2,267 research outputs found

    Every graph admits an unambiguous bold drawing

    Get PDF
    Let r and w be fixed positive numbers, w < r. In a bold drawing of a graph, every vertex is represented by a disk of radius r, and every edge by a narrow rectangle of width w. We solve a problem of van Kreveld [10] by showing that every graph admits a bold drawing in which the region occupied by the union of the disks and rectangles representing the vertices and edges does not contain any disk of radius r other than the ones representing the vertices. © 2015, Brown University. All rights reserved

    Multi-dimensional Boltzmann Sampling of Languages

    Get PDF
    This paper addresses the uniform random generation of words from a context-free language (over an alphabet of size kk), while constraining every letter to a targeted frequency of occurrence. Our approach consists in a multidimensional extension of Boltzmann samplers \cite{Duchon2004}. We show that, under mostly \emph{strong-connectivity} hypotheses, our samplers return a word of size in [(1−Δ)n,(1+Δ)n][(1-\varepsilon)n, (1+\varepsilon)n] and exact frequency in O(n1+k/2)\mathcal{O}(n^{1+k/2}) expected time. Moreover, if we accept tolerance intervals of width in Ω(n)\Omega(\sqrt{n}) for the number of occurrences of each letters, our samplers perform an approximate-size generation of words in expected O(n)\mathcal{O}(n) time. We illustrate these techniques on the generation of Tetris tessellations with uniform statistics in the different types of tetraminoes.Comment: 12p

    Surface Split Decompositions and Subgraph Isomorphism in Graphs on Surfaces

    Get PDF
    The Subgraph Isomorphism problem asks, given a host graph G on n vertices and a pattern graph P on k vertices, whether G contains a subgraph isomorphic to P. The restriction of this problem to planar graphs has often been considered. After a sequence of improvements, the current best algorithm for planar graphs is a linear time algorithm by Dorn (STACS '10), with complexity 2O(k)O(n)2^{O(k)} O(n). We generalize this result, by giving an algorithm of the same complexity for graphs that can be embedded in surfaces of bounded genus. At the same time, we simplify the algorithm and analysis. The key to these improvements is the introduction of surface split decompositions for bounded genus graphs, which generalize sphere cut decompositions for planar graphs. We extend the algorithm for the problem of counting and generating all subgraphs isomorphic to P, even for the case where P is disconnected. This answers an open question by Eppstein (SODA '95 / JGAA '99)

    Limit cycles in piecewise-affine gene network models with multiple interaction loops

    Get PDF
    In this paper we consider piecewise affine differential equations modeling gene networks. We work with arbitrary decay rates, and under a local hypothesis expressed as an alignment condition of successive focal points. The interaction graph of the system may be rather complex (multiple intricate loops of any sign, multiple thresholds...). Our main result is an alternative theorem showing that, if a sequence of region is periodically visited by trajectories, then under our hypotheses, there exists either a unique stable periodic solution, or the origin attracts all trajectories in this sequence of regions. This result extends greatly our previous work on a single negative feedback loop. We give several examples and simulations illustrating different cases

    Dynamics of Black Hole Pairs I: Periodic Tables

    Full text link
    Although the orbits of comparable mass, spinning black holes seem to defy simple decoding, we find a means to decipher all such orbits. The dynamics is complicated by extreme perihelion precession compounded by spin-induced precession. We are able to quantitatively define and describe the fully three dimensional motion of comparable mass binaries with one black hole spinning and expose an underlying simplicity. To do so, we untangle the dynamics by capturing the motion in the orbital plane. Our results are twofold: (1) We derive highly simplified equations of motion in a non-orthogonal orbital basis, and (2) we define a complete taxonomy for fully three-dimensional orbits. More than just a naming system, the taxonomy provides unambiguous and quantitative descriptions of the orbits, including a determination of the zoom-whirliness of any given orbit. Through a correspondence with the rationals, we are able to show that zoom-whirl behavior is prevalent in comparable mass binaries in the strong-field regime. A first significant conclusion that can be drawn from this analysis is that all generic orbits in the final stages of inspiral under gravitational radiation losses are characterized by precessing clovers with few leaves and that no orbit will behave like the tightly precessing ellipse of Mercury. The gravitational waveform produced by these low-leaf clovers will reflect the natural harmonics of the orbital basis -- harmonics that, importantly, depend only on radius. The significance for gravitational wave astronomy will depend on the number of windings the pair executes in the strong-field regime and could be more conspicuous for intermediate mass pairs than for stellar mass pairs.Comment: 19 pages, lots of figure

    A network approach to topic models

    Full text link
    One of the main computational and scientific challenges in the modern age is to extract useful information from unstructured texts. Topic models are one popular machine-learning approach which infers the latent topical structure of a collection of documents. Despite their success --- in particular of its most widely used variant called Latent Dirichlet Allocation (LDA) --- and numerous applications in sociology, history, and linguistics, topic models are known to suffer from severe conceptual and practical problems, e.g. a lack of justification for the Bayesian priors, discrepancies with statistical properties of real texts, and the inability to properly choose the number of topics. Here we obtain a fresh view on the problem of identifying topical structures by relating it to the problem of finding communities in complex networks. This is achieved by representing text corpora as bipartite networks of documents and words. By adapting existing community-detection methods -- using a stochastic block model (SBM) with non-parametric priors -- we obtain a more versatile and principled framework for topic modeling (e.g., it automatically detects the number of topics and hierarchically clusters both the words and documents). The analysis of artificial and real corpora demonstrates that our SBM approach leads to better topic models than LDA in terms of statistical model selection. More importantly, our work shows how to formally relate methods from community detection and topic modeling, opening the possibility of cross-fertilization between these two fields.Comment: 22 pages, 10 figures, code available at https://topsbm.github.io
    • 

    corecore