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We address the uniform random generation of words from a context-free language (over an alphabet of size k), while
constraining every letter to a targeted frequency of occurrence. Our approach consists in a multidimensional extension
of Boltzmann samplers. We show that, under mostly strong-connectivity hypotheses, our samplers return a word of
size in [(1− ε)n, (1 + ε)n] and exact frequency in O(n1+k/2) expected time.

Moreover, if we accept tolerance intervals of width in Ω(
√
n) for the number of occurrences of each letters, our

samplers perform an approximate-size generation of words in expectedO(n) time. We illustrate our approach on the
generation of Tetris tessellations with uniform statistics in the different types of tetraminoes.

Keywords: Random generation, Boltzmann sampling, Context-free languages

1 Introduction
Random generation is the core of the simulation of complex data. It appears in real applicative domains
such as complex networks (biology, Internet or social relationship), or software testing (validation, bench-
marking). It helps us to predict the behavior of algorithms (complexities and statistical significance of
results), to visualize limit properties (such as transition phases in statistical physics), to model real con-
texts (random graphs for web simulation).

Following the pioneering work of Flajolet et al. (1994), decomposable combinatorial classes can be
specified using standard specifications. Two major techniques can then be applied to draw m objects of
size n at random from such a class. On one hand, the recursive approach proposed by Wilf (1977) pre-
computes the cardinalities of sub-classes for sizes up to n and uses these numbers to perform local choices
that are consistent with the targeted uniformity. The best known optimization of this technique Denise
et al. (2000) uses certified floating point arithmetics and works in O(m · n1+o(1)) but its implementation
remains highly non-trivial due to its sophisticated precomputations. On the other hand, the Boltzmann
sampling techniques, recently introduced by Duchon et al. (2004), achieves a random generation for most
unlabelled (See Flajolet et al. (2007)) and labelled specifications in O(m · n2) operations at an optimally
low O(m · n) memory cost. Instead of enforcing a strict – and costly – control on the size of generated
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Tolerance
Composition

None Ω(
√
n)

Size
None O(n2+k/2) O(n2)

Θ(n) O(n1+k/2) O(n)

Table 1: Average-case complexities of our samplers for a word of length n over k letters in strongly connected
context-free languages under different tolerances.

objects, this general technique rather induces an appropriate distribution on the size of sampled objects,
and performs rejection until a suitable object is found.

In the present work, we investigate a natural multivariate extension of Boltzmann sampling, aiming at
drawing objects, uniformly at random, having a prescribed composition in the different terminal letters.
From a combinatorial perspective, such a generation allows the so-called symbolic method to reclaim
combinatorial classes and languages that fall slightly off of its natural expressivity. For instance, re-
strictions of rational languages may not admit a rational (or even context-free) specification under the
additional hypothesis that some letters co-occur strictly (One may consider the triple-copy language). For
context-free languages on k letters, this problem was previously addressed within the recursive framework
by Denise et al. (2000), deriving algorithms in Θ(nk) and Θ(n2k) arithmetic operations, respectively for
rational and context-free languages. Using properties of holonomic series, Bertoni et al. (2003) revisited
the problem and proposed a method for the uniform sampling from rational languages on two letters in
Θ(n). Unfortunately a direct generalization of the technique yields an algorithm in Θ(nk−1) for k letters,
as pointed out in Radicioni (2006).

Following the general philosophy of Boltzmann sampling, our algorithm will first relax the composi-
tional constraint, using non-uniform samplers to draw objects whose average composition is fine-tuned
to match the targeted one, and perform rejection until an acceptable object is found. By acceptable, one
understands that generated objects must feature prescribed size and composition, while tolerances may be
allowed on both requirements. Our programme can then be summarized in the three following phases:

Phase I. Figure out a set of weights such that the expected composition matches the targeted one.

Phase II. Draw structures from a weighted distribution, using either the recursive approach (See Denise
et al. (2000)) or a weighted Boltzmann sampler (See Section 4).

Phase III. Reject structures of unsuitable compositions, until an adequate object is generated and re-
turned.

Although phases II and III are independently addressed in our analyses, one can (and will) combine them
into a single rejection step when a weighted Boltzmann sampler is used for Phase II. The algorithmic
aspects of our programme will essentially build on and extend previous works addressing the uniform
version, but a general analysis of its overall performance is more challenging. Indeed, the complexity of
the rejection Phase III is heavily related to a general analysis of the limiting distribution of the associated
multivariate – parameter-induced – generating functions. For each phase, we attempt to give mathemati-
cal characterizations of classes having proper behaviors. In particular, for context free languages whose
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Epsilon C = 1 Cπ(z) = 1 ΓCπ(x) −→ ε

Letters C = ti Cπ(z) = πtiz ΓCπ(x) −→ ti

Union C = A+ B Cπ(z) = Aπ(z) +Bπ(z)

ΓCπ(x) := Bern
(
Aπ(x)

Cπ(x)
,
Bπ(x)

Cπ(x)

)
−→ ΓAπ(x) | ΓBπ(x)

Product C = A× B Cπ(z) = Aπ(z)×Bπ(z) ΓCπ(x) −→ ΓAπ(x).ΓBπ(x)

Figure 1: Weighted generating functions and associated Boltzmann sampler ΓCπ(x) for context-free languages.

grammars are strongly connected and aperiodic, we obtain for each combination of tolerances, the com-
plexities summarized in Table 1.

The plan of this paper follows the different phases : Section 2 defines the concepts and notations used
throughout the paper. Section 3 explains how to tune efficiently the parameters such that the targeted
composition matches the average behavior (Phase I). In Section 4, we discuss the complexity of Phase II,
the number of rejections needed to reach a word of suitable size (or suitable approximate size). The
complexity of the multidimensional rejection (Phase III) is addressed in Section 5. We illustrate our
method in Section 6 by sampling perfect Tetris tessellations – tessellations of a w × h rectangles using
balanced lists of tetraminoes. Finally we conclude with a short overview of future works.

2 Notations and definitions
Following traditional mathematical notations, we will use bold symbols for multi-dimensional variables
and functions (i.e. x), and use subscripts to access a specific dimension (i.e. xi). Throughout the rest of
the document, we will denote by Σ the alphabet of k letters, by C a context-free language over Σ, and by
n the length of generated words.

Define the composition of sampled words as the frequency of occurrences of each letter ti in a word
w ∈ C, denoted by p(w) := (|w|ti/n)i∈[1,k] . Our main goal is to generate – uniformly at random –
some word w ∈ C having a composition that is close to a targeted composition f ∈ [0, 1]k such that∑
i∈[1,k] f i = 1.
We make this notion of proximity explicit, and formalize the notion of acceptability for a sampled word.

Namely let ε be a k-tuple of positive real numbers and α ∈ Q+ a rational exponent, an object w ∈ C
qualifies as (ε, α)-acceptable if and only if

p(w)i ∈ I(fi, εi, α), for all i ∈ [1, k]

where I(f, e, a) := [f − fana−1e, f + fana−1e]. This definition captures the case of fixed (exact)
compositions by setting α = 1 and εi = 1/n, for all i ∈ [1, k].

The following notions and definitions, recalled here for the sake of self-containment, can be found in
Denise et al. (2000). A positive weight vector π assigns positive weights πi ∈ R+ to each letter ti ∈ Σ.
The weight is then extended multiplicatively on any object w by π(w) =

∏
x∈w πx. This gives rise to the

notion of weighted generating function Cπ(z) for a context-free language C, a natural generalization of
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the size (enumerative) generating function where each structure is counted with multiplicity equal to its
weight

Cπ(z) =
∑
w∈C

π(w)z|w|=
∑
w∈C

π
|w|t1
t1 · · ·π|w|tktk

z|w| =
∑
n≥0

cπ,nz
n

where cπ,n is the total weight(i) of objects of size n. Notice that this generating function can be re-
interpreted as a multivariate generating function in π and z

This weighting scheme implicitly defines a weighted distribution on the set Cn of words of size n, such
that

P(w | n = |w|) =
π(w)∑

w′∈Cn π(w′)
=
π(w)

cπ,n
.

Finally, the weighted distribution generalizes to a Boltzmann weighted distribution on the whole lan-
guage such that

Px,π(w | n = |w|) =
π(w)xn∑

w′∈C π(w′)x|w′|
=
π(w)xn

Cπ(x)
. (2.1)

Property 2.1 Let N (resp. Ni) be the random variable associated with the size (resp. number of occur-
rences of a letter ti) of a word in a (x,π)− Boltzmann weighted distribution over a class C. Then the
expectations of N and Ni are related to the partial derivatives of the multivariate generating function
Cπ(z) through

Ex,π(N) = x
dCπ(x)
dx

Cπ(x)
and Ex,π(Ni) =

πi
∂
∂πi

Cπ(x)

Cπ(x)
(2.2)

In the sequel we will denote by µ(x,π) the vector of expectations (Ex,π(N1), · · · ,Ex,π(Nk)).

3 Tuning weights (Phase I)
First, let us address the question of finding a vector π such that the multidimensional rejection scheme
(Phase III) is as efficient as possible. We propose and explore two alternatives, both computing a weights
vector that make the expected and targeted compositions coincide. The first one uses a numerical Newton
iteration. The second one uses an asymptotic approximation for the value of z which greatly simplifies
the weights/frequencies relationship.

Tuning by expectation. Newton’s methods are based on successive linear (or higher order) approxima-
tions in order to obtain numerical estimates of a root of a system of equations. It is generally an efficient
algorithm assuming that the initial values are close enough to a root. Here, we are interested in finding
the unique root (z0,πf ) of the system µ(z0,π) = nf . Algorithm 1 is a slightly revisited version of
Newton’s method which tests at each step if Newton’s approximation has improved the estimate of the
root. This test fails if and only if the current parameters are too far from the solution. In this case, we
search using dichotomy an intermediate target that is closer to the solution than the current parameters.

(i) This quantity is essentially similar to the partition function in statistical mechanics, introduced by L. Boltzmann.
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Input: Initial parameters z0 and π0, a composition f , a size n and ε a numerical precision
Output: The valid weights
Let Ez0 be the map from the space of the weights into Rk+ such that Ez0(π) = µ(z0,π);
Let J(Ez0(π)) be the Jacobian matrix of Ez0 evaluated at π;
π := π0;
repeat

end:=true; c := nf ; N := ||c− Ez0(π)||;
while N > ε do
πaux := π;
π := J(Ez0)−1(π) · (nf − Ez0(π)) + π;
if N < ||c− Ez0(π)|| then
π := πaux; c := (c+ Ez0(π))/2; end:=false;

end
end

until end=true ;
return π

Algorithm 1: Tracking the weights.

Proposition 3.1 Let f and n be the targeted composition and size respectively. Assume that the Jacobian
matrix J(Ez0(πf )) is not singular(ii), then Algorithm 1 returns (z0,π1) such that the expected composi-
tion µ(z0,π1) satisfies ||µ(z0,π1)− nf || < ε.
Moreover, there exists a neighborhood B of (z0,πf ) such that, for any π0 ∈ B, Algorithm 1 with initial
condition π0 quadratically converges to πf (i.e. ∃C > 1 such that ∀k ≥ 0, ||πk − πf || ≤ C−2k where
πk+1 := J(Ez0)−1(πk) · (nf − Ez0(πk)) + πk).

Asymptotic tuning. Since one generally attempts to generate large objects, a natural option consists in
solving the simpler asymptotic system.

Proposition 3.2 Let us consider a language whose grammar is irreducible and aperiodic and whose
generating function Cπ(z) admits ρ(π) as dominant singularity. Then, for any letter t and as z tends to
ρ(π), it holds that:

Ez,π(Nt) ∼ 1
2πtn

∂
∂πt

ρ(π)

ρ if ρ(π) is a rational singularity,

Ez,π(Nt) ∼ −πtn
∂
∂πt

ρ(π)

ρ if ρ(π) is an algebraic singularity.

Remark 3.3 Considering the expectation En(Nt) of the number of letters t in a word of fixed size n.
Then, from Denise et al. (2000), similar asymptotic estimates holds for En(Nt) and the weights computed
by our methods can therefore be used by the recursive approach.

4 Efficiency of the size rejection scheme (Phase II)
At this point, we assume that a k-tuple of weights π has been found such that the average composition in
the weighted distribution matches the targeted one. We now need to perform a random generation of m
(ii) I.e. there is no linear dependency between the expected numbers of different letters.
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Input: Parameters x,π
Output: Object of A of size in I(n, ε) := [n(1− ε), n(1 + ε)]
repeat

γ := ΓAπ(x)
until |γ| ∈ I(n, ε) ;
return (γ)

Algorithm 2: Rejection algorithm Γ2A(x,π;n, ε)

words from the context-free language with respect to the π-weighted distribution.
This problem was previously addressed in Denise et al. (2000) within the framework of the recursive

method, and an algorithm in O(m · n) arithmetic operations was proposed. Despite its apparent low
complexity, the exponential growth of the numbers processed by the algorithm increases the practical
complexity to Θ(m · n2) in time and Θ(n2) in memory.

Let us investigate a weighted generalization of Boltzmann sampling. First let us remind that Boltzmann
sampling first relaxes the size constraint and draws objects in a Boltzmann distribution of parameter x.
To that purpose a fixed stochastic process, coupled with an (anticipated) rejection procedure, is used (See
Algorithm 2). The probabilities of the different alternatives are precomputed by an external procedure
called oracle (Symbolic algebra, or numerical method in Pivoteau et al. (2008)). A judicious choice of
value for x ensures a low probability of rejection and this approach yields, for large classes of structures
(trees, sequences, runs, mappings, fountains. . . ), generic algorithms in O(n2) for objects of exact-size n,
and in O(n) for objects of approximate-sizes in [n(1− ε), n(1 + ε)], for some ε > 0.

Through a minor modification of the oracle, one can easily turn unlabelled Boltzmann samplers, intro-
duced in Flajolet et al. (2007), into generators for the weighted Boltzmann distribution (See Equation 2.1).
Namely, one only needs to replace any occurrence of the generating function C(z) by its weighted coun-
terpart Cπ(z), obtaining generic samplers summarized in Figure 1, and use the classic size rejection
process (Algorithm 2).

Proposition 4.1 Let π be a k-tuple of weights, x be a Boltzmann parameter, C be a context-free specifi-
cation and Cπ(z) its weighted generating function.
Then the samplers ΓCπ(x) summarized in Figure 1 generate any word w ∈ C with probability

Px,π(w | n) =
π(w)xn

Cπ(x)
.

The (renormalized) restriction of a π-weighted Boltzmann distribution to objects of size n is clearly a
π-weighted distribution, and this fact ensures the correctness of a rejection-based approach.

Let us qualify a context-free language as well-conditioned iff the singular exponent απ of its dominant
singularity is non negative. Following Duchon et al. (2004), we observe that any grammar can be pointed
repeatedly until the exponent of its generating function becomes non-negative. Moreover the pointing
operator leaves a weighted distribution unaffected within the subset of words of a given length. Therefore
we can restrict our analysis to grammars associated with flat Boltzmann distributions, generate words
from the pointed grammars and erase the point(s) afterward.
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Theorem 4.2 (Essentially proven in Duchon et al. (2004)) Let Cπ be a weighted well-conditioned con-
text-free language and xn be the root in [0, ρπ) of Ex,π(N) = n. Then the complexity Xε[n] of the
sampler Γ2C(xn,π;n, ε) described in Algorithm 2 is such that

• If ε = 0 (exact size): Xε[n] ∈ O
(
κΓ(απ)n2

ααππ
+ c(π)n

)
, and

• If ε > 0 (approximate-size): Xε[n] ∈ O
(

κn

ζαπ (ε)
+ c(π)

)
where κ is the cost-per-letter induced by the canonical Boltzmann samplers, απ is the singular exponent

of the dominant singularity ofCπ(z), ζαπ (ε) :=
ααππ

Γ(απ)

∫ ε

−ε
(1+s)απ−1e−απ(1+s)ds, Γ(x) is the gamma

function, and c(π) does not depend on n.

In particular, for any fixed weight vector π, Theorem 4.2 implies a O(n) (resp. O(n2)) complexity
for the approximate-size (resp. exact size) weighted samplers. By contrast, using weights to enforce
compositions that are unnatural (e.g. enforcing O(

√
n) occurrences of a letter occurring O(n) times in

the uniform distribution) may lead to a – somewhat hidden – dependency of π in n. Although we were
unable to characterize these dependencies and their impact c(π) on both complexities, we expect the
latter to remain limited, and conjecture similar complexities when meaningful compositions are targeted.
For instance, assuming at least one occurrence of each letter (a realistic assumption, since prohibition
of a letter is simply achieved through a grammar modification), and the frequencies and the weights can
therefore be assumed to be bounded by some function of n.

In the case of rational languages, the following theorem provides a computable evaluation for the effi-
ciency of the size-rejection process. It relies on the partial fraction expansion of rational functions, which
can be obtained for any weighted generating function Cπ(z), and is denoted by

Cπ(z) =

r∑
i=1

mi∑
k=1

(1− z/ρi)−αi,khi,k + P (z) (4.1)

where P (z) is a polynomial of degree bounded by a constant, r the number of distinct singularities and
mi the multiplicity of ρi which are sorted by increasing module. In weighted generating functions the
values of ρi, P (z), hi,k, k and r depend on the actual values of the weights.

Theorem 4.3 Let Cπ be a weighted rational language, xn be the root in [0, ρπ) of Ex,π(N) = n and
ε > 0 be a tolerance then the approximate-size sampler Γ2C(xn,π;n, ε) succeeds after an expected
number of trials of ΓCπ(x, b) in

Cπ(xn)(
r∑
i=1

mi∑
k=1

(
n+k−1
k−1

)
(ρi)−nhi,k + [zn]P (z)

)
(xn)n

.

5 Complexity of the multidimensional rejection (Phase III)
Our approach relies on a rejection scheme that generalizes that of the classical – univariate – Boltzmann
sampling. Words are drawn from a weighted distribution – rejecting those whose frequencies are too
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distant from the targeted one – until an acceptable one is found and returned. This gives the following
rejection sampler Γ3A(x,π;n,m, ε, σ) for a language A where x is real, π a real k-vector, m a map
from N to Rk, and ε the tolerance:

Input: The parameters x,π, n,m, ε, σ
Output: An object of A of size s in I(n, ε)
and for every parameter πi, the number of occurrences of Zi is in
I(mi(s), ε, σ) := [mi(s)−mi(s)

σε,mi(s) +mi(s)
σε]

repeat
γ := Γ2A(x,π;n, ε)

until ∀i, |γ|i ∈ I(mi(s), ε, σ) ;
return (γ)

Algorithm 3: Γ3A(x,π;n,m, ε, σ)

In many important classes of combinatorial structures, the composition of a random object is con-
centrated around its mean. It follows that a rejection-based generation can succeed after few attempts,
provided that the expected composition matches the targeted one. Our main result is that, for any irre-
ducible and simple context-free language, a suitably parameterized multidimensional rejection sampler
generates a word of targeted composition after O(nk/2) attempts. Moreover, allowing a nβ (β > 1/2)
tolerance on the number of occurrences of each letters yields a sampler that succeeds in expected number
of attempts asymptotically constant.

Now, let us denote by Un(π0) the k-multivariate random variable which follows the probability

P(Un(π0) = a) =
πa0 · [znπa]Cπ(z)

[zn]Cπ0(z)
,

i.e. the distribution of the parameters for objects of size n. Moreover, let us denote by µ(n,π0) the
mean-vector of Un(π0) and by V (n,π0) its variance-covariance matrix. If we do not have any strict
correlation between the parameters, the matrix V (n,π0) is positive definite (and so, invertible). We can
then associate a norm to each composition vector u through ||u||V −1 :=

√
uTV (n,π0)−1u. Now, let

V be a positive definite matrix, we denote by κ (V ) := inf
||u||∞=1

{||u||V }, the infinum distance(iii) from

the unit sphere to the center of the Banach space.

Definition 5.1 The σ-concentrated condition is defined as :

lim sup
n→∞

(||µ(n,π)||∞)
σ · κ

(
V (n,π)−1

)
= c >

√
k/ε.

Theorem 5.2 (Approximate composition) Let xn andπa be the solution of Ex,π(N) = n and Ex,π(Ni)
= ai. The map m is defined as the m : s 7→ Es,πa(Ni) and assume that the σ-concentrated condition
holds for some σ ≤ 1. Then the expected number of trials (of Γ2A(xn,π;n, ε)) of the rejection sampler
Γ3C(xn,πa;n,m, ε, σ) is upper-bounded by

sup
s∈I(n,ε)

(
ε · κ

(
V (s,πa)−1

)
· ||µ(s,πa)||σ∞

)2
(ε · κ (V (s,πa)−1) · ||µ(s,πa)||σ∞)

2 − k
(iii) Recall that the infinity norm is defined as ||u||∞ = max (|u1|, · · · , |uk|)
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which tends to a constant as n→∞.

Theorem 5.3 (Exact composition) Assume that (Un(πa)) admits a multidimensional Gaussian law with
mean µ and variance-covariance matrix V proportional to f(n) as limiting distribution when n tends
to the infinity, then the exact-composition rejection sampler Γ3C(xn,πa;n,m, 0, 1) succeeds after an
expected number of trials equal to (2π)k/2(det(V ))1/2 = O

(
f(n)k/2

)
.

Proof: Just notice that the probability to draw an exact composition corresponds to take u = µ in the
asymptotic estimate

p(u) =
1

(2π)k/2 (det(V ))
1/2

exp
(
− 1

2 (u− µ)t V −1(u− µ) + o(1)
)
.

Consequently the expected number of attempts is (2π)k/2 det(V )1/2 = O(f(n)k/2). 2

5.1 Rational languages: Bender-Richmond-Williamson theorem
The Bender-Richmond-Williamson theorem (Bender et al., 1983, Theorem 1) defines sufficient conditions
such that the limiting distribution of a rational languageR is a multidimensional Normal distribution. Let
us remind that a rational language is irreducible if its minimal automaton A is strongly-connected, and
aperiodic – if the cycle lengths inA have greatest common divisor equal to 1. Additionally the periodicity
parameter lattice Λ, defined in Bender et al. (1983) (Definition 2) is required to be full dimensional to
avoid trivial correlations in the occurrences of letters.

Theorem 5.4 Let Rπ be a weighted rational language whose minimal automaton is irreducible and
aperiodic, and xn be the root in [0, ρπ) of Ex,π(N) = n. Assume that the periodicity parameter lattice Λ
is full dimensional; Then:

• ∀σ > 1/2, the approximate-composition sampler Γ3R(xn,π;n, ε, σ) succeeds after O(1) trials

• For σ = 1/2, ∃ε0 such that ∀ε > ε0 Γ3R(xn,π;n, ε, σ) succeeds after O(1) trials

• The exact-composition rejection sampler Γ3R(xn,π;n, 0, 1) succeeds after O(nk/2) trials.

Proof: From the system of language equations L = M · L + E , we directly obtain the system L =
zM · L + E for the generating function. In this case the Perron-Frobenius theorem ensures that the
dominating pole of every Li inL is the smallest positive real root of det(I−z ·M) = 0 and that this pole
is simple. Now, assume that the periodicity parameter lattice Λ defined in Bender et al. (1983) (Definition
2) is full dimensional. Assume also that we have a compact set Π1 for the parameters in which the singular
exponent is constant and equal to 1. Then from the Bender-Richmond-Williamson theorem (see Bender
et al. (1983), Theorem 1 and Bender and Richmond (1983)), it follows that for any fixed parameter in the
compact set Π1, the limiting distribution of the parameters is a multidimensional Gaussian distribution
with mean and variance-covariance matrix proportional to n. Consequently, Theorem 5.2 applies for
σ > 1/2, Theorem 5.3 applies with f(n) = n, and the result follows. 2

Let us discuss the prerequisites of Theorem 5.4. If the matrix M is not aperiodic, there exists a power
d such that Md is aperiodic. So, we can always reduce the problem to a list of d aperiodic ones, and
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Theorem 5.4 applies under the same assumptions (full dimensional periodicity parameter lattice and com-
pact set with constant singular exponents). The irreducibility requirement may be lifted when one of the
strongly connected components dominates asymptotically, i.e. when the associated schema only involves
subcritical and supercritical compositions (Flajolet and Sedgewick, 2009, Theorem IX.2). However the
case of a competition between different components in a non irreducible automaton is much more chal-
lenging and requires serious developments that cannot be included in this short paper. Finally we point out
that, with minor modifications, similar results could be obtained for more general transfer matrix models.

5.2 Context-free languages: Drmota theorem
A theorem of Drmota (1997) gives very similar sufficient conditions for the limiting multivariate distri-
bution to satisfy the conditions of Theorem 5.3. Namely, the irreducibility condition needs being fulfilled
by the dependency graph of the grammar – the directed graph on non-terminals whose edges connect left
hand sides of rules to their associated right-hand sides. The lattice and aperiodicity properties are replaced
by the very similar concept of simple type grammar, requiring the existence of a positive k+1 dimensional
cone centered on 0 in the space of coefficients.

Theorem 5.5 Let Cπ be a weighted context-free language generated from a grammar G of simple-type
(Drmota, 1997, Theorem 1) and whose dependency graph is strongly connected. Then the complexities
summarized in Theorem 5.4 also hold for Cπ .

Again, the strong-connectedness requirement could be relaxed for disconnected grammars whose be-
havior is dominated by that of a single connected component. A formal characterization of such grammars
can be interpreted in the theory of (sub/super)-critical compositions (Flajolet and Sedgewick, 2009, The-
orem IX.2).

6 Sampling perfect Tetris tesselations
In this short illustration, we address the generation of Tetris tessellations, i.e. tessellations using tetra-
minoes of a board having prescribed width w. The Tetris game consists in placing falling tetraminoes (or
pieces) P in a w × h board. The goal of the player is to create hole-free horizontal lines which are then
eliminated, and the game goes on until some piece stacks past the board ceiling. Most implementations
of Tetris use the so-called bag strategy, which consists in giving the player sequences of permutations of
the 7 types of tetraminoes, therefore inducing a uniform composition in each tetramino type. A rational
specification (Built by Algorithm 4) exists for Tetris tessellations of any fixed width, but the additional
constraint on composition provably throws the associated language out of the context-free class. There-
fore, we choose to model the generation of uniformly distributed Tetris tessellations as a multivariate
generation within a rational language. Such tessellations could in turn be used as a basic construct to
build hard instances for the offline version of the algorithmic Tetris problems studied in Breukelaar et al.
(2004) and Hoogeboom and Kosters (2004).

6.1 Building the automaton of Tetris tesselations
First let us find an unambiguous decomposition of Tetris tessellations. The idea is to focus on the state
of the upper band of the tessellation of height 4, or boundary of a partial tessellation. In particular for
(complete) Tetris tessellations the upper band is completely filled and the associated boundary is flat. One
can investigate the different ways to get to a given boundary B by simulating the removal from B of a
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Input: Board width w and flat boundary Bw
Output: Q the states set and σ the transition

function of Aw = (P, Q,Bw, {Bw}, σ)
begin

(Q, σ)← (Bw,∅)
S ← {Bw}
while S 6= ∅ do

S ⇒pop B;
for p ∈ PB do
B′ ← B − p;
if B′ /∈ Q then

Q← Q ∪ {B′};
S ⇐push B′;

end
σ ← σ ∪ {(B, p,B′)};

end
end
return (Q, σ)

end

Width w #States in Aw #States minimal
2 4 4
3 55 55
4 80 78
5 1686 1646
6 4247 4130
7 41389 40099
8 49206 47564
9 919832 –

Algorithm 4: Constructing the automaton Aw for tessellations of width w. Right: Growth of the
number of states for increasing values of w.

piece p, completing the boundary after each removal so that the highest non-empty position stays on the
top row. Without further restriction on the position of removal, such a decomposition would be ambiguous
and give rise to an infinite number of different boundaries. Consequently, we enforce a canonical order on
the removal of pieces by restricting it to a set of (possibly rotated) pieces PB positioned such that: a) the
upper-rightmost position of the piece matches that of the boundary and b) the piece is entirely contained
in the boundary. We refer to the induced decomposition as the disassembly decomposition.

Proposition 6.1 The disassembly decomposition generates sequences of removals from and to flat bound-
aries that are in bijection with Tetris tesselations.

Proof Sketch: Let us discuss briefly the correctness of this decomposition, or equivalent that the se-
quences of k removals leading from a flat boundary Bw to itself are in bijection with the tessellations of
width w. First let us notice that the decomposition is unambiguous, since all the local removals share at
least one position (the upper-rightmost of the boundary) and are therefore strongly ordered. Furthermore
the decomposition is also provably complete by induction on the number n of piece, since any tessella-
tion has a upper-rightmost position which, upon removal, gives another tessellation of smaller size, and
completeness of the decomposition propagates from tessellations of size n to size n+ 1. Finally, it gives
rise to a finite number of states since the difference between the highest and lowest point in any reached
boundary does not exceed the maximal height of a piece. 2

The finiteness of the state space suggests Algorithm 4 that builds the automaton Aw, generating tessel-
lations of width w. Notice that the resulting automaton in not necessarily co-accessible, since the removal
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of some piece can create boundaries that cannot be completed into a flat one through any sequence of
removal. Consequently, we added in our implementation a test of connectedness that discards any bound-
ary having a (dis)connected component involving a number of blocks that is not a multiple of 4, as such
boundaries clearly cannot reach a flat state again. Running a minimization algorithm of the resulting au-
tomata confirms the expected explosion in the number of states (See Algorithm 4) required for increasing
values of w.

6.2 Random generation
First we point out that the automaton has matching initial and final states, so the strong connectedness
is obviously ensured and our theorems regarding the complexity of our generators apply. One can then
translate the automaton transitions into a system of functional equations involving the (rational) generating
functions associated with each states. Solving the system gives the generating functions, from which one
can extract many informations.

For instance, fixing the width w = 6 and a number n = 105 of pieces, one obtains a number h6,105 =
3.1071 of potential tessellations, and extracting coefficients of suitable derivatives yields:

Piece
Frequency (%) 7.90 10.55 20.42 20.42 17.00 7.90 15.81

Consequently, the average composition of a Tetris tessellation is incompatible with the bag strategy,
which induces uniformly distributed pieces. One can then use the results of Section 3 to compute a set of
weights that ensures 1/7-th proportions in each type of pieces.

Piece
Weight 0.93 0.84 0.38 0.38 0.46 0.93 0.42

Frequency (%) 14.3 14.1 14.2 14.2 14.2 14.3 14.5

A weight random generation for the w = 6 and n = 105, coupled with a rejection that allows the
numbers of any piece to be equal to 15± 1, gives the instances drawn in Figure 3.

6.3 From random Tetris tessellations to Tetris instances
Proposition 6.2 For any Tetris tesselation T , there exists an instance (sequence of pieces) such that T
can be obtained.

Proof: Let us assume that T is a tessellation of a w × n rectangle using tetraminoes, and let us call
dependency point any contact between the southward face of a piece B1 and the northward face of a piece
B2. Such points induce dependencies B1 → B2, which are the arcs of a dependency graph D = (T , E).
Additionally, each edge is labelled with the coordinate of its associated dependency point.

It can be shown that D is acyclic, by pointing out that any path along D is labelled with coordinates
that are either increasing on the y-axis or monotonic on the x-axis. Let us start by noticing that, aside
from the and pieces, all types of pieces exhibit northward faces that are strictly higher than their
southward ones. Furthermore, any assembly of distinct pieces exposes northward faces that are at greater
y-coordinates than their dependency point, inducing an increase of y-coordinate in the path. Consequently,
there only exists two configurations of dependent pieces A → B, namely and , such that B
exposes a southward face at the same height as their dependency point. The only way for a path in D not
to increase in y-coordinate is then to feature a sequence of (resp. ) pieces, inducing a monotonic
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Figure 2: Left: Tetris tessellations associated with a unique instance. Only the most relevant dependency points
are displayed here (arrows) and pieces are labelled with their rank in the only compatible instance. Duplicating
the gadget preserves the uniqueness of the associated instance while allowing for the generation of tessellations of
arbitrarily large dimensions. Right: Tesselation realized by

(
h
h/2

)
∈ Θ(2n/

√
n) different instances.

behavior which proves our claim, and the acyclic nature of D follows. Finally, the acyclicity of D implies
the existence of a sequence of pieces realizing T , since it is always possible to removing a piece. 2

Let us discuss the limitations induced by Tetris tesselation as a model for Tetris instances. First it can be
remarked that Tetris tesselations do not capture every possible Tetris game ending with an empty board, as
one may temporarily leave holes which amount to disconnecting pieces in the tesselation representation.
Secondly there generally exists different free pieces to choose from while rebuilding a tesselation, and
therefore different instances can lead to a given tesselation. Furthermore the number of instances highly
depends on the actual tesselation (from one to an exponential in n, as illustrated in Figure 2), Conse-
quently, using the DAGs associated with Tetris histories to draw instances for the offline version of Tetris
algorithmic problems, studied in Breukelaar et al. (2004), would favor exponentially certain instances
over others, and the uniform random generation of instances ensuring feasibility of a perfect Tetris game
remains a challenging problem.

7 Conclusion
In this paper, we adapted and applied a general methodology for the multivariate random generation
of combinatorial objects. Under explicit and natural conditions, random generators having complexity
in O(n2+k/2) were derived for the exact size and composition generation, outperforming best known
algorithms (in O(nk) and O(n2k) respectively for rational and context-free languages) for this problem.
Furthermore, provided a small (linear) tolerance is allowed on the size of generated objects, and a Ω(

√
n)

one is allowed in the other dimensions, our generators generate objects in linear expected time. We applied
these principles to the generation of perfect Tetris tessellations with uniform statistic in tetraminoes and
discussed the generation of Tetris games from this model.

This paper is the first step toward a general analysis of the multi-parameters Boltzmann sampling. Com-
pared to its alternative using the recursive method, the resulting method is not only theoretically faster,
but also only requires O(n) storage and its time complexity seems less affected by larger specifications.
Nevertheless, many questions are left open, for instance with respect to the nature of the dependency
between the weights and reasonable frequencies, which would allow us to address the complexities of
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Figure 3: Fifteen Tetris tesselations of width 6 having uniform composition (+/- 1) in the different pieces.

Phase 2 in a much more general setting. Furthermore the success of our programme critically depends on
the existence of suitable weights, which is not guaranteed, e.g. when the targeted distribution is incom-
patible with some dependencies induce by the grammar. A future direction of this work might investigate
non-trivial, sufficient – yet tight – conditions such that the targeted composition can be achieved on the
average.

Since multivariate Boltzmann samplers can be obtained in any situation where the distribution is well-
concentrated, one may envision extensions to other classes, including constrained trees, permutations with
a fixed number of cycles, functional graphs with a controlled number of components. . . A first extension
may consider simple Polya operators and extend some of the multivariate theorems established in the
present work. The requirement of strong-connectedness (or irreducibility) could be questioned or cate-
gorized using (sub/super)-critical compositions. Another direction is the use of Hwang’s Quasi-powers
theorem, giving rise to low variance distributions, for a general treatment of the bivariate case.
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