
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

11-2015

Towards practical graph-based verification for an object-oriented Towards practical graph-based verification for an object-oriented

concurrency model concurrency model

Alexander HEUßNER

Christopher M. POSKITT
Singapore Management University, cposkitt@smu.edu.sg

Claudio CORRODI

Benjamin MORANDI

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
HEUßNER, Alexander; POSKITT, Christopher M.; CORRODI, Claudio; and MORANDI, Benjamin. Towards
practical graph-based verification for an object-oriented concurrency model. (2015). Proceedings of the
1st Graphs as Models (GaM) 2015 workshop, London, April 10-11. 32-47. Research Collection School Of
Information Systems.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4911

This Conference Proceeding Article is brought to you for free and open access by the School of Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email libIR@smu.edu.sg.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/287750559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4911&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4911&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

A. Rensink & E. Zambon (Eds.): Graphs as Models 2015 (GaM’15)
EPTCS 181, 2015, pp. 32–47, doi:10.4204/EPTCS.181.3

c© A. Heußner, C.M. Poskitt, C. Corrodi & B. Morandi
This work is licensed under the
Creative Commons Attribution License.

Towards Practical Graph-Based Verification for an
Object-Oriented Concurrency Model

Alexander Heußner
University of Bamberg, Germany

Christopher M. Poskitt Claudio Corrodi
Benjamin Morandi

Department of Computer Science
ETH Zürich, Switzerland

To harness the power of multi-core and distributed platforms, and to make the development of con-
current software more accessible to software engineers, different object-oriented concurrency models
such as SCOOP have been proposed. Despite the practical importance of analysing SCOOP pro-
grams, there are currently no general verification approaches that operate directly on program code
without additional annotations. One reason for this is the multitude of partially conflicting semantic
formalisations for SCOOP (either in theory or by-implementation). Here, we propose a simple graph
transformation system (GTS) based run-time semantics for SCOOP that grasps the most common
features of all known semantics of the language. This run-time model is implemented in the state-
of-the-art GTS tool GROOVE, which allows us to simulate, analyse, and verify a subset of SCOOP
programs with respect to deadlocks and other behavioural properties. Besides proposing the first
approach to verify SCOOP programs by automatic translation to GTS, we also highlight our experi-
ences of applying GTS (and especially GROOVE) for specifying semantics in the form of a run-time
model, which should be transferable to GTS models for other concurrent languages and libraries.

1 Introduction

Background Multi-core and distributed architectures are becoming increasingly ubiquitous, as the fo-
cus for delivering computing performance shifts from CPU clock speeds—now reaching their natural
limits—to concurrency. Harnessing this power, however, requires a fundamentally different approach to
writing software; developers must program with concurrency, asynchronicity, and parallelism in mind.
Traditionally this has been achieved through threads, synchronising via low-level constructs like locks
and semaphores. This approach, while still pervasive, is difficult to master and notoriously error prone;
deadlocks, data races, and other concurrency faults are all-too-easy to introduce, yet are challenging to
detect and debug. In an effort to alleviate this task for programmers, a number of high-level libraries
and languages have been proposed that provide simpler-to-use models of concurrency. Examples in-
clude Grand Central Dispatch [11] and SCOOP [20], both of which support asynchronous concurrent
programming through abstractions that are safer and simpler to grasp than threads. The concurrency
mechanisms of SCOOP, for example, exclude data races by design. Despite such abstractions, programs
may still exhibit rich, complex behaviours that are difficult to fully comprehend through testing alone.
There is a pressing need for formal models of these systems to facilitate reasoning, comparisons, and
understanding, as well as to bring them within reach of current verification tools and techniques.

Initial Problem The intricate features of these libraries and languages—including locking, waiting
queues, asynchronous remote calls, and dynamic and automatic thread generation—lead to formal mod-
els with verification decision questions (e.g. deadlock detection and the verification of temporal, be-
havioural properties) that are undecidable. Existing approaches to tackle this theoretical challenge fall

http://dx.doi.org/10.4204/EPTCS.181.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

A. Heußner, C.M. Poskitt, C. Corrodi, and B. Morandi 33

mainly into two categories: verification algorithms working on restrictions to simple approximations,
e.g. by extended automata models or Petri nets [12, 2], or semi-algorithmic approaches on models that
try to cover the original features as faithfully as possible, e.g. by bounded model checking [7].

In the context of SCOOP—a high-level object-oriented concurrency model, implemented as an ex-
tension to Eiffel—there are currently no analysis or verification approaches that work directly on a pro-
gram’s source code without additional annotations. Recent first steps into the analysis and prevention
of deadlocks in SCOOP are either based on checking Coffman’s deadlock conditions on an abstract se-
mantic level [5], or require code to be annotated with locking orders [28]. In earlier work [4], SCOOP
programs were translated by hand to models in the process algebra CSP for e.g. deadlock analysis;
but these models were too large for the leading CSP tools to cope with, and required a new tool to be
custom-built for the purpose (which is no longer maintained today). No further verification approaches
for behavioural properties, e.g. specified in some temporal logic, exist yet.

In addition, these concurrent libraries and languages often have semantics that are not fully formally
specified, or are associated with multiple semantics—whether existing as formal specifications or im-
plicitly, by implementation. The choice of the “right” semantic formalisation, however, is a substantial
prerequisite for the analysis and verification of a program’s source code. SCOOP, for example, has at
least four established, different semantic formalisations [29, 19, 4, 21]. This “semantic plurality” is an
additional source of complication for verification approaches, such as the one we propose in this paper.

Our Approach As a first step, we develop—from the core of the language up—a formal model permit-
ting the simulation and verification of SCOOP programs. The rich semantic features of SCOOP regarding
concurrency, (basic) object-orientation, and especially asynchronicity are grasped with the help of graph
transformation systems (GTS) that are parameterised by different underlying semantic variants. We also
supply a compiler to automate the task of generating input graphs from SCOOP source code. These
are then analysed with the help of GROOVE, a state-of-the-art GTS tool, which already includes basic
model checking algorithms for GTS.

Contribution & (Closely) Related Work The contribution of the paper is thus manifold: first, we pro-
vide a formal GTS-based model that covers SCOOP’s basic features and can be seen as a new, additional
operational semantics for the language. Second, this GTS-model can also be seen as a new general run-
time environment for analysing and verifying object-oriented concurrent programs that share SCOOP’s
main features, including approximations of SCOOP. Third, the given analysis approach serves as a first
step towards a general framework for verifying concurrent asynchronous programs by also highlight-
ing modelling best practices, which can be transferred to the analysis and verification of other libraries,
e.g. Grand Central Dispatch, in a similar way. Combining all these aspects, we provide, to our knowl-
edge, the first approach for verifying a subset of SCOOP programs on the code level with respect to be-
havioural specifications—including deadlock freedom. Only the advanced typing mechanisms and some
Eiffel-specific features of SCOOP are currently out of reach for our automatic verification approach.

For the broader verification community, this paper demonstrates how a GTS-based semantics and
tool can be effectively used to model, simulate, and facilitate verification for a concurrent programming
language that abstracts away from threads and has a “frequently evolving” run-time. For the graph
modelling community, this paper presents our experiences of applying a state-of-the-art GTS tool to a
non-trivial and practical modelling and verification problem.

The two closest related works are [4] and [19], which both share our first step of providing a new
operational semantics for SCOOP. Whereas the former formalises the semantics with the help of a pro-

34 Towards Practical Graph-Based Verification for an Object-Oriented Concurrency Model

cess algebraic model in CSP, the latter defines a semantics based on rewriting logic in Maude. Relying
on “classical” process algebra, the expression of real asynchronicity between concurrent threads and
asynchronous remote method calls are not fully supported by the CSP model—contrary to the model we
propose. The comprehensive Maude formalisation is currently seen by the community as the gold stan-
dard for SCOOP and coined our understanding of SCOOP’s semantics; our model, in contrast, focuses
more on the core asynchronous and concurrent features of SCOOP, but can be extended to capture the
advanced language features inherited from Eiffel (cf. later comparison in Section 5 for details). Both the
CSP and Maude models were used successfully to resolve ambiguities in the original, informal descrip-
tions of SCOOP’s semantics, but are insufficient for general verification tasks. Directly harvesting, for
example, the more expressive and complete Maude implementation for deadlock analysis does not scale
on even toy examples like the Dining Philosophers program (presented later).

Plan of the Paper After introducing SCOOP’s main concurrency features (Section 2), we present a
formal model which for the sake of simplicity, ignores “local” object-orientation and corresponds to
a subset of SCOOP that we will call CoreSCOOP (Section 3). We show how to render CoreSCOOP
programs as GTS models (Section 4). Afterwards, we describe how we extended our GTS model for
SCOOP to include full object-orientation, and present a workflow for translating SCOOP programs into
GROOVE models (Section 5). The latter then allows us to verify programs written in SCOOP with the
general algorithms already implemented in GROOVE (Section 6). We conclude with a comparison to
related work on GTS-based verification of concurrent object-oriented systems (other references to related
work are stated in the corresponding sections) and provide an outlook on our current research.

2 SCOOP: A Concurrent Asynchronous OO Model

SCOOP Simple Concurrent Object-Oriented Programming (SCOOP) [20, 19] is a concurrent, asyn-
chronous, and object-oriented programming model that—with its intricate semantics—provided the mo-
tivation and challenge for the work in this paper. The most thorough implementation of the model is as
an extension to Eiffel, but it has also been explored within the context of Java [27]; we shall focus on
the former, and take “SCOOP” in the following to be a synonym for both the model and this principal
implementation.

In SCOOP, every object is handled by a processor, a concurrent thread of control with the exclusive
right to call methods on the objects it handles. In this context, object references may point to objects
handled by the same processor (non-separate objects), or to objects handled by other ones (separate
objects). Given an object reference x and a method m that is a command (i.e. does not return a result), a
method call x.m is executed synchronously if x is non-separate. If x is separate, then the handler of x is
sent a request to execute the method asynchronously. This latter case is the main source of concurrency
in SCOOP programs, which is based essentially on message passing between processors.

The possibility of an object having a different handler is captured in the type system by the keyword
separate. In order to prevent data races, calls to a separate object x are only allowed if the current
object’s processor holds a lock on the handler of x. The programmer does not manage these locking
requirements explicitly, but rather expresses them implicitly in the formal argument lists of methods:
if the arguments of a method contain separate objects, then the objects’ handlers will all be locked
(simultaneously, atomically, and automatically—at least conceptually) before the method is executed,
and released when it is finished.

A. Heußner, C.M. Poskitt, C. Corrodi, and B. Morandi 35

Listing 1: Snippet of the PHILOSOPHER class from a Dining Philosophers solution in SCOOP [26]
1 live -- Each Philosopher eats times_to_eat times
2 do
3 from until
4 times_to_eat < 1
5 loop
6 print (" P h i l o s o p h e r " + Current . id . out + " w a i t i n g f o r f o r k s .%N")
7 eat (left_fork , right_fork)
8 print (" P h i l o s o p h e r " + Current . id . out + " has e a t e n .%N")
9 times_to_eat := times_to_eat − 1

10 end
11 end
12 eat (left , right : separate FORK) -- Eat, having acquired left and right forks
13 do
14 -- Here, eating takes place
15 end
16 left_fork , right_fork : separate FORK -- References to forks used for eating

Dining Philosophers Example A simple example highlighting the intricacies and expressiveness of
SCOOP is an implementation of the Dining Philosophers problem: a number of philosophers sit at a
round table that provides only single forks between adjacent pairs, and these philosophers must concur-
rently and correctly alternate between eating and thinking. The caveat of course is that a philosopher
may only eat if they hold both the fork to their left and the fork to their right, and algorithms must “pick
up” the forks in such a way that prevents a cyclic deadlock from arising. Consider Listing 1, which
contains an excerpt from the PHILOSOPHER class of a well-known SCOOP solution (available at [26]).
Each philosopher and fork object is handled by its own processor. Upon creation, each philosopher is
“launched” by calling the (argumentless) live method, causing them to concurrently begin the process
of eating and thinking. To eat, a philosopher calls the eat method, passing the separate object ref-
erences for the two forks. Eating does not commence until the handlers of these forks are locked by
the philosopher’s handler; conceptually, this occurs simultaneously, avoiding the possibility of deadlock
from e.g. every philosopher locking their left forks only and then waiting indefinitely on their right ones.

Concurrency, Asynchronicity, and Locking SCOOP has a number of other features and behaviours
detailed more thoroughly in [19]; here, we briefly describe only queries and contracts. First, given a
separate object reference x and a method m that is a query (i.e. returns a result), a call q = x.m is always
executed synchronously; if x has a separate handler, then the current object’s handler simply waits for the
result to be returned. Secondly, SCOOP maintains and extends the Eiffel tradition of annotating methods
with preconditions (keyword require) and postconditions (ensure). In the sequential setting, these are
(optionally) checked before and after every execution of the method. In the concurrent setting, however,
preconditions are instead interpreted as wait conditions that must be synchronised on. Conceptually, the
execution of a routine is delayed until simultaneously the precondition is satisfied and the handlers of
the formal arguments are locked. This allows the programmer to express synchronisation conditions at a
high level of abstraction.

These concepts require execution-time support from an effective run-time environment. The current
run-time [19] associates each processor with a lock and request queue. A method call on a separate
object is enqueued on its handler’s request queue, which is processed in FIFO order. The call may only
be enqueued if the lock on the handler is held. The run-time is responsible for correctly synchronising
on wait conditions and locking the handlers of formal arguments at the beginning of methods, as well
as releasing them at the end. The run-time must balance these design needs with the need to permit

36 Towards Practical Graph-Based Verification for an Object-Oriented Concurrency Model

a reasonable level of performance (e.g. by reducing resource contentions). As such, and as a major
challenge for our work, the “official” run-time is frequently evolving, and several alternatives have been
proposed and/or developed, e.g. [20, 19, 29].

3 A GTS-based Model of CoreSCOOP

Our first step is to present a run-time model for the core behaviours of SCOOP, i.e. remote method calls,
FIFO queues, and locking. This model, named Concurrent Processor Model (CPM), strips away the
object-oriented features of SCOOP, grasping only a subset of the language and focusing on processors
equipped with simple data. This allows us to: (i) highlight the fundamental peculiarities of SCOOP as
model of concurrency in a more fine-grained formal setting, and (ii) present the basic building blocks of
our approach in more detail, as we extend CPM to include full object-orientation in Section 5.

From CoreSCOOP to CPM Stripping “local” object-oriented features from SCOOP (e.g. self-calls,
non-separate calls) and focusing on remote synchronous and asynchronous method calls (i.e. queries and
commands) via FIFO queues, as well as locking in a concurrent setting, leads to a subset of the SCOOP
language we call CoreSCOOP in the following. We formalise the run-time model for CoreSCOOP by
the Concurrent Processor Model (CPM). CPM is represented by a graph transformation system in which
configurations are given by directed graphs conforming to the type graph of Figure 1. Note that the type
graph uses a UML-like notation with type attributes and constraints.

The semantic model of CoreSCOOP is inspired by the current “standard” formalisation of SCOOP’s
semantics in [19]. It consists of a set of processors that run concurrently. Each processor is the handler
of data in local memory, which is represented as a mapping from variable names (x1, . . .xm) to integers.
There is no global shared memory, only processor local memory, and this memory can only be accessed
by or via its processor. Processors sequentially handle method calls via incoming requests that are related
to a control-flow graph encoding of the underlying CoreSCOOP methods. Thus, a running processor
that handles a current request is in a current state belonging to this request method type’s control flow
graph. Incoming requests are stored by each processor in a FIFO queue before being locally executed.
Each processor has a finite set of known neighbour processors, i.e. those accessible for synchronous
or asynchronous remote calls, which are stored by reference (the variables r1, . . . ,rn). Processors can
dynamically generate new processors (and assign these directly to local reference variables). Each remote
call and its context, i.e. the call’s parameters, which consist of integer values (i.e. p1, . . . pk) and processor
references (r1, . . . ,rl), is stored as a request. Requests implement “value passing”, e.g. requests can pass
references to newly generated processors. The return value for queries, i.e. synchronous remote calls,
is stored in a special local variable accessible to the caller (variable result). In CPM, there are neither
local calls, i.e. calls to oneself, nor local recursion.

CPM includes explicit locking between processors, i.e. each processor can be locked by at most one
(distinct) processor. CoreSCOOP’s implicit locking can thus be translated to CPM’s explicit locking,
however at a different level of granularity. In general, CPM is able to simulate the execution of programs
written in CoreSCOOP, which is not possible the other way round due to this different level of atomicity
in both models. A processor handling a request “walks” the corresponding part of the control-flow graph
by updating the current state according to the actions’ semantics, given as graph transformation rules (see
Section 4 for example configurations and a rule for commands). Handling of queues, local scheduling
of each processor (i.e. terminating the currently handled request and advancing to the next in the waiting
queue), instantiation of parameters, etc., is handled by global scheduling rules, which also assure that

A. Heußner, C.M. Poskitt, C. Corrodi, and B. Morandi 376 Towards Practical Graph-Based Verification for an Object-Oriented Concurrency Model

Control-flow System State Waiting Queue Memory State

Action
label: Stmt

Control State

Final State

Initial State
meth: Meth

Processor

p1: Z
. . .
pk: Z
r1: Processor[0..1]
. . .
rl : Processor[0..1]

Request

Queue

Abstract Element

result: Z
x1: Z
. . .
xm: Z
r1: Processor[0..1]
. . .
rn: Processor[0..1]

Data
in

0..1
out

currentState
0..1 *

handler

currentRequest
0..1

queue

0..1

lock

*

next
head 0..1

0..1

tail
0..1

0..1

*
requestType

one and only one initial state for
each m 2 Meth

no incoming
edge

no outgoing edge

Abstract Elements form a linear queue where head points
to the front, next to the subsequent element, and tail to
the back of the queue

Figure 1: Type graph for CPM’s configurations as class diagram with constraints, where we assume
disjoint finite sets of variable names (p1, . . . ,x1 . . .), and reference names (r1, . . .); let Meth be a finite
set of method names, and Z be the set of integer numbers, B of Booleans; the cardinality of association
edges is "1" if not noted otherwise; the different regions highlight the different modules of the model

each local processor advances as far as possible. Note that the walking of the control-flow graph and the
scheduler are generic, i.e. represented by a set of GTS rules independent of the SCOOP program. We
refer to [26] for the full formal model directly represented as GTS (that can be browsed and simulated
with GROOVE).

Modularity of CPM Configurations of CPM, i.e. global states of the system, can be partitioned into
four main parts, which are also visible in Figure 1: (i) a representation of the underlying SCOOP program
in the form of a control-flow graph; (ii) a system of concurrently running processors, each one possibly
handling a request; these processors represent the system state; (iii) a waiting queue for each processor
that stores pending requests; (iv) local memory state for each processor. The control flow component can
be derived directly from the original CoreSCOOP program’s control flow graph (at a pre-compilation
step) and its structure does not dynamically change, contrary to the state of the run-time environment
(processors, queues, data). This partitioning is also mirrored by the GTS’s underlying rules that treat the
walking of the control flow graph separately from the queue’s policies, the management of the memory,
and global scheduling.

The fixed simple interfaces (in form of the model components’ loose coupling due to the typed
associations queue, handler, currentState, and requestType) between these modules allow us to plug
in different behaviours for each module, e.g. different queueing semantics. Thus we can either adapt
different existing SCOOP semantics (e.g. FIFO queues versus queues of queues [29]) or directly apply
abstraction mechanisms in the context of verification (e.g. a counting abstraction of the queue’s content,
or predicate abstraction for the data) by small modular changes to the underlying rules.

Furthermore, the global abstract scheduling rules can be parameterised in this way, e.g. to include
different kinds of garbage collection in the global scheduler or different rule prioritisations that keep the
state space small, such as always preferring to terminate processors that are currently in a final state.

Figure 1: Type graph for CPM’s configurations as class diagram with constraints, where we assume
disjoint finite sets of variable names (p1, . . . ,x1 . . .), and reference names (r1, . . .); let Meth be a finite
set of method names, and Z be the set of integer numbers, B of Booleans; the cardinality of association
edges is "1" if not noted otherwise; the different regions highlight the different modules of the model

each local processor advances as far as possible. Note that the walking of the control-flow graph and the
scheduler are generic, i.e. represented by a set of GTS rules independent of the SCOOP program. We
refer to [26] for the full formal model directly represented as GTS (that can be browsed and simulated
with GROOVE).

Modularity of CPM Configurations of CPM, i.e. global states of the system, can be partitioned into
four main parts, which are also visible in Figure 1: (i) a representation of the underlying SCOOP program
in the form of a control-flow graph; (ii) a system of concurrently running processors, each one possibly
handling a request; these processors represent the system state; (iii) a waiting queue for each processor
that stores pending requests; (iv) local memory state for each processor. The control flow component can
be derived directly from the original CoreSCOOP program’s control flow graph (at a pre-compilation
step) and its structure does not dynamically change, contrary to the state of the run-time environment
(processors, queues, data). This partitioning is also mirrored by the GTS’s underlying rules that treat the
walking of the control flow graph separately from the queue’s policies, the management of the memory,
and global scheduling.

The fixed simple interfaces (in form of the model components’ loose coupling due to the typed
associations queue, handler, currentState, and requestType) between these modules allow us to plug
in different behaviours for each module, e.g. different queueing semantics. Thus we can either adapt
different existing SCOOP semantics (e.g. FIFO queues versus queues of queues [29]) or directly apply
abstraction mechanisms in the context of verification (e.g. a counting abstraction of the queue’s content,
or predicate abstraction for the data) by small modular changes to the underlying rules.

Furthermore, the global abstract scheduling rules can be parameterised in this way, e.g. to include
different kinds of garbage collection in the global scheduler or different rule prioritisations that keep the
state space small, such as always preferring to terminate processors that are currently in a final state.

38 Towards Practical Graph-Based Verification for an Object-Oriented Concurrency Model

4 Simulating CPM in GROOVE

We realised CPM—our run-time model for CoreSCOOP—in GROOVE, an established tool for simulat-
ing and analysing GTS-based semantics. This section describes how we approached and achieved this
task. First, we justify our choice of GROOVE, and then show (by example) how CPM configurations,
rules, and rule applications are represented in the tool. Finally, we discuss the issue of CPM’s soundness.

The GTS Tool GROOVE We chose GRaphs for Object-Oriented VErification (GROOVE) [14, 13] as
our platform to implement and analyse the CPM models. Most existing GTS tools are in theory expres-
sive enough to cover CPM. GROOVE however was already applied for the analysis of (non-concurrent)
object-oriented programs in Java [24]. Furthermore, GROOVE contains a (finite-state) model checker
that has proven sufficient for the analysis and verification of dynamic state systems [7, 18]. As reported
in [31], GROOVE can typically handle systems with up to 4 million states, which should leave enough
room for our first experiments. Finally, GROOVE convinced us with a gentle learning curve, its ease of
adaption and extension to our needs, as well as its active development community.

Representing CPM Configurations in GROOVE CPM configurations are represented in GROOVE
quite straightforwardly, with control-flow, system state, waiting queue(s), and memory state (as in the
type graph of Figure 1) all encoded in the same graph.

8 Towards Practical Graph-Based Verification for an Object-Oriented Concurrency Model
A. Heußner, C.M. Poskitt, C. Corrodi, and B. Morandi 9

Data_Var
name = "v_3"

value = 1

State

Ref_Var
name = "r_1"

Action
assign

var = "v_1"

State

Data_Var
name = "v_1"

value = 1

State

Data

Action
new

name = "FORK"
ref = "r_1"

Action
assign_ref
ref = "r_2"

value = "r_1"

Processor
name = "APPLICATION"

Data_Var
name = "v_2"

value = 2

Op
constant
value = 1

State

State
init

method = "APPLICATION.make"

Action
command

method = "FORK.make"
ref = "r_1"

Data

Processor
name = "FORK"

var

out

out

in
handler

in

var

aexp

in

out

in_method

ref

var

out

in

points_to handler

lock

Implementing CPM Semantics in GROOVE The semantics of CPM is implemented via a set of
GROOVE rules, broadly falling into one of three categories: action rules, processor rules, and error
rules. Action rules are used to fire transitions in the control-flow subgraph. Processor rules handle pre-
and post-processing, e.g. expression evaluation, parameter instantiation, waiting queue insertion, exiting
from final states. Error rules are used to detect irregular or undesirable states (their use in verification is
discussed in Section 6). We use rule priorities extensively to prevent “unnecessary” interleavings of rule
applications

organised by priority to prevent unnecessary interleavings.
Rules: priorities to prevent unnecessary interleavings. Interleaving limited to processors proceeding

across actions. Higher-priority rules handle pre-/post-processing, e.g. expression evaluation / cleanup
en/dequeieing, instantiating parameters, which is local to processor. Progress as much as possible, in-
terleave on action steps. Fine-grained priorities when order doesn’t matter, e.g. constant vs. variable
evaluation. Do as much as possible in a single step (universal quantifiers of GROOVE).

ongoing work: experimenting with optimisation that progresses actions as much as possible when
effects are local, interleave at synchronisation points.

how many rules for actions, how many rules for scheduler, rules for errors.
Referee comments: need MORE examples and data about the implementation, which is a core

contribution. Example of rule application? Basic data, e.g. number of rules for control flow structures
and execution?

Referee comment: example rule uses methods although there are no objects. We need to explain
what “method” means in this context (it’s object-like, since methods execute on encapsulated data,
but not true O-O since we cannot have more than one object on a single processor).

Let us take a closer look at the GTS rule implementing an active processor taking a transition, labelled
by a command action, and targeting a processor, the lock of which (for the sake of simplicity) is already
held. Recall that in SCOOP and thus in CPM, commands are asynchronous remote method calls on

Figure 2: A CPM configuration rendered in GROOVE

An example of a CPM con-
figuration in GROOVE is given
in Figure 2. This shows a sub-
graph of a configuration that can
be reached in the CPM encod-
ing of the full dining philoso-
phers SCOOP program (see [26]).
There are two Processors in this
configuration, but only one (AP-
PLICATION) is currently execut-
ing a method (current_state).
This Processor has both a refer-
ence to (points_to) and a lock

on the FORK processor (i.e. it has
the exclusive right to enqueue re-
quests). Neither Processor is stor-
ing any method parameters, and
their waiting queues are empty.

Data_Var
name = "v_3"

value = 1

State

Ref_Var
name = "r_1"

Action
assign

var = "v_1"

State

Data_Var
name = "v_1"

value = 1

State

Data

Action
new

name = "FORK"
ref = "r_1"

Action
assign_ref
ref = "r_2"

value = "r_1"

Processor
name = "APPLICATION"

Data_Var
name = "v_2"

value = 2

Op
constant
value = 1

State

State
init

method = "APPLICATION.make"

Action
command

method = "FORK.make"
ref = "r_1"

Data

Processor
name = "FORK"

var

out

out

in
handler

in

var

aexp

in

out

current_state

ref

var

out

in

points_to handler

lock

Simulating CPM Actions in GROOVE IGNORE TEXT BELOW
The semantics of CPM is implemented via a set of GROOVE rules, broadly falling into one of three

categories: action rules, processor rules, and error rules. Action rules are used to fire transitions in
the control-flow subgraph. Processor rules handle pre- and post-processing, e.g. expression evaluation,
parameter instantiation, waiting queue insertion, exiting from final states. Error rules are used to detect
irregular or undesirable states (their use in verification is discussed in Section 6). We use rule priorities

Figure 2: A CPM configuration rendered in GROOVE

Control-flow is rendered as static
transition systems in the graph. These
comprise State nodes, where entry
points are labelled with init and a
method name, and exit points with fi-
nal. A transition between two State
nodes is encoded as a pair of edges (in
and out) and an Action node labelled
with a CPM action (e.g. command,
query, lock, assign). Encoding actions
as nodes—as opposed to labelled edges
between states—facilitates a clean way
of modelling action parameters. Sim-
ple action parameters, such as a vari-
able to assign to, are encoded as at-
tributes of Action nodes; compound ac-
tion parameters on the other hand, such
as a Boolean expression to be evaluated, are modelled as abstract syntax trees incident to Action nodes.
Furthermore, for actions that trigger methods on other processors (i.e. commands, queries), an arbitrary
number of method parameter nodes (which represent data to be instantiated and available for the du-
ration of a method) can be attached to the corresponding Action nodes. These encode, via attributes,
the parameter name, as well as the integer or reference variable to instantiate and pass as the method
parameter.

System state, waiting queue(s), and memory state are rendered as dynamic parts of the graph. Each
Processor node handles a Data node. Data nodes are incident to Data_Var and Ref_Var nodes, which
respectively store the handling Processor’s integer variables (via attributes) and reference variables (via

A. Heußner, C.M. Poskitt, C. Corrodi, and B. Morandi 39

edges). Processors may hold locks on other Processors (represented by lock edges), and may be in
a control State (represented by a current_state edge). Furthermore, they have waiting queues of
requests to be executed, represented as “linked lists” of Queue_Item nodes over next-labelled edges.
Each such node is labelled with the method (i.e. the particular transition system) to be executed, and is
attached to nodes that store the values of any method parameters expected.

An example of a CPM configuration in GROOVE is given in Figure 2. This shows a subgraph of a
configuration that can be reached in the CPM encoding of the full Dining Philosophers SCOOP program
(see [26]). There are two Processors in this configuration, but only one (APPLICATION) is currently
executing a method (current_state). This Processor has both a reference to (points_to) and a lock
on the FORK processor (i.e. it has the exclusive right to send requests). Neither Processor is storing any
method parameters, and their waiting queues are empty.

Simulating CPM Actions in GROOVE The semantics of CPM is simulated in GROOVE by two sets
of graph transformation rules: action rules, and scheduling rules.

Action rules facilitate the firing of transitions in the control-flow part of the graph, and the corre-
sponding updates to the system and memory state. They model the basic behaviours of SCOOP pro-
cessors: variable assignment, condition evaluation, processor creation, asynchronous commands, syn-
chronous queries, and simultaneously (un)locking multiple processors. An action rule can be applied
to a CPM configuration when: (i) a processor is in a control-flow state incident to a corresponding-
ly-labelled action; and (ii) the prerequisites of the action are satisfied, e.g. every processor targeted by
a lock action is available to be locked. Action rules are atomic, in that the firing of a transition occurs
in a single, indivisible step (e.g. locking multiple processors occurs instantly, as it appears to SCOOP
programmers). This is achieved by extensive use of GROOVE’s powerful matching constructs such as
universal quantification, which allows for a single rule to handle arbitrarily many instances of particular
sub-structures (e.g. arbitrary numbers of method parameters). Furthermore, action rules are assigned the
same (and lowest) priority in GROOVE, meaning that non-determinism (and thus interleaving) is mod-
elled at the level of atomic processor actions, as opposed to partial evaluations (thereby mitigating one
source of state space explosion).

Scheduling rules handle queues, local scheduling of each processor (e.g. advancing to the next re-
quest), and any local pre- or post-processing required for action rules; more generally, they advance pro-
cessors as much as possible in-between actions. While action rules necessarily model non-determinism—
different interleavings model different orders in which requests are enqueued, and thus potentially dif-
ferent program outcomes—scheduling rules avoid it as much as possible, since the steps between actions
are local to processors. This is achieved by rule priorities in GROOVE. In particular, all scheduling rules
have higher priorities than action rules, meaning that all local scheduling is simulated before exploring
the non-determinism of actions. Furthermore, no two scheduling rules have the same priority, ensuring
that their execution is as deterministic as possible to reduce the number of states to explore. Assigning
such fine-grained rule priorities did, however, require some care. It is ultimately unimportant, for exam-
ple, whether a constant or variable in an expression is evaluated first, so we arbitrarily fixed the priority
of the scheduling rule for constants to be higher. On the other hand, if we had assigned the scheduling
rule for terminating requests (i.e. in final states) to be of higher priority than scheduling rules that per-
form post-processing immediately after actions (e.g. “resetting” an evaluated expression after assigning
it), then a fault would have been introduced into the model.

Let us take a closer look at the action rule for commands, depicted in Figure 3 using GROOVE’s
colour coding. Recall that in SCOOP (and thus in CPM), a command is an asynchronous remote method

40 Towards Practical Graph-Based Verification for an Object-Oriented Concurrency ModelA. Heußner, C.M. Poskitt, C. Corrodi, and B. Morandi 9

param

processor

@

method

param

current_state

lock

in

@

insert_into

param current_state

ref

method

handler

processor

name

param
instance

instance

@

method

method

out

points_to

ref

@

ProcessorState

Action
command

State
init

Ref_Varstring Processor

Queue_Item

stringstring

State

Param_Ref

Param_Data

8

8

Data

Param_Data

Param_Ref

Transition in Control Flow

Active Processor & its Data

Command Action with Parameters
New Request

Figure 3: Example action rule for commands in GROOVE (GROOVE’s rule colour coding: dashed
blue elements only exist on the left-hand side of rule (thus will be deleted), bold green elements on the
right-hand side (thus will be generated), black ones persist)

call on a concurrently running processor that is locked by the current processor. The starting point of the
rule is an active processor that is currently in a state (current_state) that could fire a command action.
The command action is given by the following: (i) a pointer (points_to) from a reference variable
(Ref_Var) to the target Processor; (ii) the name of the method to call, via an attribute of the Action node;
and (iii) some number of instantiated method parameters (Param_Data, Param_Ref). The firing of the
rule advances the processor’s current state (current_state) and at the same time generates a new request

10 Towards Practical Graph-Based Verification for an Object-Oriented Concurrency Model

instantiated parameters. This is then inserted into the target Processor’s waiting queue via a separate,
highly prioritised scheduling rule. For illustration, the result of applying the action rule to Figure 2 is
given in Figure 4. Observe that the transition has been fired, and that the resulting Queue_Item contains
the same method name as the Action node, and is waiting to be enqueued by the processor that the
reference variable r_1 points to.

IGNORE TEXT BELOW

Data_Var
name = "v_3"

value = 1

State

Ref_Var
name = "r_1"

Action
assign

var = "v_1"

State

Data_Var
name = "v_1"

value = 1

State

Data

Action
new

name = "FORK"
ref = "r_1"

Action
assign_ref
ref = "r_2"

value = "r_1"

Processor
name = "APPLICATION"

Data_Var
name = "v_2"

value = 2

Op
constant
value = 1

State

State
init

method = "APPLICATION.make"

Action
command

method = "FORK.make"
ref = "r_1"

Data

Processor
name = "FORK"

Queue_Item
method = "FORK.make"

var

out

out

in
handler

in

var

aexp

in

out

current_state

ref

var

out

in

insert_into

points_to handler

lock

How many rules for actions, how many rules for scheduler?
Referee comments: need MORE examples and data about the implementation, which is a core

contribution. Example of rule application? Basic data, e.g. number of rules for control flow structures
and execution?

Referee comment: example rule uses methods although there are no objects. We need to explain
what “method” means in this context (it’s object-like, since methods execute on encapsulated data,
but not true O-O since we cannot have more than one object on a single processor).

NOTE FOR FINAL VERSION: check that this is a true reflection of how parameters are currently
working

Soundness
• discussing faithfulness of CPM would require a fixed formal semantics for SCOOP/ CoreSCOOP

(which does not exist) or an in-depth comparison with existing semantic approaches

• latter requires a more stringent formal representation of CPM, e.g. by graph programs with an
operational semantics, and corresponding semantic proofs (equivalence, simulation, etc.)

• beyond scope of the paper (but important step for future work)

• for this paper, which is about the first piece of the puzzle, we took a more lightweight approach to
the issue

Figure 4: Effect of the command rule on Figure 2

(as Queue_Item) equipped with the
method name and all (via “8”) instan-
tiated parameters. This is then later in-
serted into the target Processor’s wait-
ing queue via a separate, highly priori-
tised scheduling rule. For illustration,
the result of applying the action rule
to Figure 2 is given in Figure 4. Ob-
serve that the transition has been fired,
that the resulting Queue_Item contains
the same method name as the Action
node, and that it is waiting to be en-
queued by the Processor that the refer-
ence variable r_1 points to. The current
prototype of CPM is available at [26].
At present, it comprises 19 action rules
and 34 scheduling rules.

Soundness Formally establishing the soundness (or “faithfulness”) of CPM is an important step, which
would rely on either the existence of a definitive language semantics, or an in-depth comparison with

Figure 3: Example action rule for commands in GROOVE (GROOVE’s rule colour coding: dashed
blue elements only exist on the left-hand side of rule (thus will be deleted), bold green elements on the
right-hand side (thus will be generated), black ones persist)

call on a concurrently running processor that is locked by the current processor. The starting point of the
rule is an active processor that is currently in a state (current_state) that could fire a command action.
The command action is given by the following: (i) a pointer (points_to) from a reference variable
(Ref_Var) to the target Processor; (ii) the name of the method to call, via an attribute of the Action node;
and (iii) some number of instantiated method parameters (Param_Data, Param_Ref). The firing of the
rule advances the processor’s current state (current_state) and at the same time generates a new request

10 Towards Practical Graph-Based Verification for an Object-Oriented Concurrency Model

instantiated parameters. This is then inserted into the target Processor’s waiting queue via a separate,
highly prioritised scheduling rule. For illustration, the result of applying the action rule to Figure 2 is
given in Figure 4. Observe that the transition has been fired, and that the resulting Queue_Item contains
the same method name as the Action node, and is waiting to be enqueued by the processor that the
reference variable r_1 points to.

IGNORE TEXT BELOW

Data_Var
name = "v_3"

value = 1

State

Ref_Var
name = "r_1"

Action
assign

var = "v_1"

State

Data_Var
name = "v_1"

value = 1

State

Data

Action
new

name = "FORK"
ref = "r_1"

Action
assign_ref
ref = "r_2"

value = "r_1"

Processor
name = "APPLICATION"

Data_Var
name = "v_2"

value = 2

Op
constant
value = 1

State

State
init

method = "APPLICATION.make"

Action
command

method = "FORK.make"
ref = "r_1"

Data

Processor
name = "FORK"

Queue_Item
method = "FORK.make"

var

out

out

in
handler

in

var

aexp

in

out

current_state

ref

var

out

in

insert_into

points_to handler

lock

How many rules for actions, how many rules for scheduler?
Referee comments: need MORE examples and data about the implementation, which is a core

contribution. Example of rule application? Basic data, e.g. number of rules for control flow structures
and execution?

Referee comment: example rule uses methods although there are no objects. We need to explain
what “method” means in this context (it’s object-like, since methods execute on encapsulated data,
but not true O-O since we cannot have more than one object on a single processor).

NOTE FOR FINAL VERSION: check that this is a true reflection of how parameters are currently
working

Soundness
• discussing faithfulness of CPM would require a fixed formal semantics for SCOOP/ CoreSCOOP

(which does not exist) or an in-depth comparison with existing semantic approaches

• latter requires a more stringent formal representation of CPM, e.g. by graph programs with an
operational semantics, and corresponding semantic proofs (equivalence, simulation, etc.)

• beyond scope of the paper (but important step for future work)

• for this paper, which is about the first piece of the puzzle, we took a more lightweight approach to
the issue

Figure 4: Effect of the command rule on Figure 2

(as Queue_Item) equipped with the
method name and all (via “∀”) instan-
tiated parameters. This is then later in-
serted into the target Processor’s wait-
ing queue via a separate, highly priori-
tised scheduling rule. For illustration,
the result of applying the action rule
to Figure 2 is given in Figure 4. Ob-
serve that the transition has been fired,
that the resulting Queue_Item contains
the same method name as the Action
node, and that it is waiting to be en-
queued by the Processor that the refer-
ence variable r_1 points to. The current
prototype of CPM is available at [26].
At present, it comprises 19 action rules
and 34 scheduling rules.

Soundness Formally establishing the soundness (or “faithfulness”) of CPM is an important step, which
would rely on either the existence of a definitive language semantics, or an in-depth comparison with

A. Heußner, C.M. Poskitt, C. Corrodi, and B. Morandi 41

one of the proposed semantic approaches to SCOOP. Since the former is lacking, we have attempted
to be faithful to the comprehensive operational semantics proposed by Morandi et al. [19] which is
“executable” in Maude. To prove soundness with respect to this semantics would however require a
more stringent formal representation of CPM, e.g. as graph programs [22], and corresponding semantic
proofs (e.g. equivalence/(bi-)simulation). We are addressing this as ongoing work, but it is beyond the
scope of this first, proof-of-concept paper.

In the meantime, we took a more lightweight approach to gain confidence in the soundness of CPM,
through example-driven testing and an expert review. For the former, we looked at the SCOOP exam-
ples supplied with the EiffelStudio IDE, which demonstrate idiomatic usage of SCOOP’s concurrency
mechanisms to solve a number of classical synchronisation problems. We focused on two programs in
particular—Dining Philosophers and Single-Element Producer Consumer—which only ever create one
object per processor, and thus were CoreSCOOP programs that straightforwardly map to CPM actions
(recall that CPM does not model the notion of multiple local objects). With these programs, we then
tested the faithfulness of CPM by: (i) visualising and manually inspecting program executions in the
GROOVE simulator; (ii) exploring the state space for abnormal states (e.g. unsatisfied action pre-requi-
sites, such as the absence of a lock edge for a command) using the LTL model checker (see Section 6);
and (iii) comparing the effects of action rules against the informal and formal descriptions of SCOOP in
[19]. In addition to testing, we also held a one-day “expert review” with B. Morandi and other SCOOP
researchers from ETH, during which we demonstrated and discussed the CPM rules in detail with the
goal to ensure that the rules fully corresponded to their understanding of SCOOP/CoreSCOOP.

5 Towards Full-Fledged SCOOP, Approximations, and Translations

In this section, we look beyond CPM and CoreSCOOP to consider three ongoing extensions to the work.
First, we describe our effort to extend the model with full object-orientation, and thus make it expressive
enough for a wider class of SCOOP programs. Second, we discuss how CPM can be used as a basis for
exploring alternative SCOOP semantics and model approximations. Finally, we report on a prototype
tool for automatically generating GROOVE input from SCOOP (and thus also CoreSCOOP) programs.

From CPM to CPM+OO CPM allowed us to “boil down” SCOOP to the core of its asynchronous,
concurrent behaviour, and study it in a formal setting without the full complexity of object-orientation.
Our aim however is practical verification, and in practice, SCOOP programmers extensively use objects:
ultimately we need to support them. The benefits of a simpler formal model aside, one might wonder why
we did not start with full object-orientation from the outset if practical verification was always in mind.
This is because it allowed a separation of concerns: we could first isolate and model concurrency-via-
processors in a clean, simple setting, and then separately extend it with the object-oriented and Eiffel-
specific languages features that are not core to the concurrency model. Our modelling approach has
essentially been to identify this core, formalise it, then gradually add the missing details and behaviours.

We are extending CPM to CPM with Object-Orientation (CPM+OO), a richer run-time model capa-
ble of expressing and simulating SCOOP programs with multiple objects per processor and non-separate
method calls (i.e. targetting local objects). The present version of CPM+OO is the result of the following
process: (i) replacing simple data in the CPM type graph with objects; (ii) updating the rules that then no
longer conform, in consultation with the semantics of [19]; and (iii) testing (including regression testing
for CoreSCOOP programs).

Our first goal was to support all of the existing actions of CPM, but with data organised into objects.

42 Towards Practical Graph-Based Verification for an Object-Oriented Concurrency Model

We began by updating the type graph, replacing simple data with object nodes connected to attributes;
attributes being integers (as before) or references to other objects (not processors). The advantage in
changing the type graph first is the instant feedback from GROOVE, which highlights the rules that no
longer conform and thus need updating (i.e. every rule that processed or extracted data). In general, these
were not radical updates: the core behaviour captured in CPM remained the same, and the semantics of
actions did not fundamentally change. What had to be updated was the structure of data that sat on top
of this core, as well as remote calls to processors which became remote calls to objects. In other words,
the question we were asking at each step was “how do we correctly embed objects into the semantics of
this action” and emphatically not “how do we model this asynchronous behaviour for objects”.

With CPM “objectified”, we could turn to modelling behaviours only possible with data organised
into objects, most notably, non-separate calls (calls to objects on the same processor). There is of course
no reason to acquire locks in the non-separate case, and the processor simply executes the method im-
mediately. To model this, we had to first model the call stack, also allowing us to capture recursion and
local variables—important, practical details, but ultimately on top of (and not crucial to) the concurrency
at the core. The present prototype of CPM+OO, available to download from [26], includes all of the fea-
tures discussed, as well as arbitrary names for attributes (e.g. buffer instead of r_1), separate queries
in expressions, reference expressions, and (optional) postcondition checking.

To gain confidence that the extension to CPM+OO remained sound, we followed a similar testing
approach to that described in Section 4, but using a wider selection of the example SCOOP programs
distributed with EiffelStudio (since the model is now expressive enough to simulate them). In addition,
we also: (i) used a number of simple sequential programs (i.e. SCOOP programs with only one processor)
to focus some testing on the new rules for non-separate calls; and (ii) performed “regression testing”, in
the sense of ensuring that CoreSCOOP programs do not behave differently in CPM+OO to basic CPM.

CPM+OO does not yet cover all of SCOOP: many of the Eiffel-specific mechanisms (agents, once
routines, exceptions) and their interactions with SCOOP have not been captured, nor have some advanced
run-time mechanisms such as separate callbacks. We also have ignored inheritance for the moment
(following [19]), viewing it as an advanced typing mechanism and a separate problem for us to tackle.
We do not anticipate substantial difficulty in adding them to CPM+OO; it is our plan to eventually include
them by the same methodology, which we view as a promising, practical means of facilitating verification
for a rich, complex concurrency model like SCOOP.

Run-Time Alternatives and Approximations An alternative to this gradual extension of CPM is to
use it as a basis for exploring and prototyping alternative semantics. For SCOOP this is particularly
important, since the model has so many competing semantics; most recently a proposal to replace each
FIFO queue with a queue of queues [29]. Changing the GTS implementation of the waiting queue,
for example, is relatively straightforward due to the model’s modularity (see Section 3). Rather than
changing the SCOOP compiler first, and risking the discovery of fundamental problems after having
committed the time, we propose modifying CPM first, comparing execution traces, and ensuring that the
changes retain the high-level guarantees of the model and any other desired properties. We are exploring
this usage of CPM as ongoing work, but envisage that such prototyping can be achieved in an analogous
way to adding object support: modify the type graph first (e.g. replace the FIFO queue with a queue of
queues), revise the affected rules, and test.

A similar idea is to implement approximations of CPM directly in the GTS, by plugging in different
scheduling rules. As an example, we replaced the FIFO queues of processors with bags (see [26]),
thereby removing the guarantee of processors executing their requests in the order they were received.

A. Heußner, C.M. Poskitt, C. Corrodi, and B. Morandi 43

This is an over-approximation in the sense that all the behaviours of FIFO queues are included in the state
space, but several other infeasible behaviours are included too (hence verification of the approximation
implies verification of the program, but a counterexample may simply be spurious). Going further, we
could, for example, over-approximate CPM by a Petri net (also represented as a GTS).

Translating SCOOP Programs to GROOVE We are developing a tool (to be published as part of
a Master’s thesis) that automatically translates SCOOP programs to input graphs for GROOVE. The
tool targets the same subset of the SCOOP language that CPM+OO prototype formalises (it completely
handles, for example, all of the SCOOP programs in [26]). The current prototype first creates a syntax
tree of the input classes using the ANTLR4 parser generator in conjunction with an existing SCOOP
grammar. Since the input graph requires some typing information (for example, there are different action
nodes for integer and reference assignment), the tool passes through the syntax tree twice; first to gather
typing information, and then again to generate an intermediate representation of the program that is
closely related to the input graph. Finally, the tool passes through the intermediate representation and
generates the corresponding input graph as an XML file conforming to the Graph eXchange Language.
This graph can then be interpreted and analysed by GROOVE.

6 Verification of SCOOP Programs

In this section we explore how a SCOOP program, once translated to our run-time model in GROOVE,
can be verified by (bounded) model checking. After discussing the kinds of properties that can be
checked, we illustrate the detection of deadlock in a faulty Dining Philosophers SCOOP solution, and
obtain some first verification impressions in a small evaluation of five SCOOP programs.

Verification The GROOVE model checker can be used for automatic analyses that are based on the
idea of determining the presence (or absence) of a state that violates some expected property of the
program. One such property—the absence of deadlocks—provided the initial motivation for this work.
The range of properties that can be verified, however, is much broader; two contrasting examples include
the absence of calls to void (null) object references, and the absence of states that violate postconditions
(see [26]). This is achieved by extending the run-time model with a set of error rules (assigned the highest
priority) that match if and only if the current configuration violates a particular property. An error rule for
deadlock, for example, will match if there is a cycle of processors in states preceding lock actions, such
that each lock action requires, in turn, a resource held by the next in the cycle. To catch a void call, on the
other hand, an error rule will match if a processor is in a state immediately before an action that targets
a void reference variable. Then, verification by model checking is simply a matter of expressing—in
a temporal logic formula over rules—that none of these error rules are ever applied in the state space.
For programs that have an infinite state space (our examples here do not, but those derived from general
SCOOP programs may), GROOVE supports bounded model checking, which, although unable to fully
guarantee correctness, does provide a means of searching for the presence of counterexamples. See [7]
for details on bounded model checking with GROOVE.

Recall the Dining Philosophers example from Listing 1. This implementation avoids the possibility
of deadlock because the eat method requires the simultaneous acquisition of locks on the handlers of the
forks (in CPM, this implicit locking is expressed in a single action). Suppose that the philosophers instead
call bad_eat, as given in Listing 2. This implementation permits executions that lead to deadlock, since
philosophers now pick up their forks in turn (which in CPM, then maps to two distinct locking actions).

44 Towards Practical Graph-Based Verification for an Object-Oriented Concurrency Model

Listing 2: Snippet of a Dining Philosophers implementation that may deadlock
1 bad_eat
2 do
3 print (" P h i l o s o p h e r " + Current . id . out + " w a i t i n g f o r l e f t f o r k .%N")
4 pickup_left_then_right (left_fork)
5 end
6 pickup_left_then_right (left : separate FORK)
7 do
8 print (" P h i l o s o p h e r " + Current . id . out + " w a i t i n g f o r r i g h t f o r k .%N")
9 pickup_right (right_fork)

10 end
11 pickup_right (right : separate FORK)
12 do
13 -- Here, eating takes place
14 end

14 Towards Practical Graph-Based Verification for an Object-Oriented Concurrency Model

Listing 2: Snippet of a Dining Philosophers implementation that may deadlock
1 bad_eat
2 do
3 print (" P h i l o s o p h e r " + Current . id . out + " w a i t i n g f o r l e f t f o r k .%N")
4 pickup_left_then_right (left_fork)
5 end
6 pickup_left_then_right (left : separate FORK)
7 do
8 print (" P h i l o s o p h e r " + Current . id . out + " w a i t i n g f o r r i g h t f o r k .%N")
9 pickup_right (right_fork)

10 end
11 pickup_right (right : separate FORK)
12 do
13 -- Here, eating takes place
14 end

State
Action
lock

lock_1 = "r_2"
State

Action
lock

lock_1 = "r_1"
State

Processor
name = "FORK"

Processor
name = "FORK"

Data

Ref_Var
name = "r_2"

Processor
name = "PHILOSOPHER"

Data

Ref_Var
name = "r_2"

Processor
name = "PHILOSOPHER"

in

current_state

in

ref

out out

ref
points_to

handler

lock

points_to

handler

current_state

lock

Referee comments: larger evaluation, i.e. examples recently formalised by Claudio (including state
space reduction results).

Referee comments: no comparison against “other analysis approaches of both examples”. Perhaps
some words to explain why we don’t do this.

Evaluation We performed a small study on the model checking of our running example, as well as of
another SCOOP program implementing a single-element Producer-Consumer scenario (both available
online [26]). While these programs are smaller than what one might write in practice, we wanted some
initial impressions about the size of graphs, the size of state spaces, and the performance of GROOVE.

First, we used the current version of our translation tool to generate input graphs from the Dining
Philosophers program—both a version that calls eat (DPE) and a version that calls bad_eat (DPB)—
and the single-element Producer-Consumer program (PC). Then, for these programs, we recorded data
about graph sizes, the time to check for deadlock, the time to explore the full (finite) state spaces, and the
amount of memory used. Table 1 presents this information, computed on an off the shelf workstation with
Intel Core i7-4810MQ CPU and 16 GB main memory. The presented values are the medians of five tests.
Here, n refers to the number of philosophers (in DPE and DPB) or the number of elements to produce (in
PC). Time was measured using the GNU time utility; the results represent the elapsed (wall clock) time
in seconds. Memory usage was extracted from GROOVE’s integrated profiling. Finally, the exploration

Figure 5: A deadlocked CPM configuration

In particular, if every philosopher locks the han-
dlers of their left forks by reaching line 8,
the system will deadlock since every fork is
locked, preventing the philosophers from entering
pickup_right. Using the error rules for dead-
lock and the model checker of GROOVE, faulty
executions are automatically unearthed and re-
ported, i.e. paths through the state space from the
initial configuration to states exhibiting the struc-
tural “deadlock pattern”. The relevant part of such
a deadlocked state for two philosophers is given
in Figure 5. Here, the philosophers have already
locked their left forks, and both are waiting to
lock their right ones (on reference variables r_2).
Since the right fork of each philosopher is the already-locked left fork of the other, neither processor can
fire the action, and the system is deadlocked.

While this particular bug is somewhat contrived, it does illustrate a discord between the program-
mer’s level of abstraction—“here are the concurrent objects that my method needs”—and a run-time that
attempts to handle it all under the hood, but can ultimately fail if the programmer ignores (or is unaware
of) how it works. Beyond this example, there are more subtle ways in which deadlock can unintentionally
and accidentally be introduced in SCOOP programs [28].

Evaluation To obtain some initial impressions of verification performance, we ran a small study on the
current CPM+OO prototype. We devised ten benchmarks from various configurations of five SCOOP
programs: Dining Philosophers, both a version that calls eat (DPE) and another that calls bad_eat
(DPB), single-element Producer Consumer (PC), Dining Savages (DS), and Cigarette Smokers (CS).
These are available at [26] and were adapted (i.e. to replace unsupported features like inheritance) from
the example SCOOP programs provided with EiffelStudio (except for CS, which we implemented).

First, we used the current version of our translation tool to generate input graphs. Then, for these
programs, we recorded data about graph sizes, the time to check for deadlock, the time to explore
the full (finite) state spaces, and peak memory usage. Table 1 presents this information, computed
on an off-the-shelf workstation with Intel Core i7-4810MQ CPU and 16 GB main memory. The pre-
sented values are the medians of five tests. Here, n refers to the number of philosophers (for DPE and
DPB), the number of elements to produce (for PC), or, for DS, respectively the pot size, number of

A. Heußner, C.M. Poskitt, C. Corrodi, and B. Morandi 45

Table 1: First impression of verification performance

Program (n) Start Graph Final Graph LTL Deadlock Full state space
(nodes/edges) (nodes/edges) time (s) (states/transitions) time (s) (states/transitions) Mem. [stddev] (GB)

DPE (2) 326/496 362/582 1.10 824/838 1.18 824/838 0.65 [0.11]
DPE (5) 326/496 389/653 32.37 20,428/20,906 29.10 20,428/20,906 4.23 [0.98]
DPB (2) 322/488 378/644 0.84 708/712 1.33 1,108/1,134 0.55 [0.09]
DPB (5) 322/488 447/836 175 74,942/77,378 204 122,714/127,425 5.62 [0.20]
PC (5) 371/563 393/621 3.51 2,152/2,194 3.30 2,152/2,194 0.64 [0.14]

PC (20) 371/563 393/621 12.98 8,362/8,539 12.84 8,362/8,539 1.42 [0.24]
DS (2,2,2) 440/668 470/749 11.48 5,976/6,081 10.82 5,976/6,081 1.41 [0.32]
DS (2,3,2) 441/668 478/769 388 103,190/106,260 256 103,190/106,260 5.71 [0.29]
DS (2,4,1) 441/668 486/789 2,448 396,011/414,462 941 306,401/319,018 7.28 [0.63]

CS 559/866 608/1000 417 65,275/70,008 370 65,275/70,008 5.27 [0.23]

savages, and hunger. Time was measured using System.nanoTime(); the results represent the elapsed
(wall clock) time in seconds. Memory usage was measured using Java’s MemoryPoolMXBean and
related classes. Finally, the exploration strategies used were bfs/final/infinite and ltl(prop =
!F error_deadlock)/final/infinite for the full state space and LTL exploration respectively.

The graph sizes differ little between initial and final states, with the only variation due to the cre-
ation and manipulation of processors, their waiting queues, and objects in the local memory. Note the
performance discrepancy between LTL checking and full state space exploration. For DPB, which may
deadlock, LTL checking is faster since finding one counterexample is enough to return an answer. For
all the other programs, which do not deadlock, checking the formula incurs an overhead. Across most of
the benchmarks, we would argue that the times are acceptable and practical (especially given the infea-
sibility of model checking the Maude semantics [19]). An exception is DS, where the overhead for LTL
checking is substantial for n = (2,4,1). Understanding the reasons for this is part of an ongoing, broader
investigation into the scalability and limits of the tool for verifying SCOOP programs.

7 Conclusion

Related Approaches for GTS-based Specification and Analysis of Concurrent OO Programs Ver-
ifying concurrent object-oriented programs with GTS-based models is an emerging trend in software
specification and analysis, especially for approaches rooted in practice. See [23] for a good overview
discussion, based on a lot of personal experience, on the general appropriateness of GTS for this task.

Closest to our semantic run-time model is the QDAS model presented in [12], which represents
an asynchronous, concurrent waiting queue based model with global memory as GTS, for verifying
programs written in Grand Central Dispatch. Despite the formalisation as GTS, there is, however, no
direct compiler to GTS yet. The Creol model of [17] focuses on asynchronous concurrent models but
without more advanced remote calls via queues as needed for SCOOP. Analysis of the model can be
done via an implementation in a term rewriting tool [16]. Existing GTS-based models for Java only
translate the code to a typed graph similar to the control-flow sub-graph of CPM [24, 6]. A different
approach is taken by [9], which abstracts a GTS-based model for concurrent OO systems [10] to a finite
state model that can be verified using the SPIN model checker. GROOVE itself was already used for
verifying concurrent distributed algorithms on an abstract GTS level [13], but not on a run-time level
as in our approach. However, despite the intention to apply generic frameworks for the specification,
analysis, and verification of object-oriented concurrent programs, e.g. in [30, 8], there are no existing
publicly available tools implementing this long-term goal that are powerful enough for SCOOP.

46 Towards Practical Graph-Based Verification for an Object-Oriented Concurrency Model

Outlook Our current approach allows for automatically verifying SCOOP programs, with the help of a
simple toolchain consisting of a compiler from SCOOP to a GTS-based run-time model that then can be
analysed and verified with GROOVE. A streamlined instance of our toolchain, including a publicly avail-
able version of the compiler, will be available soon at [26]. As already mentioned, our run-time model
can be seen as another operational semantics for SCOOP programs: a more detailed formal comparison
with competing formalisations, e.g. [19], is currently on the way based on a more stringent formalisation
of the CPM model and its extensions.

The given verification approach and modelling choices can also be applied to other concurrent asyn-
chronous libraries and languages, e.g. the alternative concurrent Eiffel model CAMEO [3], and the exist-
ing GTS formalisation of Grand Central Dispatch [12]. As a future step, we want to include verification
approaches beyond the strategies of GROOVE, which will depend on novel abstraction techniques for
CPM (and its extensions), e.g. in the spirit of pattern abstraction [25], or cluster abstraction [1]. As a lot
of verification properties can be boiled down to MSO properties on the underlying GTS, we also plan to
enrich the verification techniques for concurrent asynchronous object-oriented programs with ideas from
program logics for GTS, e.g. as detailed in [15, 22]. We also plan to publish the current toolchain in a
more convenient front end by providing a bridge from existing SCOOP IDEs to GROOVE.

Funding/Acknowledgements. The underlying research was partially funded by the European Research Council
under FP7/2007-2013 / ERC Grant agreement no. 291389. We thank B. Meyer and the SCOOP community for
valuable “scooped” discussions and A. Rensink for feedback on the internals of GROOVE. Finally, we thank the
anonymous GaM referees for their insightful comments, which helped to improve this paper.

References
[1] P. Backes & J. Reineke (2014): Analysis of Infinite-State Graph Transformation Systems by Cluster Abstrac-

tion. In: Proc. VMCAI 2015, LNCS 8931, Springer, pp. 135–152, doi:10.1007/978-3-662-46081-8_8.

[2] P. Baldan, A. Corradini & B. König (2008): Unfolding Graph Transformation Systems: Theory and
Applications to Verification. In: Concurrency, Graphs and Models, LNCS 5065, Springer, pp. 16–36,
doi:10.1007/978-3-540-68679-8_3.

[3] P. J. Brooke & R. F. Paige (2009): Cameo: an alternative model of concurrency for Eiffel. Formal Aspects
of Computing 21(4), pp. 363–391, doi:10.1007/s00165-008-0096-1.

[4] P. J. Brooke, R. F. Paige & J. L. Jacob (2007): A CSP model of Eiffel’s SCOOP. Formal Aspects of Computing
19(4), pp. 487–512, doi:10.1007/s00165-007-0033-8.

[5] G. Caltais & B. Meyer (2014): Coffman Deadlocks in SCOOP. In: Proc. NWPT 2014. Online version at
http://arxiv.org/abs/1409.7514.

[6] A. Corradini, F. L. Dotti, L. Foss & L. Ribeiro (2004): Translating Java Code to Graph Transformation
Systems. In: Proc. ICGT 2004, LNCS 3256, Springer, pp. 383–398, doi:10.1007/978-3-540-30203-2_27.

[7] G. Delzanno & R. Traverso (2013): Specification and Validation of Link Reversal Routing via Graph Trans-
formations. In: Proc. SPIN 2013, LNCS 7976, Springer, pp. 160–177, doi:10.1007/978-3-642-39176-7_11.

[8] F. L. Dotti, L. M. Duarte, L. Foss, L. Ribeiro, D. Russi & O. Marchi dos Santos (2005): An Environment for
the Development of Concurrent Object-Based Applications. In: Proc. GraBaTs 2004, ENTCS 127, Elsevier,
pp. 3–13, doi:10.1016/j.entcs.2004.12.026.

[9] A. P. Lüdtke Ferreira, L. Foss & L. Ribeiro (2007): Formal Verification of Object-Oriented Graph Grammars
Specifications. In: Proc. GT-VC 2006, ENTCS 175, Elsevier, pp. 101–114, doi:10.1016/j.entcs.2007.04.020.

[10] A. P. Lüdtke Ferreira & L. Ribeiro (2005): A Graph-based Semantics For Object-oriented Programming
Constructs. In: Proc. CTCS 2004, ENTCS 122, Elsevier, pp. 89–104, doi:10.1016/j.entcs.2004.06.053.

http://dx.doi.org/10.1007/978-3-662-46081-8_8
http://dx.doi.org/10.1007/978-3-540-68679-8_3
http://dx.doi.org/10.1007/s00165-008-0096-1
http://dx.doi.org/10.1007/s00165-007-0033-8
http://arxiv.org/abs/1409.7514
http://dx.doi.org/10.1007/978-3-540-30203-2_27
http://dx.doi.org/10.1007/978-3-642-39176-7_11
http://dx.doi.org/10.1016/j.entcs.2004.12.026
http://dx.doi.org/10.1016/j.entcs.2007.04.020
http://dx.doi.org/10.1016/j.entcs.2004.06.053

A. Heußner, C.M. Poskitt, C. Corrodi, and B. Morandi 47

[11] Grand Central Dispatch (GCD) Reference. https://developer.apple.com/library/mac/
documentation/Performance/Reference/GCD_libdispatch_Ref/index.html. Acc.: Dec. 2014.

[12] G. Geeraerts, A. Heußner & J.-F. Raskin (2013): Queue-Dispatch Asynchronous Systems. In: Proc. ACSD
2013, IEEE, pp. 150–159, doi:10.1109/ACSD.2013.18.

[13] A. H. Ghamarian, M. de Mol, A. Rensink, E. Zambon & M. Zimakova (2012): Modelling and analysis using
GROOVE. Intern. J. on Softw. Tools for Techn. Trans. 14(1), pp. 15–40, doi:10.1007/s10009-011-0186-x.

[14] GRaphs for Object-Oriented VErification GROOVE (project web page). http://groove.cs.utwente.
nl/. Acc.: Dec. 2014.

[15] A. Habel & K.-H. Pennemann (2009): Correctness of high-level transformation systems relative to nested
conditions. Mathem. Struct. in Comp. Sci. 19(2), pp. 245–296, doi:10.1017/S0960129508007202.

[16] E. B. Johnsen, O. Owe & E. W. Axelsen (2005): A Run-Time Environment for Concurrent Ob-
jects With Asynchronous Method Calls. In: Proc. WRLA 2004, ENTCS 117, Elsevier, pp. 375–392,
doi:10.1016/j.entcs.2004.06.012.

[17] E. B. Johnsen, O. Owe & I. Chieh Yu (2006): Creol: A type-safe object-oriented model for distributed
concurrent systems. Theor. Comput. Sci. 365(1-2), pp. 23–66, doi:10.1016/j.tcs.2006.07.031.

[18] H. Kastenberg & A. Rensink (2006): Model Checking Dynamic States in GROOVE. In: Proc. SPIN 2006,
LNCS 3925, Springer, pp. 299–305, doi:10.1007/11691617_19.

[19] B. Morandi, M. Schill, S. Nanz & B. Meyer (2013): Prototyping a Concurrency Model. In: Proc. ACSD
2013, IEEE, pp. 170–179, doi:10.1109/ACSD.2013.21.

[20] P. Nienaltowski (2007): Practical framework for contract-based concurrent object-oriented programming.
Doctoral dissertation, ETH Zürich.

[21] J. S. Ostroff, F. Ahmadi Torshizi, H. F. Huang & B. Schoeller (2009): Beyond contracts for concurrency.
Formal Aspects of Computing 21(4), pp. 319–346, doi:10.1007/s00165-008-0073-8.

[22] C. M. Poskitt & D. Plump (2014): Verifying Monadic Second-Order Properties of Graph Programs. In: Proc.
ICGT 2014, LNCS 8571, Springer, pp. 33–48, doi:10.1007/978-3-319-09108-2_3.

[23] A. Rensink (2010): The Edge of Graph Transformation - Graphs for Behavioural Specification. In: Graph
Transformations and Model-Driven Engineering, LNCS 5765, Springer, pp. 6–32, doi:10.1007/978-3-642-
17322-6_2.

[24] A. Rensink & E. Zambon (2009): A Type Graph Model for Java Programs. In: Proc. FMOODS 2009, LNCS
5522, Springer, pp. 237–242, doi:10.1007/978-3-642-02138-1_18.

[25] A. Rensink & E. Zambon (2012): Pattern-Based Graph Abstraction. In: Proc. ICGT 2012, LNCS 7562,
Springer, pp. 66–80, doi:10.1007/978-3-642-33654-6_5.

[26] Supplementary Material. http://www.swt-bamberg.de/gam2015_supp/.
[27] F. A. Torshizi, J. S. Ostroff, R. F. Paige & M. Chechik (2009): The SCOOP Concurrency Model in Java-

like Languages. In: Proc. CPA 2009, Concurrent Systems Engineering Series 67, IOS Press, pp. 7–27,
doi:10.3233/978-1-60750-065-0-7.

[28] S. West, S. Nanz & B. Meyer (2010): A Modular Scheme for Deadlock Prevention in an Object-Oriented
Programming Model. In: Proc. ICFEM 2010, LNCS 6447, Springer, pp. 597–612, doi:10.1007/978-3-642-
16901-4_39.

[29] S. West, S. Nanz & B. Meyer (2015): Efficient and reasonable object-oriented concurrency. In: Proc. PPoPP
2015, ACM, pp. 273–274, doi:10.1145/2688500.2688545.

[30] E. Zambon & A. Rensink (2011): Using Graph Transformations and Graph Abstractions for Software Veri-
fication. In: Proc. ICGT-DS 2010, ECEASST 38.

[31] E. Zambon & A. Rensink (2014): Solving the N-Queens Problem with GROOVE - Towards a Compendium
of Best Practices. In: Proc. GT-VMT 2014, ECEASST 67.

https://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html
https://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html
http://dx.doi.org/10.1109/ACSD.2013.18
http://dx.doi.org/10.1007/s10009-011-0186-x
http://groove.cs.utwente.nl/
http://groove.cs.utwente.nl/
http://dx.doi.org/10.1017/S0960129508007202
http://dx.doi.org/10.1016/j.entcs.2004.06.012
http://dx.doi.org/10.1016/j.tcs.2006.07.031
http://dx.doi.org/10.1007/11691617_19
http://dx.doi.org/10.1109/ACSD.2013.21
http://dx.doi.org/10.1007/s00165-008-0073-8
http://dx.doi.org/10.1007/978-3-319-09108-2_3
http://dx.doi.org/10.1007/978-3-642-17322-6_2
http://dx.doi.org/10.1007/978-3-642-17322-6_2
http://dx.doi.org/10.1007/978-3-642-02138-1_18
http://dx.doi.org/10.1007/978-3-642-33654-6_5
http://www.swt-bamberg.de/gam2015_supp/
http://dx.doi.org/10.3233/978-1-60750-065-0-7
http://dx.doi.org/10.1007/978-3-642-16901-4_39
http://dx.doi.org/10.1007/978-3-642-16901-4_39
http://dx.doi.org/10.1145/2688500.2688545

	Towards practical graph-based verification for an object-oriented concurrency model
	Citation

	Introduction
	SCOOP: A Concurrent Asynchronous OO Model
	A GTS-based Model of CoreSCOOP
	Simulating CPM in GROOVE
	Towards Full-Fledged SCOOP, Approximations, and Translations
	Verification of SCOOP Programs
	Conclusion

