343 research outputs found

    Swarm-Based Spatial Sorting

    Full text link
    Purpose: To present an algorithm for spatially sorting objects into an annular structure. Design/Methodology/Approach: A swarm-based model that requires only stochastic agent behaviour coupled with a pheromone-inspired "attraction-repulsion" mechanism. Findings: The algorithm consistently generates high-quality annular structures, and is particularly powerful in situations where the initial configuration of objects is similar to those observed in nature. Research limitations/implications: Experimental evidence supports previous theoretical arguments about the nature and mechanism of spatial sorting by insects. Practical implications: The algorithm may find applications in distributed robotics. Originality/value: The model offers a powerful minimal algorithmic framework, and also sheds further light on the nature of attraction-repulsion algorithms and underlying natural processes.Comment: Accepted by the Int. J. Intelligent Computing and Cybernetic

    Cooperation in Swarms of Robots without Communication

    Get PDF
    Swarm robotics aims to use a large group of relatively simple robots to solve tasks that can hardly be achieved by a single robot in the group. Compared to single robot systems with increased capability, a swarm robotic system may have advantages in robustness, flexibility and scalability. However, designing cooperative behaviors for a swarm robotic system is a challenging problem, especially when the robots may not have communication capabilities and thus only know local information. For a swarm of miniature mobile robots that cannot communicate explicitly, this thesis studies fully decentralized solutions of two problems. For the problem of cooperative transport, the thesis presents a strategy to push an object that is large enough to occlude the robots' perception of the goal of the transportation. For the problem of pattern formation, the thesis investigates algorithms based on the Brazil nut effect that can organize the swarm of robots into an annular formation. These problems are studied using physics-based computer simulations as well as experimental implementations based on the e-puck robotic platform. The simplicity of the solutions make them suitable for applications that require the individual robots to be as simple as possible. Example application scenarios could be micro robot swarms working in the human body

    Evolving Self-Organizing Behaviors for a Swarm-bot

    Get PDF
    In this paper, we introduce a self-assembling and self-organizing artifact, called a swarm-bot, composed of a swarm of s-bots, mobile robots with the ability to connect to and to disconnect from each other. We discuss the challenges involved in controlling a swarm-bot and address the problem of synthesizing controllers for the swarm-bot using artificial evolution. Specifically, we study aggregation and coordinated motion of the swarm-bot using a physics-based simulation of the system. Experiments, using a simplified simulation model of the s-bots, show that evolution can discover simple but effective controllers for both the aggregation and the coordinated motion of the swarm-bot. Analysis of the evolved controllers shows that they have properties of scalability, that is, they continue to be effective for larger group sizes, and of generality, that is, they produce similar behaviors for configurations different from those they were originally evolved for. The portability of the evolved controllers to real s-bots is tested using a detailed simulation model which has been validated against the real s-bots in a companion paper in this same special issue

    Dynamics Days Latin America and the Caribbean 2018

    Get PDF
    This book contains various works presented at the Dynamics Days Latin America and the Caribbean (DDays LAC) 2018. Since its beginnings, a key goal of the DDays LAC has been to promote cross-fertilization of ideas from different areas within nonlinear dynamics. On this occasion, the contributions range from experimental to theoretical research, including (but not limited to) chaos, control theory, synchronization, statistical physics, stochastic processes, complex systems and networks, nonlinear time-series analysis, computational methods, fluid dynamics, nonlinear waves, pattern formation, population dynamics, ecological modeling, neural dynamics, and systems biology. The interested reader will find this book to be a useful reference in identifying ground-breaking problems in Physics, Mathematics, Engineering, and Interdisciplinary Sciences, with innovative models and methods that provide insightful solutions. This book is a must-read for anyone looking for new developments of Applied Mathematics and Physics in connection with complex systems, synchronization, neural dynamics, fluid dynamics, ecological networks, and epidemics

    Critical review on biofilm methods

    Get PDF
    Biofilms are widespread in nature and constitute an important strategy implemented by microorganisms to survive in sometimes harsh environmental conditions. They can be beneficial or have a negative impact particularly when formed in industrial settings or on medical devices. As such, research into the formation and elimination of biofilms is important for many disciplines. Several new methodologies have been recently developed for, or adapted to, biofilm studies that have contributed to deeper knowledge on biofilm physiology, structure and composition. In this review, traditional and cutting-edge methods to study biofilm biomass, viability, structure, composition and physiology are addressed. Moreover, as there is a lack of consensus among the diversity of techniques used to grow and study biofilms. This review intends to remedy this, by giving a critical perspective, highlighting the advantages and limitations of several methods. Accordingly, this review aims at helping scientists in finding the most appropriate and up-to-date methods to study their biofilms.The authors would like to acknowledge the support from the EU COST Action BacFoodNet FA1202

    Bryophyte Ecology

    Get PDF
    Bryophyte Ecology is an ebook comprised of 5 volumes written by Janice Glime, Professor Emerita of Biological Sciences at Michigan Technological University. Chapter coauthors include Irene Bisang, S. Robbert Gradstein, J. Lissner, W. J. Boelema, and D. H. Wagner. To download smaller sections of Bryophyte Ecology, visit: https://digitalcommons.mtu.edu/bryophyte-ecology/https://digitalcommons.mtu.edu/oabooks/1003/thumbnail.jp
    • …
    corecore