state of the assembly (appropriately (anti-) symmetrized), and

any two particles in the assembly: the two constituents’ probabilities for all single-

particle quantities are equal; and so are appropriate corresponding two-particle

conditional probabilities, including probabilities using conditions about a third

constituent.

This can also be expressed in terms of the reduced density operators of the

constituent particles. According to the usual procedure of yielding the reduced

density operator of a particle by tracing out the states for all the other particles

in the assembly, we obtain the result that for all (anti-) symmetrized states of the

assembly, one obtains equal reduced density operators for every particle.2

Thus not only can fermions ‘be in the same state’, just as much as bosons

can be—pace the usual slogan form of the exclusion principle. Also, a pair of

indistinguishable particles of either species must be in the same state. This result

suggests that PII is pandemically false in quantum theory.3

6.3.2 The new orthodoxy?

Such was the orthodoxy until eight years ago. But this orthodoxy has also been

recently shown to fail! For (building on the Hilbert-Bernays account of identity)

there are ways of distinguishing particles that outstrip the orthodox notion of a

quantum state for a particle (and the associated probabilities, including conditional

probabilities)—and yet which are supported by quantum theory.

For as the Hilbert-Bernays account teaches us, two objects can be discerned,

even while sharing all their monadic properties and their relations to all other

2A selected bibliography for this result runs as follows: Margenau (1944), French & Red-
head (1988), Butterfield (1993), Huggett (1999, 2003), Massimi (2001), French & Krause (2006,
pp. 150-73).

3I note parenthetically that these results can also be shown to hold for paraparticles, so long
as one follows Messiah and Greenberg’s (1964) recommendation of working with ‘generalised
rays’ (i.e. multi-dimensional subspaces) instead of one-dimensional rays. See Huggett (2003).
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objects (cf. Section 2.3)—and even though any relation that they hold to one

another is held symmetrically. That is, they can be discerned weakly. Thus if, for

some relation R and two objects a and b, we have that Rab and Rba, then a and

b must be distinct if either Raa or Rbb (or both) fails.

The remaining task is to provide such a relation in the context of quantum

mechanics. This task was undertaken in its most general form for fermions by

Muller and Saunders (2008), and for all particles by Muller and Seevinck (2009).4

I will now (in Sections 6.3.3 and 6.3.4) briefly appraise the results in these two

papers. I will conclude that Saunders, Muller and Seevinck were largely correct,

but that their proofs make incorrect assumptions, on their own terms, about which

aspects of the quantum formalism represent genuine physical structure. I will

propose a friendly amendment to the Saunders-Muller-Seevinck results in Section

6.3.5, and secure the fact that the factorist’s particles are always merely weakly

discernible, whether they be bosons, fermions or paraparticles.

6.3.3 Muller and Saunders on discernment

Here I briefly present the main result contained in Muller and Saunders (2008).

First I follow these authors in establishing three important distinctions in the way

that particles may be discerned.

1. Absolute vs. relative vs. weak discernment. The first distinction relates to

the logical form of the predicates used to discern the particles (cf. Section

2.3). As we have seen, all fermions and bosons are absolutely indiscernible;

they are also relatively indiscernible. Thus our only hope is to discern them

weakly.

2. Mathematical vs. physical discernment. Of course, it is crucial that the prop-

erties and relations used to discern the particles be physical, in the sense of

Section 4.2.3: we cannot appeal to elements of the theory’s mathematical

formalism which have no representational function. Thus, for example, we

4This work built upon an original suggestion by Saunders (2003b), which took inspiration
from the fact that two particles in the spin singlet state may be said to have opposite spin (or
to have vanishing combined total spin) without picking a basis.
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cannot discern two particles in an assembly merely by appealing to the fact

that the Hilbert space for that assembly is a tensor product of two copies of

a factor Hilbert space. For all we know, this representative structure may be

redundant; there may in fact only be one particle. So we must instead appeal

to quantities in the formalism which genuinely represent physical quantities.

Like Muller, Saunders and Seevinck, I call this sort of legitimate discern-

ment ‘physical discernment’. I call instances of spurious discernment ‘math-

ematical discernment’—Muller and Saunders instead use the phrase ‘lexicon

discernment’; but I distinguish between mathematical objects (like Hilbert

spaces) and mathematical language, and so my jargon meshes better with

my general philosophical framework.

3. Categorical vs. probabilistic discernment. The final distinction relates to

the assumptions required to secure the discernment. Muller and Saunders

call an instance of discernment ‘categorical’ just in case it requires no ap-

peal to the Born rule, and ‘probabilistic’ otherwise. The main advantage of

categorical, as opposed to probabilistic, discernment is that by by-passing

probabilistic notions its validity need not wait on any solution to the quan-

tum measurement problem. However, this advantage is in my view only

slight, since surely any solution to the measurement problem must secure at

least an approximate vindication of the Born rule.

We are now in a position to state the main Muller-Saunders result:

(SMS1) Fermions are categorically, weakly, physically discernible.

Reconstruction of proof (cf. Muller and Saunders (2008, p. 536): We consider an

assembly of only two fermions, so our Hilbert space is A(H⊗H); the result is easily

extendible for more than two particles (cf. Muller and Saunders (2008, p. 534)).

Select some complete set of projection operators {Ei},
∑

iEi = 1, for the single-

particle Hilbert space H and define Pij := Ei − Ej. Then define P
(1)
ij := Pij ⊗ 1

and P
(2)
ij := 1⊗Pij, where the superscripts are labels for particle 1 and 2. We then

define the following relation:

Rt(x, y) iff
∑
i,j

P
(x)
ij P

(y)
ij ρ = tρ, (6.1)

135



where t ∈ R, ρ is the density operator representing the state of the assembly, and

the indices i, j sum over the projectors Ei.

First we prove that 1 and 2 are categorically and weakly discerned by Rt for

some value of t. To see that the discernment is categorical, it can be shown

(cf. Muller and Saunders (2008, p. 533)) that, with dim(H) > 2, for every state

|Ψ〉 ∈ A(H⊗H), ∑
i,j

P
(1)
ij P

(2)
ij |Ψ〉 =

∑
i,j

P
(2)
ij P

(1)
ij |Ψ〉 = −2|Ψ〉 (6.2)

and ∑
i,j

(
P

(1)
ij

)2

|Ψ〉 =
∑
i,j

(
P

(2)
ij

)2

|Ψ〉 = 2(d− 1)|Ψ〉 , (6.3)

where d = dim(H). Thus every state of the assembly is an eigenstate of the

operators used in the definition of Rt; and so we do not need to assume the Born

rule. Rt therefore promises to provide categorical discernment.

To see that Rt discerns the particles weakly for some t, note that Rt(1, 1) and

Rt(2, 2) iff t = 2(d − 1), whereas Rt(1, 2) and Rt(2, 1) only if t = −2.5 So the

relations R2(d−1) and R−2 both serve to weakly discern particles 1 and 2.

Finally, it remains to be shown that Rt is a physical relation. I turn to Muller

and Saunder’s criteria (2008, pp. 527-8):

(Req1) Physical meaning. All properties and relations should be trans-

parently defined in terms of physical states and operators that corre-

spond to physical magnitudes, as in [the weak projection postulate],6

in order for the properties and relations to be physically meaningful.

(Req2) Permutation invariance. Any property of one particle is a prop-

erty of any other; relations should be permutation-invariant, so binary

relations are symmetric and either reflexive or irreflexive.

5Remember that ‘1’ and ‘2’ serve as particle labels in the expressions ‘Rt(1, 2)’, etc.
6The weak projection postulate is effectively Einstein, Podolsky and Rosen’s (1935) reality

condition that the assembly’s being in an eigenstate of any self-adjoint operator Q with eigen-
value q is a sufficient condition for the assembly’s possessing the property corresponding to the
quantity’s Q having value q. This is an interpretative principle, which, like Muller and Saunders
(2008) and Muller and Seevinck (2009), I take for granted.
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(Req2) is clearly true of Rt. (Req1) is also true of Rt, provided that: (i) the projec-

tors Ei are physically meaningful; and (ii) the physical meaningfulness of operators

is preserved under mathematical operations; for our purposes these must include:

arithmetical operations, i.e. addition and multiplication; and tensor multiplication

with the identity. (Note: Muller and Saunders take (i) (along with (Req2)) to be

sufficient to establish that Rt is a physical relation (2008, pp. 534-5). However, it

is clear that (ii) is also required.) �

Commentary. I take no issue with Muller and Saunders’ claim that their rela-

tions Rt provide categorical and weak discernment. However, I question whether

the relations Rt may properly be considered physical. I take no issue with the

idea that projectors per se be physically meaningful (like Muller and Saunders,

I agree that these can be considered to represent specific experimental questions

with a yes/no answer); but Rt is defined in terms of non-symmetric projectors

Ei ⊗ 1, etc. Yet, being anti-haecceitists, I take it as compulsory—that is, as a

necessary condition for representing a physical quantity—that the quantities obey

the Indistinguishability Postulate.

This brings us to my criticism of (Req2). My criticism has two components.

First: it misapplies the correct idea that physical quantities must be symmetric. By

requiring only that the relations defined from the quantum mechanical quantities

be symmetric, (Req2) fails to rule out quantum mechanical quantities which may

themselves be non-symmetric. To take a simple illustration of this point: ‘x is

particle 1 and y is particle 2’ clearly fails to be a physical relation, both in the

proper sense, and in terms of (Req2). But the relation ‘x is particle 1 and y is

particle 2, or x is particle 2 and y is particle 1’ is equally unphysical, yet it satisfies

(Req2).

It may be replied: this is where (Req1) comes in. But this brings us to the

second component of my criticism of (Req2): it is redundant. For it is anyway nec-

essary for a quantity to be symmetric to satisfy (Req1), since any non-symmetric

quantity contravenes IP, and therefore cannot represent a ‘physical magnitude’.

Indeed: since (Req1) already demands that the quantities be physical, why do we

need another requirement at all?
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It may be objected on behalf of Muller and Saunders that, while the quantities

P
(1)
ij and P

(2)
ij indeed fail to be symmetric, the quantities defined in terms of them—

namely, the
∑

i,j P
(x)
ij P

(y)
ij —are symmetric. This is indeed true:

∑
i,j

(
P

(1)
ij

)2

=∑
i,j

(
P

(2)
ij

)2

= 2(d− 1)1⊗ 1 and
∑

i,j P
(1)
ij P

(2)
ij =

∑
i,j P

(2)
ij P

(1)
ij = 2(

∑
iEi ⊗Ei −

1⊗1), where 1 is the identity on H. (Note that the restrictions of both quantities

to the anti-symmetric sector, A(H ⊗ H), are multiples of the identity on that

sector.) But I see no force in the objection: the physical significance of these

quantities was supposed to rest on their being constructions out of quantities like

Ei ⊗ 1; yet it is precisely these quantities which run afoul of IP.

Without any convincing account of the physical significance of the building

blocks of the
∑

i,j P
(x)
ij P

(y)
ij , these quantities must be assessed for their physical

significance on their own terms. But, since they are all multiples of the identity

on the assembly’s state space, this significance is trivial: they all correspond to

experimental questions which yield the same answer on every physical state.

This triviality is a problem for Muller and Saunders, since it blocks the Rt from

being physical relations. If we now attempt to redefine the Rt in a way that avoids

misleading reference to the chimerically physical quantities P
(x)
ij we obtain:

Rt(x, y) iff (x = y and 2(d− 1)ρ = tρ) or (x 6= y and (−2)ρ = tρ) (6.4)

This is equivalent to:

Rt(x, y) iff (x = y and t = 2(d− 1)) or (x 6= y and t = −2). (6.5)

So long as we have a definition of the Rt in terms of quantities that seems (i.e. from

the point of view of the syntax) to treat the x = y and x 6= y cases equally, the fact

that a different quantity (i.e. a different multiple of the identity) underlies each

of these two cases is tolerable. (In just the same way, Rxy and Rxx are strictly

speaking different predicates—since one refers to a relation while the other refers

to a monadic property—yet it is normal to treat any instance of Rxx as a (special)

instance of Rxy. Indeed: weak discernment relies on this being legitimate.) But

since the quantities
∑

i,j P
(x)
ij P

(y)
ij must be taken at face value—that is, as nothing
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but multiples of the identity—we must adopt definition (6.5) over definition (6.1),

and definition (6.5) is hopelessly gerrymandered and unphysical. Thus Muller

and Saunders’ proof that any two fermions are physically discernible does not go

through.

In Section 6.3.5, I propose an alternative relation which will discern fermions

physically and weakly, though not categorically. But first let me address the main

results in Muller and Seevinck (2009).

6.3.4 Muller and Seevinck on discernment

Muller and Seevinck use a similar framework to Muller and Saunders (2008):

specifically, they carry over the three distinctions between kinds of discernment

presented above, and the two requirements for physical significance, (Req1) and

(Req2).7 There are two main results to discuss: the first concerns spinless parti-

cles with infinite-dimensional Hilbert spaces; the second concerns spinning systems

with finite-dimensional Hilbert spaces.

I begin with their Theorem 1. (Note that I rephrase their Theorems; cf. Muller

and Seevinck (2009, pp. 189).)

(SMS2) In an assembly with Hilbert space
⊗N L2(R3) and the associated

algebra of quantities B(
⊗N L2(R3)), any two particles are categor-

ically, weakly, physically discernible.

Reconstruction of proof (cf. Muller and Seevinck (2009, p. 189)): Again, for

simplicity’s sake, I restrict attention to the case of two particles (N = 2). Let

Q be the position operator for a single particle in some dimension (say x), and

let be P be the momentum operator in that same dimension. (So Q and P are

(partially) defined on L2(R3); and I shall not go into detail about the partialness of

the domains of definition, which are adequately discussed by Muller and Seevinck.)

7Muller and Seevinck (2009, pp. 185-6) entertain adding a third requirement, to the effect
that discernment by a relation is ‘authentic’ only if it is irreducible to monadic properties, and
discernment by a monadic property is ‘authentic’ only if it is irreducible to relations. They
reject this extra requirement, as do I; but my reasons are different. For me, physical meaning
(embodied in (Req1)) is all one could, and should, reasonably ask for—so long as that is taken
to entail the requirement that IP is satisfied; cf. my commentary of Muller and Saunders’ proof
in Section 6.3.3.
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Now define Q(1) := Q⊗1 and Q(2) := 1⊗Q, and P (1) := P ⊗1 and P (2) := 1⊗P ,

where 1 is the identity on L2(R3).

We may now define a relation C as follows:

C(x, y) iff [P (x), Q(y)]ρ = cρ, for some c 6= 0 , (6.6)

where ρ is the density operator representing the state of the assembly. Now for

every state we have C(1, 1) and C(2, 2), since [P (1), Q(1)] = [P (2), Q(2)] = −i~1⊗1.

And we also have ¬C(1, 2) and ¬C(2, 1), since [P (1), Q(2)] = [P (2), Q(1)] = 0. Thus

C weakly discerns particles 1 and 2. This discernment is categorical, since C holds

or not categorically, i.e. without probabilistic assumptions. And the discernment

is physical, since C meets (Req1) and (Req2). �

Commentary. First of all I note that the condition in (SMS2), that each par-

ticles’ state space be L2(R3), I grant, of course, since I take it to be a compulsory

requirement that particles be located (cf. Sections 5.1.2 and 5.2.1). Second: since

the discernment is categorical, it is no restriction that the full (i.e. un-symmetrized)

Hilbert space is used in the proof: the proof carries over for all restrictions to sym-

metry sectors.

As in Section 6.3.3, again I take no issue with the claim that the discernment

is weak or that it is categorical, but I deny that it is physical. The reason is

the same as for Muller and Saunders (2008): namely, the proof uses unphysical

quantities. (Thus I deny that (Req1) is satisfied.) Again we demand not just

that the discerning relation be symmetric, but also that it be defined using only

physical—a fortiori, only symmetric—quantities. And Q(x) and P (x), despite their

tantalising intuitive interpretation, do not count as physical quantities.

I now turn to Muller and Seevinck’s second main Theorem:

(SMS3) In an assembly with a finite-dimensional Hilbert space
⊗N C2s+1,

where s ∈ {1
2
, 1, 3

2
, . . .} and the associated algebra of quantities

B(
⊗N C2s+1), any two particles are categorically, weakly, physically

discernible using only their spin degrees of freedom.

Reconstruction of proof (cf. Muller and Seevinck (2009, p. 193-7)): Again I

restrict attention to the case of two particles (N = 2). Let S = σxi + σyj + σkk
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be the quantity representing a single particle’s spin (so S acts on C2s+1). Then we

define S1 := S⊗ 1 and S2 := 1⊗ S, and the relation T as follows:

T (x, y) iff for all ρ ∈ D(C2s+1 ⊗ C2s+1), |(Sx + Sy)|2ρ = 4s(s+ 1)~2ρ. (6.7)

I note that |S|2 = s(s+1)~21; this entails that |2S1|2 = |2S2|2 = 4s(s+1)~21⊗1; so

T (1, 1) and T (2, 2) both hold. Meanwhile, |(S1+S2)|2 = |S|2⊗1+1⊗|S|2+2S⊗S =

2s(s + 1)~21 ⊗ 1 + 2S ⊗ S. But the eigenvalues of |(S1 + S2)|2 never exceed

(2s)(2s+1)~2 < 4s(s+1)~2, so ¬T (1, 2) and ¬T (2, 1) both hold. This discernment

is clearly weak. It is categorical, since it relies on no probabilistic assumptions,

and it is physical, since T satisfies (Req1) and (Req2). �

Commentary. I note that, in order to put the physical significance of T on

firmer ground, Muller and Seevinck extend the EPR reality condition (cf. footnote

6) to a necessary and sufficient condition, which they call the ‘strong property

postulate’. According to this postulate, the assembly possesses the property cor-

responding to the quantity’s Q having value q if and only if the assembly’s state is

an eigenstate of the self-adjoint operator Q, with eigenvalue q. This strengthening

is required to establish that the assembly does not possess combined total spin√
4s(s+ 1)~ when it is not in an eigenstate of the total spin operator.

Freedom from this stronger reality condition can be bought at the price of a

concession to settle for probabilistic rather than categorical discernment. For we

may define the new relation T ′:

T ′(x, y) iff Tr
(
ρ|(Sx + Sy)|2

)
= 4s(s+ 1)~2. (6.8)

It is clear that T ′ discerns iff the “de-modalized” version of T discerns. But the

definition of T ′ involves a commitment to the Born rule, so T ′’s discernment is

probabilistic. This trade-off between the strong reality condition and the Born

rule will also be a feature of my proposed discerning relations in the following

Section.

My previous objection, which I levelled against (SMS1) and (SMS2), appears to

be valid here too. For, even though |(S1 +S2)|2 and |2S1|2 = |2S2|2 are symmetric,

once again their building blocks (S1 and S2) are not, and (it may be argued) it is
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only when defined in terms of these components that T is not a gerrymandered

relation.

However, our usual objection does not hold in this case. On the contrary, it

seems reasonable to take T (x, y) as a natural physical relation, even though its

explicit mathematical form depends on whether x = y or x 6= y. To see this, it

should be enough that T can be parsed in English as the relation: ‘the combined

total spin of x and y has the magnitude
√

4s(s+ 1)~ in all states’. Combined total

spin is a symmetric quantity, and it has obvious physical significance. Therefore I

do not take issue with the discerning relation being physical.

I have two further objections in this case: one mild, the other more serious.

The mild problem is that the relation T is different in a significant way from the

previous relations Rt and C. While Rt and C both applied to a given state of the

assembly, the definition of T involves quantification over all states of the assembly.

It is therefore a modal relation. But appeal to modal relations in this context is

problematic, since it threatens to trivialise the search for a discerning relation for

every state. It would turn out that PII is necessarily true if it is possibly true: a

result that is at best controversial.

(Note, incidentally, that we cannot quite criticise the use of modal relations on

the grounds that it assumes haecceitism. The natural thing to do for a factorist

is to use the Hilbert space labels to cross-identify, and this seems to have a whiff

of haecceitism about it. However, the factorist strategy need not commit one to

haecceitism, since the quantification over states may be restricted to the (anti-)

symmetric sectors, in which all states are permutation-invariant.)

This mild problem is easily addressed. We simply drop the quantification over

states in the definition of T . If we do this, then the (unquantified) right-hand

side of the definition (6.7) is still satisfied iff x = y, for all states ρ. We thereby

drop the modal involvement. Thus we define a new relation, to be parsed as ‘the

combined total spin of x and y has the magnitude
√

4s(s+ 1)~’. The discernment

remains categorical, since no probabilistic assumptions have been made.

The serious problem is that (SMS3) is clearly only applicable to assemblies

whose constituent particles have non-zero spin. This might seem to be only a mild
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omission, since as a matter of fact no zero-spin particles actually exist (except

those that are composed of particles with non-zero spin, and might therefore be

discerned by their internal structure). However, it would be nice to establish

the discernibility of quantum particles for all values of spin, whether or not they

happen to be realised.

To sum up: the same problem beleaguers the first two results (SMS1) and

(SMS2), which aim to demonstrate the discernibility of (respectively) fermions

and any particles with spatial degrees of freedom. The problem is that they both

appeal to quantities which, in virtue of contravening IP, are non-physical. The

third result, (SMS3), avoids this problem (modulo dropping some unnecessary

modal involvement). However, it does not apply to particles with zero-spin. I now

turn to my proposal for discerning any species of particle, for any value of spin.

6.3.5 A better way to discern factorism’s particles

Muller and Saunders Theorem 3 (pp. 539-40) contains the germ of a better way to

secure discernment; i.e. a way free of the criticisms discussed in Sections 6.3.3 and

6.3.4. This Section develops the germ. I proceed in stages. First I outline the basic

idea, and propose a relation which weakly and physically discerns two particles in

any two-particle assembly, using statistical variance. Then I investigate discern-

ment for heterodox state spaces, in which particles may have definite position, and

give a relation that will weakly and physically discern there too. Finally, I propose

a relation that weakly and physically discerns any two particles in an assembly of

any number of particles.

Stage A: The basic idea.

My basic idea is that particles may be discerned by taking advantage of anti-

correlations between single-particle states. In the case of fermions, this is ‘easy’

because of Pauli exclusion: in any basis the occupation number for any single-

particle state never exceeds one. In the case of the other particles, it is more

tricky, due to the fact that states for non-fermionic particles may have as terms

product states with equal factors. In these states, two or more particles are fully

correlated, so there does not seem to be any quantum property or relation which
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would discern them. The solution is to change the basis to one in which anti-

correlations appear with non-zero amplitude; the quantity associated with this

new basis can then form the basis of a discerning relation.

Thus my strategy is discernment through anti-correlations, and the finding

of anti-correlations through dispersion. For any state in which two particles are

fully correlated, there will be dispersion in some other basis; in particular, the

dispersion will involve branches with non-zero-amplitudes in which the particles

are anti-correlated.

Stage B: The variance operator.

For simplicity, I focus exclusively on the two particle case. We may take the

assembly Hilbert space to be L2(R3) ⊗ L2(R3), but my results still carry over if

we restrict to a symmetry sector, or add additional (e.g. spin) degrees of freedom.

Anti-correlations between single-particle states in an eigenbasis for some single-

particle quantity Amay be indicated by means of the following ‘standard deviation’

operator:

∆A :=
1

2
(A⊗ 1− 1⊗ A) . (6.9)

Actually, I will use its square ∆2
A, the ‘variance’ operator, which, like ∆A, is self-

adjoint (since A is). Unlike ∆A, ∆2
A is a symmetric operator, so it is in line

with the Indistinguishability Postulate (IP), and is therefore eligible to represent

a physical quantity.

I also introduce the symmetrized quantity A, which may be viewed as a mean

of A taken over the two particles:

A :=
1

2
(A⊗ 1 + 1⊗ A) . (6.10)

Note that the over-line does not indicate an expectation value: A is an operator.

By similarly defining A2 = 1
2

(A2 ⊗ 1 + 1⊗ A2) we can express the variance
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operator more suggestively:

∆2
A =

1

4
(A⊗ 1− 1⊗ A)2

=
1

4

(
A2 ⊗ 1 + 1⊗ A2 − 2A⊗ A

)
=

1

2

(
A2 − A⊗ A

)
(6.11)

and

∆2
A =

1

4

(
A2 ⊗ 1 + 1⊗ A2 − 2A⊗ A

)
=

1

2

(
A2 ⊗ 1 + 1⊗ A2

)
− 1

4

(
A2 ⊗ 1 + 2A⊗ A+ 1⊗ A2

)
= A2 − A2

. (6.12)

It is the latter equation (6.12) which justifies the term ‘variance’ for ∆2
A. But

note again that it is not the (c-numbered) statistical variance of A over a given

wavefunction; it is the variance of the operator A over the two particles: ∆2
A is

itself still an operator. The former equation (6.11) makes it most clear that ∆2
A

measures the anti-correlation between each of the two particles’ A-eigenstates. In

particular, for any state all of whose terms are product states with equal factors

in the A-basis:

|Ψ〉 =
∑
k

ck|φk〉 ⊗ |φk〉 , (6.13)

where

A|φk〉 = ak|φk〉 , (6.14)

the variance has eigenvalue zero:

∆2
A|Ψ〉 =

1

4

∑
k

ck
(
A2 ⊗ 1 + 1⊗ A2 − 2A⊗ A

)
|φk〉 ⊗ |φk〉

=
1

4

∑
k

ck
(
a2
k + a2

k − 2a2
k

)
|φk〉 ⊗ |φk〉

= 0 . (6.15)
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In general, however, a state with anti-correlations will not be an eigenstate of

∆2
A. For a generic state-vector

|Φ〉 =
∑
ij

cij|φi〉 ⊗ |φj〉 (6.16)

we have

∆2
A|Φ〉 =

1

4

∑
ij

cij
(
A2 ⊗ 1 + 1⊗ A2 − 2A⊗ A

)
|φi〉 ⊗ |φj〉

=
1

4

∑
ij

cij
(
a2
i + a2

j − 2aiaj
)
|φi〉 ⊗ |φj〉

=
1

4

∑
ij

cij (ai − aj)2 |φi〉 ⊗ |φj〉 (6.17)

so that 〈
∆2
A

〉
:= 〈Φ|∆2

A|Φ〉

=
1

4

∑
ijkl

c∗klcij (ai − aj)2 〈φk|φi〉〈φl|φj〉

=
1

4

∑
ij

|cij|2 (ai − aj)2 . (6.18)

If we assume that A is non-degenerate (ai = aj implies i = j), then it is clear

from (6.18) that there is a positive contribution to the value of
〈

∆2
A

〉
from every

anti-correlation that has a non-zero amplitude.

Stage C: Variance provides a discerning relation.

If a two-particle state has anti-correlations in a single-particle quantity A, we can

build a symmetric, irreflexive relation which discerns them. The main idea is: if

the expectation of the variance operator is non-zero, then this can be expressed as

a relation between the two particles which neither particle bears to itself.

Following Muller & Saunders (2008) and Muller & Seevinck (2009), we define

the operators

A(1) := A⊗ 1 ; A(2) := 1⊗ A . (6.19)
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These quantities, being non-symmetric, are unphysical, but they can be used to

define physical quantities: note, for example, that ∆A ≡ 1
2

(
A(1) − A(2)

)
and A ≡

1
2

(
A(1) + A(2)

)
. We then define the relation R as follows:

R(A, x, y) iff
1

4

(
A(x) − A(y)

)2
ρ 6= 0 . (6.20)

In English: R(A, x, y) holds for the state ρ if and only if ρ is not an eigenstate

of the absolute difference between x’s and y’s operator A, with eigenvalue zero.

Here the variable A ranges over single-particle quantities, x and y range over the

particles 1 and 2, and t ranges over the reals. This definition implies that R(A, 1, 2)

iff R(A, 2, 1), iff ∆2
Aρ 6= 0. And ¬R(A, 1, 1) and ¬R(A, 2, 2). So R(A, x, y) is

symmetric and irreflexive for each A. If ∆2
A does not annihilate ρ, then we have

R(A, 1, 2) and R(A, 2, 1); so in this case R(A, x, y) weakly discerns particles 1 and

2. Moreover, the discernment is categorical.

The question remains whether this discernment is physical. I claim that it

is, on the assumption of factorism, since the quantity 1
4

(
A(x) − A(y)

)2
, which is

symmetric, can be understood as a measure of anti-correlations between x and y

for the single-particle quantity A—i.e., a measure of difference between x’s and

y’s values for A. Thus it is no surprise that 1
4

(
A(x) − A(y)

)2
= 0 for x = y; for no

object can take a value for any quantity that is different from itself. So long as the

single-particle operator A has physical significance, so does 1
4

(
A(x) − A(y)

)2
= 0. I

emphasize that the physical meaning of 1
4

(
A(x) − A(y)

)2
= 0 should not be thought

of as depending on A(x)’s having physical meaning.

There is an important analogy here with relative distance. The relative distance

between particle x and particle y need not be thought of as deriving its meaning

from the absolute positions of x and y, even though the mathematical formalism

of our theory may indeed allow us to define the relative distance in terms of

these absolute positions. We need not take these mathematical definitions as

representative of any physical fact, since we are not forced to admit that an element

of the theory’s formalism which has a physical correlate also has physical correlates

for all of its mathematical building blocks. This is because these mathematical

building blocks may contain redundant structure which is not transmitted to all
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of their by-products. Such is the case of relative distance. And in fact, relative

distance is more than an analogy: for (squared) relative distance is an instance of

∆2
A, if we set A = Q, the single-particle position operator.

Note that an additional assumption is required to transmit physical significance

from 1
4

(
A(x) − A(y)

)2
= 0 to R(A, x, y): we need to assume Muller and Seevinck’s

‘strong property postulate’. Recall that this states that any physical quantity of

the assembly takes a certain value if and only if the assembly is in the appropriate

eigenstate for that physical quantity’s corresponding operator. What is important

here is the ‘only if’ component of the biconditional: this enables us to say that the

difference in x’s and y’s values for A is non-zero just in case the assembly is not

in the eigenstate with eigenvalue zero—including when the assembly is not in an

eigenstate at all.

I summarise the foregoing discussion in the following Lemmas:

Lemma 1 For all two-particle assemblies, and all single-particle quantities A, the

relation R(A, x, y) has physical significance if A does, on the assumption of

the strong property postulate.

Lemma 2 For each state ρ of an assembly of two particles, and each single-particle

quantity A, the relation R(A, x, y) discerns particles 1 and 2 weakly, cate-

gorically and physically if and only if ∆2
Aρ 6= 0, on the assumption of the

strong property postulate.

Proofs: See above. �

As with (SMS3), in the previous Section, we can instead forego the strong

property postulate and instead take advantage of the Born rule, thereby settling

for probabilistic discernment. We then define the relation R′ as follows:

R′(A, x, y) iff
1

4
Tr
[
ρ
(
A(x) − A(y)

)2
]
6= 0 . (6.21)

Similar considerations to those above entail thatR′(A, 1, 2) iffR′(A, 2, 1), iff 〈∆2
A〉 6=

0. And ¬R(A, 1, 1) and ¬R(A, 2, 2). So R(A, x, y) weakly discerns particles 1 and

2 just in case 〈∆2
A〉 6= 0. Thus:
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Lemma 3 For all single-particle quantities A, the relation R′(A, x, y) has physical

significance if A does, on the assumption of the Born rule.

Lemma 4 For each state ρ of the assembly, and each single-particle quantity A,

the relation R′(A, x, y) discerns particles 1 and 2 weakly, probabilistically

and physically, if and only if 〈∆2
A〉 6= 0 for that state.

Proofs: See above. �

Stage D: Discernment for all two-particle states.

So far we have seen that two particles in a state with non-zero variance in some

single-particle quantity A—i.e. two particles which are anti-correlated in A—may

be discerned. To guarantee discernment in all two-particle states it remains to be

shown that, for any such state, there will be some single-particle quantity whose

eigenbasis has anti-correlations. In fact I prove a stronger result: namely that

there is some single-particle quantity which discerns the two particles in all states

of the assembly. Moreover, this quantity is familiar: it is position; and since I

require all particles to have a location (cf. Section 5.1.2), it will be a quantity that

will always be available to discern.

Theorem 1 For each state ρ of an assembly of two particles, the relationR(Q, x, y)

discerns particles 1 and 2 weakly, categorically and physically; where Q is the

single-particle position operator; on the assumption of the strong property

postulate.

Proof: We assume the strong property postulate. From Lemma 2, we know

that R(Q, x, y) discerns particles 1 and 2 weakly, categorically and physically, in

the state ρ if and only if ∆2
Qρ 6= 0. Let us first consider only pure states, and later

generalise to all states.

Pure states. Since we are working in the position representation, we use wave-

functions rather than state-vectors or density operators. The most general form

for a wavefunction for the assembly is

Ψ(x,y) =
∑
ij

cijφi(x)φj(y) , (6.22)
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where the φi are an orthonormal basis for L2(R3). (We assume zero spin, but the

proof is trivially extended for any non-zero value for spin.) Now

(∆2
QΨ)(x,y) =

∑
ij

cij
(
x2φi(x)φj(y) + φi(x)y2φj(y)− 2xφi(x).yφj(y)

)
=

(∑
ij

cijφi(x)φj(y)

)
(x− y)2

= Ψ(x,y)(x− y)2 (6.23)

(cf. Equation (6.17)). This is the zero function only if Ψ(x,y) = 0 whenever x 6= y.

But then it cannot be represented in L2(R3) ⊗ L2(R3), since it is not a function.

(We essentially appeal to the fact that no wavefunction is infinitely peaked at the

diagonal points of the configuration space. The necessary Ψ can be written as a

measure: Ψ(x,y) = f(x)δ(3)(x− y), for some function f ∈ L2(R3). I return to

this point in Theorem 3, below.) Therefore we conclude that (∆2
QΨ)(x,y) 6= 0. It

follows that ∆2
Q|Ψ〉〈Ψ| 6= 0.

Mixed states. We extend to density operators by taking convex combinations

of (not necessarily othogonal) projectors. We have that

∆2
Q

(∑
i

pi|Ψi〉〈Ψi|

)
=
∑
i

pi∆
2
Q|Ψi〉〈Ψi| 6= 0 (6.24)

since both the pi and the spectrum of ∆2
Q are positive.

From Lemma 2, we conclude that R(Q, x, y) discerns particles 1 and 2 weakly.

The discernment is categorical since we made no probabilistic assumptions. Fi-

nally, the discernment is physical, as follows from Lemma 1, the strong property

postulate, and the fact that Q is physical. �

We can now also prove

Theorem 2 For each state ρ of an assembly of two particles, the relationR′(Q, x, y)

discerns particles 1 and 2 weakly, probabilistically and physically; where Q

is the single-particle position operator; on the assumption of the Born rule.

Proof. We assume the Born rule. Then for any state ρ we have (cf. Equations
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6.23, 6.24):

〈
∆2

Q

〉
= Tr

(
ρ∆2

Q

)
=

∑
i

pi〈Ψi|∆2
Q|Ψi〉

=
∑
i

pi

∫
d3x

∫
d3y |Ψi(x,y)|2(x− y)2 , (6.25)

which is positive, i.e. non-zero (cf. Equation (6.18)). From Lemma 4, R′(Q, x, y)

therefore discerns weakly. The discernment is probabilistic, since we assumed the

Born rule. Finally, the discernment is physical, as follows from Lemma 3, the Born

rule, and the fact that Q is physical. �

It may be objected against the proofs of our two Theorems that we rely too

heavily on a technical feature of the assembly’s Hilbert space, namely that it

contains no states which exhibit no spread in (x− y)2. Effectively, unfavourable

cases for discernment have been ruled out of the assembly’s Hilbert space a priori.

But this objection is easily dealt with.

Theorem 3 If we permit two-particle states to be represented by measures as

well as by functions, then for all such states, either R(Q, x, y) or R(P, x, y)

discerns particles 1 and 2 weakly, categorically and physically; where Q

is the single-particle position operator, P is the single-particle momentum

operator; on the assumption of the strong projection postulate.

Proof. The guiding idea is that any state will exhibit spread in either relative

position or relative momentum, so no state is annihilated by both ∆2
Q and ∆2

P.

We now allow measures, as well as functions, to represent states of the assembly.

Recall from the proof of Theorem 1 that (∆2
QΨ)(x,y) = 0 only if Ψ(x,y) = 0

whenever x 6= y. In this case Ψ(x,y) = f(x)δ(3)(x− y), for some measure f(x).

Note at this point that the two particles cannot be fermions, since Ψ(x,y) −
Ψ(y,x) = 0. We now move to the momentum basis by performing a Fourier
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transform on Ψ:

Ψ(k, l) =

∫
d3x

∫
d3y Ψ(x,y)e−ik.xe−il.y

=

∫
d3x

∫
d3y f(x)δ(3)(x− y)e−i(k.x+l.y)

=

∫
d3x f(x)e−i(k+l).x

= f(k + l). (6.26)

This yields

(∆2
PΨ)(k, l) = (k− l)2f(k + l) , (6.27)

which is the zero function only if f(k + l) = 0 whenever k 6= l. But we can only

satisfy this requirement if f is the zero function. But in that case Ψ(x,y) is

the zero function, and so does not represent a state. So if (∆2
QΨ)(x,y) is the zero

function, then (∆2
PΨ)(k, l) can’t be. This result is easily extended to mixed states.

With this result and Lemma 2 we conclude that either R(Q, x, y) or R(P, x, y)

(or both) discerns particles 1 and 2 weakly. The discernment is categorical, since

we made no probabilistic assumptions. Finally, the discernment is physical, given

Lemma 1, the strong property postulate, and the fact that both Q and P are

physical. �

It only remains to state our

Theorem 4 If we permit two-particle states to be represented by measures as

well as by functions, then for all such states, either R(Q, x, y) or R(P, x, y)

discerns particles 1 and 2 weakly, probabilistically and physically; where Q

is the single-particle position operator, P is the single-particle momentum

operator; on the assumption of the Born rule.

Proof: Left to the reader. �

So we have established the weak discernibility of indistinguishable particles

in any two-particle assembly. But my results are restricted to the two particle

case. Therefore, I now turn to the many-particle case, and present Theorems for

assemblies of any number of particles.
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Stage E: Discernment for all many-particle states.

I begin by defining a generalized N -particle variance operator for each single-

particle quantity A, for any N > 2. For any single-particle quantity A we define(
∆

(N)
A

)2

:= A2 − A2

=
1

N

N∑
i

1⊗ · · ·A2
i ⊗ · · ·1−

(
1

N

N∑
i

1⊗ · · ·Ai ⊗ · · ·1

)2

=
1

N

N∑
i

1⊗ · · ·A2
i ⊗ · · ·1

− 1

N2

(
N∑
i

1⊗ · · ·A2
i ⊗ · · ·1

+ 2
N∑
i<j

1⊗ · · ·Ai ⊗ · · ·Aj ⊗ · · ·1

)

=
1

N2

(
(N − 1)

N∑
i

1⊗ · · ·A2
i ⊗ · · ·1

− 2
N∑
i<j

1⊗ · · ·Ai ⊗ · · ·Aj ⊗ · · ·1

)

=
1

N2

N∑
i<j

(1⊗ · · ·Ai ⊗ · · ·1 − 1⊗ · · ·Aj ⊗ · · ·1)2 . (6.28)

Note that
(

∆
(2)
A

)2

= ∆2
A; cf. Equations (6.11) and (6.12).

Again, my strategy is to discern by setting A = Q, the single-particle position

operator. If we act on any wavefunction Ψ in
⊗N L2(R3) with

(
∆

(N)
Q

)2

we obtain,

using (6.28),

((
∆

(N)
Q

)2

Ψ

)
(x1, . . .xN) =

1

N2

(
N∑
i<j

(xi − xj)
2

)
Ψ(x1, . . .xN) . (6.29)

Now it is clear from Equation (6.29) that we cannot proceed in the general case ex-

actly as we did in the two-particle case. That is: we cannot discern two particles—a
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and b, say—by relying on the variance operator’s annihilating the wavefunction.

For the vanishing of the right-hand side of Equation (6.29) is not a necessary con-

dition for a and b’s having vanishing relative distance: this relative distance may

be zero, and yet there may still be non-zero contributions from the other particles.

However, we need only make mild adjustments to our previous strategy. My

idea is to look at regions of the configuration space for which (xi−xj)
2 is constant,

except for when i or j equals a or b. We then independently vary xa and xb. If the

wavefunction is non-zero for xa 6= xb, then we find variation in the right-hand side

of Equation (6.29) which can only be attributed to a and b’s having non-vanishing

relative distance, i.e. to their being discernible.

We first define a new dyadic relation between particles:

D(N)(x, y) iff((
∆

(N)
Q

)2

Ψ

)
(x1, . . .xN) 6= 1

N2

N∑
i < j;

〈i, j〉 6= 〈x, y〉;
〈i, j〉 6= 〈y, x〉

(xi − xj)
2 Ψ(x1, . . .xN) . (6.30)

Note that D(2)(x, y) iff R(Q, x, y); so D(2) is a physical relation. Is D(N) a physical

relation for all N? First we note that the N -particle variance operator for position,(
∆

(N)
Q

)2

, is a physical quantity, as is evident from its definition (6.28). Now we

need to make physical sense of the condition in the definition of D(N) (Equation

(6.30)).

Recall that R(A, x, y)’s defining condition is to the effect that the wavefunction

is not an eigenstate of the variance operator for some quantity (with eigenvalue

zero); with the strong property postulate, this entails that the assembly does not

have the corresponding physical property (namely, zero variance in that quantity).

Therefore, there can be no doubt that R’s defining condition is physically mean-

ingful (so long as the strong property postulate is valid). However, in the case

of D(N), the condition is not that Ψ not be an eigenstate; the condition is rather

that Ψ not be sent to some specific function by the N -particle variance operator

for position. The strong property postulate is therefore no help in giving D(N)’s
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defining condition physical significance.

We regretfully settle for probabilistic discernment. D(N)’s defining condition

makes perfect physical sense if we assume the Born rule, since then the condition

could be interpreted as the N -particle variance operator for position having an

expectation value not equal to the value specified in the right-hand side of Equation

(6.30). We can make this more explicit by defining another relation:

D′(N)(x, y) iff〈(
∆

(N)
Q

)2
〉
6= 1

N2

∫
d3x1 · · ·

∫
d3xN

N∑
i < j;

〈i, j〉 6= 〈x, y〉;
〈i, j〉 6= 〈y, x〉

(xi − xj)
2 |Ψ(x1, . . .xN)|2 . (6.31)

We may now prove

Thereom 5 For each state ρ of an assembly of N particles, the relation D′(N)(x, y)

discerns any two distinct particles x and y weakly, probabilistically and phys-

ically, on the assumption of the Born rule.

Proof. We prove this only for pure states and zero spin; the extension to mixed

states and non-zero spin will be obvious, given our proof of Theorem 1.

It is clear that ¬D′(N)(x, x) for all x, since when x = y the right-hand side of

Equation (6.31) corresponds to the definition of the left-hand side (cf. Equation

(6.29)), and therefore must be equal to it. Thus D′(N) is irreflexive. To show that

D′(N) discerns any two particles weakly, we need to prove that D′(N)(x, y) holds

whenever x 6= y.

This we do by reductio: assume that there are two particles a and b (a 6= b)

for which ¬D′(N)(a, b). Then we must have, by subtracting the right-hand side of

Equation (6.31) from its left-hand side:

1

N2

∫
d3x1 · · ·

∫
d3xN (xa − xb)

2 |Ψ(x1, . . .xN)|2 = 0 . (6.32)

This holds only if Ψ(x1, . . .xN) = 0 whenever xa 6= xb. So Ψ(x1, . . .xN) =
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f(x1, . . .xa, . . .xb−1,xb+1, . . .xN)δ(3)(xa − xb), where f is some 3(N − 1)-place

function. But then Ψ is not a function, so it is not a state in
⊗N L2(R3). Thus

D′(N)(a, b), and D′(N) weakly discerns any two particles in the assembly.

The definition of D′(N) involves taking an expectation value, so it discerns prob-

abilistically. Finally, the foregoing discussion establishes that D′(N) is a physical

relation. �

Finally, for completeness, I present our final Theorem of this Section:

Theorem 6 If we permit states of an assembly of N particles to be represented

by measures as well as by functions, then for all such states, either D′(x, y)

or its momentum analogue discerns any two particles x and y weakly, prob-

abilistically and physically, on the assumption of the Born rule.

Proof: Left to the reader. The method is to carry over to the N -particle case

the way in which proofs of Theorems 3 and 4 developed Theorems 1 and 2. �

Let me now sum up the results of Section 6.3. On the assumption of factorism,

a strong version of the principle of the identity of indiscernibles (PII) fails for all

particles. This version of PII permits discernment of two objects only by monadic

properties, or relations to other objects not in the pair. However, a weaker (and

still non-trivial) version of PII is available, which allows particles to be discerned

weakly, i.e. by symmetric and irreflexive relations. This version of PII holds for all

pairs of particles: fermions, bosons and paraparticles.

Previous attempts to establish this general result by Muller and Saunders

(2008) and Muller and Seevinck (2009) have been seen to fail, due to the use

of mathematical machinery which could be given no physical interpretation. How-

ever, physical relations exist which secure the result. They derive their physical

significance from the single-particle position operator (and, if needed, the single-

particle momentum operator). In the case of two-particle assemblies, this discern-

ment may be categorical—that is, independent of all probabilistic assumptions—,

but we must assume the strong property postulate. In the general case, for any

number of particles, the discernment is probabilistic, in that we must assume the

Born rule.
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I now turn to my criticism of factorism, the interpretative doctrine on which

all of the foregoing study of discernibility rests. We will see later (in Chapters 8

and 9) how far this Section’s results may be preserved in an anti-factorist setting.

6.4 The defects of factorism

In this Section I argue that factorism is false, since its target concept of particle

rests on a false interpretative assumption: namely, that, under IP, factor Hilbert

space labels have physical correlates. My argument therefore seeks to undermine

this assumption.

I proceed in three stages. First (Section 6.4.1), I argue that the celebrated

absolute indiscernibility of factorist particles is, on its own, grounds for suspicion

that the representative elements of the quantum formalism have been misidentified.

Second (Section 6.4.2), I show that, under factorism, we fail to recover classical

particles in the classical limit; thereby contravening our desideratum of inter-

theoretic applicability (cf. Section 5.1.5). Third (Section 6.4.3), I combine the first

two stages to argue that the factorist’s particles are not physical, but rather a mere

artefact of the formalism; thereby contravening our (compulsory!) desideratum

that particles be physical (cf. Section 5.1.1). I strengthen the argument by appeal

to an analogous error in statistics: namely, the reification of statistical constructs,

such as the average taxpayer. I conclude the Section, and the Chapter, with a

possible escape route for haecceitistic factorists (Section 6.4.4).

All three stages of my argument appeal to the same phenomenon exhibited by

factorist particles, just explored in Section 6.3:

In any state of the assembly, every particle is in the same quantum state

as any other of the same species: viz. an improper mixture of every

state instantiated by particles of that species.8 In the philosophical jar-

gon: in any state, the particles of a species are absolutely indiscernible

from each other: they are therefore non-individuals (cf. Section 2.3’s

8The only exception, of course, is bosonic states in which all of the bosons of the same species
take the same single-particle state, and so the assembly state is separable.
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Interlude).

6.4.1 Losing individuality

The strangeness of the result just mentioned is often not fully acknowledged.9 Here

I argue that it is so strange as to be unbelievable. The considerations I adduce

split into philosophical and physical, but they are complementary to one another.

From the philosophical angle: the result that all particles of the same mass,

spin and charge are absolutely indiscernible one from another, and are therefore all

non-individuals,10 causes an enormous problem for reference where there should

be none. For example, we cannot, under factorism, refer to the electron that is

in state |φ〉, even if there is a probability of one that the state |φ〉 is instantiated

(i.e. even if the assembly is in an eigenstate of the number operator associated with

|φ〉 with eigenvalue 1). According to factorism, there is no electron that is in state

|φ〉 with probability 1; rather every electron has the same non-zero probability of

being in that state. This blocks us from engaging in the most intuitive way of

speaking when, for example, chemists describe the progression of atomic number

in the periodic table as corresponding to the addition of an electron (and nucleons)

in a stationary state of definite energy.

From a physical angle: the factorist relies on a decomposition of the assembly’s

Hilbert space that is not natural, once the indistinguishability postulate (IP) is im-

posed. (We will return to the idea of ‘natural decompositions in Section 7.2.) The

factorist’s decomposition relies on imagining the Hilbert space of the assembly—

which is a subspace of a tensor product space, being the range of a projection onto

a single symmetry type—as still embedded in the original tensor product space

(Earman (ms.)). Yet the restriction on quantities effected by IP makes inaccessible

the other regions of this Hilbert space—so it is improper to consider the assembly’s

state space to be given by the original, unsymmetrized tensor product. (I consider

a reply to this objection in Section 6.4.4.)

9Notable exceptions are Pooley (2006, p. 116), Dieks and Lubberdink (2008), Earman (ms.)
and James Ladyman and Thomas Bigaj (both from personal correspondence).

10Here I set aside haecceitism, which will afford each factorist particle individuality, albeit an
empirically inaccessible one. I return to haecceitism in Section 6.4.4.
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Thus there is something suspicious about the factorist’s decomposition of the

assembly’s Hilbert space. Perhaps the most adverse result of this is factorism’s

account of the classical and QFT limit; a topic to which I now turn.

6.4.2 Losing limits

One consequence of the non-individuality of factorist particles is that they cannot

become classical particles in an appropriate limit. This phenomenon is well dis-

cussed by Dieks and Lubberdink (2011), but to summarise: In the classical limit,

factorist particles do not acquire the approximate trajectories we associate with

classicality, since the former must remain in statistically mixed states all the way

to the classical limit. Factorist particles cannot tend, in any limit, to become dis-

tinguished one from another in space—like classical particles—by zero or at least

negligible overlap, since each factorist particles always possesses the “entire spatial

profile” of the assembly.

A similar point can be made about quantum field theory: factorist particles

do not tend to the behaviour of QFT-quanta if we consider the limit in which

the total particle number in conserved. This is because QFT-quanta—which are

associated with creation and annihiliation operators a†(φ), a(φ), for some state φ

in the single-particle Hilbert space—always occupy pure states. Indeed: it may be

shown (though I will not here) that QFT-quanta behave just like classical particles

in an appropriate classical limit for QFT. Thus the factorist particles appear to

be the odd ones out. (This vindicates our claim, at the start of Chapter 5, that

the “local” concept of particle as applied in quantum mechanics conflicts with the

“general” concept, which is informed by both classical mechanics and QFT.)

Furthermore, to anticipate the results of the next Chapter: the unnaturalness

of the factorist’s envisaged decomposition of the assembly’s Hilbert space means

that traditional accounts of entanglement are misleading when IP is in place.

For the traditional definition of entanglement—namely, non-separability—makes

sense only if the subsystems are taken to correspond to factor Hilbert space labels.

We will explore these issues much more deeply soon, but I emphasise here that

a further charge against factorism may be that it fails to distinguish “genuine”
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entanglement—i.e. entanglement which may manifest in the algebra of admissible

quantities under IP—from mere non-separability, which is nothing but a formal

feature of the way states are represented in quantum mechanics.11

Thus factorism contravenes our desideratum that the target concept of par-

ticle for quantum mechanics be applicable across its neighbouring theories. Yet

these neighbouring theories themselves—i.e., classical mechanics and QFT—seem

to agree better with each other than either does with quantum mechanics under a

factorist understanding. Clearly, something has gone wrong.

6.4.3 Analogy with the average taxpayer

The factorist’s error may be better understood by analogy with a well known fal-

lacy: the reification of statistical constructs, such as the average taxpayer. Both of

these commit what Whitehead (1925) called the ‘fallacy of misplaced concreteness’.

In my jargon: both mistakenly attributive representational power to elements of

the theory’s formalism that have no straightfoward physical correlate.12

For consider a factorist particle. Necessarily, its state is statistically mixed iff

the assembly’s state is heterogeneous—i.e. iff the assembly has non-zero probabil-

ities for two or more distinct single-particle states being instantiated. Even in the

classical limit, a factorist particle’s state is a statistical mixture of several definite

trajectories.

In this way, a factorist particle behaves much like the average taxpayer (for ex-

ample). For any heterogeneity in the taxpaying population is necessarily correlated

with a statistical spread in the corresponding attributes of the average taxpayer.13

For example, if 10% of the taxpaying population are left-handed, then the aver-

age taxpayer is 10% left-handed. Attributing properties to an object named ‘the

11Earman (ms.) calls this latter phenomenon “pixie dust entanglement”.
12Dieks and Lubberdink’s (2011) criticism is much the same: they say that the factor Hilbert

space labels have “a merely formal significance”.
13I emphasise that by ‘average’ I mean ‘mean’ not ‘median’. It seems convincing to me that

there is such a person as the median taxpayer—i.e. that this person is a physical entity. But
of course, ‘the median taxpayer’ is a non-rigid designator (like ‘the prime minister’), so the
particular physical entity which is the median taxpayer is not invariant over time or possible
worlds.
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average taxpayer’ may well be more vivid, but we must be careful not to mistake

a means of representation for what is being represented. If the ‘average taxpayer’

exists at all, he/she (?) is not a physical thing. So too, I claim, for the factorist

particles. Thus factorism contravenes a compulsory desideratum for the concept

of particle: namely, that particles be physical. Rather, they are merely aspects of

the mathematical formalism used to represent the physical world.

My claim prompts two immediate questions, one might say objections, which

arise from my comparison of factorist particles with the average taxpayer. I answer

each as they arise.

(i) In elementary statistics, there is, so to speak, just one average taxpayer.

That is: each population defines a unique ‘average element’, that by defini-

tion possesses, for each quantity, the population’s mean value. But in the

quantum mechanical treatment of an assembly of N quantum particles—as

we usually say!—there are N factor Hilbert spaces, and so N factorist parti-

cles. So my view faces the question: why are there N such factors, not just

one?

The answer is that the average taxpayer is constructed only to represent the

monadic properties of the population, and only one is required to serve this

purpose. In contrast, N factorist particles are necessary to represent the full

collection of properties and relations, which together are taken to subvene

the properties of the “N -particle” assembly.

(ii) In the case of the average taxpayer, it is clear that we are dealing with a

construct, since it is obvious what physical things it is a construction of.

However, in the case of factorist particles, I have not (yet) given any clue as

to what physical things of which they are to be considered the constructions.

What are these physical things?

This objection is fair, and the rest of this thesis is dedicated to answer it. I

will therefore say nothing now, except that it is a familiar phenomenon in

interpretative philosophy of physics to correctly suspect a theory’s formalism

to contain unrepresentative elements before one has a firm grasp on the

represented ontology. Such is the case with factorism.
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6.4.4 A haecceitistic response

There is one final objection I wish to consider. It can be levelled only by a haec-

ceitistic factorist, and runs as follows. My comparison between factorist particles

and the average taxpayer is flawed because the shared feature which is supposed to

arouse suspicion about their physical reality—i.e., the possession of a statistically

mixed state whenever the population’s state is heterogeneous—is an essential fea-

ture of the average taxpayer but a merely accidental feature of factorist particles.

It is accidental in the latter case, since it relies on the indistinguishability postulate

holding, and it is contingent whether IP is true.

This objection must come from a haecceitistic factorist, since it is only for her

that IP may plausibly be construed as contingent. As we saw (Section 6.2.1),

anti-haecceitism about factorist particles is defined as the view that any given

physical state is represented equally well up to a permutation of factor Hilbert

space labels. Therefore IP is compulsory for an anti-haecceitistic factorist. A

haecceitistic factorist, on the other hand, may view IP as contingent, since she

denies that distinct mathematical states related by a permutation represent the

same physical state. For her, the restriction of the assembly’s Hilbert space to

a particular symmetry sector may be viewed, not as a representational necessity,

but rather as a consequence of the conjunction of IP (as a contingent fact) with

particular initial conditions (cf. French and Krause (2006, p. 148-9)).

This haecceitistic response is a good one. And were not haecceitism doomed

for other reasons (cf. Caulton and Butterfield 2011), then haecceitistic factorism

may, after all, have offered a rival to emergentism, which I endorse in Chapter 9.

However, it is perhaps worth noting that, because (as I will argue in Chapter 9)

emergentism vitiates the weak discernibility results of Section 6.3, neither position

can use those results to discern their particles.

This concludes my discussion of factorism. I now turn to answering the ques-

tion left at the end of Section 6.4.3, namely: Of what are the factorist particles

statistical constructs? These leads us to my two rival target concepts of particle,

varietism and emergentism. But first we need some subtleties about the notion

of entanglement, as applied to indistinguishable systems, that have already been
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alluded to. This is the topic of the next Chapter.
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Chapter 7

Entanglement and individuation

for anti-factorists

The abandonment of factorism—the association of factor Hilbert spaces with the

state spaces of particles, even under the imposition of the Indistinguishability

Postulate—prompts a reappraisal of the use of some central concepts in quantum

mechanics. Chief among these is entanglement: for entanglement is commonly de-

fined as an assembly’s state being non-separable (e.g. Bengtsson and Życzkowski

(2006, p. 336)); and the physical significance of this mathematical feature is obvi-

ously tied to the association of particles with factor Hilbert spaces.

This Chapter is part report, part novel research; both parts are somewhat tech-

nical, and more mathematical than interpretative. The Chapter lays the ground

for interpretative work in Chapters 8 and 9. It is organised in the following way:

Section 7.1 advertises some recent technical results regarding the appropriate def-

inition of entanglement in the context of the Indistinguishability Postulate. These

results are due to Ghirardi, Marinatto and Weber (Ghirardi, Marinatto and Weber

(2002), Ghirardi and Marinatto (2003, 2004, 2005)). They suggest a new defini-

tion of entanglement that is more attuned to the algebra of permutation-invariant

operators than the previous notion of non-separability. In Section 7.2, I turn to

the related idea of individuating (picking out, uniquely referring to) quantum sys-

tems. I present results which allow one to individuate systems by appealing not
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to factor Hilbert space labels but to single-system states ; I call this qualitative

individuation. This work is novel, but is inspired by the recent work of Zanardi

and co-authors (Zanardi (2001), Zanardi et al (2004)). I show that qualitatively

individuated systems possess an algebra of operators which has a natural tensor

product structure, and I give a general prescription for calculating the reduced den-

sity operators for qualitatively individuated systems. Finally, Section 7.3 briefly

investigates individuation over time.

7.1 Subtleties of entanglement

Ghirardi, Marinatto and Weber (2002) and Ghirardi and Marinatto (2003, 2004,

2005) show that the usual definition of entanglement—i.e., non-separability—can

be naturally adapted to quantum systems governed by the Indistinguishability

Postulate. Under their adapted definition, which I call GM-entanglement, the

“entanglement” exhibited by fermions and bosons (and in fact also paraparticles,

which they do not consider) is far closer to the usual entanglement exhibited by

distinguishable systems. In particular, under their definition assemblies of fermions

are not always GM-entangled, even though they must (due to anti-symmetrization)

occupy non-separable states; and bosons need not occupy product states with

identical factors (the only separable state available to an assembly of bosons) in

order to be non-GM-entangled.

It is the purpose of this Section to present and explain the notion of GM-

entanglement. First, I will discuss the familiar notion of entanglement for dis-

tinguishable systems (Section 7.1.1), before moving on to GM-entanglement for

indistinguishable systems (Section 7.1.2).

Without further ado, let me lay down some convenient jargon. Following the

literature, and previous Chapters, I shall call systems whose quantities are re-

stricted by the Indistinguishability Postulate (IP) ‘indistinguishable’, and systems

for which IP is not imposed ‘distinguishable’, even though (as we shall see in Sec-

tion 8.2.6) both sorts of systems may be discernible—even absolutely discernible.

And to clearly separate Ghirardi et al ’s proposed definition of entanglement from
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the usual definition, I will continue to use the entrenched term ‘entanglement’

to mean the familiar mathematical idea of non-separability, and so introduce the

term ‘GM-entanglement’ for Ghirardi et al ’s concept. I will also universally use

the word ‘consituent’ or ‘system’, instead of ‘particle’, since the results below do

not depend on fulfilling the desiderata of Chapter 5.

In what follows, I will restrict myself to assemblies of two systems. However,

the extension of the results to N > 2, and also to paraparticles, will in most cases

be obvious; I will highlight any subtleties as they arise.

7.1.1 Entanglement for two distinguishable systems

In the case of two distinguishable systems (S1 and S2, say), the assembly’s Hilbert

space is simply H1⊗H2, where H1 is the Hilbert space for S1, etc. (Thus factorism

rules for distinguishable systems.) IP is not imposed, so we do not concentrate on

the symmetric or anti-symmetric subspaces.

Entanglement for distinguishable systems is then defined in terms of non-

separability. However, to show more clearly the naturalness of Ghirardi, Marinatto

and Weber’s extension of the concept of entanglement to the case of indistinguish-

able systems, and to follow their presentation more closely, we define:

The system S1, constituent of the assembly S = S1 + S2, described

by the pure density operator ρ, is non-entangled with subsystem S2 iff

there exists a projection operator P onto a one-dimensional subspace

of H1 such that:

Tr[ρ P ⊗ 1] = 1. (7.1)

where 1 is the identity on H2.

This is equivalent to each of the following familiar conditions (assuming pure ρ):

1. The reduced density operator ρ1 = Tr(2)(ρ) of subsystem S1 is a projection

operator onto a one-dimensional subspace of H1 (i.e. S1’s state is pure);

2. Writing ρ = |ψ〉〈ψ|: the state vector |ψ〉 is factorizable (i.e. separable); i.e.,

there exist a state |φ〉 ∈ H1 and a state |χ〉 ∈ H2 such that |ψ〉 = |φ〉 ⊗ |χ〉.
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The support of a density operator ρ is defined as the smallest (“logically

strongest”) projector P that ρ makes certain: Tr(ρP ) = 1 and there is no Q < P

with Tr(ρQ) = 1. The support of ρ is the projector onto the range ran(ρ). So:

for a system in the state ρ, a quantity A whose spectral decomposition contains

the projector onto ran(ρ) has (with certainty) the corresponding value. But no

refinement of A in the corresponding part of its spectrum does so. I again adopt

the usual eigenvalue-eigenstate link (cf. Section 4.2.3). Then only such a quantity

A, or a function of it, has a definite value. (We may also say that a quantity B for

which the projector onto ran(ρ) is a sum of spectral projectors has an ‘unsharp’

value in the corresponding range.)

So: S1 is entangled iff the reduced density operator ρ1 = Tr(2) (ρ) of subsystem

S1 has a multi-dimensional support, PM1 say, projecting onto a multi-dimensional

subspace M1 ⊂ H1. With the eigenvalue-eigenstate link: this is so iff no one-

dimensional projector has a value.

The extreme case (‘total’ or ‘maximal’ entanglement) is where M1 = H1, i.e.

PM1 = 1. Then there is no self-adjoint operator on H1 for which one can claim

with certainty that the outcome of its measurement will belong to any proper

subset of its spectrum.

A phrase which is vivid, and is adopted by Ghirardi and Marinatto (2004, p. 2),

is ‘complete set of properties’: a system with density operator ρ has a complete

set of properties iff ρ is a one-dimensional projector, i.e. ran(ρ) is one-dimensional;

and similarly, they say a system ‘has the complete set of properties identified by ρ’

etc. To avoid connotations of completions of quantum mechanics (hidden variable

theories etc.), we will prefer to say: the system (or its state) is maximally specific;

and similarly, I will say the system is maximally specific à la ρ. And similarly, if

ρ = |ψ〉〈ψ|, then I will say that the system is maximally specific à la |ψ〉.

Note that for two distinguishable systems, one system is maximally specific iff

the other is. We will see in Section 7.1.2 that this is not true for indistinguishable

bosons!

Example 1 (Ghirardi and Marinatto (2004, p. 3)): Suppose that an e−e+ system

is described by the state vector (with obvious notation):
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|ψ〉 =
1√
2

(|↑〉e− ⊗ |↓〉e+ − |↓〉e− ⊗ |↑〉e+)⊗ |R〉e− ⊗ |L〉e+ , (7.2)

where |R〉 and |L〉 are two orthonormal states, whose coordinate representations

have compact disjoint supports at the spatial regions Right and Left, respectively.

(Note the use of the tensor product to bind both states of different systems and

states of the same system associated with different degrees of freedom.) The

reduced density operator describing the electron e− acts on He− = C2 ⊗ L2(R3)

and has the following form:

ρe− =
1

2
(|↑〉〈↑ |+ |↓〉〈↓ |)⊗ |R〉〈R| = 1

2
1⊗ |R〉〈R|. (7.3)

Although there is no value of the spin along any direction, the electron is, with

certainty, inside the right region R; (and an analogous statement can be made

concerning the positron, i.e. that it is inside L). In short: some ‘definite properties’

are possessed because the range of the density operator (7.3) is a proper subspace

of He− , i.e. the two-dimensional subspace spanned by |↑〉 ⊗ |R〉 and |↓〉 ⊗ |R〉.

Example 2: We now consider instead, for the e−e+ system:

|ψ〉 =
1√
2

(|↑〉e− ⊗ |↓〉e+ − |↓〉e− ⊗ |↑〉e+)⊗

(∑
i

ci|φi〉e− ⊗ |χi〉e+
)

(7.4)

where ∀i, ci 6= 0, and {|φi〉} and {|χi〉} are two complete orthonormal sets of the

Hilbert spaces L2(R3) associated to the spatial degrees of freedom of the electron

and positron, respectively. The reduced density operator for the electron is:

ρe− = Tr(2) (|ψ〉〈ψ|) =
1

2
1⊗

∑
i

|ci|2|φi〉〈φi|. (7.5)

In Equation (7.5), 1 is the identity operator on the spin space of the electron.

Since the range of ρe− is now the whole Hilbert space of the first particle, all we

can say with certainty about the measurement of any self-adjoint operator is that

the outcome will be in its spectrum.
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Finally, we recall the familiar fact that non-entanglement corresponds to fac-

torization of all probabilities for all joint measurements: An assembly’s pure state

|ψ〉 is non-entangled (i.e. its constituent systems are not entangled with one an-

other) iff the following equation holds for any pair of quantities A of H1 and B of

H2 such that |ψ〉 belongs to the domains of A⊗ 1 and 1⊗B:

〈ψ|A⊗B|ψ〉 = 〈ψ|A⊗ 1|ψ〉〈ψ|1⊗B|ψ〉. (7.6)

Since |ψ〉 is non-entangled iff |ψ〉 = |ς〉 ⊗ |χ〉 for some |ς〉 ∈ H1, |χ〉 ∈ H2, the

above expectation value may be expressed as

〈ψ|A⊗B|ψ〉 = 〈ς|A|ς〉〈χ|B|χ〉. (7.7)

We will return to this last feature of non-entangled states for distinguishable sys-

tems much later (in Stage E of Section 7.1.2 and Section 7.2). Before that, we

turn to the definition of GM-entanglement.

7.1.2 GM-entanglement for two indistinguishable systems

I now explore the consequences of Ghirardi and Marinatto’s adaptation of the

previous definition (Equation (7.1) above) of non-entanglement. The main results

will be:

(i) Since IP must be obeyed for indistinguishable systems, the basic idea of

non-entanglement—viz. some 1-dimensional single-system projector being

certain—needs to be made precise using symmetric quantities. This revi-

sion of the definition will involve a projector representing, for a factorist,

the idea that at least one of the systems is in the state associated with that

projector.

(ii) GM-entanglement for indistinguishable systems shares many of the attractive

features of entanglement for distinguishable systems. In particular: (a) there

is a sense in which an assembly’s state is non-GM-entangled iff it supervenes

on the states of its constituents; and (b) analogues of Bell’s Theorem (1964)
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and Gisin’s Theorem (1991) hold for the GM-entanglement of two-system

assemblies. (This latter result will be proved much later, once we have

introduced the idea of qualitative individuation, in Section 7.2.)

(iii) The relation between maximal specificity and non-entanglement is weaker for

bosons and paraparticles than for fermions or for distinguishable systems. To

be more precise: the state of two distinguishable systems is non-entangled

iff either system is maximally specific, iff both systems are maximally spe-

cific. This is because for distinguishable systems and fermions we have an

equivalence: one system is maximally specific iff the other is. We will see

that this is not true for bosons or paraparticles.1 Since we will want non-

GM-entanglement to be a symmetric relation between the systems—amongst

other things, this will allow us to treat non-entanglement as a property of

states of the assembly—non-GM-entanglement is defined in terms of both

systems of the assembly being maximally specific.

(iv) Non-GM-entangled states of fermions and paraparticles possess a feature

which is not shared by either non-entangled distinguishable systems, nor

non-GM-entangled bosons. This feature is that, for any non-GM-entangled

state of the assembly, decomposition into maximally specific systems is not

unique. This result will be especially important for Chapter 8, below.

This Section is divided into five Stages. In Stage A, I define in one go, both for

bosons and fermions: first non-entanglement; second, at least one system being

maximally specific. In Stage B, I show that at least one system being maximally

specific is equivalent to the composite’s state-vector being obtained by symmetriz-

ing or anti-symmetrizing a factorized state. In Stage C, I specialize this theorem

to fermions. In Stage D, I specialize this theorem to bosons and paraparticles. In

Stage E, I turn to entanglement and correlations—connecting with the examples

at the end of Section 7.1.1. I emphasise that these results are not novel: they are

all borrowed from Ghirardi and Marinatto (2003).

Stage A: Non-GM-entanglement, and being maximally specific

1The exception arises for multiply occupied single-system states, so it does not apply to
fermions.
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To represent an assembly of two indistinguishable systems, we usually begin with

the Hilbert space H ⊗ H, where H is the Hilbert space for one such system. As

is familiar (cf. e.g. French and Krause (2006, Ch. 4)), the Indistinguishability

Postulate induces a decomposition of the assembly’s Hilbert space into symmetry

sectors—in this case the symmetric subspace S(H ⊗ H) (bosons) or the anti-

symmetric subspace A(H⊗H) (fermions).

Inspired by Ghirardi, Marinatto and Weber (2002), I define:

The indistinguishable constituents of a two-system assembly are non-

GM-entangled iff both systems are maximally specific.

(The assembly is then defined as GM-entangled iff it is not non-GM-entangled.)

And we define:

Given an assembly of two indistinguishable systems, one of the systems

is maximally specific iff there exists a one-dimensional projector P ,

defined on H, such that:

Tr(ρE) = 1 (7.8)

where

E := P ⊗ 1 + 1⊗ P − P ⊗ P. (7.9)

Indeed, extending my terminology from Section 7.1.1, we may say that one of the

systems is maximally specific à la P .

E is invariant under action by the symmetric group S2, and it is a projection

operator: E2 = E. Furthermore Tr(ρE) is the probability of finding at least one of

the two systems in the state onto which the one-dimensional operator P projects.

For E can also be written as

E = (1− P )⊗ 1 + 1⊗ (1− P ) + P ⊗ P ; (7.10)

so this definition of ‘one of the systems is maximally specific’ is really a definition

of ‘at least one system is maximally specific’.

Stage B: ‘At least one being maximally specific’: a general theorem
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The definition just given is equivalent to the assembly’s state taking a certain form:

Theorem (cf. Ghirardi and Marinatto (2003, Theorems 4.2 & 4.3)): At least one

of the systems in a two-system assembly is maximally specific iff the assembly’s

state is obtained by symmetrizing or anti-symmetrizing a separable (i.e. product)

state.

Sketch of Proof:

Right to left (easy half): If |ψ〉 is obtained by symmetrizing or anti-symmetrizing

a factorized state of two indistinguishable constituents, then:

|ψ〉 = N (|φ〉 ⊗ |χ〉 ± |χ〉 ⊗ |φ〉) . (7.11)

By expressing the state |χ〉 as

|χ〉 = α|φ〉+ β|φ⊥〉, 〈φ|φ⊥〉 = 0 (7.12)

and choosing P = |φ〉〈φ|, one gets immediately

Tr(ρE) ≡ 〈ψ|E|ψ〉 =
2(1± |α|2)

2(1± |α|2)
= 1. (7.13)

Left to Right (hard half): If one chooses a complete orthonormal set of single-

system states whose first element |φ0〉 := |φ〉 spans the range of P , writing

|ψ〉 =
∑
ij

cij|φi〉 ⊗ |φj〉,
∑
ij

|cij|2 = 1, (7.14)

and, using the explicit expression for E in terms of P , one obtains:

E|ψ〉 = |φ0〉 ⊗

(∑
j 6=0

c0j|φj〉

)
+

(∑
j 6=0

cj0|φj〉

)
⊗ |φ0〉+ c00|φ0〉 ⊗ |φ0〉. (7.15)

Imposing condition (7.8) implies that E|ψ〉 = |ψ〉 (since E is a projector), which

implies that cij = 0 for i, j 6= 0. Taking into account that for indistinguishable
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systems c0j = ±cj0, the normalization condition of the state |ψ〉 becomes

|c00|2 + 2
∑
j 6=0

|c0j|2 = 1. (7.16)

We have then shown that:

|ψ〉 = |φ0〉 ⊗

(∑
j 6=0

c0j|φj〉

)
+

(∑
j 6=0

cj0|φj〉

)
⊗ |φ0〉+ c00|φ0〉 ⊗ |φ0〉. (7.17)

In the case of fermions c00 = 0. Then, introducing a normalized vector |ξ〉 :=√
2
∑

j 6=0 c0j|φj〉 we obtain

|ψ〉 =
1√
2

( |φ0〉 ⊗ |ξ〉 − |ξ〉 ⊗ |φ0〉) , (7.18)

where 〈φ0|ξ〉 = 0. For bosons, defining the following normalized vector

|θ〉 =

√
4

2− |c00|2

(∑
j 6=0

c0j|φj〉+
c00

2
|φ0〉

)
, (7.19)

the two-particle state vector (7.17) becomes

|ψ〉 =

√
2− |c00|2

4
(|φ0〉 ⊗ |θ〉+ |θ〉 ⊗ |φ0〉) . (7.20)

Note that in this case the states |φ0〉 and |θ〉 are orthogonal iff c00 = 0, in which

case |θ〉 = |ξ〉. �

I now deal separately with the case of fermions and bosons. I will denote the

appropriate restrictions of the operator E of equation (7.9) as Ef and Eb in the

two cases, respectively.

Stage C: ‘At least one being maximally specific’: the theorem for fermions

Since P ⊗ P = 0 on the space of anti-symmetric states A(H ⊗H), one can drop

such a term in all previous formulae. Accordingly, Ef = P ⊗ 1 + 1⊗ P .
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In accordance with the definition of maximal specificity in Stage A: due to the

orthogonality of |φ0〉 and |ξ〉, for the state in equation (7.18), we conclude not only

that there is one fermion that is maximally specific à la the state |φ0〉 (in Ghirardi

and Marinatto’s jargon: one fermion possessing the complete set of properties

identified by the state |φ0〉), but also that the other fermion is maximally specific

à la |ξ〉.

So according to Stage A’s definition of non-entanglement, we have proved:

The fermions of a two-system assembly, whose (pure) state is given by

|ψ〉, are non-GM-entangled iff |ψ〉 is obtained by anti-symmetrizing a

separable state.

We may now extend the definition of GM-entanglement to apply to the states of an

assembly: a two-fermion assembly’s state may then be described as GM-entangled

iff its constituent fermions are GM-entangled.

We can say more. If in expression (7.18), we write P = |φ0〉〈φ0| and Q = |ξ〉〈ξ|
and we define the operators Ef := P ⊗ 1 + 1 ⊗ P and Ff := Q ⊗ 1 + 1 ⊗ Q, we

see that
Tr (Ef |ψ〉〈ψ|) = 1,

Tr (Ff |ψ〉〈ψ|) = 1,

 (7.21)

Moreover, EfFf = FfEf = P ⊗ Q + Q ⊗ P (since P ⊥ Q) is a one-dimensional

projector on the Hilbert space of the assembly, and it satisfies:

〈ψ|EfFf |ψ〉 ≡ 〈ψ| (P ⊗Q+Q⊗ P ) |ψ〉 = 1. (7.22)

It is this identity that allows us to say, not only that one fermion is maximally

specific à la P and one fermion is maximally specific à la Q, but that one fermion

is maximally specific à la P and the other fermion is maximally specific à la Q.

This crucial difference will be important in the next stage, where we consider

bosons and paraparticles, since for those symmetry types the two formulations

come apart.
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I note here an important feature of fermionic states, which will be crucial

later, in Chapter 8. There is an arbitrariness, up to two dimensions, about the

states à la which the two fermions are maximally specific. For suppose the state

|ψ〉 is (7.18), and consider the two-dimensional subspace of H spanned by the

single-system states |φ0〉 and |ξ〉: clearly, if one chooses any two other orthogonal

single-constituent states |κ〉 and |λ〉 spanning the same subspace, then |ψ〉 can also

be written (up to an overall phase factor) as:

|ψ〉 =
1√
2

(|κ〉 ⊗ |λ〉 − |λ〉 ⊗ |κ〉) . (7.23)

Thus the two fermions are also maximally specific à la |κ〉 and |λ〉. Since this

arbitrariness involves fixing an orthonormal basis in C2, it may be parameterized

by CP1 ∼= C ∪ {∞}, the Riemann sphere. In fact, each orthonormal basis is

represented by a pair of antipodal points {z, 1
z
} on the Riemann sphere, since we

can permute the two basis vectors without change.

A vivid visual metaphor of this basis freedom is provided by the fact that a pair

of antipodal points on the Riemann sphere specifies a line through its centre, and

a plane orthogonal to that line that divides the sphere into two hemispheres. Thus

the arbitrariness in the single-system states à la which two non-GM-entangled

fermions are maximally specific corresponds to the continuum-many ways one may

divide a sphere into two hemispheres; cf. Figure 7.1.

In the case of three or more fermions, the above results all apply. Specifically:

as is true for distinguishable systems, one fermion in the assembly is maximally

specific iff they all are, iff the assembly’s state is non-GM-entangled, iff the state

is obtained by anti-symmetrizing a separable state.

Furthermore, the “preferred basis problem” applying to two-fermion assemblies

is only exacerbated by the presence of more fermions. To see this, it is enough

to notice that total anti-symmetrization is constituted by all possible pair-wise

anti-symmetrizations. For example, in the non-GM-entangled N = 3 state |Ψ〉,
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Figure 7.1: Two ways to halve the Riemann sphere, and two pairs of orthogonal
states, à la which two non-entangled fermions may be maximally specific.

where we define s(i) := (i+ 1) mod 3 (so s3(i) ≡ i),

|Ψ〉 =
1√
6

∣∣∣∣∣∣∣∣∣∣∣∣

|α〉1 |β〉1 |γ〉1

|α〉2 |β〉2 |γ〉2

|α〉3 |β〉3 |γ〉3

∣∣∣∣∣∣∣∣∣∣∣∣
≡ 1√

6

3∑
i=1

|α〉i ⊗
(
|β〉s(i) ⊗ |γ〉s2(i) − |γ〉s(i) ⊗ |β〉s2(i)

)

≡ 1√
6

3∑
i=1

|β〉i ⊗
(
|γ〉s(i) ⊗ |α〉s2(i) − |α〉s(i) ⊗ |γ〉s2(i)

)

≡ 1√
6

3∑
i=1

|γ〉i ⊗
(
|α〉s(i) ⊗ |β〉s2(i) − |β〉s(i) ⊗ |α〉s2(i)

)
(7.24)

(where we have added labels simply to make the ordering in the tensor prod-

uct clear), all of the bracketed two-fermion states are subject to the usual basis

arbitrariness (each in a different two-dimensional subspace of H).
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Generally, any non-GM-entangled state of N fermions:

1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|φ1〉1 |φ2〉1 · · · |φN〉1

|φ1〉2 |φ2〉2 · · · |φN〉2

...
...

. . .
...

|φ1〉N |φ2〉N · · · |φN〉N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(7.25)

(where {|φ1〉, |φ2〉, . . . |φN〉} is an orthonormal basis of the single-system Hilbert

space) is the unique totally anti-symmetric state in the Hilbert space
⊗N h, where

h := span({|φ1〉, |φ2〉, . . . |φN〉}) ∼= CN . Therefore the same state (7.25) is picked

out when the single-system Hilbert space h is decomposed into any other orthonor-

mal basis. Therefore the basis arbitrariness for any non-GM-entangled state of a

N -fermion assembly corresponds to the arbitrariness in selecting a basis in CN .

Each basis—and therefore each set of N single-particle states à la which N systems

may be said to be maximally specific—corresponds to a point in the manifold

(
CPN−1 × CPN−2 × · · · × CP1

)
/SN (7.26)

(where we quotient by the natural group action of SN , since a permutation of

basis vectors does not change the basis). This manifold has (N − 1)!2N−1 real

dimensions!

Finally, since in the state of an assembly of any type of paraparticles, the

states of at least two systems are pair-wise anti-symmetrized (Tung (1985, Ch. 5)),

this basis arbitrariness applies as much to paraparticles as to fermions, though

parameterizing this arbitrariness is a more subtle matter.

Stage D: ‘At least one being maximally specific’: the theorem for bosons

The broad similarity to fermions is clear, especially from Equations (7.11) and

(7.20). As for fermions, the requirement that one of the two bosons is maximally

specific implies that the state is obtained by symmetrizing a factorized state. How-

ever, there are some remarkable differences from the fermion case. For bosons,
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three cases are possible, according to the single-system states that are the factors

of the separable state:

1. |θ〉 ∝ |φ0〉, i.e. |c00| = 1. Then the state is |ψ〉 = |φ0〉 ⊗ |φ0〉 and one can

infer that there are two bosons each maximally specific à la (each with the

complete set of properties associated to) P = |φ0〉〈φ0|. It may checked that

for this state 〈ψ|P ⊗ P |ψ〉 = 1.

2. 〈θ|φ0〉 = 0, i.e. c00 = 0. One can then consider the operators Eb and Fb,

defined as I did for fermions in Stage C, and their product EbFb = FbEb =

P ⊗ Q + Q ⊗ P . Then exactly the same argument as for fermions implies

that one of the two bosons is maximally specific à la P and the other of the

two bosons is maximally specific à la Q. That is, 〈ψ|EbFb|ψ〉 = 〈ψ|(P ⊗Q+

Q⊗ P )|ψ〉 = 1.

3. Finally, it can happen that 0 < |〈θ|φ0〉| < 1. In this case, it is true that

there is a boson maximally specific à la P—i.e., 〈ψ|Eb|ψ〉 = 1—and it is true

that there is a boson maximally specific à la Q—i.e., 〈ψ|Fb|ψ〉 = 1. But it

is not true that one is maximally specific à la P and the other is maximally

specific à la Q. (Note that in this case EbFb 6= FbEb, and neither are equal

to P ⊗Q+Q⊗ P .) For there is a non vanishing probability of finding both

particles in the same state, since 〈ψ|P ⊗ P |ψ〉 = 〈ψ|Q⊗Q|ψ〉 = |c00|2 > 0.2

According to our our definition of non-GM-entanglement, both bosons are non-

GM-entangled for the first two cases. But in the last case we cannot say that

both bosons are non-GM-entangled, even though we may say that one system is

maximally specific à la one projector, and one system is maximally specific à la

another, distinct (but not orthogonal) projector. The worry, of course, is that we

are counting contributions from the same system each time, so we must resist the

plural article ‘both’. So we count any state of this third type as GM-entangled,

being a superposition of states of the first and second types. To sum up:

2A plausible candidate projector to associate with the proposition, ‘One system is maximally
specific à la P and the other is maximally specific à la Q’ is G := P ⊗Q+Q⊗P − (P ⊗P +Q⊗
Q−PQ⊗PQ), where we must take advantage of the fact that 〈ψ|PQ⊗PQ|ψ〉 = 〈ψ|QP⊗QP |ψ〉
for |ψ〉 in (7.20). Then 〈ψ|G|ψ〉 = 2−4|c00|2+3|c00|4

2−|c00|2 , which is less than 1 iff 0 < |〈θ|φ0〉| < 1.
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The bosons of a two-system assembly, whose (pure) state is given by

|ψ〉, are non-GM-entangled iff either: (i) |ψ〉 is obtained by symmetriz-

ing a factorized product of two orthogonal states; or (ii) |ψ〉 is a product

state of identical factors.

We may then again extend the definition to apply to states of the assembly in the

obvious way: the assembly’s state is non-GM-entangled iff both systems are.

Note that in the boson case, for any non-GM-entangled state, the two states

à la which the two systems are maximally specific are uniquely determined—

contrary to what happens for fermions (or paraparticles). That is: there are no

other orthogonal states |κ〉 and |λ〉, differing from |φ0〉 and |θ〉, such that one can

write |ψ〉 in the form

|ψ〉 =
1√
2

(|κ〉 ⊗ |λ〉+ |λ〉 ⊗ |κ〉) . (7.27)

Finally, the foregoing results carry over to the case of three or more bosons.

The results and definitions also apply to paraparticles, since for any assembly of

paraparticles of any single type, at least two constituent systems may occupy the

same state (Tung (1985, Ch. 5)). However, we must, of course, replace the phrase

‘symmetrized state’ in the above with the phrase ‘state with symmetry type µ’,

where µ is the appropriate paraparticle type.

To sum up the previous two stages, for non-GM-entanglement, in our sense

that all constituents are maximally specific, it must be the case that:

(i) the state for the assembly is obtained, by the appropriate symmetry projec-

tion, from a separable state in
⊗N H; and

(ii) the factors of the separable state in question must be orthogonal in the

fermion case, and they can be either orthogonal or equal in the boson or

paraparticle case.

Stage E: Entanglement and correlations

I turn at last to entanglement! GM-entangled states can very well occur; and

here we connect with the examples at the end of Section 7.1.1. Thus consider the
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following state of two spin-1/2 constituents:

|ψ〉 =
1√
2

(|↑〉 ⊗ |↓〉 − |↓〉 ⊗ |↑〉)⊗ |ω12〉 (7.28)

with |ω12〉 a symmetric state of L2(R3)⊗L2(R3). State (7.28) cannot be written as

a symmetrized product of two orthogonal states, and, consequently no constituent

is maximally specific (in Ghirardi-argot: possesses any complete set of (internal

and spatial) properties).

This sort of example also returns us to the topic of non-entanglement cor-

responding to factorization of probabilities for joint measurements. To connect

with the Bell’s theorem literature, let us consider case in which the two con-

stituents are in different spatial regions. Let us then consider two indistinguish-

able constituents with space and internal degrees of freedom and let us denote as

Hsp and Hint the corresponding single-system Hilbert spaces. The Hilbert space

for the whole system is the appropriate symmetric or antisymmetric subspace,

S(H(1)
int ⊗H

(1)
sp ⊗H(2)

int ⊗H
(2)
sp ) or A(H(1)

int ⊗H
(1)
sp ⊗H(2)

int ⊗H
(2)
sp ), respectively. Let us

also assume that the pure state associated to the composite system is obtained by

(anti-)symmetrizing a factorized state of the two particles corresponding to their

having different spatial locations. To be explicit, we start from a state:

|ψfact〉 = |ς, R〉 ⊗ |χ, L〉, (7.29)

where e.g. |ς, R〉 is an abbreviation for the single-system state |ς〉 ⊗ |R〉, and |ς〉
and |χ〉 are two arbitrary states of the internal space of a single systems and |R〉
and |L〉 are two orthogonal states whose spatial supports are compact, disjoint and

far away from each other. This situation is the one of interest for all experiments

about the non-local features of quantum states. From the state (7.29) we pass now

to the properly (anti-)symmetrized state:

|ψ〉 =
1√
2

(|ς, R〉 ⊗ |χ, L〉 ± |χ, L〉 ⊗ |ς, R〉) . (7.30)
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We already know that for the operators

E = P ⊗ 1 + 1⊗ P − P ⊗ P, P = |ς, R〉〈ς, R|

F = Q⊗ 1 + 1⊗Q−Q⊗Q, Q = |χ, L〉〈χ, L| (7.31)

the following equations hold:

Tr (E|ψ〉〈ψ|) = 1, Tr (F |ψ〉〈ψ|) = 1, (7.32)

which imply that the constituents are maximally specific à la projectors P and Q.

However, here we are interested in the correlations between the outcomes of

measurement processes on the constituents—this will offer a taster for the results

in Section 7.2. For any two operators A,B ∈ B(Hint), we construct the operators

AR := (A⊗ |R〉〈R|)1 ⊗ 12 + 11 ⊗ (A⊗ |R〉〈R|)2

BL := (B ⊗ |L〉〈L|)1 ⊗ 12 + 11 ⊗ (B ⊗ |L〉〈L|)2

}
(7.33)

(where I use labels for clarity, and 1 is the identity on Hint ⊗ Hsp). Now it

may be checked that AR and BL are symmetric—that is, they obey IP—for any

A,B ∈ B(Hint). Therefore, any Hermitian A,B satisfy the necessary condition

for representing a physical quantity under IP. In fact, I wish to interpret AR as

an operation on any system whose spatial wavefunction’s support overlaps R (and

similarly for BL and the region L).

It may then be checked that

〈ψ|ARBL|ψ〉 = 〈ς|A|ς〉〈χ|B|χ〉 . (7.34)

Equation (7.34) shows that the probabilities referring to the internal degrees of

freedom factorize, just as in the case of two distinguishable constituents; cf. Equa-

tions (7.6) and (7.7). The same conclusion does not hold when the state is a

genuinely entangled state, such as:

|ψ′〉 =
1

2
(|ς〉1 ⊗ |χ〉2 − |χ〉1 ⊗ |ς〉2)⊗ (|R〉1 ⊗ |L〉2 ± |L〉1 ⊗ |R〉2) , (7.35)
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for which

〈ψ′|ARBL|ψ′〉 =
1

2
〈ς|A|ς〉〈χ|B|χ〉+

1

2
〈χ|A|χ〉〈ς|B|ς〉 − Re [〈ς|A|χ〉〈χ|B|ς〉] ,

(7.36)

in which quantum interference is clearly manifested. (Compare the expectation

value 〈ψ′′|A ⊗ B|ψ′′〉 for the entangled state of two distinguishable systems, with

only internal degrees of freedom: |ψ′′〉 = 1√
2

(|ς〉1 ⊗ |χ〉2 − |χ〉1 ⊗ |ς〉2).)

The upshot should be obvious: from the point of view of the correlations, and

consequently of the implications concerning nonlocality, the non-GM-entangled

states of two indistinguishable systems have some of the (rather nice) features as

the non-entangled states of two distinguishable systems.

This prompts the suggestion (made in (ii)(a) at this beginning of this Section)

that non-GM-entangled states supervene on the states of constituent, maximally

specific systems—just as non-entangled states supervene on the states of con-

stituent, distinguishable systems. Indeed, we see that this true, so long as the

symmetry type of the assembly is determined by the states of the constitutent

systems.3 For, given a symmetry type, any collection of N single-system states

determines at most one non-GM-entangled state, of that symmetry type, for the

N -system assembly for which there are N systems maximally specific à la one of

the N single-system states. I return to this in Section 8.2.4.

This concludes my reconstruction of the Ghirardi, Marinatto and Weber re-

sults. I now turn to a novel idea, which is inspired by these results: qualitative

individuation of quantum systems.

7.2 Qualitatively individuating quantum systems

A central idea that may be taken from Ghirardi et al ’s idea of a maximally spe-

cific system is picking out a system according to the state it occupies; for any

maximally specific system is maximally specific à la some state. Let me use the

term individuation for this act of picking out a object, or collection of objects,

3The spin-statistics theorem would provide the necessary connection; but I emphasise that,
strictly speaking, this theorem lies outside the realm of elementary quantum mechanics.
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according to some property that it may have; and let me call the property in

question the individuation criterion. Thus an object need not be an individual

(cf. Section 2.3’s Interlude) in order to be individuated in the present sense. But

it will be uniquely picked out only if it is an individual. In general, an object is

individuated by some individuation criterion iff every other object in its absolute

indisernibility equivalence class is likewise individuated (cf. Section 2.4). That is:

any individuation criterion succeeds in uniquely picking out, not single objects,

but absolute indiscernibility classes of objects.

Let us further say that an object, or class of objects, is qualitatively individ-

uated iff its individuation criterion is a qualitative property. In quantum me-

chanics, I submit, qualitative properties are represented by projectors. (Factorist

individuation—i.e. individuation according to factor Hilbert space labels—may be

considered non-qualitative individuation.) Thus maximally specific systems, since

they are individuated using (one-dimensional) projectors, are qualitatively indi-

viduated systems. And since the individuating projectors are one-dimensional,

the corresponding qualitative property is logically strong, and maximally rich.

But qualitatively individuated systems need not be maximally specific. I will

propose individuating systems using multi -dimensional projectors. This is the

guiding idea of the remaining Sections of this Chapter. In this Section, I will first

introduce the main ideas behind qualitative individuation, and link it to natural

decompositions of the assembly’s Hilbert space (Section 7.2.1). Then (Section

7.2.2) I will propose two reasonable ways to deal with failure of individuation.

Finally (Section 7.2.3), I will give a general prescription for calculating the reduced

density operator for a qualitatively individuated system.

7.2.1 Qualitative individuation and natural decompositions

One may cash out the idea of a constituent of an assembly in terms of natu-

ral decompositions of the assembly’s Hilbert space. In the case of distinguish-

able systems—for which I endorse factorism—the natural decomposition is given

ab initio: it is the decomposition into the factor Hilbert spaces corresponding

to each distinguishable system. Even in this case, the systems are qualitatively
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individuated—the difference is that the individuation criteria are state-invariant

(‘intrinsic’) properties, so they are not represented in the formalism by projectors.

In the case of indistinguishable systems, since I deny factorism, we must work

in the opposite direction: i.e., we are given the assembly’s Hilbert space and we

must search for its natural decompositions. I will argue here that subspaces of the

assembly’s Hilbert space may be naturally decomposed into spaces which represent

the possibilities for qualitatively individuated systems.

What counts as a “natural decomposition”? The answer, suggested by Zanardi

(2001, p. 1), is provided by the algebra of quantities defined for the assembly. To

be more specific (Zanardi (2001, p. 3)):

When is it legitimate to consider a pair of observable algebras as de-

scribing a bipartite quantum system? Suppose that A1 and A2 are

two commuting ∗-subalgebras of A := End(H) such that the subalge-

bra A1 ∨ A2 they generate, i.e., the minimal ∗-subalgebra containing

both A1 and A2, amounts to the whole A, and moreover one has the

(noncanonical) algebra isomorphism,

A1 ∨ A2
∼= A1 ⊗A2 (7.37)

The standard, genuinely bipartite, situation is of course H = H1 ⊗
H2,A1 = End(H1)⊗1, and A2 = 1⊗End(H2). If A′i := {X | [X,A1] =

0} denotes the commutant of A1, in this case one has A′i = A2.

Thus Zanardi’s proposal is to work by analogy with the distinguishable case: we

look for commuting subalgebras whose tensor product is isomorphic to the entire

algebra for the assembly’s Hilbert space. The requirements of commutativity and

isomorphism with the entire algebra are tantamount to two of Zanardi et al ’s (2004,

p. 1) three necessary and jointly sufficient conditions for a natural decomposition:

what he calls subsystem independence and completeness, respectively. The remain-

ing requirement, local accessibility, is that the subalgebras be “controllable”. For

us, this is tantamount to satsifying IP. Since we will only consider subalgebras of

the algebra of symmetric quantities, we can take this requirement to be fulfilled
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by default.

However, unlike for distinguishable systems, in the case of indistinguishable

systems, prospects seem dim for finding natural decompositions of the assembly’s

entire Hilbert space. For the Hilbert space can even have a prime number of

dimensions. (E.g., the Hilbert space for a pair of two-level bosons has three di-

mensions.)

My basic idea in this Section is that we may instead look for natural decompo-

sitions of subspaces of the assembly’s Hilbert space. The collection of constituents

corresponding to these decompositions must then be interpreted as co-existing

only in those states belonging to the given subspace. But this is not objectionable

per se. Agreed: in the case of distinguishable systems—and even for haecceitis-

tic factorists—there are means of individuating systems which will suffice for all

states. But if one is not a haecceitist, why should one demand or expect this across

the board?

Now that we have limited our search for natural decompositions to subspaces

of the assembly’s Hilbert space, I will show that qualitatively individuated systems

provide the natural decompositions being sought.

So let us consider what algebra of operators we may associate with a quali-

tatively individuated system. For simplicity I will concentrate on the two-system

case. Recall that qualitative individuation is individuation by projectors. So sup-

pose that our two individuation criteria (one for each of the two systems) are rep-

resented by the projectors Eα, Eβ, each of which acts on the single-system Hilbert

space. I require that Eα ⊥ Eβ, i.e. EαEβ = EβEα = 0, so that none of the two

systems is individuated by the other’s criterion. (The importance of this condition

will soon become clear.) Call the system individuated by Eα the α-system, and

the system individuated by Eβ, the β-system.

Now consider the subspace of the assembly’s Hilbert space

Mλ(α, β) := ran(Eα ⊗ Eβ + Eβ ⊗ Eα) , (7.38)

where λ ∈ {s, a} indicates whether the subspace lies in the symmetric or anti-

symmetric sector; i.e., whether the assembly consists of bosons or fermions. (Again,
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this is an assembly of two systems, so there are no paraparticle states.)

In every state in this subspace, and in only these states, every term of the

state has a single-system state in the range of Eα and a single-system state in the

range of Eβ. In the case that Eα and Eβ are both one-dimensional, this subspace

is one-dimensional, and is spanned by the unique non-GM-entangled state for the

symmetry type λ in which one system is maximally specific à la Eα and the other

is maximally specific à la Eβ. In general I will say that, for all and only states

whose support lies solely in Mλ(α, β), the individuation is successful, or that it

succeeds. The condition of success is equivalent to

Tr [ρ(Eα ⊗ Eβ + Eβ ⊗ Eα)] = 1 . (7.39)

I now claim that, for both bosonic and fermionic two-system assemblies, the

subspaceMλ(α, β) may be naturally decomposed into two spaces: one correspond-

ing to the α-system and one corresponding to the β-system.

To prove this, we need to fulfil Zanardi’s requirements of completeness and

subsystem independence. That is, we need to find two commuting subalgebras Aα
and Aβ (one for the α-system and one for the β-system) whose tensor product is

isomorphic to the algebra of symmetric operators onMλ(α, β). SinceMλ(α, β) is

either symmetric or anti-symmetric, the latter is the full set of bounded operators

on Mλ(α, β), i.e. B(Mλ(α, β)).

First of all, we can limit our search forAα andAβ to subalgebras of B(H), where

H is the single-system Hilbert space. This is because our individuation criteria

Eα, Eβ are single-system projectors, so we expect the Hilbert spaces associated

with the α-system and β-system to be no larger than H.

Second, we ought to demand that every operator A ∈ Aα commute with the

individuation criterion Eα: i.e., ∀A ∈ Aα, [A,Eα] = 0. (And similarly for the

β-system.) The reason is so we do not lose track of the α-system by operating on

it with operators from its own algebra. As we shall see, this condition is crucial in

order to secure the required algebraic structure for Aα (and Aβ).

We may now use Schur’s Lemma to establish that, when Eα is not trivial
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(i.e. not the identity), the representation, on the single-system Hilbert space,

of the algebra of operators fulfilling both of these conditions, i.e. A := {A ∈
B(H) | [A,Eα] = 0} must be reducible. I.e., A = Aα ⊕ A′, where H =M⊕M⊥,

and M = ran(Eα) supports a representation of Aα and M⊥ = ran(1 − Eα) sup-

ports a representation of A′. Therefore, EαAEα = Aα ⊕ 0. Furthermore, since

Eα is the identity on M, Aα’s representation on M is irreducible; consequently

Aα = B(M), the algebra of all bounded linear operators on M. Similar results

hold for the β-system.

Let us make the identifications Aα = Aα ≡ B(ran(Eα)) and Aβ = B(ran(Eβ)).

Then Aα and Aβ commute, since Eα ⊥ Eβ, and so the representations of Aα and

Aβ on H are disjoint. This satisfies Zanardi’s first condition for the decomposition

being natural.

It remains to be shown that Aα ⊗ Aβ and B(Mλ(α, β)) are isomorphic. For

this I define a linear map πλ. It acts on the assembly Hilbert space, its dual space,

the algebra of operators on the assembly Hilbert space, and (consequently) matrix

elements of such operators. It is defined as follows.

For all |φ〉 ∈ ran(Eα), |χ〉 ∈ ran(Eβ); and all |Ψ〉, |Φ〉 ∈ ran(Eα)⊗ ran(Eβ); and all

A ∈ Aα, B ∈ Aβ; and all P,Q ∈ Aα ⊗Aβ; and all a, b ∈ C:

|φ〉 ⊗ |χ〉 πλ7−→ 1√
2

(|φ〉 ⊗ |χ〉 ± |χ〉 ⊗ |φ〉) (7.40)

πλ (a|Ψ〉+ b|Φ〉) := aπλ(|Ψ〉) + bπλ(|Φ〉) (7.41)

(and similarly for the dual space, and where the ‘±’ in (7.40) corresponds to

whether λ is symmetric or anti-symmetric); and

A⊗B πλ7−→ A⊗B +B ⊗ A (7.42)

πλ(aP + bQ) := aπλ(P ) + bπλ(Q) (7.43)

πλ(〈Ψ|Q|Φ〉) := πλ(〈Ψ|)πλ(Q)πλ(|Φ〉) . (7.44)
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Then we have, for example, for any A,C ∈ Aα and B,D ∈ Aβ,

πλ(A⊗B)πλ(C ⊗D) := (A⊗B +B ⊗ A) (C ⊗D +D ⊗ C)

= AC ⊗BD +BD ⊗ AC + AD ⊗BC +BC ⊗ AD

= AC ⊗BD +BD ⊗ AC

= πλ(AC ⊗BD), (7.45)

where we use the fact that AD = BC = 0, since the pairs A,D and B,C have dis-

joint representations. Note also that the ranges of C of D are the domains of A and

B, respectively. This all relies on our original stipulation that a qualitatively indi-

viduated system’s algebra commute with its individuation criterion. It follows from

all this that πλ(ran(Eα)⊗ran(Eβ)) =Mλ(α, β) and πλ(Aα⊗Aβ) = B(Mλ(α, β)).4

To see that πλ is an isomorphism, note that it is one-to-one, and that it pre-

serves the matrix elements of all operators in Aα ⊗ Aβ. Since for all |φi〉, |φk〉 ∈
ran(Eα); and all |χj〉, |χl〉 ∈ ran(Eβ); and all A ∈ Aα and all B ∈ Aβ:

πλ (〈φi|A|φk〉〈χj|B|χl〉) ≡ πλ (〈φi| ⊗ 〈χj|A⊗B|φk〉 ⊗ |χl〉)

= πλ(〈φi| ⊗ 〈χj|)πλ(A⊗B)πλ(|φk〉 ⊗ |χl〉)

=
1

2
〈φi|A|φk〉〈χj|B|χl〉+

1

2
〈φi|B|φk〉〈χj|A|χl〉

+
1

2
〈χj|A|φk〉〈φi|B|χl〉+

1

2
〈χj|B|φk〉〈φi|A|χl〉

+
1

2
〈φi|A|χl〉〈χj|B|φk〉+

1

2
〈φi|B|χl〉〈χj|A|φk〉

+
1

2
〈χj|A|χl〉〈φi|B|φk〉+

1

2
〈χj|B|χl〉〈φi|A|φk〉

= 〈φi|A|φk〉〈χj|B|χl〉 (7.46)

(since A|χj〉 = A|χl〉 = B|φi〉 = B|φk〉 = 0). The linearity of πλ covers all linear

combinations of the above, and so all states in ran(Eα)⊗ran(Eβ) and all operators

in Aα ⊗Aβ.

Thus the algebra B(Mλ(α, β)) has a natural decomposition into commuting

4For greater clarity, one can imagine each A ∈ Aα flanked on both sides by the projector
Eα, and each B ∈ Aβ flanked on both sides by Eβ . This is harmless, since A ≡ EαAEα and
B ≡ EβBEβ . The above results then manifestly follow from Eα ⊥ Eβ and [A,Eα] = [B,Eβ ] = 0.
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Figure 7.2: (a) The (anti-) symmetric projection of the tensor product of two
Hilbert spaces may be decomposed into spaces which exhibit a tensor product
structure. (Light grey squares indicate condensed states, which remain under
symmetrization but not anti-symmetrization.) (b) If the two Hilbert spaces are
decomposed into eigensubspaces of only one degree of freedom, then the “off-
diagonal” elements of the decomposition serve as irreps for the full algebra of
operators for the other degrees of freedom.

single-system algebras Aα and Aβ, corresponding to the systems qualitatively in-

dividuated by Eα and Eβ, respectively, where Eα ⊥ Eβ. The result is easily

generalised to assemblies of more than two systems (and therefore also to para-

particles).

The above results apply to any subspace B(Mλ(α, β)) of the assembly Hilbert

space, as defined in (7.38), so long as Eα ⊥ Eβ. I call such subspaces off-diagonal,

since they contain no even partially condensed states—i.e., states in which the

same single-system state is multiply occupied. We may now decompose the entire

assembly Hilbert space into diagonal and off-diagonal subspaces, and give natural

decompositions for each of the off-diagonal subspaces. Each off-diagonal subspace

is associated with its own pair of qualitatively individuated systems, and thus

behaves, in its own right, like a Hilbert space for an assembly of distinguishable

systems; cf. Figure 7.2(a).

In more detail: We may decompose the single-system Hilbert space H using a
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complete family of projectors {Ei},
∑

iEi = 1:

H =

(∑
i

Ei

)
H =

⊕
i

Ei(H) =:
⊕
i

hi (7.47)

Then, with Sλ the appropriate symmetry projector (boson, fermion, etc.), the

assembly Hilbert space is

Sλ(H⊗H) = Sλ

[(⊕
i

hi

)
⊗

(⊕
i

hi

)]
(7.48)

= Sλ

[⊕
i

(hi ⊗ hi)⊕
⊕
i<j

[(hi ⊗ hj)⊕ (hj ⊗ hi)]

]
(7.49)

=
⊕
i

Sλ (hi ⊗ hi)⊕
⊕
i<j

Sλ [(hi ⊗ hj)⊕ (hj ⊗ hi)] (7.50)

=
⊕
i

Sλ (hi ⊗ hi)⊕
⊕
i<j

πλ (hi ⊗ hj) (7.51)

where πλ is as defined above. Each off-diagonal subspace πλ (hi ⊗ hj) is isomorphic

to the un-symmetrized assembly Hilbert space hi⊗hj, and so the former inhererits

all of the features of the latter. One such example is that familiar results, such as

Bell’s Theorem (1964) and Gisin’s Theorem (1991), now apply, in the appropriate

subspaces, for assemblies of qualitatively individuated systems.5 This fulfils my

promise, made in comment (ii)(b) at the start of Section 7.1.2.

A class of instances of qualitative individuation that is of particular interest

arises when the single-system Hilbert space H represents more than one degree of

freedom. In this case, if the individuation criteria Eα, Eβ apply to less than the

full degrees of freedom, then the full algebra of linear bounded operators on the

remaining degrees of freedom is available to the qualitatively individuated systems.

For simplicity, suppose that H represents two degrees of freedom; i.e., H =

H1 ⊗H2. Now let us choose the individuation criteria Eα = eα ⊗ 1, Eβ = eβ ⊗ 1,

5Provided, of course, that dim(hi),dim(hj) > 2. Note also that there is no analogue of Gisin’s
Theorem for paraparticles, since paraparticle states only arise for three or more systems, and
Gisin’s Theorem cannot be extended beyond the two-system case. (See Żukowski et al (2002)
for more details).
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where eα and eβ act on H1 and 1 is the identity on H2. From the results above,

it follows that Aα = B(ran(Eα)) = B(ran(eα)) ⊗ B(H2) and Aβ = B(ran(Eβ)) =

B(ran(eβ))⊗B(H2). Thus the full algebra B(H2) is available to both qualitatively

individuated systems.6 (Cf. Figure 7.2(b).)

To conclude this Subsection, I will say something briefly about Huggett and

Imbo’s (2009, pp. 313) recent claim that it is not necessary to impose the In-

distinguishability Postulate (IP) on systems with identical intrinsic (i.e. state-

independent) properties. This is because, they claim, systems may be distinguished

according to their ‘trajectories’ (i.e. single-system states). If they are correct, this

would entail that factorism is, after all, a viable interpretative position for such

systems—so long as we understand factor Hilbert space labels as representing these

trajectories (just as, in the case of distinguishable systems, we use factor Hilbert

space labels to represent distinct state-independent properties of the systems).

The results of this Subsection show that Huggett and Imbo are partly correct.

In my jargon: they are right that an un-symmetrised Hilbert space is an equally

adequate (since isomorphic) means to represent an assembly of qualitatively in-

dividuated systems—for those states in which the individuation criteria succeed ;

and that therefore there is no practical need to impose IP, or, therefore, to repudi-

ate factorism when representing those states and those states alone. But they are

wrong to claim that it is not necessary to impose IP to represent all of the available

states for systems with identical intrinsic properties. For the isomorphism result

above, on which Huggett and Imbo’s claim depends, holds only for the appropriate

off-diagonal subspace. As soon as the assembly’s state has components that lie

outside of this subspace, the isomorphism breaks down.

I must emphasise too that the breakdown of isomorphism outside of the rel-

evant subspace does not just mean that, for states outside this subspace, the

two formalisms yield conflicting empirical claims; empirical claims that confirm

IP. Rather, the quasi-factorist formalism ceases to make physical sense for states

outside of the relevant subspace. For, outside of this subspace, the systems no

6This case corresponds to Huggett and Imbo’s (2009, pp. 315-6) ‘approximately distinguish-
able’ systems. It also corresponds the the example I presented at the end of Stage E of Section
7.1.2, for which eα = |R〉〈R| and eβ = |L〉〈L|.
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longer occupy the states upon which their individuation—and therefore the entire

quasi-factorist formalism—was based.

Huggett and Imbo mistakenly suppose that imposing IP prevents one from

qualitatively individuating systems. (As Huggett and Imbo (2009, p. 315) put it:

‘IP ⇒ trajectory indistinguishability’.) But that assumes what I deny: namely,

factorism. Without factorism, we can agree with Huggett and Imbo that systems

may be qualitatively individuated, without contravening IP. Moreover: without

factorism but with IP, we may represent all of the states available to the assembly,

without fear that our representational apparatus will break down.

7.2.2 Russellian vs. Strawsonian approaches to individua-

tion

All of the results of the previous Subsection apply only to ‘the relevant’ subspace

of the assembly Hilbert space. This is the subspace for which the individuation

criteria for the systems succeeds; i.e. for which the projector

E(α, β) := Eα ⊗ Eβ + Eβ ⊗ Eα (7.52)

has expectation value 1. What about states for which individuation does not

succeed? The question is important, since we want a procedure for calculating ex-

pectation values of quantities which belong to the joint algebra of the qualitatively

individuated quantities; and we want that procedure to be as general as possible.

The way one proceeds depends on one’s stance toward reference failure for

individuation criteria. I see two equally acceptable routes, which may be associ-

ated (perhaps tenuously) with the classic debate over reference failure for definite

descriptions. With a little poetic licence, I call the two routes Russellian and

Strawsonian.

The Russellian route (cf. Russell 1905) takes the claim of success of the indi-

viduation criteria Eα and Eβ to be an implicit tag-along claim in addition to any

explicit claim which implements those criteria. Thus the expectation value for any

A ∈ B(Mλ(α, β)) is given by Tr(E(α, β)ρE(α, β)A), which uses the usual quantum
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mechanical specifications for a conjunction. But A commutes with E(α, β), since

it is a sum of products of single-system quantities, each of which commutes with

Eα and Eβ. So we may simplify to Tr(ρE(α, β)A).

The Strawsonian route (cf. Strawson 1950) instead takes the joint success of the

individuation criteria Eα and Eβ as a presupposition of any claim which uses that

strategy. Therefore any expectation values calculated under the presupposition of

the success of E(α, β) must be renormalized by conditionalizing on that success.

This is done using the usual Lüder rule

ρ 7→ ραβ :=
E(α, β)ρE(α, β)

Tr(ρE(α, β))
. (7.53)

The expectation value of any quantity A ∈ B(Mλ(α, β)) is then given simply by

Tr(ραβA).

Note that conditionalization requires that Tr(ρE(α, β)) > 0, which means that

the state must have some terms for which individuation succeeds. The fact that

Tr(ραβA) is undefined when Tr(ρE(α, β)) = 0 meshes rather nicely with Strawson’s

famous claim that statements containing failed definite descriptions do not possess

a truth value.

It will have been noted that the difference between the Russellian and Strawso-

nian routes for expectation values lies only in the multiplicative factor 1
Tr(ρE(α,β))

.

A point in favour of the Strawsonian approach is that the identity operator in-

dexed to the two qualitatively individuated systems, πλ(1 ⊗ 1), has expectation

value 1 for all normalizable states, while under the Russellian route the identity’s

expectation value is equal to E(α, β)’s expectation value. A point in favour of the

Russellian approach is that expectation values may be defined for all states. On

this approach, if the assembly has no terms for which the individuation succeeds,

then expectation value for every A ∈ B(Mλ(α, β)) is zero.

7.2.3 Qualitatively individuated systems on their own

In this Subsection, I turn away from the problem of completely decomposing an

assembly into natural constituent systems, and turn instead to the problem of
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picking out a single constituent system from the assembly. I seek a means to

calculate expectation values for quantities associated with a single qualitatively

individuated system, whose individuation criterion we may choose.

The way I will proceed is inspired in part by the Strawsonian approach to

individuation in Section 7.2.2. The main idea, there and here, is to conditionalize

upon the success of the individuation. As usual, I work, for the sake of simplicity,

in the N = 2 case (unless otherwise stated); the generalization to N > 2 will be

obvious.

We begin with a chosen individuation criterion, a projector Eα, which acts on

the single-system Hilbert space. Then it may be checked that the operator

nα := Eα ⊗ 1 + 1⊗ Eα (7.54)

is a number operator for the two-system assembly’s Hilbert space. That is, it

“counts” the number of systems which are picked out by Eα.

I now define a linear map πα from the single-system algebra B(H) into a par-

ticular subalgebra of the assembly’s algebra. This subalgebra will be the operators

which are associated with the α-system. I define

πα(A) := EαAEα ⊗ 1 + 1⊗ EαAEα . (7.55)

(Note that, if A = EαAEα, then πα is just the symmetrizer for A.)

I now claim that the expectation value for any single-system quantity A, asso-

ciated with the α-system is

〈A〉α :=
〈πα(A)〉
〈nα〉

. (7.56)

I will establish this claim by considering a few examples.

1. The state of the assembly |ψ〉 = 1√
2

(|α〉 ⊗ |β〉 ± |β〉 ⊗ |α〉), where Eα|α〉 =

|α〉 and Eα|β〉 = 0, and Q|α〉 = q|α〉. Then 〈nα〉 = 1 and 〈πα(Q)〉 = q; so

〈Q〉α = q. That is, the system individuated by Eα takes as its expectation for

Q the value q, associated with the state |α〉, for which individuation succeeds
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(i.e., the state that it is in the range of Eα). (Indeed, the α-system is in an

eigenstate for Q, since 〈Q2〉α = q2.)

2. |ψ〉 = c1
1√
2

(|α1〉 ⊗ |β1〉 ± |β1〉 ⊗ |α1〉)+c2
1√
2

(|α2〉 ⊗ |β2〉 ± |β2〉 ⊗ |α2〉), where

|c1|2 + |c2|2 = 1; and for all i = 1, 2: Eα|αi〉 = |αi〉 and Eα|βi〉 = 0,

and Q|αi〉 = qi|αi〉. Then 〈nα〉 = 1 and 〈πα(Q)〉 = |c1|2q1 + |c2|2q2; so

〈Q〉α = |c1|2q1 + |c2|2q2. That is, the system individuated by Eα takes as

its expectation for Q the average for all single-system states |αi〉, for which

the individuation succeeds. The weights for this average are given by the

relative amplitudes of the non-GM-entangled terms.

3. |ψ〉 = |α〉 ⊗ |α〉, for |α〉 as above. Then 〈nα〉 = 2 and 〈πα(Q)〉 = 2q; so

〈Q〉α = q. In this case, Eα individuates two systems, and the expectation

(indeed, eigenvalue) for Q for both of them is q.

4. |ψ〉 = 1√
2

(|α1〉 ⊗ |α2〉 ± |α2〉 ⊗ |α1〉), for |α1〉, |α2〉 as above. Then 〈nα〉 =

2 and 〈πα(Q)〉 = q1 + q2; so 〈Q〉α = 1
2
(q1 + q2). In this case, Eα again

individuates two systems, one whose expectation value for Q is q1, and one

whose value is q2; thus we take the average. However, the weights for this

average are not given, as above, by relative amplitudes for non-GM-entangled

terms; (the entire state is non-GM-entangled). Rather, they are given by the

relative frequency, in a single non-GM-entangled state, of each single-system

state for which individuation succeeds.

5. |ψ〉 = c1Sλ (|α1〉 ⊗ |α2〉 ⊗ |β1〉) + c2Sλ (|α3〉 ⊗ |β1〉 ⊗ |β2〉), where Sλ is the

(anti-) symmetrizer on the assembly Hilbert space, and the single-system

states are defined as before. (So N = 3; and for simplicity we set aside

paraparticles.) Then 〈nα〉 = 2|c1|2+|c2|2 and 〈πα(Q)〉 = |c1|2(q1+q2)+|c2|2q3;

so 〈Q〉α = |c1|2(q1+q2)+|c2|2q3
2|c1|2+|c2|2 . In this case, the weights for the average are

determined jointly by relative amplitudes and relative frequencies. If |c1| =
|c2|, then 〈Q〉α = 1

3
(q1 + q2 + q3); thus each of the three states in the range

of Eα are afforded equal weight, whether or not they belong to the same

non-GM-entangled term.

Thus my claim—that the expectation value of any single-system quantity A, for
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the system qualitatively individuated by Eα, is given by (7.56)—yields the right

results, at least for cases 1 to 4. Case 5 seems to me less clear cut, since one might

favour a different way to calculate statistical weights from the relative amplitudes

and relative frequencies. However, I submit, there are no clear intuitions to rely

on in this case, and I can see no objection to the way given by (7.56).

It may have been noticed that πα is not an isomorphism between the single-

system algebra B(H)—or indeed any subalgebra thereof—and the range of πα. It

is not even a homomorphism. For it may be checked that πα(AB) 6= πα(A)πα(B)

does not hold, even for all those A,B ∈ B(H) that commute with Eα.

This is not an objection to (7.56), and should come as no surprise. For there are

states of the assembly in which Eα fails to individuate a unique system (cf. exam-

ples 3-5, above). In these states, we should not expect that πα(AB) = πα(A)πα(B).

To perform the operation B, followed by A, on a given α-system (corresponding to

πα(AB)) relies on a re-identification of that system (and that system alone) after

we have operated with B. But the individuation criterion Eα cannot be guaranteed

to pick out that very same system, if more than one system is picked out by Eα.7

On the other hand, it may be checked that, for any two states |ψ〉 of the assembly

that are eigenstates of nα with eigenvalue 1—i.e., for all states in which exactly

one system is individuated by Eα—we have 〈ψ|πα(AB)|ψ〉 = 〈ψ|πα(A)πα(B)|ψ〉,
as expected.

Thus we have a recipe for calculating the expectation value of any single-system

quantity for a qualitatively individuated system or systems. It remains for me to

give a general prescription for calculating the reduced density operator for such a

system. We require that the reduced density operator ρα satisfy the condition that,

for all A ∈ B(H): Tr(ραA) = 〈A〉α, as given in (7.56). We know from Gleason’s

Theorem that a unique such operator exists.

As usual, I work by analogy with the case of “distinguishable” systems. The

usual prescription for the reduced density operator of a constituent system, say

7It is worth emphasising that the possibility of multiple α-systems does not arise only for
bosons, since Eα need not be a one-dimensional projector.
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the kth, of the assembly is (with ρ the state of the assembly)

ρk := Trk (ρ) , (7.57)

where Trk denotes a partial trace over all but the kth factor Hilbert space. Now this

prescription is obviously no use to anti-factorists; but an equivalent formulation

to (7.57) exists that will be of far more use. First we choose a complete orthobasis

{|φi〉} for the single-system Hilbert space H. Then

ρk :=
∑
i,j

Tr (ρ|φj〉〈φi|k) |φi〉〈φj| (7.58)

where

|φj〉〈φi|k :=
k−1⊗

1⊗ |φj〉〈φi| ⊗
N−k⊗

1 (7.59)

and we now perform a full trace on the assembly Hilbert space.

We may adapt (7.58) for anti-factorist, qualitatively individuated systems in

the following way. First, we replace each operator |φj〉〈φi|k, which is indexed

to a factor Hilbert space, with πα(|φj〉〈φi|), as given in (7.55). And second, we

“conditionalize” by dividing by 〈nα〉 = Tr(ρnα). Thus

ρα =
1

〈nα〉
∑
i,j

Tr [ρ πα(|φj〉〈φi|)] |φi〉〈φj| (7.60)

Written out in full, and for any N , we have

ρα =

∑
i,j

|φi〉〈φj| Tr

[
ρ

(
N∑
k=1

k−1⊗
1⊗ Eα|φj〉〈φi|Eα ⊗

N−k⊗
1

)]

Tr

[
ρ

(
N∑
k=1

k−1⊗
1⊗ Eα ⊗

N−k⊗
1

)] (7.61)

It may then be shown (as required) that for any A ∈ B(H), Tr(ραA) = 〈A〉α.

197



For this, let {|ξi〉} be a complete eigenbasis for A, where A|ξi〉 = ai|ξi〉. Then

Tr(ραA) =
1

〈nα〉
∑
i,j,k

Tr [ρ πα(|ξj〉〈ξi|)] 〈ξk|ξi〉〈ξj|A|ξk〉 (7.62)

=
1

〈nα〉
∑
i,j,k

akTr [ρ πα(|ξj〉〈ξi|)] δkiδjk (7.63)

=
1

〈nα〉
∑
k

Tr [ρ ak πα(|ξk〉〈ξk|)] (7.64)

=
1

〈nα〉
Tr

[
ρ πα

(∑
k

ak |ξk〉〈ξk|

)]
(7.65)

=
1

〈nα〉
Tr (ρ πα (A)) (7.66)

=: 〈A〉α . (7.67)

Remember that ρα as given in (7.60) and (7.61) is the average state of any

system individuated by Eα. So long as the state ρ is an eigenstate of nα with

eigenvalue 1—or even a superposition of nα = 0 and nα = 1 eigenstates—then

ρα yields the state of the α-system. However, if ρ contains eigenstates with nα >

1, then the interpretation of ρα as the state of the α-system can no longer be

sustained, since in those terms we effectively average all systems picked out by

Eα.

For this reason, I note as an aside that it seems appropriate to favour something

like a Lewisian counterpart theory for claims involving qualitatively individuated

systems, over any doctrine of “trans-state” identity. In Lewis’s theory, it is per-

fectly in order for an object to have multiple counterparts in some possible worlds,

just as there may be multiple α-systems in some states. Additionally, the obvious

freedom in the choice of the individuating criterion Eα meshes well with other

flexibilities in Lewis’s counterpart relation (cf. Lewis 1968, pp. 115-6). This sug-

gestion warrants a much more in-depth treatment, but there is no space to do that

here.

To conclude this Section, I note two important limiting cases of Equation (7.60).

The first is when we are maximally discriminating in our individuation; i.e., where
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Eα is a one-dimensional projector. Let |α〉 be the state for which Eα|α〉 = |α〉.
Then, so long as 〈nα〉 > 0, ρα = |α〉〈α|, which is to be expected.

The second limiting case lies at the other extreme, in which we individuate

with maximum indiscriminateness, i.e. with Eα = 1. In this case 〈nα〉 = N and

πα(A) =
∑N

k=1

⊗k−1
1⊗ A⊗

⊗N−k
1; so

ρα =
1

N

∑
i,j

|φi〉〈φj| Tr

[
ρ

(
N∑
k=1

k−1⊗
1⊗ |φj〉〈φi| ⊗

N−k⊗
1

)]
(7.68)

=
1

N

N∑
k=1

∑
i,j

|φi〉〈φj| Tr

[
ρ

(
k−1⊗

1⊗ |φj〉〈φi| ⊗
N−k⊗

1

)]
(7.69)

=
1

N

N∑
k=1

∑
i,j

|φi〉〈φj| Tr [ρ (|φj〉〈φi|k)] (from (7.59)) (7.70)

=
1

N

N∑
k=1

ρk (from (7.58)). (7.71)

So with maximum indiscriminateness ρα is the “average” of the standard reduced

density operators obtained by partial tracing. In the case of indistinguishable

systems (i.e. when IP is imposed), we of course have ρ1 = ρ2 = . . . = ρk =: ρ,

in which case ρα = ρ. This vindicates my claim in Section 6.4.3 that, in the

context of indistinguishable systems, standard reduced density operators obtained

by partial tracing codify only the state of the average system, and not the state of

any particular system.

7.3 Qualitative individuation over time

In this Section I take a brief look at individuation criteria which evolve over time.

The investigation here will be all too brief, but will hopefully give a flavour of the

direction of future investigation.

Let E := Eα⊗Eβ+Eβ⊗Eα represent our individuation criteria for two particles

at time t = 0. The obvious way to turn this into evolving individuation criteria

is to use the usual Heisenberg prescription for time-dependent quantities. Thus,
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if U(t) = e−it
H
~ is the evolution operator for the assembly, with Hamiltonian H,

then we may define time-dependent operator

E(t) = U(t)EU †(t) (7.72)

The expectation value of E(t) is a constant of the motion:

〈E(t)〉t = Tr(U(t)ρU †(t)U(t)EU †(t)) = Tr(ρE) = 〈E〉0, (7.73)

so if the individuation criteria succeed at t = 0, then the dynamics preserves this

successfulness over time.

This proposal may be seen as analogous to individuation procedures in the clas-

sical mechanics of point particles, where we quotient by the symmetric group (Belot

2001). Working in the reduced phase space, by evolving any equivalence class of

system points along the Hamiltonian flow we achieve natural trans-temporal iden-

tifications for the point particles by demanding continuous trajectories for each

particle.

However, returning to the quantum case, we cannot guarantee, unlike in the

classical case, that the time-evolute of E has the right features to count as a pair

of individuation criteria for the two particles. For this it is necessary and sufficient

that

U(t) (Eα ⊗ Eβ + Eβ ⊗ Eα)U †(t) = Eα(t)⊗ Eβ(t) + Eβ(t)⊗ Eα(t), (7.74)

where, at any time t, Eα(t) ⊥ Eβ(t). That is, it is necessary and sufficient that E ’s

evolution may be expressed in terms of a piecemeal evolution of the single-system

projectors Eα and Eβ.

Too see that condition (7.74) does not hold generally, one need only consider

an evolution that takes a heterogeneous state of two bosons at t = Ti to a product

state at t = Tf . In this case, at time Ti, Eα(Ti) ⊥ Eβ(Ti); but by t = Tf , we

have Eα(Tf ) = Eβ(Tf ), which contradicts the requirement of Section 7.2.1 that

individuation criteria for distinct systems be orthogonal. I know of no general

result, which gives conditions on either the evolution U(t) or the assembly’s state,
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for the satisfaction of (7.74).

However, it is easily seen that condition (7.74) is satisfied if the dynamical

evolution is factorizable; i.e. if U(t) = W (t) ⊗W (t), where W (t) is a continuous

one-parameter family of unitaries on the single-system Hilbert space H. Under

this evolution, the purity of single-system states is preserved over time.

But factorizable evolutions present a problem. For there may be no unique pair

of time-dependent individuation criteria Eα(t), Eβ(t) for which condition (7.74) is

satisfied. This result is as bad as there being no such pair, if our goal is to find

uniquely natural trans-temporal identity conditions. (I return to this point in

Section 8.2.3.)

The fact that uniqueness is not guaranteed for factorizable evolutions is illus-

trated by the following simple example. Consider the singlet state for two spin-1
2

fermions:

|ψ〉 =
1√
2

(|↑〉 ⊗ |↓〉 − |↓〉 ⊗ |↑〉) , (7.75)

and the trivial evolution U(t) = eiγ(t), where γ : R→ R is any real-valued function

of the time for which γ(0) = 0, so that |ψ(t)〉 = eiγ(t)|ψ〉. And suppose that at

time t = 0 we individuate two systems using the projectors | ↑〉〈↑ | and | ↓〉〈↓ |.
(Remember from Stage C of Section 7.1.2 that non-GM-entangled fermionic states

suffer a basis arbitrariness, so that any pair of orthogonal projectors associated

with the same two-dimensional subspace spanned by |↑〉 and |↓〉 would have been

equally good individuators.) We now seek time-dependent individuation criteria

for these two systems. Condition (7.74) suggests the time-dependent projectors

W (t)| ↑〉〈↑ |W †(t) and W (t)| ↓〉〈↓ |W †(t), where U(t) = W (t) ⊗ W (t) for some

unitary W (t) on H. But W (t) is under-determined by this requirement.

We make use of the group isomorphism U(2)⊗ U(2) ∼= U(3)⊕ U(1). Let w(t)

be any continuous one-parameter family of unitary 2× 2 matrices

w(t) =

(
α(t)eiφ(t) β(t)eiφ(t)

−β∗(t) α∗(t)

)
(7.76)
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where |α(t)|2 + |β(t)|2. Then

w(t)⊗w(t) =


α2(t)e2iφ(t) α(t)β(t)e2iφ(t) α(t)β(t)e2iφ(t) β2(t)e2iφ(t)

−α(t)β∗(t)eiφ(t) |α(t)|2eiφ(t) −|β(t)|2eiφ(t) α∗(t)β(t)eiφ(t)

−α(t)β∗(t)eiφ(t) −|β(t)|2eiφ(t) |α(t)|2eiφ(t) α∗(t)β(t)eiφ(t)

[β∗(t)]2 −α∗(t)β∗(t) −α∗(t)β∗(t) [α∗(t)]2


(7.77)

With a suitable change of basis this becomes

w(t)⊗w(t) =


α2(t)e2iφ(t) α(t)β(t)e2iφ(t) β2(t)e2iφ(t) 0

−α(t)β∗(t)eiφ(t) (|α(t)|2 − |β(t)|2)eiφ(t) α∗(t)β(t)eiφ(t) 0

[β∗(t)]2 −α∗(t)β∗(t) [α∗(t)]2 0

0 0 0 eiφ(t)


(7.78)

where the change of basis is such that w(t)⊗ w(t) is decomposed into symmetric

components (the 3 × 3 matrix at top-left) and anti-symmetric components (the

c-number at bottom-right).

Therefore, the restriction of w(t)⊗w(t) to the anti-symmetric sectorA(C2⊗C2),

spanned by |ψ〉, is eiφ(t). So if we make the identification W (t) = w(t), we have

U(t) = eiφ(t) on A(C2 ⊗ C2). Thus W (t) may be any unitary 2× 2 matrix of the

form given in Equation (7.76), subject only to the requirement that φ(t) = γ(t).

The upshot is that the trans-temporal identity conditions for constituent sys-

tems in the trajectory |ψ(t)〉 are subject to somewhat the same problems as face

the parts of a rotating sphere of uniform, continuous matter (cf. e.g. Zimmerman

(1998), Butterfield (2006b)). In both cases no uniquely natural trans-temporal

identity conditions (which, in the case of the rotating sphere, would determine its

angular velocity) appears to be available.

To sum up: Factorizable evolutions give favourable conditions under which

trans-temporal individuation criteria for constituent systems may be defined; but

the conditions are too favourable: the criteria may not be unique. At the other

end of the spectrum, non-factorizable evolutions, which do not preserve non-GM-

entanglement, may not even allow time-dependent individuation criteria to be

defined. For there is no guarantee that the condition (7.74) can be satisfied.

202



This concludes our tour of the technicalia associated with a general anti-

factorist approach to permutation-invariant quantum mechanics. The foregoing

results prompt a new understanding of particles in quantum mechanics, but we

are far from a complete picture. We now turn our attention to the attempt to put

some metaphysical meat on these mathematical bones.
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Chapter 8

Against varietism

My claim that factorism makes an interpretative error similar to the reification of

the average person prompts the question: If the factorists’ ‘particles’ are statistical

constructs, of what are they statistical constructs? With the results of Section 7

in hand, we are now in a position to make positive attempts at an answer. In the

first Section of this Chapter, I will outline the first such attempt, a doctrine I call

varietism, because it attempts to “transfer” the qualitative variety in an assembly’s

state to the monadic properties of its constituent particles. Then (Section 8.2), I

will assess the degree to which varietism satisfies the desiderata for the concept of

particle outlined in Section 5.1, and argue that it fares well. However, varietism

suffers from a problem that may be fatal: I outline this problem in Section 8.3.

8.1 Varietism defined

Recall that I endorse factorism in the case of distinguishable systems. So, as usual,

I proceed by analogy with that case. (Of course, factorism’s associating particles

with factor Hilbert spaces was a strategy that proceeded by analogy with the

case of distinguishable systems! But extending a different feature to the case of

indistinguishable particles will give us a different result.)

For an assembly of distinguishable systems, a state is non-entangled iff it is

separable. And, by definition, a separable state is one in which the constituent
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systems are in pure states; in Section 7.1.1, we called such systems maximally

specific.

This general rule, which applies to any distinguishable quantum systems what-

ever, can be adapted to the specific case of an assembly of distinguishable particles

by ensuring that the assembly’s Hilbert space, and associated algebra of operators,

is of the right kind. A particle is then just a consituent system of an assembly

of “the right kind”. “The right kind” is determined by the desiderata of Section

5.1: the Hilbert space must be decomposable into single-systems Hilbert spaces,

each of which supports a representation of the spacetime symmetry group (usually

the Galilei group). Given the discussion in Section 5.2.1, an assembly of N dis-

tinguishable particles will have a Hilbert space H =
⊗N (L2(R3)⊗Hint), where

Hint allows for more (internal) degrees of freedom (we may set Hint = C).

Returning to non-entanglement, we may say that, in the case of distinguish-

able particles, the assembly’s state is non-entangled iff the constituent particles

are maximally specific. We now have a template functional definition of ‘particle’

that we can apply to the case of indistinguishable particles, bearing in mind Ghi-

rardi and Marinatto’s heterodox definition of entanglement for indistinguishable

systems. So the varietist says that particles are those systems that are maximally

specific just in case the state of an assembly of the right kind is non-GM-entangled.

In this case, an assembly is “of the right kind” iff its Hilbert space is a sym-

metry sector of the corresponding Hilbert space for an assembly of distinguishable

particles. That is, iff H = Sµ
[⊗N (L2(R3)⊗Hint)

]
, where Sµ is a projector onto

the symmetry sector associated with the irreducible representation µ of SN .

Let us investigate this functional definition a bit further: we say that ‘particles

are those systems that . . . ’, but what exactly is a ‘system’ for varietists? Recall

that being maximally specific is that same as being successfully qualitatively indi-

viduated by a one-dimensional projector. (The fact that we appeal, even in the dis-

tinguishable case, to qualitative individuation is precisely what allows us naturally

to extend the functional definition to the indistinguishable case.) But factorist

particles may also be individuated non-qualitatively, by the appropriate factor

Hilbert space label. This permits us to latch on to (i.e. individuate) a particle in a

non-GM-entangled state of the assembly by appealing to whichever single-particle
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state á la which it is maximally specific (i.e. whichever single-particle state makes

its qualitative individuation successful), and then go on to re-identify that particle

in other states of the assembly: other states in which it may occupy a different

single-particle state altogether—pure or mixed. For the factorist, non-qualitative

individuation is king: we might say that, for a factorist, being associated with a

particular Hilbert space label is an essential property of a distinguishable particle;

whichever single-particle state it may occupy is merely accidental.

In the indistinguishable case, the varietist rejects factorism, so she has no

non-qualitative means of individuating systems. Therefore she can only appeal

to single-particle states to cross-identify systems between different states of the

assembly. In metaphysicians’ jargon, the varietist must adopt a qualitative essen-

tialism.

Here a multitude of possible routes present themselves for the varietist. I will

now investigate these routes. I begin by restricting ourselves to non-GM-entangled

states (Sections 8.1.1 and 8.1.2); I then turn to GM-entangled states in Section

8.1.3. I will conclude with a more specific commitment to what, for a varietist,

particles are.

8.1.1 What varietism says about non-GM-entangled fermions

Let us take the simplest example, i.e. a non-GM-entangled state of an assembly of

two fermions, belonging to the Hilbert space A(H⊗H):

|ψ〉 =
1√
2

(|φi〉 ⊗ |φj〉 − |φj〉 ⊗ |φi〉) . (8.1)

where 〈φi|φj〉 = 0. (It will be obvious how to generalize these considerations for

assemblies of three or more particles.) |ψ〉 is non-GM-entangled, since we have

Tr(Ei|ψ〉〈ψ|) = 1, where Ei := |φi〉〈φi| ⊗ 1 + 1 ⊗ |φi〉〈φi|, and Tr(Ej|ψ〉〈ψ|) = 1

for Ej defined similarly; thus we have two maximally specific systems.

But which systems are they? Here the varietist stays silent. Since the varietist

can only individuate qualitatively, and since she has already individuated using

the most specific criteria possible (i.e. one-dimensional projectors), there is nothing
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more for her to say. In words:

‘|ψ〉 is a non-entangled state of two fermions, one of which is in the

pure state |φi〉, and the other of which is in the pure state |φj〉.’

This is what we would say, in the distinguishable case (where we are all factorists),

about the product state |φi〉 ⊗ |φj〉 (except we would not describe these particles

as fermions), with the notable difference that we can also add to this description

which particle occupies which state.1 The varietist can make no such addition:

the permutation-invariant information is all the information.

Note that |ψ〉 can be obtained from the product state by anti-symmetrization:

recall (cf. Section 7.1.2) that any non-GM-entangled state can be obtained from

a product state by the appropriate symmetry projection. We may therefore begin

our characterization of varietism by laying down as a general rule:

(V0) The varietist description of a non-GM-entangled fermionic state |Ψ〉 reads

like the factorist description of the permutation-invariant information of

the corresponding product state from which |Ψ〉 is obtained, upon anti-

symmetrization.

An immediate problem arises for fermions. As we saw in Stage C of Section 7.1.2,

any non-GM-entangled fermionic state is obtainable by anti-symmetrization from

a variety of different product states. There are as many pairs of varietist particles

for the state |ψ〉 as there are ways to halve a sphere: the particles in |φi〉 and |φj〉
are only one such pair.

This problem is significant, and I will argue later that it may be fatal for

varietism. But for now we bracket the problem, and continue our exposition. There

are two reasons for this: (i) despite this problem, there is something intuitively

appealing about varietism, so it is worth developing a full account of it for its own

sake; and (ii) the problem may yet be overcome, in which case a full account of

varietism is all the more valuable. I return to this “preferred basis problem” for

fermions in Section 8.3; in the meantime we return to the exposition.

1Remember that this does not make our factorist a haecceitist, for the particle labels may
represent distinct intrinsic qualitative properties of the particles, such as mass or charge.
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What would the factorist say about |ψ〉 in (8.1), above? The answer depends on

the subspecies of factorist. A haecceitistic factorist describes |ψ〉 in the following

way:

‘Set aside Ghirardi’s understanding of “entanglement”! |ψ〉 is an entan-

gled state, with two non-entangled terms. In one of the terms, particle

1 is in the pure state |φi〉 and particle 2 is in the pure state |φj〉; these

states are transposed in the other term. The two terms have a relative

amplitude of −1; this means that the two particles are fermions.’

There is something here for the varietist to agree with: namely that |ψ〉 is an

eigenstate of having one fermion in |φi〉 and one in |φj〉. But the varietist takes

this as an exhaustive characterisation of |ψ〉, while for the haecceitistic factorist

there is (in principle) more to ask: in particular, which particle is in which state.2

This makes the varietist sound like an anti-haecceitist: indeed, varietism is

anti-haecceitistic in the sense of Section 6.2.1, i.e. in taking the group action of SN

on the assembly’s Hilbert space to represent no physical change, i.e. in taking the

permutation-invariant information to be exhaustive. But that is anti-haecceitism

about the factorist’s particles: it is not the sort of “anti-haecceitism” that matters

most to a varietist. Recall, from Section 6.2.2, that the question of haecceitism

properly so-called comes after the question, ‘What are the objects?’ The varietist’s

particles do not correspond to factor Hilbert space labels, so she would not con-

sider permutations of factor Hilbert space labels (i.e. the representations of SN)

to correspond to a genuine swapping of particles among the single-particle states.

Hence it is a separate question whether possibilities for the varietist’s particles

supervene on the qualitative character of physical states. But the formalism as

it stands compels the answer Yes, i.e. anti-haecceitism for the varietist’s particles

too. A specification of single-particle pure states, together with a specification

of symmetry type, suffices to determine a unique (non-GM-entangled) state for

2The haecceitistic factorist would have to admit that, in practice, no measurement could be
performed which would answer this question; otherwise the projection postulate would come into
conflict with the Indistinguishability Postulate. The haecceitist, of course, takes the Indistin-
guishability Postulate to be a contingent fact.
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the assembly (cf. Stage E of Section 7.1.2);3 therefore there are never two distinct

non-GM-entangled states which do not differ with regard to qualitative character.

(I will return to this point below.) So, barring any claim that the formalism is

incomplete (which I will consider in Section 8.2.6), anti-haecceitism in the sense

appropriate to varietism is forced upon the varietist.

As we have said, varietists are also anti-haecceitistic about the factorist’s parti-

cles, but they are of course not anti-haecceitistic factorists. Admittedly, varietists

and anti-haecceitistic factorists alike will be uncomfortable about talking, as the

haecceitistic factorist does, of the two separable terms of |ψ〉 as if each were a pos-

sible pure state of the assembly. (For an anti-haecceitist factorist, heterogeneous

separable states represent mixed states of the assembly.) Thus here is what the

anti-haecceitist factorist says about the state |ψ〉:

‘Set aside Ghirardi’s understanding of “entanglement”! |ψ〉 is an entan-

gled state, since its particles are not in pure states. Both particles are

in the same mixed state 1
2
|φi〉〈φi|+ 1

2
|φj〉〈φj|; but don’t take those “1

2
”s

as probabilities for the assembly occupying the corresponding product

states, like the haecceitist does. These states are not available to the

assembly—in fact their mathematical representations don’t really make

sense to me. The minus sign between the two terms in |ψ〉 tells us that

the particles in question are fermions; but again, don’t think of |ψ〉 as

a superposition of physically possible product states.’

(Note how the anti-haecceitistic factorist has managed to describe the state |ψ〉 in

a way that relies on associating particles with factor Hilbert spaces, yet without

mentioning Hilbert space labels. This trick relies on the fact that both particles

are in the same mixed state.) The contrast with what the varietist would say

is stark. For the varietist, the particles are in pure states; therefore |ψ〉 is not

GM-entangled.

3Strictly speaking, that is only true for fermionic and bosonic states. For paraparticle states
one would also have to specify certain relations between the particles; but these are qualitative re-
lations (i.e., they are permutation-invariant), so the spirit of my claim here holds for paraparticles
too.
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8.1.2 What varietism says about non-GM-entangled bosons

Section 8.1.1’s account carries over mutatis mutandis, i.e. with judicious substitu-

tions of ‘boson’ for ‘fermion’, etc., for heterogeneous bosonic states, i.e. states such

as

|ψ′〉 =
1√
2

(|φi〉 ⊗ |φj〉+ |φj〉 ⊗ |φi〉) (8.2)

where 〈φi|φj〉 = 0. But bosons may also exist in homogeneous product states, such

as

|ψ′′〉 = |φi〉 ⊗ |φi〉. (8.3)

What might the varietist say about these? The case is interesting, since, despite

there being two maximally specific systems, the systems in question are maximally

specific à la the same one-dimensional projector. Therefore, it cannot be said that

the systems have been successfully qualitatively individuated.

Nevertheless, we may say that both systems are maximally specific without

actually having to individuate them. It is enough that (|φi〉〈φi| ⊗ |φi〉〈φi|) |ψ′′〉 =

2|ψ′′〉, i.e. that |ψ′′〉 is an eigenstate of there being exactly 2 particles in state

|φi〉. That is, it is enough so long as we do not impose any form of the identity of

indiscernibles (cf. Chapter 3) on the particles (we will come back to this point in

Section 8.2).

Homogeneous product states offer a rare opportunity for consensus between

factorists, of both haecceitistic and anti-haecceitistic persuasion, and varietists.

All three would describe |ψ′′〉 as a pure state of two particles in which both particles

were in the pure state |φi〉. The consensus is no surprise: in these states (and only

these states) factor Hilbert space labels—which the factorist uses to individuate

particles—align perfectly with single-particle states—which the varietist uses to

individuate particles.

The only remaining case to consider for bosons are states such as

|ψ′′′〉 =
1√

2(1 + |〈φi|θj〉|2)
(|φi〉 ⊗ |θj〉+ |θj〉 ⊗ |φi〉) (8.4)

where 0 < |〈φi|θj〉| < 1. But recall from Stage D of Section 7.1.2 that this state is
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in fact GM-entangled, being (perhaps) more perspicuously written as

|ψ′′′〉 =
2〈φi|θj〉|φi〉 ⊗ |φi〉+

∑
k 6=i〈φk|θj〉 (|φi〉 ⊗ |φk〉+ |φk〉 ⊗ |φi〉)√
2(1 + |〈φi|θj〉|2)

. (8.5)

We are therefore led to consider varietism’s account for entangled states. But first

I sum up Sections 8.1.1 and 8.1.2 by laying down an extension of (V0) to apply to

all non-GM-entangled states:

(V1) The varietist description of a non-GM-entangled state |Ψ〉 reads like some

factorist description of the permutation-invariant information of the corre-

sponding product state from which |Ψ〉 is obtained, by the appropriate sym-

metry projection.

The modifications have been italicized: I say ‘some factorist description’, to bracket

the basis arbitrariness problem for fermions and paraparticles; and we now incor-

porate all symmetry types (including paraparticles) by referring to the ‘appropriate

symmetry projection’. This concludes the preliminary exposition of varietism for

non-GM-entangled states.

8.1.3 What varietism says about GM-entangled states

The functional definition of ‘particle’ given at the beginning of Section 8 applied

only to non-entangled states. For a factorist, this is easily extended to entangled

states by appealing to non-qualitative individuation with factor Hilbert space la-

bels. The anti-factorists—of which varietists are a subspecies—can make no such

appeal in the case of GM-entangled states.

The available routes ahead for the varietist may be placed into two broad

options. (One of these options further bifurcates, as we shall see.) The first option

is to be cagey, so I call it ‘cagey varietism’. Cagey varietists avoid the problem of

GM-entangled states by claiming that particles exist only in non-GM-entangled

states of the assembly. That would be to admit that the concept—the intension—of

particle failed to pick out an extension in some (indeed most) quantum mechanical

states. The second option is to be heroic. Heroic varietists maintain that particles
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exist in every state of the assembly, including the GM-entangled ones. I consider

the two options in turn.4

Cagey varietism. The problem with denying the existence of particles for GM-

entangled states is that the cagey varietist is then faced with the question of what

does exists when the assembly’s state is GM-entangled. Presumably the assembly

continues to exist, yet without its supposedly constituent particles. So a cagey

varietist believes an assembly can exist without its particles. She must therefore

give up on the idea that particles always compose the assembly. This contradicts

the strong version of our compositionality desideratum (cf. Section 5.1.4), since

according to that desideratum an assembly must be the mereological sum of its

particles. It also contradicts the weak version of our compositionality desideratum,

since (trivially) any two distinct GM-entangled states differ without there being

any corresponding difference in the states of the particles (of which there are none).

(However, supervenience still holds between the non-GM-entangled states of the

assembly and the states of the particles.)

But matters are worse for the cagey varietist. If the assembly always exists,

and may exist even though its particles don’t, why do we need particles at all?

The assembly’s state alone is enough to make any statement about it true or

false—nevermind the particles!

The cagey varietist has a response. There is a natural way, she argues, to ad-

mit that the assembly’s state suffices to make any statement about it true or false

without threatening the particles with redundancy. For the particles could them-

selves be features—i.e., properties—of the assembly’s non-GM-entangled states.

They are not extra idle objects, but rather ontological free-riders. That way, talk

of particles just is convenient talk about the assembly when it is in a non-GM-

entangled state. The cagey varietist need not give up on particles altogether, but

she must give up on them as objects.

The view that particles are not objects but properties is part of the view I call

emergentism. I discuss this view below in Chapter 9, so we will say no more about

it here. It is enough to note that cagey varietism collapses into a particular version

4Of course, these options are not exhaustive: one may maintain that particles exist in some
but not all GM-entangled states. This option is unmotivated and arbitrary, so I exclude it.
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of it. Henceforth, ‘varietism’ will always mean the heroic kind.

Heroic varietism. The second option is to claim that particles exist for all

states of the assembly. We might therefore hope to retain the familiar principle

that the assembly is composed of particles, at least in the weak sense of Section

5.1.4. But once again we find that our way ahead is not determined. Prima facie,

there are (at least) two natural ways to proceed.

1. Weaken. Inspired by the technical results in Sections 7.2, the varietist may

consider weakening the individuation criteria in order to successfully indi-

viduate across several non-GM-entangled terms. In this case a particle need

no longer be a maximally specific system, but a system which is specific à la

some (possibly multi-dimensional) single-system projector P , i.e.

Tr(ρE) = 1, (8.6)

where ρ is the state of the assembly and E := P ⊗ 1 + 1⊗ P − P ⊗ P .

2. Relativize. An alternative suggestion is to retain maximum specificity, but

take advantage of the fact that any GM-entangled state is a superposition

of non-GM-entangled states. Thus the varietist may consider treating any

two non-GM-entangled terms as representing distinct collections of particles,

related by being superposed. Under this proposal, particles are “branch-

bound” entities, where by “branch” we mean a non-GM-entangled state. So

under this suggestion, a particle is a system that is maximally specific on at

least one of the branches of the assembly’s state. This is equivalent to

Tr(F |Ξ〉〈Ξ|) = 1, Tr(ρ|Ξ〉〈Ξ|) > 0. (8.7)

for some non-GM-entangled state |Ξ〉, where ρ is the (pure) state of the

assembly and F := Q ⊗ 1 + 1 ⊗ Q − Q ⊗ Q, for some one-dimensional

projector Q.

An example may help to illustrate these two suggestions. Consider the following
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state for a two-fermion assembly:

|ψ〉 = α
1√
2

(|φ1〉 ⊗ |φ2〉 − |φ2〉 ⊗ |φ1〉) + β
1√
2

(|φ3〉 ⊗ |φ4〉 − |φ4〉 ⊗ |φ3〉) (8.8)

where |α|2 + |β|2 = 1. I assume that the states |φi〉 belong to a single-system

Hilbert space that is appropriate for a particle interpretation, in accordance with

Section 5.2.1. What, according to our two new species of (heroic) varietist, are the

constituent particles in this state?

Individuating particles under Weaken

The proponent of Weaken needs to find single-system projectors which satisfy

Equation (8.6). I set aside for now the basis arbitrariness problem (cf. Stage C in

Section 7.1.2) for fermion states by considering only projectors in the {|φi〉} basis.

Still there are many options. They are:

P13 = |φ1〉〈φ1|+ |φ3〉〈φ3|
P14 = |φ1〉〈φ1|+ |φ4〉〈φ4|
P23 = |φ2〉〈φ2|+ |φ3〉〈φ3|
P24 = |φ2〉〈φ2|+ |φ4〉〈φ4|
P123 = |φ1〉〈φ1|+ |φ2〉〈φ2|+ |φ3〉〈φ3|
P124 = |φ1〉〈φ1|+ |φ2〉〈φ2|+ |φ4〉〈φ4|
P134 = |φ1〉〈φ1|+ |φ3〉〈φ3|+ |φ4〉〈φ4|
P234 = |φ2〉〈φ2|+ |φ3〉〈φ3|+ |φ4〉〈φ4|
P1234 = |φ1〉〈φ1|+ |φ2〉〈φ2|+ |φ3〉〈φ3|+ |φ4〉〈φ4|



(8.9)

and any other projector Q such that Q > Pλ for any Pλ listed above. (It may be

checked that Equation (8.6) holds for all such projectors.) Must the advocate of

Weaken therefore say that the state |ψ〉 in Equation (8.8) above contains at least 9

(and potentially infinitely many—depending on the dimension of the single-particle

Hilbert space) particles?

She must, but be careful not to misunderstand her. For it is normally an

unspoken rule (except perhaps for analytic metaphysicians!) that when counting

a collection of objects, the objects in question are taken to be wholly distinct. If

this unspoken rule is explictly relaxed, and the objects in question may overlap, the
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question, ‘How many are there?’ can have a surprisingly large answer—consider

the ‘How many triangles are there?’ puzzles in old IQ tests.5 So the proponent of

Weaken sanguinely admits that, yes, at least 9 particles are described by |ψ〉, but

many of them overlap many of the others.

Which overlap which? This may be answered by calculating probabilities for

being in the states corresponding to the projectors listed in (8.9), for each par-

ticle qualitatively individuated6 using those same projectors. We use the results

of Section 7.2.3 (in particular Equation (7.56)). It follows that for the particle

individuated by Pλ and the single-particle state Pµ we have

p(µ|λ) := p(Pµ|Pλ) = 〈Pµ〉λ =
〈PλPµPλ ⊗ 1 + 1⊗ PλPµPλ〉

〈Pλ ⊗ 1 + 1⊗ Pλ〉
(8.10)

The resulting probabilities for the state |ψ〉 in (8.8) are shown in Table 8.1.

These probabilities may be interpreted as a measure of degree of overlap.7

For example, p(13|24) = p(24|13) = 0, so the particle that is specific à la P13 is

wholly distinct from the particle that is specific à la P24; and similarly for P14 and

P23. (We may use the definite article in all these cases, since the denominator in

Equation (8.10) is equal to 1 for all these projectors.) Meanwhile, p(123|13) = 1

but p(13|123) = 1
1+|α|2 < 1, so the particle that is specific à la P13 is a proper part

of the sum of particles (note the plural!—the denominator in Equation (8.10) is

more than 1 for Pλ = P123) that are specific à la P123. And every particle or sum of

particles that is/are specific à la any one of the projectors in (8.9) is a part of the

sum of the particles that are specific à la P1234, since p(µ|1234) = 1 for all Pµ in

(8.9). There are exactly two particles that are specific à la P1234 (the denominator

of Equation (8.10) is equal to 2 for Pλ = P1234); we may identify their sum with

the assembly itself.

5A more concrete example: How many pairs of socks are there for 4 similar socks? The answer
is 4

2C = 6, not 4
2 = 2.

6Recall from Section 7.2.3 that more than one system may satisfy the same individuation
criterion. In this case, as usual, we average over all such systems.

7This measure satisfies the necessary conditions for giving the fraction of overlap, so that
p(µ|λ) gives the fraction of the sum of particles specific à la Pλ that are also specific à la Pµ.
It may checked that e.g. p(23|1234) = p(23|123)p(123|1234) + p(23|234)p(234|1234). So, for
example, p(13|1234) = 1

2 may then be interpreted as the particle specific à la P13 overlapping
exactly half of the two particles specific à la P1234.
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Single-particle state

P13 P14 P23 P24 P123 P124 P134 P234 P1234

In
di

vi
du

at
io

n
cr

it
er

io
n

P13 1 |α|2 |β|2 0 1 |α|2 1 |β|2 1

P14 |α|2 1 0 |β|2 |α|2 1 1 |β|2 1

P23 |β|2 0 1 |α|2 1 |α|2 |β|2 1 1

P24 0 |β|2 |α|2 1 |α|2 1 |β|2 1 1

P123
1

1+|α|2
|α|2

1+|α|2
1

1+|α|2
|α|2

1+|α|2 1 2|α|2
1+|α|2

1
1+|α|2

1
1+|α|2 1

P124
|α|2

1+|α|2
1

1+|α|2
|α|2

1+|α|2
1

1+|α|2
2|α|2

1+|α|2 1 1
1+|α|2

1
1+|α|2 1

P134
1

1+|β|2
1

1+|β|2
|β|2

1+|β|2
|β|2

1+|β|2
1

1+|β|2
1

1+|β|2 1 2|β|2
1+|β|2 1

P234
|β|2

1+|β|2
|β|2

1+|β|2
1

1+|β|2
1

1+|β|2
1

1+|β|2
1

1+|β|2
2|β|2

1+|β|2 1 1

P1234
1
2

1
2

1
2

1
2

1+|α|2
2

1+|α|2
2

1+|β|2
2

1+|β|2
2

1

Table 8.1: Single-particle probabilities for the various single-particle states for the
various qualitatively “individuated” particles in state |ψ〉 in (8.8), associated with
the projectors in (8.9). N.B. |α|2 + |β|2 = 1.

If we count only strictly non-overlapping particles, then we recover the reas-

suring result that state |ψ〉 in (8.8) contains two particles. The particles must

not overlap, and their sum must be identical to the assembly. So we require ei-

ther two projectors Pκ and Pλ from (8.9) such that p(κ|λ) = p(λ|κ) = 0 and

〈Pκ ⊗ Pλ + Pλ ⊗ Pκ〉 = 1; or else just one projector Pκ from (8.9) such that

〈Pκ ⊗ Pκ〉 = 1. There are three ways to satisfy this requirement: we may use

the pair P13 and P24 (there is one particle specific à la each of this pair), or the

pair P14 and P23 (similarly), or the single projector P1234 (of which there are two

corresponding particles). Doesn’t this mean now that there are six wholly distinct
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particles and not two? No: since it may be checked that the sum of any one of the

three pairs is identical to the sum of any other.8

Thus the advocate of Weaken recovers the results we expect by appealing

to mereology. The weakening from ‘maximally specific’ to merely ‘specific’ has

allowed constituent particles to overlap, and be parts of, one another. What does

the advocate of Relativize have to say about state |ψ〉 in (8.8)? What, for her, are

the constituent particles?

Individuating particles under Relativize

The proponent of Relativize must express |ψ〉 as a superposition of non-GM-

entangled “branches”, all of which satisfy Equation (8.7). The constituent particles

are then the maximally specific systems on each branch. But how are the branches

determined? It turns out that, while it is a basis-independent matter whether or

not a state is GM-entangled, it is not determined which non-GM-entangled states

superpose to yield a given GM-entanged state. This is a kind of basis arbitrariness

that affects systems of all symmetry types, not just fermions and paraparticles. I

address this problem below. For now, we will work in the {|φi〉} product basis to

give a flavour of the account given by the proponent of Relativize.

The state |ψ〉 in (8.8) is expressed as the superposition of two non-GM-entangled

states in the {|φi〉} product basis:

1√
2

(|φ1〉 ⊗ |φ2〉 − |φ2〉 ⊗ |φ1〉) and
1√
2

(|φ3〉 ⊗ |φ4〉 − |φ4〉 ⊗ |φ3〉) . (8.11)

Each non-GM-entangled state in (8.11)—each a branch of |ψ〉 in (8.8)—is identified

with a separate collection of particles, each of which is maximally specific à la

some single-particle state, just as in Section 5.2.1 each branch was associated with

a different particle. In my example we have two branches. One consists of the

pair of particles maximally specific à la P1 = |φ1〉〈φ1| and P2 = |φ2〉〈φ2|; the

other consists of the pair of particles maximally specific à la P3 = |φ3〉〈φ3| and

P4 = |φ4〉〈φ4|. (It may be checked that Equation (8.7) is satisfied for these branches

and these single-particle projectors.)

8I.e., p([P13⊗P24+P24⊗P13]|[P14⊗P23+P23⊗P14]) = p([P14⊗P23+P23⊗P14]|P1234⊗P1234) =
p(P1234 ⊗ P1234|[P13 ⊗ P24 + P24 ⊗ P13]) = 1.
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The superposition of these two branches in (8.8) is then understood as co-

existing (in a world, at a time) pairs of particles. The relative amplitude β
α

between

the two branches may be interpreted as a relation—itself a determinate of a single

dyadic determinable—holding between the two pairs of branch-bound particles.

The assembly itself may be identified with the sum of these two superposed pairs,

so related.

As peculiar as it sounds, this suggestion is akin to the by-now-familiar account

of macroscopic objects suggested by many proponents of the Everettian response

to the measurement problem (Wallace (2003), Butterfield (2001)). Macroscopic

objects, according to this account, are high-level patterns described by the univer-

sal wavefunction. However, these patterns are instantiated only in some branches

of the universal quantum state and not others; one should therefore not expect

to be able to find the same macroscopic objects in each branch. We may even

say that macroscopic objects exist only in some branches and not others, so long

as that is not taken to imply any sort of semantic indeterminacy of the existence

claim. On the contrary: for the Everettian, existence in a branch entails existence

simpliciter (just as, say, existence in Leicester entails existence simpliciter). And

so as for macroscopic objects under the Everettian’s suggestion, so too for the

varietist’s particles, under my suggestion.

(Note, however, that the varietist need not be an Everettian: so far I have

only considered states of microscopic assemblies, and have said nothing about the

microscopic/macroscopic boundary or the measurement process. Nevertheless, it

cannot be denied that the varietist’s account holds promise for a simple Everettian

story for how particles compose macroscopic objects. Perhaps mereology—which

is composition in the strong sense in Section 5.1.4—will do after all.)

It is also worth emphasising at this point that the ontological picture recom-

mended by the proponent of Relativize is easily extended to accommodate states

which are superpositions of different numbers of particles. Such states do not

arise in elementary quantum mechanics, but are typical (indeed, characteristic!)

of the theory of quantum fields, and are taken by some philosophers to preclude

the possibility of a particle interpretation.9

9Of course, in QFT unsharp particle number is not the only problem thought to face particle
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However, according to the proponent of Relativize, particles in different branches

are strictly distinct, so there is no need for each branch to contain the same number

of particles. Any (Fock space) state of the quantum field could still be understood

in terms of (branch-bound) particles possessing certain properties and relations, so

long as we include also relations that encode relative amplitudes between branches.

Therefore, unsharp particle number is no special problem: indeed the effective re-

striction, in elementary quantum mechanics, to a particular summand of the Fock

space, now has no special ontological significance. (Of course, the restriction is

perfectly natural, practically speaking, if the interactions are such as to constrain

the assembly’s state to a particular Fock space summand, as indeed they do for

low energies.)

Let us now pursue the problem raised at the outset for the proponent of Rel-

ativize, namely: How do we determine, for a given GM-entangled states, which

non-GM-entangled states are to be its branches? To see the problem, let us con-

sider a slightly different state:

|ψ′±〉 = α
1√
2

(|φ1〉 ⊗ |φ2〉 ± |φ2〉 ⊗ |φ1〉) + β
1√
2

(|φ2〉 ⊗ |φ3〉 ± |φ3〉 ⊗ |φ2〉)

+ γ
1√
2

(|φ3〉 ⊗ |φ4〉 ± |φ4〉 ⊗ |φ3〉) . (8.12)

(We consider both the bosonic and fermionic version, to show that the problem is

not peculiar to any single symmetry type.) Now we define two new single-particle

states
|χ±1 〉 := 1√

|α|2+|β|2
(α|φ1〉 ± β|φ3〉) ;

|χ±3 〉 := 1√
|α|2+|β|2

(β∗|φ1〉 ∓ α∗|φ3〉)

 (8.13)

Note that 〈χ±1 |φ2〉 = 〈χ±3 |φ2〉 = 〈χ±1 |φ4〉 = 〈χ±3 |φ4〉 = 0. The state |ψ′±〉 may now

interpretations. Other problems facing any proponent of particles, include the Unruh effect and
difficulties of localization. For a survey of these problems, see Baker (2009).
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be re-expressed as

|ψ′±〉 = α′±
1√
2

(
|φ2〉 ⊗ |χ±1 〉 ± |χ±1 〉 ⊗ |φ2〉

)
+ β′

1√
2

(
|χ±1 〉 ⊗ |φ4〉 ± |φ4〉 ⊗ |χ±1 〉

)
+ γ′

1√
2

(
|φ4〉 ⊗ |χ±3 〉 ± |χ±3 〉 ⊗ |φ4〉

)
(8.14)

where
α′± := ±

√
|α|2 + |β|2

β′ := αγ√
|α|2+|β|2

γ′ := β∗γ√
|α|2+|β|2

 (8.15)

It can be seen from (8.12) and (8.14) that the state |ψ′±〉 is of the same form in the

product basis induced by the single-particle basis {|φ1〉, |φ2〉, |φ3〉, |φ4〉} as in the

product basis induced by {|φ2〉, |χ±1 〉, |φ4〉, |χ±2 〉}. Therefore it is hard to see what

consideration could favour the former basis without equally favouring the latter,

and vice versa.

But although we may not be able to solve the problem, we can convert into

another that I have already acknowledged. For the arbitrariness in basis for the

fermionic GM-entangled state |ψ′−〉 would be overcome if the arbitrariness in basis

for the constituent non-GM-entangled states, first discussed in Stage C of Section

7.1.2 were overcome. A breaking of the under-determination in the latter case

induces a breaking of the under-determination of the former. The proponent of

Relativize may therefore delegate the solving of her basis arbitrariness problem,

for fermionic GM-entangled states, to any varietist, who must solve the basis

arbitrariness problem for fermionic non-GM-entangled states.

Besides, maybe the proponent of Relativize will shirk their responsibility even

for bosonic GM-entangled states. Recall that bosonic non-GM-entangled states do

not suffer a basis arbitrariness problem. But if they did, it seems plausible that

any solution for fermionic states would be exportable to bosonic states: after all, in

the former problem we seek a privileged basis for the single-particle Hilbert space.

This privileged single-particle basis, if such there be, would induce a privileged

product basis for states of any symmetry type. Thus I allow the proponent of

Relativize to see her basis arbitrariness problem for any GM-entangled state as
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not especially fatal to her project. The real problem is the basis arbitrariness for

non-GM-entangled states, and that faces every varietist.

Weaken or Relativize?

We have seen what each of the two kinds of heroic varietism has to say about GM-

entangled states. So which particular species of heroic varietism should we prefer:

one that has particles as possibly less than maximally specific, but as constituents

always of an entire state; or one that has particles as branch-bound systems, but

as always maximally specific?

The satisfying answer is that we need not choose. For there is no good reason

to take Weaken and Relativize as mutually exclusive options. On the contrary:

the mereological machinery that both endorse can be used to establish their con-

cordance. The proposal for unification is simple: The (maximally specific, branch-

bound) particles according to Relativize are parts of the (typically not maximally

specific, trans-branch) particles according to Weaken.

For an illustration of this proposal, consider again the state |ψ〉 in (8.8). The

constituent particles of this state under Relativize are four, and each is individuated

by the projector Pi := |φi〉〈φi|, where i = {1, 2, 3, 4}. The constituent particles

under Weaken are individuated by the projectors shown in (8.9). But just as,

under Weaken, we were encouraged to think of the particle specific à la P13 (say)

as a proper part of the particle specific à la P123, why not think of the particle

maximally specific—in the relevant branch—à la P1 as a proper part of the particle

specific à la P13?

This identification has advantages beyond reconciling Weaken and Relativize:

it serves to explain the probabilities in Table 8.1. For example, in that Table

p(14|13) = |α|2: this can be understood as the particle specific à la P14 overlapping

the particle specific à la P13, where the overlap is identical to the particle maximally

specific à la P1, which exists on a branch with amplitude α. Conversely, p(24|13) =

0, so the particle specific à la P24 has no common part with the particle specific à

la P13: i.e. there is no particle maximally specific on some branch that is a part of

both. Overlap is part-identity, and part-identity is identity of parts. The particles

according to Relativize provide the parts whose identity grounds the overlap of the
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particles according to Weaken.

Thus I return to an observation I made in Section 7.2.3, that we are led to

something like a quantum counterpart theory (Lewis (1968; 1986, Ch. 4)) in which

the basic entities are not world-bound, but rather branch-bound particles. These

particles are maximally specific on their branch; that is, each may be qualitatively

“individuated” on that branch with a one-dimensional projector that acts on the

single-particle Hilbert space. With single-particle projectors—which may be multi-

dimensional—we define counterpart relations, which select an (integer) number of

particles (possibly zero) in each non-GM-entangled branch.10

As with familiar counterpart relations, the projector may fail to individuate a

unique particle in each branch. In the example above, this occurs for projectors

P123, P124, P134, P234 and P1234 (and more besides). In these cases the counterpart

relation will not do as a surrogate for a “trans-branch” identity relation. How-

ever, by arbitrarily selecting one of the selected branch-bound particles from each

branch, we define a “trans-branch individual”, consisting of at most one particle

from each branch. These trans-branch individuals typically overlap one another,

and a single counterpart relation (a single projector) may define several such. If a

trans-branch individual has a branch-bound particle in every branch, we may call

it ubiquitous. Ubiquitous trans-branch individuals are precisely what were called

‘particles’ by the original proponent of Weaken (cf. Figure 8.1). Branch-bound

particles must, of course, occupy pure states—the states à la which they are max-

imally specific. Trans-branch individuals, on the other hand, may occupy mixed

states, so long as they are individuated by a multi-dimensional projector.

But which of the two better deserve the term ‘particle’: the branch-bound kind

or the trans-branch kind? There is no sensible answer to this question and none is

needed. Better to let context decide. If we are talking about constitution, we are

likely to want to talk about the non-overlapping, maximally specific, branch-bound

objects which are the parts of all the others. If we are talking about modality, or

if we are qualitatively individuating (perhaps for the purposes of calculating an

10Note that, while maximally specific particles are branch-bound, even a one-dimensional
projector may succeed in selecting some particle in several branches. A single branch-bound
particle is uniquely selected only by giving maximally specific individuation criteria for every
particle on its branch, using the individuation methods in Section 7.2.1.
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Figure 8.1: Branch-bound particles and some counterpart relations for the state
|ψ〉 in (8.8). The counterpart relation induced by P134 defines two overlapping
trans-branch individuals, which are the trans-branch individuals uniquely defined
by P13 and P14. All of these trans-branch individuals are ubiquitous.

expectation value), we are likely to want to talk about the (possibly overlapping)

objects that have parts in more than one branch, and more than one state.

This concludes my outline of varietism. I sum up with a final explicit statement

of what, for any state |Ψ〉 of the assembly, the varietist’s particles are:

(V2) Any state |Ψ〉 is a sum of terms, each representing a non-GM-entangled

“branch”. (Which sum of terms is determined by whatever solution we find

for the basis arbitrariness problem.) Each branch is composed exhaustively

of (i.e. is the mereological sum of) wholly distinct maximally specific systems

(which therefore must be in pure states); these are the most basic particles.

Most generally, a particle is any mereological sum of basic particles, where at

most one constituent basic particle belongs to each branch (a “trans-branch”

individual). Any two branches are related by a relative amplitude. The full

state |Ψ〉 is the mereological sum of these branches, so related.

I now turn to the desiderata for the concept of particle laid out in Section 5.1,

and argue that the varietist’s particles satisfy these desiderata to an acceptable de-

gree. In the following Section (Section 8.3) I finally address the basis arbitrariness
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problem which threatens varietism’s viability.

8.2 The merits of varietism

In this Section, I will address to what degree varietism satisfies Section 5.1’s

desiderata for the concept of particle. I will argue that varietism provides a toler-

able target concept for particle—so long as we may assume the basis arbitrariness

problem solved—a challenge I postpone until Section 8.3. In a final Section (8.2.6),

we address the question whether varietist particles are discernible. But first I ad-

dress, in order, the various desiderata for the concept of particle.

8.2.1 Varietist particles are physical

Factorism erroneously affords physical existence to a statistical construct, and va-

rietism is the most natural proposal for what the factorist’s particles are statistical

constructs of. We saw in Section 7.2.3 that we recover the factorist’s prescription

for calculating the reduced density operator of a constituent particle by setting

the qualitative individuation criterion as broad as possible (cf. Equation (7.71)).

Under a varietist interpretation, this is tantamount to laying down a counterpart

relation which will select every branch-bound particle in every branch; the result-

ing density operator is therefore a statistical average over the states of all of these

branch-bound particles. That covers changeable properties. The unchangeable

properties—what are often called ‘intrinsic’ or ‘kinematical’ properties—such as

mass, spin and charge, are the same for any one of a collection of varietist particles

of the same species as for the factorist particles which are statistical constructs of

them.11

It might be objected that the varietist attributes more unchangeable properties

to her particles than the factorist does to his, since it is with single-particle projec-

tors that the varietist individuates her particles in the first place. Although these

11There is of course one notable exception; namely the unchangeable property of existing in
the same mixed state as all other particles of the same species. This is, strictly speaking, a
state-invariant property for an anti-haecceitistic factorist.
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projectors represent quantities that are changeable for a factorist particle—insofar

as their expectation values vary from state to state—they are unchangeable for a

varietist particle—insofar as they constitute essential properties for that particle.

This claim has a more than passing resemblance to an erroneous potential

criticism of counterpart theory (cf. Lewis (1986, pp. 9-13)). This potential criticism

is that, since under counterpart theory every object exists only on one world, all

objects have all of their properties essentially. The correct response is to point out

that the modal properties of a world-bound object—say real-world Humphrey—are

represented by the occurrent properties of certain objects in other worlds—other-

world Humphreys, or Humphrey counterparts—which need not share the same

properties as our original, real-world Humphrey. Thus world-bound objects have

modal properties ‘vicariously’ (Lewis (1986, p. 10)). This response need only be

slightly modified to suit the varietist. The slight modification registers the fact

that particles are not only world-bound; they are branch-bound too. So a varietist

particle may not only have modal properties vicariously, but may have occurrent

(but other-branchly) properties vicariously too. They are represented by branch-

bound particles that exist in other branches of the same state.

The claim that the varietist’s particles are physical must be judged on whether

they behave in a way befitting of physical entities. This judgement must be in-

formed, in part, by their satisfaction of certain of our other strands of meaning for

the concept of particle: namely, compositionality and inter-theoretic applicability.

For, if the varietist’s particles are good candidates for the constituents (in the

broad sense; cf. Section 5.1.4) of familiar, macroscopic, physical objects, then they

are good candidates for being physical entities. And if the varietist’s particles look

like classical particles in the classical limit, then we have a defeasible reason to

extend our belief in the physicality of classical particles to the varietist’s particles,

even outside the classical limit. (Remember that it was here that the factorist

proposal failed.) We must therefore look to these other desiderata, as we shall do

below, in Sections 8.2.4 and 8.2.5.

Identity over time does not speak for or against the varietist’s particles being

physical, since plenty of physical things (like table-stages or events) do not exist

over time. Locationality does not help either: if you don’t believe that locationality
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entails physicality, then it is clearly no help; and if you believe that locationality

does entail physicality, then presumably there would be no way to convince you

that something was locational before you were already convinced that it was phys-

ical. All agree that there are plenty of unphysical things (e.g. centres of mass)

which at least seem to be locational, or are treated as such.

Therefore, let me say no more about physicality here, and turn to the other

strands of meaning.

8.2.2 Varietist particles are locational

That the varietist’s particles are locational is clear (given that they are physical).

For either one of the following two claims will always hold:

1. Location is used to qualitatively individuate the particles. This need not mean

individuating by a precise location, as in e.g. ‘The particle occupying the lo-

cation with co-ordinates (x, y, z)’. (Just as well, given that Hilbert spaces do

not contain eigenstates of position!) Rather, it means that particles are in-

dividuated by spatial wavefunctions, upon which there is no such restriction.

(Since spatial wavefunctions determine momentum-space wavefunctions and

vice versa, we count it as an instance of locational individuation even when

the wavefunctions used yield sharply peaked expectation values for momen-

tum and not position.)

However, we demanded in Section 5.1.2 that locationality be cashed out in

the following way: the state space for any particle must support a represen-

tation of the spacetime symmetry group. But particles that are individuated

by projectors whose support is less than all of co-ordinate space simply can-

not be found outside of that region of support. So the state space for such

a particle do not support a representation of the spacetime symmetry group

because it is not closed under action by that group.

Despite this, it remains true that individuating criteria may appeal to any

state in a state-space that does support such a representation. And because

of this, varietist particles that are individuated by spatial wavefunctions may
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be said to fulfil the spirit of the locationality desideratum. That is to say,

they satisfy the desideratum well enough.

2. Location is not used to individuate the particles. From Section 7.2.1 we

know that this case requires the single-particle Hilbert space to contain at

least one internal degree of freedom. So suppose we individuate with the

projector Eσ := eσ ⊗ 1sp, where eσ acts on the factor single-particle Hilbert

space corresponding to the internal degree of freedom, and 1sp is the identity

on the spatial degree of freedom. By applying Equation (7.55), we find that

the operator representing the position of the particle specific à la eσ is

πσ(Q) =
N∑
k=1

[
k−1⊗

1⊗ (eσ ⊗Q)⊗
N−k⊗

1

]
(8.16)

where Q is the single-particle operator representing position, and 1 is the

identity on the full Hilbert space.

In this case the particle individuated by eσ does have a state space which

supports a representation of the full spacetime symmetry group. The crucial

fact is that, since eσ only acts on the internal degree of freedom, the individ-

uation criterion Eσ commutes with every generator of the group action on

the single-particle Hilbert space.

8.2.3 Varietist particles do not (always) persist over time

The varietist countenances trans-branch individuals—objects that have as parts

at most one basic particle per branch. And if one is not averse to countenancing

objects at other times than the present, or objects in other worlds than the actual,

then there is no reason to restrict these to actual, present branches. Thus, depend-

ing on one’s ontological commitment to other times and other possible worlds, a

trans-branch individual may also be a trans-temporal and trans-world individual.

According to varietism, an actual, present trans-branch individual deserves the

name ‘particle’ as much as the branch-bound particles that are its parts. Therefore

the varietist may countenance particles that exist over time.
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However, as pointed out in Section 5.1.3, the commitment to trans-temporal

individuals comes to more than a commitment to arbitrary mereological sums of

objects existing at different times. The commitment is not to the existence of

such entities—which is all too easy, given that one is happy to countenance non-

present objects at all—but to the naturalness of such entities (cf. also Lewis (1986,

p. 213)).

The naturalness of trans-temporal particles is threatened by the preliminary

considerations in Section 7.3. There we found that for many possible quantum

histories, either no uniquely natural trans-temporal individuation strategies exist,

or else no trans-temporal individuation strategy exists at all. In fact matters are

worse for the varietist, since even a single individuation strategy may (under-)

determine several trans-branch individuals (cf. Section 8.1.3).

If we rule that any trans-temporal individual must be defined by a natural

trans-temporal individuation strategy to earn the name ‘particle’, then the quan-

tum world admits too many pathologies for it to be true that whenever there are

branch-bound particles, then there are also particles of the trans-temporal kind.

This means that varietism fails to satisfy the trans-temporal desideratum. But

trans-temporal persistence was a non-compulsory constraint: trans-temporal indi-

viduation problems are not enough to prevent varietism’s proposed target concept

of particle being viable; they simply suggest that, if varietism is right, we are often

better off to talk about particles of the branch-bound, therefore time-bound, kind.

8.2.4 Varietist particles compose assemblies

According to the recommended ontological picture in Section 8.1.3, the state of the

assembly always supervenes on the properties and relations of the constituent par-

ticles, so long as we also include the relations which encode relative amplitudes be-

tween non-GM-entangled branches—these must be interpreted as multi-grade rela-

tions between the particles themselves. Therefore weak compositionality—i.e., su-

pervenience of the assembly’s properties on the particles’ properties and relations—

is satisfied. In fact, strong compositionality—i.e., mereological compositionality—

is satisfied, since in any state of the assembly, the assembly is a mereological sum
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of suitably related branch-bound particles.

As we saw in Stage E of Section 7.1.2, there is an interesting supervenience

result for varietism that is analogous to a more familiar supervenience result for

factorism. The result for factorism is that an assembly’s properties supervene on

its constituent particles’ properties alone iff the assembly is non-entangled. The

corresponding result for varietism is that an assembly’s properties supervene on its

constituent particles’ properties and symmetry type iff the assembly is non-GM-

entangled.12

There can be no doubt that varietist particles satisfy the compositionality

desideratum. Whether varietist particles might even compose macroscopic objects

mereologically is an interesting question, but one that may be decoupled from

our interests here. For the answer depends not on anything specific to quantum

mechanics, but rather on whether macroscopic objects may be said to have precise

characteristics.

8.2.5 Varietist particles have inter-theoretic applicability

Recall from Section 5.1.5 that the inter-theoretic applicability of a QM-local par-

ticle concept is a matter of ontological continuity in the limits of successful partial

reduction of the other theories in question. ‘Ontological continuity’ is used here

rather elastically: it is enough for me that the relevant objects in each theory

behave alike in the appropriate limit. Of course, to make sense of ‘behaving alike’

I need a language to describe this behaviour that stands astride the different the-

ories. And I need ‘behaving alike’ to come to more than just ‘satisfies the other

desiderata for any target concept of particle’, since that much is already guaran-

teed. What I want to know is whether, in some reasonable sense, the varietist’s

particles become classical particles in the classical limit, and whether they become

12The supervenience result does not hold for paraparticles, since for any specific paraparticle
type, distinct assembly states (that is, distinct generalized rays) exist which yield identical oc-
cupation numbers for single-particle states. We may regain supervenience by allowing relations
between constituent particles into the picture which encode, for any two particles, whether their
states are symmetrized or anti-symmetrized in the assembly’s state. (This information deter-
mines a unique standard Young tableau, and the standard Young tableaux are in one-to-one
correspondence with states of all assemblies of all symmetry types; cf. Tung (1985, Ch. 5).).
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Fock space quanta in a limit of a QFT, of conserved total particle number.

Making ‘behaving alike’ precise in a way that is sufficiently general is—thankfully!—

not a task I need undertake here.13 I have a specific cases to consider, so let me

appeal to the details of those cases. I consider classical mechanics and QFT in

turn.

Varietist particles in the classical limit

Here I will only consider the ~ → 0 limit, and my discussion will be somewhat

elementary.14 This limit is typically modelled by a sequence of coherent states that

are ever-narrowing Gaussians on the system’s configuration and momentum spaces

(Landsman (2007, §5)). These Gaussians, parameterized by values for ~, are used

to calculate expectation values for the various quantities. In the ~ → 0 limit, we

effectively obtain a Dirac delta function centred at a point in the system’s phase

space, which acts as a surrogate for the classical state associated with that point.

That is: lim~→0 (〈Q2〉~ − 〈Q〉2~) = 0 and lim~→0 (〈P2〉~ − 〈P〉2~) = 0.

The case we are concerned with is more complicated, for two reasons. The first

complication is that we are dealing with systems that are themselves assemblies

of constituent systems. For distinguishable systems, this is easily handled by

defining the appropriate coherent states as products of single-constituent coherent

states. Thus in the classical limit we take for granted that the assembly’s state

is not entangled. However, the second complication is that we are dealing with

indistinguishable systems, and the resulting superselection rule means that we are

not at liberty to consider the behaviour of arbitrary products of coherent states.

This second complication is easily overcome by simply acting on any given prod-

uct state with a projector of the appropriate symmetry type. Thus the assembly’s

wavefunction will be a superposition of multivariate Gaussians (i.e. products of

single-constituent Gaussians), each centred at an image, under action by SN , of

some point in the configuration space. (The wavefunction has the same charac-

ter in the momentum representation too.) No information is lost—so long as we

13Optimism that the right sense of ‘behaving alike’ can be made sufficiently precise for general
purposes surely underpins Ladyman’s (1998, 2002) ontic structural realism.

14An indispensable and thorough introduction to the classical limit in quantum mechanics is
given by Landsman (2007).
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also know the symmetry type of the state—if we instead represent the state as a

Gaussian centred at a single point in the assembly’s reduced configuration space,

formed by quotienting by SN . Given the results in Stages C and D of Section 7.1.2,

this means that in the classical limit we take for granted that the assembly’s state

is non-GM-entangled.

That quantum states in the classical limit are taken to be non-GM-entangled is

the key to the varietist’s success in establishing ontological continuity between her

particles and classical particles. For, as we have seen in Sections 8.1.1 and 8.1.2,

in any non-GM-entangled state of the assembly, the constituent varietist particles

are all in pure states. In the approach to the classical limit, these pure states are

ever-narrowing Gaussians in both co-ordinate and momentum representations, so

that in the classical limit itself, the varietist particles may be attributed a definite

location and momentum.

In more detail: Recall from Sections 7.2.1 that qualitative individuation of

quantum systems will be successful so long as the quantum state has its support

restricted to some off-diagonal block of the reduced configuration space (RCS) of

the assembly. For example, consider two particles on the real line. Then each

off-diagonal block of the RCS is defined by a pair of intervals 〈∆1,∆2〉, such that

∆1 and ∆2 are connected open regions of R, and for every x1 ∈ ∆1 and every

x2 ∈ ∆2, x1 < x2. Now for any state Ψ(x, y), if∫
∆1

dx

∫
∆2

dy |Ψ(x, y)|2 +

∫
∆2

dx

∫
∆1

dy |Ψ(x, y)|2 = 1 (8.17)

then

〈E∆1 ⊗ E∆2 + E∆2 ⊗ E∆1〉 = 1 (8.18)

where

(E∆1f)(x) :=

{
f(x), for x ∈ ∆1

0, for x /∈ ∆1

; (E∆2f)(x) :=

{
f(x), for x ∈ ∆2

0, for x /∈ ∆2

(8.19)

Therefore, if condition (8.17) holds, we may say that there is one system specific à

la E∆1 and one specific à la E∆2 . And since E∆1 ⊥ E∆2 , we may further say that
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these systems are distinct. If, further, the state Ψ(x, y) is non-GM-entangled—as

it will be when considering the classical limit—then each of these individuation

criteria succeeds in picking out a unique branch-bound particle. One will occupy

a state whose support lies in ∆1; the other’s state will have its support in ∆2.

Moreover, these two particles exhaustively constitute the assembly itself.

When considering the classical limit, we restrict attention to states Ψ
(~)
(q,p)(x, y),

where Ψ
(~)
(q,p)(x, y) is a Gaussian centred at q = (q1, q2) (where q1 6 q2) in the RCS,

and its Fourier transform is a Gaussian centred at p = (p1, p2) (where p1 6 p2)

in the reduced momentum space. Now let us set ∆
(ε)
1 := (q1 − ε, q1 + ε),∆

(ε)
2 ≡

(q2 − ε, q2 + ε) for some ε > 0. Then for any ε > 0, Equation (8.17) holds for

Ψ(x, y) ≡ Ψ
(~)
(q,p)(x, y) for some value of ~ > 0, and all smaller values. Thus, given

the comments in the previous paragraph, for any ε > 0, at some point along the

way to the classical (~→ 0) limit, if q2−q1 > 2ε, then the projectors defined from

∆
(ε)
1 and ∆

(ε)
2 as in Equation (8.19) will each succeed in individuating a branch-

bound particle, whose spatial wavefunctions are centred at q1 and q2 respectively,

and whose momentum wavefunctions are centred at p1 and p2 respectively, and

which together exhaustively compose the assembly.

Therefore, by selecting the correct ε we can, for any state Ψ
(~)
(q,p)(x, y), such that

q2 > q1, individuate branch-bound particles for some value ~ > 0 and thereafter,

along the way toward the classical limit. These branch-bound particles will have

increasingly definite locations and momenta as ~→ 0. Thus they are perfect can-

didates for being the temporal parts of classical particles (with matching locations

and momenta) in that limit.

The remaining wrinkle is the case where q1 = q2 =: q. In this case we can

use one “individuation criterion” defined, as in Equation (8.19), from the interval

∆(ε) := (q − ε, q + ε). There is no ambiguity which branch-bound particle is

picked out in this case: both are. Therefore we may additionally individuate

using momentum. Provided that the assembly wavefunction is centred at a point

that attributes different momenta of the two particles, then we can run a similar

individuation campaign to that in the previous two paragraphs, will equal success.

If, on the other hand, the assembly’s wavefunction is centred at a point which

attributes the same location and momentum to both particles, then no two pro-
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jectors will serve to individuate one without also picking out the other. But this

is no objection to identifying the indiscernible branch-bound particles with their

classical counterparts; for their shared location and momentum is definite in the

classical limit, and in the classical case too the two particle-stages are indiscernible.

(Whether such a situation is metaphysically possible is not a question the varietist

has to answer.)

Thus the varietist recovers classical particle-stages in the ~ → 0 limit. Unlike

the factorist’s particles, in this limit the varietist’s particles may be attributed a

definite position and momentum. But we can do more.

One crucial characteristic of classical particles is that they have definite tra-

jectories. To recover genuine classical particles (and not just particle-stages) in

the classical limit, the varietist must provide uniquely natural trans-temporal in-

dividuation criteria for her particles. But along the way to the classical limit,

uniquely natural criteria exist. We need only make our original intervals ∆
(ε)
1

and ∆
(ε)
2 time-dependent. So define ∆

(ε)
1 (t) := (q1(t) − ε, q1(t) + ε) and ∆

(ε)
2 (t) :=

(q2(t)− ε, q2(t) + ε), where (q1(t), q2(t)) is the location of the system point in the

RCS at time t, according to the classical dynamics. Then for any ε > 0, at each

time t, so long as q1(t) < q2(t), we succeed in individuating two branch-bound

particles somewhere along the way to the classical limit (and thereafter).

Trans-temporal individuals may then be constructed out of these individuated

branch-bound particles with the requirement that any two branch-bound particles

that exist at “near” times compose the same trans-temporal individual only if

their wavefunctions significantly overlap. (This requirement can be made precise.)

Again, collisions create a wrinkle: for if two branch-bound particles at a time them-

selves have significantly overlapping wavefunctions, then it will be indeterminate

which ought to belong to which trans-temporal individual.

But again, this is no objection to the varietist’s claim to have recovered per-

sisting classical particles in the ~ → 0 limit. For collisions provide as much of

a problem for the trans-temporal individuation of classical particles. Thus it is

enough for the varietist’s case to have recovered a unique pair of trans-temporal

individuals for any segment of history for which the two individuals do not collide.
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Varietist particles in QFT’s limit of conserved particle number

Cross-theoretic ontological identifications are far more straightforward between

quantum mechanics and QFT, since the state space of any quantum mechanical

theory is a subspace of the state space for some quantum field theory. In QFT, the

field’s state is restricted to one such subspace (in the sense that these subspaces

are selected) when the dynamics preserve particle number.

In this case the varietist’s proposal is simple: branch-bound particles are Fock

space quanta. We have already seen, in Section 8.1.3, that varietism is very natu-

rally extended to states with variable particle number. However, it is a further—

and perhaps more surprising fact—that varietist particles have been familiar to us

all along, albeit in a different theory.

Recall what we know about Fock space quanta. We can glean all we need to

know about a quantum from the operators with which it is associated—these are

the creation and annihilation operators and the operators constructed from them.

Starting from the unique vacuum state |0〉, it is familiar (cf. e.g. Maggiore (2005,

p. 84)) that the mathematical state

a†k,s|0〉 (8.20)

represents (up to a multiplicative factor) a physical state in which there is one

quantum, whose state comprises a definite momentum with wavevector k and

internal state (spin, polarisation, etc., if any) s. Let us represent this state by

|k, s〉. Then, by combining typical formalisms from QFT and elementary quantum

mechanics, we may write

a†k,s|0〉 ∝ |k, s〉. (8.21)

Operations on (8.21) with more creation operators yield multiple-particle states

with an ever-increasing number of particles. For example, if (k, s) 6= (l, r), then

a†l,ra
†
k,s|0〉 ∝

1√
2

(|k, s〉 ⊗ |l, r〉 ± |l, r〉 ⊗ |k, s〉) . (8.22)

where ‘±’ is positive for bosons and negative for fermions. The space of all states

generated from finite operations on the vacuum state |0〉 by the creation operators
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a†p,r is the Fock space for the quantum field.

The operators a†p,r and ap,r, where p ∈ R and r is an internal state index, are the

creation and annihilation operators for momentum quanta, which (by definition)

satisfy the (anti-) commutation relations

[
ap,r, a

†
q,s

]
± = (2π)3δ(3)(p− q)δr,s, (8.23)

where the subscript ‘±’ indicates an anti-commutator or commutator, according to

whether the quanta are fermions or bosons, respectively. And every annihilation

operator annihilated the vacuum, i.e. for all k, s:

ak,s|0〉 = 0. (8.24)

If we now define a family of operators

Nk,s := a†k,sak,s, (8.25)

then from the (anti-) commutation relations (8.23),

[
Np,r, a

†
q,s

]
± = (2π)3δ(3)(p− q)δr,sa

†
q,s. (8.26)

This, combined with the vacuum condition (8.24), entails that the integral

N(Ω, S) =

∫
Ω

d3k

(2π)3

∑
s∈S

Nk,s (8.27)

has a natural number spectrum on Fock space. This fact, combined with the

identifications (8.21) and (8.22), entails that the operator N(Ω, S) is the quantity

that counts the number of quanta whose momenta lie in Ω and whose internal

states lie in S.

But N(Ω, S) also counts the number of varietist particles that are maximally

specific à la states each of whose momentum lies in Ω, and internal state lies

in S. To see this we only need to write N(Ω, S) out explicitly in a way that is

more familiar from the point of view of elementary quantum mechanics, and our
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previous discussions in Sections 7.1.2 and 7.2.1. We have

N(Ω, S) =
∞⊕
n=1

[
n−1∑
k=1

(
k−1⊗

1⊗ E(Ω, S)⊗
N−k⊗

1

)]
(8.28)

where E(Ω, S) is the single-particle projector defined by

E(Ω, S)ψs(k) :=

{
ψs(k), k ∈ Ω, s ∈ S

0 otherwise,
(8.29)

and 1 is the identity on the single-particle Hilbert space. Thus each summand

(in square brackets) of the right-hand side of (8.28) is an operator that acts on

the appropriately (anti-) symmetrized n-particle Hilbert space. It may be checked

that the operator on the right-hand side of Equation (8.28) is the unique operator

that satisfies the requirements placed on it by the conditions from (8.21) to (8.27).

Note that each n-particle summand of N(Ω, S) is of precisely the same form

as a single-system quantity associated with a qualitatively individuated system,

where E(Ω, S) is the criterion of individuation; cf. Equation (7.55) in Section

7.2.3 (where α ≡ (Ω, S)). In this case the single-system quantity in question is

the identity, which yields a quantity which we interpret as counting the average

number of systems maximally specific à la states which lie in (Ω, S). But these

maximally specific systems are, for the varietist, the branch-bound particles.

Thus N(Ω, S) counts both the number of Fock space quanta, and, in each n-

particle subspace, the number of varietist branch-bound particles, which are in

states circumscribed by (Ω, S). Moreover, this number is that same for quanta as

for branch-bound particles. The correct response is clear: the Fock space quanta

are the varietist’s branch-bound particles.

To end this Subsection, we note two significant consequences of the identifica-

tion of Fock space quanta with the varietist’s branch-bound particles.

1. First, the lessons of anti-factorism already recommend something like a QFT

ontology, even without having to consider superpositions of variable quantum

number, difficulties in localization or the Unruh effect.
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2. Second, any criticism facing varietism equally faces any interpretation of

QFT that takes particles as the basic entities. So, in particular: the basis

arbitrariness problem is a problem for a particle ontology in QFT as much

as for varietism.

This concludes our survey of the desiderata for varietist’s proposed target con-

cept of particle. I have argued that varietist particles satisfy these desiderata

well enough, despite possible problems facing trans-temporal individuation. But

varietism’s viability relies on there being a satisfactory solution to the basis arbi-

trariness problem, which I am yet to address. I will come to the problem soon,

but first allow me a brief digression about discernibility.

8.2.6 Are varietist particles discernible?

The varietist’s particles are composed of branch-bound particles (or are identical

to them), and no two discernible objects may be composed of utterly discernible

parts; so if any two particles are discernible, then they will be discernible by their

parts. So our question comes to: Are branch-bound particles discernible?

Branch-bound particles are “individuated” by single-particle states. Fermionic

assemblies are characterized, due to the total anti-symmetrization of their available

states, by Pauli exclusion: that is, any single-particle state is occupied at most

once. Therefore, any two distinct fermionic branch-bound particles occupy differ-

ent states, and are therefore discernible. Moreover, they are always absolutely dis-

cernible (cf. Section 2.3), since the occupation of a particular single-particle state

corresponds to a monadic property.15 This vindicates Weyl’s (1928, p. 241) claim,

that ‘the Leibnizian principle of coincidentia indiscernibilium holds in quantum

mechanics [for fermions],’ and his naming the exclusion principle as the ‘Leibniz-

Pauli exclusion principle’ (Weyl (1949, p. 247)). In contrast, factorist fermions

(and bosons and paraparticles) are always absolutely indiscernible (cf. Section

6.3), though they may be weakly discerned.

If bosonic or paraparticle assemblies are in states where no single-particle state

15If we take a single-particle state as an intrinsic property of a branch-bound particle, then
fermionic branch-bound particles are not just absolutely, but intrinsically discernible.
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is occupied more than once, then any two branch-bound particles for those as-

semblies are absolutely discernible too. However, bosons and paraparticles are

not subject to Pauli exclusion, so single-particle states may be multiply occupied.

Thus there are states for bosonic or paraparticle assemblies in which two bosons

or two paraparticles may be indiscernible by their single-particle states.

Does this make bosonic and paraparticle branch-bound particles utterly indis-

cernible or just absolutely indiscernible? Recall (Section 6.3) that factorist par-

ticles may be discerned, even though they occupy the same single-particle states,

since they may be weakly discerned by some physical symmetric and irreflexive

relation. Can these results for factorist particles be carried over for the varietist’s

branch-bound particles?

They cannot. Recall that the weak discernment of factorist particles relies on

taking advantage of anti-correlations in the assembly’s state (cf. Section 6.3.5).

Even a state with no anti-correlations in some single-particle basis may be ex-

pressed in some new basis in which anti-correlations are guaranteed to arise. So

the discernment of factorist particles relies on these particles surviving the basis

change.

The varietist’s branch bound particles do not survive single-particle basis changes.

This is because, unlike factorist particles, they are individuated by their single-

particle states. So if one changes the single-particle states in which the assembly’s

state is expressed, then one changes the branch-bound particles about which one

is talking. (Or at least, this is so for any reasonable attempt to solve the ba-

sis arbitrariness problem; cf. Section 8.3.) Factorist particles are individuated by

their factor Hilbert space labels, and these are of course preserved between ba-

sis changes. Varietist branch-bound particles just don’t have anything similar to

preserve them.

Thus branch-bound bosons and fermions are utterly indiscernible in states of

the assembly in which the same single-particle state is multiply occupied. Recall

too that the varietist is anti-haecceitistic about her particles (cf. Section 8.1.1).

Therefore the varietist endorses the metaphysical thesis which in Part I we labelled

‘QII’. If the varietist wishes to countenance only fermions, then any of the anti-

haecceitistic theses, from SPII to QII, are consistent.
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To conclude this Section, I will make a brief observation about how an ad-

herence to varietism affects a well-established claim in the discernibility literature

(this literature is more thoroughly discussed in Section 6.3).

The claim is that a certain argument for anti-haecceitism about particles from

quantum statistics, perhaps first criticised by Redhead (1987, p. 12) and French

and Redhead (1988, pp. 235-8), does not work. The argument for anti-haecceitism

runs as follows. Consider two two-state quantum systems. Choose the single-

system orthobasis {|H〉, |T 〉} (“head” and “tails”). Then the tensor product

Hilbert space for the two-system assembly is spanned by the four states

|H〉 ⊗ |H〉; |T 〉 ⊗ |T 〉; |H〉 ⊗ |T 〉; |T 〉 ⊗ |H〉. (8.30)

But if the systems are bosons, then the observed statistics seem to show that only

three distinct possibilities exist—namely: two heads, two tails, or one head and one

tail—since an equal probability of 1
3

is given to each. If the systems are fermions,

then only one possibility exists: one head and one tail. These statistics can be

explained (so the argument goes) if the last two states in (8.30) are not genuinely

physically distinct. Yet the two states differ only haecceitistically. Therefore, there

are no haecceitistic differences.

The error in this argument, as pointed out by Redhead and French, is that the

wrong basis states are appealed to. Under IP, the four pure states are

|H〉⊗ |H〉; |T 〉⊗ |T 〉; 1√
2

(|H〉 ⊗ |T 〉+ |T 〉 ⊗ |H〉) ;
1√
2

(|H〉 ⊗ |T 〉 − |T 〉 ⊗ |H〉) .

(8.31)

Now the last two of these states are certainly distinct: one is bosonic; the other

is fermionic. What explains the statistics is that, if the assembly is bosonic, then

only the first three states are dynamically accessible; and if it is fermionic, then

only the last state is accessible.

The switch to varietist particles does not contradict this wisdom. For the vari-

etist, as for anyone, the last two states in (8.31) are undeniably distinguishable—

indeed they are qualitatively distinguishable, since an assembly’s symmetry type

is an eigenvalue of a symmetric quantity. But nevertheless, varietism revives the
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spirit of the argument for anti-haecceitism from statistics. The rehabilitated ar-

gument runs as follows.

Recall from Section 8.1.1 that the quantum formalism compels anti-haecceitism

about varietist particles. That is, the varietist describes, for example, the state
1√
2

(|H〉 ⊗ |T 〉+ |T 〉 ⊗ |H〉) as one in which there is one boson maximally specific à

la |H〉 and one boson maximally specific à la |T 〉, and there is no further question

which boson is which.

But the quantum formalism may be incomplete. So suppose it is, and suppose

there is the further question: Which boson is which? Then there would have to be

two physical states corresponding to the mathematical state 1√
2

(|H〉 ⊗ |T 〉+ |T 〉 ⊗ |H〉),
related by a permutation of haecceities among the states à la which they are max-

imally specific. This permutation is not represented by the operation |φ〉 ⊗ |ψ〉 7→
|ψ〉⊗|φ〉, since varietist particles are not represented by factor Hilbert space labels.

The permutation cannot be represented in the quantum formalism at all, since we

supposed that the quantum formalism is incomplete in precisely this way.

On the other hand, on the assumption of haecceitistic differences, there would

still be only one physical state corresponding to each of the product states |H〉 ⊗
|H〉 and |T 〉 ⊗ |T 〉. Thus, if haecceitism were true of varietist particles, one would

expect the physical states (plural!) represented by 1√
2

(|H〉 ⊗ |T 〉+ |T 〉 ⊗ |H〉) to

have twice the statistical weight assigned to |H〉 ⊗ |H〉 or |T 〉 ⊗ |T 〉 alone. Yet, in

fact, they all have the same statistical weight, namely 1
3
. The best explanation of

this is that our original assumption, namely that it made sense to ask which boson

is which, beyond the distribution of single-system states, was incorrect. But this

just is the assumption of haecceitistic differences. Thus, the quantum formalism

is not incomplete, and anti-haecceitism is true of varietist particles.

8.3 A preferred basis problem for varietism

I have argued that varietism satisfies, to a sufficient degree, the desiderata for any

target concept of particle. But varietism’s viability depends on solving the problem

first pointed out in Stage C of Section 7.1.2—the basis arbitrariness problem. This
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Section argues for pessimism about varietism’s prospects for solving this problem.

Because of this, I will be led, in Chapter 9, to advocate a rival target concept of

particle—emergentism.

The structure of this section is as follows. First, in Section 8.3.1, I will outline

again the problem to be solved, and introduce five proposals, in increasing order

of feasibility, to overcome it. Each of these five proposals will then be assessed, in

Sections 8.3.2 to 8.3.6.

8.3.1 The problem of basis arbitrariness

In Section 8.1.3, the problem of basis arbitrariness was discussed in particular

for non-GM-entangled states for assemblies of fermions and paraparticles. The

problem is that there are continuum-many single-particle bases in which such

states are manifestly non-GM-entangled, so for each non-GM-entangled state it

is under-determined which branch-bound particles the varietist is to say compose

the assembly in that state. From Stage C of Section 7.1.2 we know that, for an

assembly of N fermions, this arbitrariness is parameterized by the (N − 1)!2N−1-

real-dimensional manifold

(
CPN−1 × CPN−2 × · · · × CP1

)
/SN ; (8.32)

i.e., that points in this manifold correspond one-to-one to a choice of a single-

particle basis in which a given non-GM-entangled state of the fermionic assembly

is manifestly non-GM-entangled.

However, the problem—that the branch-bound particles out of which (the va-

rietist will say) the assembly is composed are under-determined—is not limited to

non-GM-entangled states of fermions and paraparticles. We also saw in Section

8.1.3 that it is under-determined, at least for some states, which non-GM-entangled

“branches” the varietist should say superpose to yield a given GM-entangled state,

even for bosonic assemblies. Again, this boils down to an under-determination of

the single-particle basis which dictates which branch-bound particles the varietist

says compose the assembly in that state.
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Although in Section 8.1.3, I made this point by giving an example of a GM-

entangled state which takes the same form for many choices of a single-particle

basis, it may even be argued that the varietist’s problem plagues any state what-

soever: for we can always re-express the same state using a different single-particle

basis. I did not take this strict line, since it is a familiar fact—in classical me-

chanics too—that a state space may be co-ordinatized in a multitude of different

ways. This in no way compromises the claim that certain co-ordinatizations are

nevertheless privileged in virtue of aligning with natural ontological divisions, so

long as such natural divisions exist.16 The problem for the varietist is that there

are plenty of states for which, given that natural divisions do exist, several “co-

ordinatizations” (i.e., several single-particle bases) appear to have equal claim to

align with them.

It must also be emphasized that, given the clean meshing between the vari-

etist’s branch-bound particles in elementary quantum mechanics and the quanta

of QFT (cf. Section 8.2.5), these basis arbitrariness problems face those who seek a

particle ontology of QFT. And, of course, this is all notwithstanding the additional

problems facing a particle interpretation found there, such as the Unruh effect.

In the following Sections, we investigate five potential responses to the basis

ambiguity problem. The responses are not always exclusive: one may be imple-

mented for some states, and others for other states, strategically. Nor do we claim

that these responses are exhaustive. Perhaps a decent proposal exists that we

have overlooked, in which case varietism would be saved. But we know of no such

proposal.

By way of introduction, we list the five responses here. They may be categorised

into two groups: the responses which attempt to overcome basis arbitrariness

by finding, for each state, a uniquely privileged basis; and the responses which

16This general way of looking at the matter is illustrated by what is now the consensus re-
garding the empirical content of diffeomorphism covariance in general relativity, in the light of
Kretschmann’s objection to Einstein. Despite the undeniable fact that the spacetimes in New-
tonian mechanics and special relativity may too be expressed in arbitrary co-ordinates, general
relativity is distinguished by the fact that no natural (in the sense of aligning with the inertial
structure) co-ordinate system may be specified independently of a specification of the distribu-
tion of mass-energy. For a better discussion of this response to the Kretschmann objection, see
e.g. Misner, Thorne and Wheeler (1973, §17.7) and Brown (2006, pp. 154-6, 178-81).
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attempt to overcome the arbitrariness by somehow accommodating all natural

bases at once, without privileging any one over the other. The first two responses

fall under the former category; the second three responses fall under the latter.

The responses are written as claims for vividness.

1. One size fits all. There is a uniquely natural single-particle basis for each

state of the assembly. It is the same basis for every state. That is, there is

a categorically privileged single-particle basis.

2. Complicate. In realistic cases, there is more than one degree of freedom under

consideration. These extra degrees of freedom provide the extra structure

needed to determine a uniquely natural single-particle basis, for each state.

3. Coalesce. All of the rival single-particle bases may be reconciled by reify-

ing all of the corresponding branch-bound particles. But in each non-GM-

entangled branch, each particle associated with one single-particle basis is

identical to some particle associated with any other single-particle basis.

4. Multiply. All of the rival single-particle bases may be reconciled by reifying

all of the corresponding branch-bound particles. The particles in all bases

are all distinct one from another.

5. Overlap. All of the rival single-particle bases may be reconciled by reifying all

of the corresponding branch-bound particles. But particles associated with

different bases are not wholly distinct. In fact particles in different bases

overlap in such a way that for each non-GM-entangled branch, the sum of

all branch-bound particles in one single-particle basis are jointly identical to

the sum of all branch-bound particles in any other single-particle basis.

8.3.2 The ‘One size fits all’ response

The One size fits all response is undeniably simple; but its simplicity issues from

its rigidity, which is also the source of its drawbacks. It is clear that One size fits all

easily and satisfactorily solves the basis ambiguity problem for non-GM-entangled

fermions and paraparticles, whenever one of the rival decompositions belongs to
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the categorically privileged basis. But if none of the rival decompositions belong

to this basis, One size fits all comes into conflict with Sections 8.1.1 and 8.1.3’s

prescription for deciding of which branch-bound particles the assembly in any given

state is composed.

For example, consider the two-fermion state

1√
2

(|a〉 ⊗ |b〉 − |b〉 ⊗ |a〉) , (8.33)

where |a〉 and |b〉 are both states with compact support centred at locations a and

b, respectively, and 〈a|b〉 = 0. According to (V2) in Section 8.1.3, the possible

pairs of branch-bound particles that could be said compose the assembly in this

state are those for which (8.33) is manifestly non-GM-entangled. These pairs are

maximally specific à la

1√
1 + |z|2

(|a〉+ z|b〉) and
1√

1 + |z|2
(|b〉 − z∗|a〉) , (8.34)

where |z| 6 1, and 0 6 arg(z) < π if |z| = 1.17 If for one value of z (and it

will be for at most one value) the single-particle states in (8.34) belong to the

categorically privileged basis under One size fits all, then the proponent of One

size fits all may say that the assembly is composed of the pair corresponding to

that value of z. So far, so good. But what if none of the rival pairs have states in

the privileged basis? (What if, in our example, the privileged basis is position, or

momentum?) What ought the proponent of One size fits all say then?

A categorically privileged basis is categorically privileged, whether the state

is manifestly non-GM-entangled in that basis or not. Therefore the proponent of

One size fits all rejects the recommendations to the varietist I made in Sections

8.1.1 and 8.1.2 for all non-GM-entangled states, except those that happen to be

mainfestly non-GM-entangled in the categorically privileged basis. According to

this proposal, the objects of the quantum ontology are all branch-bound particles

associated with the same privileged basis (or else they are composed from these

17This restriction is a convenient way to identify antipodal points on the Riemann sphere;
cf. Stage C of Section 7.1.2.
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branch-bound particles). Thus a state that is non-GM-entangled, but not mani-

festly so in the privileged basis, is treated like any GM-entangled state: namely,

as a superposition of “branches” of suitable branch-bound particles.

The One size fits all response is clearly ad hoc: there is no reason to coun-

tenance a categorically privileged single-particle basis, except that it solves the

basis ambiguity problem. The proposed basis is not empirically accessible, and

it conflicts with the principle that non-GM-entangled states are composed of un-

superposed branch-bound particles. And, of course, there is no uniquely natural

suggestion for what the privileged basis would be. (The two proposals that are

perhaps the most intuitive, namely position and momentum, create particular

trouble, since eigenstates for position or momentum do not exist in the standard

Hilbert spaces.) Therefore we turn to the next proposal.

8.3.3 The ‘Complicate’ response

The next proposal seeks to single out a preferred single-particle basis in a way

that better reflects the physics. It takes advantage of the fact that, in realistic

scenarios, particles have more than just the locational degree of freedom. Single-

particle Hilbert spaces for all actual particles include an internal spin space, and

possibly other degrees of freedom, such as flavour and colour. To simplify the

discussion, let us ignore these other degrees of freedom and consider only location

and spin.

The utility of the spin degree of freedom in solving the basis arbitrariness prob-

lem lies in the extra structure it provides in breaking the under-determination of

single-particle bases. For, just as two “distinguishable” particles may be entangled,

and two “indistinguishable” particles may be GM-entangled, so the individual de-

grees of freedom associated with a single particle may be entangled. Entanglement

between the degrees of freedom of a single system is exactly like entanglement be-

tween distinct distinguishable systems: the state is entangled iff it is non-separable.

The proponent of Complicate stipulates that branch-bound particles only pos-

sess states in which distinct degrees of freedom are not entangled; i.e. they may be

attributed both a pure spatial state and a pure spin state. The advantage of this
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proposal over One size fits all, if it succeeds, is that it would be using the physi-

cal phenomenon of entanglement to determine a uniquely preferred single-particle

basis, so it could not be accused of being ad hoc.

Apart from that, Complicate shares two important features with One size fits

all. First, it breaks the under-determination of bases when one of the rivals is

non-entangled in its degrees of freedom. For example, in the state

1√
2

(|L, ↑〉 ⊗ |R, ↓〉 − |R, ↓〉 ⊗ |L, ↑〉), (8.35)

the single-particle basis {|L, ↑〉, |R, ↓〉} is uniquely preferred over its rivals, such as

{ 1√
2
(|L, ↑〉+ |R, ↓〉), 1√

2
(|L, ↑〉 − |R, ↓〉)}.18

Second, however, the requirement that the single-particle basis be non-entangled

may conflict with the principle that non-GM-entangled states are composed of un-

superposed particles. Define an uncomplicated particle as a branch-bound particle

whose state is non-entangled in its separate degrees of freedom; i.e. a branch-bound

particle that may be ascribed a pure state in every degree of freedom. Then there

are non-GM-entangled states whose maximally specific particles are not uncom-

plicated. (Call not uncomplicated particles complicated.)

For example, the single-particle states

|φ〉 := α|L, ↑〉+ β|R, ↓〉; |χ〉 := β∗|L, ↑〉 − α∗|R, ↓〉 (8.36)

(where |α|2 + |β|2 = 1) exhibit entanglement between the spatial and spin degrees

of freedom so long as 0 < |α|, |β| < 1; so any particle that is maximally specific à

la |φ〉 or |χ〉 is complicated. Now consider the non-GM-entangled (bosonic) state

|ψ〉 :=
1√
2

(|φ〉 ⊗ |χ〉+ |χ〉 ⊗ |φ〉) (8.37)

≡
√

2αβ∗|L, ↑〉 ⊗ |L, ↑〉 −
√

2α∗β|R, ↓〉 ⊗ |R, ↓〉

+
(
|β|2 − |α|2

) 1√
2

(|L, ↑〉〉 ⊗ |R, ↓〉+ |R, ↓〉 ⊗ |L, ↑〉) . (8.38)

18Ghirardi et al (2002, p. 86) say of these rivals that they are ‘of no practical interest’. But I
am trying to solve an ontological, not a practical, problem.
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This state is a superposition of non-GM-entangled branches whose constituent

particles are uncomplicated.

Thus Complicate, like One size fits all, must suspend the recommendations to

the varietist that I made in Sections 8.1.1 and 8.1.2 when the non-GM-entangled

state is of the wrong type—in this case when the constituent particles could not

be uncomplicated.

Here we pick up where our discussion in Section 5.2.1, which applied to the

“single-particle” Hilbert space, left off. The idea, under this proposal, is that

non-entanglement of separate degrees of freedom trumps non-GM-entanglement

of systems, so even a “single-particle” Hilbert space may contain states for which

(it may be better to say) there is more than a single particle.

There are two main objections to the Complicate response. The first, which

is less serious, is that the demand that branch-bound particles be uncomplicated

appears to conflict with the fact that complicated “single-particle” states may be

used to qualitatively individuate particles (cf. Section 7.2.1). This objection is

easily overcome by pointing out that it is already accepted that an individuation

criterion may well succeed in picking out more than one branch-bound particle.

True, the difference for the proponent of Complicate is that the criterion in question

is associated with a one-dimensional projector, but to claim that branch-bound

particles ought to be associated with one-dimensional projectors is simply to assert

what was to be proved.

The second, more serious, objection facing Complicate is that it will not work

for every state, since states exist which continue to suffer a basis arbitrariness even

when entanglement between degrees of freedom is taken into account. One such

state is the ground state for the two electrons in a Helium atom:

|φ1s〉1 ⊗ |φ1s〉2 ⊗ (|↑〉1 ⊗ |↓〉2 − |↓〉1 ⊗ |↑〉2) , (8.39)

in which the states for each degree of freedom for both particles factorize. (Factor

Hilbert space labels serve only to associate the right spin state with the right spatial

wavefunction.) Here the demand that the constituent branch-bound particles be
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uncomplicated helps not one bit in narrowing down the options.19

So the varietist must either appeal to one of the other four responses to mop

up these cases, or else reject Complicate altogether. In fact, Complicate will play

an important role later, in the discussion of emergentism in Section 9.

8.3.4 The ‘Coalesce’ response

An alternative strategy in solving the basis arbitrariness problem is to somehow

accommodate all of the single-particle bases in which the assembly’s state may be

expressed. The first response that adopts this strategy is Coalesce, which stipulates

that branch-bound particles that are maximally specific à la states from one basis

are identical to branch-bound particles that are maximally specific à la states in

other bases. Thus branch-bound particles are not only maximally specific à la one

state, but many.

For example, for the singlet state

1√
2

(|↑〉 ⊗ |↓〉 − |↓〉 ⊗ |↑〉) =
1√
2

(|→〉 ⊗ |←〉 − |←〉 ⊗ |→〉) (8.40)

the proponent of Coalesce claims that the branch-bound spin-up particle is iden-

tical to either the branch-bound spin-left particle or the branch-bound spin-right

particle, and that the branch-bound spin-down particle is identical to whichever

of these is not identical to the spin-up particle.

This may be generalised for any particle number N and any symmetry type.

Thus, according to the proponent of Coalesce, a non-GM-entangled assembly is

composed of N branch-bound particles which are in fact maximally specific à

la continuum-many single-particle states. GM-entangled assemblies, as per the

discussion in Section 8.1.3, are then superpositions of collections of such particles.

Now the objection. Let us ask: In the state (8.40), is the spin-up particle

identical to the spin-right or the spin-left particle? That is, is the state composed

19This attempt to avoid the basis arbitrariness problem—and the example of the Helium
ground state as a counterexample—has also recently been discussed by Bigaj in his lecture to
the CLMPS 2011.
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of a spin-up-spin-left particle and a spin-down-spin-right particle, or a spin-up-

spin-right particle and a spin-down-spin-left particle? The proponent of Coalesce

must allow both possibilities, so far as probabilities are concerned, since quantum

mechanics tells us that p(← |↑) = p(→ |↑) = 1
2
, etc.

Thus the proponent of Coalesce is forced to claim that the state (8.40)—and,

with it, the entire quantum formalism—is incomplete, since it does not give us

complete information about the constituents of the assembly. Rather, the state

(8.40) must be interpreted as representing a statistical ensemble of collections of

particles of both kinds. Indeed, since there are continuum-many bases in which the

state is manifestly non-GM-entangled, the state must represent, for the proponent

of Coalesce, a statistical ensemble of continuum-many kinds of particle collections.

It would be enough to reject Coalesce that, at the outset (Chapter 1), we dis-

avowed any interpretation that entails that the quantum formalism is incomplete.

But even despite this Coalesce could not possibly work. The problems facing any

attempt to interpret quantum probabilities as epistemic are well known; and it can

be seen that Coalesce runs afoul the Kochen and Specker (1967) no-go theorem

for non-contextual hidden-variable theories.

The types of theories addressed by the Kochen-Specker theorem seek to at-

tribute a definite true/false value to every ray in Hilbert space such that the

quantum probabilities may be interpreted as arising from statistical ensembles of

states corresponding to such attributions. This problem is equivalent to colouring

the entire unit sphere in the Hilbert space in black and white so that, for any fam-

ily of perpendicular points, all but one are painted black. As is now well known,

this cannot be done for dimensions of three or more.

Let us now consider a non-GM-entangled N -particle state in which no single-

particle state is occupied more than once. For this state, the mathematical problem

facing the proponent of Coalesce is to attribute one of N particle labels to every ray

in the N -dimensional subspace spanned by the component single-particle states.

Again, this must be done in a way that is consistent with the quantum probabilities

arising from averages over statistical ensembles of assembly states corresponding

to such attributions. This problem is equivalent to colouring the entire unit sphere

in this subspace with N colours so that, for any family of perpendicular points,

249



all get painted one colour each. But if we label just one of the colours ‘white’ and

the remaining N − 1 ‘black’ (consider them as shades of black, as it were), then it

is clear that this problem can be solved only if Kochen and Specker’s problem can

be solved—which it cannot, for N > 3.

The only case for which Coalesce escapes the no-go theorem is N = 2. But

this should come as no consolation, since we were seeking a general solution to the

basis arbitrariness problem. We must therefore look elsewhere.20

8.3.5 The ‘Multiply’ response

We could not solve the basis arbitrariness problem by stipulating that branch-

bound particles from different bases are identical, so the natural next suggestion is

to try the opposite: i.e. to say that any two branch-bound particles from different

bases are distinct. Aside from the ontological extravangance of this response, one

immediately wonders why it is that the branch-bound particles in different bases

are always correlated in the same way, to accord with the quantum probabili-

ties. (Why, for example, is there always one spin-left and one spin-right fermion

whenever there is one spin-up and one spin-down?) In short, it seems we have a

multitude of necessary connections between distinct existences.

Now Hume’s dictum, that there are no such connections,21 has recently been

subjected to some serious criticism.22 It may be argued that necessary connections

between distinct existences are perfectly in order, so long as the objects in question

are related in the right way, despite being distinct. Being related in the ‘right

way’ might include: one of the objects composing the other (if one believed that

composition was not identity); or being related by a difference in logical form, like

object to universal.

20It is perhaps surprising to note that Coalesce does not run afoul of Bell’s Theorem (1964)—
despite (8.40) being the very state that Bell used in his proof. The reason is that Bell’s Theorem
assumes that the full algebra of quantities on C4 is available; whereas the varietist imposes the
Indistinguishability Postulate, which greatly restricts the available algebra. In particular, joint
probabilities for outcomes for different directions of spin cannot meaningfully be calculated, since
the individuation criteria for the two particles would not be orthogonal.

21Hume (1740, Book I, Part III, §VI) wrote, ‘There is no object, which implies the existence
of any other if we consider these objects in themselves.’

22MacBride (1999), Cameron (2008), Wilson (2008).
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Now all these cases provide interesting challenges to Hume’s dictum. They may

even enforce a limitation on its application. But the current case is clearly not of

this type: the branch-bound particles are all taken to be objects, and they are all

taken to be wholly distinct. Why should it be that they always appear together

as they do?

Another response is available to the proponent of Multiply, and it was suggested

by Lewis (1992): the connection between the particles may not be absolutely

necessary, but only physically necessary. The claim of Multiply would then be

that, somewhere in the full expanses of logical space, the branch-bound particles

appear without particles from other bases, and it is only in the QM-worlds (the

worlds that obey quantum mechanics) that they, due to physical necessity, appear

together.

One objection to this attempt to escape the Humean problem is that the

branch-bound particles simply don’t exist in non-QM-worlds. This claim will be

congenial to those who consider theoretical terms to be implicitly defined by the

theory in which they are embedded (e.g. Carnap (1966), Lewis (1970b), Sneed

(1971)). Entities that are so defined simply don’t exist in worlds in which the

theory is not true. However, this clever response fails because, as we have seen in

Section 8.2.5, ontological identifications may be made between classical and quan-

tum mechanics. So the proponent of Multiply must accept that branch-bound

particles can be found in non-QM-worlds.

However, there is a more serious objection arising from considerations of the

classical limit, which suggest that a wrong move has been made. As we have seen,

in the classical limit, branch-bound particles at precise locations are identified with

branch-bound particles with precise momenta: these “particles” are precisely the

temporal stages of the familiar classical particles. Yet how can two groups of wholly

distinct objects suddenly become identical in the classical limit? Multiply entails a

sudden change where we need a continuous transition. This, together with worries

about ontological extravagance and Hume’s dictum, points to a natural solution.
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8.3.6 The ‘Overlap’ response

The solution, and the best hope at solving the basis arbitrariness problem, is to

retain the absolutely necessary connections between branch-bound particles from

different bases, but deny that the particles are wholly distinct. This overcomes the

Humean problem, since the particles now fall outside the domain of application of

Hume’s dictum. It quells concerns about ontological extravagance, since particles

from different bases may compose the same assembly, and are therefore jointly

identical. Finally, it gets the classical limit right: we may say that branch-bound

particles that are maximally specific à la location and those that are maximally

specific à la momentum go from partial overlap to total coincidence in the classical

limit.

To illustrate the Overlap response, consider again the singlet state

1√
2

(|↑〉 ⊗ |↓〉 − |↓〉 ⊗ |↑〉) =
1√
2

(|→〉 ⊗ |←〉 − |←〉 ⊗ |→〉) . (8.41)

The advocate of Overlap agrees with Coalesce, and against Multiply, that the as-

sembly is in the same state no matter with what single-particle basis it is described.

But Overlap disagrees, both with Coalesce that the constituent branch-bound

particles are identical, and with Multiply that they are wholly distinct. Rather,

they partly overlap, so that e.g. the spin-up particle is itself composed of parts of

the spin-left and spin-right particles, and such that the sum of the spin-up and

spin-down particles is exactly identical to the sum of the spin-left and spin-right

particles (and every pair corresponding to every other decomposition). Similarly,

the sphere has continuum-many decompositions into hemispheres; yet despite this,

there remains just one sphere because hemispheres from different decompositions

party overlap.

The move made here is somewhat like the move made in Section 8.1.3, where

the varietist accepted the overlap between less-than-maximally specific particles.

Here, as there, we may endorse multiple but seemingly conflicting descriptions

of the same state by declaring them equivalent. Each description has simply

decomposed the same object in diverse ways. Thus the proponent of Overlap

seeks to totally endorse (V2) in Section 8.1.3 with the reassuring addition that it
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does not matter in which single-particle basis the assembly’s state is described.

Following on from the calculations in Equation (8.10) and Table 8.1 in Section

8.1.3, we might even propose the squared inner product of two states as a measure

of overlap for two branch-bound particles in those states. Since, e.g. |〈↑ |←〉|2 =

|〈↑ |→〉|2 = 1
2
, we might say that the spin-up particle is composed of exactly half of

the spin-left and spin-right particles. This measure has the desirable property that,

given any single-particle state, its degree of overlap with all of the single-particle

states in any chosen basis sums to unity.

Mereological overlap has been marshalled in a variety of other areas to solve

similar problems. Armstrong (1978, pp. 120-4) declares resembling universals to

be part-identical as a way of accounting for their resemblance without having

to posit higher-order universals, which would lead to an infinite regress. Lewis

(1993) attempts to solve Unger (1980) and Geach’s (1980) ‘Problem of the Many’—

namely, that any (putatively!) single macroscopic object may be identified with a

surfeit of distinct microphysical sharpenings with clearly demarcated boundaries—

by pointing out that the various sharpenings are all ‘almost identical’, and claiming

that ‘almost identity’ is good enough for macroscopic objects, for most purposes.

So: has mereological overlap come to the rescue again?

There is an important difference between, on the one hand, the uses of overlap

in Section 8.1.3, by Lewis (1993), and perhaps even by Armstrong (1978); and on

the other hand, the use of overlap in this case. The difference is that, in all the

former cases it is clear what the parts are whose shared composition entails the

overlap.

Overlap is part-identity, and part-identity is identity of parts. So any claim of

overlap must be supported by a specification of the parts that are shared between

the putatively overlapping entities. In the case of Section 8.1.3, the parts of the

overlapping particles are the maximally specific, branch-bound particles in some

basis.23 In the case of Lewis (1993), the parts of the overlapping sharpenings are

23Pleasingly, the claim that the less-than-maximally specific particles overlap at certain branch-
bound particles is reflected perfectly in the geometry of Hilbert space, in which multi-dimensional
subspaces associated with the the less-than-maximally specific particles overlap precisely at the
corresponding one-dimensional subspaces that are associated with branch-bound particles.
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the mereological sums of microphysical constituents, näıvely conceived. In the

case of Armstrong (1978), the parts of the overlapping universals are the simpler

universals of which the original universals are logical constructions. What are the

parts of the putatively overlapping branch-bound particles from different bases?

Branch-bound particles cannot have other particles as parts, since they are

already maximally specific. What else is there? One remaining suggestion is that

the parts are the parts of wavefunctions that define the branch-bound particles.

But this suggestion has the wrong results, since there are many even functions

f(x) that overlap some odd function g(x); yet their inner product, as defined by∫∞
−∞ f

∗(x)g(x) dx, is always zero, if it exists.

From here there appear to be only two routes ahead. Either we reject Overlap,

which, since it is the final hope to save varietism, entails a rejection of varietism; or

else we attempt to make sense of the overlap between branch-bound particles from

different bases as something other than mereological. The problem with pursuing

the latter route is that it is only mereology that, by being a part of logic,24 can

overcome the worries of ontological extravagance, the violation of Hume’s dictum,

and the discontinuity in the classical limit, all of which faced Multiply. Therefore,

I reluctantly take the former route, and reject varietism. However, its merits

were undeniable, so we might hope to find a nearby alternative that can overcome

varietism’s fatal defect. With this, I turn to the final proposal for the target

concept of particle, emergentism.

24Of course, it is controversial that mereology is logic. But even if mereology is not logic, it
is hard to see that any other notion of composition (if any exists) can be claimed to be logical.
These matters, of course, deserve a far more thorough study than there is space for here.
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Chapter 9

Emergentism: winner in a poor

field?

In this short, final Chapter, I present an anti-factorist alternative to varietism. Its

main feature is that is gives up on the desideratum that particles always compose

the assembly. That is, it denies the strong version of compositionality (cf. Section

5.1.4); i.e., the claim that the assembly is a “derived” or “secondary” object, in the

sense of being identical to the mereological sum of its constituent particles. And it

also denies the weak version of compositionality; i.e., the claim that the properties

of the assembly supervene on the properties and relations of the particles. For it

claims that there are states in which the assembly exists but the particles do not.

Instead, the assembly is taken as “fundamental” or “primary”, in the specific

sense that each state in the assembly Hilbert space is construed as representing an

ascription of properties to the assembly taken as a whole. Therefore, particles, if

they exist, are construed as “derived” or “secondary” entities, in the sense of being

emergent properties of some of the assembly’s states. For this reason, the proposal

is called emergentism. This will be a somewhat disappointing dénouement : I

reluctantly plump for emergentism for want of a better alternative.

In Section 9.1, emergentism is more precisely defined. I will argue that its

most attractive version—what I call assembly realism—may usefully be conceived

as a version of a field ontology found in the philosophy of QFT, albeit a version
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restricted to the limit of conserved total particle number. Section 9.2 concludes the

Chapter and the dissertation. After briefly recalling the main results of previous

Chapters, I address the question whether particles under emergentism really are

particles worthy of the name, especially given that some form of compositionality

(cf. Section 5.1.4) is denied of them. I conclude that this question has no clear

cut answer, but that some version of emergentism is the best proposal available

for what particles are in quantum mechanics.

9.1 Emergentism defined

The problem of basis arbitrariness facing varietism, discussed in Section 8.3, may

be summarised in the following way. Prima facie, there is a single object—namely,

the assembly—whose properties are represented by the states in Hilbert space.

The varietist (and the factorist) wishes to consider this object to be complex,

i.e. composed of simpler objects—namely, particles, as functionally defined by the

desiderata in Section 5.1. However, several (indeed, continuum-many) putatively

natural decompositions of the assembly exist, where the naturalness of decompo-

sitions is governed by considerations of some version of entanglement between the

constituent systems, whose own states must be meaningfully ascribable under the

imposition of the Indistinguishability Postulate.

The existence of several decompositions is problematic, because it seems impos-

sible to interpret the particles issuing from each decomposition as part-identical,

which would have permitted the interpretation that they are alternative decom-

positions of the same assembly (cf. Section 8.3.6). Yet unless we can make sense

of rival decompositions amounting to the same thing, we are not licensed to claim

what is prima facie obvious: that there is a single entity, the assembly, being

decomposed.

Emergentism arises out of two possible retreats in the face of this problem.

I define emergentism as the disjunction of the two, because they concur about

one significant feature of particles: namely, that particles exist as (higher order)

properties of some other object or objects.
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The first retreat, which I discuss in Section 9.1.1, is to deny the original as-

sumption above: namely, that the assembly is a single object, of which properties

may be predicated. On this view, the assembly—and, with it, particles—are the

(higher-order) properties of some other objects, perhaps spatial regions. I call this

position mode realism. However, as I will argue, this position fares no better than

the varietist’s One size fits all response (cf. Section 8.3.2), since it unjustifiably

privileges one single-system basis over another.

The second retreat, which I discuss in Section 9.1.2, is to accept the seemingly

undeniable assumption that the assembly is a single object, but to deny that it

may be categorically decomposed into simpler objects. On this view, particles are

(higher-order) properties of the assembly, but they exist only for certain states

of the assembly—in short, those for which basis arbitrariness can be overcome. I

call this position assembly realism. I will argue that, though prima facie strange,

assembly realism meshes best with the ontology of quantum field theory.

9.1.1 Mode realism

The idea that, in elementary quantum mechanics, one might treat the modes as

the basic objects is not unfamiliar (cf. e.g. Saunders 2006). But it is more familiar

in the philosophy of quantum field theory. This is easily understandable, once one

considers the formal properties of the Fock space.

To illuminate these properties, consider a Fock space formed from a finite-

dimensional Hilbert space. (So, strictly speaking, I am not considering a quantum

field, which has infinitely many degrees of freedom. Nor am I considering a Fock

space generated from a particle’s Hilbert space; since a particle must have location

(cf. Section 5.1.2), and so has an infinite-dimensional Hilbert space.) For example,

the Fock space for fermions whose single-system Hilbert space is Cd is

F(Cd) = C⊕ Cd ⊕A(Cd ⊗ Cd)⊕A(Cd ⊗ Cd ⊗ Cd)⊕ . . .

= C⊕ Cd ⊕ C
1
2
d(d−1) ⊕ C

1
6
d(d−1)(d−2) ⊕ . . .

=
∞⊕
N=0

C(Nd C) (9.1)
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where N
d C := N !

d!(N−d)!
. The Nth summand in (9.1) corresponds to the Hilbert

space for an assembly of N fermions. But this tensor sum may be re-expressed as

follows:

F(Cd) =
∞⊕
N=0

C(Nd C) = C
∑∞
N=0(Nd C) = C2d =

d⊗
C2 . (9.2)

So a Fock space for d-level fermions is equivalent to the Hilbert space for d dis-

tinguishable 2-level quantum systems. These systems correspond one-to-one to

the rays of the d-dimensional single-fermion Hilbert space, in some basis. In that

basis, each ray represents the possession by a fermion of a particular eigenvalue

(associated with that ray) for some single-fermion quantity whose eigenbasis is the

basis in question. Thus, each of the d Hilbert spaces C2 is taken to represent, as it

were, the space of possibilities associated with an eigenvalue. These possibilities

are given by the possible number of fermions which may possess that eigenvalue.

And since fermions are subject to Pauli exclusion, there are only two possibilities

for each eigenvalue: 0 or 1; thus the Hilbert space for each is C2.

Since the Hilbert space on the right-hand side of Equation (9.2) is a tensor

product Hilbert space, it is tempting to think of it as having a natural decom-

position into its factor Hilbert spaces. After all, recall (Section 6.1) that I en-

dorse factorism for distinguishable systems, i.e. systems whose joint Hilbert space

has a tensor product structure. Thus the temptation is to reify the eigenvalues

mentioned in the previous paragraph. The states in Fock space F(Cd) are then

construed, not as representing property attributions to a variable (indeed, possibly

unsharp) number of systems; rather, they are construed as representing property

attributions—more specifically, occupation numbers (which may be unsharp)—to

a fixed number of these reified eigenvalues. Modes are simply these reified eigen-

values.

If we now return to elementary quantum mechanics, the mode ontology be-

comes rather messy. This is because, in elementary quantum mechanics, the as-

sembly’s Hilbert space is a single summand of the full Fock space in (9.1), and the

breaking up of the Fock space into these summands is not particularly natural from

the point of view of its decomposition into factor Hilbert spaces for each mode.

Indeed, the demand that the “total system number” (the operator N(Ω, S), from
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Section 8.2.5, where now (Ω, S) encompasses all single-system states) be conserved

means that the states of the modes must be strictly correlated so as to ensure that

the sum of all occupation numbers is a constant integer.

But this is no argument against mode realism: after all, elementary quantum

mechanics is the conserved “total system number” limit of quantum field theory.

The correlation between the modes that ensures a constant “total system number”

need not be interpreted as anything more than a dynamical phenomenon, whose

contingent occurrence underpins the practical convenience of using elementary

quantum mechanics over a more complicated theory that uses Fock space.

Nor can it be objected against mode realism that its ontology is too weird.

For, although the phrase ‘reified eigenvalue’ might cause more than a little hesi-

tation, reified eigenvalues are actually much more familiar than it may seem. A

compelling, but troublesome,1 example is location. The modes associated with

the position quantity Q are nothing but locations ; i.e., roughly speaking, spatial

points.

Thus one particularly vivid instance of mode realism would be what Wallace

and Timpson (2010) have recently presented as spacetime state realism. According

to this view, any state in the assembly’s Hilbert space is interpreted as represent-

ing the attribution of properties and relations (encoded in density operators) to

spatial (or spacetime) regions. A typical state containing a single particle is then

a (typically entangled) state of the various spatial regions in which the sum of all

occupation numbers is 1 (Wallace and Timpson (2010, p. 711)). More generally,

particles are construed as certain patterns of “excitation” (related to an increase

of 1 in an occupation number) in the joint state of the various location. That is:

particles are properties of the properties and relations between locations.

I will not go into the details of spacetime state realism any further. Instead,

I turn to an objection against mode realism (and hence spacetime state realism)

that I cannot see a good response to. The objection is that mode realism, like

varietism, suffers from its own basis arbitrariness problem.

1Location is troublesome because Hilbert spaces do not contain eigenstates for location. Nev-
ertheless, location does have a spectral decomposition into a family projectors, all of which do
act on the particle Hilbert space.
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For consider again the right-hand side of Equation (9.2). Now, while it is true

that the Fock space may be decomposed into d 2-level Hilbert spaces; there are,

in fact, continuum-many ways of doing this. Specifically: a choice of a complete

orthobasis in the single-system Hilbert space Cd determines a unique decomposi-

tion of the Fock space into d “single-mode” Hilbert spaces, such that each vector

in the chosen single-system basis corresponds to one of the d single-mode Hilbert

spaces. But there are continuum-many complete orthobases in Cd.

For example, let us consider a Fock space for 2-level fermions. For the sake of

vividness, suppose the degree of freedom in question is spin for a spin-1
2

system.

Then the Fock space is C4. A choice of modes now takes the form of a choice of

direction of spin. A change of spin direction then induces a transformation between

the single-mode Hilbert spaces.

Writing |n〉ξ for the state in which the mode ξ is occupied n times,

|1〉↑ ⊗ |0〉↓ = |↑〉 =
1√
2

(|→〉+ |←〉) =
1√
2

(|1〉← ⊗ |0〉→ + |0〉← ⊗ |1〉→) . (9.3)

So a state that is non-entangled for one choice of modes is entangled for another

choice of modes (cf. Zanardi (2001, p. 1)). This adds a new twist to the old basis

arbitrariness problem of Section 8.3; since GM-entanglement, unlike the entangle-

ment between modes shown here, is a basis-independent matter.

One might now attempt to redeploy one or more of the five responses to the

basis arbitrariness problem discussed in Section 8.3. However, Complicate—which

relies on many degrees of freedom—could not possibly work, since modes have

occupation number as their only degree of freedom. Apart from that, the results

are the same as for varietism: i.e., the responses all fail to solve the problem.

Incidentally, I note that Wallace and Timpson (2010) effectively opt for the One

size fits all response (Cf. Section 8.3.2), since they favour the position representa-

tion. Their argument is based on the intelligibility that the ‘spatial arena’ affords

(Wallace and Timpson (2010, p. 724)). But it is not clear (to me, at least) why

the momentum representation is any less intelligible; and the existence of more

than one natural decomposition into modes—whether there are continuum-many

or just two—is enough to be problematic for the mode realist. However, I should
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emphasise, in defence of Wallace and Timpson, that they present spacetime state

realism, not as the single best ontology for quantum mechanics, but rather as a

rival to a particular interpretation they wish to criticise, namely wave-function

realism (Wallace and Timpson (2010, pp. 702-6)).

This concludes my discussion of mode realism. Since it runs afoul of its own

basis arbitrariness problem, I turn to the remaining option, assembly realism.

9.1.2 The assembly is the object

I claim that, like mode realism, assembly realism has a more familiar counterpart

in quantum field theory. Specifically, my claim is that assembly realism is the

conserved “total particle number” limit of field realism, the view that the quantum

field is the basic object.

Is it correct to liken an assembly to a quantum field? If a ‘field’ is defined

as having infinite degrees of freedom (Huggett and Weingard, (1994b, p. 295)),

then we may think that an assembly is unequivocally not a field. But why can we

not identify the assembly with the quantum field under the condition of conserved

“total particle number”? Just as modes appear to have strange correlations in the

quantum-mechanical limit—which may be interpreted as a dynamically-induced

phenomenon—couldn’t the assembly’s limited degrees of freedom be seen too as

nothing but a dynamical restriction?

An objection to this that can be dismissed out of hand is that the assembly

is the mereological sum of its particles, and so could not have more degrees of

freedom than are allowed by those of the particles. We can dismiss this objection

because it assumes what the assembly realist has already denied: namely, that the

assembly is the mereological sum of more basic objects. Assembly realism means

treating the assembly as basic, so it is still up for grabs whether or not its degrees

of freedom are constrained dynamically or by some stronger form of necessity.

A second objection is that the identification of the assembly with a dynamically

restricted quantum field could not be supported by a consideration of quantum

mechanics alone, since the very idea of a quantum field is external to quantum
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mechanics. But this objection does too much; for we want to be able to appeal to

a theory’s “neighbours” when interpreting it (cf. our desideratum of inter-theoretic

applicability in Section 5.1.5). And it must be noted that a positive case for the

identification of the assembly with a dynamically restricted quantum field is, of

course, ontological continuity in the QFT limit.

Furthermore, it is not surprising that the metaphysics issuing from an interpre-

tation of a formalism should point to possibilities, intelligible within that meta-

physics, that the formalism neglects to represent. We saw an example of this

very phenomenon in Section 8.1.3, where I claimed that superpositions of variable

particle number are easily accommodated by the varietist.

Treating the quantum field as the basic, or “fundamental” object in quantum

field theory, is a doctrine with many adherents.2 For example Wald (1994, p. 46):

‘quantum field theory is the quantum theory of a field, not a theory of “particles”.’

And Clifton and Halvorson (2001, pp. 459): ‘quantum field theory is “fundamen-

tally” a theory of a field, not particles . . . this view makes room for the reality of

quanta, but only as a kind of epiphenomenon of the field associated with certain

functions of the field operators.’ Also Malament (1996, p. 1):

. . . in the attempt to reconcile quantum mechanics with relativity the-

ory . . . one is driven to a field theory; all talk about particles has to be

understood, at least in principle, as talk about the properties of, and

interactions among, quantized fields.

(And cf. also Huggett and Weingard (1994a, 1994b, 1996).)

I emphasise that all the above quotes express support for a field ontology as

a response to distinctly quantum-field-theoretic phenomena: namely, the Unruh

effect (in the case of Wald and Clifton and Halvorson) and failures of localizability

(in the case of Malament). Yet we have been pushed to a similar position—we

may call it the quantum mechanical limit of field realism—not directly because of

any quantum-field-theoretic phenomena, but for want of a better alternative.

2Though, of course, opinion is not unanimous. Notable critics of the field ontology are Teller
(1995, Ch. 3) and Baker (2009).
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Of course, the idea that the assembly has no decomposition makes the very use

of the term ‘assembly’ Pickwickian, but that is no objection. A far more serious

objection is that the claim that quantum assemblies have no proper parts is simply

incredible. We have an understanding of single- and multi-particle states, or at

least we thought we did. What has become of particles?

9.1.3 Regaining particles under assembly realism

One of the major advantages of assembly realism is that one need not be committed

to the idea that particles exist in every state. I combine this fact with what was a

promising response to varietism’s basis arbitrariness problem—namely Complicate

(cf. Section 8.3.3)—to give an account of the emergence of particles under assembly

realism.

Recall that, for the proponent of Complicate, particles are ‘uncomplicated’ max-

imally specific systems. That is, they are maximally specific systems for which

their separate degrees of freedom are not entangled. The idea is to use the re-

quirement of non-entanglement of separate degrees of freedom to overcome the

under-determination of single-particle bases. This response works for many states,

but fails to overcome the under-determination for all states of the assembly.

But assembly realists, unlike varietists, are not required to recover particles for

all states of the assembly. Thus the assembly realist is at liberty to stipulate that,

whenever particles exist, they are the unique, uncomplicated, maximally specific

systems; and that in all other states of the assembly, there simply aren’t any

particles.

An enormous advantage of this proposal is that it manages to incorporate

the varietist’s ‘branch-bound’ particles, whose merits I discussed in Section 8.2,

without succumbing to the basis arbitrariness problem. Thus we may carry over,

mutatis mutandis, almost all of the considerations from Section 8.2, which applied

to varietist particles, to the assembly realist’s emergent particles.

One important such result is the recovery of classical particles in the classical

limit. For, in the classical limit, the varietist’s particles are not only non-GM-
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entangled (cf. Section 8.2.5); they are also non-entangled in their separate degrees

of freedom; that is, they are uncomplicated, as Complicate requires. This follows

from the fact that, in the usual study of the ~ → 0 limit, we consider a series of

ever-narrowing Gaussians centred at a single point in the (reduced) configuration

space (Landsman (2007, §5)).

Of course, it must be emphasised that, even in the classical limit of assembly

realism, particles do not become objects, i.e. the subjects of predication. Rather,

they become localized “spikes” in the assembly’s density function (like those dis-

cussed by Redhead (1987, pp. 10-11)). Besides, particles exist in all classical limit

states—even for assembly realism—since in the classical limit the basis arbitrari-

ness problem vanishes (cf. the end of Section 8.3.5), and so there is a unique

collection of uncomplicated maximally specific systems. Furthermore, in classical

limit states of the assembly, the assembly state (begin non-GM-entangled) is de-

termined by—i.e. it supervenes on—the properties of these “spikes”. So, in the

classical limit, assembly realism even manages to recover weak compositionality.

However, two issues remain for assembly realism. The first issue is that, by

denying that the assembly is composed of constituent particles, assembly realism

contradicts one of our desiderata for the concept of particle, namely composition-

ality (cf. Section 5.1.4). I deal with this issue in the next, and final, Section.

The second issue is that the claim that particles exist in some states of the

assembly and not others seems to make them ontologically redundant. For the

assembly exists in all states, and its properties suffice to make true or false any

statement made in the quantum formalism. What work are the particles doing?

We met this issue in Section 8.1.3, in the discussion of ‘cagey’ varietism. I

make the same reply here: the particles are not idle objects, but ontological free-

riders, once the assembly and its properties are taken into consideration. For the

particles are certain features of the assembly’s state; they are not additions to the

field ontology.
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9.2 Conclusion: Is emergentism good enough?

In this Section, I will consider whether emergentism—in the specific form of as-

sembly realism—really does provide a good enough concept of particle. But first

allow me to recapitulate the main results of this dissertation.

1. Following Quine (e.g. 1976), instances of discernment may be separated into

four kinds: internal, external, relative and weak. The disjunction of internal

and external discernibility—absolute discernibility—is related to the notion

of individuality: specifically, an individual is an object that is absolutely dis-

cernible from every other object in the domain. Discernibility is linked to the

existence of symmetries on the domain of quantification. For any structure:

if a permutation π leaves invariant the indiscernibility equivalence classes,

then π is a symmetry (but not necessarily vice versa); and if π is a symmetry,

then it leaves invariant the absolute indiscernibility equivalence classes (but

not necessarily vice versa; cf. Theorem 1, Section 2.4). Furthermore, for any

finite structure: any two objects are absolutely indiscernible iff there is some

symmetry that maps one to the other (Theorem 2, Section 2.4).

2. According to a weak version of the identity of indiscernibles (WPII) and

a new metaphysical thesis called QII, individuality is conceptually distinct

from identity; for (according to those two theses) there may be non-individual

objects, whereas every object is self-identical. And according to QII and

haecceitism, identity is distinct from indiscernibility; for (according to these

theses) there may be utterly indiscernible, yet distinct objects. (Cf. Chapter

3.)

3. Following Haslanger (2006), a term may be associated with three concepts:

its avowed concept (the concept we take it to connote); its operative concept

(the concept which our use of the term reveals); and its target concept (what

would be a good thing to mean by the term). The project of explication,

or conceptual reform, for a given term may be characterised as bringing

that term’s avowed and operative concepts in line with its target concept.

(cf. Section 4.1.)
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This framework may be adapted for the purposes of conceptual reform in

physical theories in the following way. Interpreting a physical theory is a

matter of laying down a representation relation between the theory’s formal-

ism and physical items (including, perhaps, non-actual physical items). Thus

the formalism is afforded physical content by referring to mathematical items

that, in turn, represent physical items. A precise concept may be identified

with an intension; i.e., roughly speaking, a function from possible physical

worlds to extensions, which are physical items, or sets of them. Thus lay-

ing down a representation relation associates concepts with elements of the

theory’s formalism. Conceptual reform is thereby linked to finding the best

representation relation between the mathematics and the physics. (Cf. Sec-

tion 4.2.)

A theory’s formalism provides its own standard of naturalness with which

to identify the target concept for a given term. But this claim does not

commit one to a Lewisian (1983) ontology of perfectly natural properties and

relations. The identification of a target concept for a term is constrained,

not only by naturalness, but also by that term’s operative concept. For

otherwise the target concept could not count as an explication of that term.

(Cf. Section 4.1.2.)

4. The operative concept of particle, applied generally, has five main strands.

(1) A particle is a physical item. (2) A particle has location; so, inspired by

Wigner (1939), its state space ought to provide a basis for a representation

of the spacetime symmetry group. (3) A particle persists over time, but

momentary particle-stages may exist even if there are no uniquely natural

trans-temporal particles. (4) Particles compose assemblies, in the weak sense

that an assembly’s properties supervene on the properties and relations pos-

sessed by its particles; or perhaps in the stronger sense that an assembly is

a mereological sum of its particles. (5) Particles are trans-theoretic entities;

so particles from “neighbouring” theories ought to coincide in the limit that

the mathematics of one theory tends to another. (cf. Section 5.1.)

These strands of meaning are consistent with identifying several particles in

certain states of what is usually called a ‘single-particle’ Hilbert space. This
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occurs whenever the Hilbert space accommodates internal, as well as spatial,

degrees of freedom. (Cf. Section 5.2.)

5. The “local” operative concept of particle, as applied in quantum mechanics,

associates particles with factor Hilbert spaces; this conflicts with the general

operative concept. The view that the “local” operative concept is also the

target concept of particle is called factorism. Factorism is distinct from

haecceitism, since factorism is purely a thesis about what particles are, while

haecceitism is a thesis about whether permutations of particles generate a

physical difference. (Cf. Section 6.2.)

If the Indistinguishability Postulate (IP) is imposed, then factorist particles

of the same species are all absolutely indiscernible one from another, and are

therefore all non-individuals. However, they may still be weakly discerned,

by appealing to multi-particle quantities which register anti-correlations be-

tween singe-particle states. (Cf. Section 6.3.)

Factorism is false for so-called “indistinguishable” particles—i.e. particles

for which IP is imposed—since it makes an error analogous to reifying the

average taxpayer. This is shown by their non-individuality, which entails

that they cannot be picked out in language or in thought, and they cannot

be associated with definite spatio-temporal trajectories in the classical limit.

(Cf. Section 6.4.)

6. Anti-factorism prompts a new look at the notions of entanglement, assem-

bly decomposition, and system individuation. The definition of entangle-

ment proposed by Ghirardi et al (2002)—what I call GM-entanglement—is

congenial to the anti-factorist. According to their account, an assembly’s

state is non-GM-entangled iff it is obtained by (anti-) symmetrizing a prod-

uct state. If an assembly is non-GM-entangled, its state supervenes on the

single-particle states of which it is constructed, together with that assembly’s

symmetry type (boson or fermion). (Cf. Section 7.1.)

So-called “indistinguishable” systems may in fact be individuated (that is,

picked out in language) using single-system projectors—what I call qualita-

tive individuation. The Hilbert space for an assembly of “indistinguishable”
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systems cannot be naturally decomposed in toto; but subspaces of it can be

naturally decomposed. The resulting constituents are precisely the qualita-

tively individuated systems. The failure of each qualitatively individuated

system to exist in all states in the assembly’s Hilbert space, and the flexibil-

ity in choosing individuation criteria, point to a quantum version of Lewis’s

(1968) counterpart theory for such systems. (Cf. Section 7.2.)

7. A promising anti-factorist proposal for the target concept of particle is va-

rietism, the “average” of whose particles may be identified with the fac-

torist’s particles. The basic objects of the varietist ontology are branch-

bound particles: particles which possess pure states and which compose

non-GM-entangled branches of any state of the assembly. The qualitatively

individuated systems of Chapter 7 may be identified with certain natural

mereological sums of branch-bound particles. (Cf. Section 8.1.)

Varietist particles satisfy the five strands of meaning of the operative con-

cept of particle, laid out in Chapter 5. In the classical limit, branch-bound

particles may be identified with classical particle-stages, and branch-bound

particles may be identified with the quanta in QFT. Branch-bound fermions

are always absolutely discernible, but branch-bound bosons and paraparti-

cles may be utterly indiscernible. That is: the weak discernibility results

established for factorist particles in Chapter 6 cannot be carried over to

varietist branch-bound particles. (Cf. Section 8.2.)

Varietism fails because it cannot escape a basis ambiguity problem. That is,

for fermionic and paraparticle states, it is under-determined which branch-

bound particles compose the assembly in a given non-GM-entangled state.

The most promising attempt to escape the problem—to declare that branch-

bound particles from different bases are part-identical—fails, since no ac-

count can be given of what these parts are supposed to be. (Cf. Section

8.3.)

8. Thus we are led to our second and last anti-factorist proposal for the target

concept of particle, emergentism. On this view, particles do not compose

the assembly, even in the weak sense. Indeed, particles are not even objects,
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according to emergentism. This proposal bifurcates: either the modes are

treated as the basic objects (mode realism), or else the entire assembly is

treated as the basic object (assembly realism). Mode realism runs afoul of its

own basis arbitrariness problem, since it is under-determined which modes

ought to be reified. Assembly realism suffers no such problem, and has on-

tological continuity with a popular way of interpreting quantum field theory.

According to assembly realism, particles are like the varietist’s branch-bound

particles, with the added restriction that they are non-entangled in their

separate degrees of freedom; except that they are construed as higher-order

properties of the assembly. Thus the assembly realist’s particles obey most of

the strands of meaning of the operative concept of particle; with the notable

exception that they can no longer be said to compose the assembly.

So assembly realism provides the best hope for an explication of the concept

of particle in quantum mechanics. But is it good enough? That is: is the target

concept proposed by the assembly realist sufficiently similar to the operative con-

cept of particle, discussed in Chapter 5, to warrant counting it as an explication

of ‘particle’?

A mark against is that, even though assembly realism manages to recover

weak compositionality in the classical limit, the stationary states of electrons in

molecular orbitals do not belong to the classical limit. And in these states there

is no unique collection of uncomplicated, maximally specific systems. (Recall the

example of the ground state of Helium, at the end of Section 8.3.3.) Thus assembly

realism is committed to the claim that, in realistic cases, Austin’s ‘moderate-sized

specimens of dry goods’ are not composed of particles.

A mark in favour is that, like the varietist’s particles, the assembly realist’s

particles satisfies many of the operative concept’s strands of meaning. Specifi-

cally: they are undeniably physical; they may be attributed a location (at least

as a degree of freedom); and they enjoy ontological continuity with both quan-

tum field theory and classical mechanics. They also satisfy some (at least Weyl’s

(1928)) intuitions regarding discernibility. That is: fermions, whenever they exist,

are always absolutely discernible; while bosons and paraparticles may be utterly

indiscernible.
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Another consideration in favour, of course, is that no viable alternative seems

to exist. The factorist cannot offer particles that are anything other than non-

individuals; and the varietist cannot tell us which branch-bound particles to de-

compose non-GM-entangled states into. Assembly realism, even if it is not good

enough, is the best we can get.

I submit that we have here a case of semantic indecision (what I called in (v)

of Section 4.1.2 a hard case). Therefore all I can do is present the unhappy facts:

and it has been the aim of this dissertation to establish those facts. Whether we

now decide to apply the term ‘particle’ to the assembly realists’ offerings is, as

Lewis (e.g. 1995) might have said, a purely political matter. To pretend to decide

the matter either way would be to succumb to linguistic legislation; and there is

no philosophy in that.
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Messiah, A. and Greenberg, O. W. (1964), ‘The symmetrization postulate and its

experimental foundation’, Physical Review 136, pp. 248-67.

Misner, C. W., Thorne, K. S. and Wheeler, J. A. (1973), Gravitation. San Francisco:

Freeman & Co.

Morison, B. (2002), On Location: Aristotle’s Concept of Place. Oxford: Oxford

University Press.

Muller, F. A. (forthcoming), ‘How to Discern Space-time Points Structurally’, forth-

coming in Philosophy of Science.

Muller, F. A. and Saunders, S. (2008), ‘Discerning Fermions’, British Journal for the

Philosophy of Science, 59, pp. 499-548.

Muller, F. A. and Seevinck, M. (2009), ‘Discerning Elementary Particles’, Philosophy

of Science, 76, pp. 179-200.

Murdoch, I. (1970), The Sovereignty of Good. New York: Schocken Books.

Oliver, A. (1996), ‘The Metaphysics of Properties’, Mind, 105, pp. 1-80.

Parfit, D. (1971), ‘Personal Identity’, Philosophical Review, 80, pp. 3-27.
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Żukowski, M., Brukner, C̆., Laskowski, W. and Wieśniak, M. (2002), ‘Gisin’s Theo-
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