186,713 research outputs found

    Precis of neuroconstructivism: how the brain constructs cognition

    Get PDF
    Neuroconstructivism: How the Brain Constructs Cognition proposes a unifying framework for the study of cognitive development that brings together (1) constructivism (which views development as the progressive elaboration of increasingly complex structures), (2) cognitive neuroscience (which aims to understand the neural mechanisms underlying behavior), and (3) computational modeling (which proposes formal and explicit specifications of information processing). The guiding principle of our approach is context dependence, within and (in contrast to Marr [1982]) between levels of organization. We propose that three mechanisms guide the emergence of representations: competition, cooperation, and chronotopy; which themselves allow for two central processes: proactivity and progressive specialization. We suggest that the main outcome of development is partial representations, distributed across distinct functional circuits. This framework is derived by examining development at the level of single neurons, brain systems, and whole organisms. We use the terms encellment, embrainment, and embodiment to describe the higher-level contextual influences that act at each of these levels of organization. To illustrate these mechanisms in operation we provide case studies in early visual perception, infant habituation, phonological development, and object representations in infancy. Three further case studies are concerned with interactions between levels of explanation: social development, atypical development and within that, developmental dyslexia. We conclude that cognitive development arises from a dynamic, contextual change in embodied neural structures leading to partial representations across multiple brain regions and timescales, in response to proactively specified physical and social environment

    Perception and Cognition Are Largely Independent, but Still Affect Each Other in Systematic Ways: Arguments from Evolution and the Consciousness-Attention Dissociation

    Get PDF
    The main thesis of this paper is that two prevailing theories about cognitive penetration are too extreme, namely, the view that cognitive penetration is pervasive and the view that there is a sharp and fundamental distinction between cognition and perception, which precludes any type of cognitive penetration. These opposite views have clear merits and empirical support. To eliminate this puzzling situation, we present an alternative theoretical approach that incorporates the merits of these views into a broader and more nuanced explanatory framework. A key argument we present in favor of this framework concerns the evolution of intentionality and perceptual capacities. An implication of this argument is that cases of cognitive penetration must have evolved more recently and that this is compatible with the cognitive impenetrability of early perceptual stages of processing information. A theoretical approach that explains why this should be the case is the consciousness and attention dissociation framework. The paper discusses why concepts, particularly issues concerning concept acquisition, play an important role in the interaction between perception and cognition

    The Mechanics of Embodiment: A Dialogue on Embodiment and Computational Modeling

    Get PDF
    Embodied theories are increasingly challenging traditional views of cognition by arguing that conceptual representations that constitute our knowledge are grounded in sensory and motor experiences, and processed at this sensorimotor level, rather than being represented and processed abstractly in an amodal conceptual system. Given the established empirical foundation, and the relatively underspecified theories to date, many researchers are extremely interested in embodied cognition but are clamouring for more mechanistic implementations. What is needed at this stage is a push toward explicit computational models that implement sensory-motor grounding as intrinsic to cognitive processes. In this article, six authors from varying backgrounds and approaches address issues concerning the construction of embodied computational models, and illustrate what they view as the critical current and next steps toward mechanistic theories of embodiment. The first part has the form of a dialogue between two fictional characters: Ernest, the �experimenter�, and Mary, the �computational modeller�. The dialogue consists of an interactive sequence of questions, requests for clarification, challenges, and (tentative) answers, and touches the most important aspects of grounded theories that should inform computational modeling and, conversely, the impact that computational modeling could have on embodied theories. The second part of the article discusses the most important open challenges for embodied computational modelling

    Nägemistaju automaatsete protsesside eksperimentaalne uurimine

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneVäitekiri keskendub nägemistaju protsesside eksperimentaalsele uurimisele, mis on suuremal või vähemal määral automaatsed. Uurimistöös on kasutatud erinevaid eksperimentaalseid katseparadigmasid ja katsestiimuleid ning nii käitumuslikke- kui ka ajukuvamismeetodeid. Esimesed kolm empiirilist uurimust käsitlevad liikumisinformatsiooni töötlust, mis on evolutsiooni käigus kujunenud üheks olulisemaks baasprotsessiks nägemistajus. Esmalt huvitas meid, kuidas avastatakse liikuva objekti suunamuutusi, kui samal ajal toimub ka taustal liikumine (Uurimus I). Nägemistaju uurijad on pikka aega arvanud, et liikumist arvutatakse alati mõne välise objekti või tausta suhtes. Meie uurimistulemused ei kinnitanud taolise suhtelise liikumise printsiibi paikapidavust ning toetavad pigem seisukohta, et eesmärkobjekti liikumisinformatsiooni töötlus on automaatne protsess, mis tuvastab silma põhjas toimuvaid nihkeid, ja taustal toimuv seda eriti ei mõjuta. Teise uurimuse tulemused (Uurimus II) näitasid, et nägemissüsteem töötleb väga edukalt ka seda liikumisinformatsiooni, millele vaatleja teadlikult tähelepanu ei pööra. See tähendab, et samal ajal, kui inimene on mõne tähelepanu hõlmava tegevusega ametis, suudab tema aju taustal toimuvaid sündmusi automaatselt registreerida. Igapäevaselt on inimese nägemisväljas alati palju erinevaid objekte, millel on erinevad omadused, mistõttu järgmiseks huvitas meid (Uurimus III), kuidas ühe tunnuse (antud juhul värvimuutuse) töötlemist mõjutab mõne teise tunnusega toimuv (antud juhul liikumiskiiruse) muutus. Näitasime, et objekti liikumine parandas sama objekti värvimuutuse avastamist, mis viitab, et nende kahe omaduse töötlemine ajus ei ole päris eraldiseisev protsess. Samuti tähendab taoline tulemus, et hoolimata ühele tunnusele keskendumisest ei suuda inimene ignoreerida teist tähelepanu tõmbavat tunnust (liikumine), mis viitab taas kord automaatsetele töötlusprotsessidele. Neljas uurimus keskendus emotsionaalsete näoväljenduste töötlusele, kuna need kannavad keskkonnas hakkamasaamiseks vajalikke sotsiaalseid signaale, mistõttu on alust arvata, et nende töötlus on kujunenud suuresti automaatseks protsessiks. Näitasime, et emotsiooni väljendavaid nägusid avastati kiiremini ja kergemini kui neutraalse ilmega nägusid ning et vihane nägu tõmbas rohkem tähelepanu kui rõõmus (Uurimus IV). Väitekirja viimane osa puudutab visuaalset lahknevusnegatiivsust (ingl Visual Mismatch Negativity ehk vMMN), mis näitab aju võimet avastada automaatselt erinevusi enda loodud mudelist ümbritseva keskkonna kohta. Selle automaatse erinevuse avastamise mehhanismi uurimisse andsid oma panuse nii Uurimus II kui Uurimus IV, mis mõlemad pakuvad välja tõendusi vMMN tekkimise kohta eri tingimustel ja katseparadigmades ning ka vajalikke metodoloogilisi täiendusi. Uurimus V on esimene kogu siiani ilmunud temaatilist teadustööd hõlmav ülevaateartikkel ja metaanalüüs visuaalsest lahknevusnegatiivsusest psühhiaatriliste ja neuroloogiliste haiguste korral, mis panustab oluliselt visuaalse lahknevusnegatiivsuse valdkonna arengusse.The research presented and discussed in the thesis is an experimental exploration of processes in visual perception, which all display a considerable amount of automaticity. These processes are targeted from different angles using different experimental paradigms and stimuli, and by measuring both behavioural and brain responses. In the first three empirical studies, the focus is on motion detection that is regarded one of the most basic processes shaped by evolution. Study I investigated how motion information of an object is processed in the presence of background motion. Although it is widely believed that no motion can be perceived without establishing a frame of reference with other objects or motion on the background, our results found no support for relative motion principle. This finding speaks in favour of a simple and automatic process of detecting motion, which is largely insensitive to the surrounding context. Study II shows that the visual system is built to automatically process motion information that is outside of our attentional focus. This means that even if we are concentrating on some task, our brain constantly monitors the surrounding environment. Study III addressed the question of what happens when multiple stimulus qualities (motion and colour) are present and varied, which is the everyday reality of our visual input. We showed that velocity facilitated the detection of colour changes, which suggests that processing motion and colour is not entirely isolated. These results also indicate that it is hard to ignore motion information, and processing it is rather automatically initiated. The fourth empirical study focusses on another example of visual input that is processed in a rather automatic way and carries high survival value – emotional expressions. In Study IV, participants detected emotional facial expressions faster and more easily compared with neutral facial expressions, with a tendency towards more automatic attention to angry faces. In addition, we investigated the emergence of visual mismatch negativity (vMMN) that is one of the most objective and efficient methods for analysing automatic processes in the brain. Study II and Study IV proposed several methodological gains for registering this automatic change-detection mechanism. Study V is an important contribution to the vMMN research field as it is the first comprehensive review and meta-analysis of the vMMN studies in psychiatric and neurological disorders

    Temporal characteristics of the influence of punishment on perceptual decision making in the human brain

    Get PDF
    Perceptual decision making is the process by which information from sensory systems is combined and used to influence our behavior. In addition to the sensory input, this process can be affected by other factors, such as reward and punishment for correct and incorrect responses. To investigate the temporal dynamics of how monetary punishment influences perceptual decision making in humans, we collected electroencephalography (EEG) data during a perceptual categorization task whereby the punishment level for incorrect responses was parametrically manipulated across blocks of trials. Behaviorally, we observed improved accuracy for high relative to low punishment levels. Using multivariate linear discriminant analysis of the EEG, we identified multiple punishment-induced discriminating components with spatially distinct scalp topographies. Compared with components related to sensory evidence, components discriminating punishment levels appeared later in the trial, suggesting that punishment affects primarily late postsensory, decision-related processing. Crucially, the amplitude of these punishment components across participants was predictive of the size of the behavioral improvements induced by punishment. Finally, trial-by-trial changes in prestimulus oscillatory activity in the alpha and gamma bands were good predictors of the amplitude of these components. We discuss these findings in the context of increased motivation/attention, resulting from increases in punishment, which in turn yields improved decision-related processing

    Computational and Robotic Models of Early Language Development: A Review

    Get PDF
    We review computational and robotics models of early language learning and development. We first explain why and how these models are used to understand better how children learn language. We argue that they provide concrete theories of language learning as a complex dynamic system, complementing traditional methods in psychology and linguistics. We review different modeling formalisms, grounded in techniques from machine learning and artificial intelligence such as Bayesian and neural network approaches. We then discuss their role in understanding several key mechanisms of language development: cross-situational statistical learning, embodiment, situated social interaction, intrinsically motivated learning, and cultural evolution. We conclude by discussing future challenges for research, including modeling of large-scale empirical data about language acquisition in real-world environments. Keywords: Early language learning, Computational and robotic models, machine learning, development, embodiment, social interaction, intrinsic motivation, self-organization, dynamical systems, complexity.Comment: to appear in International Handbook on Language Development, ed. J. Horst and J. von Koss Torkildsen, Routledg

    Backwards is the way forward: feedback in the cortical hierarchy predicts the expected future

    Get PDF
    Clark offers a powerful description of the brain as a prediction machine, which offers progress on two distinct levels. First, on an abstract conceptual level, it provides a unifying framework for perception, action, and cognition (including subdivisions such as attention, expectation, and imagination). Second, hierarchical prediction offers progress on a concrete descriptive level for testing and constraining conceptual elements and mechanisms of predictive coding models (estimation of predictions, prediction errors, and internal models)
    corecore