Remote sensing object detection (RSOD), one of the most fundamental and
challenging tasks in the remote sensing field, has received longstanding
attention. In recent years, deep learning techniques have demonstrated robust
feature representation capabilities and led to a big leap in the development of
RSOD techniques. In this era of rapid technical evolution, this review aims to
present a comprehensive review of the recent achievements in deep learning
based RSOD methods. More than 300 papers are covered in this review. We
identify five main challenges in RSOD, including multi-scale object detection,
rotated object detection, weak object detection, tiny object detection, and
object detection with limited supervision, and systematically review the
corresponding methods developed in a hierarchical division manner. We also
review the widely used benchmark datasets and evaluation metrics within the
field of RSOD, as well as the application scenarios for RSOD. Future research
directions are provided for further promoting the research in RSOD.Comment: Accepted with IEEE Geoscience and Remote Sensing Magazine. More than
300 papers relevant to the RSOD filed were reviewed in this surve