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Abstract

Design by Contract (DbC) is a programming methodology in which the meaning of program
entities, such as methods and classes, is made explicit by the use of programming predicates
named assertions. A false assertion is always a manifestation of an incorrect program.

This simple founding idea, when properly applied, give programmers a tool able to specify,
test, debug, document programs, as well as a mechanism to construct a simple, safe and sane error
handling mechanism. Nevertheless, although well adapted to object-oriented programming (and
other popular techniques such as unit testing), DbC still has a very low practical acceptance and
application. We believe that one of the main reasons for such is the lack of a proper support for
it in many programming languages currently in use (such as Java). A complete support for DbC
requires not only the ability to specify assertions; but also the necessity to distinguish different
kinds of assertions, depending of what is being asserted; a proper integration in object-oriented
programming; and, finally, a coherent connection with error handling mechanisms.

It is in this last requirement that existing tools that extend Java with DbC mechanisms com-
pletely fail to properly, and coherently, integrate DbC within Java programming. The dominant
practices for systematically handling failures in programming languages are not DbC based, us-
ing instead a defensive programming approach, either by using normal languages mechanisms
(as in programming language C) or by the use of typed exceptions in try/catch based exception
mechanisms.

In this article, we will present and justify the requirements posed on programming languages
for a complete support for DbC; On the context of the last presented requirement – error handling
– defensive programming will be discussed and criticized; It will be showed that, unlike Eiffel’s
original DbC error handling, existing typed exceptions in try/catch based exception mechanisms
are not well adapted to algorithmic abstraction provided by methods; Finally, a new DbC Java
extension named Contract-Java will be presented and it will be showed that it is coherently
integrated both with Java existing mechanisms and DbC. It will be presented an innovative
Contract-Java extension to DbC that automatically generates debugging information for (non-
rescued) contract failures, that we believe further enhances the DbC debugging capabilities.
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1 Introduction

Design-by-Contract programming, or officially [21] Design by ContractT M (DbC)1 is a
development methodology inspired both by studies on formal programming and also, by the
way contracts work in the “real world”, in particular, in a clear distribution of responsibilities
whenever a failure occurs in a program. It aims for a substantial improvement of a program
correctness and robustness. It was born in 1986 [19, 21, 18] and first implemented within
the Eiffel language (1988) [20].

The concepts in which Design by Contract is based are present in the works of Turing [27],
Floyd [5], Hoare [9], Dijkstra [4], Gries [8], Jones [11, 10] and also Goguen [7].

Several approaches exist to extend Java with DbC: Jass [2], Modern Jass [26], JML2 [13],
Cofoja [12], ezContract [3], and DbC4J [1]. However, all have achieved just a portion of the
features required by the methodology. All but one (Jass) fail to implement fault tolerance with
a disciplined exception mechanism and automatic documentation generation; furthermore, all
treat the DbC approach as an optional add-on to the language (using annotations or aspects),
failing to fulfill the requirements for the full implementation of DbC. A full integration
of contracts as core language syntactical constructs enhances the possibility to fulfill all
the requirements including a disciplined exception mechanism (in which the knowledge of
contracts is essential). Although in this approach it is not possible to directly use of native
Java compilers when the new syntax is involved (as happens with other approaches) it not
only makes contracts non-optional language constructs (impossible to ignore), but is also
allows the direct integration and use of native Java code (allowing the direct reuse of existing
Java code and libraries). Table 1 summarizes the support for DbC of all these approaches.

Regarding error handling, defensive programming [14] remains the dominant approach to
systematically handle internal program’s failures. This dominance has also “contaminated”
some DbC approaches (e.g. JML’s exceptional_behavior) in which the launch of exceptions
can also be made part of a contract specification blurring the simple DbC view of methods
(that either succeed, meeting its postcondition and the object’s invariant, or fail with a
contract failure). If a method terminates launching a contractualized exception, did it really
fail, or is it simply meeting its contract?

The way DbC handles errors is much simpler, coherent and safe. It even gives the ability
for a program to unambiguous know when it is (or it is not) failing, without the necessity for
an external error arbitration, or a deep knowledge of the way programmer implement their
code. Current use of exceptions disallow such possibility, because there are many types of
exceptions, and some of them are, sometimes, used as normal program’s flux control, to the
point of such usage is promoted as a good programming practice [14].

It should be clarified that we are following a very pragmatic view of DbC in the line of
original Eiffel’s proposal and implementation, and not aiming a more formal assurance of
contracts. Also, we are not stating that in practice contracts express the full semantics of
modules (e.g. a formally complete postcondition), but simply assert some of those semantics.

This article is structured as follows. In Section 2 we present our contributions. In Section
3 we identify an justify the requirements posed for a complete DbC language implementation.
Section 4 the problems and solutions for systematic error handling are discussed. Section 5
presents Contract-Java approach. Finally, Section 6 present some concluding remarks and
future evolutions of the language.

1 Trademarked by Eiffel Software in the United States
2 Java Modeling Language.
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2 Contributions

The major contributions of this article are the following:
The presentation and justification of the necessary requirements posed to a programming
language for a complete pragmatic support for DbC;
A critical comparison between defensive programming and DbC approaches to error
handling, and, in particular, the algorithm abstraction problems posed by typed exceptions
and try/catch based exceptions mechanisms;
A new complete DbC extension for Java named Contract-Java (able to accept and compile
existing Java code);
A complete support for a disciplined exception mechanism in Contract-Java without
negative and undesirable interferences with native’s Java exception mechanism;
An innovative, and safe, integration of Java’s native exception mechanism within DbC
(allowing the application of the powerful DbC disciplined exception mechanism to any
Java exception);
A DbC enhanced debugging mechanism, by automatic generation of semantic information
in the presence of an assertion failure (freeing the programmer from that burden).

3 Requirements

To achieve a complete pragmatic support for DbC within a programming language, we must
clearly identify the necessary requirements to be fulfilled and justify the rationale behind
them. That is the goal of this section.

3.1 Different Assertions
I Requirement 1 (different assertions). Different kinds of contracts (preconditions, postcon-
ditions, invariants and others) should be represented by different assertions. These assertions
assume different roles depending on their kind, carefully assigning responsibility to different
parts of the program.

Although one can attach the (total or partial) meaning of a software element by an
assertion, different responsibility chains are involved depending on where the assertion
resides. A clear identification of such responsibility is required for a proper software element
understanding.

In general one may identify assertions (preconditions) that must be observed before a
subprogram execution (method or block), and the ones that must be ensured afterwards
(postconditions). The former, are the responsibility of the client of the subprogram execution
(caller or the code before the block), and the latter are the subprogram’s responsibility.
Hence, in the presence of an error (false assertion), depending on the type of the assertion,
different program parts are to be blamed (this distinction is essential not only for debugging
but also for the implementation of an appropriate error handling mechanism).

Structured programming gives a special abstraction role to methods, from which a
separation of method assertions and internal algorithm assertions is desirable. Hence the
terms precondition and postcondition are usually applied to methods, and other internal
assertions are named assert (or check in Eiffel).

From object-oriented programming also results the necessity for a new type of assertion:
invariant. It is needed to properly attach meaning to abstract data types implementations
(based on classes and objects). In particular, it asserts the conditions that are required to be
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true whenever objects are in an observable state (stable time) [21]. Invariants also clearly
identifies who’s responsible for it (the object).

A DbC realization that does not syntactically differentiates all these different assertions
may lead to a wrongly attributed responsibility chain, compromising its proper specification
and rectification.

3.2 Locality of Contracts
I Requirement 2 (locality). Contracts should be defined near to the entities they specify.
The meaning (specification) of a software entity should be defined near the classes they
contractualize; they are integral part of the code.

This requirement simply states that the programmer should not be mislead to assume a
different contract of a software entity than the one that was really defined. Also, no doubt
should ever exist on the complete contract that applies to it.

Such possibility arises when one allows that the definition of a contract to reside elsewhere
in the program text other than near to the software element if contractualizes. By definition,
AOP approaches to DbC suffer from this problem.

3.3 Contracts are Part of the Interface
I Requirement 3 (interface). Contracts are part of the interface3 (not implementation):
contracts are expected to be readily available to anyone, with or without access to the source
code of a contracted program: they are part of a program’s interface with the rest of the
program.

An Abstract Data Type (ADT) [15, 21] defines a class of abstract objects which is
completely characterized by the (public) operations available to those objects. A class is a
(possible partial) implementation of an ADT [22]. An object-oriented program is a structured
collection of ADT implementations [22]. Hence, ADTs are the most important abstraction
blocks within object-oriented programming.

However, ADTs without explicit semantics (as provided by non DbC languages such as
Java) suffer from the same serious problems as methods without contracts, increased by a
scale factor because an ADT exports multiple methods (and not just one) and contains a
(possible abstract) data representation.

Since a class is much more than the sum of its public methods, a new contract is required
to express such semantics. That is the role of invariants, which express assertions that must
be always true when the class’s instances (objects) are in an observable state (named stable
time [22]).

The set of contracts (preconditions and postconditions) of all the class’s public methods
together with the class invariant form the class contract. This kind of contract is the most
important contract in object-oriented programming.

If we take a broader view of these concepts – ADTs, contracts, methods and classes – we
can recognize that they all fit perfectly together. ADTs define the class interface. The class
contract implements the ADT’s semantics. The class is defined as a set of public methods
glued by a common invariant, and method contracts implement the method semantics.

Contracts must, as such, be integral to the class interface, as is the name of the methods
and its arguments. They define the ADT by means of a specification and, as such, contracts

3 in terms of defining an ADT, not in terms of the Java’s interface mechanism
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are independent of the implementation. Furthermore, when we extend the class, using
subtype polymorphism, the ADT must be kept consistent. The only way this is possible is if
contracts belong to the class interface and not to its implementation.

3.4 Contracts are Inherited
I Requirement 4 (inheritance). Contracts are inherited: a descendant class must fulfill at
least all contracts of its parent class, as well as its method’s postconditions; preconditions
can, but don’t have to, be loosened.

Liskov’s substitution principle states that, on object-oriented programming, any property
which is verified on a supertype also holds for its subtypes.

Let φ(x) be a property provable about objects x of type T . Then φ(y) should be true
for objects y of type S where S is a subtype of T [16].

In the context of DbC, this implies that class contracts must be inherited. As Meyer
states [21] it is possible to redefine contracts on descendant classes as long as certain conditions
are met. The precondition of the descendant class must be equal or weaker than that of the
parent class and, in the case of invariants and postconditions, the descendant class must
abide at least by the parent class, meaning it can further restrict its invariant and/or its
output (postconditions), but never to weaken them.

Since contracts must be taken in consideration by the descendant classes in order to
not change the ADT associated with the parent class, we further strengthen the need for
requirement R3: the contracts must be part of the class interface and not implementation
– otherwise, the semantic meaning of the class would be partially hidden from the outside
view, stripping the added value which contracts bring on defining ADT.

3.5 Documentation
I Requirement 5 (documentation). The documentation must not only be included in the code
but also validated with the code as much as possible and, thus, be at least partially extracted
from the defined contracts, forming the class and method specification. In order to properly
support contracts, the documentation must support inheritance. In addition, to completely
document the method/class, the documentation should feature a flat view of the documented
class. Full documentation support for contracts is not only desirable but a requirement to
implement Design by Contract. Contracts (and thus, the documentation they provide) are
validated at every program run.

Design by Contract in its full form allows for the “single product principle”: the product
is the software. All specification and documentation is in, or extracted automatically from,
the software [23].

In order to be useful, the documentation of a class must present the full overview of this
class. This means that the documentation must be presented in flat form: it must contain not
only the contracts that were defined on that class and its methods but as well all contracts
inherited from the implemented interfaces and from its superclasses. The flat documentation
allows for a complete documentation of the class expressed semantics in one place.

3.6 DbC Exceptions
I Requirement 6 (DbC exceptions). An error handling mechanism should be provided in
order to ensure that a method can only succeed, by observing all of its attached assertions, or
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Table 1 Support for DbC in some of existing Java extensions.
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Native Java no yes no no no no
jass yes yes no no partial partial
Modern Jass yes yes yes yes no no
JML yes yes yes yes no no
Cofoja yes yes yes yes no no
ezContract yes yes no no no no
DbC4J yes yes yes no no no

fail signaling its failure to the caller with an exception; no other outcome should be allowed.
Also, a disciplined exception mechanism should be provide to support a clean termination or
for fault tolerance purposes, without ever compromising the method execution semantics.

This last requirement will be discussed in the next section.

4 Systematic Approaches for Error Handling

The dominant practice for handling errors in use today, is based on defensive programming [14].
In this methodology, partial procedures are considered a bad idea, and should be replaced
with methods that, accepting everything, protect themselves by using normal language
constructs – such as conditionals, results, error variables or exceptions – to identify the
error and notify the caller. Lacking an exception mechanism, programming language C, uses
function results (given two different meanings to the result), or global variables (as errno).
On the other hand, Java and other more recent languages, use also the exception mechanism
for the same purpose. As an example, consider the following code excerpt:

s t a t i c double s q r t (double x ) {
i f ( x < 0)

throw new I l l ega lArgumentExcept ion ( ) ;
· · ·

}

It is assumed that all clients of sqrt should track IllegalArgumentException to ensure
complete robustness. Even if a client it confident that the argument will never be negative –
by simply performing the logical test before the call – one cannot deactivate internal method’s
defensive code (because it is a total procedure).

Hence, since methods are implemented as total procedures, in defensive programming no
special burden is putted on a method’s client before its execution. It is assumed that the
client will take the proper measures to handle possible failures after the method’s execution.
Such practice, however, is not only seriously flawed when exceptions are not used (because
it is easy to forget such post-execution verifications), but it may also be flawed when they
are used. Not only it is easy in a try/catch instruction to ignore the exception (all that
is required is an empty catch block), but also, in this example, it completely misses the
real source of the error: a precondition failure. To support this argument, it is of little
importance to verify that such precondition is not explicit in the code. No sane programmer
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implements a real number sqrt method for negative arguments, only for non-negative ones.
The precondition is simply implicit in the code, implemented defensively with a conditional
and an IllegalArgumentException, but it is, nevertheless, there. Hence, the guilty part
for this failure is not the sqrt method (as its post-execution error handling might suggests
it was), but its caller. The fault precedes the call. Also, it should be absolutely clear that a
call to sqrt with a negative argument should be considered a program error (and not some
ambiguous execution state of the program).

DbC takes the opposite approach to this problem: methods should be specified for what
they are meant to do. If such goal only makes sense for some of the possible states of its
arguments (or its object’s state) so be it. A partial method implementation should be the
choice, expressing clearly the necessary preconditions for its use (and the postcondition for
its effect and result). It is important to note, that nothing is lost in terms of detecting errors
and protecting methods and classes. To that goal, in DbC, all that is required is active
executable assertions. In this respect, the difference to defensive programming is that we
may deactivate particular assertions if we are confident the asserted code is correct.

However, taking now a broader perspective on systematic error handling methodology,
DbC gives us much more than simply a way to detect and act on errors.

First, as already stated, in DbC a program knows when and if it has failed: simply
when a false assertion (any one) was executed. In defensive programming, no such simple
criteria exists to assert the program correctness (while executing). Not even the existence of
an active exception is a similar criteria because, due to defensive programming practices,
exceptions are used also as a simple flux control instruction, and sometimes promoted as
perfectly acceptable practices [14].

Secondly, DbC clearly and unambiguously distributes the responsibility of the fault: a
precondition failure is the responsibility of the method’s caller, any other false assertion is of
the responsibility of the method and/or class it belongs to.

Finally, it is perfectly adapted to method’s algorithmic abstraction, the meaning of a
failure adapts itself automatically as we climb up the method execution stack. For example,
a precondition failure is the responsibility of the method’s direct caller, but if this failure
propagates in the execution stack, it no longer is a precondition failure to the caller of the
caller (which would not make sense, because the precondition failure was in another method).

To better understand this last point we must take a more detail view of the dominant
exception mechanism in use today.

4.1 Typed Exceptions and try/catch Instruction
In modern programming languages, faults are handled through exception handling mechan-
isms. The rationale is to attach a particular exception type to each fault source, and then
allow the programmer to explicitly handle them elsewhere in the program. However, methods
and classes can be very powerful abstraction mechanisms. A particular type of exception
might be meaningful near to where it is generated, but soon enough it loses its meaning
as one travels up in the method call stack. Such problem has been identified more than 30
years ago [17], and to cope with it an “explicit propagation of exceptions” requirement was
defined for an alleged ideal exception mechanism [6].

Take, as an example, a possible function to solve the quadratic equation (using the
previous listed sqrt method).
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/∗∗
∗ ax2 + bx + c = 0
∗ the 2 root returned as a 4 l e n g t h array ({ r1 . re , r1 . im , r2 . re , r2 . im }.
∗/
s t a t i c double [ ] quadrat i cEquat ionSo lver (double a , double b , double c ) {

i f ( a == 0)
throw new I l l ega lArgumentExcept ion ( ) ;

· · · sq r t ( de l t a ) · · ·
}

For the sake of the argument, lets suppose that this method is incorrectly implemented
and the programmer did not take enough care to ensure a call to sqrt with a non-negative
argument. Obviously, a IllegalArgumentException will be throwed by sqrt. However, if
automatically propagated to quadraticEquationSolver client, as the exception mechanism
does by default, it will fool it to believe that it as passed a wrong argument (a = 0).

To cope with this serious problem, some authors [14] suggest that the exception should be
handled in places in which its meaning is correct, and eventually a different type of exception
should be launched. To put this wise advise in practice, however, not only it could be an
overwhelming amount of extra work on the part of programmers (and easy to miss, creating
hard to track errors), but also questions one of the main goals of the exception mechanism: to
separate normal code from exceptional one. Our methods would be “contaminated” with lots
of try/catch/throw instructions. A new defensive exception mechanism could be devised,
in which the automatic propagation of exceptions in the call stack, would be always wrapped
in new MethodFailure alike exceptions. But such a mechanism seems clumsy, inefficient,
and most of all, not necessary because DbC provides a much simpler solution.

In Java, it is also suggested that the method signature should always list the exceptions it
may throw (and its meaning), which would also “contaminate” our code with lots of throws
declarations, making it a possible maintenance nightmare.

But even if we assume that such a practice was the only way to handle exceptions
(which is is not), it would still break algorithmic abstraction of methods: When a method is
constructed, an abstraction barrier is created between the client (caller) of the method, and
its implementation. The client care only for the meaning of the method (its postcondition).
The implementer job, is to use an algorithm than fulfills such meaning. However, the possible
exceptions that might be launched depends on the algorithm chosen by the implementer.
Take, for example, the case of a “days of a month” method:

public s t a t i c int daysOfMonth ( int month , int year ) {
f i n a l int [ ] days = {31 ,28 ,31 ,30 ,31 ,30 ,31 ,31 ,30 ,31 ,30 ,31} ;
int r e s u l t = days [ month−1] ; // P o s s i b l e ArrayIndexOutOfBoundsException
i f (month == 2 && leapYear ( year ) )

r e s u l t++;
return r e s u l t ;

}

Should ArrayIndexOutOfBoundsException exception be part of the method’s signature?
It might, in this particular implementation, but different algorithms can be devised in which
no such exception will ever be launched:

public s t a t i c int daysOfMonth ( int month , int year ) {
int r e s u l t = 0 ;
switch (month) {

case 1 : case 3 : case 5 : case 7 : case 8 : case 10 : case 12 :
r e s u l t = 31 ;
break ;

· · ·
}
return r e s u l t ;

}
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Please note that, as already mentioned, the alternative usage of other exception types,
such as IllegalArgumentException, would still be problematic because its scope (meaning)
only reached the method’s direct caller (hence a try/catch would be required to handle the
exception).

This clearly shows that attaching such exceptions to the method’s signature would be
an overspecification, hence: a break in the algorithm abstraction of methods. Thus, any
exception type linked only to an algorithm’s implementation, should never be part of the
method’s specification.

4.2 DbC Error Handling

In a DbC approach, running a method can only result in two possible outcomes (no compromise
here): either the method succeeds, observing all its attached assertions (postcondition,
possible object invariants, and other internal assertions); or it fails raising a DbC exception.
Furthermore, the meaning of the exception signaled by methods is not immutable (forever
binded to its original fault). As the exception propagates in the method invocation stack,
its abstract meaning changes, going from the original assertion failure to the failure of each
method in which it is propagated. What this means is that if the programmer desires to
build a fault tolerant program, he can adapt it (automatically) to the abstraction level of
the redundant method, regardless of the primeval fault origin. The rationale is as simple
as it is powerful: a method need only to ensure its attached assertions, hence in a DbC
fault tolerant program we only need a disciplined exception mechanism [20] containing a
rescue execution block, in which either the method execution is retried (possibly selecting
a different execution path within the method), or it fails (with an exception propagation).
The possible alternative method execution, need only to be concerned with ensuring the
method postconditions (and object invariant), not with any possible internal assertion failure
that might have occurred in a previous failed execution (hence, for fault tolerance goals, the
specific type of the original exception loses much of its importance, as long as the objects
involved were properly cleaned-up).

In a disciplined exception mechanism it is structurally very hard to ignore an exception
either by distraction, laziness, or bad coding practices: A DbC exception is only recovered iff
due to the interaction of the rescue code and the methods body, the method is able to fulfill
its postcondition (and invariant). To the clients of such a method, the program proceeds as
if nothing wrong had happened, thus achieving a simple, safe, and powerful fault tolerance
mechanism.

To stress even further the importance of requirement 1, the rescue code should only be
applied to faults of the responsibility of the method. Hence, if this method’s precondition
has failed, its eventual rescue clause should not be executed (it is impossible to ensure
postconditions, in the presence of a false precondition).

Serving as an introduction to the next section, Contract-Java’s implementation of the
quadratic equation solver methods follows:

s t a t i c double s q r t (double x )
requires x >= 0 ;

{ · · · }
ensures Math . abs ( result ∗ result − x ) <= NEAR_ZERO;

s t a t i c double [ ] quadrat i cEquat ionSo lver (double a , double b , double c )
requires a != 0 ;

{ · · · }
ensures areRoots ( a , b , c , result ) ;
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Listing 1 Example of a Contract-Java array implementation.
public c lass Array<T>
{

public invariant ( isEmpty ( ) && s i z e ( ) == 0) | | // o b j e c t ’ s ADT
( ! isEmpty ( ) && s i z e ( ) > 0 ) ; // i n v a r i a n t

public Array ( int s i z e )
requires s i z e >= 0 ; // Constructor

{ // precondi t ion
array = (T [ ] ) new Object [ s i z e ] ;

}

public int s i z e ( )
{

return array . l ength ;
}

ensures result >= 0 ; // s i z e p o s t c o n d i t i o n

public T get ( int idx )
requires idx >= 0 && idx < s i z e ( ) ; // g e t precondi t ion

{
return array [ idx ] ;

}

public void s e t ( int idx , T elem )
requires idx >= 0 && idx < s i z e ( ) ; // s e t precondi t ion

{
array [ idx ] = elem ;

}
ensures get ( idx ) == elem ; // s e t p o s t c o n d i t i o n

protected T [ ] array ;

protected invariant array != null ; // i n t e r n a l r e p r e s e n t a t i o n
} // i n v a r i a n t

5 Contract-Java

Contract-Java language was developed to ease and to take full advantage of DbC programming
within Java, while attempting to retain usual syntactical and semantic choices in the language.
A special care was taken both to disallow undesirable side-effects and to promote synergic
behaviors with existing mechanisms (exceptions, for instance).

Unlike most existing approaches, Contract-Java makes DbC constructs normal language
entities and fully implements all six requirements for DbC support as specified in section 3.
As such, Contract-Java is defined as a superset of the Java language aiming the support of
DbC4. All Java code is a valid Contract-Java code (obviously, the reverse is not true).

To achieve a full implementation of all six requirements, Contract-Java extends Java with
nine new keywords: invariant, requires, ensures, rescue, retry, check, local, old and
result.

Listing 1 shows an example of an array module’s ADT in Contract-Java.
The syntax diagrams of the Contract-Java extensions to Java are showed in appendix 6.1.

5.1 Method Contracts
Contract-Java allows methods to be attached with a precondition and a postcondition. Such
assertions must be defined near to the method declaration, and as close as possible as to where

4 Minor incompatibilities may arise due to the new language keywords, although a proper compiler
implementation might eliminate or reduce them to a minimum (check).
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(when) they apply: precondition before the methods body, and postcondition afterwards
(following Eiffel’s approach). A contract might be applied to abstract methods (and even to
an interface method declaration). All method interface contracts are inherited as described
by requirement 4.

In the method’s postcondition two new keyword are recognized in order to allow to
express assertions using the method’s result (if any), and the values of expressions when the
method started its execution. Respectively: result and old.

No support exists yet for frame rules within method assertions to express what should
not change during its execution.

5.2 Class Contracts

One or more invariant declarations might be declared in a Contract-Java class. Syntactically
they are similar to method’s preconditions and postconditions, except that its scope is within
the class and its visibility can be specified (as happens with other class members).

The visibility definition of an invariant in Contract-Java is an interesting feature of
the language because it allows the definition of different invariants applied to different
abstraction levels (public, package, protected and private). Public invariants are the ADT’s
invariants. One the other hand, protected (or other) invariants are useful to express less
abstract representation invariants5. These differences should be taken into consideration by
Contract-Java’s automatic documentation tools. Listing 1 exemplifies the usage of both an
ADT and a representation invariant.

When a class is a descendant of another class (or one or more interfaces) it inherits its
invariants (as explained in requirement 4).

5.3 Java Interfaces

Interfaces specify an ADT without providing its implementation. As such, to completely
specify the ADT, contracts need to be supported on interface classes. In the same way
Native Java’s throws are considered part of the class interface, contracts also belong to it.
By implementing an interface, a class inherits the interface contracts. The same rules apply
to inheritance on interfaces as to normal classes: interfaces are also ADT definitions and as
such have the same treatment.

5.4 DbC Exceptions

The sixth requirement of our DbC requirements (section 3) is support for DbC exceptions.
To that goal, Contract-Java implements a set of DbC exceptions (descendant of Error

type), for each type of assertion (although, as showed, such detail in not very important in
DbC error handling, in which all that matter is if the method succeeds or has failed, and, if so,
whose to blame for that). So, as part of the language specification, assertion errors will in fact
be handled by Java’s exception mechanism. However, it is ensure by the language semantics
that it is impossible for a try/catch/throw/throws to use such exceptions6. These special
exceptions can only be handled by the language’s disciplined exception mechanism.

5 Consistently, a private invariant will be hidden from descendant classes.
6 Even catching Throwable does not catch a Contract-Java exception.
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Listing 2 Example of real code of how to define a rescue clause on a class.
public c lass AFaultTolerantMethod

// Does a path e x i s t in l a b y r i n t h from src to d s t ?
public boolean f indPath ( Labyrinth labyr inth , Locat ion src , Loca l i t y dst )

requires l aby r in th != null ; // t h i s precondi t ion i s not rescued by
s r c != null ; // t h i s method ’ s rescue c lause .
dst != null ;

local
int attempt = 1 ;

{
boolean result = f a l s e ;
switch ( attempt )
{

case 1 :
result=findPathAlg1 ( labyr inth , src , dst ) ; // a method t h a t t r i e s
break ; // to f i n d the path

case 2 :
result=findPathAlg2 ( labyr inth , src , dst ) ; // another method t h a t t r i e s
break ; // to f i n d the path

}
return result ;

}
rescue ( RuntimeException e ) // rescues both DbC except ions and
{ // runtime except ions .

i f ( attempt < 2)
{

attempt++;
retry ;

}
// except ion propagated to c a l l e r !

}

This mechanism, whose syntax is showed in appendix 6.1, works in a similar way as Eiffel’s
original mechanism [21], but fully adapted to Java’s mechanisms, in particular, exception
handling.

Syntactically, methods were extended with an optional rescue clause able catch and
handle contract failures within the execution of the method, and also (if desired) an optional
rescue clause in which variables can be declared whose scope includes method’s body and
rescue clauses. This local clause allows the construction of rescue code which may depend
on previous retried executions of the method.

A disciplined exception mechanism works as follows. With the important exception of
the method’s preconditions, all contract failures that occur during the method execution
(including its postcondition, the invariant, and contract failures of called methods) are
cached by the method’s rescue clause. However, unlike catch blocks in usual exceptions
mechanisms, rescue clauses are only allowed to retry the methods execution (command:
retry), or re-propagate the failure to the caller method (if the rescue clause finishes without
a retry command). Hence, they serve the purpose of an eventual object’s cleanup, or to
support a fault tolerant method.

Since some contract failures are sometimes implicit, and rely on the native exception
mechanism (e.g. NullPointerException), Contract-Java extends rescue clause with an
optional argument, quite similar to Java’s 7 catch syntax, enabling the possibility to rescue
non-DbC exceptions. This functionality could be extremely useful as it also eases the
integration of legacy code within Contract-Java.

All these semantics is possible, because Contract-Java compiler is able to unambiguously
distinguish Contract-Java classes and native Java’s classes (both classes and object can
coexist peacefully in a Contract-Java program).

Listing 2 exemplifies a fault tolerant method (allegedly it tries two algorithms for searching
a path within a labyrinth).
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The rescue clause must be associated to a non-abstract method. If the failure is of the
method’s responsibility (i.e., not on a precondition) then the execution jumps to the rescue
clause where the failure is attempted to be dealt with. If the rescue clause reaches its end
without a retry, or there is no rescue clause, the Contract-Java exception is rethrown, in
order for the upper level of execution to be able to decide what to do with the error: either
recover for it, or throw it again to its caller. In case a retry is done, the execution restarts
on the beginning of the method; only local variables will keep its state.

5.5 Enhanced Debugging in Contract-Java

When checking for an assertion the programmer can define an appropriate error message to
be used when that assertion fails. For example, the program:

public c lass TestAssert {
s t a t i c boolean boolFunc01 ( ) { return f a l s e ; }
s t a t i c boolean boolFunc02 ( ) { return true ; }
s t a t i c boolean boolFunc03 ( ) { return f a l s e ; }

public s t a t i c void main ( St r ing [ ] a rgs ) {
a s s e r t ( boolFunc01 ( ) && boolFunc02 ( ) ) | | boolFunc03 ( ) : " message " ;

}
}

would yield the result:

$ java -ea TestAssert
Exception in thread "main"

java.lang. AssertionError : message
at TestAssert .main( TestAssert .java :16)

However, in Contract-Java the error messages associated with the assertion failures are
automatically enhanced with relevant debugging information, such as the boolean expression
that failed, and an expansion of the various expression values, thus reducing the need of
manual definition of the assertions’ associated text and providing a clearer view of why the
assertion failed. If the following example program is executed:

public c lass TestBooleanExpansion {

boolean boolFunc01 ( ) { return f a l s e ; }
boolean boolFunc02 ( ) { return true ; }
boolean boolFunc03 ( ) { return f a l s e ; }

public void doSomething ( )
r e qu i r e s ( boolFunc01 ( ) && boolFunc02 ( ) ) | |

boolFunc03 ( ) ;
{ . . . }

}

it could be created the following output:

$ java TestBooleanExpansion
Exception in thread "main"

Contract_JavaPreconditionFailure
at TestBooleanExpansion .main

TestBooleanExpansion .java :16)
Precondition failed : boolFunc01 () &&

boolFunc02 () || boolFunc03 ()
boolFunc01 () && boolFunc02 () ||

boolFunc03 () => false ;
boolFunc01 () && boolFunc02 () => false ;
boolFunc01 () => false ;
boolFunc02 () => true ;
boolFunc03 () => false ;
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5.5.1 Fine-tuning
Contract-Java allows the possibility to fine-tune the activation and deactivation of assertions
(by assertion kind, to the whole program, to packages, or class by class). However, unlike
Java’s native assert, contracts are defined at compile time.

5.6 Other Assertions
We support the equivalent to the assert keyword from Java, namely check. This instruction
allows for the verification of a boolean expression triggering a failure when it is not true, of
type checkFailure.

5.7 Contract-Java Native Library
Contract-Java does not support contracting preexisting class files. The alternative is to
create wrapper classes in order to encapsulate access to a preexisting class file, adding the
desired contracts on the wrapper class.

Since Java uses defensive programming, Contract-Java would probably benefit from an
effort to contractualize Java libraries providing new libraries which wrap and contractualize
native libraries, which would lead to new classes7 being defined.

5.8 Documentation
The support for full automatic documentation generation is the fifth requirement of our DbC
requirements (Section 3). All contracts (with the exception of non-public invariants) must be
extracted from the definition and automatically added to the documentation. In the cases
where inheritance is involved, each class documentation should allow a full listing of the ADT
definition, namely make documentation available in “flat” form (which includes all available
public methods, their contracts and the class public invariant). Such documentation would
be extracted using another tool, which would generate javadoc-like documentation with the
addition of contract information.

6 Conclusion

We have presented and justified the requirements needed to completely implement Design
by Contract in an Object-Oriented programming language. Systematic error handling
approaches, such as defensive programming, were critically analyzed and compared with
DbC alternative. It was showed that typed exceptions and try/catch instructions break
algorithmic abstraction of methods; hence becoming a questionable alternative to handle
errors in a program. A better approach, based on DbC was presented and justified.

A new DbC language extension to Java – named Contract-Java – was presented. This new
language accepts all existing Java code, and was implemented in order to avoid undesirable
side-effects with Java’s native mechanisms. Is was given a special care to error handling, thus,
Contract-Java implements a disciplined exception mechanism, preventing exceptions from
being ignored, and easing the development of fault-tolerant programs. To better integrate
with existing Java code, this new exception mechanism is able to integrate any desired

7 With a different ADT, since Java native classes follow defensive programming and have no regard for
command-query separation.
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non-DbC exceptions within the DbC error handling mechanism. Finally, a new enhanced
debugging mechanism was implemented in which relevant information is automatically
generated and printed in the presence of a contract failure.

6.1 Future Developments

We expect to enhance Contract-Java with mechanisms for pure query detection (assertions
should use only expressions without side-effects to the program’s state).

Some work on frame rules (predicates expressing what did not change), is also one of our
objectives. Also, the implementation of other kinds of assertions like loop invariants

Finally, work in on the way for a concurrent versions of Contract-Java (Concurrent
Contract-Java) adapting one of the authors PhD work [24, 25] to Java.
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Electrónica e Telemática de Aveiro), funded by FCT’s project PEst-OE/EEI/UI0127/2014.

Contract-Java new Syntax

c l a s sDe c l a r a t i o n : mod i f i e r s " c l a s s " name ( typeParameters )?
" { " ( " ; " | s t a t i cB l o ck | i n t e r f a c eDe c l a r a t i o n |

c l a s sDe c l a r a t i o n | f i e l d | method | i nva r i an t )+ " } "

method : mod i f i e r s type name " ( " ( arguments )? " ) "
( p r e cond i t i on )?
( ( l o c a l )? " { " body " } " )?
( po s t cond i t i on )?
( r e s cue )?

i nva r i an t : ( " pub l i c " | " p rotec ted " | " " | " p r i va t e " )
" i nva r i an t " ( a s s e r t i onC lau s e )+

precond i t i on : " r e qu i r e s " ( a s s e r t i onC lau s e )+

pos t cond i t i on : " ensure s " ( a s s e r t i onC lau s e )+

as s e r t i onC lau s e : c ond i t i ona lExpr e s s i on
( " : " exp r e s s i on )? " ; "

r e s cue : " r e s cue " ( excpDecl )? " { " blockStatement " } "

excpDecl : " ( " excpTypeList name " ) "

excpTypeList : excpType ( " | " excpType )∗
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