
Vol. 6, No. 10, November–December 2007

Exceptions in Concurrent Eiffel

Phillip J. Brooke, School of Computing, University of Teesside, Middles-
brough, TS1 3BA, U.K. P.J.Brooke@tees.ac.uk
Richard F. Paige, Department of Computer Science, University of York, Hes-
lington, York, YO10 5DD, U.K. paige@cs.york.ac.uk

We describe the problem of asynchronous exceptions in Eiffel’s Simple Concurrent
Object-Oriented Programming (SCOOP). We discuss a range of possible solutions to
further enable dependable computing in concurrent Eiffel. We propose a mechanism
to handle aynchronous exceptions via a limited developer choice, including the notion
of a failed or dead object, and necessarily introduce a small number of new exceptions.
We additionally describe a number of mechanisms that were discarded as unsuitable.

1 INTRODUCTION

The Simple Concurrent Object-Oriented Programming (SCOOP) mechanism is pro-
posed as a means to introduce inter-object concurrency into the Eiffel programming
language [Mey97, EcI05]. SCOOP extends the Eiffel language by adding one key-
word, separate, which can be applied to classes, entities and formal routine ar-
guments. Application of separate to a class indicates that objects of that class
execute in their own conceptual thread of control; application of separate to enti-
ties (variables) or arguments of routines indicate that these constructs are points of
synchronisation. Thus, SCOOP aims at a minimal (syntactic) extension to the Eiffel
language, through combining the notions of thread and synchronisation in separate
classes and entities.

Aim, scope and limitations

We discuss the SCOOP mechanism as it relates to sequential Eiffel’s existing ex-
ception handling. As we shall see, the existing exception handling mechanism is
insufficient to deal with failures in SCOOP. We thus desire an extension to the
exception handling mechanism that 1. permits the creation of reliable, predictable
systems; 2. allows the use of existing (sequential) libraries; and 3. is not unduly
burdensome to either the run-time system or the developer.

The aim of this paper is to propose an extension to Eiffel’s sequential exception
handling in order to satisfy these requirements and fully support SCOOP.

As the focus of this work is on exception handling in SCOOP (as SCOOP is
currently documented [Mey97]), we do not aim to compare SCOOP itself with other

Cite this article as follows: Phillip J. Brooke and Richard F. Paige: Exceptions in Concurrent
Eiffel, in Journal of Object Technology, vol. 6, no. 10, November–December 2007, pages
111–126,
http://www.jot.fm/issues/issues 2007 10/article4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322332743?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:P.J.Brooke@tees.ac.uk
mailto:paige@cs.york.ac.uk
http://www.jot.fm/issues/issues_2007_11/article4


EXCEPTIONS IN CONCURRENT EIFFEL

approaches to concurrency such as those found in Java, active objects or POSIX
threads, although we do examine some related work that directly deals with excep-
tions. Some discussion on these issues can be found in [PB06].

Overview

We start with brief overviews of Eiffel in Section 2 and SCOOP in Section 3. From
this, we state the problem with exceptions in SCOOP in Section 4.

Next, we describe the related work in this area in Section 5. We then further
discuss exceptions and describe our proposed solutions in Section 6.

Sections 7 and 8 describe the mechanisms we rejected, and additional sources of
exceptions in the concurrent environment. The paper ends with a discussion and
our conclusions in Sections 9 and 10.

2 EIFFEL

Eiffel is a pure object-oriented (OO) programming language [Mey97, EcI05] that pro-
vides constructs typical of the OO paradigm, including classes, objects, inheritance,
associations, composite (“expanded”) types, polymorphism and dynamic binding,
and automatic memory management. Novelties with Eiffel include its support for full
multiple inheritance, generic types (including constrained generics), agents (closures
and iterators over structures), and strong support for assertions, via preconditions
and postconditions of routines, and invariants of classes.

Routines may have preconditions (require clauses) and postconditions (ensure
clauses). The former must be true when a routine is called (i.e., it is established by
the caller) while the latter must be true when the routine’s execution terminates.
Classes may have invariants specifying properties that must be true of all objects of
the class at stable points in time, i.e., after any valid client call on the object. An
exception is raised if an assertion (precondition, postcondition or invariant) evaluates
to false.

For more details on the language, see [Mey97] or [EcI05].

Exceptions

Exceptions in sequential Eiffel can occur when an assertion is violated (e.g., a routine
is called with precondition false), a called routine fails, an interrupt is sent by the
operating system, or an operation fails (e.g., creation of a new object fails, arithmetic
overflow occurs).

Exceptions are handled by so-called rescue clauses. A rescue clause is attached
to a routine (after the postcondition) and describes a sequence of instructions that

112 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 10



3 SCOOP

should be executed when the routine is to recover from an undesirable run-time
event. One new instruction that can be included in rescue clauses is retry, which
is a directive to re-start execution of the routine body from the beginning.

3 SCOOP

Outline

SCOOP introduces concurrency to Eiffel by the addition of the keyword separate.
The separate keyword may be applied to the definition of a class or the declaration
of an entity (a variable) or formal routine argument.

Access to a separate object, whether via an entity or formal argument indicates
different semantics to the usual sequential Eiffel model. In the sequential model,
a call to a routine causes execution to switch to the called object whereupon the
routine executes; on completion, execution continues at the next instruction of the
original object.

In SCOOP, procedure calls are asynchronous. The called object can queue mul-
tiple calls, allowing callers to continue concurrent execution. Function calls (e.g.,
a := x.f) and reference access to attributes are synchronous — but may be subject
to lazy evaluation (also known as wait-by-necessity).

Races are prevented by the enforced convention that a separate formal argu-
ment causes the object to be exclusively locked (‘reserved’) during that routine call.
However, there are complications with locking, in that deadlocks may arise, or con-
currency may not be maximised, unless some form of lock passing [Bro06a, Bro06c]
is used.

Processors

SCOOP introduces the notion of a processor. When a separate object is created,
a new processor is also created to handle its processing. This processor is called
the object’s handler. (Objects created as non-separate are handled by the creator’s
handler.) Thus, a processor is an autonomous thread of control capable of support-
ing sequential instruction execution [Mey97]. A system in general may have many
processors associated with it.

Compton [Com02a] introduces the notion of a subsystem: a model of a processor
and the set of objects it operates on. In his terminology, a separate object is any
object that is in a different subsystem. In this paper, we will refer to subsystems
rather than processors (to avoid possible confusion with real CPUs).

We additionally introduce the notion of a partition to describe any real processing
resource, e.g., a CPU, a POSIX thread or process [Bro06a]. Subsystems are assigned
to partitions.

VOL 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 113



EXCEPTIONS IN CONCURRENT EIFFEL

Preconditions and waiting

As described in Section 2, Eiffel uses require and ensure clauses for specifying the
pre- and postconditions of routines. If a precondition or postcondition evaluates to
false, an exception is raised.

There are two possible views on exceptions here:

1. The exception is due to a fault in the implementation that requires repair —
it is a bug.

2. The exception is an unexpected condition at run-time that needs to be com-
pensated for or tolerated.

In the first case, it is reasonable, at least during development, for the exception to
cause an immediate system halt with suitable diagnostic information to allow the
bug to be fixed. In the second case, catastrophic responses are likely problematic,
particularly in systems required to be fault-tolerant.

In SCOOP, a require clause on a routine belonging to a separate object specifies
a wait condition: if the routine’s require clause evaluates to false, the processor
associated with that object waits until the precondition is true before proceeding
with routine execution.

There is then a third interpretation to be placed on exceptions that would other-
wise arise from preconditions: that they are guards restricting when a feature may
execute. Clearly, these exceptions are not bugs (although an unintended deadlock
would clearly be a bug). However, we must handle exceptions that are raised while
evaluating the precondition.

4 THE PROBLEM: EXCEPTIONS AND SCOOP

A major advantage of SCOOP is that it allows procedure calls on separate objects
to progress asynchronously: that is, a caller can enqueue a procedure call on a callee
and then continue processing. Similarly, function calls can, by lazy evaluation, issue
a request and then continue until that return value is actually needed in the caller.

This brings with it a problem: suppose that the called routine fails. A routine
fails when an exception is raised, and there is either no rescue clause, or the rescue
clause does not lead to a retry. This failure will cause an exception in the caller in
the sequential programming model, where the exception will be propagated through
the list of callers until either a rescue clause succeeds with retry, or the root class’s
creation routine fails and the run-time system halts the whole program.

However, in SCOOP, if the caller and callee are separate, then the caller might
already have completed when the callee fails. In this case, there is no obvious target
to send the exception to. We cannot send the exception to another arbitrary object

114 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 10



5 RELATED WORK

in the same subsystem or partition since there is not necessarily a call relationship
between these objects.

So we ask: How should we handle asynchronous exceptions in SCOOP?

This is an instance of a more general problem: in distributed or concurrent
setting, exception handling is difficult. The problem is particularly challenging in
SCOOP with its complex underlying run-time structure, and because SCOOP does
not disentangle locking and synchronisation. Note that this problem does not arise
in synchronous languages such as Esterel [Est99], where the system can guarantee
that a caller will still exist whenever a callee may raise an exception.

5 RELATED WORK

Implementations of SCOOP

An incomplete prototype of the SCOOP mechanism was implemented by Comp-
ton [Com02a] by building upon the GNU SmartEiffel compiler and run-time sys-
tem. A prototype preprocessor implementation was constructed by Fuks et al. for
ISE Eiffel [Fuk04].

More recently, Nienaltowski et al. [Nie05] have produced the most complete im-
plementation of SCOOP to date. This (in common with other prototypes) is a
preprocessor that rewrites SCOOP-using classes. None of these prototypes can be
considered a full implementation of the SCOOP specification in [Mey97].

Exceptions in SCOOP

Compton and Walker [Com02b] note that

“Consider a case where processing had continued well beyond the point
of a separate call, perhaps even exiting the routine in which the call was
made. An asynchronous exception at this time could not possibly have
the same semantics as in the usual case.”

This clearly matches the problem as described earlier. They continued by discussing
this with Meyer, and say

“There seem to be two possible solutions. Either, that an exception
between subsystems is considered as catastrophic and causes program
termination, or that the object throwing the exception is flagged as dirty
and any later attempt to use this object results in program termination.”

However, we view both options as being overly aggressive to be the only solutions:
they will result in trivial errors bringing down large, (hopefully) long-lived systems.
(A highly concurrent system will surely have many cooperating subsystems.)

VOL 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 115



EXCEPTIONS IN CONCURRENT EIFFEL

Adrian discusses an extension of SmallEiffel (itself now known as SmartEiffel)
to include SCOOP [Adr02]. In that work, he quotes from the SmallEiffel mailing
list, one of which notes that asynchronous exceptions would require all routines to
be able to handle all possible exceptions (an undesirable outcome). Instead, Adrian
says that SmallEiffel will adopt the following approach:

“A subsystem is to me[sic] marked “dirty” if an exception reaches the
root call of the subsystem. Any waiting command is (silently) discarded.
The subsystem is then made unable to serve any request:

• Any request (command or query) posted to a dirty subsystem im-
mediately raises an exception in the caller;

• Any query awaiting to be served also raises an exception in the
blocked subsystem.

Now, when we say “an exception”, which exception? Should we raise
the same as the dirty subsystem, or a new one? In this case, do we have
access to the original exception code?”

However, this approach does not make clear how an exception would reach the “root
call of a subsystem” in the first place: there is not necessarily a causal relationship
between a caller and the first object to be created in a SCOOP subsystem.

Recently, Arslan and Meyer proposed a notion of ‘busy processors’ [Ars06]. In
this work, an unhandled asynchronous exception causes the processor to be marked
‘busy’ until the processor that enqueued the failed call takes action to reestablish
the invariant on the called object. However, we do not see that there is necessarily a
causal relationship between particular processors and the object-call relationships.

We are unaware of any Eiffel/SCOOP implementation that handles asynchronous
exceptions. We know of no other serious proposals other than Arslan and Meyer’s
busy processors.

Exceptions in other concurrent languages

Ada 95 [Taf97] introduces concurrency via tasks. Rendezvous is possible between
tasks, and passive objects (protected types) allow sharing of data. An unhandled
exception results in the termination of the enclosing task. Subsequent attempts to
rendezvous with a terminated task cause an exception in the new caller.

Java’s concurrency support is essentially thread-based, with block-based lock-
ing (synchronization) on a per-thread basis. There are few cases for asynchronous
exceptions, so the problems that SCOOP encounters do not arise in general for Java.

116 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 10



5 RELATED WORK

Exceptions in object-oriented programming

Other more general work on exceptions in object-oriented programming has been
undertaken, notably in the Exception Handling in Object Oriented Systems se-
ries [Rom05]. However, little of the work directly addresses the issue of asynchronous
exceptions as the problem relates to SCOOP. Some from other areas is applicable
as we discuss shortly.

Dony et al. [Don91] discuss a range of issues, and many contributions empha-
sise providing choice and developer-chosen links between exceptions and handlers.
Issarny [Iss01]’s concurrent exception handling is another example of synchronous
exception handling. Parallel procedures are grouped in multiprocedure blocks. It
is not obvious how this approach can be extended to asynchronous concurrent sys-
tems. Romanovsky and Kienzle [Rom01] survey a number of approaches to exception
handling in concurrency, and illustrate that exception handling is typically associ-
ated with the textual context of a program, i.e., exceptions propogate outwards
through the associated nested contexts. Again, there is no obvious solution offered
to the problem of asynchronous, i.e., out of context, exceptions. The discussions on
transactions, however, suggest that changing Eiffel’s concurrency model to be based
around transactions may be compatible with exception handling approaches proven
in other application domains.

Asynchronous exceptions have received attention. Caromel and Chazarain [Car05]
describe a Java approach. However, although the calls are asynchronous, the end
of each try/catch block waits for incomplete asynchronous calls, thus the problem
that we enounter of the caller expiring before the callee responds with an exception
does not arise.

An interesting point that has not arisen directly so far relates to callbacks. This
issue arises in sequential Eiffel as well as SCOOP. Suppose object a passes a reference
to feature f of object c to object b, with the intention that object b subsequently
executes c.f , a callback. If c.f throws an exception, then arguably a should receive
the report, not b; in other cases, it may make more sense in terms of the system for b
to receive the exception, as it would at this time. This particular programming idiom
is popular in event-based systems such as GUIs. Ploski and Hasselbring [Plo05]
suggest firstly handling such exceptions locally; otherwise propogating the exception
to “the invoked callback’s clients, that is, modules affected by the callback’s failure”.
However, it is not trivial to identify the affected modules.

Finally, the most relevant related work is due to Rintala, and deals with mul-
tiple concurrent and asynchronous exceptions in C++ [Rin05]. Results from asyn-
chronous calls are initially substituted by futures ; these act as placeholders for the
eventual result from the call. Exceptions that arise during the asynchronous call are
routed through the future; essentially, they are the return value of the future. Sub-
sequent references then obtain the exception rather than the normal result. Finally,
multiple exceptions can be grouped into compound exceptions.

VOL 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 117



EXCEPTIONS IN CONCURRENT EIFFEL

6 FIXING SCOOP EXCEPTIONS

The main problem with exceptions in SCOOP is that the sequential model of a
chain of callers does not hold. The client call that should be told of an exception in
the called object may no longer exist; the lack of synchrony that makes SCOOP so
appealing means that the model of exceptions needs updating.

While fixing this, we require that existing sequential code continues to work
without modification. This section applies to exceptions arising from unhandled
exceptions in objects that were called by another separate object.

There are three options, that could be chosen for groups of objects and/or classes
by the developer:

• the entire system halts on asynchronous exception; or
• the object fails (dies) on asynchronous exception; or
• (groups of) asynchronous exceptions are ignored for particular objects.

We suggest that the first should be the default response. Additionally, a compile-
time configuration mechanism or run-time system class should allow objects to be
designated for a specific policy (via, say, ‘set exception policy’).

Halting as a response to unhandled asynchronous exceptions

An unhandled exception in the sequential model results in the entire system halting.
We justify this as halting an entire SCOOP system in response to an unhandled
asynchronous exception is analogous to the sequential case.

Thus we make halt the entire system the default response to an unhandled (asyn-
chronous or synchronous) exception. This is a simple, low-overhead solution. More-
over, it is consistent with the Eiffel design-by-contract philosophy: exceptions are
usually viewed as being a fault in the implementation that needs repair.

We choose this as the default response to be conservative: our next option as
a default may allow objects to silently fail. By forcing the developer to explicitly
choose an alternative response, they should then design their system to respond
appropriately.

As we remark in Section 5, Compton and Walker in discussion with Meyer offer
this as one of two possible solutions. We offer other options to the system designer
as we view halting the entire system as too aggressive to be the only solution: it
prevents any form of fault tolerance.

Unhandled asynchronous exceptions cause the object to fail and die

As an alternative to halting the system when a routine of an object fails and there is
no sequential caller, we may instead mark the object as failed. It will never interact

118 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 10



6 FIXING SCOOP EXCEPTIONS

with any other object again nor will it process any further calls: this means that
any calls already enqueued will not be processed. If a caller considers it important
that a procedure call completes, then this caller must ensure that it checks a return
value or status.

Future attempts to enqueue work for that object or to access it in any way result
in the caller receiving a ‘separate object failure’ exception. An implication of this
proposal is that enqueueing a call to a subsystem’s FIFO is synchronous.

The only information that needs to be retained is the full name (i.e., sufficient
information to unambiguously identify it); the type of the object; and the exception
object. All other data, including its part of the call queue, can be garbage collected.
The exception object can be returned as part of the separate object failure exception
allowing other objects to possibly determine an appropriate response.

When it is determined that an object will die due to an unhandled asynchronous
exception, the system will call the procedure identified by ‘set asynchronous exception
handler’ (or else ‘default asynchronous exception handler’, a feature that can be
overridden in descendent classes). This is treated similarly to default rescue and
offers the failed object a ‘last gasp’ to carry out some work. The intention is that
an object can use this call to set up a handler that makes an appropriate response,
e.g., calling a different object to report its failure, or to create a replacement object
and indicate to other clients that they should fail-over to the replacement.

There may be some complications resulting from this part of the mechanism:
consider the case where the called handler makes a series of subsequent calls, in-
cluding calls to the dying object. Should they be processed? Similarly, how should
subsequent exceptions during this handler be managed?

This part of our solution also handles the case where objects may not be con-
tacted again by another object (we call these independent objects below). This
can arise because some objects may have been created with the express purpose of
carrying out a task independently, so they may never need to be contacted by any
other separate object again, e.g., some Internet service daemons where a client asks
for service and a new process is started. In SCOOP, a new separate object could be
used for each client. Our proposal allows such objects to report to another object
that they have failed.

This solution is similar but not identical to the second option suggested by
Compton and Walker in discussion with Meyer (Section 5). In particular,

1. contacting a failed object does not necessarily result in program termination;
and

2. we handle the case of independent objects and other required ‘tidying-up’ by
providing a facility to set an asynchronous exception handler.

This solution is also related to Rintala’s approach [Rin05], in the sense that Rintala’s
futures would be replaced by the exception.

VOL 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 119



EXCEPTIONS IN CONCURRENT EIFFEL

Ignoring asynchronous objects

Some objects may not encapsulate any state, or for other reasons, an unhandled
exception within that object may not be cause for it to fail. Such exceptions could
simply be ignored: the call fails, and the object continues to process its work queue.

The recent ECMA standard for Eiffel [EcI05] alludes to (but does not describe)
a mechanism for ignoring exceptions. There is no need for special treatement for
SCOOP: the ‘ignore an exception’ mechanism for the sequential model should apply
equally to the concurrent case.

7 DISCARDED MECHANISMS

We considered a wide range of possible mechanisms and discarded all but those
described above.

Halting the subsystem or partition We might further suggest that affected sub-
system or partition is halted, instead of just the failed object.
However, we view each object as being an independent part of the system; there
is not necessarily a causal relationship between objects on a given subsystem.
This applies even more to partitions. Thus we argue that there is little reason
why an exception in one should cause the other (unrelated) objects to halt, so
we dismiss this as an option.

Allowing clearing of an asynchronous exception A failed object may, or may
not, have a valid invariant. Alternatively, the object may not encapsulate any
state and might be able to continue without any remedial action. Instead of
destroying a failed object, we might allow it to be ‘resurrected’ by another
object taking action that achieves both: 1. the invariant is restored (unless
the invariant is already valid); and 2. the exception is ‘cleared’ on the failed
object (perhaps by a specific routine of the CONCURRENCY class). The
first condition requires that a creation procedure is executed on the object —
this must be done if the invariant is false, and may be if the invariant is true.
The second condition is an indication to the system that the problem has been
handled.
However, the restoration of the invariant and the clearing of the exception
both require routines to be executed on the failed object. As the object may
have other calls already enqueued, these restoration routines must run ahead
of the queue. Modifying the object ahead of other enqueued calls may change
the result of those calls. Thus we reject this option as overly complicated, and
semantically dangerous.

Queues of exceptions for polling or waiting We could arrange that failed ob-
jects place their exception into a queue. This queue could be periodically
polled by other objects, or could be waited on (i.e., blocking behaviour). But
what should happen then? We must arrange that the exception is handled,
and also deal with the case when the exception is not handled for a long time

120 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 10



8 ADDITIONAL SOURCES OF EXCEPTIONS

(or ever). This option has all the problems of allowing resurrection of a failed
object: the lack of a causal connection and the issues of clearing exceptions
result in us rejecting this option.

8 ADDITIONAL SOURCES OF EXCEPTIONS

There are three special sources of exception we should consider:

Deadlock It is well known that non-trivial concurrent systems can easily admit
deadlock. Nothing in SCOOP directly prevents that, although the philosophy
of locking the objects that are needed by listing them as formal arguments may
help structure systems such that deadlock is less likely. So other approaches
are needed:
Deadlock detection at run-time SCOOP could be implemented to detect

cycles of reservation requests. The response to this is difficult: one pos-
sibility is that a randomly chosen object has its reservations taken away
and an exception raised, perhaps ‘deadlock recovery attempt’.

Deadlock avoidance during design The CSP model in [Bro06b, Bro06c]
could be developed to the point where Eiffel compilers write out CSP
suitable for input to FDR [FSE95] or an alternative CSP tool; the tool
then checks the CSP model of that particular system for sequences of
events leading to deadlock.

Problems in the infrastructure Our system comprises one or more partitions.
Suppose that the CPU executing one of these partitions fails or is disconnected
from its communications network. In this case, no further calls can be made to
or from that partition. What should be done in this case? Clearly, this is the
type of problem that exceptions should manage. An attempt to communicate
with a partition that has failed or is unreachable should result in an exception.
It is meaningful to have a distinct exception from the one proposed earlier; we
suggest ‘partition communication failure’.

Duels Duels, or ‘requesting special service’, as described in Meyer’s text [Mey97,
section 30.8], are a way for one object to (attempt to) demand access to
a reserved object. The result of this can sometimes be the exception ‘is
concurrency interrupt’. This itself may propogate causing a routine failure. If
exception handling can be managed for separate objects as proposed in this
work, then the use of duels becomes possible, although other ongoing work
may provide a better solution for asynchronous transfer of control1.

1RECOOP (Real-Time Concurrent Object-Oriented Programming), Wellings, Brooke, Paige,
Jacob and Burns, with draft semantics by Jacob and Brooke. Publications in preparation.

VOL 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 121



EXCEPTIONS IN CONCURRENT EIFFEL

9 DISCUSSION

The difficulties caused by asynchronous exceptions are a necessary evil: we cannot
remove them except by losing the appeal of SCOOP’s asynchronous procedures. We
can, however, manage them. We compare our work with our aims from Section 1:

1. Permits the creation of reliable, predictable systems: By clearly specifying
the options for a range of policies, we can build fault-tolerant (or if desired,
intolerant) systems.

2. Allows the use of existing (sequential) libraries: The existing sequential be-
haviour of exceptions exists for intra-object calls and calls between objects
with the same handler, so existing libraries can continue unaffected. Where
an existing library is used as part of a concurrent program, the general solution
here becomes applicable.

3. Is not unduly burdensome to either the run-time system or the developer: The
run-time system must include some means of configuring the desired behaviour,
but this is a very limited overhead compared to the rest of the work associated
with managing concurrent objects. Developers must necessarily consider the
behaviour of their system when it fails: the proposal here gives them a small,
expressive but not excessive toolkit to manage this behaviour.

Our work is strongly influenced by the Ada approach to tasks, although all objects in
SCOOP have a thread of control. In particular, we do not allow propogation of ex-
ceptions outside of an asynchronous ‘frame’, and the resulting failure (termination)
of an object (task) results in further exceptions to callers.

The impact of this proposal on developers is minimal compared to the complex-
ity of the intrinsic task. Developing concurrent systems is known to be subtle; the
developer must necessarily decide how to handle exceptions. The default is a safe
case, but now the developer can choose that particular classes (or individual ob-
jects) may fail without halting the entire system while still offering a mechanism for
recovery. Developers must be aware that if a separate call must execute successfully,
then they have to take action to ensure that it does occur: either by checking that
a result is returned, or otherwise obtaining some form of acknowledgement from the
separate object. Otherwise, a failed object could discard its job queue and the calls
are never executed without the caller being aware of this failure.

If radical changes are considered, then the concept of compensation2 may be ap-
propriate: this provides ‘forward recovery’ in the case of aborted transactions where
the effects of the aborted transaction cannot be undone. An approach that would
cause substantial changes to Eiffel in general is to treat success as the exception.
Thus the main flow of the code makes different or repeated attempts to succeed,
while branches or exceptions are invoked when these attempts succeed.

2We first heard of compensation in the context of Eiffel from Volkan Arslan and Sebastien
Vaucouleur in February 2005. Prof. Sir Tony Hoare suggested other possible mechanisms, notably
that of treating success as the exceptional case at the 2006 UTP Symposium.

122 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 10



10 CONCLUSION

An alternative radical change is to use a more synchronous form, such as cobegin-
coend or a construct that mimics Esterel’s [Est99] parallel construct. This then re-
moves the entire problem of asynchronous exceptions by ensuring that a synchronous
rendezvous is still available whenever an exception may arise.

These approaches are interesting and may be very profitable in the long term:
we have explicitly restricted ourselves to making minimal changes to Eiffel itself, so
do not consider them further in this work.

10 CONCLUSION

Our contributions in this paper are

1. survey the current situation with exceptions in concurrent Eiffel;

2. identify suitable options for handling asynchronous exceptions with minimal
disruption to the language and libraries;

3. introduce the concept of failed (or dead) objects and the consequences of failed
objects;

4. identify mechanisms that we consider are unsuitable.

Our mechanism can be summarised thus: unhandled exceptions propagate as far
as possible using the normal sequential mechanism. We have a number of options
for handling asynchronous exceptions: halt the entire system (the default response);
the object is marked as failed; or ignore the exception. As no single option is satis-
factory in all cases, the developer can specify the appropriate response. Exceptions
(for deadlocks, infrastructure problems and failed objects) and routines (for setting
policies and ‘last gasp’ handlers) are introduced.

The next steps in our work are:

1. embed a model of exception handling in our CSP model [Bro06b, Bro06c] and
examine the behaviours under the various options — in particular, to establish
suitable constraints on asynchronous exception handlers to ensure that they
do not trigger further problems;

2. demonstrate and evaluate this solution by means of a preprocessor implemen-
tation or a simplistic compiler; and

3. further examine how the recent ECMA 367 standard for the Eiffel language [EcI05]
affects this work.

VOL 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 123



EXCEPTIONS IN CONCURRENT EIFFEL

ACKNOWLEDGEMENTS

• Bertrand Meyer, Volkan Arslan and others at the CORDIE’06 workshop for
their comments on the purpose of exceptions in Eiffel.

REFERENCES

[Adr02] C. Adrian, SCOOP for SmallEiffel, draft,
http://www.chez.com/cadrian/eiffel/scoop.html, 2002, last accessed
10th November 2005.

[Ars06] V. Arslan and B. Meyer. Asynchronous exceptions in concurrent object-
oriented programming. In [PB06].

[Bro06a] P.J. Brooke and R.F. Paige. A critique of SCOOP. In [PB06].

[Bro06b] P.J. Brooke and R.F. Paige. An alternative model of concurrency for Eiffel.
In [PB06].

[Bro06c] P.J. Brooke, R.F. Paige, and J.L. Jacob. A CSP model of Eiffel’s SCOOP.
To appear in Formal Aspects of Computing, 2007.

[Car05] D. Caromel and G. Chazarain. Robust exception handling in an asyn-
chronous environment. In [Rom05], 2005.

[Com02a] M. Compton. SCOOP: an Investigation of Concurrency in Eiffel, MSc
Thesis, Australian National University, 2000.

[Com02b] M. Compton and R. Walker. A Run-time System for SCOOP. Journal of
Object Technology 1(3), special issue: TOOLS USA 2002 proceedings, pp.
119-157, 2002.

[Don91] C. Dony, J. Purchase and R. Winder. Exception handling in object-
oriented systems. ECOOP’91, 1991.

[EcI05] ECMA-367: Eiffel Analysis, Design and Programming Language, Ecma
International, June 2005.

[Est99] The Esterel v5 Language Primer. ftp://ftp-
sop.inria.fr/meije/esterel/papers/primer.pdf,

[FSE95] Formal Systems (Europe) Ltd. Failures-Divergence Refinement: FDR 2.
http://www.formal.demon.co.uk/, December 1995.

[Fuk04] O. Fuks, J.S. Ostroff, and R.F. Paige. SECG: The SCOOP-to-Eiffel Code
Generator. Journal of Object Technology 3(10), November/December
2004.

124 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 10



10 CONCLUSION

[Iss01] V. Issarny. Concurrent exception handling. In Advances in Exception
Handling Techniques, LNCS 2022, 2001.

[Mey97] B. Meyer, Object-Oriented Software Construction, 2nd Edition, Prentice
Hall, 1997.

[Nie05] P. Nienaltowski and B. Meyer, SCOOPLI implementation,
http://se.inf.ethz.ch/research/scoop.html, 2005.

[PB06] Richard F. Paige and Phillip J. Brooke, editors. Proc. First International
Symposium on Concurrency, Real-Time, and Distribution in Eiffel-like
Languages (CORDIE), number YCS-TR-405. University of York, July
2006.

[Plo05] J. Ploski and W. Hasselbring. The callback problem in exception handling.
In [Rom05], 2005.

[Rin05] M. Rintala. Handling multiple concurrent exceptions in C++ using fu-
tures. In [Rom05], 2005.

[Rom01] A. Romanovsky and J. Kienzle. Action-oriented exception handling in
cooperative and competitive concurrent object-oriented systems. In Ad-
vances in Exception Handling Techniques, LNCS 2022, 2001.

[Rom05] A. Romanovsky, C. Dony, J.L. Knudsen, and A. Tripathi (editors). De-
veloping Systems that Handle Exceptions, Proceedings of ECOOP 2005
Workshop on Exception Handling in Object Oriented Systems. Tech-
nical Report No 05-050. Department of Computer Science. LIRMM.
Montpellier-II University. 2005.

[Taf97] T. Taft and R. A. Duff, editors. Ada 95 Reference Manual. Number 1246
in Lectures Notes in Computer Science. Springer-Verlag, 1997.

ABOUT THE AUTHORS

Phillip J. Brooke is a principal lecturer at the University of
Teesside, United Kingdom, where he researches formal methods and
security. He completed his D.Phil. in Computer Science at the Uni-
versity of York in 1999. Subsequently, he worked as a software en-
gineer in the security domain for two years and then five years as a
senior lecturer at the University of Plymouth. pjb@scm.tees.ac.uk

VOL 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 125

mailto:pjb@scm.tees.ac.uk


EXCEPTIONS IN CONCURRENT EIFFEL

Richard F. Paige is a senior lecturer at the University of York,
United Kingdom, where he works with the High-Integrity Systems
Engineering Group. His research focuses on model-driven devel-
opment, agile development, and building dependable systems. He
completed his PhD in Computer Science at the University of Toronto
in 1997. paige@cs.york.ac.uk

126 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 10

mailto:paige@cs.york.ac.uk



