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ABSTRACT 

With the advent of high data rate wireline applications in microprocessors and memory 

integrated circuits (ICs), clock skew becomes a significant portion of the overall timing margin 

issue in system design. A variable delay line or a delay locked loop (DLL) is often used for 

flexible timing control not only in source-synchronous serial interfaces but also in clock-and-data 

recovery systems. The conventional analog delay line, however, suffers from process, voltage 

and temperature (PVT) variations, and calibration of the analog delay line takes substantial 

design effort. A digitally controlled delay line is preferred due to its better testability and robust 

characteristics. Although the semi-digital or all-digital DLL may have more robust delay control, 

achieving fine timing resolution comparable to that of an analog delay line is still challenging 

due to minimum achievable delay resolution posed by technology limitations. 

Spurred by demands of fine tuning resolution, low jitter performance and operation 

robustness, the aim of the research work in this thesis is to address these issues in a digitally 

controlled DLL. A delta sigma (ΔΣ) modulator based DLL architecture for clock synchronization 

application is designed and fabricated in 0.35µm CMOS technology as a proof of concept for 

demonstrating the fine timing resolution and low jitter performance achievable by such 

architecture. By incorporating a ΔΣ modulator in the DLL, it can have a fractional step delay of 

15ps and can operate from 50MHz to 250MHz. Clock synchronization is straightforward and 

occurs in 2 phases – coarse tuning and fine tuning phases. In fine tuning, a successive 

approximation (SA) method is used to quickly shift the output clock near to the input clock. It 

draws about 6.9mA from 3V supply at 200MHz. 
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Unlike other existing ΔΣ DLL designs, the proposed DLL makes use of the ΔΣ modulator 

in the feedback path rather than at the input, which enables it to eliminate the additional multi-

phase generator (MPG), and hence simplifies the architecture. Besides the simplification in 

architecture, it also has 2 novel features, a 2
nd

 order filter whose 2 poles can be adaptively 

adjusted and a unique anti-harmonic detector. 

Through simplification in the structure and noise shaping contribution from the ΔΣ 

modulator, it exhibits a low rms jitter of 2.137ps. Hence, the proposed digitally controlled DLL 

is straightforward and combines digital architecture robustness with fine tuning similar to analog 

designs. 
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CHAPTER 1. INTRODUCTION 

Delay-Locked-Loop (DLL) is gaining a foothold recently for applications in clock 

synchronization, multi-phase clock generation and data recovery [1-4]. It offers better jitter 

performance and unconditional stability compared to Phase-Locked-Loop (PLL) [5] due to the 

fact that there is no cycle-to-cycle jitter accumulation. Its circuit is also much simpler and can be 

easily implemented in digital CMOS process. DLL is also easier to achieve stability, making it 

more attractive for timing synchronization. The various architectures are discussed next. 
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1.1 General categories of DLL 

Analog DLLs are usually distinguished by its analog building blocks like charge pump 

(CP), voltage controlled delay line (VCDL), loop filter (F(s)) as illustrated in Fig. 1.1. They 

provide the finest tuning resolution as any phase mismatch between in and out is translated 

proportionally to the loop filter control voltage that tunes the delay of each delay cell. Although 

it has continuous delay variation and good jitter performance due to feedback, it suffers from 

limited phase range [6]. On the other hand, digital DLL is most amenable to digital CMOS 

process as they only require basic building blocks like flip-flops and logic gates. Characterized 

by its usage of logic gates for the delay line for digital tuning [7] as shown in Fig. 1.2, digital 

DLL often requires most advanced CMOS technology to push down the delay resolution 
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achievable by single gate delay. In addition, large delay range is also needed to guarantee the full 

phase coverage. Due to its open loop nature, digital DLL can achieve much faster locking by 

employing simple time-to-digital converter (TDC).  However, there will always be residual 

phase error limited by the achievable delay resolution. Semi-digital DLL [8-9] is proposed to 

overcome the limitations faced by digital and analog DLL.  The need of additional phase 

interpolator [8-9] to interpolate between the 2 adjacent phases (Fig. 1.4), worsen the overall jitter 

performance. 
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Figure 1.4: Typical analog phase interpolator 
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Spurred by demands of low jitter and fine timing resolution, we look at alternative 

architectures for DLL that encompass the benefits of analog and digital DLLs. Recently, delta-

sigma (ΔΣ) DLL has emerged [9-10] as a strong contender to achieve fine resolution in pico-

second range as well as good jitter performance, without the above mentioned shortfalls. In this 

thesis, we will examine the issues faced by existing ΔΣ DLL and propose an alternative ΔΣ DLL 

architecture.  We will also discuss some circuit blocks innovation to facilitate the proper 

functioning of the proposed architecture.  The ΔΣ DLL architecture is incorporated in a clock 

synchronization application to show its achievable timing resolution and jitter performance. 

 

1.2 Organization of thesis 

The thesis is organized in the following format.  In chapter 2, we will examine existing 

DLL architectures in detail. This is then followed by the proposed DLL architecture and its 

utilization in clock synchronization architecture in chapter 3. The modeling aspects of the DLL 

and clock synchronization architecture are covered in chapter 4 while CMOS implementation is 

covered in chapter 5. We discuss the simulation and measurement results in chapter 6 and 

conclude in chapter 7. 
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CHAPTER 2. PRIOR ΔΣ DLL ARCHITECTURES 

2.1 Clock Synchronization 

Typical clock synchronization operation is illustrated in Fig. 2.1. It usually involves 

phase locking an input clock (in) to a selected output phase (out) from a multi-phase generator 

(MPG). As out is generated from a low jitter reference source (ref), the resulting architecture can 

achieve very good jitter performance. Depending on the signal generated from phase control 

block, different architectures will result.  Fully digital delay control will give rise to digital DLL.  

Analog delay control will result in analog DLL.  Semi-digital DLL will have mixed types of 

delay control signals. 
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Figure 2.1: Typical DLL architecture for clock synchronization 
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2.2 General  DLL architecture 

In contrast to semi-digital DLL where analog phase interpolator is used to obtain fine 

phase resolution, ΔΣ DLL employs a ΔΣ modulator  to randomly select the input phase (ref) 

from a fixed number of adjacent phases (i-1, i, i+1, etc.) from a MPG to produce the desired 

ref as shown in Fig. 2.2. The resulting ref will then be compared with the feedback phase (DLL) 

from the delay cell through the phase detector (PD). Based on a given control word, K, the ΔΣ 

modulator will generate a phase selection sequence which will result in an average phase which 

lies between the given adjacent phases. The theory is very much similar to a  digital-to-analog 

converter (DAC), where the interpolation occurs between a fixed number of output voltage 

levels, and analog output voltage with fine resolution can be obtained on average after filtering. 

The random phase error after filtering by the loop filter (F(s)) will then produce the desired 

control voltage to achieve the delay that will match the mean input phase. Not only the resultant 

average input phase can be tuned very finely depending on the bit resolution of the ΔΣ 

modulator, by the virtue of pushing the in-band noise towards the higher frequencies through ΔΣ 

modulator and the effective filtering through the loop filter, good jitter performance can also be 

achieved. It should be pointed out that the resulting ΔΣ DLL can function as a digital-to-time 

converter. 
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2.2.1  DLL employing PLL as MPG 

Both [10] and [11] have implemented the ΔΣ DLL architecture shown in Fig. 2.3 and 

they mainly differ in the way of implementing the MPG. In [10], a PLL with a multi-phase ring 

oscillator as highlighted in Fig. 2.2 is employed as the MPG. The 3 most significant bits (MSB) 

of the 14 bits control word (K) are used to select three adjacent phases (45
o
 and 0

o
) out of the 

eight phases.  The remaining 11 bits are then input to M to randomize the three selected 

adjacent phases to obtain fine phase step.   This structure is simple and elegant, directly 

controlling the phase delay with a fixed control word. However, having a PLL as a MPG incurs 

more power and area. Although the ΔΣ  DLL itself do not contribute much additive jitter, the 

overall jitter performance is already handicapped by the PLL as the noisier multi-phase ring 

oscillator is now employed as the input to the DLL rather than the low jitter reference crystal 

clock.  
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Figure 2.2: Existing  DLL architecture 
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2.2.2 Low OSR  DLL with self referenced multiphase generation 

In another structure [11] as illustrated by Fig. 2.4, a modulator is employed to 

randomize the multi-phases from a MPG in the similar manner as [10] and eventually phase lock 

to SIG.  Shift registers and a clock divider are employed to form the MPG as shown in Fig. 2.5. 

The desired multi-phases (refπ/16,0,-π/16,-π/8) are obtained by dividing down a very high frequency 

input clock (CKI) by 32 and then shifting the divided clock (DCK) by the same CKI. The 

resolution of the modulator must be very high in order to provide very small delay tuning for 

CKO due to the larger clock period when phase comparison is performed in a much lower 

frequency domain relative to the reference clock sources. This also indicates a slower lock time 

due to a smaller loop bandwidth. 
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Figure 2.3:  DLL employing a ring oscillator PLL as a MPG 
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Although re-sampling the divided clock signal with the input clock is advantageous as it 

reduces the jitter of its multi-phase outputs, this limits the achievable phase quantization to one 

input clock period and lowers the over-sampling ratio (OSR). To compensate for these 

limitations, a technique commonly known as finite impulse response (FIR) embedding is used. 

Parallelism in structure by employing multiple PDs with a multi-bit input charge pump serving 

as a summer for the multiple paths provides the required averaging to make up for the reduced 

OSR. The dithered input reference phase of each parallel branch is controlled by a delayed 

version of the  modulator output. The parallel structure of PDs, coupled with the delayed 

control, forms an FIR filter in the analog domain. This FIR filter helps to reduce the out-of-band 

quantization noise caused by the large quantization step, so as to achieve better jitter 

performance. The application of the embedded FIR technique complicates the overall 

architecture (eg. issues of path mismatch etc) and incurs area penalty. 

 

While  DLLs look promising in overcoming the limitation of digital DLL phase 

resolution, we look to improve on the existing  DLLs structures in terms of less complexity 

and better jitter performance. We shall discuss our proposed  DLL in the next chapter. 
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CHAPTER 3. PROPOSED ARCHITECTURE 

3.1 Proposed dithered feedback path  DLL 

Given that the additional jitter from the PLL in [10] and the complexity and lower OSR 

introduced by [11] are not preferred, we try to reinvent the architecture to circumvent these 

undesired features. The proposed ΔΣ DLL is shown in Fig. 3.1. Instead of employing the ΔΣ 

modulator to randomly select the input phase, we employ the ΔΣ modulator at the feedback path 

to randomly select the feedback delay. In this manner, we eliminate the need of an additional 

multi-phase generator by making full use of the multi-phase output in the voltage controlled 

delay line (VCDL). This is the clear advantage when compared to previous architectures since 

we already make use of the multi-phases readily available in the VCDL without the need of 

additional MPG. For the proposed  DLL, the phase quantization can be kept as a fraction of 

one input clock period, thus minimizing quantization noise. Together with a clean crystal 

reference clock employed at the input, both features can help in improving the jitter performance. 
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3.1.1 General operation of proposed  DLL 

The  modulator provides the dithered phase delay, DLL, from delay taps 8 to 11 of 

the VCDL based on a given control word, K. The chosen feedback delay is then compared with 

the reference phase through the PD. The filtered error from the PD will generate a controlled 

voltage that will produce the delay to match the reference phase. More details on tuning are 

covered in the operation of the finite state machine (FSM) in chapter 5. 
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Figure 3.1: Proposed  DLL 
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3.1.2 Structural description of proposed  DLL 

In the proposed DLL, thirteen delay cells form the delay line, from which ten of its 

outputs (4 to 13) are used to cover all possible phases of the entire clock. The feedback delay is 

tapped from the 7th to 11th outputs (7 to 11) of the delay line. The ΔΣ modulator produces a 

two bit output that will randomly select four phases. Either 7
th

 to 10th taps or 8
th

 to 11th taps can 

be chosen by the ΔΣ modulator. The provision of two delay tap groups enables the DLL to cover 

all the phases required for the clock synchronization in fine step and will be covered in detail 

later. In this design, a passive 2
nd

 order loop filter with adaptive pole tuning and a 1st order 

modulator is chosen to complement each other. The design of these blocks will be discussed in 

chapter 5. It should be pointed out that the number of bits and thus time step resolution are 

ultimately limited by the achievable clocking speed of digital circuitry implemented in the  

modulator.  Fortunately, this implies that better time step resolution can be expected with the 

down scaling of transistor size for more advanced CMOS technology.  Therefore, we adopt 

programmable bit resolution for the  modulator to maintain similar time step resolution across 

different input clock frequencies.  At lower input clock frequency, the  modulator can tolerate 

more adder delay and larger m can thus be used. In this design, m is made programmable from 5 

to 7 bits to achieve relatively consistent time step resolution of roughly 15ps throughout the input 

clock frequency range of 50MHz to 250MHz. 
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3.1.3 Non-linearity in delay tuning 

The delay per cell generated by the proposed architecture can be estimated as follows: 

m

clk
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clk
delay K

N

T

N

T
T

2




,         (3.1) 

where N can be either 8 or 9 depending on the selected delay tap groups, K is the input control 

word to the modulator, m is the resolution of the ΔΣ modulator, resulting in the average number 

of delay taps, Naverage, having values from 8 to 10. Tclk is the period of the input clock. The time 

step resolution per cell is determined by the difference between the two consecutive delays and is 

defined as follows with each successive decrement of the control word, K: 
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Equation (3.2) indicates that the time step resolution is input dependent. The resulting digital-to-

time transfer characteristic is therefore non-linear. This is totally different from [10-11] where a 

linear transfer characteristic can be observed. However, the resolution of the ΔΣ modulator (m) 

can always be chosen to be large enough such that the DLL can cover the desired phase range 

even with the non-linear transfer characteristic. The ΔΣ modulator not only determines the time 

step resolution, it also affects the overall jitter performance. 
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3.2 Clock synchronization architecture using the proposed  DLL 

The complete clock synchronization architecture employing proposed ΔΣ DLL is shown 

in Fig. 3.2. The clock synchronization occurs in two steps. First, the core DLL loop is initialized 

to give a fixed Tdelay. The resulting multiphases (4 to 13) are then compared with the incoming 

phase (in) to determine the closest phase through a coarse phase detector (CPD). The CPD will 

generate Up/Down or Hold signal depending on the error between in and out. The FSM will 

then select one of the phases from 4 to 13 that is closest to the input phase in. Once the closest 

phase has been identified, the algorithm will move on to the second step, where the FSM will 

start changing the input control word K to fine tune the Tdelay of the core ΔΣ DLL. This will move 

the selected phase edge (out) from the first step closer to the incoming clock edge (in). To speed 

up the second step, successive approximation (SA) technique is employed to obtain the correct 

input control word K. Therefore, it only requires m steps to cycle through all the possible K 

values which will produce the Tdelay that closely match to the input phase (in). Compared to the 

semi-digital DLL proposed in [7-8], this architecture eliminates the additional phase interpolator 

by simply tuning the DLL phase edges directly through the ΔΣ modulator. This not only 

simplifies the design but also eliminates possible additional jitter source. Fig. 3.3 exemplifies the 

above-mentioned delay matching concept. 
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Figure 3.2: Clock synchronization architecture with proposed  DLL 

Figure 3.3: Clock synchronization operation 
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3.3 Design Considerations 

 Like most other DLLs that suffer from static mismatch issues, load and path matching 

must be taken into account while designing the DLL. Design for full phase coverage is also 

needed for the proper operation of a clock synchronization system. 

 

3.3.1 Mismatch Consideration 

Fig. 3.2 presents a simplified view of the proposed architecture.  In fact, two major 

sources of mismatches will impact the performance and need to be addressed carefully.  Firstly, 

the delay cell mismatch needs to be minimized.  As the different phase taps constitute the whole 

phase range, any mismatch among the delay cells would give rise to output phase inaccuracy (see 

Fig. 3.4). 

 

Ideal case with no mismatch 

Post layout simulation  

Simulation with 5% load mismatch 

Simulation with 10% load mismatch 

 

Figure 3.4: Simulated transfer characteristic of  DLL from output of 4th delay cell with 

and without load mismatch 

 



 

18 

 

This is a common problem faced by all DLL with multiple phase taps [8, 10-11], and is 

solved by ensuring equal loading seen by all the delay cells.  Similar approach has been adopted 

here.  Although the feedback path only requires 5-to-1 multiplexer (7 to 11) and the output 

phase selection only requires 10-to-1 multiplexer (4 to 13), identical 13-to-1 multiplexers are 

employed for both of them to ensure equal loading seen by all delay cells as illustrated in Fig. 

3.5.  In addition, dummy delay cell is also added to the output of 13th delay cell for better load 

matching.  Secondly, the additional multiplexer employed in the feedback path introduces 

additional multiplexer delay (tmux).  
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Figure 3.5: Load mismatch and feedback path mismatch consideration 
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The resulting Tdelay in (1) will now become 

m

MUXclk
delay K

N

tT
T

2



  

.          (3.3) 

Therefore Tdelay will not be accurately defined due to the process dependent tmux.  This issue is 

resolved by employing identical multiplexer at the input path as shown in Fig. 3.5.  This will 

eliminate the additional process dependent tmux introduced in (3).  It should be pointed out that 

this issue is also not unique in our proposed architecture.  In fact, careful examination of Fig. 2.3 

and Fig. 2.4 reveals similar problem faced by other  DLL [10-11] due to the additional 

process dependent delay introduced by MPG and multiplexer.  Similar technique has also been 

employed in [10-11] to eliminate this phase inaccuracy. 

 

To validate the impact of the mismatches on the output delay characteristics, delay 

characteristic of Fig. 3.4 with extracted post-layout delay is also shown.  As illustrated, with the 

employed technique to minimize delay mismatch, there is not much deviation of the resulting 

delay characteristic compared to the one with ideal matching delay.  However, when the delay 

mismatch deteriorates to 5~10%, noticeable static phase error will result.  Nevertheless, for clock 

synchronization application proposed in this thesis, the proposed algorithm will automatically 

adjust the  DLL input to compensate for this phase offset as long as the proposed DLL exhibit 

continuous phase range coverage.  For digital-to-phase converter application, this static phase 

error can be calibrated with additional time-to-digital converter (TDC), which can be easily 

implemented using shift registers. 
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3.3.2 Phase range consideration 

The first three delay taps are not used during the coarse tuning step because of the phase 

range issue. When Naverage is changed continuously from 10 to 8 through the control word K, 

each delay cell will experience different phase variation as indicated by Δi in Fig. 3.6. In 

general, the later the delay cell being placed in the delay line, the larger the phase variation it will 

encounter, i.e. i>k if i>k.  By modifying the ΔΣ modulator input during the fine tuning step, 

the combined phase variation from 4 to 13 will cover the entire phase (2π) of the clock period 

continuously, as shown by the darkly shaded region. However, if 1 to 9 was chosen instead, the 

combined phase variation from 1 to 9 will result in discontinuous phase coverage of the entire 

clock period as illustrated by the broken lightly shaded rectangle region. Equation (2) and Fig. 

3.6 clearly indicate that the phase variation is limited by the earlier delay tap.  To ensure 

continuity in the phase coverage, the following relationship can be derived: 
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 ,         (3.4) 

where Nmin and Nmax are the minimum and maximum number of delay taps per one clock period 

and i is the earliest delay tap used for the phase synchronization.  Equation (4) reveals that the 

larger the i value, the smaller the difference that can be tolerated between Nmax and Nmin, and thus 

the smaller number of delay tap groups needed (Nmax−Nmin+1).  However, larger i also means 

more delay cells along the delay line for full phase coverage, and thus more power and jitter.    In 
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this design, i, Nmin and Nmax are chosen to be 4, 8 and 10 respectively to optimize between 

number of delay tap groups, jitter and power. 

 

The other clear advantage of not using the first three delay cells is that it relaxes the 

design parameter of the delay cell. If the first cell is used for delay tuning, this imposes on the 

cell a full tuning range of Tclk/10, which is very difficult to design. By using more cells in the 

untapped section of the delay line, it relaxes this constraint further. 
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Figure 3.6: Overlapping delays to ensure full clock period coverage 
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3.4 Conclusion 

 

A new ΔΣ DLL architecture utilizing dithering in its feedback path is presented in this 

chapter. Its linearity issues is easily mitigated using a higher resolution ΔΣ modulator and hence 

can be applied to clock synchronization. The common issues of phase mismatch and phase 

coverage are also tackled. Before continuing to the actual silicon design of the circuit, it is 

important that modeling and analysis of the entire clock synchronization architecture is 

performed for a more in depth understanding of the system. This will be covered in the next 

chapter.
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CHAPTER 4. MATLAB MODELING AND LOOP ANALYSIS 

4.1 Loop analysis of proposed clock synchronization architecture 

 In this chapter, modeling and loop analysis of the clock synchronization architecture will 

be covered in detail. The two most important aspects of loop stability and transient behavior will 

also be scrutinized based on its defining loop parameters. 

 

4.1.1 Modeling of  DLL core loop  

The  DLL core loop is modeled as a simple feedback loop with its functional blocks 

merged into a single block with transfer function H(s) as shown in Fig. 4.1. H(s) can be reduced 

to a simple representative form consisting of loop parameters by a0 and a1: 
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,       

 (4.1) 

using the parameters of each functional block, i.e. charge pump current (ICP), frequency of 

reference source ref (Fref), delay gain of VCDL (KDL) and loop filter components (C1, C2 and R) 

based on the filter configuration mentioned in chapter 5. Note that a0 and a1 are positive values 

and the analysis in this section is based on delay and not phase. Each component of delay of 

signals in the loop are prefixed by „D‟. e.g. Dref, Dout represents the delay values of signals ref 

and out from previous chapters respectively. Quantization noise in the form of delay, D, from 
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the  modulator is introduced into the core loop through its‟ feedback path as shown in Fig. 

4.1. Intermediate signals in their delay forms are as shown in the same diagram. 

 

 

4.1.2 Dual loop dynamics of clock synchronization architecture 

To model the secondary loop of the proposed architecture, some intuitive approximation 

is needed.  As the secondary loop is fundamentally a digital loop involving FSM, direct 

incorporation would be difficult and less insightful.  Instead, we observe that at steady state, the 

main objective of secondary loop is to closely match the input and output phase, and produce a 

phase error (DEP) of zero.  According to feedback control theory, a zero error is only possible if 

integrator controller is employed.  Therefore, the secondary loop can be modeled as an integrator 

with constant a2 as illustrated in Fig. 4.2.  The final linearized model of the clock 

synchronization system, characterized in terms of delay, is presented in Fig. 4.2.  
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Noise shaping 
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Figure 4.1: Modeling of  DLL core loop 
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The effects of applying different values of a2 with respect to the core loop parameters are 

studied to provide some intuitive understanding of the design of the peripheral loop in terms of 

stability and transient response of the delay error, DEP, between out and in. The core DLL loop 

is fundamentally a stable loop. DEP is expected to settle to 0 and ought to remain stable no matter 

what perturbation is introduced to the loop. The linear model based on Fig. 4.2 is built in Matlab 

for the verification of the stability analysis and the study of the effects of the core and secondary 

loop parameters on the transient step response on the phase error DEP. 
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Figure 4.2: Linearized model of clock synchronization system 
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4.1.2.1 Stability analysis 

To study the stability of the dual loop architecture, the close loop transfer functions of 

DEP with respect to various inputs has to be derived. The close loop transfer functions of DEP 

with respect to the different delay inputs, Din, Dref and D are found to be: 

200

2

1

3

0

aasasas

sa

D

D

in

EP




,        (4.2) 

200

2

1

3

0

2

1

3

aasasas

sasas

D

D

ref

EP






,        (4.3) 
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respectively. By final value theorem or taking limits of 0s  of equations (4.2) to (4.4), the 

responses to a step input disturbance for different inputs are the same. DEP will eventually settle 

to 0 for all values of a0, a1 and a2 if given enough time. However, in order to ensure stability of 

the system regardless of any input responses, the close loop poles of transfer functions (4.2) to 

(4.4) must be located in the left half complex plane. Since all 3 close loop transfer functions have 

the same characteristic equation, which determines the location of the poles, the Routh array is 

formed: 
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By Routh Hurwitz theorem for stability [12], elements in the first column in the Routh array 

must have the same sign resulting in the following condition that be satisfied: 

0
1

2001 


a

aaaa

 
or

 21 aa  . 

       (4.6) 

In the case where 
12 aa  , DEP will grow exponentially (Fig. 4.3) and no locking of out and in 

will be achieved.  

 

Figure 4.3: Step responses of delay error, DEP, with respect to input step delay, Din, for 

different values of peripheral loop parameter, a2 for a2 > a1  

a2 = a1 
a2 = 1.1a1 
a2 = 1.2a1 
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4.1.2.2 Step response analysis 

The other area of interest is the transient step response of DEP. As the transfer functions 

are quite similar in form, only equation (4.2) is used in the study. First, optimal core loop 

parameters are chosen such that the step response is optimal. While a0 is less flexible to change 

because it consists of parameters of the CP and VCDL, it is more convenient to define a1 to 

define the core loop characteristics as it consists of only the loop filter parameters. Moreover, we 

also know from Routh Hurwitz theorem for stability that a1 is the parameter that directly 

influences loop stability. Using actual design parameters, different step responses using various 

values of a2 relative to a1 are plotted in Fig. 4.4. The optimal value of a2 is found to be about 

0.05a1. Since the reciprocal of a2 sheds some light on the time constant of the secondary loop, it 

gives some indication on the time span between each FSM decision. Together with equation 

(4.6), we know how to adjust the time in between each FSM decision or clock rate of the FSM 

block relative to the core loop filter design parameters. 
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Figure 4.4: Step responses of delay error, DEP, with respect to input step delay, Din, for 

different values of peripheral loop parameter, a2 for a1 > a2 

 

4.2 Matlab modeling of proposed clock synchronization architecture 

 With better understanding of the dual loop dynamics, we can proceed to formulate a 

behavioral model in Matlab for full functional simulation before silicon implementation. This 

way, the functionality of the clock synchronization architecture can be verified before the actual 

circuit is designed and the behavioral model can also provide valuable insight during integration 

of all the different building blocks. Moreover, full chip simulation may not be possible due to the 

complexity of the resulting netlist. The overall behavioral model is shown in Fig. 4.5. Matlab 

Simulink is used for modeling. 

 

a2 = 0.01a1 

a2 = 0.05a1 

a2 = 0.1a1 

a2 = 0.5a1 
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Figure 4.5: Full functional behavioral model of the clock synchronization system 
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 While the PD, CP, loop filter and the VCDL blocks of the DLL can be easily modeled 

with available phase detector, transfer function and variable transport delay Simulink blocks as 

highlighted in Fig. 4.6 and 4.7, the fine tuning FSM control is slightly more difficult to integrate 

using Matlab‟s Stateflow flowchart. 

 

Figure 4.6: Simulink model of PD, CP and loop filter 

 

Figure 4.7: Simulink model of a single delay cell 
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The main difficulty lies in the interface between the flowchart and the remaining 

simulink blocks. Most of the Simulink blocks deal with integer whereas the Stateflow flowchart 

deals with bit processing. Therfore, in order to incorporate bit processing within the Stateflow 

flowchart, we had to call upon matlab embedded functions like bi2de and de2bi to translate 

between integer values and bit strings, in order to accurately model the peripheral control loop. 

The Stateflow flowchart for coarse and fine tuning can be found in Appendix A and the 

Stateflow Help section within the Matlab tool can be used to assist in the understanding of the 

flowchart semantics. A step function block is used to enable the coarse tuning block to ensure 

that coarse tuning starts only when the DLL has achieved phase lock. A programmable clock 

divide by N block is used to define the time span between each FSM decision. The time it takes 

for the FSM to make each decision should be carefully selected with respect to the core loop 

parameters based on the dual loop analysis earlier.  

The coarse loop phase detector, CPD is modeled exactly after the actual hardware, 

consisting of delay cells, logic gates and flip-flops as shown in Fig. 4.8. 

 

Figure 4.8: Simulink model of CPD 



 

33 

 

4.3 Behavioral simulation of clock synchronization architecture 

The functioning and operation of the proposed architecture can be studied by full system 

Matlab simulation.  Various time plots, such as loop filter settling, MUX selection and etc. are 

examined. Fig. 4.9 shows the initial lock of the core loop DLL before coarse tuning is enabled. 

The delay value of each delay cell is tracked in Fig 4.9(a). Fig. 4.9(b) shows locking of the 

dithered DLL to ref  after initial settling. 

 

Figure 4.9: (a) Tracking of delay value of each delay cell during initial phase lock and  

(b) locking of the dithered DLL to ref after initial settling 

DLL initial lock Coarse tuning activated 

(a) 

(b) 
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After the initial DLL lock is established, the coarse loop FSM is activated. The step 

function in Fig. 4.10 enables the coarse loop FSM and the coarse loop FSM adjusts the coarse 

loop MUX and finally selects the clock edge nearest to the input clock edge. After it determined 

the nearest clock edge when HOLD=1 is attained, the coarse tuning FSM section relinquishes 

control to the fine tuning part of the FSM block by sending out the fine tune FSM enable signal. 

Fig. 4.11 shows the diminishing delay difference between out and to in with each progressive 

step of coarse tuning. 

 

Figure 4.10: Plots showing (a) coarse tuning enable, (b) coarse tuning MUX selection,       

(c) HOLD signal and (d) fine tuning enable phase during the coarse tuning phase 

(a) 

(b) 

(c) 

(d) 
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Figure 4.11: Progressive step of shifting out closer to in during coarse tuning  

After the coarse tuning step has completed its course, fine tuning takes place. The fine 

tuning control will use the SA (Successive Approximation) approach to quickly fine tune the  

modulator to find the best  modulator input value that will enable out to shift nearest to in. In 

the case where out is shifted in Figure 4.12 best illustrates the operation. 

  

delay difference 
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Figure 4.12: Plots showing (a)  modulator input, (b) time delay per cell, (c) HOLD signal 

(d) feedback delay group select signal during fine tuning phase 

 Fig. 4.12 shows the interactions of the different signals during the fine tuning process. It 

illustrates how the delay of each delay cell changes when the  modulator input is being tuned 

by the FSM. In addition, it also exhibits how FSM tunes the modulator input based on the HOLD 

signal. 
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Figure 4.13: in and out (a) before and (b) after fine tuning  

The FSM uses the SA (Succesive Approximation) approach for fine tuning. It selects a 

midpoint value (i.e. 7) in the entire  modulator input range (0 to15). The HOLD signal is 

subsequently evaluated. The FSM tunes to another midpoint value in either the upper (8 to 15) or 

lower (0 to 6) input range depending on the HOLD signal. By reducing the input range with each 

approximation, the delay of out eventually approaches the delay of in. SA is an efficient 

algorithm especially when handling a long digital input word. Fig 4.13 highlights the end result 

of fine tuning. It compares the delay difference between in and out before and after fine tuning. 

As an additional feature of the circuit, the FSM intentionally perturbs the  modulator 

after a fixed number of cycles to revalidate the synchronization of out to in.  

(a) 

(b) 
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To demonstrate full clock coverage, we purposely introduce a delay difference between 

in and out such that tuning Naverage from 10 to 9 is not enough to shift out close enough to in. In 

this case, the FSM would still use SA approach to tune to the smallest input value of  

modulator. Upon finding that out can be shifted further, the FSM would change the feedback 

delay group of 8
th

 to 11th taps to the group of 7
th

 to 10
th

 taps. Subsequently, the FSM would tune 

the  modulator input using the same SA algorithm until the delay of in almost matches out. 

The entire operation is described in Fig. 4.14. Likewise, Fig. 4.15 shows the end result of fine 

tuning. The residual delay after the first round of SA tuning is also shown in Fig. 4.15(b). 
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Figure 4.14: Plots showing (a)  modulator input, (b) time delay per cell, (c) HOLD signal 

(d) feedback delay group select signal when tuning Naverage from 10 to 9 is insufficient 

  

(a) 

(b) 

(c) 

(d) 

fine tuning of Naverage 

from 10 to 9 

fine tuning of Naverage 

from 9 to 8 

minimum 

input value 

of  

modulator 

reached 

0.5797µs 



 

40 

 

 
Figure 4.15: Delay differences in in and out (a) before fine tuning, (b) after 1

st
 round of SA 

tuning and (c) after 2
nd

 round of SA fine tuning 
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Overall, the clock synchronization architecture model works quite well. The model can 

also used to obtain the transfer characteristic of the DLL, shown in Fig. 4.12, which shows 

excellent matching to the theoretical delay estimation. 

 

Figure 4.16: Transfer characteristic of the  DLL 
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4.4 Conclusion 

 A system model and a full functional behavioral model of the clock synchronization 

architecture are successfully modeled using Matlab Simulink. Both models can provide valuable 

insight to the design of the clock synchronization system. The system model studies the effects 

of the core and peripheral loop parameters on stability and transient response of the system. The 

functional model can be used to generate the transfer characteristic, which concurs with our 

earlier theoretical analysis. 
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CHAPTER 5. CIRCUIT IMPLEMENTATION 

The overall clock synchronization system is shown in Fig. 5.1. The main blocks of the 

clock synchronization consists of 13-cell delay line, the anti-harmonic lock detector (AHD), the 

adaptive loop filter,  modulator, the finite state machine (FSM) block and the coarse loop 

phase detector (CPD). The circuit implementation of these blocks will be discussed in the next 

few sections of this chapter. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Clock Synchronization System 
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5.1. Delay-cell with replica biasing and load matching 

A delay cell with large delay variation is required to cater for wide range of input 

frequencies for this project. The differential buffer delay stage proposed in [13] is employed in 

this design, and is illustrated in Fig. 5.2. The differential architecture is chosen for its better 

supply and common-mode noise rejection. The replica bias buffer is used to avoid loading the 

charge pump circuitry directly onto the delay cells as well as to maintain constant output swing 

for each delay cell. From simulation, for control voltage ranging from 1 to 2.1V, the delay per 

cell can vary from 300ps to 4ns as shown in Fig. 5.3. As observed in Fig 5.3, the delay varies 

exponentially with the control voltage. This will cause the delay gain, which is given by the 

slope of the curve, to vary substantially throughout the entire range.  Therefore, the DLL loop 

characteristics will change accordingly. 

 

Figure 5.2: Delay cell schematic 
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Figure 5.3: Delay cell delay characteristics 

Although the equivalent schematic for the replica bias is shown in Fig. 5.4(a), its‟ layout 

version is implemented using 2 identical delay cells which is equivalent to Fig. 5.4(b) to ensure 

better matching. While the layout is structurally the same as that of two delay cells side by side, 

it only differs in the metal connection of the gate to source at the respective PMOS loads. 
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Figure 5.4: Replica biasing (a) equivalent circuit (b) layout version 

 Differential MUX is also employed in this design. The schematic is given in Fig. 5.5. The 

current and load values are designed to ensure sufficient swing at the output when driving the 

next stage, which is the differential to single ended buffers. 
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Figure 5.5: Differential MUX implementation 

The single PMOS transistor current (IDP) of the delay cell and the delay of each delay cell 

have been shown in [13] as: 
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where KP is the PMOS device transconductance, VF is the loop filter voltage, gmp is the 

transconductance, VTHP is the PMOS threshold voltage, and CEFF is the effective load capacitance 

of one delay cell. 
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5.2. Anti-harmonic lock detector 

Due to the wide dynamic range of the delay for the delay cell employed, anti-harmonic 

lock detector (AHD) is needed to avoid false locking.  The AHD will send signals to the charge 

pump to adjust the loop filter voltage, overriding the PD, when the DLL edge falls outside the 

valid lock range between 0.5Tclk to 1.5Tclk. Fig. 5.6 shows the timing operation and how the 

UNDER and OVER signals are generated. 

 

Figure 5.6: Anti-harmonic lock detector operation 
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The AHD is implemented using two serial shift registers as shown in Fig. 5.7. The 

outputs of the shift registers are initialized to have logic values as shown. When triggered by the 

negative and positive edges of ref to DLL respectively, the logic values shift to the right and 

loops back to the 1
st
 register when it reaches the end, corresponding to the relative positions of 

the respective edges. Using the outputs of the shift registers, the UNDER and OVER signals are 

then generated based on the relative edge positions of ref and DLL. If the negative edge of ref 

leads the positive edge of DLL by 2 positions, the OVER signal will be generated. On the other 

hand, the UNDER signal is generated when the negative edge of ref lags the positive edge of 

DLL by 1 position. This detector operates based on relative positions of the input signal edges 

rather than level-sampling based detector described in [14], making it less susceptible to the duty 

cycle of DLL. It should be pointed out that due to the randomization of feedback phases of the 

proposed  DLL, DLL might not exhibit 50% duty cycle.  However, the proposed AHD still 

requires the duty cycle of ref to be roughly 50%, which is relatively easier to achieve and design 

compared to the varying DLL. 

 

 

 

 

 

 

 

 

 



 

50 

 

 

Figure 5.7: Anti-harmonic lock detector implementation 
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5.3. Adaptive loop filter 

Compared to conventional DLL,  DLL requires higher order loop filter in order to 

suppress the high frequency noise due to the noise shaping. As the first order ΔΣ modulator 

provides first order noise shaping, at least a second order loop filter is required to attenuate the 

high frequency shaped noise. If the order of both the  modulator and the loop filter are the 

same, high frequency noise will not be fully suppressed. This noise might creep back into the 

circuit, contributing to jitter in the DLL. Added to the challenge is the input clock frequencies 

with wide dynamic range that the loop filter needs to operate at.  In this design, a simple adaptive 

RC passive second order filter, consisting of 2 capacitors and an active MOSFET resistor as 

shown in Fig. 5.8, is implemented. 

 

Figure 5.8: Adaptive loop filter schematic 
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The desired loop filter characteristic of loop filter voltage output, VF, with charge pump output, 

ICP, is given by 

 2121
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
 ,        (5.3) 

where C1 and C2 are the values of the respective capacitors and R is the resistance of the active 

MOSFET resistor. The resultant closed loop transfer function have the form of: 
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Further simplifying the transfer function in (5.4) by making some approximations will give us a 

convenient form: 
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where 
clk

DLCP

T

KI
k  . (5.5) has two poles given by 
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and 
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where ICP is the charge pump current and KDL is the delay gain of the VCDL. 
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The loop bandwidth can be approximated by the dominant pole, ωp1 and inferring from equation 

(5.5), the resultant phase margin (PM) will be given by: 



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 To achieve adaptive bandwidth for wide frequency range operation, the ratio of ωp1 to the input 

clock frequency (fclk) has to be kept constant. From (5.6), this ratio is given by 

1
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f

DLCP

clk

p



.          (5.9) 

 

To maintain constant p1/fclk ratio, ICP and KDL have to be made constant.  However, 

given the wide delay range that we are targeting for in the design, KDL is highly non-linear.  In 

[13], the delay gain (KDL) is found to be inversely proportional to the biasing current of the cell 

delay (IDP) and varies with the input clock frequency (fclk).  Therefore, ICP is mirrored from the 

replica bias of the delay cell in earlier section to track the delay gain variation under various 

input clock frequencies to maintain a constant ratio of p1/fclk [13].  Similar approach is adopted 

here with additional programmable element being introduced to the charge pump as illustrated in 

Fig. 5.9.   The charge pump is made programmable to allow fine tuning of the loop filter 

bandwidth for better jitter performance. 
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Figure 5.9: Charge pump with current sensing schematic 

 

The resulting p1/fclk can be shown as: 
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where CB=2NCEFF is the total effective buffer capacitance of all the delay stages and x is the 

proportionality constant between the charge pump current (ICP) and the single PMOS transistor 

current (IDP) of the delay cell. 
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Unlike [13], which only employs C1 as first order loop filter, the need of 2
nd

 order loop 

filter complicates the adaptive loop filter design due to the additional 2
nd

 pole, p2.  In practice, 

p2/p1 is kept at fixed ratio (~2.2) to maintain desired phase margin (PM) while providing 

sufficient high frequency noise suppression. Combining (5.6), (5.7) and (5.10), 
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For a given VCDL with N delay stages,  
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By examining (5.11) and (5.12), if R is made to track the inverse of gmp of the delay cell, 

the p2/p1 ratio can then be kept constant.  In this design, the adaptive tuning of the 2
nd

 pole is 

achieved by a replica bias as shown in Fig. 5.6.  The delay cell current (IDP) is first established in 

a branch passing through a diode-connected PMOS transistor M1.  This will setup the desired 

|VGS| for the transistor M1 which gives rise to transconductance that closely tracks the gmp of the 

delay cell.  An opamp is employed to fix the source terminal of M1 at VCP.  The resulting gate 

bias of M1 is then applied to the gate of M2 operating at linear region through replica bias 

concept with the following conductance: 
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1
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where  is the sizing ratio between transistor M2 and M1.  Substituting (18) and (17) into (16), 

the constant p2/p1 ratio can then be obtained as 
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5.4. ΔΣ modulator 

The 1
st
 order M with dithering [15] is shown in Fig. 5.10.  First order M is 

employed to reduce the complexity of the adaptive loop filter design.  However, 1
st
 order M 

has very poor randomization property and thus mandates a dithering block to eliminate any 

periodic pattern exhibits at the output.  A 25 bit pseudo-random sequence with the gain of one 

unit of quantization level is employed before the quantizer input [15] to achieve the dithering.   

 

Figure 5.10: Programmable 1
st
 order  modulator with dithering 
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Figure 5.11: Noise shaping from 1
st
 order  modulator 

 

As shown in Fig. 5.11, the modulator output demonstrate 1
st
 order noise shaping without 

significant spurious tones. The spurious tones will result in periodic jitter that might worsen the 

DLL jitter performance and should be minimized.  The M is synthesized to run at 250MHz. 

Although the M can receive a 10 bit input, the bit resolution (m) of the input control word (K) 

is only 5-7 bit to optimize the running speed of the modulator (50M-250MHz) and the attainable 

delay step resolution (~15ps), with lesser bits used at higher frequencies. Six additional bits are 

added to the modulator internal bit width to avoid arithmetic overflow, resulting in an internal bit 

width of 16. The layout of the  modulator block is as shown below in Fig. 5.12 and it occupies 

a space of 255m × 240m. This block consumes less than 0.1mA for all the frequency range of 

operation. 

The verilog code is synthesized using Synopsys DC compiler and constrained with a 4ns 

clock. There is little margin due to the technology used. The generated netlist has 197 cells. 
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Figure 5.12: Layout of 1
st
 order  modulator 
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5.5. FSM block 

 

The FSM flow chart for clock synchronization is shown in Fig. 5.13. 

 

Figure 5.13: Summary of FSM flow chart 
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 The clock synchronization is achieved in two tuning steps.  During the coarse tuning 

step, the selected output phase (out) is first initialized to 8 to speed up the coarse tuning.  The 

out is then compared with the incoming phase (in) through CPD [16] to determine the desired 

action.  The CPD split the full incoming clock period into ten intervals (A-J), and depending on 

the relative position of out with respect to in, UPDN or HOLD signal will be generated 

accordingly.  While the HOLD signal is false, the UPDN signal of 1 or 0 will select either left or 

right adjacent clock edge relative to the current chosen output phase.   Once the chosen out falls 

within the interval E of the incoming clock period, the HOLD signal becomes true, and the FSM 

has identified out that is the closest to in.  The entire operation for coarse tuning is also 

illustrated in Fig. 5.13 while the implementation and truth table is shown in Fig. 5.14 and Fig 

5.15 respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 5.14: Coarse loop phase detector (CPD) implementation 
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Figure 5.15: Coarse loop phase detector (CPD) operation 

 

After coarse tuning, the FSM will now enter the fine tuning step where the input control 

word K of the modulator will be updated in SA approach, starting from the MSB.  This 

guarantees that the clock synchronization can be obtained after m steps.   The bit is first inverted 

and the inversion would be kept if the resulting out does not move into interval F.  Otherwise, 

the FSM would revert the change and move onto the next LSB.  The final out should eventually 

synchronize to in to within the step resolution of roughly 15ps. The layout of the FSM block is 

shown in Fig. 5.16 and measures 340m by 330m. The power consumed by this block is 

negligible as it operates at much lower frequency. 

It is constrained with 10ns clock. The generated netlist contains 567 cells. 

 

 

 

A 
 

B 
 

C D 
 

E 
 

F 
 

G 
 

H 
 

I 
 

J 
 

in 

out 

out 

out 

final state of 
coarse tuning 

J 1 0 

Region UPDN HOLD 

CPD truth table 

A 
B 
C 
D 

E 

F 

G 
H 
I 

0 
0 
0 
0 

0 

1 

1 
1 
1 

0 
0 
0 
0 

1 

0 
0 
0 
0 



 

62 

 

 

Figure 5.16: FSM block layout 

The chip is fabricated in Austria Micro System 0.35μm CMOS Technology. The full die 

shown in Fig. 5.17 with the ΔΣ DLL core and clock synchronization architecture occupies active 

areas of 0.4mm
2
 and 0.62mm

2
 respectively. We adopt careful planning to separate the most noisy 

regions consisting of digital blocks (FSM,  modulator) farthest from the cleaner analog blocks 

(loop filter, CP and master bias). The other regions are mainly occupied by bypass capacitors and 

a serial-to-parallel interface (SPI) block. 
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Figure 5.17: Die photo showing regions of clean analog, RF and noisy digital regions 
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5.6 Conclusion 

 The circuit implementation of the key blocks is documented in this chapter. Although 

most blocks are based on reference designs, there is some novelty when it comes to 

implementing two of the blocks. For example, the anti-harmonic detector (AHD) is unique. It is 

based on the relative positions of the clock edge based rather than reference clock based 

sampling. Clock based sampling techniques relies heavily on the 50% duty cycle of the sampled 

clock for accuracy while the proposed edge based method is less independent of the duty cycle. 

 Although the adaptive biasing technique [13] has been heavily studied and widely used, 

only 1
st
 order loop filter with single pole tuning is implemented. Our work is an extension of this 

technique and a second tuning pole is also utilized, to complement the 1
st
 order  modulator 

used in the design. 
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CHAPTER 6. MEASUREMENT RESULTS 

6.1. Test setup 

 Most of the measurements are taken using the Tektronix DPO71254 mixed signal 

oscilloscope. Clock source used for testing is a very clean reference, using Agilent 8133A Pulse 

Generator. It exhibits approximately 0.5ps rms jitter or 3.4ps pk-pk for most frequencies tested. 

The power supply used is Agilent E3631A. The test setup is briefly shown in Fig. 6.1. 

 

 The chip die is bond-wired and packaged into a QFN40 package which is soldered on the 

PCB for testing. The digital control signals are sent to the chip via a in-house developed SPI. 

 

Figure 6.1: Simple test setup diagram  
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6.2. Timing diagram 

The measured timing diagram of the various clock signals from the proposed DLL 

operating at 200MHz is shown in Fig. 6.2. As illustrated, the ref and in are not synchronized 

initially. Through the proposed architecture, the out is then synchronized to in as shown in Fig. 

6.2. The observed duty cycle difference between the in and out is mainly due to the different 

travelling paths between the two signals. As expected, DLL does not exhibit 50% duty cycle due 

to the dithered switching among a selected group of fixed clock phases. The functioning of the 

anti-harmonic lock detector is also verified by monitoring the loop filter voltage, which 

corresponds to the final achievable delay. As illustrated in Fig. 6.2, the AHD is functioning 

despite the non-50% duty cycle observed in DLL. 
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Figure 6.2: Timing diagram for DLL clock signals and synchronized out with in  
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6.3. Jitter performance 

Fig. 6.3 to Fig. 6.5 shows the measured clock jitter of the DLL output (out) at different 

frequencies and in detail at 50MHz, 200MHz and 250MHz. Jitter is taken for a few other input 

frequencies and plotted in Fig. 6.6. The jitter deterioration at lower frequency is expected due to 

the larger delay gain of the delay cell. The proposed architecture exhibits a rms jitter of 2.1ps and 

peak-to-peak jitter of 14.4ps at 200MHz. 

 

Figure 6.3: Jitter of output clock, in, at input frequency=50MHz 
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Figure 6.4: Jitter of output clock, in, at input frequency=200MHz 

 

Figure 6.5: Jitter of output clock, in, at input frequency=250MHz 
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Figure 6.6: Measured jitter performance of output clock 
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6.4. Noise injection performance 

The rms jitter performance is worsened to 15.8ps under noise injection via a 500mV pk-

pk 70MHz sine wave coupled into the power supply as illustrated in Fig. 6.7. This results in a 

supply sensitivity of 0.18ps/mV, comparable to the reported results in [8,13], which uses the 

same architecture for the delay cell. The test setup is given by simple circuit in Fig. 6.8, where a 

waveform generator is used to perturb the power supply directly. Sine waves of different 

frequencies are later used for injection and the supply sensitivity is plotted against the injected 

noise frequency in Fig. 6.9. While low frequency noise has less impact on the clock jitter, high 

frequency noise however causes the largest deterioration of jitter. We can infer somewhat that 

the technique of noise shaping and filtering is effective in curbing high frequency noise in the 

circuit since the  DLL exhibits relatively low jitter under normal operation. In the case where 

the  DLL is incorporated into other larger silicon-on-chip (SOC) circuits consisting of 

extensive digital blocks where noise sources do not just come from the  DLL, the use of an 

on-chip voltage regulator can help in rejecting noise from power supply to improve the jitter 

performance. 
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Figure 6.7: Measured jitter performance with noise injection 

 

 

Figure 6.8: Test setup for noise injection 
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Figure 6.9: Effect on supply sensitivity from noise of various frequencies 
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6.5. Initial transient step response 

The loop filter step response for 50MHz, 100MHz and 200MHz shown in Fig. 6.10 is 

normalized with respect to both the respective step voltage values and settling time for 200MHz 

input clock for ease of comparison.  From Table I, it is clear that the deduced PM is not far from 

the ideal case where both poles shift if the adaptive bandwidth feature worked. If the second pole 

was not adjusted adaptively, it would have resulted in decreasing PM with increasing frequency, 

which is not the case of the derived PM. The settling time, which gives an indication of loop 

bandwidth, varies quite proportionally with the input frequency and it proves the workability of 

the adaptive bandwidth feature of the circuit.  

 

Figure 6.10: Normalized transient loop filter voltages at 50MHz, 100MHz and 200MHz. 
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Table 1: Phase margin (PM) and settling time comparison 

 

The architecture can provide clock synchronization for input frequency ranging from 

50MHz to 250MHz with the ΔΣ DLL core consuming only 6.9mA under 3V supply excluding 

the test buffers and clock synchronization circuit at 200MHz. The power consumption 

breakdown is presented in Table II. Note that the power consumption of the FSM is not included 

because they contribute quite insignificant power compared to analog blocks. 

Table 2: Power consumption breakdown at input frequency=200MHz 

 

 DLL composition 

block name number of 

blocks 

current 

per block 

(A) 

total current (A) 

delay cell 13 147.54 1918.02 

5-to-1 MUX 1 100 100 

charge pump 1 1677.86 1677.86 

programmable charge pump 

current interface 

1 196.72 196.72 

phase detector 1 56 56 

 modulator 1 1518 1518 

FSM 1 negligible 0 

differential to single buffer 2 258 516 

single to differential buffer 1 135 135 

master bias 1 500 500 

total current 6887.6 

 

frequency 
(MHz) 

peak 
voltage 

(V) 

final 
voltage 

(V) 

overshoot 
(%) 

deduced 
 PM 
 (o) 

PM# 
(o) 

PM* 
(o) 

normalized 
tsettling 

(t/tsettling@f=200MHz) 

50 1.903 1.893 2.49 68.2 65.4 65.4 4.81 

100 1.796 1.782 5.14 64.5 65.4 51.7 2.21 

200 1.548 1.547 2.17 68.7 65.4 38.6 1 

# resultant PM if both close loop poles adjust adaptively 
*  resultant PM if 2nd close loop pole did not adjust adaptively 
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Significant amount of power is being consumed by the differential delay cells which offer 

better supply noise immunity.  Significant power saving can be achieved if simple current-

starved inverter type delay cell is used in the design, similar to [10-11], using a pseudo-

differential type of configuration.  However, that will be done at the expense of jitter 

performance. 

The performance is summarized and compared with other  DLL in Table III. The most 

cited reference for semi-digital DLL is also included in the comparison as a benchmark. Due to 

the difference in technology and operating frequencies compared to other  DLL, it is difficult 

to give a fair comparison. 

Table 3: Summary and comparison of performance 

 

Reference This work [8] [10] [11] 

Technology 0.35µm 0.8µm 0.13µm 0.18µm 

Power Supply 3V 3.3V 1.2V 1.8V 

Operating 
Frequency 

50MHz to 
250MHz 

80kHz to 
400MHz 

0.5GHz to 
1.5GHz 

0.4GHz to 
1.6GHz 

 Resolution 5 to 7 bits 4 bit# 11 bits 20 bits 

Jitter 2.1psrms 

@200MHz 

0.15rms 

11psrms  
@250MHz 

0.99rms 

4.1psrms   
@1GHz 

1.5rms 

0.4psrms 

@1.2GHz* 

0.17rms 

Phase Span 2π 2π 2π 2π 

Current Drawn 6.9mA @ 
200MHz 

30.9mA @ 
250MHz 

12.5mA @  
1GHz 

2.93mA @ 
1.2GHz 

Core DLL Area 
Dual Loop Area 

0.4mm2 
0.62mm2 

- 
0.8mm2 

0.48mm2 
- 

0.21mm2 
- 

# Inferred from 16 bit thermometer code used in fine tuning 
* Measured as integrated rms phase noise from 10kHz to10MHz. 
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For example, the time step resolution of the proposed design is mainly limited by the running 

speed of the  modulator, and should improve with more advanced CMOS technology.  

Despite the older technology employed, the proposed design achieves better jitter 

performance and smaller power consumption and area compared to [10] by eliminating the PLL 

based MPG.  It should be pointed out that the reported jitter in [11] is obtained by integrating the 

measured phase noise through limited bandwidth and is expected to be up to 12.7% worse than 

actual jitter [17].  By converting the time jitter into phase domain to remove the frequency 

dependency, our design achieves the best rms phase jitter of 0.15
o
.  We also include the 

performance from [8] for comparison due to its similar clock synchronization architecture, delay 

cell, operating frequencies and technology.  As illustrated, the elimination of the analog 

interpolator helps achieving better jitter performance, smaller power consumption. Despite a 

technology node leap, our design is only ~25% smaller in area than [8] due to the large filter 

capacitors used in the adaptive bandwidth feature. However, the area ratio of the core loop DLL 

to peripheral loop of our design is 2:1 compared to about 1:3 for [8], which implies that the 

peripheral loop in our design require less additional blocks and complexity compared to [8]. 
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CHAPTER 7. CONCLUSION 

With the popularity of DLLs in clock synchronization systems, clock and data recovery 

and other wireline operations, demands for higher operating frequency has pushed for better 

performance requirements for DLLs in terms of clock jitter and fine timing resolution. In order to 

meet these needs, our research has led to the exploration a new class of semi-digital DLL,  

DLL. While there are not many variants of  DLL [10-11] in the existing literature, most of 

these architectures could achieve sub-ps resolution while maintaining good jitter performance. 

Despite having eliminated the analog phase interpolator that is required in conventional semi-

digital DLL, it has introduced an additional block in the form of a multi-phase generator (MPG). 

By making use of existing multi-phases in the feedback path, not only MPG is rendered 

unnecessary, noise performance does not suffer from the additional MPG jitter and power 

overhead. 

A Matlab linearized system model is presented in chapter 4 to show the intuitive 

relationship of the core loop parameters with respect to the secondary loop parameters in terms 

of loop stability and its transient characteristics. A full functional model is later described to 

illustrate its actual clock synchronization operation. 

Its circuit implementation in CMOS technology is described in detail in chapter 5. An 

extension of Maneatis [13] adaptive loop filter control idea is highlighted and a novel anti-

harmonic lock detector is shown to deal with the non-50% duty cycle nature of the dithered 

feedback clock and the wide varying delay gain of the voltage controlled delay cell. The coarse 

and fine loop tuning is also explained in the implementation of the finite state machine. Finally, 
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the measurement results of the fabricated chip are documented in chapter 6, proving the 

functioning of proposed clock synchronization architecture and its sub-blocks. 

A ΔΣ DLL capable of generating fractional delay of 15ps has been successfully 

fabricated in 0.35m CMOS technology as a proof of concept. The proposed architecture is able 

to synchronize to clock frequency ranging from 50MHz to 250MHz and exhibit low jitter and 

relatively fine delay tuning resolution. It consumes only 20.7mW and exhibits rms jitter of 2.1ps.  

Compared with the existing  DLLs [10-11], no MPG is required. Delay resolution is 

not in the sub-picosecond range like the other  DLLs due to the technology limitation on the 

operating speed of the  modulator. If implemented in more advanced technology nodes, this 

 DLL would show greater potential, and should be able to offer better performance in terms of 

operating frequency range and tuning resolution. Area savings are also expected. Despite usage 

of older technology, better absolute jitter of 2.1psrms is obtained compared to [10]. In terms of 

rms degrees, it is comparable to the state-of-the-art [11]. Moreover in [11], in order to achieve 

low jitter, a high frequency reference is required, due to the high frequency division ratio to push 

down quantization noise. Parallel structures of MUXs and phase detectors, and a multi-bit 

charge-pump are also introduced for additional FIR filtering, increasing the complexity of the 

architecture. 

Significant progress has been made since the arrival of the semi-digital DLL [8]. 

Significant power savings of more than 4 times and 5 times better jitter performance is obtained. 

While area savings of 25% is not impressive despite a technology node leap, some hint of 

reduction in the system complexity of the peripheral loop is evidenced by the area ratio of the 

peripheral loop to the core loop. The area ratio of core loop to its secondary loop in the 

conventional DLL is 1:3 while in this work, it is 2:1, further highlighting the area savings and 
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reduction in system complexity with the elimination of the analog phase interpolator. The 

research in this thesis has clearly demonstrated advancement in the work of semi-digital and  

DLL in its application in clock synchronization. 
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