

50-250MHZ ΔΣ DLL

FOR CLOCK SYNCHRONIZATION

CHENG SAN JEOW

(B. Eng.(Hons.), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2011

i

ABSTRACT

With the advent of high data rate wireline applications in microprocessors and memory

integrated circuits (ICs), clock skew becomes a significant portion of the overall timing margin

issue in system design. A variable delay line or a delay locked loop (DLL) is often used for

flexible timing control not only in source-synchronous serial interfaces but also in clock-and-data

recovery systems. The conventional analog delay line, however, suffers from process, voltage

and temperature (PVT) variations, and calibration of the analog delay line takes substantial

design effort. A digitally controlled delay line is preferred due to its better testability and robust

characteristics. Although the semi-digital or all-digital DLL may have more robust delay control,

achieving fine timing resolution comparable to that of an analog delay line is still challenging

due to minimum achievable delay resolution posed by technology limitations.

Spurred by demands of fine tuning resolution, low jitter performance and operation

robustness, the aim of the research work in this thesis is to address these issues in a digitally

controlled DLL. A delta sigma (ΔΣ) modulator based DLL architecture for clock synchronization

application is designed and fabricated in 0.35µm CMOS technology as a proof of concept for

demonstrating the fine timing resolution and low jitter performance achievable by such

architecture. By incorporating a ΔΣ modulator in the DLL, it can have a fractional step delay of

15ps and can operate from 50MHz to 250MHz. Clock synchronization is straightforward and

occurs in 2 phases – coarse tuning and fine tuning phases. In fine tuning, a successive

approximation (SA) method is used to quickly shift the output clock near to the input clock. It

draws about 6.9mA from 3V supply at 200MHz.

ii

Unlike other existing ΔΣ DLL designs, the proposed DLL makes use of the ΔΣ modulator

in the feedback path rather than at the input, which enables it to eliminate the additional multi-

phase generator (MPG), and hence simplifies the architecture. Besides the simplification in

architecture, it also has 2 novel features, a 2
nd

 order filter whose 2 poles can be adaptively

adjusted and a unique anti-harmonic detector.

Through simplification in the structure and noise shaping contribution from the ΔΣ

modulator, it exhibits a low rms jitter of 2.137ps. Hence, the proposed digitally controlled DLL

is straightforward and combines digital architecture robustness with fine tuning similar to analog

designs.

iii

ACKNOWLEDGEMENTS

I would like to thank my supervisors, Assistant Professor Heng Chun Huat and Dr Zheng

Yuanjin for their willingness to take me as their student and especially Dr Heng who has shown

great patience and guidance to a student who is much older than his peers and trying his best to

fit back into school.

I would like to dedicate this thesis to my family especially to my wife, Siewhwi, for

bringing the bacon home while I slog at school and the mental support she has given me. I also

dedicate it to my son, Shervin, who has provided me with laughter and stress relief when I‟m

burdened from all the school and project work.

I would also like to thank the staff from VLSI and Signal Processing for the support they

provided to make this project possible and last but not least, I would like to thank my colleagues

in the same lab, with whom I held discussions with, in order to gain valuable insights to enable

me to complete this project.

Without the necessary funding, this project would not have been made possible. Many

thanks to AcRF R-263-000-317-112 for funding this project.

iv

TABLE OF CONTENTS

ABSTRACT I

ACKNOWLEDGEMENTS III

TABLE OF CONTENTS IV

LIST OF FIGURES VI

LIST OF TABLES IVIII

LIST OF SYMBOLS IX

CHAPTER 1. INTRODUCTION 1

1.1 General categories of DLL 2

1.2 Organization of thesis 4

CHAPTER 2. PRIOR ΔΣ DLL ARCHITECTURES 5

2.1 Clock Synchronization 5

2.2 General  DLL architecture 6

2.2.1  DLL employing PLL as MPG .. 7

2.2.2 Low OSR  DLL with self referenced multiphase generation 8

CHAPTER 3. PROPOSED ARCHITECTURE 11

3.1 Proposed dithered feedback path  DLL 11

3.1.1 General operation of proposed  DLL 12

3.1.2 Structural description of proposed  DLL .. 13

3.1.3 Non-linearity in delay tuning ... 14

3.2 Clock synchronization architecture using the proposed  DLL 15

3.3 Design Considerations 17

3.3.1 Mismatch Consideration .. 17

3.3.2 Phase range consideration .. 20

3.4 Conclusion 22

v

CHAPTER 4. MATLAB MODELING AND LOOP ANALYSIS 23

4.1 Loop analysis of proposed clock synchronization architecture 23

4.1.1 Modeling of  DLL core loop ... 23

4.1.2 Dual loop dynamics of clock synchronization architecture 24

4.1.2.1 Stability analysis ... 26

4.1.2.2 Step response analysis... 28

4.2 Matlab modeling of proposed clock synchronization architecture 29

4.3 Behavioral simulation of clock synchronization architecture 33

4.4 Conclusion 42

CHAPTER 5. CIRCUIT IMPLEMENTATION 43

5.1. Delay-cell with replica biasing and load matching 43

5.2. Anti-harmonic lock detector 48

5.3. Adaptive loop filter 51

5.4. ΔΣ modulator 56

5.5. FSM block 59

5.6 Conclusion 64

CHAPTER 6. MEASUREMENT RESULTS 65

6.1. Test setup 65

6.2. Timing diagram 66

6.3. Jitter performance 68

6.4. Noise injection performance 71

6.5. Initial transient step response 74

CHAPTER 7. CONCLUSION 78

REFERENCES 81

PAPERS RELATED TO DISSERTATION 84

vi

LIST OF FIGURES

Figure 1.1: Analog DLL 1

Figure 1.2: Digital DLL 1

Figure 1.3: Semi-digital DLL 2

Figure 1.4: Typical analog phase interpolator 3

Figure 2.1: Typical DLL architecture for clock synchronization 5

Figure 2.2: Existing  DLL architecture 7

Figure 2.3:  DLL employing a ring oscillator PLL as a MPG 8

Figure 2.4:  DLL with self referenced multiphase generator as a MPG 9

Figure 2.5: Shift register as a MPG 9

Figure 3.1: Proposed  DLL 12

Figure 3.2: Clock synchronization architecture with proposed  DLL 16

Figure 3.3: Clock synchronization operation 16

Figure 3.4: Simulated transfer characteristic of  DLL from output of 4th delay cell

with and without load mismatch

17

Figure 3.5: Load mismatch and feedback path mismatch consideration 18

Figure 3.6: Overlapping delays to ensure full clock period coverage 21

Figure 4.1: Modeling of  DLL core loop 24

Figure 4.2: Linearized model of clock synchronization system 25

Figure 4.3: Step responses of delay error, DEP, with respect to input step delay, Din,

for different values of peripheral loop parameter, a2 for a2 > a1

27

Figure 4.4: Step responses of delay error, DEP, with respect to input step delay, Din,

for different values of peripheral loop parameter, a2 for a1 > a2

29

Figure 4.5: Full functional behavioral model of the clock synchronization system 30

Figure 4.6: Simulink model of PD, CP and loop filter 31

Figure 4.7: Simulink model of a single delay cell 31

Figure 4.8: Simulink model of CPD 32

Figure 4.9: (a) Tracking of delay value of each delay cell during initial phase lock and

(b) locking of the dithered DLL to ref after initial settling

33

Figure 4.10: Plots showing (a) coarse tuning enable, (b) coarse tuning MUX selection,

(c) HOLD signal and (d) fine tuning enable phase during the coarse tuning

phase

34

Figure 4.11: Progressive step of shifting out closer to in during coarse tuning 35

Figure 4.12: Plots showing (a)  modulator input, (b) time delay per cell,

(c) HOLD signal (d) feedback delay group select signal during fine tuning

phase

36

Figure 4.13: in and out (a) before and (b) after fine tuning 37

Figure 4.14: Plots showing (a)  modulator input, (b) time delay per cell,

(c) HOLD signal (d) feedback delay group select signal when tuning Naverage

from 10 to 9 is insufficient

39

Figure 4.15: Delay differences in in and out (a) before fine tuning, (b) after 1
st
 round of SA

tuning and (c) after 2
nd

 round of SA fine tuning

40

Figure 4.16: Transfer characteristic of the  DLL 41

vii

Figure 5.1: Clock Synchronization System 43

Figure 5.2: Delay cell schematic 44

Figure 5.3: Delay cell delay characteristics 45

Figure 5.4: Replica biasing (a) equivalent circuit (b) layout version 46

Figure 5.5: Differential MUX implementation 47

Figure 5.6: Anti-harmonic lock detector operation 48

Figure 5.7: Anti-harmonic lock detector implementation 50

Figure 5.8: Adaptive loop filter schematic 51

Figure 5.9: Charge pump with current sensing schematic 54

Figure 5.10: Programmable 1
st
 order  modulator with dithering 56

Figure 5.11: Noise shaping from 1st order  modulator 57

Figure 5.12: Layout of 1
st
 order  modulator 58

Figure 5.13: Summary of FSM flow chart 59

Figure 5.14: Coarse loop phase detector (CPD) implementation 60

Figure 5.15: Coarse loop phase detector (CPD) operation 61

Figure 5.16: FSM block layout 62

Figure 5.17: Die photo showing regions of clean analog, RF and noisy digital regions 63

Figure 6.1: Simple test setup diagram 65

Figure 6.2: Timing diagram for DLL clock signals and synchronized out with in 67

Figure 6.3: Jitter of output clock, in, at input frequency=50MHz 68

Figure 6.4: Jitter of output clock, in, at input frequency=200MHz 69

Figure 6.5: Jitter of output clock, in, at input frequency=250MHz 69

Figure 6.6: Measured jitter performance of output clock 70

Figure 6.7: Measured jitter performance with noise injection 72

Figure 6.8: Test setup for noise injection 72

Figure 6.9: Effect on supply sensitivity from noise of various frequencies 73

Figure 6.10: Normalized transient loop filter voltages at 50MHz, 100MHz and 200MHz 74

viii

LIST OF TABLES

Table 1: Phase margin (PM) and settling time comparison 75

Table 2: Power consumption breakdown at input frequency=200MHz 75

Table 3: Summary and comparison of performance 76

ix

LIST OF SYMBOLS

DLL Delay locked loop

PVT Process, voltage and temperature

 Delta-sigma

M Delta-sigma modulator

SA Successive approximation

MPG Multi-phase generator

FIR Finite impulse response

OSR Over-sampling ratio

PLL Phase locked loop

CMOS Complementary metal oxide semiconductor

CP Charge pump

PD Phase detector

VCDL Voltage controlled delay line

DCDL Digital controlled delay line

FSM Finite state machine

ref Reference phase

DLL Feedback phase from delay line

in Input phase

out Output phase

ICP Charge pump current

KDL Delay gain of delay line

VF Loop filter control voltage

F(s) Loop filter transfer function

ID MOS transistor current

gm Transistor transconductance

Vth Transistor threshold voltage

RC Resistor capacitance time constant

p Pole frequency

PM Phase margin

AHD Anti-harmonic lock detector

K Delta-sigma modulator control word

CPD Coarse loop phase detector

DUT Device under test

MUX Multiplexer

1

CHAPTER 1. INTRODUCTION

Delay-Locked-Loop (DLL) is gaining a foothold recently for applications in clock

synchronization, multi-phase clock generation and data recovery [1-4]. It offers better jitter

performance and unconditional stability compared to Phase-Locked-Loop (PLL) [5] due to the

fact that there is no cycle-to-cycle jitter accumulation. Its circuit is also much simpler and can be

easily implemented in digital CMOS process. DLL is also easier to achieve stability, making it

more attractive for timing synchronization. The various architectures are discussed next.

time-to-
digital
phase

detector
(TDC)

in

DCDL

OUT

1

M:1

logic gate
buffers eg.

2 

M

digital
control
word

phase
detector

(PD)

in

VCDL

out

charge
pump
(CP)

up

down

loop
filter
(F(s))

Figure 1.1: Analog DLL

Figure 1.2: Digital DLL

2

1.1 General categories of DLL

Analog DLLs are usually distinguished by its analog building blocks like charge pump

(CP), voltage controlled delay line (VCDL), loop filter (F(s)) as illustrated in Fig. 1.1. They

provide the finest tuning resolution as any phase mismatch between in and out is translated

proportionally to the loop filter control voltage that tunes the delay of each delay cell. Although

it has continuous delay variation and good jitter performance due to feedback, it suffers from

limited phase range [6]. On the other hand, digital DLL is most amenable to digital CMOS

process as they only require basic building blocks like flip-flops and logic gates. Characterized

by its usage of logic gates for the delay line for digital tuning [7] as shown in Fig. 1.2, digital

DLL often requires most advanced CMOS technology to push down the delay resolution

phase
detector

(PD)

ref

VCDL

out

digital
control
word

charge
pump
(CP)

up

down

1

M:2

2 M

i i+1

phase
detector

(PD)

decision
control eg.

FSM

loop filter
(F(s))

in

core DLL

Figure 1.3: Semi-digital DLL [8-9]

3

achievable by single gate delay. In addition, large delay range is also needed to guarantee the full

phase coverage. Due to its open loop nature, digital DLL can achieve much faster locking by

employing simple time-to-digital converter (TDC). However, there will always be residual

phase error limited by the achievable delay resolution. Semi-digital DLL [8-9] is proposed to

overcome the limitations faced by digital and analog DLL. The need of additional phase

interpolator [8-9] to interpolate between the 2 adjacent phases (Fig. 1.4), worsen the overall jitter

performance.

Out– Out+
VBP

Vctrl

Ictrl[N:0] Ictrl[N:0
]

i+ i+1+ i- i+1-

Figure 1.4: Typical analog phase interpolator

4

Spurred by demands of low jitter and fine timing resolution, we look at alternative

architectures for DLL that encompass the benefits of analog and digital DLLs. Recently, delta-

sigma (ΔΣ) DLL has emerged [9-10] as a strong contender to achieve fine resolution in pico-

second range as well as good jitter performance, without the above mentioned shortfalls. In this

thesis, we will examine the issues faced by existing ΔΣ DLL and propose an alternative ΔΣ DLL

architecture. We will also discuss some circuit blocks innovation to facilitate the proper

functioning of the proposed architecture. The ΔΣ DLL architecture is incorporated in a clock

synchronization application to show its achievable timing resolution and jitter performance.

1.2 Organization of thesis

The thesis is organized in the following format. In chapter 2, we will examine existing

DLL architectures in detail. This is then followed by the proposed DLL architecture and its

utilization in clock synchronization architecture in chapter 3. The modeling aspects of the DLL

and clock synchronization architecture are covered in chapter 4 while CMOS implementation is

covered in chapter 5. We discuss the simulation and measurement results in chapter 6 and

conclude in chapter 7.

5

CHAPTER 2. PRIOR ΔΣ DLL ARCHITECTURES

2.1 Clock Synchronization

Typical clock synchronization operation is illustrated in Fig. 2.1. It usually involves

phase locking an input clock (in) to a selected output phase (out) from a multi-phase generator

(MPG). As out is generated from a low jitter reference source (ref), the resulting architecture can

achieve very good jitter performance. Depending on the signal generated from phase control

block, different architectures will result. Fully digital delay control will give rise to digital DLL.

Analog delay control will result in analog DLL. Semi-digital DLL will have mixed types of

delay control signals.

phase
detector

(PD)

in

MPG

out

phase
control
block

MUX/phase interpolator

phase
decision
signals

ref

delay control

Figure 2.1: Typical DLL architecture for clock synchronization

6

2.2 General  DLL architecture

In contrast to semi-digital DLL where analog phase interpolator is used to obtain fine

phase resolution, ΔΣ DLL employs a ΔΣ modulator to randomly select the input phase (ref)

from a fixed number of adjacent phases (i-1, i, i+1, etc.) from a MPG to produce the desired

ref as shown in Fig. 2.2. The resulting ref will then be compared with the feedback phase (DLL)

from the delay cell through the phase detector (PD). Based on a given control word, K, the ΔΣ

modulator will generate a phase selection sequence which will result in an average phase which

lies between the given adjacent phases. The theory is very much similar to a  digital-to-analog

converter (DAC), where the interpolation occurs between a fixed number of output voltage

levels, and analog output voltage with fine resolution can be obtained on average after filtering.

The random phase error after filtering by the loop filter (F(s)) will then produce the desired

control voltage to achieve the delay that will match the mean input phase. Not only the resultant

average input phase can be tuned very finely depending on the bit resolution of the ΔΣ

modulator, by the virtue of pushing the in-band noise towards the higher frequencies through ΔΣ

modulator and the effective filtering through the loop filter, good jitter performance can also be

achieved. It should be pointed out that the resulting ΔΣ DLL can function as a digital-to-time

converter.

7

2.2.1  DLL employing PLL as MPG

Both [10] and [11] have implemented the ΔΣ DLL architecture shown in Fig. 2.3 and

they mainly differ in the way of implementing the MPG. In [10], a PLL with a multi-phase ring

oscillator as highlighted in Fig. 2.2 is employed as the MPG. The 3 most significant bits (MSB)

of the 14 bits control word (K) are used to select three adjacent phases (45
o
 and 0

o
) out of the

eight phases. The remaining 11 bits are then input to M to randomize the three selected

adjacent phases to obtain fine phase step. This structure is simple and elegant, directly

controlling the phase delay with a fixed control word. However, having a PLL as a MPG incurs

more power and area. Although the ΔΣ DLL itself do not contribute much additive jitter, the

overall jitter performance is already handicapped by the PLL as the noisier multi-phase ring

oscillator is now employed as the input to the DLL rather than the low jitter reference crystal

clock.

MPG



M

F(s) CLKref

control word, K

_

1

L:1

VCDL

out

ref

2
3

L

m bits

Figure 2.2: Existing  DLL architecture

8

2.2.2 Low OSR  DLL with self referenced multiphase generation

In another structure [11] as illustrated by Fig. 2.4, a modulator is employed to

randomize the multi-phases from a MPG in the similar manner as [10] and eventually phase lock

to SIG. Shift registers and a clock divider are employed to form the MPG as shown in Fig. 2.5.

The desired multi-phases (refπ/16,0,-π/16,-π/8) are obtained by dividing down a very high frequency

input clock (CKI) by 32 and then shifting the divided clock (DCK) by the same CKI. The

resolution of the modulator must be very high in order to provide very small delay tuning for

CKO due to the larger clock period when phase comparison is performed in a much lower

frequency domain relative to the reference clock sources. This also indicates a slower lock time

due to a smaller loop bandwidth.

j-1 j+1 j

M 3:1

8:3

ref

out

in

K
MSBs

LSBs

PLL

DLL

Figure 2.3:  DLL employing a ring oscillator PLL as a MPG

9

DCK

CKI
CKO

refπ/1

6

ref-

π/16

ref0 ref-π/8

ref0 SIG
DFF DFF DFF DFF DFF

K z-n z-n z-n


M

MPG

VCDL F(s)

PD CP

32

refπ/16

ref-π/16
ref-π/8

ref0

4 bits

2-bit

2 bits 2 bits

parallel branches

4:1

4:1

CKO

CKI

DCK

SIG

2 bits

8 bits

UP

DOWN

Figure 2.4:  DLL with self referenced multiphase generator as a MPG

Figure 2.5: Shift register as a MPG

10

Although re-sampling the divided clock signal with the input clock is advantageous as it

reduces the jitter of its multi-phase outputs, this limits the achievable phase quantization to one

input clock period and lowers the over-sampling ratio (OSR). To compensate for these

limitations, a technique commonly known as finite impulse response (FIR) embedding is used.

Parallelism in structure by employing multiple PDs with a multi-bit input charge pump serving

as a summer for the multiple paths provides the required averaging to make up for the reduced

OSR. The dithered input reference phase of each parallel branch is controlled by a delayed

version of the  modulator output. The parallel structure of PDs, coupled with the delayed

control, forms an FIR filter in the analog domain. This FIR filter helps to reduce the out-of-band

quantization noise caused by the large quantization step, so as to achieve better jitter

performance. The application of the embedded FIR technique complicates the overall

architecture (eg. issues of path mismatch etc) and incurs area penalty.

While  DLLs look promising in overcoming the limitation of digital DLL phase

resolution, we look to improve on the existing  DLLs structures in terms of less complexity

and better jitter performance. We shall discuss our proposed  DLL in the next chapter.

11

CHAPTER 3. PROPOSED ARCHITECTURE

3.1 Proposed dithered feedback path  DLL

Given that the additional jitter from the PLL in [10] and the complexity and lower OSR

introduced by [11] are not preferred, we try to reinvent the architecture to circumvent these

undesired features. The proposed ΔΣ DLL is shown in Fig. 3.1. Instead of employing the ΔΣ

modulator to randomly select the input phase, we employ the ΔΣ modulator at the feedback path

to randomly select the feedback delay. In this manner, we eliminate the need of an additional

multi-phase generator by making full use of the multi-phase output in the voltage controlled

delay line (VCDL). This is the clear advantage when compared to previous architectures since

we already make use of the multi-phases readily available in the VCDL without the need of

additional MPG. For the proposed  DLL, the phase quantization can be kept as a fraction of

one input clock period, thus minimizing quantization noise. Together with a clean crystal

reference clock employed at the input, both features can help in improving the jitter performance.

12

3.1.1 General operation of proposed  DLL

The  modulator provides the dithered phase delay, DLL, from delay taps 8 to 11 of

the VCDL based on a given control word, K. The chosen feedback delay is then compared with

the reference phase through the PD. The filtered error from the PD will generate a controlled

voltage that will produce the delay to match the reference phase. More details on tuning are

covered in the operation of the finite state machine (FSM) in chapter 5.



F(s) ref



control word, K

-

7to10
4:1

13-tap VCDL

DLL

2 bits

m bits

8to11
4:1

2:1

4to13

sel

5:1 MUX

Figure 3.1: Proposed  DLL

13

3.1.2 Structural description of proposed  DLL

In the proposed DLL, thirteen delay cells form the delay line, from which ten of its

outputs (4 to 13) are used to cover all possible phases of the entire clock. The feedback delay is

tapped from the 7th to 11th outputs (7 to 11) of the delay line. The ΔΣ modulator produces a

two bit output that will randomly select four phases. Either 7
th

 to 10th taps or 8
th

 to 11th taps can

be chosen by the ΔΣ modulator. The provision of two delay tap groups enables the DLL to cover

all the phases required for the clock synchronization in fine step and will be covered in detail

later. In this design, a passive 2
nd

 order loop filter with adaptive pole tuning and a 1st order

modulator is chosen to complement each other. The design of these blocks will be discussed in

chapter 5. It should be pointed out that the number of bits and thus time step resolution are

ultimately limited by the achievable clocking speed of digital circuitry implemented in the 

modulator. Fortunately, this implies that better time step resolution can be expected with the

down scaling of transistor size for more advanced CMOS technology. Therefore, we adopt

programmable bit resolution for the  modulator to maintain similar time step resolution across

different input clock frequencies. At lower input clock frequency, the  modulator can tolerate

more adder delay and larger m can thus be used. In this design, m is made programmable from 5

to 7 bits to achieve relatively consistent time step resolution of roughly 15ps throughout the input

clock frequency range of 50MHz to 250MHz.

14

3.1.3 Non-linearity in delay tuning

The delay per cell generated by the proposed architecture can be estimated as follows:

m

clk

average

clk
delay K

N

T

N

T
T

2




, (3.1)

where N can be either 8 or 9 depending on the selected delay tap groups, K is the input control

word to the modulator, m is the resolution of the ΔΣ modulator, resulting in the average number

of delay taps, Naverage, having values from 8 to 10. Tclk is the period of the input clock. The time

step resolution per cell is determined by the difference between the two consecutive delays and is

defined as follows with each successive decrement of the control word, K:




























mm

clkstep K
N

K
N

TT

2

1

2

1

1

. (3.2)

Equation (3.2) indicates that the time step resolution is input dependent. The resulting digital-to-

time transfer characteristic is therefore non-linear. This is totally different from [10-11] where a

linear transfer characteristic can be observed. However, the resolution of the ΔΣ modulator (m)

can always be chosen to be large enough such that the DLL can cover the desired phase range

even with the non-linear transfer characteristic. The ΔΣ modulator not only determines the time

step resolution, it also affects the overall jitter performance.

15

3.2 Clock synchronization architecture using the proposed  DLL

The complete clock synchronization architecture employing proposed ΔΣ DLL is shown

in Fig. 3.2. The clock synchronization occurs in two steps. First, the core DLL loop is initialized

to give a fixed Tdelay. The resulting multiphases (4 to 13) are then compared with the incoming

phase (in) to determine the closest phase through a coarse phase detector (CPD). The CPD will

generate Up/Down or Hold signal depending on the error between in and out. The FSM will

then select one of the phases from 4 to 13 that is closest to the input phase in. Once the closest

phase has been identified, the algorithm will move on to the second step, where the FSM will

start changing the input control word K to fine tune the Tdelay of the core ΔΣ DLL. This will move

the selected phase edge (out) from the first step closer to the incoming clock edge (in). To speed

up the second step, successive approximation (SA) technique is employed to obtain the correct

input control word K. Therefore, it only requires m steps to cycle through all the possible K

values which will produce the Tdelay that closely match to the input phase (in). Compared to the

semi-digital DLL proposed in [7-8], this architecture eliminates the additional phase interpolator

by simply tuning the DLL phase edges directly through the ΔΣ modulator. This not only

simplifies the design but also eliminates possible additional jitter source. Fig. 3.3 exemplifies the

above-mentioned delay matching concept.

16

A

B

C E

G

H

I

J

in

out

out

out

out

coarse delay tuning OR

fine delay tuning

completion of delay tuning



F(s) ref



K

-
7to11

4to13

in

FSM

out

core loop

UPDN

5:1

10:1

13-tap VCDL

CPD

HOLD

DLL

2 bits

m bits

Proposed

 DLL

Figure 3.2: Clock synchronization architecture with proposed  DLL

Figure 3.3: Clock synchronization operation

17

3.3 Design Considerations

 Like most other DLLs that suffer from static mismatch issues, load and path matching

must be taken into account while designing the DLL. Design for full phase coverage is also

needed for the proper operation of a clock synchronization system.

3.3.1 Mismatch Consideration

Fig. 3.2 presents a simplified view of the proposed architecture. In fact, two major

sources of mismatches will impact the performance and need to be addressed carefully. Firstly,

the delay cell mismatch needs to be minimized. As the different phase taps constitute the whole

phase range, any mismatch among the delay cells would give rise to output phase inaccuracy (see

Fig. 3.4).

Ideal case with no mismatch

Post layout simulation

Simulation with 5% load mismatch

Simulation with 10% load mismatch

Figure 3.4: Simulated transfer characteristic of  DLL from output of 4th delay cell with

and without load mismatch

18

This is a common problem faced by all DLL with multiple phase taps [8, 10-11], and is

solved by ensuring equal loading seen by all the delay cells. Similar approach has been adopted

here. Although the feedback path only requires 5-to-1 multiplexer (7 to 11) and the output

phase selection only requires 10-to-1 multiplexer (4 to 13), identical 13-to-1 multiplexers are

employed for both of them to ensure equal loading seen by all delay cells as illustrated in Fig.

3.5. In addition, dummy delay cell is also added to the output of 13th delay cell for better load

matching. Secondly, the additional multiplexer employed in the feedback path introduces

additional multiplexer delay (tmux).

F(s) 
ref



-

out

5:1

10:1

13-tap VCDL

DL

L

dummy
delay cell

13

5:1

B1
to

 B10

1to1

3

identical 5:1
MUX

tMUX

tMU

X

s7

 to
s11

s1

to

s6,
s12

to

s13



K1 to K5

DL

L

K1 to K5
13:1

one-hot
MUX

1to13

B1 to B10



s4 to s13

s1 to s3 13:1
one-hot

MUX

out

1to13

core loop

Figure 3.5: Load mismatch and feedback path mismatch consideration

19

The resulting Tdelay in (1) will now become

m

MUXclk
delay K

N

tT
T

2





. (3.3)

Therefore Tdelay will not be accurately defined due to the process dependent tmux. This issue is

resolved by employing identical multiplexer at the input path as shown in Fig. 3.5. This will

eliminate the additional process dependent tmux introduced in (3). It should be pointed out that

this issue is also not unique in our proposed architecture. In fact, careful examination of Fig. 2.3

and Fig. 2.4 reveals similar problem faced by other  DLL [10-11] due to the additional

process dependent delay introduced by MPG and multiplexer. Similar technique has also been

employed in [10-11] to eliminate this phase inaccuracy.

To validate the impact of the mismatches on the output delay characteristics, delay

characteristic of Fig. 3.4 with extracted post-layout delay is also shown. As illustrated, with the

employed technique to minimize delay mismatch, there is not much deviation of the resulting

delay characteristic compared to the one with ideal matching delay. However, when the delay

mismatch deteriorates to 5~10%, noticeable static phase error will result. Nevertheless, for clock

synchronization application proposed in this thesis, the proposed algorithm will automatically

adjust the  DLL input to compensate for this phase offset as long as the proposed DLL exhibit

continuous phase range coverage. For digital-to-phase converter application, this static phase

error can be calibrated with additional time-to-digital converter (TDC), which can be easily

implemented using shift registers.

20

3.3.2 Phase range consideration

The first three delay taps are not used during the coarse tuning step because of the phase

range issue. When Naverage is changed continuously from 10 to 8 through the control word K,

each delay cell will experience different phase variation as indicated by Δi in Fig. 3.6. In

general, the later the delay cell being placed in the delay line, the larger the phase variation it will

encounter, i.e. i>k if i>k. By modifying the ΔΣ modulator input during the fine tuning step,

the combined phase variation from 4 to 13 will cover the entire phase (2π) of the clock period

continuously, as shown by the darkly shaded region. However, if 1 to 9 was chosen instead, the

combined phase variation from 1 to 9 will result in discontinuous phase coverage of the entire

clock period as illustrated by the broken lightly shaded rectangle region. Equation (2) and Fig.

3.6 clearly indicate that the phase variation is limited by the earlier delay tap. To ensure

continuity in the phase coverage, the following relationship can be derived:

1

11

minmax

max

minmaxmin













 




NN

N
i

N

T

N

i

N

i
T clk

clk

 , (3.4)

where Nmin and Nmax are the minimum and maximum number of delay taps per one clock period

and i is the earliest delay tap used for the phase synchronization. Equation (4) reveals that the

larger the i value, the smaller the difference that can be tolerated between Nmax and Nmin, and thus

the smaller number of delay tap groups needed (Nmax−Nmin+1). However, larger i also means

more delay cells along the delay line for full phase coverage, and thus more power and jitter. In

21

this design, i, Nmin and Nmax are chosen to be 4, 8 and 10 respectively to optimize between

number of delay tap groups, jitter and power.

The other clear advantage of not using the first three delay cells is that it relaxes the

design parameter of the delay cell. If the first cell is used for delay tuning, this imposes on the

cell a full tuning range of Tclk/10, which is very difficult to design. By using more cells in the

untapped section of the delay line, it relaxes this constraint further.

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

All phases

Naverage=8

Naverage=10

CLKref

∆1

∆2

∆13

Tclk
10

Tclk
8

Figure 3.6: Overlapping delays to ensure full clock period coverage

22

3.4 Conclusion

A new ΔΣ DLL architecture utilizing dithering in its feedback path is presented in this

chapter. Its linearity issues is easily mitigated using a higher resolution ΔΣ modulator and hence

can be applied to clock synchronization. The common issues of phase mismatch and phase

coverage are also tackled. Before continuing to the actual silicon design of the circuit, it is

important that modeling and analysis of the entire clock synchronization architecture is

performed for a more in depth understanding of the system. This will be covered in the next

chapter.

23

CHAPTER 4. MATLAB MODELING AND LOOP ANALYSIS

4.1 Loop analysis of proposed clock synchronization architecture

 In this chapter, modeling and loop analysis of the clock synchronization architecture will

be covered in detail. The two most important aspects of loop stability and transient behavior will

also be scrutinized based on its defining loop parameters.

4.1.1 Modeling of  DLL core loop

The  DLL core loop is modeled as a simple feedback loop with its functional blocks

merged into a single block with transfer function H(s) as shown in Fig. 4.1. H(s) can be reduced

to a simple representative form consisting of loop parameters by a0 and a1:

 1

0

21

212

21)(
ass

a

s
RCC

CC
s

RCC

KFI

D

D
sH

DLREFCP

EC

OUT









,

 (4.1)

using the parameters of each functional block, i.e. charge pump current (ICP), frequency of

reference source ref (Fref), delay gain of VCDL (KDL) and loop filter components (C1, C2 and R)

based on the filter configuration mentioned in chapter 5. Note that a0 and a1 are positive values

and the analysis in this section is based on delay and not phase. Each component of delay of

signals in the loop are prefixed by „D‟. e.g. Dref, Dout represents the delay values of signals ref

and out from previous chapters respectively. Quantization noise in the form of delay, D, from

24

the  modulator is introduced into the core loop through its‟ feedback path as shown in Fig.

4.1. Intermediate signals in their delay forms are as shown in the same diagram.

4.1.2 Dual loop dynamics of clock synchronization architecture

To model the secondary loop of the proposed architecture, some intuitive approximation

is needed. As the secondary loop is fundamentally a digital loop involving FSM, direct

incorporation would be difficult and less insightful. Instead, we observe that at steady state, the

main objective of secondary loop is to closely match the input and output phase, and produce a

phase error (DEP) of zero. According to feedback control theory, a zero error is only possible if

integrator controller is employed. Therefore, the secondary loop can be modeled as an integrator

with constant a2 as illustrated in Fig. 4.2. The final linearized model of the clock

synchronization system, characterized in terms of delay, is presented in Fig. 4.2.

a0

s(s+a1)

s

-

D

Dref

 Dout

DEC

DFB

H(s) =

Noise shaping

a0, a1 > 0

Figure 4.1: Modeling of  DLL core loop

25

The effects of applying different values of a2 with respect to the core loop parameters are

studied to provide some intuitive understanding of the design of the peripheral loop in terms of

stability and transient response of the delay error, DEP, between out and in. The core DLL loop

is fundamentally a stable loop. DEP is expected to settle to 0 and ought to remain stable no matter

what perturbation is introduced to the loop. The linear model based on Fig. 4.2 is built in Matlab

for the verification of the stability analysis and the study of the effects of the core and secondary

loop parameters on the transient step response on the phase error DEP.

a0

s(s+a1)

a2

 s

s

-

-

-

D

Dref

Dout

DEP

DEC

DFB

H(s) =

L(s) =

noise shaping

a0, a1, a2 > 0

Din

secondary loop

core loop

Figure 4.2: Linearized model of clock synchronization system

26

4.1.2.1 Stability analysis

To study the stability of the dual loop architecture, the close loop transfer functions of

DEP with respect to various inputs has to be derived. The close loop transfer functions of DEP

with respect to the different delay inputs, Din, Dref and D are found to be:

200

2

1

3

0

aasasas

sa

D

D

in

EP




, (4.2)

200

2

1

3

0

2

1

3

aasasas

sasas

D

D

ref

EP






, (4.3)

and

200

2

1

3

2

0

aasasas

sa

D

DEP




 , (4.4)

respectively. By final value theorem or taking limits of 0s of equations (4.2) to (4.4), the

responses to a step input disturbance for different inputs are the same. DEP will eventually settle

to 0 for all values of a0, a1 and a2 if given enough time. However, in order to ensure stability of

the system regardless of any input responses, the close loop poles of transfer functions (4.2) to

(4.4) must be located in the left half complex plane. Since all 3 close loop transfer functions have

the same characteristic equation, which determines the location of the poles, the Routh array is

formed:

s
3
 1 a0

s
2
 a1 a0a2

s
1

1

2001

a

aaaa 

 (4.5)

s
0
 a0a2

27

By Routh Hurwitz theorem for stability [12], elements in the first column in the Routh array

must have the same sign resulting in the following condition that be satisfied:

0
1

2001 


a

aaaa

or

 21 aa  .

 (4.6)

In the case where
12 aa  , DEP will grow exponentially (Fig. 4.3) and no locking of out and in

will be achieved.

Figure 4.3: Step responses of delay error, DEP, with respect to input step delay, Din, for

different values of peripheral loop parameter, a2 for a2 > a1

a2 = a1
a2 = 1.1a1
a2 = 1.2a1

28

4.1.2.2 Step response analysis

The other area of interest is the transient step response of DEP. As the transfer functions

are quite similar in form, only equation (4.2) is used in the study. First, optimal core loop

parameters are chosen such that the step response is optimal. While a0 is less flexible to change

because it consists of parameters of the CP and VCDL, it is more convenient to define a1 to

define the core loop characteristics as it consists of only the loop filter parameters. Moreover, we

also know from Routh Hurwitz theorem for stability that a1 is the parameter that directly

influences loop stability. Using actual design parameters, different step responses using various

values of a2 relative to a1 are plotted in Fig. 4.4. The optimal value of a2 is found to be about

0.05a1. Since the reciprocal of a2 sheds some light on the time constant of the secondary loop, it

gives some indication on the time span between each FSM decision. Together with equation

(4.6), we know how to adjust the time in between each FSM decision or clock rate of the FSM

block relative to the core loop filter design parameters.

29

Figure 4.4: Step responses of delay error, DEP, with respect to input step delay, Din, for

different values of peripheral loop parameter, a2 for a1 > a2

4.2 Matlab modeling of proposed clock synchronization architecture

 With better understanding of the dual loop dynamics, we can proceed to formulate a

behavioral model in Matlab for full functional simulation before silicon implementation. This

way, the functionality of the clock synchronization architecture can be verified before the actual

circuit is designed and the behavioral model can also provide valuable insight during integration

of all the different building blocks. Moreover, full chip simulation may not be possible due to the

complexity of the resulting netlist. The overall behavioral model is shown in Fig. 4.5. Matlab

Simulink is used for modeling.

a2 = 0.01a1

a2 = 0.05a1

a2 = 0.1a1

a2 = 0.5a1

30

Figure 4.5: Full functional behavioral model of the clock synchronization system

31

 While the PD, CP, loop filter and the VCDL blocks of the DLL can be easily modeled

with available phase detector, transfer function and variable transport delay Simulink blocks as

highlighted in Fig. 4.6 and 4.7, the fine tuning FSM control is slightly more difficult to integrate

using Matlab‟s Stateflow flowchart.

Figure 4.6: Simulink model of PD, CP and loop filter

Figure 4.7: Simulink model of a single delay cell

32

The main difficulty lies in the interface between the flowchart and the remaining

simulink blocks. Most of the Simulink blocks deal with integer whereas the Stateflow flowchart

deals with bit processing. Therfore, in order to incorporate bit processing within the Stateflow

flowchart, we had to call upon matlab embedded functions like bi2de and de2bi to translate

between integer values and bit strings, in order to accurately model the peripheral control loop.

The Stateflow flowchart for coarse and fine tuning can be found in Appendix A and the

Stateflow Help section within the Matlab tool can be used to assist in the understanding of the

flowchart semantics. A step function block is used to enable the coarse tuning block to ensure

that coarse tuning starts only when the DLL has achieved phase lock. A programmable clock

divide by N block is used to define the time span between each FSM decision. The time it takes

for the FSM to make each decision should be carefully selected with respect to the core loop

parameters based on the dual loop analysis earlier.

The coarse loop phase detector, CPD is modeled exactly after the actual hardware,

consisting of delay cells, logic gates and flip-flops as shown in Fig. 4.8.

Figure 4.8: Simulink model of CPD

33

4.3 Behavioral simulation of clock synchronization architecture

The functioning and operation of the proposed architecture can be studied by full system

Matlab simulation. Various time plots, such as loop filter settling, MUX selection and etc. are

examined. Fig. 4.9 shows the initial lock of the core loop DLL before coarse tuning is enabled.

The delay value of each delay cell is tracked in Fig 4.9(a). Fig. 4.9(b) shows locking of the

dithered DLL to ref after initial settling.

Figure 4.9: (a) Tracking of delay value of each delay cell during initial phase lock and

(b) locking of the dithered DLL to ref after initial settling

DLL initial lock Coarse tuning activated

(a)

(b)

34

After the initial DLL lock is established, the coarse loop FSM is activated. The step

function in Fig. 4.10 enables the coarse loop FSM and the coarse loop FSM adjusts the coarse

loop MUX and finally selects the clock edge nearest to the input clock edge. After it determined

the nearest clock edge when HOLD=1 is attained, the coarse tuning FSM section relinquishes

control to the fine tuning part of the FSM block by sending out the fine tune FSM enable signal.

Fig. 4.11 shows the diminishing delay difference between out and to in with each progressive

step of coarse tuning.

Figure 4.10: Plots showing (a) coarse tuning enable, (b) coarse tuning MUX selection,

(c) HOLD signal and (d) fine tuning enable phase during the coarse tuning phase

(a)

(b)

(c)

(d)

35

Figure 4.11: Progressive step of shifting out closer to in during coarse tuning

After the coarse tuning step has completed its course, fine tuning takes place. The fine

tuning control will use the SA (Successive Approximation) approach to quickly fine tune the 

modulator to find the best  modulator input value that will enable out to shift nearest to in. In

the case where out is shifted in Figure 4.12 best illustrates the operation.

delay difference

between

out and in

36

Figure 4.12: Plots showing (a)  modulator input, (b) time delay per cell, (c) HOLD signal

(d) feedback delay group select signal during fine tuning phase

 Fig. 4.12 shows the interactions of the different signals during the fine tuning process. It

illustrates how the delay of each delay cell changes when the  modulator input is being tuned

by the FSM. In addition, it also exhibits how FSM tunes the modulator input based on the HOLD

signal.

(a)

(b)

(c)

(d)

0.5369µs

fine tuning phase

FSM rectifies

input when

HOLD≠1
increasing

delay of

out

FSM

revalidating

delay of out

37

Figure 4.13: in and out (a) before and (b) after fine tuning

The FSM uses the SA (Succesive Approximation) approach for fine tuning. It selects a

midpoint value (i.e. 7) in the entire  modulator input range (0 to15). The HOLD signal is

subsequently evaluated. The FSM tunes to another midpoint value in either the upper (8 to 15) or

lower (0 to 6) input range depending on the HOLD signal. By reducing the input range with each

approximation, the delay of out eventually approaches the delay of in. SA is an efficient

algorithm especially when handling a long digital input word. Fig 4.13 highlights the end result

of fine tuning. It compares the delay difference between in and out before and after fine tuning.

As an additional feature of the circuit, the FSM intentionally perturbs the  modulator

after a fixed number of cycles to revalidate the synchronization of out to in.

(a)

(b)

38

To demonstrate full clock coverage, we purposely introduce a delay difference between

in and out such that tuning Naverage from 10 to 9 is not enough to shift out close enough to in. In

this case, the FSM would still use SA approach to tune to the smallest input value of 

modulator. Upon finding that out can be shifted further, the FSM would change the feedback

delay group of 8
th

 to 11th taps to the group of 7
th

 to 10
th

 taps. Subsequently, the FSM would tune

the  modulator input using the same SA algorithm until the delay of in almost matches out.

The entire operation is described in Fig. 4.14. Likewise, Fig. 4.15 shows the end result of fine

tuning. The residual delay after the first round of SA tuning is also shown in Fig. 4.15(b).

39

Figure 4.14: Plots showing (a)  modulator input, (b) time delay per cell, (c) HOLD signal

(d) feedback delay group select signal when tuning Naverage from 10 to 9 is insufficient

(a)

(b)

(c)

(d)

fine tuning of Naverage

from 10 to 9

fine tuning of Naverage

from 9 to 8

minimum

input value

of 

modulator

reached

0.5797µs

40

Figure 4.15: Delay differences in in and out (a) before fine tuning, (b) after 1

st
 round of SA

tuning and (c) after 2
nd

 round of SA fine tuning

(a)

(b)

(c)

difference in

delay after

1
st
 round of SA

tuning

initial delay

difference

after coarse

tuning

41

Overall, the clock synchronization architecture model works quite well. The model can

also used to obtain the transfer characteristic of the DLL, shown in Fig. 4.12, which shows

excellent matching to the theoretical delay estimation.

Figure 4.16: Transfer characteristic of the  DLL

42

4.4 Conclusion

 A system model and a full functional behavioral model of the clock synchronization

architecture are successfully modeled using Matlab Simulink. Both models can provide valuable

insight to the design of the clock synchronization system. The system model studies the effects

of the core and peripheral loop parameters on stability and transient response of the system. The

functional model can be used to generate the transfer characteristic, which concurs with our

earlier theoretical analysis.

43

CHAPTER 5. CIRCUIT IMPLEMENTATION

The overall clock synchronization system is shown in Fig. 5.1. The main blocks of the

clock synchronization consists of 13-cell delay line, the anti-harmonic lock detector (AHD), the

adaptive loop filter,  modulator, the finite state machine (FSM) block and the coarse loop

phase detector (CPD). The circuit implementation of these blocks will be discussed in the next

few sections of this chapter.

Figure 5.1: Clock Synchronization System



Loop
Filter

ref



K

7to11

4to13

in

FSM

out

core loop

UPDN

5:1

10:1

13-tap VCDL

CPD

HOLD

DLL

2 bits

m bits

Proposed DLL

AHD

Charge
Pump
(CP) Phase

Detector

OVER

UNDER

UP

DOWN
VF ICP

44

5.1. Delay-cell with replica biasing and load matching

A delay cell with large delay variation is required to cater for wide range of input

frequencies for this project. The differential buffer delay stage proposed in [13] is employed in

this design, and is illustrated in Fig. 5.2. The differential architecture is chosen for its better

supply and common-mode noise rejection. The replica bias buffer is used to avoid loading the

charge pump circuitry directly onto the delay cells as well as to maintain constant output swing

for each delay cell. From simulation, for control voltage ranging from 1 to 2.1V, the delay per

cell can vary from 300ps to 4ns as shown in Fig. 5.3. As observed in Fig 5.3, the delay varies

exponentially with the control voltage. This will cause the delay gain, which is given by the

slope of the curve, to vary substantially throughout the entire range. Therefore, the DLL loop

characteristics will change accordingly.

Figure 5.2: Delay cell schematic

Out– Out+

In+ In–

VBP

VBN

45

Figure 5.3: Delay cell delay characteristics

Although the equivalent schematic for the replica bias is shown in Fig. 5.4(a), its‟ layout

version is implemented using 2 identical delay cells which is equivalent to Fig. 5.4(b) to ensure

better matching. While the layout is structurally the same as that of two delay cells side by side,

it only differs in the metal connection of the gate to source at the respective PMOS loads.

46

Figure 5.4: Replica biasing (a) equivalent circuit (b) layout version

 Differential MUX is also employed in this design. The schematic is given in Fig. 5.5. The

current and load values are designed to ensure sufficient swing at the output when driving the

next stage, which is the differential to single ended buffers.

tie1

VBN

VF

VBN

tie0

tie1

tie1

VF

tie1

VBP

VBP

(a)

(b)

47

Figure 5.5: Differential MUX implementation

The single PMOS transistor current (IDP) of the delay cell and the delay of each delay cell

have been shown in [13] as:

   22

22
THPFDD

P
THPGS

P
DP VVV

K
VV

K
I  , (5.1)

and

   THPFDDP

EFF

THPGSP

EFF

mp

EFF
delay

VVVK

C

VVK

C

g

C
T





 , (5.2)

where KP is the PMOS device transconductance, VF is the loop filter voltage, gmp is the

transconductance, VTHP is the PMOS threshold voltage, and CEFF is the effective load capacitance

of one delay cell.

4+ 4

–

out–

13

+

VB

B1

B10

out+

13

–

48

5.2. Anti-harmonic lock detector

Due to the wide dynamic range of the delay for the delay cell employed, anti-harmonic

lock detector (AHD) is needed to avoid false locking. The AHD will send signals to the charge

pump to adjust the loop filter voltage, overriding the PD, when the DLL edge falls outside the

valid lock range between 0.5Tclk to 1.5Tclk. Fig. 5.6 shows the timing operation and how the

UNDER and OVER signals are generated.

Figure 5.6: Anti-harmonic lock detector operation

ref

DLL

DLL

DLL

lock range

OVER

UNDER

<
1
/2Tclk

valid

>
3
/2Tclk

49

The AHD is implemented using two serial shift registers as shown in Fig. 5.7. The

outputs of the shift registers are initialized to have logic values as shown. When triggered by the

negative and positive edges of ref to DLL respectively, the logic values shift to the right and

loops back to the 1
st
 register when it reaches the end, corresponding to the relative positions of

the respective edges. Using the outputs of the shift registers, the UNDER and OVER signals are

then generated based on the relative edge positions of ref and DLL. If the negative edge of ref

leads the positive edge of DLL by 2 positions, the OVER signal will be generated. On the other

hand, the UNDER signal is generated when the negative edge of ref lags the positive edge of

DLL by 1 position. This detector operates based on relative positions of the input signal edges

rather than level-sampling based detector described in [14], making it less susceptible to the duty

cycle of DLL. It should be pointed out that due to the randomization of feedback phases of the

proposed  DLL, DLL might not exhibit 50% duty cycle. However, the proposed AHD still

requires the duty cycle of ref to be roughly 50%, which is relatively easier to achieve and design

compared to the varying DLL.

50

Figure 5.7: Anti-harmonic lock detector implementation

D

S

D D

R R

D

R
RESET

D

S

D D

R R

D

R
RESET

DLL

ref

IN1 IN2 IN3 IN4

D1 D2 D3 D4

IN4

D1

IN1

D2

IN2

D3

IN3

D4

IN3

D1

IN4

D2

IN1

D3

IN2

D4

UNDER

1 0 0 0

1 0 0 0

OVER

51

5.3. Adaptive loop filter

Compared to conventional DLL,  DLL requires higher order loop filter in order to

suppress the high frequency noise due to the noise shaping. As the first order ΔΣ modulator

provides first order noise shaping, at least a second order loop filter is required to attenuate the

high frequency shaped noise. If the order of both the  modulator and the loop filter are the

same, high frequency noise will not be fully suppressed. This noise might creep back into the

circuit, contributing to jitter in the DLL. Added to the challenge is the input clock frequencies

with wide dynamic range that the loop filter needs to operate at. In this design, a simple adaptive

RC passive second order filter, consisting of 2 capacitors and an active MOSFET resistor as

shown in Fig. 5.8, is implemented.

Figure 5.8: Adaptive loop filter schematic

VCP

VCP

VF

M1
 M2

C1

C2

R

+

-

300pF

30pF

VBN

52

The desired loop filter characteristic of loop filter voltage output, VF, with charge pump output,

ICP, is given by

 2121

2

1
)(

CCsRCCsI

V
sF

CP

F


 , (5.3)

where C1 and C2 are the values of the respective capacitors and R is the resistance of the active

MOSFET resistor. The resultant closed loop transfer function have the form of:

 
clk

DLCP

clk

DLCP

REF

OUT

T

KI
CCsRCCs

T

KI

sH





2121

2

)(




 (5.4)

Further simplifying the transfer function in (5.4) by making some approximations will give us a

convenient form:






















RC
s

C

k
s

RCC

k

sH

21

21

1
)(

, (5.5)

where
clk

DLCP

T

KI
k  . (5.5) has two poles given by

1

1
CT

KI

clk

DLCP
p  , (5.6)

and

2

2

1

RC
p  , (5.7)

where ICP is the charge pump current and KDL is the delay gain of the VCDL.

53

The loop bandwidth can be approximated by the dominant pole, ωp1 and inferring from equation

(5.5), the resultant phase margin (PM) will be given by:














 

2

11tan90
p

poPM



 (5.8)

 To achieve adaptive bandwidth for wide frequency range operation, the ratio of ωp1 to the input

clock frequency (fclk) has to be kept constant. From (5.6), this ratio is given by

1

1

C

KI

f

DLCP

clk

p



. (5.9)

To maintain constant p1/fclk ratio, ICP and KDL have to be made constant. However,

given the wide delay range that we are targeting for in the design, KDL is highly non-linear. In

[13], the delay gain (KDL) is found to be inversely proportional to the biasing current of the cell

delay (IDP) and varies with the input clock frequency (fclk). Therefore, ICP is mirrored from the

replica bias of the delay cell in earlier section to track the delay gain variation under various

input clock frequencies to maintain a constant ratio of p1/fclk [13]. Similar approach is adopted

here with additional programmable element being introduced to the charge pump as illustrated in

Fig. 5.9. The charge pump is made programmable to allow fine tuning of the loop filter

bandwidth for better jitter performance.

54

Figure 5.9: Charge pump with current sensing schematic

The resulting p1/fclk can be shown as:

1

1

2 C

Cx

f

B

clk

p



, (5.10)

where CB=2NCEFF is the total effective buffer capacitance of all the delay stages and x is the

proportionality constant between the charge pump current (ICP) and the single PMOS transistor

current (IDP) of the delay cell.

programmable
current

cascode
bias

wideswing cascode
configuration

current

DN

UP

VCP

5-bit

tie0

tie1

tie0

VBN

55

Unlike [13], which only employs C1 as first order loop filter, the need of 2
nd

 order loop

filter complicates the adaptive loop filter design due to the additional 2
nd

 pole, p2. In practice,

p2/p1 is kept at fixed ratio (~2.2) to maintain desired phase margin (PM) while providing

sufficient high frequency noise suppression. Combining (5.6), (5.7) and (5.10),

2

1

1

2 2

RCxC

CT

B

clk

p

p





. (5.11)

For a given VCDL with N delay stages,

  mp

B

THPFDDP

B
delayclk

g

C

VVVK

C
NTT

22



 . (5.12)

By examining (5.11) and (5.12), if R is made to track the inverse of gmp of the delay cell,

the p2/p1 ratio can then be kept constant. In this design, the adaptive tuning of the 2
nd

 pole is

achieved by a replica bias as shown in Fig. 5.6. The delay cell current (IDP) is first established in

a branch passing through a diode-connected PMOS transistor M1. This will setup the desired

|VGS| for the transistor M1 which gives rise to transconductance that closely tracks the gmp of the

delay cell. An opamp is employed to fix the source terminal of M1 at VCP. The resulting gate

bias of M1 is then applied to the gate of M2 operating at linear region through replica bias

concept with the following conductance:

  mpMmTHPMGSPMds ggVVKg
R

  1,1,2,

1
. (5.13)

where  is the sizing ratio between transistor M2 and M1. Substituting (18) and (17) into (16),

the constant p2/p1 ratio can then be obtained as

2

1

1

2

xC

C

p

p 




 . (5.14)

56

5.4. ΔΣ modulator

The 1
st
 order M with dithering [15] is shown in Fig. 5.10. First order M is

employed to reduce the complexity of the adaptive loop filter design. However, 1
st
 order M

has very poor randomization property and thus mandates a dithering block to eliminate any

periodic pattern exhibits at the output. A 25 bit pseudo-random sequence with the gain of one

unit of quantization level is employed before the quantizer input [15] to achieve the dithering.

Figure 5.10: Programmable 1
st
 order  modulator with dithering

25 bit pseudo
noise

generator

z-1

1

-

input
word, K
(m bit)

unit quantizaton
level gain

2s’ complement
logic operation

16 bit
adder

±8(5 bit)

added to
6th-10th

bit

16 bit
adder

added to
MSB of lower

10 bit

1 bit

2 bit

to
 MUX

selection

2 bit
quantizer

encoder

57

Figure 5.11: Noise shaping from 1
st
 order  modulator

As shown in Fig. 5.11, the modulator output demonstrate 1
st
 order noise shaping without

significant spurious tones. The spurious tones will result in periodic jitter that might worsen the

DLL jitter performance and should be minimized. The M is synthesized to run at 250MHz.

Although the M can receive a 10 bit input, the bit resolution (m) of the input control word (K)

is only 5-7 bit to optimize the running speed of the modulator (50M-250MHz) and the attainable

delay step resolution (~15ps), with lesser bits used at higher frequencies. Six additional bits are

added to the modulator internal bit width to avoid arithmetic overflow, resulting in an internal bit

width of 16. The layout of the  modulator block is as shown below in Fig. 5.12 and it occupies

a space of 255m × 240m. This block consumes less than 0.1mA for all the frequency range of

operation.

The verilog code is synthesized using Synopsys DC compiler and constrained with a 4ns

clock. There is little margin due to the technology used. The generated netlist has 197 cells.

58

Figure 5.12: Layout of 1
st
 order  modulator

clock input and  modulator outputs



 m
o

d
u

la
to

r
in

p
u

ts

59

5.5. FSM block

The FSM flow chart for clock synchronization is shown in Fig. 5.13.

Figure 5.13: Summary of FSM flow chart

Coarse tuning

HOLD=1

UPDN=1

HOLD=1

Last bit?

Fine tuning of K

Choose right
adjacent edge

Invert next bit

Finish

Y

N

Revert
current bit

Choose left
adjacent edge

N

Y

Y

Y

N

N

60

 The clock synchronization is achieved in two tuning steps. During the coarse tuning

step, the selected output phase (out) is first initialized to 8 to speed up the coarse tuning. The

out is then compared with the incoming phase (in) through CPD [16] to determine the desired

action. The CPD split the full incoming clock period into ten intervals (A-J), and depending on

the relative position of out with respect to in, UPDN or HOLD signal will be generated

accordingly. While the HOLD signal is false, the UPDN signal of 1 or 0 will select either left or

right adjacent clock edge relative to the current chosen output phase. Once the chosen out falls

within the interval E of the incoming clock period, the HOLD signal becomes true, and the FSM

has identified out that is the closest to in. The entire operation for coarse tuning is also

illustrated in Fig. 5.13 while the implementation and truth table is shown in Fig. 5.14 and Fig

5.15 respectively.

Figure 5.14: Coarse loop phase detector (CPD) implementation

D Q

QN

D Q

QN

D Q

QN

UPDN

HOLD

in

out

delay cell

61

Figure 5.15: Coarse loop phase detector (CPD) operation

After coarse tuning, the FSM will now enter the fine tuning step where the input control

word K of the modulator will be updated in SA approach, starting from the MSB. This

guarantees that the clock synchronization can be obtained after m steps. The bit is first inverted

and the inversion would be kept if the resulting out does not move into interval F. Otherwise,

the FSM would revert the change and move onto the next LSB. The final out should eventually

synchronize to in to within the step resolution of roughly 15ps. The layout of the FSM block is

shown in Fig. 5.16 and measures 340m by 330m. The power consumed by this block is

negligible as it operates at much lower frequency.

It is constrained with 10ns clock. The generated netlist contains 567 cells.

A

B

C D

E

F

G

H

I

J

in

out

out

out

final state of
coarse tuning

J 1 0

Region UPDN HOLD

CPD truth table

A
B
C
D

E

F

G
H
I

0
0
0
0

0

1

1
1
1

0
0
0
0

1

0
0
0
0

62

Figure 5.16: FSM block layout

The chip is fabricated in Austria Micro System 0.35μm CMOS Technology. The full die

shown in Fig. 5.17 with the ΔΣ DLL core and clock synchronization architecture occupies active

areas of 0.4mm
2
 and 0.62mm

2
 respectively. We adopt careful planning to separate the most noisy

regions consisting of digital blocks (FSM,  modulator) farthest from the cleaner analog blocks

(loop filter, CP and master bias). The other regions are mainly occupied by bypass capacitors and

a serial-to-parallel interface (SPI) block.

to MUX inputs
(coarse phase

selection)

CPD
control

signals

to



 m
o

d
u

la
to

r
in

p
u

ts
 (

fi
n

e
 t

u
n

in
g

)

FSM

clock

63

Figure 5.17: Die photo showing regions of clean analog, RF and noisy digital regions

CP

CPD +

buffers
DLL +

MUX

FSM

M

Filter

AHD

master
bias

2.64mm

2.46mm

64

5.6 Conclusion

 The circuit implementation of the key blocks is documented in this chapter. Although

most blocks are based on reference designs, there is some novelty when it comes to

implementing two of the blocks. For example, the anti-harmonic detector (AHD) is unique. It is

based on the relative positions of the clock edge based rather than reference clock based

sampling. Clock based sampling techniques relies heavily on the 50% duty cycle of the sampled

clock for accuracy while the proposed edge based method is less independent of the duty cycle.

 Although the adaptive biasing technique [13] has been heavily studied and widely used,

only 1
st
 order loop filter with single pole tuning is implemented. Our work is an extension of this

technique and a second tuning pole is also utilized, to complement the 1
st
 order  modulator

used in the design.

65

CHAPTER 6. MEASUREMENT RESULTS

6.1. Test setup

 Most of the measurements are taken using the Tektronix DPO71254 mixed signal

oscilloscope. Clock source used for testing is a very clean reference, using Agilent 8133A Pulse

Generator. It exhibits approximately 0.5ps rms jitter or 3.4ps pk-pk for most frequencies tested.

The power supply used is Agilent E3631A. The test setup is briefly shown in Fig. 6.1.

 The chip die is bond-wired and packaged into a QFN40 package which is soldered on the

PCB for testing. The digital control signals are sent to the chip via a in-house developed SPI.

Figure 6.1: Simple test setup diagram

DPO71254

8133A

SMA cables used are same length

SMA cables

E3631A
power
supply

PCB

CPU
SPI

interface

66

6.2. Timing diagram

The measured timing diagram of the various clock signals from the proposed DLL

operating at 200MHz is shown in Fig. 6.2. As illustrated, the ref and in are not synchronized

initially. Through the proposed architecture, the out is then synchronized to in as shown in Fig.

6.2. The observed duty cycle difference between the in and out is mainly due to the different

travelling paths between the two signals. As expected, DLL does not exhibit 50% duty cycle due

to the dithered switching among a selected group of fixed clock phases. The functioning of the

anti-harmonic lock detector is also verified by monitoring the loop filter voltage, which

corresponds to the final achievable delay. As illustrated in Fig. 6.2, the AHD is functioning

despite the non-50% duty cycle observed in DLL.

67

Figure 6.2: Timing diagram for DLL clock signals and synchronized out with in

out

in

ref

DLL

out

in

1.3ps

68

6.3. Jitter performance

Fig. 6.3 to Fig. 6.5 shows the measured clock jitter of the DLL output (out) at different

frequencies and in detail at 50MHz, 200MHz and 250MHz. Jitter is taken for a few other input

frequencies and plotted in Fig. 6.6. The jitter deterioration at lower frequency is expected due to

the larger delay gain of the delay cell. The proposed architecture exhibits a rms jitter of 2.1ps and

peak-to-peak jitter of 14.4ps at 200MHz.

Figure 6.3: Jitter of output clock, in, at input frequency=50MHz

26.6ps rms
140ps pk-pk

200ps

100mV

50MHz

69

Figure 6.4: Jitter of output clock, in, at input frequency=200MHz

Figure 6.5: Jitter of output clock, in, at input frequency=250MHz

250MHz

2.097ps rms
12.9ps pk-pk

10ps

10mV

200MHz

2.1ps rms
14.4ps pk-pk

10ps

10mV

70

Figure 6.6: Measured jitter performance of output clock

71

6.4. Noise injection performance

The rms jitter performance is worsened to 15.8ps under noise injection via a 500mV pk-

pk 70MHz sine wave coupled into the power supply as illustrated in Fig. 6.7. This results in a

supply sensitivity of 0.18ps/mV, comparable to the reported results in [8,13], which uses the

same architecture for the delay cell. The test setup is given by simple circuit in Fig. 6.8, where a

waveform generator is used to perturb the power supply directly. Sine waves of different

frequencies are later used for injection and the supply sensitivity is plotted against the injected

noise frequency in Fig. 6.9. While low frequency noise has less impact on the clock jitter, high

frequency noise however causes the largest deterioration of jitter. We can infer somewhat that

the technique of noise shaping and filtering is effective in curbing high frequency noise in the

circuit since the  DLL exhibits relatively low jitter under normal operation. In the case where

the  DLL is incorporated into other larger silicon-on-chip (SOC) circuits consisting of

extensive digital blocks where noise sources do not just come from the  DLL, the use of an

on-chip voltage regulator can help in rejecting noise from power supply to improve the jitter

performance.

72

Figure 6.7: Measured jitter performance with noise injection

Figure 6.8: Test setup for noise injection

DUT

noise
injection

power supply

perturbation
observed

at injection point

15.8ps rms
102.4ps pk-pk

40ps

30mV

73

Figure 6.9: Effect on supply sensitivity from noise of various frequencies

74

6.5. Initial transient step response

The loop filter step response for 50MHz, 100MHz and 200MHz shown in Fig. 6.10 is

normalized with respect to both the respective step voltage values and settling time for 200MHz

input clock for ease of comparison. From Table I, it is clear that the deduced PM is not far from

the ideal case where both poles shift if the adaptive bandwidth feature worked. If the second pole

was not adjusted adaptively, it would have resulted in decreasing PM with increasing frequency,

which is not the case of the derived PM. The settling time, which gives an indication of loop

bandwidth, varies quite proportionally with the input frequency and it proves the workability of

the adaptive bandwidth feature of the circuit.

Figure 6.10: Normalized transient loop filter voltages at 50MHz, 100MHz and 200MHz.

75

Table 1: Phase margin (PM) and settling time comparison

The architecture can provide clock synchronization for input frequency ranging from

50MHz to 250MHz with the ΔΣ DLL core consuming only 6.9mA under 3V supply excluding

the test buffers and clock synchronization circuit at 200MHz. The power consumption

breakdown is presented in Table II. Note that the power consumption of the FSM is not included

because they contribute quite insignificant power compared to analog blocks.

Table 2: Power consumption breakdown at input frequency=200MHz

 DLL composition

block name number of

blocks

current

per block

(A)

total current (A)

delay cell 13 147.54 1918.02

5-to-1 MUX 1 100 100

charge pump 1 1677.86 1677.86

programmable charge pump

current interface

1 196.72 196.72

phase detector 1 56 56

 modulator 1 1518 1518

FSM 1 negligible 0

differential to single buffer 2 258 516

single to differential buffer 1 135 135

master bias 1 500 500

total current 6887.6

frequency
(MHz)

peak
voltage

(V)

final
voltage

(V)

overshoot
(%)

deduced
 PM
 (o)

PM#
(o)

PM*
(o)

normalized
tsettling

(t/tsettling@f=200MHz)

50 1.903 1.893 2.49 68.2 65.4 65.4 4.81

100 1.796 1.782 5.14 64.5 65.4 51.7 2.21

200 1.548 1.547 2.17 68.7 65.4 38.6 1

resultant PM if both close loop poles adjust adaptively
* resultant PM if 2nd close loop pole did not adjust adaptively

76

Significant amount of power is being consumed by the differential delay cells which offer

better supply noise immunity. Significant power saving can be achieved if simple current-

starved inverter type delay cell is used in the design, similar to [10-11], using a pseudo-

differential type of configuration. However, that will be done at the expense of jitter

performance.

The performance is summarized and compared with other  DLL in Table III. The most

cited reference for semi-digital DLL is also included in the comparison as a benchmark. Due to

the difference in technology and operating frequencies compared to other  DLL, it is difficult

to give a fair comparison.

Table 3: Summary and comparison of performance

Reference This work [8] [10] [11]

Technology 0.35µm 0.8µm 0.13µm 0.18µm

Power Supply 3V 3.3V 1.2V 1.8V

Operating
Frequency

50MHz to
250MHz

80kHz to
400MHz

0.5GHz to
1.5GHz

0.4GHz to
1.6GHz

 Resolution 5 to 7 bits 4 bit# 11 bits 20 bits

Jitter 2.1psrms

@200MHz

0.15rms

11psrms
@250MHz

0.99rms

4.1psrms
@1GHz

1.5rms

0.4psrms

@1.2GHz*

0.17rms

Phase Span 2π 2π 2π 2π

Current Drawn 6.9mA @
200MHz

30.9mA @
250MHz

12.5mA @
1GHz

2.93mA @
1.2GHz

Core DLL Area
Dual Loop Area

0.4mm2
0.62mm2

-
0.8mm2

0.48mm2
-

0.21mm2
-

Inferred from 16 bit thermometer code used in fine tuning
* Measured as integrated rms phase noise from 10kHz to10MHz.

77

For example, the time step resolution of the proposed design is mainly limited by the running

speed of the  modulator, and should improve with more advanced CMOS technology.

Despite the older technology employed, the proposed design achieves better jitter

performance and smaller power consumption and area compared to [10] by eliminating the PLL

based MPG. It should be pointed out that the reported jitter in [11] is obtained by integrating the

measured phase noise through limited bandwidth and is expected to be up to 12.7% worse than

actual jitter [17]. By converting the time jitter into phase domain to remove the frequency

dependency, our design achieves the best rms phase jitter of 0.15
o
. We also include the

performance from [8] for comparison due to its similar clock synchronization architecture, delay

cell, operating frequencies and technology. As illustrated, the elimination of the analog

interpolator helps achieving better jitter performance, smaller power consumption. Despite a

technology node leap, our design is only ~25% smaller in area than [8] due to the large filter

capacitors used in the adaptive bandwidth feature. However, the area ratio of the core loop DLL

to peripheral loop of our design is 2:1 compared to about 1:3 for [8], which implies that the

peripheral loop in our design require less additional blocks and complexity compared to [8].

78

CHAPTER 7. CONCLUSION

With the popularity of DLLs in clock synchronization systems, clock and data recovery

and other wireline operations, demands for higher operating frequency has pushed for better

performance requirements for DLLs in terms of clock jitter and fine timing resolution. In order to

meet these needs, our research has led to the exploration a new class of semi-digital DLL, 

DLL. While there are not many variants of  DLL [10-11] in the existing literature, most of

these architectures could achieve sub-ps resolution while maintaining good jitter performance.

Despite having eliminated the analog phase interpolator that is required in conventional semi-

digital DLL, it has introduced an additional block in the form of a multi-phase generator (MPG).

By making use of existing multi-phases in the feedback path, not only MPG is rendered

unnecessary, noise performance does not suffer from the additional MPG jitter and power

overhead.

A Matlab linearized system model is presented in chapter 4 to show the intuitive

relationship of the core loop parameters with respect to the secondary loop parameters in terms

of loop stability and its transient characteristics. A full functional model is later described to

illustrate its actual clock synchronization operation.

Its circuit implementation in CMOS technology is described in detail in chapter 5. An

extension of Maneatis [13] adaptive loop filter control idea is highlighted and a novel anti-

harmonic lock detector is shown to deal with the non-50% duty cycle nature of the dithered

feedback clock and the wide varying delay gain of the voltage controlled delay cell. The coarse

and fine loop tuning is also explained in the implementation of the finite state machine. Finally,

79

the measurement results of the fabricated chip are documented in chapter 6, proving the

functioning of proposed clock synchronization architecture and its sub-blocks.

A ΔΣ DLL capable of generating fractional delay of 15ps has been successfully

fabricated in 0.35m CMOS technology as a proof of concept. The proposed architecture is able

to synchronize to clock frequency ranging from 50MHz to 250MHz and exhibit low jitter and

relatively fine delay tuning resolution. It consumes only 20.7mW and exhibits rms jitter of 2.1ps.

Compared with the existing  DLLs [10-11], no MPG is required. Delay resolution is

not in the sub-picosecond range like the other  DLLs due to the technology limitation on the

operating speed of the  modulator. If implemented in more advanced technology nodes, this

 DLL would show greater potential, and should be able to offer better performance in terms of

operating frequency range and tuning resolution. Area savings are also expected. Despite usage

of older technology, better absolute jitter of 2.1psrms is obtained compared to [10]. In terms of

rms degrees, it is comparable to the state-of-the-art [11]. Moreover in [11], in order to achieve

low jitter, a high frequency reference is required, due to the high frequency division ratio to push

down quantization noise. Parallel structures of MUXs and phase detectors, and a multi-bit

charge-pump are also introduced for additional FIR filtering, increasing the complexity of the

architecture.

Significant progress has been made since the arrival of the semi-digital DLL [8].

Significant power savings of more than 4 times and 5 times better jitter performance is obtained.

While area savings of 25% is not impressive despite a technology node leap, some hint of

reduction in the system complexity of the peripheral loop is evidenced by the area ratio of the

peripheral loop to the core loop. The area ratio of core loop to its secondary loop in the

conventional DLL is 1:3 while in this work, it is 2:1, further highlighting the area savings and

80

reduction in system complexity with the elimination of the analog phase interpolator. The

research in this thesis has clearly demonstrated advancement in the work of semi-digital and 

DLL in its application in clock synchronization.

81

REFERENCES

[1] W. Garlepp et al., “A portable digital DLL for high-speed CMOS interface circuits”,

IEEE J. of Solid-State Circuits, vol. 34, No. 5, pp. 632-635, May. 1999.

[2] J. H. Kim, Y. H. Kwak, M. Kim, S. W. Kim and C. Kim, “A 120-MHz-1.8-GHz CMOS

DLL-based clock generator for dynamic frequency scaling,” IEEE J. of Solid-State

Circuits, vol. 41, no. 9, pp. 2077-2082, Sep. 2006.

[3] L. Wu and W. C. Black Jr., “A low-jitter skew-calibrated multiphase clock generator for

time-interleaved applications,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.

Papers, pp. 396-397, San Francisco, CA, Feb. 2001.

[4] X. Maillard, F. Devisch and M. Kuijk, “A 900-Mb/s CMOS data recovery DLL using

half-frequency clock,” IEEE J. of Solid-State Circuits, vol. 37, no. 6, pp. 711-715, Jun.

2002.

[5] B. Kim, T. C. Weigandt and P. R. Gray, “PLL/DLL system noise analysis for low jitter

clock synthesizer design,” IEEE Proc. of Int. Symp. on Circuits and Systems (ISCAS),

vol. 4, pp. 31-34, Jun. 1994.

82

[6] Y. Moon, J. Choi, K. Lee, D. K. Jeong and M. K. Kim, “An all-analog multiphase delay-

locked loop using a replica delay line for wide-range operation and low-jitter

performance”, IEEE J. of Solid-State Circuits, vol. 35, No. 3, pp. 377-384, Mar. 2000.

[7] A. Efendovich, Y. Afek, C. Sella, and Z. Bikowsky, “Multifrequency zero-jitter delay-

locked loop,” IEEE J. Solid-State Circuits, vol. 29, no. 1, pp. 67–70, Jan. 1994.

[8] S. Sidiropoulos and M. A. Horowitz, “A semi-digital dual delay-locked loop”, IEEE J. of

Solid-State Circuits, vol. 32, No. 11, pp. 1683-1692, Nov. 1997.

[9] R. Kreienkamp, U. Langmann, C. Zimmermann, T. Aoyama, H. Siedhoff, “A 10-gb/s

CMOS clock and data recovery circuit with an analog phase interpolator”, IEEE J. of

Solid-State Circuits, vol. 40, No. 3, pp. 736-743, Mar. 2005.

[10] P. K. Hanumolu, V. Kratyuk, G. Y. Wei, and U. K. Moon, “A sub-picosecond resolution

0.5-1.5GHz digital-to-phase converter,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp.

414-424, Feb. 2008.

[11] X. Yu, W. Rhee, Z. Wang, J. B. Lee and C. Kim, “A 0.4-to-1.6GHz low OSR with self-

referenced multiphase generation,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.

Tech. Papers, pp. 398-400, San Francisco, CA, Feb. 2009.

[12] K. Ogata, “Modern control engineering”, Prentice-Hall, pp. 283-288, 1990.

83

[13] J. G. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased

techniques”, IEEE J. of Solid-State Circuits, vol. 31, No. 11, pp. 1723-1725, Nov. 1996.

[14] D. J. Foley and M. P. Flynn, “CMOS DLL-based 2-V 3.2-ps jitter 1-GHz clock

synthesizer and temperature-compensated tunable oscillator”, IEEE J. of Solid-State

Circuits, vol. 36, No. 3, pp. 417-423, Mar. 2001.

[15] S. R. Norsworthy, “Effective dithering of sigma-delta modulators,” IEEE Proc. of Int.

Symp. on Circuits and Systems (ISCAS), vol. 3, pp. 1304-1307, 1992.

[16] S. J. Bae, H. J. Chi, Y. S. Sohn and H. J. Park, “A VCDL-based 60-760-MHz dual-loop

DLL with infinite phase-shift capability and adaptive-bandwidth scheme”, IEEE J. of

Solid-State Circuits, vol. 40, No. 5, pp. 1119-1129, May. 2005.

[17] M. Ishida, K. Ichiyama, T.J. Yamaguchi, M. Soma, M. Suda, T. Okayasu, D. Watanabe,

K. Yamamoto, “A programmable on-chip picosecond jitter measurement circuit without

reference clock input,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,

pp.512-513, San Francisco, CA, Feb., 2005.

84

PAPERS RELATED TO DISSERTATION

[1] S.-J. Cheng, L. Qiu, Y.Zheng, and C.-H. Heng, “50-250MHz  DLL for Clock

Synchronization”, IEEE J. of Solid-State Circuits, vol. 45, No.115, pp. 2445-2456, Nov.

2010.

