1,168 research outputs found

    AIS-based Evaluation of Target Detectors and SAR Sensors Characteristics for Maritime Surveillance

    No full text
    International audienceThis paper studies the performances of different ship detectors based on adaptive threshold algorithms. The detec- tion algorithms are based on various clutter distributions and assessed automatically with a systematic methodology. Evaluation using large datasets of medium resolution SAR images and AIS (Automatic Identification System) data as ground truths allows to evaluate the efficiency of each detector. Depending on the datasets used for testing, the detection algorithms offer different advantages and disadvantages. The systematic method used in discriminating real detected targets and false alarms in order to determine the detection rate, allows us to perform an appropriate and consistent comparison of the detectors. The impact of SAR sensors characteristics (incidence angle, polarization, frequency and spatial resolution) is fully assessed, the vessels' length being also considered. Experiments are conducted on Radarsat-2 and CosmoSkymed ScanSAR datasets and AIS data acquired by coastal stations

    On Small Satellites for Oceanography: A Survey

    Get PDF
    The recent explosive growth of small satellite operations driven primarily from an academic or pedagogical need, has demonstrated the viability of commercial-off-the-shelf technologies in space. They have also leveraged and shown the need for development of compatible sensors primarily aimed for Earth observation tasks including monitoring terrestrial domains, communications and engineering tests. However, one domain that these platforms have not yet made substantial inroads into, is in the ocean sciences. Remote sensing has long been within the repertoire of tools for oceanographers to study dynamic large scale physical phenomena, such as gyres and fronts, bio-geochemical process transport, primary productivity and process studies in the coastal ocean. We argue that the time has come for micro and nano satellites (with mass smaller than 100 kg and 2 to 3 year development times) designed, built, tested and flown by academic departments, for coordinated observations with robotic assets in situ. We do so primarily by surveying SmallSat missions oriented towards ocean observations in the recent past, and in doing so, we update the current knowledge about what is feasible in the rapidly evolving field of platforms and sensors for this domain. We conclude by proposing a set of candidate ocean observing missions with an emphasis on radar-based observations, with a focus on Synthetic Aperture Radar.Comment: 63 pages, 4 figures, 8 table

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Remote Sensing Object Detection Meets Deep Learning: A Meta-review of Challenges and Advances

    Full text link
    Remote sensing object detection (RSOD), one of the most fundamental and challenging tasks in the remote sensing field, has received longstanding attention. In recent years, deep learning techniques have demonstrated robust feature representation capabilities and led to a big leap in the development of RSOD techniques. In this era of rapid technical evolution, this review aims to present a comprehensive review of the recent achievements in deep learning based RSOD methods. More than 300 papers are covered in this review. We identify five main challenges in RSOD, including multi-scale object detection, rotated object detection, weak object detection, tiny object detection, and object detection with limited supervision, and systematically review the corresponding methods developed in a hierarchical division manner. We also review the widely used benchmark datasets and evaluation metrics within the field of RSOD, as well as the application scenarios for RSOD. Future research directions are provided for further promoting the research in RSOD.Comment: Accepted with IEEE Geoscience and Remote Sensing Magazine. More than 300 papers relevant to the RSOD filed were reviewed in this surve

    A comparative study of operational vessel detectors for maritime surveillance using satellite-borne synthetic aperture radar

    Get PDF
    This paper presents a comparative study among four operational detectors that work by automatically post-processing synthetic aperture radar (SAR) images acquired from the satellite platforms RADARSAT-2 and COSMO-SkyMed. Challenging maritime scenarios have been chosen to assess the detectors' performance against features such as ambiguities, significant sea clutter, or irregular shorelines. The SAR images which form the test data are complemented with ground truth to define the reference detection configuration, which permits quantifying the probability of detection, the false alarm rate, and the accuracy of estimating ship dimensions. Although the results show that all the detectors perform well, there is no perfect detector, and a better detection system could be developed that combines the best elements from each of the single detectors. In addition to the comparison exercise, the study has facilitated the improvement of the detectors by highlighting weaknesses and providing means for fixing them.Peer ReviewedPostprint (published version

    HIRIS (High-Resolution Imaging Spectrometer: Science opportunities for the 1990s. Earth observing system. Volume 2C: Instrument panel report

    Get PDF
    The high-resolution imaging spectrometer (HIRIS) is an Earth Observing System (EOS) sensor developed for high spatial and spectral resolution. It can acquire more information in the 0.4 to 2.5 micrometer spectral region than any other sensor yet envisioned. Its capability for critical sampling at high spatial resolution makes it an ideal complement to the MODIS (moderate-resolution imaging spectrometer) and HMMR (high-resolution multifrequency microwave radiometer), lower resolution sensors designed for repetitive coverage. With HIRIS it is possible to observe transient processes in a multistage remote sensing strategy for Earth observations on a global scale. The objectives, science requirements, and current sensor design of the HIRIS are discussed along with the synergism of the sensor with other EOS instruments and data handling and processing requirements

    Advances in Object and Activity Detection in Remote Sensing Imagery

    Get PDF
    The recent revolution in deep learning has enabled considerable development in the fields of object and activity detection. Visual object detection tries to find objects of target classes with precise localisation in an image and assign each object instance a corresponding class label. At the same time, activity recognition aims to determine the actions or activities of an agent or group of agents based on sensor or video observation data. It is a very important and challenging problem to detect, identify, track, and understand the behaviour of objects through images and videos taken by various cameras. Together, objects and their activity recognition in imaging data captured by remote sensing platforms is a highly dynamic and challenging research topic. During the last decade, there has been significant growth in the number of publications in the field of object and activity recognition. In particular, many researchers have proposed application domains to identify objects and their specific behaviours from air and spaceborne imagery. This Special Issue includes papers that explore novel and challenging topics for object and activity detection in remote sensing images and videos acquired by diverse platforms

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports
    • …
    corecore