2,924 research outputs found

    Design and Implementation of a Compact Receiver Module for an Ice Penetrating Radar Depth Sounder

    Get PDF
    The study of global climate change is an important issue in the scientific community and radar depth sounding and imaging data is very useful in modeling and predicting the changes to the ice sheets in Greenland and Antarctica. A compact radar receiver module for CReSIS's MCoRDS/I system was developed to standardize the system across various platforms and accommodate future upgrades to the system that will increase its performance and produce more complete and accurate data products of the most challenging target areas. Design parameters for the receiver module were determined by considering all possible current and future operation conditions of the MCoRDS/I system. The receiver module was designed, simulated, implemented, and tested in the field and shown to achieve its design goals

    A 1.8-pJ/b, 12.5-25-Gb/s wide range all-digital clock and data recovery circuit

    Get PDF
    Recently, there has been a strong drive to replace established analog circuits for multi-gigabit clock and data recovery (CDR) by more digital solutions. We focused on phase locked loop-based all-digital CDR (AD-CDR) techniques which contain a digital loop filter (DLF) and a digital controlled oscillator (DCO) and pushed the digital integration up to a level where our DLF is entirely synthesized. To enable this, we found that extensive subsampling can be used to decrease the speed of the DLF while maintaining a good operation. Additionally, an Inverse Alexander phase detector and a 5.5-bit resolution DCO complete the AD-CDR architecture. As a result of the low complexity and digital architecture, the AD-CDR occupies a compact active chip area of 0.050 mm(2) and consumes only 46 mW at 25 Gb/s. This is the smallest area and the lowest power consumption compared with the state-of-the-art. In addition, our implementation is highly tunable due to the synthesized logic, and supports a wide operating range (12.5-25 Gb/s), which is a significantly larger range compared with the previous work. Finally, thanks to our digital architecture, the power dissipation decreases linearly while moving to the lower speeds of our operating range. This is in contrast with the most prior work, making our design truly adaptive

    50-250MHZ ?S DLL for Clock Synchronization

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process

    Technology Implications of UWB on Wireless Sensor Network-A detailed Survey

    Get PDF
    In today’s high tech “SMART” world sensor based networks are widely used. The main challenge with wireless-based sensor networks is the underneath physical layer. In this survey, we have identified core obstacles of wireless sensor network when UWB is used at PHY layer. This research was done using a systematic approach to assess UWB’s effectiveness (for WSN) based on information taken from various research papers, books, technical surveys and articles. Our aim is to measure the UWB’s effectiveness for WSN and analyze the different obstacles allied with its implementation. Starting from existing solutions to proposed theories. Here we have focused only on the core concerns, e.g. spectrum, interference, synchronization etc.Our research concludes that despite all the bottlenecks and challenges, UWB’s efficient capabilities makes it an attractive PHY layer scheme for the WSN, provided we can control interference and energy problems. This survey gives a fresh start to the researchers and prototype designers to understand the technological concerns associated with UWB’s implementatio

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Jitter-Tolerance and Blocker-Tolerance of Delta-Sigma Analog-to-Digital Converters for Saw-Less Multi-Standard Receivers

    Get PDF
    The quest for multi-standard and software-defined radio (SDR) receivers calls for high flexibility in the receiver building-blocks so that to accommodate several wireless services using a single receiver chain in mobile handsets. A potential approach to achieve flexibility in the receiver is to move the analog-to-digital converter (ADC) closer to the antenna so that to exploit the enormous advances in digital signal processing, in terms of technology scaling, speed, and programmability. In this context, continuous-time (CT) delta-sigma (ΔƩ) ADCs show up as an attractive option. CT ΔƩ ADCs have gained significant attention in wideband receivers, owing to their amenability to operate at a higher-speed with lower power consumption compared to discrete-time (DT) implementations, inherent anti-aliasing, and robustness to sampling errors in the loop quantizer. However, as the ADC moves closer to the antenna, several blockers and interferers are present at the ADC input. Thus, it is important to investigate the sensitivities of CT ΔƩ ADCs to out-of-band (OOB) blockers and find the design considerations and solutions needed to maintain the performance of CT ΔƩ modulators in presence of OOB blockers. Also, CT ΔƩ modulators suffer from a critical limitation due to their high sensitivity to the clock-jitter in the feedback digital-to-analog converter (DAC) sampling-clock. In this context, the research work presented in this thesis is divided into two main parts. First, the effects of OOB blockers on the performance of CT ΔƩ modulators are investigated and analyzed through a detailed study. A potential solution is proposed to alleviate the effect of noise folding caused by intermodulation between OOB blockers and shaped quantization noise at the modulator input stage through current-mode integration. Second, a novel DAC solution that achieves tolerance to pulse-width jitter by spectrally shaping the jitter induced errors is presented. This jitter-tolerant DAC doesn’t add extra requirements on the slew-rate or the gain-bandwidth product of the loop filter amplifiers. The proposed DAC was implemented in a 90nm CMOS prototype chip and provided a measured attenuation for in-band jitter induced noise by 26.7dB and in-band DAC noise by 5dB, compared to conventional current-steering DAC, and consumes 719µwatts from 1.3V supply
    corecore