1,220 research outputs found

    A Historical Perspective on Runtime Assertion Checking in Software Development

    Get PDF
    This report presents initial results in the area of software testing and analysis produced as part of the Software Engineering Impact Project. The report describes the historical development of runtime assertion checking, including a description of the origins of and significant features associated with assertion checking mechanisms, and initial findings about current industrial use. A future report will provide a more comprehensive assessment of development practice, for which we invite readers of this report to contribute information

    A Graph-Based Semantics Workbench for Concurrent Asynchronous Programs

    Get PDF
    A number of novel programming languages and libraries have been proposed that offer simpler-to-use models of concurrency than threads. It is challenging, however, to devise execution models that successfully realise their abstractions without forfeiting performance or introducing unintended behaviours. This is exemplified by SCOOP---a concurrent object-oriented message-passing language---which has seen multiple semantics proposed and implemented over its evolution. We propose a "semantics workbench" with fully and semi-automatic tools for SCOOP, that can be used to analyse and compare programs with respect to different execution models. We demonstrate its use in checking the consistency of semantics by applying it to a set of representative programs, and highlighting a deadlock-related discrepancy between the principal execution models of the language. Our workbench is based on a modular and parameterisable graph transformation semantics implemented in the GROOVE tool. We discuss how graph transformations are leveraged to atomically model intricate language abstractions, and how the visual yet algebraic nature of the model can be used to ascertain soundness.Comment: Accepted for publication in the proceedings of FASE 2016 (to appear

    Towards Practical Graph-Based Verification for an Object-Oriented Concurrency Model

    Get PDF
    To harness the power of multi-core and distributed platforms, and to make the development of concurrent software more accessible to software engineers, different object-oriented concurrency models such as SCOOP have been proposed. Despite the practical importance of analysing SCOOP programs, there are currently no general verification approaches that operate directly on program code without additional annotations. One reason for this is the multitude of partially conflicting semantic formalisations for SCOOP (either in theory or by-implementation). Here, we propose a simple graph transformation system (GTS) based run-time semantics for SCOOP that grasps the most common features of all known semantics of the language. This run-time model is implemented in the state-of-the-art GTS tool GROOVE, which allows us to simulate, analyse, and verify a subset of SCOOP programs with respect to deadlocks and other behavioural properties. Besides proposing the first approach to verify SCOOP programs by automatic translation to GTS, we also highlight our experiences of applying GTS (and especially GROOVE) for specifying semantics in the form of a run-time model, which should be transferable to GTS models for other concurrent languages and libraries.Comment: In Proceedings GaM 2015, arXiv:1504.0244

    Concurrent object-oriented programming: The MP-Eiffel approach

    Get PDF
    This article evaluates several possible approaches for integrating concurrency into object-oriented programming languages, presenting afterwards, a new language named MP-Eiffel. MP-Eiffel was designed attempting to include all the essential properties of both concurrent and object-oriented programming with simplicity and safety. A special care was taken to achieve the orthogonality of all the language mechanisms, allowing their joint use without unsafe side-effects (such as inheritance anomalies)

    Concurrency Annotations and Reusability

    Get PDF
    Widespread acceptance of concurrent object-oriented programming in the field can only be expected if smooth integration with sequential programming is achieved. This means that a common language base has to be used, where the concurrent syntax differs as little as possible from the sequential one but is associated with a "natural" concurrent semantics that makes library support for concurrency superfluous. In addition, not only should sequential classes be reusable in a concurrent context, but concurrent classes should also be reusable in a sequential context. It is suggested that concurrency annotations be inserted into otherwise sequential code. They are ignored by a sequential compiler, but a compiler for the extended concurrent language will recognize them and generate the appropriate concurrent code. The concurrent version of the language supports active and concurrent objects and favours a declarative approach to synchronization and locking which solves typical concurrency problems in an easier and more readable way than previous approaches. Concurrency annotations are introduced using Eiffel as the sequential base

    The AutoProof Verifier: Usability by Non-Experts and on Standard Code

    Get PDF
    Formal verification tools are often developed by experts for experts; as a result, their usability by programmers with little formal methods experience may be severely limited. In this paper, we discuss this general phenomenon with reference to AutoProof: a tool that can verify the full functional correctness of object-oriented software. In particular, we present our experiences of using AutoProof in two contrasting contexts representative of non-expert usage. First, we discuss its usability by students in a graduate course on software verification, who were tasked with verifying implementations of various sorting algorithms. Second, we evaluate its usability in verifying code developed for programming assignments of an undergraduate course. The first scenario represents usability by serious non-experts; the second represents usability on "standard code", developed without full functional verification in mind. We report our experiences and lessons learnt, from which we derive some general suggestions for furthering the development of verification tools with respect to improving their usability.Comment: In Proceedings F-IDE 2015, arXiv:1508.0338

    Multiparty interactions in dependable distributed systems

    Get PDF
    PhD ThesisWith the expansion of computer networks, activities involving computer communication are becoming more and more distributed. Such distribution can include processing, control, data, network management, and security. Although distribution can improve the reliability of a system by replicating components, sometimes an increase in distribution can introduce some undesirable faults. To reduce the risks of introducing, and to improve the chances of removing and tolerating faults when distributing applications, it is important that distributed systems are implemented in an organized way. As in sequential programming, complexity in distributed, in particular parallel, program development can be managed by providing appropriate programming language constructs. Language constructs can help both by supporting encapsulation so as to prevent unwanted interactions between program components and by providing higher-level abstractions that reduce programmer effort by allowing compilers to handle mundane, error-prone aspects of parallel program implementation. A language construct that supports encapsulation of interactions between multiple parties (objects or processes) is referred in the literature as multiparty interaction. In a multiparty interaction, several parties somehow "come together" to produce an intermediate and temporary combined state, use this state to execute some activity, and then leave the interaction and continue their normal execution. There has been a lot of work in the past years on multiparty interaction, but most of it has been concerned with synchronisation, or handshaking, between parties rather than the encapsulation of several activities executed in parallel by the interaction participants. The programmer is therefore left responsible for ensuring that the processes involved in a cooperative activity do not interfere with, or suffer interference from, other processes not involved in the activity. Furthermore, none of this work has discussed the provision of features that would facilitate the design of multiparty interactions that are expected to cope with faults - whether in the environment that the computer system has to deal with, in the operation of the underlying computer hardware or software, or in the design of the processes that are involved in the interaction. In this thesis the concept of multiparty interaction is integrated with the concept of exception handling in concurrent activities. The final result is a language in which the concept of multiparty interaction is extended by providing it with a mechanism to handle concurrent exceptions. This extended concept is called dependable multiparty interaction. The features and requirements for multiparty interaction and exception handling provided in a set of languages surveyed in this thesis, are integrated to describe the new dependable multiparty interaction construct. Additionally, object-oriented architectures for dependable multiparty interactions are described, and a full implementation of one of the architectures is provided. This implementation is then applied to a set of case studies. The case studies show how dependable multiparty interactions can be used to design and implement a safety-critical system, a multiparty programming abstraction, and a parallel computation model.Brazilian Research Agency CNPq

    Contract-Java: Design by Contract in Java with Safe Error Handling

    Get PDF
    corecore