265 research outputs found

    SIMULATION AND ANALYSIS OF VEHICULAR AD-HOC NETWORKS IN URBAN AND RURAL AREAS

    Get PDF
    According to the American National Highway Traffic Safety Administration, in 2010, there were an estimated 5,419,000 police-reported traffic crashes, in which 32,885 people were killed and 2,239,000 people were injured in the US alone. Vehicular Ad-Hoc Network (VANET) is an emerging technology which promises to decrease car accidents by providing several safety related services such as blind spot, forward collision and sudden braking ahead warnings. Unfortunately, research of VANET is hindered by the extremely high cost and complexity of field testing. Hence it becomes important to simulate VANET protocols and applications thoroughly before attempting to implement them. This thesis studies the feasibility of common mobility and wireless channel models in VANET simulation and provides a general overview of the currently available VANET simulators and their features. Six different simulation scenarios are performed to evaluate the performance of AODV, DSDV, DSR and OLSR Ad-Hoc routing protocols with UDP and TCP packets. Simulation results indicate that reactive protocols are more robust and suitable for the highly dynamic VANET networks. Furthermore, TCP is found to be more suitable for VANET safety applications due to the high delay and packet drop of UDP packets.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    3D Reconstruction of Building Rooftop and Power Line Models in Right-of-Ways Using Airborne LiDAR Data

    Get PDF
    The research objectives aimed to achieve thorough the thesis are to develop methods for reconstructing models of building and PL objects of interest in the power line (PL) corridor area from airborne LiDAR data. For this, it is mainly concerned with the model selection problem for which model is more optimal in representing the given data set. This means that the parametric relations and geometry of object shapes are unknowns and optimally determined by the verification of hypothetical models. Therefore, the proposed method achieves high adaptability to the complex geometric forms of building and PL objects. For the building modeling, the method of implicit geometric regularization is proposed to rectify noisy building outline vectors which are due to noisy data. A cost function for the regularization process is designed based on Minimum Description Length (MDL) theory, which favours smaller deviation between a model and observation as well as orthogonal and parallel properties between polylines. Next, a new approach, called Piecewise Model Growing (PMG), is proposed for 3D PL model reconstruction using a catenary curve model. It piece-wisely grows to capture all PL points of interest and thus produces a full PL 3D model. However, the proposed method is limited to the PL scene complexity, which causes PL modeling errors such as partial, under- and over-modeling errors. To correct the incompletion of PL models, the inner and across span analysis are carried out, which leads to replace erroneous PL segments by precise PL models. The inner span analysis is performed based on the MDL theory to correct under- and over-modeling errors. The across span analysis is subsequently carried out to correct partial-modeling errors by finding start and end positions of PLs which denotes Point Of Attachment (POA). As a result, this thesis addresses not only geometrically describing building and PL objects but also dealing with noisy data which causes the incompletion of models. In the practical aspects, the results of building and PL modeling should be essential to effectively analyze a PL scene and quickly alleviate the potentially hazardous scenarios jeopardizing the PL system

    Virtual coordinate based techniques for wireless sensor networks: a simulation tool and localization & planarization algorithms

    Get PDF
    2013 Summer.Includes bibliographical references.Wireless sensor Networks (WSNs) are deployments of smart sensor devices for monitoring environmental or physical phenomena. These sensors have the ability to communicate with other sensors within communication range or with a base station. Each sensor, at a minimum, comprises of sensing, processing, transmission, and power units. This thesis focuses on virtual coordinate based techniques in WSNs. Virtual Coordinates (VCs) characterize each node in a network with the minimum hop distances to a set of anchor nodes, as its coordinates. It provides a compelling alternative to some of the localization applications such as routing. Building a WSN testbed is often infeasible and costly. Running real experiments on WSNs testbeds is time consuming, difficult and sometimes not feasible given the scope and size of applications. Simulation is, therefore, the most common approach for developing and testing new protocols and techniques for sensor networks. Though many general and wireless sensor network specific simulation tools are available, no available tool currently provides an intuitive interface or a tool for virtual coordinate based simulations. A simulator called VCSIM is presented which focuses specifically on Virtual Coordinate Space (VCS) in WSNs. With this simulator, a user can easily create WSNs networks of different sizes, shapes, and distributions. Its graphical user interface (GUI) facilitates placement of anchors and generation of VCs. Localization in WSNs is important for several reasons including identification and correlation of gathered data, node addressing, evaluation of nodes' density and coverage, geographic routing, object tracking, and other geographic algorithms. But due to many constraints, such as limited battery power, processing capabilities, hardware costs, and measurement errors, localization still remains a hard problem in WSNs. In certain applications, such as security sensors for intrusion detection, agriculture, land monitoring, and fire alarm sensors in a building, the sensor nodes are always deployed in an orderly fashion, in contrast to random deployments. In this thesis, a novel transformation is presented to obtain position of nodes from VCs in rectangular, hexagonal and triangular grid topologies. It is shown that with certain specific anchor placements, a location of a node can be accurately approximated, if the length of a shortest path in given topology between a node and anchors is equal to length of a shortest path in full topology (i.e. a topology without any voids) between the same node and anchors. These positions are obtained without the need of any extra localization hardware. The results show that more than 90% nodes were able to identify their position in randomly deployed networks of 80% and 85% node density. These positions can then be used for deterministic routing which seems to have better avg. path length compared to geographic routing scheme called "Greedy Perimeter Stateless Routing (GPSR)". In many real world applications, manual deployment is not possible in exact regular rectangular, triangular or hexagonal grids. Due to placement constraint, nodes are often placed with some deviation from ideal grid positions. Because of placement tolerance and due to non-isotropic radio patterns nodes may communicate with more or less number of neighbors than needed and may form cross-links causing non-planar topologies. Extracting planar graph from network topologies is known as network planarization. Network planarization has been an important technique in numerous sensor network protocols--such as GPSR for efficient routing, topology discovery, localization and data-centric storage. Most of the present planarization algorithms are based on location information. In this thesis, a novel network planarization algorithm is presented for rectangular, hexagonal and triangular topologies which do not use location information. The results presented in this thesis show that with placement errors of up to 30%, 45%, and 30% in rectangular, triangular and hexagonal topologies respectively we can obtain good planar topologies without the need of location information. It is also shown that with obtained planar topology more nodes acquire unique VCs

    Digital 3D documentation of cultural heritage sites based on terrestrial laser scanning

    Get PDF

    Geometric Surface Processing and Virtual Modeling

    Get PDF
    In this work we focus on two main topics "Geometric Surface Processing" and "Virtual Modeling". The inspiration and coordination for most of the research work contained in the thesis has been driven by the project New Interactive and Innovative Technologies for CAD (NIIT4CAD), funded by the European Eurostars Programme. NIIT4CAD has the ambitious aim of overcoming the limitations of the traditional approach to surface modeling of current 3D CAD systems by introducing new methodologies and technologies based on subdivision surfaces in a new virtual modeling framework. These innovations will allow designers and engineers to transform quickly and intuitively an idea of shape in a high-quality geometrical model suited for engineering and manufacturing purposes. One of the objective of the thesis is indeed the reconstruction and modeling of surfaces, representing arbitrary topology objects, starting from 3D irregular curve networks acquired through an ad-hoc smart-pen device. The thesis is organized in two main parts: "Geometric Surface Processing" and "Virtual Modeling". During the development of the geometric pipeline in our Virtual Modeling system, we faced many challenges that captured our interest and opened new areas of research and experimentation. In the first part, we present these theories and some applications to Geometric Surface Processing. This allowed us to better formalize and give a broader understanding on some of the techniques used in our latest advancements on virtual modeling and surface reconstruction. The research on both topics led to important results that have been published and presented in articles and conferences of international relevance

    MICROELECTRONICS PACKAGING TECHNOLOGY ROADMAPS, ASSEMBLY RELIABILITY, AND PROGNOSTICS

    Get PDF
    This paper reviews the industry roadmaps on commercial-off-the shelf (COTS) microelectronics packaging technologies covering the current trends toward further reducing size and increasing functionality. Due tothe breadth of work being performed in this field, this paper presents only a number of key packaging technologies. The topics for each category were down-selected by reviewing reports of industry roadmaps including the International Technology Roadmap for Semiconductor (ITRS) and by surveying publications of the International Electronics Manufacturing Initiative (iNEMI) and the roadmap of association connecting electronics industry (IPC). The paper also summarizes the findings of numerous articles and websites that allotted to the emerging and trends in microelectronics packaging technologies. A brief discussion was presented on packaging hierarchy from die to package and to system levels. Key elements of reliability for packaging assemblies were presented followed by reliabilty definition from a probablistic failure perspective. An example was present for showing conventional reliability approach using Monte Carlo simulation results for a number of plastic ball grid array (PBGA). The simulation results were compared to experimental thermal cycle test data. Prognostic health monitoring (PHM) methods, a growing field for microelectronics packaging technologies, were briefly discussed. The artificial neural network (ANN), a data-driven PHM, was discussed in details. Finally, it presented inter- and extra-polations using ANN simulation for thermal cycle test data of PBGA and ceramic BGA (CBGA) assemblies

    Effective algorithms and protocols for wireless networking: a topological approach

    Get PDF
    Much research has been done on wireless sensor networks. However, most protocols and algorithms for such networks are based on the ideal model Unit Disk Graph (UDG) model or do not assume any model. Furthermore, many results assume the knowledge of location information of the network. In practice, sensor networks often deviate from the UDG model significantly. It is not uncommon to observe stable long links that are more than five times longer than unstable short links in real wireless networks. A more general network model, the quasi unit-disk graph (quasi-UDG) model, captures much better the characteristics of wireless networks. However, the understanding of the properties of general quasi-UDGs has been very limited, which is impeding the design of key network protocols and algorithms. In this dissertation we study the properties for general wireless sensor networks and develop new topological/geometrical techniques for wireless sensor networking. We assume neither the ideal UDG model nor the location information of the nodes. Instead we work on the more general quasi-UDG model and focus on figuring out the relationship between the geometrical properties and the topological properties of wireless sensor networks. Based on such relationships we develop algorithms that can compute useful substructures (planar subnetworks, boundaries, etc.). We also present direct applications of the properties and substructures we constructed including routing, data storage, topology discovery, etc. We prove that wireless networks based on quasi-UDG model exhibit nice properties like separabilities, existences of constant stretch backbones, etc. We develop efficient algorithms that can obtain relatively dense planar subnetworks for wireless sensor networks. We also present efficient routing protocols and balanced data storage scheme that supports ranged queries. We present algorithmic results that can also be applied to other fields (e.g., information management). Based on divide and conquer and improved color coding technique, we develop algorithms for path, matching and packing problem that significantly improve previous best algorithms. We prove that it is unlikely for certain problems in operation science and information management to have any relatively effective algorithm or approximation algorithm for them

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Sensor-Based Monitoring and Inspection of Surface Morphology in Ultraprecision Manufacturing Processes

    Get PDF
    This research proposes approaches for monitoring and inspection of surface morphology with respect to two ultraprecision/nanomanufacturing processes, namely, ultraprecision machining (UPM) and chemical mechanical planarization (CMP). The methods illustrated in this dissertation are motivated from the compelling need for in situ process monitoring in nanomanufacturing and invoke concepts from diverse scientific backgrounds, such as artificial neural networks, Bayesian learning, and algebraic graph theory. From an engineering perspective, this work has the following contributions:1. A combined neural network and Bayesian learning approach for early detection of UPM process anomalies by integrating data from multiple heterogeneous in situ sensors (force, vibration, and acoustic emission) is developed. The approach captures process drifts in UPM of aluminum 6061 discs within 15 milliseconds of their inception and is therefore valuable for minimizing yield losses.2. CMP process dynamics are mathematically represented using a deterministic multi-scale hierarchical nonlinear differential equation model. This process-machine inter-action (PMI) model is evocative of the various physio-mechanical aspects in CMP and closely emulates experimentally acquired vibration signal patterns, including complex nonlinear dynamics manifest in the process. By combining the PMI model predictions with features gathered from wirelessly acquired CMP vibration signal patterns, CMP process anomalies, such as pad wear, and drifts in polishing were identified in their nascent stage with high fidelity (R2 ~ 75%).3. An algebraic graph theoretic approach for quantifying nano-surface morphology from optical micrograph images is developed. The approach enables a parsimonious representation of the topological relationships between heterogeneous nano-surface fea-tures, which are enshrined in graph theoretic entities, namely, the similarity, degree, and Laplacian matrices. Topological invariant measures (e.g., Fiedler number, Kirchoff index) extracted from these matrices are shown to be sensitive to evolving nano-surface morphology. For instance, we observed that prominent nanoscale morphological changes on CMP processed Cu wafers, although discernible visually, could not be tractably quantified using statistical metrology parameters, such as arithmetic average roughness (Sa), root mean square roughness (Sq), etc. In contrast, CMP induced nanoscale surface variations were captured on invoking graph theoretic topological invariants. Consequently, the graph theoretic approach can enable timely, non-contact, and in situ metrology of semiconductor wafers by obviating the need for reticent profile mapping techniques (e.g., AFM, SEM, etc.), and thereby prevent the propagation of yield losses over long production runs.Industrial Engineering & Managemen

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described
    corecore