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ABSTRACT

Effective Algorithms and Protocols for

Wireless Networking: A Topological Approach. (August 2008)

Fenghui Zhang, B.S., Fudan University

Co–Chairs of Advisory Committee: Dr. Jianer Chen
Dr. Anxiao Jiang

Much research has been done on wireless sensor networks. However, most proto-

cols and algorithms for such networks are based on the ideal model Unit Disk Graph

(UDG) model or do not assume any model. Furthermore, many results assume the

knowledge of location information of the network. In practice, sensor networks often

deviate from the UDG model significantly. It is not uncommon to observe stable long

links that are more than five times longer than unstable short links in real wireless

networks. A more general network model, the quasi unit-disk graph (quasi-UDG)

model, captures much better the characteristics of wireless networks. However, the

understanding of the properties of general quasi-UDGs has been very limited, which

is impeding the design of key network protocols and algorithms.

In this dissertation we study the properties for general wireless sensor networks

and develop new topological/geometrical techniques for wireless sensor networking.

We assume neither the ideal UDG model nor the location information of the nodes.

Instead we work on the more general quasi-UDG model and focus on figuring out

the relationship between the geometrical properties and the topological properties of

wireless sensor networks. Based on such relationships we develop algorithms that can

compute useful substructures (planar subnetworks, boundaries, etc.). We also present
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direct applications of the properties and substructures we constructed including rout-

ing, data storage, topology discovery, etc.

We prove that wireless networks based on quasi-UDG model exhibit nice prop-

erties like separabilities, existences of constant stretch backbones, etc. We develop

efficient algorithms that can obtain relatively dense planar subnetworks for wireless

sensor networks. We also present efficient routing protocols and balanced data storage

scheme that supports ranged queries.

We present algorithmic results that can also be applied to other fields (e.g., in-

formation management). Based on divide and conquer and improved color coding

technique, we develop algorithms for path, matching and packing problem that sig-

nificantly improve previous best algorithms. We prove that it is unlikely for certain

problems in operation science and information management to have any relatively

effective algorithm or approximation algorithm for them.
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CHAPTER I

INTRODUCTION

A wireless sensor network consists of autonomous units that use sensors to collect

data from the environment and cooperate with each other to accomplish certain

tasks. These sensor nodes are usually deployed in the sensor field which can be

either the surface of an object or 3-D space. They monitor the physical conditions

(temperature, motions, sounds, etc.) around them and collect these data. Although

limited, these nodes have the ability to do relatively simple data processing. Among

Radio frequency (RF), Optical communication (Laser) and Infrared, RF is the most

popular wireless transmission media used in wireless sensor networks. The sensor

nodes are usually based on battery power. In order to lower the cost of each sensor

node and to make its size small, the computational power and communication power

of a sensor node is limited in most cases.

Originally motivated by military applications like battlefield surveillance, wireless

sensor networks are now widely used in other areas as well, including environment

monitoring, traffic control, and healthcare applications. [82]

A typical sensor node consists of one or more sensors, a radio transceiver, a

micro-controller and a battery as energy source. The size of a sensor node varies from

a shoe box to the size of a pin. The cost for a single sensor node ranges from a few

dollars to hundreds of dollars.

The computational power and communication power of the sensor nodes have

been boosted recent years as the advancement in semiconductor industry and en-

ergy storage. The increasing of the power of wireless sensor networks has led to the

The journal model is IEEE Transactions on Automatic Control.
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prevailing of applications based on such networks. The key feature of the wireless

sensor networks is that it combines the functions of data collection, processing and

communication into each node. A wide range of applications based on wireless sensor

networks are proposed. Many of them are very promising and will change our future

significantly. For example, the automobile sensing systems could reduce the number

of automobile accidents by warning the drivers of dangers before hand or even stop

the vehicles before tragedies.

On the other hand, because of their spatial property, the topology of the wireless

sensor networks is closely correlated to their geometric structure. What are the

relationships between these two (topological features and geometric features), how to

utilize such properties to develop efficient protocols and reduce the dependencies on

certain positioning devices have become very interesting research problems.

However, the research on wireless sensor networks turned out not to be an easy

job. This is mainly because such networks are very different from the internet or a

LAN. Wireless sensor nodes are usually based on battery power. This fact puts a limit

on both the computational power and the communication power of the sensor nodes.

The limit on the computational power usually includes limited storage and limited

computing power. Protocols and algorithms for sensor networks have to be carefully

designed to be applicable. On the other hand, the limitation of communication power

gives wireless sensor network specific properties that are different from the internet

and a LAN. First of all, the sensing system is often completely distributed since most

centralize data processing will be very expensive. This is because data gathering and

the result distributing are both global operations. Even if there is a server in the

network, the frequency of such global operations has to be extremely low to avoid

draining out of the power of each node quickly. Secondly, due to the non-uniformity

of the transmission range of the nodes, the topology of the wireless sensor network
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can be very complex. Protocols and algorithms based on simple ideal models are

often not applicable in practice. Furthermore, the links between two wireless nodes

and the nodes themselves are not as reliable as that of computers on the internet

or in a LAN. Hence network dynamics (node/link insertion and deletion) is a much

more serious problem for wireless sensor networks.

One of the consequence of a network of complex topology is that many problems

in the network are actually NP-complete. For example, finding a minimum dominat-

ing set is quite useful for network monitoring. It is easy to solve the problem if the

network topology is simple enough (e.g., tree or ring structure). But it becomes very

hard for general network topology. According to the complexity theory, we know that

it is very unlikely that there will be efficient algorithms to solve these problems in

general.

In this dissertation, I will introduce a topological approach to attack the difficul-

ties in wireless sensor networking. We do not assume a simple model or the existence

of expensive positioning device (such as GPS). We study the more general graph

models for wireless sensor networks. Typical practical problems such as routing, data

storage, topology discovery are first transformed in to problems in topological graph

theory. We develop effective algorithms for these graph problems and apply these

algorithms to derive protocols and schemes in wireless sensor networks.

A. Background

Throughout this dissertation we will always assume that the wireless sensor networks

are deployed on a plane unless otherwise pointed out. An idealized model for wireless

sensor networks is the well known Unit Disk Graph (UDG) model [21, 11]. In the

UDG model, all the nodes are assumed to be exactly the same. A UDG sensor node
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has uniform transmission range, i.e., two nodes have a direct link in between if and

only if their distance is no more than the unit distance r. A generalization of the

UDG model is the quasi-Unit Disk Graph (quasi-UDG) model proposed in 2001 [5].

In the quasi-UDG model, we have two parameters R and r. Two nodes in the network

have a direct link in between if their geographic distance is no more than r. If their

distance is more than R, there will be NO direct link in between. In the case when

the distance is between R and r, there may or may not be a direct link between the

two nodes. It is straightforward that the UDG model is a special case of quasi-UDG

when R = r. One can choose different scheme to specify the connectivity between

two nodes if their distance is between R and r. One popular and easy way is to set

a link between such two nodes u, v with given constant probability p. Another more

realistic scheme is to set the probability p as a decreasing function of the distance

between u and v.

Note that when r is set to 0 and R large enough, the quasi-UDG model can be

used to model arbitrary network. The UDG model is much simpler than the quasi-

UDG model. One fundamental property of the UDG model is the following cross-link

property.

Lemma I.1 If two edges {u, v} and {x, y} in a UDG cross each other, then at least

one of u, v, x, y is the common neighbor of the other three.[38]

Although the proof of the cross-link property of the UDG model is fairly simple,

it turned out to be one of the most useful properties of the UDG model. A direct

application of this property is the so called Gabriel Planarization that can be carried

out in a completely distributed manner. Assuming that we know the coordinates of

each node, two nodes u and v can “remove” (disable) the edge between them if there

is another node w within the smallest disk that contains both u and v. After this,
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the remaining enabled edges induce a planar subgraph of the original network. We

call a subgraph that contains all the nodes in the original graph a spanner. Since

the planar subgraph obtained by Gabriel planarization contains every node in the

original network, we call it a planar spanner.

Another efficient planarization of a UDG network is the Relative Neighborhood

Graph (RNG) [96] proposed in 1980. The key idea is to destroy all triangles by

removing the longest edge of each triangle. In [96] the authors showed that RNG is

a sub graph of a Gabriel graph of the same input UDG network.

Let G be the original UDG network and H be a spanner of G. Let dG(u, v) be

the distance between u, v in G and dH(u, v) be the distance between them in H (only

using the edges in H). The stretch factor of H is then defined as

SH = max
u,v∈G

{

dH(u, v)

dG(u, v)

}

.

The stretch factor of a spanner characterizes how good the spanner is in terms

of preserving the connectivity of the original network. It is always a positive number

at least 1. The smaller the stretch factor is, the better the spanner is.

If power efficiency is the major concern, one can define the distance between two

nodes u and v to be the minimum power consumption that is necessary to send a

message from u to v. For wireless nodes, the energy consumption P of transmitting

a message to between two nodes of distance d usually satisfies P = O(dβ) where β

is a constant between 2 and 5. In this particular case, we call the stretch factor the

power stretch factor. When this factor of a spanner is a constant, we say that the

spanner is power efficient.

One can easily prove the following theorem.

Theorem I.2 For a given UDG, the subgraph obtained by applying Gabriel planariza-
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tion is a planar power spanner of power stretch factor 1, thus is power efficient.

We can also take other measures of distance between nodes in wireless sensor

networks and have different definitions of stretch factors. Another commonly used

stretch factor is the hop stretch factor in which the distance between two nodes is

simple the hop distance between them.

Routing is probably the most fundamental problem for any network. Different

from other networks, developing efficient routing protocols is a great challenge for

general wireless sensor networks.

Geographic routing was extensively studied to address this problem. It uses

greedy forwarding in which a node always tries to rely the message to the neighbor

that is closest to the destination. When there is no such neighbor, the message is

then routed to get around the local maxima using local flooding.

In the case of UDG networks with each node knowing its own coordinates, it is

much easier for a message to get around the local maxima. A celebrated idea called

perimeter routing (or face routing) was proposed recently. The algorithm utilizes a

planar spanner of the original network. Whenever a message reaches a local maxima,

it switches to the face routing mode and gets around the local maxima. The key

observation is that at least one of the faces containing the current node will contain a

node that is closer to the destination. This routing protocol is ideal for UDG networks

because of the existence of the Gabriel planar spanner.[38]

Later there was a similar routing scheme developed for a special class of quasi-

UDG where R/r ≤
√

2 (also known as
√

2-quasi-UDG) [61] utilizing “virtual links”.

The key property of these quasi-UDG is that crosses can be locally detected based

on the following property.

Lemma I.3 If two edges {u, v} and {x, y} in a
√

2-quasi-UDG G cross each other,
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then at least one of the edges {u, x}, {u, y}, {v, x}, {v, y} must be present in G.

For networks based on general quasi-UDG models, planarization becomes diffi-

cult. Recently the Cross-Link Detection Protocol (CLDP) has been proposed as a

nice attempt to tackle this problem [54]. In this protocol each node repeatedly probe

its links to remove crossing links unless the removal of the cross links disconnect the

network. Although CLDP does not guranttee a plane spanner, the authors showed

that GPSR still works for the spanner.

There have been numerous geographic routing protocols based on perimeter rout-

ing, including GPSR [51], the work by Bose et al. [9], Compass routing, GOAFR [59],

etc. There are also routing protocols that do not use node locations, but assign vir-

tual coordinates to nodes for routing. Examples include GLIDER, MAP, GEM, etc.

These protocols do not require the network to be a UDG.

In terms of network planarization, there are also some research done for unlo-

calized wireless sensor networks, i.e., the nodes’ positions are not known. [35, 36, 37,

29, 97]

B. Parameterized computation

Many important problems that are encountered in real-world are NP-hard. According

to complexity theory, it is very unlikely to have efficient algorithms to solve these

problems. In many scenarios confronting such hardness is unavoidable. There have

been a few approaches to deal with NP-hardness. Among them there are heuristic

algorithms [69], approximation algorithms [4], and randomized algorithms [73].

However, in many cases the above approaches appear to be unsatisfactory. For

example, many problems in the areas like database optimization, distributed comput-

ing and bioinformatics require exact solutions. Furthermore, the above approaches
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are not suitable for decision problems that ask “yes” or “no”. Recently a new ap-

proach called parameterized computation has been proposed to find exact solutions

for NP-Complete problems. This new approach takes advantages of certain small

parameters of the problems. The goal is to develop relatively efficient algorithms.

The running time of these algorithms depend on the small parameters rather than

the input size. Such algorithms are called fixed-parameter tractable algorithm or FPT

algorithm. Study of such algorithms leads to a new line of research called theory of

fixed-parameter tractability [26] that is concerned with designing practical parameter-

ized algorithms for NP-hard problems. There have been many exciting results in this

area. For example, the best known parameterized algorithm can decide if a graph

of n vertices has a vertex cover of size at most k in time O(1.274k + kn) [19]. This

algorithm is quite practical for parameter values up to k = 400 [15] and has been

implemented to solve problems in bioinformatics.

Formally, a parameterized problem Q is a decision problem consisting of instances

of the form (x, k), where the integer k ≥ 0 is called the parameter. For example, the

parameterized vertex cover problem is to decide, given a pair (G, k) where G is a

graph and k is a non-negative integer, whether G has a set of at most k vertices such

that every edge of G is incident to at least one vertex in the set.

Many NP-hard parameterized problems become solvable in practice if the pa-

rameters are small. In the case of vertex cover, for example, the parameter is the

size of the solution set. In particular, the algorithm that runs in time O(1.274k + kn)

suggests that the dominant factor in the time complexity, for this particular problem,

is the size of the solution set, rather than the size of the input. Therefore, the vertex

cover problem is practically solvable if the size of the solution set is not too large,

which is often the case in real applications.

Unfortunately, as one might have expected, not all problems have such nice
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properties. Many NP-hard parameterized problems remain difficult even when the

values of the parameters are small. For instance, the independent set problem is

believed to be not solvable in time f(k)nO(1), for any function f .

To distinguish these two types of parameterized problems and characterize the

hardness of such problems, Downey and Follows introduced the class of the fixed-

parameter tractable problems denoted by FPT and the class of the fixed-parameter

intractable problems which consists of various levels of W-hierarchy [26].

The class FPT contains problems that are solvable by parameterized algorithms

in time f(k)nO(1), where k is given as a parameter, n is the size of the input, and f is

an recursive function. The vertex cover problem belongs to this class, along with

many well known problems such as cutwidth [30], treewidth [7], longest path

[1], and so on.

On the other hand, the W-hierarchy
⋃

t≥0 W[t] characterizes the inherent level

of intractability of parameterized problems. The 0th level of the hierarchy is the

class FPT. For any integer i > 0, the ith level is denoted by W [i]. A parameterized

complexity preserving reduction (the fpt-reduction) is defined as follows. A param-

eterized problem Q is fpt-reducible to another parameterized problem Q′ if there is

an algorithm of running time f(k)|x|O(1) that on an instance (x, k) of Q produces an

instance (x′, g(k)) of Q′, such that (x, k) is a yes-instance of Q if and only if (x′, g(k))

is a yes-instance of Q′, where the functions f(k) and g(k) depend only on k. A

parameterized problem Q is W [i]-hard if every problem in W [i] is fpt-reducible to

Q, and is W [i]-complete if in addition Q is in W [i]. In particular, if any W [i]-hard

problem is in FPT, then W [i] = FPT, which, to the common belief, is very unlikely.

The W[1]-hardness of a parameterized problem provides a strong evidence that the

problem is not fixed-parameter tractable, or equivalently, cannot be solved in time

f(k)nO(1) for any function f . It is proved that the W-hierarchy collapses to FPT
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only if circuit satisfiability (a very important problem in complexity theory) is

solvable in subexponential time, which is widely believed to be unlikely. For a more

detailed description and results on FPT and W-hierarchy, please refer to Downey and

Fellows’s book [26].

C. Our work

We present our research in wireless sensor networking and computational optimiza-

tion. We study the fundamental properties of the general quasi-UDG model, namely

separability and the existence of power efficient near planar spanner. We develop novel

geographic routing algorithm based on face tracing that does not rely on the knowl-

edge of node position information. We present a robust planarization algorithm that

works for unlocalized wireless sensor networks. We also develop data storage scheme

based on network sorting that can achieve data load balance and supports ranged

queries in a natural way.

For computational optimization we present practical color coding technique and

its applications in solving path, matching and packing problems. We develop fixed pa-

rameter tractable enumeration scheme for common techniques including color coding

and bounded tree width. We show that a number of questions in the field of supply

chain management are complete for the complexity classes W [3] and W [4]. These

problems are the first groups of natural problems complete for these two classes.

1. Wireless sensor networking

In the first part of this dissertation, we present our results in wireless sensor network-

ing.

In Chapter II, we present the face tracing based geographic routing [99] protocol,
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which combines greedy forwarding with a mechanism called face tracing : when greedy

forwarding fails, the message uses face tracing to route out of the dead-end region. The

fundamental difference between face tracing and known perimeter routing algorithms

is that with face tracing, the faces are not the faces of a planarized sub-network, but

the faces of the network itself embedded in a high-genus topological surface. All the

faces can be easily found, without any network embedding or planarization. In our

extensive experiments these faces exhibited a prominent locality property and our

routing protocol outperformed previous known protocols for general sensor networks.

In Chapter III, we present results on two important properties of the quasi-UDGs:

separability and the existence of power efficient spanners. We show that quasi-UDGs

are similar to planar graphs in the sense that given any quasi-UDG, we can construct

a grid graph that is an abstraction of the given quasi-UDG and has a small balanced

vertex separator (whose removal will partition the graph into two disjoint components

of similar size). Furthermore, the grid graph has bounded node degree and bounded

number of edge crossings. Based on the separability of the grid graph, we developed

a compact routing protocol with stretch factor close to 2 utilizing a scheme similar

to distance labelling. We also developed a distributed algorithm that constructs a

spanner for any quasi-UDG with a constant power stretch factor and bounded node

degrees and bounded average number of edge crossings.

In Chapter IV, we present a novel method that robustly planarizes (finds a

planar subgraph in) sensor networks of realistic models: networks with non-uniform

transmission ranges and unlocalized sensors. The method starts with a simple shortest

path between two faraway nodes in the network, and progressively planarizes the

whole network. The key to this algorithm is the so called one-sided two-layer

planarization problem. We first present an approximation algorithm for this NP-

hard problem whose ratio can be arbitrarily close to 2. The algorithm is applicable
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to general networks, and achieves the best known approximation ratio. We then

present an improved parameterized algorithm that solves the planarization problem

exactly (namely, it finds the optimal solution). Our extensive simulations showed

that the planar subgraphs maintain the distance between nodes with small stretches,

allow detection of holes and boundaries with a much higher precision than existing

methods, and are very robust to different quasi-UDG models.

In Chapter V, we present a sorting based data centric storage scheme. Data cen-

tric storage is a well known in-network storage scheme that adapts well to in-network

processing. Previous approaches (GHT, GLS, etc.) either require the knowledge of

location information or require a virtual embedding of the network. Our data centric

storage scheme neither requires the location information nor relies on the planariza-

tion of the network. Our scheme achieves data load balance and supports ranged

queries in a natural way. The idea is to construct a path as short as possible that

traverses each node in the network at least once. Data objects in the network will

then be sorted so that their order is consistent on the path. We developed distributed

algorithms for sorting the data objects and practical algorithms to construct the path.

We provide theoretical analysis for the complexity of the sorting algorithm as well as

the demonstration of the storage performance through extensive simulations.

2. Computational optimization

In the second part of this dissertation, we describe our results in general computational

optimization. We refined the color coding technique to make it practical and used it to

improve the algorithms for a number of NP-hard problems including path, matching

and packings. We developed general schemes such that the techniques of branch and

bound, color coding, and bounded treewidth can be generalized to enumerate a given

number of best solution for many problems.
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In Chapter VI, we present our practical color coding technique and show how to

apply it to get improved parameterized algorithms for path, matching and packing

problems. We improve the size of an n, k color coding scheme to O(6.4kP (n)) where

P (n) is a polynomial of n. Based on this result, we improve the algorithm for k-path

problem to O(12.8kP (n)).

In Chapter VII, we show the first groups of natural problems that are complete

for the complexity classes W [3] and W [4] in the field of supply chain management.

These results also imply the inapproximability of these problems.

D. Preliminaries

In the rest of this chapter, we give a concise introduction to most of the terms that

will be used in the later chapters. Other terms will be introduced later in their proper

setting. Most of the notations given here can be found in graph theory textbooks,

such as [25].

A graph G is a pair (V,E), where V is a set of elements referred to as vertices of

G and E ⊆ V ×V is a binary relation on V . The elements of E are 2-element subsets

of V , which are referred to as edges of G.

A graph G is called a directed graph or digraph if the elements of E are ordered

pairs of vertices of G, otherwise it is called an undirected graph. Unless otherwise

stated, the graph we consider in this dissertation are all undirected graphs.

The number of vertices of a graph G is its order (or size), written as |G| (or |V |).

The number of edges of a graph is written as |E|. A vertex v is incident with an edge

e if v ∈ e. If e = {u, v} is an edge of G, the vertices u and v are called endpoints (or

ends) of e and they are considered to be adjacent.

Let v be a vertex of a graph G. The vertices that are adjacent to v is called its
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neighbors. The set of neighbors of v is denoted by NG(v) (or simply by N(v) if the

reference is clear). The set N [v] denotes N(v)∪v. More generally, for a set of vertices

U ⊆ V , the neighbors in V −U of vertices in U is called neighbors of U and denoted

by N(U). N [U ] denotes N(U) ∪U . The degree of v, denoted by dG(v) (or d(v) if the

reference is clear), is the number of edges that v is incident with, or equivalently, the

number of vertices in N(v). A vertex of degree 0 is isolated. If all vertices of G have

the same degree k, then G is k-regular, or simply regular.

Let G = (V,E) and H = (V ′, E ′) be two graphs. If V ′ ⊆ V and E ′ ⊆ E, then

H is a subgraph of G. If in addition, H contains all edges in G that have both ends

in V ′, H is an induced subgraph of G that is induced by V ′. For a subgraph G′ of G,

denote by G−G′ the subgraph of G obtained by removing all vertices in G′.

A path in a graph G is a sequence of vertices (v0, v1, . . . , vk) such that (vi, vi+1) ∈

E for i = 0, 1, . . . , k − 1. A path is simple if all vertices in it are distinct. Unless

otherwise stated, all the paths we consider in this dissertation are simple. A cycle in

a graph G is a path (v0, v1, . . . , vk) such that v0 = vk. A graph is acyclic is no cycle

exists in the graph.

A non-empty graphG = (V,E) is called connected if for any two vertices u, v ∈ V ,

there is a path (v0, v1, . . . , vk) in G such that v0 = u and vk = v. A maximal connected

subgraph of G is called a connected component (or simple component) of G.
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CHAPTER II

FACE TRACING BASED GEOGRAPHIC ROUTING IN NONPLANAR

WIRELESS NETWORKS

Scalable and efficient routing is a main challenge in the deployment of large ad hoc

wireless networks. An essential element of practical routing protocols is their accom-

modation of realistic network topologies. In this chapter, we study geographic routing

in general large wireless networks. Geographic routing is a celebrated idea that uses

the locations of nodes to effectively support routing. However, to guarantee deliv-

ery, recent geographic routing algorithms usually resort to perimeter routing, which

requires the removal of communication links to get a planar sub-network on which

perimeter routing is performed. Localized network planarization requires the wireless

network to be a unit-disk graph (UDG) or its close approximation. For networks that

significantly deviate from the UDG model, a common case in practice, substantially

more expensive and non-localized network planarization methods have to be used.

How to make such methods efficiently adaptable to network dynamics, and how to

avoid the removal of an excessive number of links that leads to poor routing per-

formance, are still open problems. To enable efficient geographic routing in general

wireless networks, we present face-tracing based routing, a novel approach that routes

the message in the faces of the network that are virtually embedded in a topological

surface. Such faces are easily recognizable and constructible, and adaptively capture

the important geometric features in wireless networks — in particular, holes, — thus

leading to efficient routing. We show by both analysis and simulations that the face-

tracing based routing is a highly scalable routing protocol that generates short routes,

incurs low overhead, adapts quickly to network dynamics, and is robust to variations

in network models.



16

A. Introduction

It is a challenging task to design practical routing schemes for large-scale ad hoc

wireless networks (e.g., sensor networks). Limited energy and memory are often

bottlenecks for such networks. And the complexity of connectivity and topology is

key to the design of the routing protocols.

To support efficient and scalable routing, geographic routing has been exten-

sively explored in recent years as a major technique. Geographic routing uses greedy

forwarding : a relay node greedily forwards the message to a neighbor that is closer

to the destination in Euclidean distance [9, 51, 59].1 Such a step utilizes the close

relation between a large-scale wireless network’s topology and its deployment field,

and greatly simplifies the design of the routing algorithm. Greedy forwarding, how-

ever, fails when the message reaches a dead-end node, a node that is closer to the

destination than all its neighbors are. One method to solve this problem is to use

local flooding (e.g., by expanding ring search) to find a node that is closer than the

current dead-end node to the destination. This method turned out to be costly for

networks that are relatively sparse or have holes.

In recently years, a celebrated idea called perimeter routing (or face routing) has

been proposed and adopted in numerous routing algorithms [9, 51, 59]. The idea is

to planarize the network by removing crossing edges. Then, when greedy forwarding

fails in the original network, the message is routed from face to face in the planar

sub-network toward the destination. That step, termed perimeter routing, is localized

and nearly stateless. However, perimeter routing has its serious limitations. It relies

on the planarization of the network. Localized network planarization requires the

1A source node can obtain a destination node’s location based on its ID by using
location service. And in some applications, such as data-centric storage, a message
only needs to be sent to a location without knowing the destination node’s ID.
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wireless network to be a unit-disk graph (UDG) — defined as a network where two

nodes can directly communicate if and only if their Euclidean distance is below a fixed

value R — or its close approximation (e.g., a quasi-UDG where the communication

range varies by a ratio of at most
√

2 [5]). In practice, however, such idealized

connectivity models significantly deviate from many real wireless networks, due to

reasons including antenna design, multi-path fading, etc. In addition, the errors in

the node positions that the wireless nodes learn from the positioning system (e.g.,

Global Positioning System or localization methods) also moves the connectivity model

away from the UDG model. It is not uncommon to observe stable long links that are

five times or more longer than unstable short links in real wireless networks [40].

When a wireless network substantially deviates from the UDG model — a com-

mon case in practice, — it becomes provably infeasible to planarize it in a localized

and efficient way. Also, planarizing such networks may force them to be disconnected.

Recently, a nice attempt has been made to tackle this problem, where the Cross-Link

Detection Protocol (CLDP) was proposed [54]. The idea of CLDP is to repeatedly

probe the links of the network to remove crossing links (unless removing a link leads

to problems such as network partition). Then in the network (nearly) planarized by

CLDP, face routing algorithms, such as the well known Greedy Perimeter Stateless

Routing (GPSR) algorithm [51], can be used. CLDP, however, does not resolve the

fundamental disadvantage of network planarization: our experiments show that when

the network deviates substantially from the UDG model, even if all the edges are short

compared to the size of the network-deployment region, the action of planarizing the

network requires the removal of a very large number of edges. That creates large

distortion in routing distance in the perimeter routing phase, and can also easily lead

the message in the opposite direction of the destination. Such a disadvantage appears

hard to avoid for any routing algorithm based on direct planarization. Besides the
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high communication complexity of planarization and the distance distortion, how to

make such methods adaptable to network dynamics (insertion and removal of links

or nodes) is also a difficult open problem.

In this chapter, we present a novel routing approach for ad hoc wireless networks.

We present face-tracing based routing, an efficient routing protocol that guarantees

delivery for general wireless connectivity models. Similar to existing perimeter routing

algorithms, the face-tracing based routing protocol combines greedy forwarding with

a mechanism called face tracing : when greedy forwarding fails, the message uses face

tracing to route out of the dead-end region. The fundamental difference between face

tracing and perimeter routing is that with face tracing, the faces are not the faces

of a planarized sub-network, but the faces of the network itself2 embedded in a high-

genus topological surface. Every edge is in one or two such faces. All the faces can be

easily found, without any network embedding or planarization. These faces exhibit a

prominent property: they automatically surround holes — regions where no node exist

due to node sparsity or obstacles, around which dead-end nodes most likely appear

— with high likelihood, and they tend to be localized in regions with no holes. Such

a property is useful for routing a message out of dead-end regions, which is similar to

the key reason for the success of perimeter routing in planar graphs. No edge removal

is required for the correctness of the protocol, but to improve the performance, it

does remove some edges in an efficient way. The number of edges removed, however,

is much less than planarization, which makes face tracing much more efficient than

perimeter routing due to its small distortion. We show that the face-tracing based

routing protocol is highly efficient, scalable, adapts quickly to network dynamics, and

is robust to variations in the network connectivity models.

2To be precise, in our protocol implementation, we consider the faces in a “cluster
graph” derived from the network, which will be defined later.
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There have been numerous geographic routing protocols based on perimeter rout-

ing, including GPSR [51], the work by Bose et al. [9], Compass routing, GOAFR [59],

etc. There have also been routing protocols that do not use node locations, but assign

virtual coordinates to nodes for routing. Examples include GLIDER, MAP, GEM,

etc. The latter protocols do not require the network to be a UDG, similar to the

face-tracing based routing protocol. Comparatively, the face-tracing based routing

protocol uses node locations – which nodes obtain from position systems or localiza-

tion methods — and does not require the embedding or the building of infrastructures

to obtain virtual coordinates.

The rest of the chapter is organized as follows. In Section B, we introduce face

tracing and study its properties. In Section C, we present the face-tracing based

routing protocol. In Section D, we evaluate the protocol’s performance through sim-

ulations. In Section E, we present concluding remarks.

B. Face tracing and its properties

In this section, we study face tracing and its properties in wireless sensor networks.

Faces can be easily determined in a network, and they exhibit very nice locality

properties. We will present the routing protocol based on face tracing in Section C.

1. Faces and face tracing

The concept of the faces of a network corresponds to an embedding of the network

in a high-genus topological surface. Although our routing protocol does not embed

the network in any way, understanding the relationship between face tracing and

embedding is the key for proving the correctness of our protocol and its properties.

In the following, we regard a network as a graph G = (V,E) deployed in a plane,
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with V being the set of nodes and E the undirected edges.

A topological surface is an orientable 2-dimensional manifold in which each point

has a neighborhood homomorphic to an open disk.3 Informally speaking, a topological

surface is the surface of a solid that contains no “infinitely thin joints”. The simplest

topological surfaces include spheres and toruses. (See Fig. 1 for examples.) On the

other hand, the surface of two balls “glued” at a point does not make a topological

surface.

(c)(b)(a)

Fig. 1. Topological surfaces. (a) Sphere (genus=0). (b) Torus (genus=1). (c) Two–

holed torus (genus=2).

Let G be a connected graph. An embedding of the graph G in a topological

surface S is a “drawing” of G on S with no edge crossings. We will only consider

“cellular embeddings” in which each face of the embedding is homeomorphic to an

open disk.

To study graph embeddings, the concept of graph rotation scheme has to be

introduced. Let v be a vertex in the graph G. A rotation at v is a cyclic labelling of

the edges incident to v. That is, if v has p incident edges [vu0], [vu1], · · · , [vup−1], the

rotation at v labels them by Π(0), Π(1), · · · , Π(p − 1), where Π(·) is a permutation

on {0, 1, · · · , p−1}. We say that the edge labelled by (i+1) mod p follows the edge

3Formally, by “X is homeomorphic to Y ”, we mean there is a 1-to-1 mapping π
from X to Y such that both π and its inverse are continuous.
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labelled by i mod p or, equivalently, the edge labelled by i mod p precedes the edge

labelled by (i + 1) mod p. A list of rotations, one for each vertex of G, is called a

rotation scheme of the graph G. An example of a graph with a rotation scheme is

shown in Fig. 2 (a), where the numbers beside edges are their labels.
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Fig. 2. Graph and its embedding. (a) A graph G with a rotation scheme. (b) Embed-

ding of G in a topological surface.

An embedding of a graphG in a topological surface S naturally induces a rotation

scheme for the graph G, as follows. For each vertex v of G, we take a sufficiently small

neighborhood D of v on the surface S such that D is homeomorphic to a (planar)

open disk. Then for the edges incident to v in D, we label them with 0, 1, 2, · · · in

the counterclockwise order, which defines a rotation scheme. (See Fig. 2 (b) for an

example.) Conversely, by the classical Heffter-Edmonds Principle [46], every rotation

scheme of a graph G induces a unique embedding of G in a unique topological surface.

(See Fig. 2 for an example illustrating the correspondence between rotation scheme

and embedding, where (a) is the graph G, and (b) is G’s embedding in a topological

surface.)

Therefore, as long as a rotation scheme of a graph G is given, we conceptually

obtain an embedding of the graph G on some topological surface S. In our routing
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protocol, we always use the following rotation scheme: we label the edges incident

to a node with 1, 2, 3, · · · by the counterclockwise order of the edges in the plane

where the wireless network is deployed. Note that the embedding corresponding to

that particular rotation scheme is still highly non-trivial, because the network itself

is usually not planar.

The edges of G partition the topology surface it is embedded in into faces. (See

Fig. 2 (b).) By face tracing, we refer to the process of walking along the edges on

the boundary of a face following the right-hand rule. For example, by walking along

the edges from A to D to E to A to D · · · in Fig. 2, we are tracing a face. We can,

in fact, do face tracing in the original graph G without finding out its embedding, as

the following algorithm FaceTrace shows.

First we define a few notations. Each edge e = [u, v] in a graph G has two

directions: one is from u to v and the other is from v to u. We will call them “edge-

directions” and denote them by 〈u, v〉 and 〈v, u〉, respectively. Let π(G) be a rotation

scheme of the graph G. To trace a face starting from an edge-direction 〈u0, v0〉, we

apply the FaceTrace algorithm shown in Fig. 3.

Input: G = (VG, EG): a graph with rotation π(G) and edge direction 〈u0, v0〉
Output: traverse the face that < u0, v0 > is in
1: u← u0, v ← v0;
2: repeat
3: output edge direction 〈u, v〉;
4: let [v, w] be the edge following the edge [v, u] in the rotation at vertex v;
5: u = v; v = w;
6: until (u = u0) & (v = v0)

Fig. 3. Algorithm FaceTrace: trace a face in a graph.

We give some remarks on the FaceTrace algorithm. The algorithm traces a

sequence of edge-directions, following the orders in the rotations of the vertices ap-
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pearing in the sequence, and stops when the first edge-direction is encountered again.

It should be noted that the first edge-direction must be encountered again and no

edge-directions may appear more than once in the sequence. To see this, we present

here a proof by contradiction. Let 〈u′, v′〉 be the first edge-direction that repeats

in this sequence (such an edge-direction must exist because there are only finitely

many edge-directions in the graph), and assume that 〈u′, v′〉 is not 〈u0, v0〉. By the

algorithm, in order to trace the edge-direction 〈u′, v′〉, we must first follow the edge-

direction 〈w′, u′〉, where [w′, u′] is the edge preceding the edge [u′, v′] in the rotation

at vertex u′. Since 〈u′, v′〉 is not the first edge-direction in the sequence, in order to

trace 〈u′, v′〉 twice, we must first trace 〈w′, u′〉 twice. This contradicts the assumption

that 〈u′, v′〉 is the first edge-direction that repeats in the sequence. This contradiction

proves that the first edge-direction 〈u0, v0〉 must be the first repeated edge-direction

in the sequence traced by the algorithm. In consequence, no edge-direction appears

more than once in the sequence constructed by the algorithm FaceTrace.

Therefore, the sequence of edge-directions constructed by the algorithm Face-

Trace forms a closed walk, which is the boundary of a face in the embedding π(G)

of the graph G.

The FaceTrace algorithm can start with any edge direction and trace the face

that it is in. So clearly, each edge direction in a graph is contained in the tracing of

exactly one face. An edge is involved in either one or two faces, because its two edge

directions may or may not be in the tracing of the same face. If a vertex v is on the

boundary of a face f — which we shall call “the vertex v is in the face f” in the rest

of the chapter — a tracing of f must enter and leave v at least once each. So the

number of faces that a vertex is in is upper bounded by its degree.
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2. Face optimization for geographic routing

In our face-tracing based routing protocol, when greedy forwarding fails, we route

the message along faces to get out of the dead-end region. Our extensive simulations

show that to improve the routing performance, it is very beneficial to have small faces

because of their good locality property: small faces tend to surround holes tightly,

so they can guide messages to efficiently route around holes to escape the dead-end

regions. In the following, we present three methods for reducing the sizes of faces,

which also prove to be very effective in practice.

The first method splits a face into two smaller faces by removing an edge. Assume

that a vertex v has p incident edges, which are labelled by 0, 1, · · · , p−1 in the rotation

scheme. When we remove the edge labelled by j (0 ≤ j ≤ p − 1), the rotation at v

changes in this way: now the edge labelled by (j+1) mod p follows the edge labelled

by (j−1) mod p, and the ‘follow’ relationship for the other edges remain unchanged.

For a vertex v, we denote the neighboring vertices of v by N(v). The first method is

as follows:

• Let G be a connected graph with a rotation scheme. We remove an edge [u, v]

if it satisfies these two conditions: (1) there exists a face f that contains both

the edge directions 〈u, v〉 and 〈v, u〉; (2) there exists another face g (g 6= f) that

contains a vertex in N(u)− v and a vertex in N(v)− u (those two vertices can

be the same).

An example of the above method is shown in Fig. 4 (a), (b). The edge [u, v] in

Fig. 4 satisfies the two conditions: the corresponding face f is u → v → B → A →

v → u→ A→ B → u→ v → · · · , and the face g is u→ B → v → A→ u→ B · · · .

So [u, v] can be removed. After the removal, the graph is shown in Fig. 4 (b), where

the face f has been split into two smaller faces, g remains intact, and the graph is
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Fig. 4. Split a face by removing an edge. (a) A graph before removing an edge [u, v].

(b) After removing edge [u, v]. (c) A graph embedded in a topological surface,

before removing edge [u, v]. (d) After removing edge [u, v].

still connected. More generally, we have:

Theorem II.1 After removing an edge [u, v] using the above method, (1) the face f

is split into two smaller faces; (2) the faces in G other than f all remain unchanged

after the edge removal; (3) G remains connected after the edge removal.

Proof. Let’s say that face g goes through a ∈ N(u) − {v} and b ∈ N(v) − {u}.

Face g is a cyclic walk, so g contains a walk from a to b. So naturally we get a walk

u → a → · · · → b → v, and clearly that walk does not contain the edge [u, v]. So

[u, v] is not a cut edge, removing which will not disconnect the network.

Face f contains both 〈u, v〉 and 〈v, u〉. Since f is a cyclic walk, the embedding

of f in the topological surface is as illustrated in Fig. 4 (c) without loss of generality.

(A vertex can appear multiple times in the shown face. The direction of the walk

using right-hand rule is as shown by arrows. The face is outside what appears to be

the two closed regions; but since the topological surface has ‘bridges’, the nodes in

those two seemingly closed regions can be connected through the ‘bridges’.) Before
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removing edge [u, v], face f is {u → A → · · ·B → u → v → C → · · ·D → v → u}.

After removing edge [u, v], f is replaced by two smaller faces: {u→ A→ · · ·B → u}

and {v → C → · · ·D → v}. Removing edge [u, v] does not affect other faces, because

they do not contain the edge directions 〈u, v〉, 〈v, u〉, 〈B, u〉, 〈u,A〉, 〈D, v〉 or 〈v, C〉.

The second method is simple: we remove the longest edge in every triangle in the

graph. Its good performance for creating small faces is validated through experiments.

The third method is to work on a cluster graph H = (VH , EH) instead of the

original graph G = (V,E). The cluster graph H = (VH , EH) is defined as follows.

Partition the vertex V into disjoint subsets S1, S2, · · · , Sk such that for each Si

(1 ≤ i ≤ k), there is a vertex ui ∈ Si that is adjacent to all other vertices in Si. VH

consists of vertices v1, v2, · · · , vk, such that (1) vi has the same position as ui in the

plane; (2) there is an edge between vi, vj in H if and only if in G, there is an edge

connected two vertices respectively in Si and Sj. Such a graph H is called the cluster

graph of G. Experiments show that the faces in H are much smaller than the faces in

G for wireless networks. Our routing protocol actually routes messages conceptually

along the faces in H instead of G.

3. Analysis on the locality property of faces

Our extensive simulations show that wireless networks strongly tend to have faces

surrounding holes. This feature is especially nice for cluster graphs, where the faces

exhibit the following locality property: (1) there are nearly always faces closely sur-

rounding holes; (2) in the areas where no hole (of a moderate or large size) exists,

the faces tend to be small and very localized. Those properties experimentally hold

for a very wide range of network models. Examples of faces in wireless networks and

in their cluster graphs are shown in Fig. 5. There, (a) and (c) show networks of
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two different models: quasi-UDG model and directional antenna model, two popular

models of wireless network whose details will be introduced in Section D. (b) and (d)

show their corresponding cluster graphs, to which the methods for reducing face sizes

introduced in the previous subsection are applied. The original wireless networks tend

to have faces surrounding holes but not very localized. Examples of two very large

faces of that type are shown in (a) and (c) with thick lines. For the cluster graphs

in (b) and (d), three typical faces are shown: a face closely surrounding a hole, a

face enclosing the outside boundary of the network, and a randomly selected face in

regions with no holes, which is very small and localized. We will show more statistics

on the faces in our simulations in Section D.

The locality property of the faces in the cluster graph is key to the performance

of the face-tracing based routing protocol. It is a very intriguing question why such a

property exists, as it concerns the complex relationship between the wireless network’s

geometry in the Euclidean plane and its embedding in a topological surface. In this

subsection, we attempt to shed some light on its understanding by studying the

robustness of the faces surrounding holes.

The generation of an ad hoc wireless network can be seen as the random gen-

eration of nodes and edges following some rules (e.g., an edge cannot be too long).

Assume that we have a graph that contains a face surrounding a hole. We consider

the following question concerning the robustness of the face: if we add or remove

edges from the graph, in which case will there no longer be a face surrounding the

hole?

First, let’s define a hole in the following way: A hole is a continuous region in

the plane that does not contain any vertex or part of any edge.

The definition of if and how a face surrounds a hole is more subtle. To present

the definition, we use a concept called Surrounding Index (SI).
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(a) Quasi-UDG and a large face (b) Cluster graph of quasi-UDG
and 3 faces

(c) DA graph and a large face (d) Cluster graph of DA graph
and 3 faces

Fig. 5. Examples of quasi-UDG and directional antenna (DA) networks, their cluster

graphs, and typical examples of the faces (represented by dark edges) in them.

2000 nodes are deployed in a 20×20 plane. For the quasi-UDG, R = 1, r = 0.1,

p = 0.5, average degree is 7.885. For the DA graph, θ = 120o, RDA = 2, average

degree is 7.290.
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Let G be a graph in a plane, and let h be a hole. Let P denote a walk in G.

Let c be a fixed point in the hole h, and let p be a point on the walk P . Consider

the ray starting at c and goes through p. When p moves along the walk P with a

small step, the ray sweeps the plane with a small angle. We give the angle a positive

(negative) sign if the ray sweeps in the counterclockwise (clockwise) direction. The

surrounding index of the walk P for the hole h, SI(P,H), is defined to be the total

angle that the ray sweeps with when the point p moves through the whole walk P

exactly once. We see a face as a close walk (where each edge direction is visited only

once); therefore, a face’s surrounding index must be 2πi, where i is an integer. Note

that a face may circle around a hole multiple times, so i may be an integer whose

absolute vale is greater than 1. If a face does not enclose a hole, then its surrounding

index is 0. Now we define: A face f surrounds a hole h if SI(f,H) 6= 0.

If we partition a face f into a set of smaller walks P1, P2, · · · , Pk, then clearly,

SI(f, h) =
∑k

i=1 SI(Pi, h).

First we consider adding an edge [u, v] to graph G. (In the following, we always

assume that the rotation scheme labels the edges incident to a vertex based on their

counterclockwise order in the plane. The results below can be extended for general

rotation schemes.) Let [u, w1], [u, w2] be the two edges that, respectively, precedes and

follows edge [u, v] in u’s rotation. Let [v, a1], [u, a2] be the two edges that, respectively,

precedes and follows edge [v, u] in v’s rotation. Let the face that contains the edge

directions 〈w1, u〉, 〈u, w2〉 (resp., 〈a1, v〉, 〈v, a2〉) before the edge [u, v] is added be

called face f1 (resp., face f2). Then, based on the definitions of face tracing and

surrounding index, it is simple to see that the following proposition holds. We skip

its detailed proof due to the space limitation.

Proposition II.2 Let h be a hole. (1) If f1 and f2 are the same face, then the
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addition of the new edge [u, v] splits it into two different faces f3 and f4, where

f3 is “· · ·w1 → u → v → a2 · · · ” and f4 is “· · ·a1 → v → u → w2 → · · · ”.

SI(f1, h) = SI(f3, h) + SI(f4, h). (2) If f1 and f2 are two different faces, then the

addition of the new edge [u, v] merges them into one face f3: “· · ·w1 → u → v →

a2 · · ·a1 → v → u→ w2 → · · · ”. SI(f1, h) + SI(f2, h) = SI(f3, h).

Now we consider removing an edge [u, v] from graph G. Before [u, v] is removed,

let f1 be the face containing the edge directions 〈w1, u〉, 〈u, v〉, 〈v, a2〉, and let f2 be

the face containing the edge directions 〈a1, v〉, 〈v, u〉, 〈u, w2〉. Similarly we have:

Proposition II.3 Let h be a hole. (1) If f1 and f2 are the same face, then the

removal of the edge [u, v] splits it into two different faces f3 and f4: f3 is “· · ·w1 →

u→ w2 · · · ” and f4 is “· · ·a1 → v → a2 · · · ”. SI(f1, h) = SI(f3, h)+SI(f4, h). (2) If

f1 and f2 are two different faces, then the removal of the edge [u, v] merges them into

one face f3: “· · ·w1 → u → w2 → · · · → a1 → v → a2 · · · ”. SI(f1, h) + SI(f2, h) =

SI(f3, h).

By the above two propositions, when we split a face f1 surrounding a hole into

two faces f3 and f4, one of them must still be surrounding the hole. That is because

when SI(f1, h) = SI(f3, h) + SI(f4, h) and SI(f1, h) 6= 0, either SI(f3, h) 6= 0 or

SI(f4, h) 6= 0. When we merge two faces f1 and f2 into one face f3, if — say, — f1

surrounds a hole h (so SI(f1, h) 6= 0), then f3 also surrounds h unless SI(f2, h) =

−SI(f1, h) 6= 0. So to eliminate a face in a graph that surrounds a hole, the only

way is to merge it with another face of the opposite surrounding index, where at least

one edge need be added. By the collected statistics on faces shown in Section D, we

see that in the cluster graphs, the faces usually closely surround holes and the outer

boundary; and because of the ‘right-hand rule’ for face tracing, often the only type

of face pairs of opposite non-zero surrounding indices are a face closely surrounding



31

a hole and a face enclosing the outside network boundary. These restrictions make

it less likely to eliminate faces surrounding holes in a graph by adding or removing

a small number of edges, which provides some insight on the robustness of the face

surrounding property.

C. Face-tracing based routing protocol

The face-tracing based routing consists of two modes: the greedy forwarding mode,

and the face tracing mode. A message is first routed in the original network using

greedy forwarding. If it reaches a dead-end node v, the message enters the face tracing

mode and routes along the faces in the network’s cluster graph, until it reaches a node

b that is geographically closer to the destination than v is. Then, the message returns

to the greedy forwarding mode. The message alternates between these two modes

until it reaches the destination. The nice locality property of the faces make this

process very efficient. In the following, we introduce the components of the routing

protocol.

1. Preprocessing

The network is preprocessed before any routing starts. The procedure consists of three

elements: building the cluster graph of the network, let nodes recognize the faces (of the

cluster graph) they are in, and reduce the sizes of the faces using the methods described

in Section B. The specific process is: First, the nodes distributively partition the node

set into very small clusters, where each cluster consists a ‘cluster head’ node that is

adjacent to all the other nodes in the cluster. Every node remembers the connectivity

between nodes in its own cluster; then the nodes distributively build a cluster graph

by remembering the edges from their own clusters to the adjacent clusters; Second,
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for each triangle in the cluster graph, the two endpoints of its longest edge mark it as

“removed”; Third, each node in the cluster graph uses the FaceTrace algorithm to

learn the faces they are in, by sending inquiry messages along each incident edge in

the cluster graph. The faces are assigned IDs, and the nodes remember the IDs of the

faces they are in. To reduce the number of inquiry messages, we let the nodes initiate

such inquiry messages asynchronously: if a node receives an inquiry message from an

incoming edge e, it no longer needs to initiate an inquiry message along the outgoing

link that follows e. To improve routing performance, each node also remembers the

positions of t randomly selected nodes in every path. (We find through experiments

that t = 5 is sufficient.) We call t the sampling rate. Fourth, if there is a link

[u, v] in the cluster graph that can be removed by using the first method presented

in Section B for reducing faces sizes, we remove [u, v]. By Theorem II.1, only a face

containing u and v are affected (which is split into two faces). So only u and v send

out two messages to trace the two new faces, and inform all the nodes in those two

faces of that change. The above operations can all be implemented in a very efficient,

distributed and asynchronous way.

2. Routing

The routing consists two modes: greedy forwarding and face tracing. When a message

just enters the face tracing mode at node v (of the cluster graph), among the faces

containing v, we heuristically choose the face that contains a sampled node whose

Euclidean distance to the destination is the minimum. (Recall that v remembers the

positions of t sampled nodes in the face.) The message is routed in that face using

the FaceTrace algorithm, which is nearly stateless. If that face does not get the

message any closer to the destination, then we route from face to face, and route

inside each face that we come to. Note that going from face to face is the same as
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going from vertex to vertex in the dual graph of the embedded cluster graph in its

corresponding topological surface. Therefore, if we traverse all the faces in this way,

we can reach the whole graph, including the destination. In our implementation, the

message remembers the faces it has traversed in the current round of face tracing,

and uses the depth-first search (DFS) to go from face to face. So the delivery is

guaranteed. The overhead in remembering the traversed faces’ IDs is very small, due

to the high routing efficiency. Note that each cluster of the network acts as one node

in the cluster graph. Since a cluster is of diameter 2 or less, realizing the face tracing

in the true network is very simple.

3. Network dynamics

In a wireless network, links and node may come and go. Our protocol adapts to such

network dynamics efficiently. By Propositions II.2 and II.3 described in the previous

section, when a link is added or removed, at most two faces are affected, so only two

messages need be sent by the two endpoints of the link to learn the new faces. Adding

or removing a node is the same as adding or removing its incident links. The only

additional case to consider is that when nodes/links are added or removed, clusters

can change, appear or disappear. As nodes in the same cluster remember connectivity

information about the whole cluster, such changes are efficiently processed.

D. Simulation

We have implemented the face-tracing based routing protocol, and conducted exten-

sive simulations for various network connectivity models and deployment environ-

ments. The protocol has shown very stable performance across the various environ-

ments and parameter configurations. In this section, we present simulations for a
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typical set up for ad hoc wireless networks, and consider two different wireless con-

nectivity models: the quasi unit disk graph (quasi-UDG) model, and the directional

antenna (DA) model.

The quasi-UDG model is a generalization of the UDG model for wireless net-

works. It has three parameters R, r and p. (R ≥ r, 0 ≤ p ≤ 1.) An edge exists (does

not exist) between two vertices if their Euclidean distance is less than r (more than

R); if the Euclidean distance is between r and R, the edge exists with probability p.

The model we adopt for directional antennas (DA) is a simplification of the real

DAs. It has two parameters RDA and θ. (0 ≤ θ ≤ 2π.) A vertex u can directly send

messages to a vertex v if and only if v falls inside a cone of angel θ rooted at v and is

also within Euclidean distance RDA from v. The orientation of that cone is uniformly

randomly selected. There is an edge between two vertices if and only if they can both

directly send messages to each other.

In the experiments, we uniformly randomly deploy n0 wireless nodes in a 2-D

space of size 20 × 20. To mimic nontrivial deployment environments, we randomly

put two holes (areas where nodes cannot be placed) of radius 1.5 and 2.5 in the

plane. (The network also has naturally formed voids due to the sparsity of nodes.)

Corresponding to each fixed set of parameters, we randomly generate 30 networks.

Then in each network, we randomly pick 10,000 source and destination pairs for

routing.

The focus of these experiments is to verify the validity of the new geographic

routing approach based on face tracing. We concentrate on the topological level of the

routing, and study the routing performance, properties of faces, network preprocessing

overhead, packet overhead and adaptivity to network dynamics. Many important

factors at the MAC layer, such as link quality or packet acknowledgement, have

not been addressed and will be studied in our future work. We compare the face-
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tracing based routing protocol with the current geographic routing approach that uses

perimeter routing. In particular, we compare it with the combination of GPSR [51]

and CLDP [54]. GPSR is a widely known geographic routing protocol, and CLDP

is a novel network planarization protocol that supports GPSR. The performance

of combining GPSR with CLDP has been studied in [54]. We also compare with

a popular geographic routing approach that combines greedy forwarding with local

flooding. When greedy forwarding fails, that approach uses local flooding (expanding

ring search with doubling radius) to route out of the dead-end region. The experiment

results show that the face-tracing based routing approach leads to excellent routing

performance.

1. Statistics on faces

Typical examples of the quasi-UDG networks, directional antenna (DA) networks,

their cluster graph, and typical faces in them are shown in Fig. 5. Details of the

figures were introduced in Section B, so we skip them here. We comment that in

nearly all the cluster graphs generated in the experiments, there are faces surrounding

the holes and the outside boundary. In areas with no (substantially) holes, the faces

are very small and localized. The type of faces most helpful for getting a message

out of a dead-end region are those that closely surround relatively large holes. Let’s

define a face surrounding a hole to be close if the average Euclidean distance from

the vertices in the face to the boundary of the hole is less than ∆. We set ∆ = 4

here. The statistics on such close faces are shown in Table I.

As shown in Table I, the probability of having faces closely surrounding the holes

is high. In such cases, that probability becomes relatively lower; that is because the

faces surrounding the holes become complex and contain vertices further away from

the holes, and we do not count them as ‘close.’ The average face size is very small,
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Table I. Statistics on faces in the cluster graphs of quasi-UDG networks and directional antenna (DA) networks. n0 (m0)

and n (m) are the number of vertices (edges) in the original networks and their cluster graphs, respectively.

R = 1, p = 0.5, RDA = 2.5. ‘Hole #1’ and ‘hole #2’ are the two randomly placed holes of radius 1.5 and 2.5,

respectively. ‘Boundary’ is the outside boundary of the deployment region.
Network Connectivity Model: Quasi UDG

Statistics on faces surrounding holes Statistics on all faces Statistics on Network
Ratio of networks Average distance Average Standard Average m0 n m
containing faces between face face deviation of number
closely surround vertices and the size face size of faces a
holes & boundary holes they surround node is in

n0 = 2000 hole #1 100% 0.740
R/r = 2 hole #2 100% 0.751 5.219 6.032 4.768 9878.0 449.1 1484.1

boundary 100% 0.686
n0 = 2000 hole #1 100% 1.036
R/r = 10 hole #2 97% 1.065 6.465 11.257 4.821 7921.8 563.8 2022.3

boundary 100% 1.070
n0 = 4000 hole #1 100% 0.853
R/r = 2 hole #2 100% 0.664 7.405 9.442 6.331 39600.3 573.8 2905.3

boundary 100% 0.768
n0 = 4000 hole #1 87% 3.851
R/r = 10 hole #2 60% 3.514 10.705 29.011 7.519 31663.8 754.3 4637.2

boundary 20% 1.485

Network Connectivity Model: Directional Antenna
n0 = 2000 hole #1 57% 1.861
θ = 90o hole #2 39% 1.323 10.205 27.047 3.891 5451.6 838.1 2361.4

boundary 12% 0.662
n0 = 2000 hole #1 86% 1.682
θ = 150o hole #2 62% 1.542 12.114 25.731 5.968 12598.7 609.7 2811.7

boundary 11% 0.673
n0 = 4000 hole #1 77% 1.752
θ = 90o hole #2 60% 1.593 17.603 39.947 6.427 20818.7 1394.3 6698.2

boundary 6.8% 0.675
n0 = 4000 hole #1 100% 1.666
θ = 150o hole #2 89% 1.671 21.053 37.285 8.690 49956.0 937.9 6440.4

boundary 11% 0.746
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and on average a vertex is contained only in a small number of faces. That is because

of the strong locality of the faces.

2. Network preprocessing overhead

Both the face-tracing based routing protocol and CDLP require preprocessing when

the network is initialized. Our protocol does clustering and requires nodes to recog-

nize faces. CLDP probes the network to remove crossing links. The total number

of messages sent is taken as the preprocessing overhead. When the same message is

transmitted over k hops, we count it as k messages. The results are as shown in Ta-

ble II. We see that the face-tracing based protocol improves the overhead significantly,

by a factor of 103 to 104.

Table II. Network preprocessing overhead: number of messages sent, R = 1, p = 0.5,

RDA = 2.5.
Quasi-UDG model

n0 = 2000 n0 = 2000 n0 = 4000 n0 = 4000
R/r = 2 R/r = 10 R/r = 2 R/r = 10

Tracing 1.40× 104 1.37× 104 4.15× 104 3.93× 104

CLDP 1.67× 107 1.63× 107 1.77× 108 1.79× 108

Directional antenna model
n0 = 2000 n0 = 2000 n0 = 4000 n0 = 4000
θ = 90o θ = 150o θ = 90o θ = 150o

Tracing 1.73× 104 2.06× 104 4.24× 104 6.17× 104

CLDP 1.94× 107 5.37× 107 1.83× 108 4.67× 108

3. Quality of routing paths

Given a source and a destination, if greedy forwarding alone succeeds, the face-tracing

based routing (short as Tracing here), CLDP+GPSR (short as CLDP here), and

greedy forwarding plus local flooding (short as G&F here) produce exactly the same

routing path. In our experiments, greedy forwarding succeeds in around 30% to 70%



38

cases for quasi-UDGs, while for directional antenna (DA) graphs this percentage is

less than 1%. We compare the routing performance only for the cases where greedy

forwarding alone does not succeed. Define stretch factor as the average ratio of the

hop distance in a routing path (generated by one of the three routing protocols)

to the minimum hop distance between the source and the destination. For a good

understanding, we measure the routing performance considering the changes in vertex

degree, vertex density, network size, and face sampling rate.

a. Stretch factor vs. node degree
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Fig. 6. Stretch factor vs. average vertex degree in original networks. R = 1.
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For quasi-UDGs (DA graphs), we adjust the value of connectivity probability p

(the radius RDA) to change the average vertex degree. The average routing stretch

factors are shown in Fig. 6. The face-tracing based routing protocol performs much

better than the other two. Its stretch factor is in the ranges of [1.59, 2.37], [1.63, 2.47],

[4.48, 6.87], [3.57, 7.20] for Fig. 6 (a), (b), (c) and (d). It exhibits a particular stable

performance, with a stretch factor that is several, tens or even hundreds of times

better than the other two routing protocols.

Examples of the routing paths are shown in Fig. 7. The paths are represented by

thick lines. The face-tracing based routing protocol outperforms greedy forwarding

plus local flooding because the faces guides messages around holes efficiently. (See

Fig. 7 (a) for an example, where the left end of the path is the source.) It also

outperforms CLDP+GPSR because it removes much fewer edges than CLDP does.

(Note that both use all the edges in the greedy forwarding mode.) CLDP usually

removes about twice the number of edges than our protocol. Fig. 7 (b) and (d)

show how sparse the network can be when links are removed by CLDP for perimeter

routing.

b. Stretch factor vs. vertex density, network size, and face sampling rate

We increase the number of vertices, and measure the routing stretch factors. The

results are shown in Fig. 8 (a), (b). (We skip the results for directional antenna

graphs due to limited space.) The stretch factor for our protocol is in the ranges

[1.38, 2.35] and [1.39, 3.41] for Fig. 8 (a) and (b). Again, it stably outperforms the

other two protocols.

We increase the network size by increasing the number of vertices while keeping

the vertex density and average degree constant. The results are shown in Fig. 8(c),

which indicate that all three routing protocols are scalable in the network size for
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Fig. 7. Examples of routing paths (represented by dark edges). The underlying net-

works in (a) and (c) are the original networks. The underlying networks in (b)

and (d) are showing only the edges not removed by CLDP.
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stretch factors. We also change the face sampling rate (the number of sample vertices

a node remembers about a face) from 5 to 10 to infinity. As shown in Fig. 8 (d),

the performance of our protocol does not change much. It means that setting the

sampling rate to be 5 is already sufficient. In all our other experiments, we use the

sampling rate 5.

4. Packet overhead

With the face-tracing based routing, when a message enters the face tracing mode,

it needs to remember the faces it has traversed in this round. We call such a storage

overhead in the message the packet overhead. The average packet overhead is shown

in Table III. The unit there is the the ID of a face, which is roughly log2 no bits. We

see that on average the message traverses only a few faces, which is very efficient.

Table III. Average packet overhead of the face-tracing based algorithm. The average

value is taken over the different routing paths. R = 1, p = 0.5, RDA = 2.5.
Quasi-UDG Directional antenna

n0 = n0 = n0 = n0 = n0 = n0 = n0 = n0 =

2000, 2000, 4000, 4000, 2000, 2000, 4000, 4000,

R/r R/r R/r R/r θ = θ = θ = θ =

= 2 = 10 = 2 = 10 90o 150o 90o 150o

1.24 1.69 1.04 2.21 2.82 2.98 4.52 4.20

5. Adaptivity to network dynamics

When there are dynamics in wireless networks — the deletion/insertion of links or

nodes — the face-tracing based routing protocol needs to recognize the new faces,

while CLDP needs to re-probe the network to remove crossing links and restore some

other links. Our protocol has the advantage that its adaptation to the network

dynamics is on demand : it can efficiently recognize new faces with localized operation
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only when links/nodes are deleted/inserted. CLDP chooses the strategy of periodic

probing of the whole network. We measure the number of messages that our protocol

needs to send to recognize new faces and adapt to the changed network. When the

same message is sent over k hops, we count it as k messages. The results are shown

in Table. IV. We see that the overhead is very low.

Table IV. Average number of messages sent for the deletion/insertion of a link/node.

When a message is sent over k hops, it is counted as k messages.
Quasi-UDG Directional antenna

n0 = n0 = n0 = n0 = n0 = n0 = n0 = n0 =

2000, 2000, 4000, 4000, 2000, 2000, 4000, 4000,

R/r R/r R/r R/r θ = θ = θ = θ =

= 2 = 10 = 2 = 10 90o 150o 90o 150o

Deletion of a link

17.4 23.7 24.2 21.8 37.5 25.8 49.7 32.2

Insertion of a link

12.7 9.7 24.0 18.2 1.9 9.1 4.1 19.1

Deletion of a node

138.5 205.7 140.6 177.9 491.4 269.6 557.4 298.1

Insertion of a node

222.7 249.2 263.9 269.2 462.3 284.7 470.0 312.7
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CHAPTER III

SEPARABILITY AND TOPOLOGY CONTROL

OF QUASI UNIT DISK GRAPHS

A deep understanding of the structural properties of wireless networks is critical

for evaluating the performance of network protocols and improving their designs.

Many protocols for wireless networks — routing, topology control, information stor-

age/retrieval and numerous other applications — have been based on the idealized

unit-disk graph (UDG) network model. The significant deviation of the UDG model

from many real wireless networks is substantially limiting the applicability of such

protocols. A more general network model, the quasi unit-disk graph (quasi-UDG)

model, captures much better the characteristics of wireless networks. However, the

understanding of the properties of general quasi-UDGs has been very limited, which

is impeding the designs of key network protocols and algorithms.

In this chapter, we present results on two important properties of quasi-UDGs:

separability and the existence of power efficient spanners. Network separability is a

fundamental property leading to efficient network algorithms and fast parallel com-

putation. We prove that every quasi-UDG has a corresponding grid graph with small

balanced separators that captures its connectivity properties. We also study the

problem of constructing an energy-efficient backbone for a quasi-UDG. We present a

distributed localized algorithm that, given a quasi-UDG, constructs a nearly planar

backbone with a constant stretch factor and a bounded degree. We demonstrate the

excellent performance of these auxiliary graphs through simulations and show their

applications in efficient routing.
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A. Introduction

The connectivity structures of wireless networks exhibit strong correlations with the

physical environment due to the signal transmission model of wireless nodes. A

deep understanding of the structural properties of wireless networks is critical for

evaluating the performance of network protocols and improving their designs. So

far, many protocols have been based on the idealized unit-disk graph (UDG) net-

work model, where two wireless nodes can directly communicate if and only if their

physical distance is within a fixed parameter R. Examples of these protocols include

routing [9, 51], topology control [2], distributed information storage/retrieval [29] and

a great variety of other applications. In practice, however, the UDG model signifi-

cantly deviates from many real wireless networks, due to reasons including multi-path

fading [40, 93], antenna design issues, inaccurate node position estimation, etc. It is

not uncommon to observe stable links that are five times longer than unstable short

links [93]. The significant deviation of the UDG model from the real/practical mod-

els is substantially limiting the applicability of protocols based on UDGs. To combat

this problem, a more general network model, the quasi unit-disk graph (quasi-UDG)

model, has been recently proposed to capture the nonuniform characteristics of (most)

wireless networks. Formally, this model is defined as follows.

Definition III.1 A quasi-UDG with parameters r and R (r and R are positive num-

bers) over a set of points in the plane is defined as follows. The points in the set

are the vertices of the graph. For any two points u and v in the set with Euclidean

distance |uv|: if |uv| ≤ r then uv is an edge in the graph; if |uv| > R then uv is not

an edge in the graph; and if r < |uv| ≤ R then uv may or may not be an edge in the

graph.



46

In sharp contrast to the UDG model whose properties have been well understood

([2, 51]), the understanding of the properties of general quasi-UDGs has been very

limited. Among the limited knowledge about quasi-UDG, a notable result is the

“link-crossing” property discovered for quasi-UDGs where R ≤
√

2 ·r [5]. The serious

lack of understanding of the properties of general quasi-UDGs is impeding the design

of key network protocols and algorithms for this model.

In this chapter, we present results on two important properties of quasi-UDGs:

separability and the existence of power efficient spanners. Network separability is

a fundamental property that leads to efficient network algorithms and fast parallel

computation [65]. A (vertex) separator of a graph G is a set of vertices whose removal

splits the graph into two non-adjacent parts of similar sizes. We call a graph G well

separable if any subgraph of G has relatively small separators. A well separable graph

has strong localized properties. As a result, the performance of protocols for routing,

information retrieval, network monitoring, etc., can be significantly improved for such

graphs. We first construct a grid graph that is an abstraction of the given quasi-UDG

G and show that the grid graph is well separable. The separator we obtain for the

grid graph is of size O(
√
N) and can split the graph into two parts of size roughly

N/2, where N is the number of nodes of the grid graph. In addition, both the degree

of the grid nodes and the number of edges crossing any given edge, are upper bounded

by constants. Among many applications of the separators, we present, as an example,

a compact routing protocol based on the grid graph construction and the distance

labeling technique. We prove that the routing table size of each node in our protocol

is bounded by O(
√
N logN), which is much better than the tight bound proved for

general graphs and close to the lower bound of Ω(
√
N) for bounded-degree graphs

in [42]. The ratio of the routing path length to the shortest path length is upper

bounded by 2+ ǫ, where ǫ is a small constant. More extensions of the results are also
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included.

In the second part of the chapter we study the existence and the construction of

energy efficient backbones for quasi-UDGs. A backbone is a spanning subgraph of the

wireless network used for efficient communication. By using only those edges in the

backbone for communication, signal interference, routing table size and power usage

can be substantially reduced. A major requirement for the backbone construction

is preserving the shortest path distances between vertices as much as possible. For

a backbone B of a graph G = (V,E), the stretch factor of B is defined as s(B) =

max{fB(u, v)/fG(u, v)|u, v ∈ V }, where fB(u, v) and fG(u, v) are the lengths of the

shortest paths between vertices u and v in B and G, respectively. The stretch factor

reflects the quality of the backbone. There have been results showing that for UDGs,

bounded degree and planar spanners can be constructed when the distance function

f(u, v) is defined as the minimum power needed to send a message from u to v [50][95].

In this chapter, we present a distributed algorithm that constructs a backbone B for

any quasi-UDG G with a constant power stretch factor. The node degree of the

backbone B is upper bounded by a constant. In addition, although it is in general

impossible to construct planar backbones with constant stretch factors for quasi-UDG,

we show that B is nearly planar. More specifically, we show that B has a constant

upper bound on the average number of edges crossing any given edge. The latter

property is useful for geographic routing algorithms based on cross link detection [54].

We evaluate the performance of the separators, the routing protocol, and the

backbone construction, through extensive simulations. Their performance is much

better compared to the theoretical analysis of the worst cases. This shows that,

although the quasi-UDG model is quite different from the UDG model, efficient al-

gorithms can still be developed by exploiting the locality of the model.
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The rest of the chapter is organized as follows. In Section B, we present the grid

graph construction and prove its separability properties. In Section C, we present

the backbone construction. In Section D, we present the compact routing protocol

based on the grid graph and the distance labeling technique, as well as the simulation

results. We conclude the chapter in Section E.

B. Overview

A quasi-UDG is called a Unit Disk Graph(UDG) if R = r. The UDG has been the

major graph model for studying wireless sensor networks. Recognizing and embedding

a UDG when the location information is not available, have been proved to be NP-

hard [11]. To approximate an embedding within ratio
√

3/2 is also NP-hard [58].

Even when the angles between adjacent edges or the distances between nearby nodes

are known the embedding of the UDG remains NP-hard, it is also NP-hard to find

an α-approximate embedding where α <
√

2 [3, 12]. However a planar spanner can

be found in polynomial time [12]. If the distances between every pair of nodes are

given, the UDG can then be embedded efficiently [6, 92].

But if the locations of the nodes in the network are known, many hard problems

become easier. For example, the well known APX-hard maximum independent

set problem has a polynomial time approximation scheme [77]. Many other hard

problems are also relatively easier for UDG [21].

The UDG has the nice cross link property(if the edge {u, v} crosses the edge

{p, q} in a UDG, at least one of u, v, p, q must be the common neighbor of the other

three) what enables efficient distributive planarization of the network. When the

lengths of each edge is given, one can construct a Gabriel graph [38] and a relative

neighborhood graph [96] that are planar and the Gabriel graph is power efficient. And
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when the angles between adjacent edges are known, a planar subgraph containing a

restricted Delaunay graph (the residual graph after removing all edges longer than R

in a Delaunay graph) can be found [97] and has constant stretch factor.

Based on the planarization of UDG, quite a few perimeter routing (face routing)

protocols have been proposed [9, 51, 59].

In contrast to UDG, the quasi-UDG does not have such a nice property to exploit.

However researches have been done for quasi-UDG model because it is more practical

than the ideal UDG model. For quasi-UDG with R/r ≤
√

2, the network can still be

planarized with the help of virtual edges [5]. Thus the protocols based on the planar

subgraph of the network can still be applied.

Separability is another very import property in graph theory. Given a graph of

n nodes, a separator is usually a set of vertices (edges) whose removal will disconnect

the original graph into two parts of similar size (each of size O(n)). In this chapter,

if not specified, by separator we mean vertex separator only. We say that a separator

is small if the number of vertices in the separator is o(n) or even a constant. A graph

G is said to be well separable if all subgraphs of G has small separators. Many NP-

hard graph problems, e.g., vertex cover, maximum independent set, can be

solved in polynomial time if the graph is well separable and the size of the separator

concerned is constant [8]. When the separators we have are not constant but o(n),

the same set of NP-hard problems can usually be solved much more effectively and

have much better approximation results [8]. For distributed networks, shortest path

routing can be realized with small routing tables when the graph has small separators,

as in the case of planar graphs or graphs with bounded tree width [42].

In networking field, small separators are small cuts through the network. Thus it

is important to study separability in many scenarios, e.g., network flow and reliability

study [10], routing [33] and distributed short path algorithm [32].
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Since separability is closely related to graph partitioning, it naturally fit in the

scope of parallel computing [79].

Planar graphs are known to have O(
√
n)-size separators [65]. General graphs usu-

ally do not have such property. For quasi-UDG, however, we can extract a subgraph

or an abstract graph that have small separators and preserve the overall topological

features of the network.

C. Grid graph of quasi-UDGs

In this section, we present a distributed algorithm for constructing a grid graph for

any quasi-UDG, and prove that the grid graph is well separable. The grid graph,

whose node density and edge density are both upper bounded by constants, is an

abstraction of the quasi-UDG. A quasi-UDG may have highly variable node and

edge densities, which prevent it from having small separators. The grid graph is

a “sparsified” version of the quasi-UDG, which retains the distance information for

vertices and represents well the deployment region of the quasi-UDG. As a result,

the connectivity results for the grid graph can be easily mapped to results for the

quasi-UDG. An example of a quasi-UDG and its corresponding grid graph is shown

in parts (a) and (b) of Fig. 9, respectively.

1. Construction of the grid graph H

To obtain the grid graph H for a quasi-UDG G, we first impose a grid on the plane.

The size of the grid is chosen to be small enough so that all nodes of G within each

cell are fully connected. The key operation is then to contract all the nodes within

the same cell into a vertex of H , i.e., we view each non-empty cell as a vertex and

two vertices of H have an edge if there are two adjacent nodes of G in each cell. The
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(a) (b)

(c) (d)

Fig. 9. (a) A quasi-UDG G with 100 vertices and R/r = 0.5; (b) The grid graph

corresponding to G; (c) The auxiliary graph used to find the top level separator

of G; (d) The backbone of G.
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construction algorithm is given in Fig. 10.

Input: G = (VG, EG): a quasi-UDG with parameters R and r
Output: H = (VH , EH): the grid graph for G
1: Impose a grid of cell size r√

2
× r√

2
on the plane;

2: For each cell that has at least one vertex of G, H has a corresponding vertex
positioned at the center of the cell;

3: There is an edge between two vertices of H if and only if there is at least one
edge connecting two vertices of G that are, respectively, in the two corresponding
cells.

Fig. 10. Algorithm GridGraph: Constructing the grid graph for given quasi-UDG.

All the vertices of G in the same grid cell are adjacent. The algorithm Grid-

Graph can be easily implemented in a distributed manner. The following theorem

proves the constant upper bounds for the node density, edge density, and the number

of edges crossing any given edge in the grid graph H .

Theorem III.2 The algorithm GridGraph constructs a grid graph H for a given

quasi-UDG G such that: (1) inside any disk of radius y, there are at most O(y2/r2)

vertices of H; (2) the degree of each vertex in H is upper bounded by O(R2/r2); and

(3) the number of edges crossing any given edge in H is upper bounded by O(R4/r4).

Proof. From the algorithm we know that the Euclidean distance between any two

vertices of H is at least r/
√

2. Hence, if we place an open disk of radius r/(2
√

2)

centered at every vertex, then no two disks will intersect. Therefore given any disk of

radius y, the number of such open disks intersecting it is upper bounded by O(y2/r2),

and so is the number of vertices of H inside the disk.

Consider a vertex U of H and denote by v(U) the set of nodes of G inside the

cell represented by U . The number of vertices of H within distance R + r from U is

bounded by O(R2/r2). No node of G in v(U) can be adjacent to a node in v(V ) if
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the distance between V and U is more than R + r. Hence, the degree of U is upper

bounded by O(R2/r2).

Similarly, for an edge {U, V } of H , the number of grid vertices within distance

R + r to any point on the line segment connecting U and V is also upper bounded

by O(R2/r2). Therefore, the total number of edges crossing {U, V } is upper bounded

by O(R4/r4).

If two vertices of H are h hops away from each other, then two vertices of G in

the two corresponding cells are at most 2h+ 1 hops away from each other. Note that

the above method for constructing grid graphs, and the above results, can be easily

extended to higher dimensional spaces.

2. Separability of the grid graph H

Network separability is a fundamental property that leads to efficient network algo-

rithms (in particular, those algorithms based on the divide and conquer paradigms),—

fast parallel computation, and improvements in the study of computational complex-

ity [65]. Many applications in wireless ad hoc networks (routing, information retrieval,

etc.), as well as quite a number of hard theoretical problems, have more efficient so-

lutions if the underlying graph is well separable. For example, shortest path routing

can be realized with small routing tables when the graph has small separators, as in

the case of planar graphs or graphs with bounded tree width [42]. Also, NP-hard

problems such as vertex cover and independent set, are solvable in polynomial time

if the input graph and all its subgraphs have small separators.

In this subsection, we study the separability of the grid graph obtained above.

We begin with a formal definition of the separability of graphs.

Definition III.3 Given a graph G of n vertices, a b-separator of G is a set of ver-
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tices whose removal splits G into two non-adjacent subgraphs, each of which contains

at most bn vertices. We call a graph G (f(n′), b)-separable if every subgraph of G

has a b-separator of at most O(f(n′)) vertices, where f(n′) is a function of the number

of vertices n′ in that subgraph.

In order to compute a small separator for the grid graph H , we use the help of

a planar auxiliary graph T . Similarly to the construction of the grid graph, we first

impose a larger grid on the plane. Each non-empty cell (i.e., there is at least one

vertex of H in that cell) of the grid is then mapped to a vertex of the auxiliary graph

T placed at the center of the cell. Two vertices of T are connected by an edge if there

are two adjacent vertices of H in each of the two corresponding cells. The size of the

cells is large enough so that each vertex of T can only have edges connecting to its

adjacent cells on the plane. Therefore each edge of T is either horizontal, vertical,

diagonal or anti-diagonal. Edge crossings can only involve a diagonal edge and an

anti-diagonal edge. Each of these diagonal edges and anti-diagonal edges can cross at

most one other edge. Then, we planarize it by adding a virtual vertex at each edge

crossing(placed at the crossing point), thus eliminating all edge crossings. (Note that

we consider all the edges to be straight line segments.) The detailed construction

of the auxiliary graph T is presented in Fig. 11. All the virtual vertices in T are

denoted by red vertices and the others — which represent cells — are denoted by

black vertices. Each red vertex has weight zero, while each black vertex has weight

equals to the number of vertices of H in the corresponding cell.

Fig. 9(c) shows an example of the auxiliary graph. The longest edge in the

auxiliary graph has length R +
√

2r/2, and red vertices are either of degree 2 or 4.

Since the cell we apply in this algorithm is large enough (of side length R + r/
√

2)

and all black vertices are placed at the centers of their corresponding cells, any black
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Input: H = (VH , EH): a grid graph with parameters R and r
Output: T = (VT , ET ): the auxiliary graph for H
1: Impose a grid of cell-size (R + r√

2
)× (R + r√

2
) on the plane;

2: For each cell that has at least one vertex of H , T has a corresponding black vertex
v whose position is set at the center of the cell; we assign to v a weight equals to
the number of vertices of H in that cell;

3: Add an edge between two black vertices u and v of T if and only if there is at
least one edge connecting two vertices of H that are, respectively, in the two
corresponding cells;

4: For each pair of crossing edges {u, v}, {w, x}, add a red vertex at the intersection
of the two edges and replace those two original edges with four new edges that
connect the red vertex, respectively, to the four black vertices u, v, w, and x; let
the weight of the red vertex be 0;

5: For each diagonal edge between two black vertices, add a red vertex of weight 0
at the middle of the edge and replace that original diagonal edge with two new
edges that connect the red vertex, respectively, to those two black vertices.

Fig. 11. AuxiliaryGraph: create an auxiliary graph for constructing separators.

vertex may only connect to the eight black vertices around it before the red vertices

were added. Therefore, around each black vertex, there can be at most four red

vertices; and no two red vertices are adjacent to each other. Formally, we have the

following lemma.

Lemma III.4 Let NT,b be the number of black vertices in the auxiliary graph T . Then

T is a planar graph of at most 2NT,b vertices and no two red vertices are adjacent.

Lipton and Tarjan proved in their celebrated Separation Theorem [65] that for

any vertex-weighted planar graph of n vertices, there exists a set of O(
√
n) vertices

that separates the graph into two non-adjacent subgraphs, each of which weighs

at most 2/3 of the total weight of the graph. The separator algorithm presented

in [65], however, is relatively complex. For the planar auxiliary graph T , which has a

constrained structure, we present a simpler and practically more efficient algorithm

for finding such a small separator. Based on that, the algorithm also finds a small
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separator for the grid graph H .

To find a separator for T , the idea of the algorithm is to peel off the outer face of

T repeatedly to find a thin cut. To accomplish that, we build a BFS tree rooted on

the outer face of the graph. When a vertex u is discovered in the process, we mark

all undiscovered vertices F (u) that share faces with u so that they will be put into no

later than the next level of the BFS tree. This can be done by adding edges from u

to all vertices in F (u). After we have this BFS tree, one of the so called fundamental

cycles (a cycle formed by exact one non-tree edge and some tree edges) will contain

the separator we want, i.e., it separates T in the most balanced way. The details of

the algorithm are presented in Fig. 12.

We now prove that the algorithm Separator constructs small balanced separa-

tors for H and T . We start with a lemma.

Lemma III.5 Let T̂ be any subgraph of the auxiliary graph T . If its outer face has

k vertices, then the number of inner vertices (the vertices not on the outer face) is at

most ⌊k2/(2π)⌋.

Proof. The outer face of the planar graph T ′ is a closed curve (or closed curves,

if T̂ is disconnected) on the plane. Let x = R + r/
√

2 be the side-length of the cells

in the construction of the auxiliary graph T . For each inner vertex of T̂ , we place

a
√

2x/2 ×
√

2x/2 square centered at it, then rotate the square by 45 degrees. It is

simple to see that now these (diamond shaped) squares centered at the inner vertices

do not overlap each other. The area of each square is x2/2.

First consider the case when the outer face is connected, i.e. T̂ is connected.

The outer face of T̂ consists of several (at least one) simple cycles. Suppose there

are i such simple cycles of size k1, k2, . . . , ki in the outer face. Note that the value
∑i

j=1 kj can be greater than k, the number of vertices in the outer face, because in
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Input: H : a grid graph with parameters R and r
Output: SH : a separator for H .

ST : a separator for T . (T is the auxiliary graph of H .)
1: Let T be the auxiliary graph of H . Let T ′ be a copy of T .
2: Build a breadth-first search (BFS) tree for a dynamically changing graph T ′ (T ′

changes because new edges are added to it during the BFS procedure) in the
following way: (1) pick a vertex v on the outer face of T ′ to be the root and start
BFS; (2) during the BFS process, when a vertex u is discovered (put it into the
BFS tree), for every face containing u, add edges from u to as many other vertices
in the face as possible so long as T ′ remains a simple planar graph; if after adding
those edges, there are still faces containing u that are not triangulated, add edges
to triangulate them arbitrarily. During BFS, the undiscovered neighbors of a
vertex are visited in the clockwise order (starting with the parent of the vertex
in the BFS tree as the reference point);

3: Check every fundamental cycle in the BFS tree. Let ST be a fundamental cycle
that separates T ′ (therefore also T ) in the most balanced way, i.e. the difference
between the summation of the weights of vertices in the two separated subgraphs
A1, B1 is minimized.

4: Consider the graph T . Let S ′
T be a copy of ST . For each red vertex u in S ′

T
with the set of neighboring vertices N(u), we distinguish two cases: Case (1)
All vertices in N(u) belong to A1(respectively, B1) except those in S ′

T . Then,
we move u from S ′

T to A1(respectively, B1); Case (2) Both A1 and B1 contain
vertices of N(u). Then, we put all vertices in N(u) into S ′

T and move u from S ′
T

to A1.
5: Let SH be the set of vertices of H in those cells corresponding to the black vertices

of T in S ′
T . Let A2, B2 be the two sets of vertices of H in those cells corresponding

to the black vertices of T in A1 and B1. Clearly, SH separates H into A2 and B2.

Fig. 12. Algorithm Separator: constructor seperators for given grid graph.
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the summation a vertex can be counted more than once. The simple cycles form

the outer face of a planar graph, so the number of times vertices are over-counted is

exactly i− 1. Thus
∑i

j=1 kj = k + i− 1.

First we have k2 =
[(

∑i
j=1 kj

)

− i+ 1
]2

=
∑i

j=1 k
2
j +

∑i
j=1

(

kj

∑i
l 6=j kl

)

−
∑i

j=1 2(i − 1)kj + (i − 1)2 ≥ ∑i
j=1 k

2
j +

∑i
j=1

[

kj

(

∑i
l 6=j kl − 2(i− 1)

)]

≥ ∑i
j=1 k

2
j .

The last inequality holds because kj ≥ 2 and
∑

l 6=j kl contains exactly i − 1 terms.

The equality holds when i = 1.

Each simple cycle of kj vertices has kj edges, thus the perimeter of the cy-

cle is at most kjx. Therefore the area of the region inside the cycle kj is at most

⌊k2
jx

2/(4π)⌋ and the total area of the regions inside the outer face is bounded by

∑i
j=1⌊k2

jx
2/(4π)⌋ ≤ ⌊k2x2/(4π)⌋.

Now if there are several disconnected cycles in the outer face, each connected

part, say of k′ vertices, surrounds a region of area no more than ⌊k′2x2/(4π)⌋, since
∑

k′2 ≤ (
∑

k′)2 = k2, the total area of the regions surrounded by the outer face is

also bounded by ⌊k2x2/(4π)⌋. Thus, in all cases, the total number of inner vertices

is bounded by ⌊k2x2/(4π)⌋/x2/2 = ⌊k2/(2π)⌋.

Define the depth of a tree to be the maximum number of edges in a path from

the root to a leaf. We have:

Lemma III.6 Let NT be the number of vertices in the auxiliary graph T . The BFS

tree constructed in Step 2 of the algorithm Separator is of depth at most
√
NT .

Proof. Let d be the depth of the BFS tree. Because of the triangulation operation

enforced on the graph T ′ during the BFS process, for i = 1, 2, · · · , d− 1, the vertices

at level i (if i = 1, include the root as well) of the BFS tree actually contain all

the vertices on the outer face of the subgraph induced by the vertices at levels i, i+

1, · · · , d. So it suffices to show that if we “peel off” one outer face from T ′ at each
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step, T ′ becomes an empty graph after t ≤
√
NT steps.

Let nx be the number of vertices remaining in the graph T ′ after x steps. (By

convention, define n0 = NT .) By Lemma III.5, we know that in the x-th step we

have “peeled off” at least ⌈
√

2πNx⌉ vertices. So nt−1 ≥ 1, ni ≥ ni+1 + ⌈√2πni+1⌉ for

i = t − 2, t − 3, · · · , 0. Now let us prove that nt−j ≥ j2 by induction: when j = 1,

we have nt−1 ≥ 1 and when j = 2, we have nt−2 ≥ 4; suppose our claim is true

for 2 ≤ j ≤ i; consider the case j = i + 1, where nt−(i+1) ≥ nt−i + ⌈√2πnt−i⌉ ≥

i2 + ⌈
√

2π⌉i ≥ i2 + 2i+ 1 = (i+ 1)2.

We have NT = n0 = nt−t ≥ t2. So t ≤
√
NT .

By Lemma 2 in [65], if a vertex-weighted planar graph has a spanning tree of

depth h, then there exists a fundamental cycle of size at most 2h + 1 that separates

the graph into two non-adjacent subgraphs each of which weighs no more than 2/3

of the total weight of the graph. As the BFS tree obtained in Step 2 of Algorithm

Separator is of depth at most
√
NT , we have the following theorem immediately.

Theorem III.7 Let NT be the number of vertices in the auxiliary graph T , and let

NH be the number of vertices in H. Then, the total weight of the vertices of T is NH ,

and the set ST obtained in Algorithm Separator contains at most 2
√
NT +1 vertices

and separates T into two non-adjacent subgraphs each of which weighs no more than

2NH/3.

We now prove that the algorithm Separator also finds a small balanced separator

for the grid graph H .

Theorem III.8 Let NH be the number of vertices in the grid graph H. Then, the

algorithm Separator constructs a separator SH of size O(
√
NH) that separates H

into two non-adjacent subgraphs each of which has no more than 2NH/3 vertices.
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Moreover, the grid graph H is (
√
n′, 2/3)-separable when the weights of all the vertices

of H are set to be 1.

Proof. Let N ′ be the number of black nodes in T . Clearly N ′ ≤ NH ; and it is

straightforward that each cell corresponding to a black vertex of T contains at most

⌈2(R +
√

2r/2)2/r2⌉ vertices of H . Hence we have N ′ = Θ(NH). From lemma III.4

we know that the number of red vertices is no more than N ′, and the total weight of

vertices in T is NH . Hence the separator ST for T contains no more than 2
√

2N ′ + 1

vertices whose weights sum up to O(
√
NH), and separates T into two parts each of

which weighs no more than 2NH/3.

Now we show that after Step 4 of Algorithm Separator, S ′
T is still a separator for

T of size O(
√
N ′), and A1 and B1 are still of weight no more than 2NH/3. Consider

any red vertex u ∈ S ′
T in Step 4, in the case where all of u’s neighbors are either in ST

or A1 (respectively, B1), S
′
T \ {u} can separate T into A1 ∪ {u} and B1 (respectively,

A1 and B1 ∪ {u}). Note that u has weight 0, so moving u from S ′
T to A1 (or, B1)

does not change their weights. In the complimentary case, the algorithm moves all

u’s neighbors into S ′
T and moves u into A1; clearly S ′

T still separates A1 and B1. And

by doing that, we decrease the weights of both A1 and B1. The size of S ′
T increases

by at most 3 for each red vertex.

Hence after Step 4, we have replaced all red vertices in S ′
T by black ones, in-

creasing the size of S ′
T by at most three times, not increasing the weights of A1 and

B1. Most importantly, S ′
T still separates A1 and B1. Therefore S ′

T is still of size

O(
√
N ′) = O(

√
NH), and the weights of A1 and B1 are no more than 2NH/3. Each

cell corresponding to a black vertex of T contains a bounded number of vertices of

H , so SH is of size O(
√
NH). Also, the number of vertices in A2 (resp., B2) equals

the weight of A1 (resp., B1) (at most 2NH/3).

By the construction of the auxiliary graph T , if no two black vertices are joined
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by an edge or two edges with a red vertex in the middle, there is no edge connecting

vertices of H in those two corresponding cells. A1 and B1 are not adjacent in T , and

S ′
T has no red vertex. So A2 and B2 obtained in Step 5 are not adjacent in H , and

SH separates A2 and B2 in H .

It is simple to see that any subgraph of H can be used as the input of Algorithm

Separator, and the above arguments still hold. Hence H is (
√
n′, 2/3)-separable.

For some applications, a perfectly balanced separator is desirable. By using the

same technique described in [65], we can construct a separator of size O(
√
NH) that

separates H into two parts each of which has no more than NH/2 vertices. The idea

is to separate the larger part of the outcome of the algorithm recursively. Hence we

have:

Corollary III.9 Let NH be the number of vertices in the grid graphH. H is (
√
n′, 0.5)-

separable.

For the grid graph, we can develop a shortest-path routing scheme based on its

separators, using the idea of distance labeling [42]. We can then transform it into a

compact routing scheme for the underlying quasi-UDG G with a small stretch factor.

We leave the details of the routing algorithm and the extended results to Section D.

3. Separability for degree/edge crossing bounded graphs

Actually for any degree bounded graph G of n vertices deployed on a plane with O(1)

number of edge crossings at any edge, the technique described previously can be used

to find balanced separator for G. The algorithm is outlined in Fig. 13

The following theorem proves that the above algorithm finds a constant-balanced

separator for graph G of size O(
√
n).



62

Input: G = (VG, EG): a graph with constant edge crossings and bounded degree
Output: A separator for G
1: add a virtual vertex at each edge crossing and we have a planar auxiliary graph
T ;

2: Use Lipton-Tarjan’s algorithm to find a balanced separator for T ;
3: If a virtual vertex u is in the separator, replace it by all four endpoints(original

nodes) of the two edges crossing at u and remove u from T , let the residual graph
be T ′;

4: return the separator found.

Fig. 13. Algorithm Separator-Gen: construct separators for graphs of constant de-

gree and edge crossings.

Theorem III.10 The algorithm Separator-Gen constructs a (
√
n,O(1))-separator

for the input graph G with edge crossing bounded by a constant C and node degree

bounded by D.

Proof. It is easy to see that the auxiliary graph T has at most Dn/2 edges and

(CD/4 + 1)n vertices. Hence the separator found in step 2 by the Lipton-Tarjan’s

algorithm has size O(
√
n) and it separates the graph T in to two equally parts, each of

size N and n/2−O(
√
n) ≤ N ≤ (CD/4+1)n/2. The third step adjusts the separator

so that every node is real. And the separator obtained actually separates T ′ and

still has size O(
√
n). The graph T ′ also has O(n) nodes and the separator returned

separates T ′ into two parts T1, T2 (each of size (N±O(
√
n)). More importantly, every

virtual vertices in T1 and T2 is surrounded by real(original) nodes. Since each original

node can create at most DC many virtual vertices, each of T1 and T2 must contain

at least [(N −O(
√
n)]/(DC + 1) > n/[2(DC + 1)] many real nodes. Apparently this

separator also separates G into two parts, each of size at least n/[2(DC + 1)] (at most

n[2(DC + 1)− 1]/[2(DC + 1)] = O(n)). Hence this size-O(
√
n) separator of G is a

O(1)-separator.
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Apply the same technique as described in [65] we can then obtain a perfectly

balanced separator for graphs with bounded degree and edge crossings.

Corollary III.11 A graph G of n nodes with node degree and edge crossings bounded

by O(1) is (
√
n, 0.5)-separable.

D. Backbone with constant stretch factor

We denote by a backbone of a given graph any spanning subgraph. Examples of

backbones are spanning trees. Backbones, particularly those with small stretch fac-

tors and node degrees, have very important applications in wireless communication

because they can help reduce signal interferences and simplify algorithms (such as

routing algorithms).

In this section, we present a distributed localized construction of a backbone for

a quasi-UDG with constant stretch factor, constant node degree, and a small number

of edge crossings. We will show in Section D that these backbones can help reduce

the routing table size in our routing scheme.

1. Backbone construction

Energy is a major limitation in wireless networks. Accordingly, the stretch factor of

a backbone is often defined based on energy consumption. We start with the formal

definition.

Definition III.12 Denote by |uv|G the Euclidean distance between any two nodes u

and v. Let (u = u1, u2, · · · , uk = v) be a path from u to v in the graph G. The

communication cost between u and v following the above given path is defined as:

cG(u, v) =
∑k−1

i=1 α|uiui+1|βG,
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where β is the power exponent with 2 ≤ β ≤ 5, and α is a scaling factor linear in the

number of bits sent. If there is no path from u to v then cG(u, v) is defined to be +∞.

Definition III.13 Given a graph G = (V,E) and a backbone B of G, the stretch

factor of B is defined as:

max
u,v∈V

{cB,min(u, v)/[cG,min(u, v)]} ,

where cB,min(u, v) and cG,min(u, v) denote the minimum communication cost (over all

paths) between u, v in the graph B and G, respectively.

The stretch factor defined above is also called the power stretch factor. We say

that a backbone is energy efficient if its power stretch factor is bounded by a constant.

We next present a distributed localized algorithm that, given a quasi-UDG G,

constructs a backbone B whose maximum degree is O(R2/r2), the average number

of edges crossing a given edge is O(R4/r4), and the power stretch factor is bounded

by 3 + ǫ, for any constant ǫ > 0.

We classify the edges in the quasi-UDG G into two types: short edges whose

length is not greater than r, and long edges whose length is strictly larger than r.

Let Eshort the set of short edges. Then the graph induced by Eshort is a unit disk

graph of unit length r. Denote this graph by Ushort, and note that Ushort may not be

connected.

The results in [50] describe a distributed localized algorithm that, given a unit

disk graph and a positive integer k ≥ 9 as a parameter, constructs a planar power

spanner of the graph with degree at most k + 5 and stretch factor 1 + (2 sin(π/k))β,

where β is the power exponent. Since each component in Ushort is a unit disk graph, we

can apply the algorithm in [50] to each component to construct a planar power spanner

of the component of degree bounded by k + 5 and stretch factor 1 + (2 sin(π/k))β.
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Let B be the set of edges in the spanners of all these components.

Now impose a grid of cell-size r/
√

2 × r/
√

2 on the plane. Note that any two

points in the same cell are connected in G, and that any long edge must connect points

in two different cells. For each pair of cells, add to B the shortest edge between those

two cells (i.e., the shortest edge having one endpoint in one of the two cells and the

other endpoint in the other cell). Observe that determining the shortest edge between

two cells can be done in a localized fashion since the points in a cell form a clique. This

completes the construction of B. Note that after adding the long edges to B, G′ may

no longer be planar. However, as we will show below, the average number of edges

crossing a given edge will be bounded by a constant. The algorithm is summarized

in Fig. 14.

Input: G: a quasi-UDG with parameters R and r; an integer parameter k ≥ 8
Output: B: a backbone of G
1: let Ushort be the unit disk graph induced by the set of edges in G of length at

most r;
2: let B be the set of edges computed by applying the algorithm in [50] to each

component of Ushort to compute a spanner of the component;
3: impose a grid of cell-size r√

2
× r√

2
on the plane;

4: for every two grid-cells do
add to B a shortest edge between the two cells (in case such
an edge exists);

5: return B;

Fig. 14. Algorithm Backbone: construct a backbone for a given quasi-UDG

Theorem III.14 For any integer parameter k ≥ 9, the algorithm QuasiUDG-

Backbone constructs a backbone of the given quasi-UDG G whose maximum degree

is O(R2/r2), average number of edges crossing a given edge is O(R4/r4), and power

stretch factor is 3+2β+1 sinβ(π/k) (which, for any ǫ > 0, is bounded by 3+ ǫ for large

enough k). Moreover, the algorithm is localized and exchanges O(m) messages, where
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m is the number of edges in G.

Proof. Call two grid-cells adjacent if there is an edge between a node in the first

cell and another node in the second cell, and note that the number of cells that are

adjacent to a given cell is O(R2/r2).

Since the algorithm in [50] constructs a backbone for each component in Ushort,

B contains a spanning subgraph for each component in Ushort. Since all the vertices

in a given grid-cell form a clique, and hence belong to the same component in Ushort,

all the vertices in a given cell remain connected in B. From step 4 of the algorithm,

every two adjacent cells that were adjacent in G, remain adjacent in B by virtue of

adding the shortest edge between the two cells to B. It follows from the above, and

from the connectivity of G, that B is a spanner of G.

Since each node in the spanner of Ushort constructed by the algorithm in [50] has

degree bounded by k + 5, each node in B has at most k + 5 short edges incident on

it in B. Since for any node in B the number of cells adjacent to the cell containing

the node is O(R2/r2), any node in B can have at most O(R2/r2) long edges incident

on it in B. It follows that every node has O(R2/r2) incident edges in B.

To prove the bound on the number of edge-crossings, note that since the algo-

rithm in [50] constructs planar spanners of the components of Ushort, no two short

edges in B cross. Therefore, the number of edge-crossings is the number of crossings

between short edges and long edges, plus the number of crossings between long edges.

We bound each of these numbers next.

Let eshort be a short edge in B. Then eshort must join two nodes in the same

grid-cell C. Any long edge in B that crosses eshort must join two nodes, each located

in an adjacent cell to C. Since cell C has O(R2/r2) adjacent cells, C has O(R4/r4)

pairs of adjacent cells. Since exactly one edge between any two adjacent cells is kept
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in B, the total number of long edges crossing eshort is O(R4/r4). Therefore, the total

number of edge-crossings involving short edges is O(m · R4/r4).

To bound the number of edge-crossings between two long edges, let elong be a

long edge. Suppose that the endpoints of elong reside in the two cells C and C ′. Any

long edge crossing elong must join a node in a cell that is adjacent to either C or

C ′ to another node in a cell adjacent to C or C ′. Since there are O(R4/r4) pairs of

cells that are adjacent to either C or C ′, and since exactly one edge between any two

adjacent cells is kept in B, the total number of long edges crossing elong is O(R4/r4).

Therefore, the total number of edge-crossings involving long edges is O(m · R4/r4).

It follows that the total number of edge-crossings is O(m ·R4/r4), and hence the

average number of edges crossing a given edge is O(R4/r4).

To prove the bound on the stretch factor, it is enough to show that every edge

in G is stretched by no more that 3 + 2β+1 sinβ(π/k) in B. Let e = (u, v) be an edge

in G. If e ∈ B then the statement follows directly. Suppose now that e /∈ B. If e

is a short edge, then since B contains a power spanner of Ushort with stretch factor

1 + 2β sinβ(π/k), the result follows. If e is a long edge, let Cu and Cv be the two cells

containing u and v, respectively. Let emin = (u′, v′) be the shortest edge between

Cu and Cv that was included in B, where u′ ∈ Cu and v′ ∈ Cv. Since B contains

a power spanner of Cu of stretch factor 1 + 2β sinβ(π/k), there is a path Puu′ in B

from u to u′ of cost at most 1 + 2β sinβ(π/k)|uu′|β. Similarly, there is a path Pv′v

in B from v′ to v of cost at most 1 + 2β sinβ(π/k)|vv′|β. It follows that the path

from u to v in B consisting of the concatenation of Puu′ , emin, and Pv′v, has cost

bounded by 1 + 2β sinβ(π/k)|uu′|β + 1 + 2β sinβ(π/k)|vv′|beta + |u′v′|β. Since (u, u′)

and (v, v′) are both short edges, and hence, are shorter than the long edge e = (u, v),

and since emin is not longer than e, it follows that there is a path in B of cost at most

3 + 2β+1 sinβ(π/k)|uv|. Noting that 2β+1 sinβ(π/k) can be made arbitrarily small by
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choosing a sufficiently large parameter k, the stretch factor can be bounded by 3 + ǫ

for any ǫ > 0.

Finally, to analyze the number of messages exchanged by the algorithm, note

first that algorithm in [50] exchanges O(m) messages. To compute the shortest edge

between two adjacent cells, each node in the cell computes the shortest edge incident

on it and whose other point is in the other cell. Then vertices in one cell elect the

shortest among all these edges. Since all the vertices in one cell form a clique, and

since the number of adjacent cells to a given cell is O(R2/r2), the total number of

messages exchanged for computing the shortest edges between adjacent cells is O(m).

Moreover, all the computation can be done locally: every node only communicates

with its neighbors. It follows that the total number of messages exchanged by the

algorithm is O(m).

The following theorem is then straightforward by Corollary III.11.

Theorem III.15 The backbone constructed by the algorithm QuasiUDG-Backbone

is (
√
n, 0.5)-separable where n is the number of nodes in the network.

E. Applications and performance evaluation

In this section, we first present out routing algorithm based on the separators, then

prove the bound for the path stretch factor of our routing protocol. As the second

part of the section, we show the simulation results of the backbone constructions and

the routing performance of our routing algorithms to verify the theoretical bounds

we prove.
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1. A routing scheme based on the separators

As one of the applications of the small separators of the grid graphs, we present a

routing scheme for quasi-UDG based on the grid graph and analyze its performance.

Our routing scheme is suitable for systems in which the size of the messages itself is

relatively large. We will give the simulation results later in this section.

Our routing scheme is based on the distance labelling scheme described in [42].

The basic idea of distance labelling is to give each vertex a label such that the distance

between two vertices can be computed using only their labels. A straightforward

labelling scheme is to store in each node a full table of the distances to all the other

vertices. The goal of the distance labelling scheme in [42] is to find the labels of

minimum length. The separability of the underlying graph is a key factor of how

good a distance labelling scheme is available for the network. In [42] the authors

proved that for a graph which has a separator of size k, there is a distance labelling

scheme of label size O(k logn + log2 n), and the distance between two nodes can be

computed in time O(logn), where n is the number of nodes in the network.

Although a quasi-UDG G may not possess a small separator, we have proved that

the grid graph H with n vertices constructed for G does have a balanced separator of

size O(
√
n). Conceptually, our routing protocol utilizes two-level routing: virtually,

the message is sent in the grid graph from the cell containing the source to the cell

containing the destination, via the shortest path in the grid graph; in reality, the

routing is implemented in the underlying quasi-UDG to route from cell to cell. (Note

that in each cell, the quasi-UDG vertices are fully connected, so routing from one cell

to the next takes at most two hops.) The basic idea to achieve shortest path routing

in the grid graph is to split H into two non-adjacent parts using the small separator.

Each vertex of H remembers the distance to all separator vertices. Thus, two vertices
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in the two parts (or the separator) can compute their shortest path distance using

that information, because their shortest path must go through a separator vertex. We

recursively apply the same process to partition each part into small parts, to enable

any two vertices to compute their shortest path distance using their stored information

(their labels). We stop partitioning a part when its size is below a certain constant.

(We call such a part a basic block.) Since we use balanced separators, the process

ends after O(logn) levels of partitioning.

For a vertex W of H , let v(W ) be the set of quasi-UDG vertices of G that reside

in the cell corresponding to W . The following list contains the information that each

vertex u ∈ v(W ) in G stores in our protocol.

• The minimum distances (in H) to all the separator vertices that are on the

boundaries of all the partitions W is in;

• The neighboring quasi-UDG vertex through which it can get to other cells ad-

jacent to W in H ;

• A shortest path routing table for the vertices of H in the basic block where u

resides.

The routing protocol assumes that the source knows the label of the destination.

This piece of information can be obtained from location service. Since location service

is not directly related to our topic, we skip the details here.

If the destination is not in the same cell as the source, the message will follow a

shortest path in H from the source cell to the destination cell. By utilizing the second

part of the list (label), a vertex can send a message to any of its neighboring cell in two

hops. Within a basic block, the third part of the routing table points out the shortest

path between cells directly. Our routing protocol compares favorably with shortest
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path routing algorithms and compact routing algorithms for general networks for its

significantly smaller routing table size and maintained constant stretch factor.

Now we are ready to prove the following theorem.

Theorem III.16 For any quasi-UDG G of NG vertices, let h(u, v) be the minimum

hop distance between vertices u and v. The above routing protocol guarantees the

routing path from u to v to have at most 2h(u, v) + 1 hops, for any two vertices u

and v. The size of the routing table at each node and the message overhead are both

O(
√
NG logNG).

Proof. In the routing protocol described above, the first part of a node’s routing

table is of size O(
√
N logN). The second and third parts of the routing table both

consist of a constant number of entries because the number of neighboring cells and

the number of cells in each basic block are both constants. The size of the routing

table is then O(
√
N logN). Inside each message we need only to carry the label

of the destination vertex, so the overhead in the message size is also bounded by

O(
√
N logN).

Given a path p from u to v, let d(p) denote its number of hops, and let c(p)

denote the number of times the path p travels from one cell to another. Let popt be

the shortest path from u to v, and let p′ be the routing path of our protocol. Clearly,

c(popt) ≤ d(popt), and c(p′) ≤ c(popt) because our protocol uses shortest path routing

in the grid graph. The path p′ travels from one cell to the next in at most two hops,

so d(p′) ≤ 2c(p′) + 1. It follows that d(p′) ≤ 2d(popt) + 1.

Sometimes we are more concerned about the energy consumption than the hop

distance if the wireless nodes are able to adjust their communication range to save

power. Let the communication cost be as defined in Section C. In reality, it is in-
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feasible for a node to reduce its communication range to an infinitely small number.

There is always a constant range δ below which the wireless node cannot reduce its

communication range. With this assumption, we prove the following theorem.

Theorem III.17 Let the communication cost be as defined in Section C, and assume

that the minimum communication range is δ. (Therefore, the communication cost of

an edge of Euclidean length d is α · (max{d, δ})β.) Then, the communication cost of

a routing path from u to v generated by our routing protocol is upper bounded by a

constant times the minimum communication cost over all the paths from u to v.

Proof. Let popt be the optimal path from u to v with the minimum communication

cost Copt, and let p′ be the routing path of our algorithm with cost C ′. If u, v are in

the same cell of the grid graph H , then Copt ≥ αδβ, and C ′ ≤ αrβ since vertices in

the same cell form a clique. So C ′ ≤ (rβ/δβ)αδβ ≤ (rβ/δβ)Copt = Copt ·O(1).

Now assume that u, v are in different cells of H . Let lopt and l′ denote, respec-

tively, the number of hops in popt and p′. By Theorem III.16, l′ ≤ 2lopt + 1. So C ′ ≤

l′αRβ ≤ (2lopt +1)αRβ ≤ 2lopt + 1/lopt ·Rβ/δβ · loptαδ
β ≤ 3 ·Rβ/δβ ·Copt = Copt ·O(1).

2. Simulations

We conducted extensive simulations to evaluate the performance of our backbone

construction algorithm and routing protocol. The performance has been stable and

consistent. In the following experiment, we randomly deploy N quasi-UDG nodes in

a 2-D space of size 1500× 1500. We increase the number of nodes, N , in the system

from 1000, 1500 to 2000 to verify the effects of density change on the performance.

We also increase the value R/r from 1, 1.5, 2, 3 to 10 to see the performance of our

algorithms for different wireless connectivity models. To mimic nontrivial network
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topologies, we randomly generate a big hole of radius randomly picked in the range

[R, 2R] and five small random holes of radius picked in the range [0, R]. The centers

of the holes are uniformly randomly chosen in the plane. If the distance between

two nodes is in the range (r, R], we put a direct link between them probabilistically.

For each configuration, we run the simulation 30 times and take the average of the

performance metrics.

We would like to point out that the performances of our routing algorithm and

backbone construction method are relatively independent of the size of the network.

Our theoretical bounds and the simulation results both show that the quality of the

backbone constructed and the stretch of the routing paths are closely related to the

ratio of r to R.

a. Backbone construction

In the backbone construction simulations, we measure the power stretch factor, max-

imum degree, the average degree and the average number of edge-crossings on an

edge in the backbone constructed and compare them to the original graph. For node

pairs whose distances are between r and R, we adjust the probability of their being

connected to ensure an expected average degree of 10 in order to compare the results

between different densities and values of R/r. The results shown in Table V and

Fig. 15 are for backbones constructed by only performing the first step and the last

step in Algorithm Backbone. We eliminated the results for the case when R = r

since there the backbones are known to be planar with power stretch factor being 1

because of the Gabriel operation in the first step of the algorithm. Our results showed

that for all configurations the backbones have very small power stretch factors, much

smaller maximum degree and in most cases, we can bring the average degree to below

6 (which is the upper bound of the average degree for planar graphs). Even when
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R/r = 10, the average degree of our backbones is no more than 8. As for the number

of crossings, our algorithm reduced it by at least 60% in all cases.

Table V. Power stretch factor for the backbones(β = 2).
Stretch Factor

N R/r=10 R/r=3 R/r=2 R/r=1.5
1000 1.048 1.141 1.190 1.184
1500 1.044 1.155 1.198 1.129
2000 1.046 1.176 1.239 1.204

From the three bar graphs in Fig. 15, the reduction in the metrics is quite uniform.

It implies that the performance of our algorithm is stable for different sizes of the

network.

b. Routing performance

We apply our routing protocol not only to the original quasi-UDGs but also to the

backbones we obtain. To study the performance, we measure the maximum label

size, average label size and the stretch factor of routing path that is defined as the

distance in the actual routing path over the shortest path between the source and the

destination. The length of the path for routing in the original graphs is defined as the

hop distance between two nodes, while in the backbones, we use the communication

cost with β = 2 as the length of the path. In both cases we randomly pick 1000

source-destination pairs in the graph, simulate the routing process and compare the

length of the path with the shortest. Due to the page limit we only present the results

on the quasi-UDG with expected degree 10 and remark that the results are consistent

for graphs with other edge densities.

Table VI shows the average values of the maximum label size and the average

label size (with a node ID as a unit) over the experiments for two cases. We observe

that the label sizes with the algorithm applied to the backbones are smaller than those
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Fig. 15. The maximum degree, the average degree, and the average number of edges

crossing an edge for quasi-UDGs and their backbones. The 6 bars in each

group are, from left to right (1) maximum degree in quasi-UDG; (2) maximum

degree in backbone; (3) average degree in quasi-UDG; (4) average degree in

backbone; (5) average number of crossings per edge in quasi-UDG; (6) average

number of crossings per edge in backbone. Note that in some groups, the

last bar is not shown, because the average number of crossings per edge in

backbones equals 0 there.
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to the original graphs. This is mainly because the backbones are sparser than the

original quasi-UDGs, hence the grid graphs we get are also sparser and have smaller

separators. We will see later that this advantage comes at a cost of slightly larger

stretch factors.

Table VI. Label sizes of routing scheme based on separators.
On original On backbone

N R/r Max Size Avg Size Max Size Avg Size

1000 10 220.667 155.911 184.800 131.614

1000 3 139.733 106.553 130.733 89.561

1000 2 129.933 91.318 97.434 68.825

1000 1.5 100.367 72.960 90.634 60.562

1000 1 75.834 55.876 72.434 51.231

1500 10 325.900 233.056 287.567 205.997

1500 3 218.933 152.448 166.067 121.646

1500 2 165.767 115.528 143.400 90.668

1500 1.5 133.900 91.548 122.967 78.739

1500 1 102.167 72.627 90.800 63.852

2000 10 320.033 243.665 292.733 219.245

2000 3 232.100 172.638 219.200 151.097

2000 2 196.500 142.079 151.400 102.410

2000 1.5 271.500 224.919 124.433 86.575

2000 1 115.867 84.759 108.933 74.227

Fig. 16(a) shows the average hop distance stretch factors of the routing path for

the routing algorithm applied to the original graphs directly. In all cases we have the

path stretch factors no larger than 1.3.

Fig. 16(c) shows the power stretch factors and Fig. 16(b) shows the hop distance

stretch factors of the routing paths when the algorithm is applied to the backbones.

The hop stretch factors shown in Fig. 16(b) are moderately larger than the ones

shown in Fig. 16(a). It is the price we paid for the reduction in the size of the routing

tables.

It looks interesting from the figures that when R/r is large (10), the algorithm
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generally performs better than the other cases. This is because to maintain the same

average node degree of the graphs we have to decrease the value of r. In that case

a grid graph actually describes the original graph more accurately and with more

details. Hence the sizes of the labels are larger(see Table VI), but the paths we

discovered are closer to the shortest ones.

We have also implemented the well known greedy-forwarding plus local-flooding

routing algorithm, and performed the same number of experiments on the same set of

graphs. The average stretch factors are shown in Figure 16(d). Our results indicate

that compared to that algorithm, the routing protocol based on separators has a much

better stretch factor because of its robustness to the existence of holes.
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Fig. 16. Stretch factors for routing algorithms. G is the original graph, and B is the

backbone.
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CHAPTER IV

ROBUST PLANARIZATION OF UNLOCALIZED WIRELESS SENSOR

NETWORKS

Wireless sensor networks need very efficient network protocols due to the sensors’

limited communication and computation capabilities. Network planarization – find-

ing a planar subgraph of the network that contains all the nodes – has been a very

important technique for many network protocols. It first became the foundation of

various well known routing protocols, including GPSR, GOAFR and several other

protocols. Since then, it has also been used in numerous other applications, includ-

ing data-centric storage, network localization, topology discovery, etc. However, an

important problem remains: network planarization itself is very difficult. So far, ef-

ficient planarization algorithms exist only for very restrictive models: the network

must be a unit-disk graph, and accurate measurements related to the node locations

(e.g., node positions or angles between adjacent links) need to be known. For more

practical network models, where the transmission ranges are usually not uniform and

sensors cannot obtain their accurate location information via expensive localization

devices, no efficient planarization algorithm is available.

In this chapter, we present a novel method that robustly planarizes sensor net-

works of a realistic model: networks with non-uniform transmission ranges and un-

localized sensors (that is, static sensors whose locations are unknown). Our method

starts with a simple shortest path between two nodes, and progressively planarizes

the whole network. It achieves both efficiency and a good planarization result. We

present two planarization algorithms for different settings. Our results not only solve

the planarization problem, but also outperform some known results in the graph

drawing research field. We demonstrate the practical performance of our method –
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as well as its application in topology discovery, – through extensive simulations.

A. Introduction

Wireless sensor networks usually need very efficient network protocols due to the

limited communication and computation capabilities of small sensors. Therefore,

it is especially important to exploit the special topological properties of sensornets

for the many network functions. A common observation is that the topology of a

wireless sensornet usually has a strong correlation with the geometry of the sensor

field. That observation has been used in numerous notable applications, including

geographic routing [54], etc. In these applications, network planarization has become

a very important technique, because a well planarized network not only exhibits the

geometric properties of the sensor field, but can also be efficiently utilized in network

protocols.

The objective of network planarization is to get a connected planar subgraph of

the network that contains all the nodes of the network. To well reflect the geometry

of the sensor field, the planar subgraph should contain many links, so that the hop

distance (or communication distance) between nodes does not change a lot after pla-

narization. Network planarization first became the foundation of several well known

geographic routing protocols, including GPSR [54], Compass Routing [57], GOAFR

[60], etc. Such protocols use the faces in the planar subgraph to perform perimeter

routing, which guarantees packet delivery. Since then, network planarization has also

become a fundamental tool in numerous other applications, including data-centric

storage [81], network localization [72] and topology discovery [97] [36] [37]. Here the

data-centric storage schemes use the planar graph to help determine on which set of

nodes to store each datum, as well as for routing; the network localization schemes can
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use the properties of planar graphs to facilitate localization; and the topology discov-

ery schemes can use the faces of the planar graph to recognize and locate boundaries

and holes in the sensor field. Discovering boundaries and holes in a sensor field is

useful for understanding the collected sensor data (because the meaning of sensor

data often depends on the type of physical environment where they are collected),

for understanding the sensing environment (e.g., building floor plan, transportation

network, lakes) and detecting events (e.g., fire in a forest), and for load-balanced

routing.

Although network planarization has been proven to be an excellent technique for

sensor network protocols, an important problem remains: network planarization itself

is difficult. So far, efficient planarization algorithms exist only for network of very

restrictive models: unit-disk graphs with accurately known measurements related to

the nodes’ physical locations. The measurements are the nodes’ positions, the angles

between all adjacent links, or the lengths of all links. A unit-disk graph (UDG) is a

graph where two nodes have a link between them if and only if their physical distance

is at most one. So it corresponds to a network where the transmission ranges are the

same for all nodes and in all directions. For unit-disk graphs with the accurate location

measurements, network planarization can be performed efficiently and distributively

by using the techniques based on Gabriel-graph, Relative-Neighborhood graph or

Delaunay graph [12]. When the network knows the accurate node positions and is

very similar to the unit-disk graph, – specifically, when it is the so called
√

2-quasi unit

disk graph, – although no network planarization algorithm is known, the problem can

be circumvented to some extent by using “virtual links” [5]. However, the virtual links

may need to be realized by long paths in the network, which makes the approach not

so useful for many applications. For more general networks, no efficient planarization

method is known. Practical sensor networks often deviate significantly from the unit-
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disk graph model. The transmission ranges of sensors usually vary substantially in

different directions due to reasons including multi-path fading, antenna design, etc.,

and it is common to observe a variation ratio up to five or more [40]. Also, it is often

hard for sensors to obtain accurate location measurements via expensive localization

devices (e.g., GPS) or localization algorithms [12]. No efficient network planarization

algorithm is currently available for such practical wireless sensor networks.

In this chapter, we present a novel method that robustly planarizes sensor net-

works of realistic models: networks with non-uniform transmission ranges and unlo-

calized sensors (that is, sensors whose location information is unknown). The method

starts with a simple shortest path between two faraway nodes in the network, and

progressively planarizes the whole network.

The key for our approach is to solve the so called bipartite planarization

problem. It has been proved to be NP-hard [28]. We present two planarization

algorithms for different settings. We first present a (2 + 3ǫ)-approximation algorithm

for this problem. The algorithm is applicable to general networks, and achieves the

best known approximation ratio. It outperforms the known results in the graph

drawing research field [27].

We then present a fixed parameter tractable (FPT) algorithm that solves the

problem exactly (namely, it finds the optimal solution). The algorithm uses the key

observation that when a certain parameter is small, the problem can be solved in

polynomial time. We show the usefulness of the algorithm to practical networks by

simulations.

Since no information on node locations is known, the planar subgraph output by

our method is not embedded. It is already sufficient for some applications, such as

topology discovery (boundary recognition) [36]. If embedding is needed, the planar

graph can be embedded efficiently as a plane graph by using existing planar embed-
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ding algorithms in graph drawing [23, 75] or in [36] [37]. The embedded graph can

then be used for many applications, including geographic routing [51]. We demon-

strate the performance of our planarization method and its application to topology

discovery by extensive simulations. We show that the planar subgraphs maintain

the distance between nodes with small stretches, detect holes and boundaries with a

much higher precision than existing methods, and are robust to the network models.

B. Overview of the planarization scheme

In this section, we present an overview of the planarization scheme. It consists of five

steps, described as follows.

1. Finding a shortest path between wwo faraway nodes

The first step is to find a shortest path between two faraway nodes. The two faraway

nodes can be found with the following common approach: first, randomly choose a

node a, use one flooding to build a shortest path tree rooted at a, and find the node b

that is the furthest (in hops) from a in the network; then, use a similar method to find

the node c that is the furthest (in hops) from b. b and c are the two faraway nodes

we need, and the unique path between b and c in the shortest path tree rooted at b

is the shortest path between b and c. The advantage of a shortest path between two

faraway nodes is that such a path usually does not twist, regardless of the uniformity

of the transmission ranges. Thus it has a good planarity property. We illustrate

the property in Fig. 17. The two networks have drastically different features in the

uniformity of transmission ranges, and the path is similar to a straight line in both

cases. (When there are holes in the sensor field, the path may not be straight but

still spreads out well.) This observation is validated by extensive simulations.
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(a) (b)

Fig. 17. The shortest path between two faraway nodes, in two sensor networks with

drastically different transmission ranges. The average degree is 7 in both

cases. (a) A sensornet with uniform transmission ranges. (b) A sensornet

where the transmission ranges in different directions vary by up to 10 times.
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In the following, we will call the shortest path between b and c the base path.

2. Building a shortest path tree

The second step is to build a shortest path tree. First, we find the node r1 that is

the furthest away (in hops) from the base path. This can be easily done by viewing

the nodes in the base path as a super node, and build a shortest path tree rooted at

this super node. Then, we build a shortest path tree rooted at node r1. See Fig. 18

(a) for an illustration.

(a) (b)

Fig. 18. Red edges indicate (a) The shortest path tree rooted at node r1. Here r1 is

near the up right corner of the network. (b) The nodes in the layers, and the

edges between layers.

3. Planarizing the network layer by layer

In this third step, we planarize part of the network layer by layer. The nodes in the

base path are in Layer 1. Recursively, in the shortest path tree rooted at r1, if a node

is the parent of a node in Layer i and is not included in any of the first i layers, then
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it is in Layer i+ 1. A node that is not the ancestor (in the tree) of any node in the

base path is not included in any layer. Let us say that the maximum layer found this

way is Layer M . See Fig. 18 (b) for an illustration.

bottom row
(layer i)

top row
(layer i+1)

a b c d e f g h i

987654321

1 2 3 4 5 6 7 8 9

bottom row
(layer i)

top row
(layer i+1)

a b c g h iedf

Fig. 19. Planarize two adjacent layers. The upper graph is before planarization, and

the lower graph is after planarization. (1) In the upper graph, e, f are cover

nodes of the virtual edge {5, 6} and make its cover number be 2. (2) If c is

the only cover node for virtual edge {3, 4} in an optimal solution, neither of

the walls {c, 3} and {c, 4} is removed by that solution.

We progressively build a planar graph that includes the nodes in the M layers.

First, we process Layer 1 and Layer 2. Let G = (V1 ∪ V2, E) denote the bipartite

graph where the nodes in Layer 1 are in one row and the nodes in Layer 2 are in the

other row. The edges in G are all those network links between Layer 1 and Layer 2.

See Fig. 19 for an illustration. In the bipartite graph G, the nodes in the bottom row

– which are the nodes in Layer 1 – are placed following their order in the base path.

The nodes in the top row – which are the nodes in Layer 2 – are not ordered yet.
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We then use a planarization algorithm to remove some edges from G, and order the

nodes in the top row, so that the remaining edges do not cross each other. (All the

edges are straight.) Thus we obtain a planar subgraph between Layer 1 and Layer 2.

Then, we process Layer 2 and Layer 3 in the same way, then Layer 3 and Layer 4,

· · · , and finally Layer M − 1 and Layer M . Note that when we are processing Layer

i and i + 1, the nodes in Layer i (the bottom row) have been ordered. So the same

algorithm can be used M − 1 times. All the edges we keep in these M − 1 steps form

a planar graph.

The general idea is that the base path and the shortest path tree rooted at

r1 both act as good references for planarization. By processing the nodes layer by

layer, we comb through the network and obtain a planar subgraph. The planarization

algorithm for planarizing the edges between two adjacent layers is the key operation

in our method. We present the details of the algorithm in the following sections.

4. Building a second tree and planarizing the network

The planar graph built so far is a skeleton of the network covering part (often about

half) of the sensor field. In this step, we build a second shortest path tree and

planarize more of the network. This second tree is rooted at the node r2 that is the

furthest (in hops) from the node r1. The planarization process is exactly the same

as the process in the previous step (namely, the third step), except that here node r2

replaces node r1, and we do not include in the layers here those nodes that have been

included in Layer 2 through Layer M − 1 in the previous step. See Fig. 20 (a) for an

illustration. The planar graphs built in this step and the previous step together form

a large planar subgraph that covers most of the sensor field.
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Fig. 20. (a) After finishing the first tree, we build the second and planarize it similarly.

Edges of the second tree are red; (b) The path a → b → c, the edge c − d,
and the edge e− f can be added into the planar graph.

5. Refining the planar graph

The planar graph built so far is a skeleton of the network, which usually covers the

whole sensor field. Those nodes outside it are usually within a few hops from it. To

include all nodes into the planar graph and to include more edges, three simple steps

are performed. First, if a node in the planar graph – which we shall call Gplanar –

finds that it has many 1- or 2-hop neighbors outside Gplanar, it uses a 4-hop localized

flooding to add one or more paths to Gplanar, as long as the new path connects nodes

in the same face and therefore preserves the planarity of Gplanar. Note that the

previous planarization steps already tell us what the faces in the planar graph are, so

this operation is easily doable. Second, if there are still nodes outside Gplanar, they

connect themselves to Gplanar via small trees, which is a simple operation. The trees

preserve the planarity of the graph. At this moment, the planar graph contains all
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the nodes. Then, to add more edges to Gplanar, the nodes add their incident edges to

it if the new edge connects two nodes in the same face (and therefore preserves the

planarity). Now we get the final planar subgraph of the network. See Fig. 20 (b) for

an illustration on how the refining is done.

C. An approximation planarization algorithm

In the previous section, the planarization scheme is presented. The key operation

is how to planarize two adjacent layers. That is also the only part of the scheme

whose detail has not been specified. Naturally, our objective is to remove as few

edges as possible during planarization, because a dense planar graph is desirable. In

this section, we present an approximation algorithm to this NP-hard problem.

We formally define the problem as follows:

bipartite planarization problem (BiPP): In a bipartite graph G =

(V1 ∪ V2, E), the nodes in the bottom row V1 are already linearly ordered,

and the nodes in the top row V2 are not (See Fig. 19 for an example).

How to remove some edges from G, and linearly order the nodes in the

top row V2, so that no two edges cross each other? The objective is to

minimize the number of removed edges.

In the graph drawing research field, this problem is also called the one sided

two-Layer planarization problem. It is known to be NP hard, even when the

nodes in V2 all have degrees at most two and the nodes in V1 all have degrees at most

one [28]. The best existing solution that runs in polynomial time is a 3-approximation

algorithm [27]. In this section, we present a new algorithm whose approximation ratio

can be arbitrarily close to 2, thus improving the best known result.
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Let us define a few terms. For any two nodes v1 and v2 in the bottom row V1,

if they are adjacent (in the sense of the given ordering of the nodes in V1), then we

imagine there is a virtual edge between v1 and v2. We say that a node u ∈ V2 covers

a virtual edge e if u has neighbors in the graph G that are on both the left side and

the right side of e in the bottom row. Such a node u is called a cover node of e.

The number of nodes in V2 covering e is called the cover number of e. All the edges

incident to a cover node of e are called the walls of e. Note that every cover node of

e is incident to at least two walls of e.

Our approximation algorithm is based on the following observations.

Observation IV.1 In any solution to the bipartite planarization problem, the

cover number of any virtual edge e is at most 1. Therefore, if the cover number of e

is y in the graph G, any solution must remove at least y − 1 walls of e.

Therefore, when the cover number of a virtual edge is large, if we remove two

walls around e for each of the cover nodes, we would have removed no more than

twice the number of edges removed by any solution plus one. This technique is used

in our algorithm.

On the other hand, if the cover numbers of all the virtual edges are relatively

small, we can solve the problem efficiently with the divide and conquer technique.

The following observation is the basis for the divide and conquer technique.

Observation IV.2 If the cover number of a virtual edge e is y in the graph G, then

in any solution, at most one of e’s cover nodes can keep all its corresponding walls

around e. For all the other cover nodes of e, each of them must remove all the walls

on at least one side of e. Therefore, if we enumerate all the possible ways to solve

the conflicts at e in any solution, there are at most y2y−1 + 2y cases to consider.
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(Specifically, for each cover node, we first consider if its walls should be removed; if

yes, we consider which side of the walls to remove. So there are y2y−1 + 2y cases.)

If a virtual edge e has no cover node in a solution, the nodes in the bottom row

can be separated into two parts: the left of e and the right of e. Then every node in

the top row is adjacent to nodes in only one of the two parts. So in that case, the

problem can be solved for the two subgraphs separately. If in an optimal solution,

e has one cover node, then the following observation tells us that we can still divide

the problem into two parts.

Observation IV.3 Suppose that in an optimal solution, a virtual edge e has exactly

one cover node u. If the wall wl (respectively, wr) incident to u is the closest edge to e

from the left(respectively, right) side, then w1, w2 must have not been removed by that

optimal solution (as shown in Fig. 19). In that case (assuming that we have guessed

this case to be true), when we search for the optimal solution, we can mark the two

walls closest to e from each side (namely, w1 and w2) to be irremovable (namely, we

do not remove them in the algorithm).

The approximation algorithm is shown in Fig. 21.

Input: G = (V1 ∪ V2, E), ǫ
Output: Gplanar: A solution to the BiPP.
1: repeat
2: e← a virtual edge in V1 with cover number > 1/ǫ
3: for each cover node of e, remove a wall incident to that node from each side of

e
4: until no virtual edge in V1 has cover number larger than 1/ǫ
5: call the procedure Exact-BiPP(G) and return the result.

Fig. 21. Algorithm APX-BiPP: approximate the BiPP problem.
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Input: G = (V1 ∪ V2, E)
Output: Gplanar: A solution to the BiPP.
1: Let n be the number of nodes in V1. If n < 5, solve the problem in the brute force

way, and return the solution.
2: e← the ⌊n/2⌋-th virtual edge in V1

3: y ← the cover number of e
4: for all y2y−1 + 2y cases at e (see Observation IV.2) do
5: skip this iteration if in this case, an irremovable edge is to be removed
6: the problem is now split into two disjoint subproblems of roughly the same size,

recursively call Exact-BiPP on them.
7: record the solution of this case if it removes the least number of edges among

all cases considered so far,
8: end for
9: remove edges according to the best solution got above
10: return G

Fig. 22. Algorithm Exact-BiPP: solve the BiPP problem exactly.

Let us first look at the subroutine Exact-BiPP in Fig. 22, in any case the edge

e will be a separator for the problem in the sense that no two nodes on both side of

e share a neighbor in V2 except v, the one we decided to keep “over” e. In that case

{v, u1} and {v, u2} are both kept in the final solution and marked irremovable, the

two subproblems formed in line 6 of Exact-BiPP will not affect each other. In the

case e has no cover node in the solution, it is clear that we have split the problem

into two independent subproblems. Since we enumerate all possible cases at e in the

recursive stage, we will get the optimal solution.

Assuming that the maximum cover number for virtual edges in V1 is c and T (n) is

the running time of the algorithm where n = |V1|. We have the recurrence relationship

T (n) < 2× c2cT (n/2). This recursion has a solution T (n) < (2c2c)log n = nc+log c+O(1).

Hence we have the following lemma immediately.

Lemma IV.4 The algorithm Exact-BiPP finds the optimal solution for the bipar-

tite planarization problem and runs in time nc+log c+O(1) where c is the maximum
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cover number for all virtual edges in V1 and n is the number of nodes in V1.

In the following theorem, we prove the algorithm APX-BiPP’s approximation

ratio, 2+3ǫ, and its polynomial time complexity. The parameter ǫ can be a arbitrarily

small positive number, so we assume that ǫ ≤ 1/3.

Theorem IV.5 The planarization algorithm APX-BiPP is a (2+3ǫ)-approximation

for the bipartite planarization problem. It runs in time O(|V1|1/ǫ+log[1/ǫ]+O(1) +

|E||V1|).

Proof. First it is simple to see that the algorithm produces a solution for the

problem.

Let us look at the approximation ratio. In the recursive stage (subroutine Exact-

BiPP) of the algorithm, by Lemma IV.4 we get the exact solution.

While in the preprocessing stage (lines 1 through 4 in APX-BiPP), there are

a(e) > 1/ǫ nodes in V2 covering e, and at most one of them can be the cover node

of e in any solution. We removed 2a(e) edges over e. That is at most a(e) + 1 more

than the number of edges removed by an optimal solution S.

Suppose that in the preprocessing stage (lines 1 through 4 in APX-BiPP), we

have run the loop m times. Let M be the total number of edges removed, we have

M > 2m/ǫ. Let the residual graph be B′. Among these M edges at most M/2+m are

unnecessary, in other words, S (the optimal solution) would have to remove at least

M/2−m edges. Therefore the number of edges removed by S, denoted by R(B), is

then at least M/2−m+R(B′′) where B′′ is the residual graph after we removed these

M/2−m edges according to S. Since in the approximation stage we have removed all

walls at those virtual edges, B′ is a subgraph of B′′. Hence we have R(B′) ≤ R(B′′)
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and R(B) ≥ M/2−m + R(B′). While in our approximated solution the number of

edges removed, denoted by A(B), is exactly M +R(B′). Hence we have

A(B)

R(B)
≤ M +R(B′)

M/2−m+R(B′)
2 +

4m− 2R(B′)

M − 2m+ 2R(B′)

≤ 2 +
4m

2m/ǫ− 2m
(4.1)

Now we show that the algorithm runs in polynomial time. The preprocessing

stage takes time O(|E||V1|). In the stage when we call Exact-BiPP, since the cover

numbers of all virtual edges in V1 are bounded by 1/ǫ, by Lemma IV.4 the running

time is upper bounded by n1/ǫ+log[1/ǫ]+O(1). Therefore the total running time is then

O(|V1|
1
ǫ
+log 1

ǫ
+O(1) + |E||V1|).

D. Fixed parameter tractable algorithm for optimal planarization

In our extensive simulations, we observed that while planarizing the subgraph induced

by two adjacent layers, the number of edges that need to be removed is usually much

smaller than the number of nodes in those two layers, for a network of moderate

density (average degree roughly between 6 and 12). If the network is very dense, we

can use a simple preprocessing operation to reduce the edge density to the moderate

level. (Details of the operation will be discussed later.) Therefore a question remains:

can we use that observation to practically improve the planarization algorithm?

In recent years, a new approach called parameterized computation has been

proposed to solve NP hard problems by exploiting small parameters [26]. Let k be a

parameter in a parameterized problem. We say that the problem is fixed parameter

tractable (FPT) if it can be solved optimally in time O(f(k)nO(1)), where n is the input

size and f(k) is a function of k. When k is bounded, not only is the time complexity

polynomial, but it usually also grows much slower than O(nk) when n increases. Quite
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a few NP-hard problems have been proved to be in FPT with effective algorithms.

For example, the vertex cover problem with parameter k as the cover size can be

solved in time O(1.286k + n3) [19].

In [27], the authors showed that the bipartite planarization problem (also

called the one sided two-layer planarization problem) is fixed parameter

tractable when the parameter k is an upper bound for the number of edges to be

removed. They developed an FPT algorithm for the problem running in time 3knO(1).

In this section, we present an improved FPT algorithm running in time (2+γ)knO(1),

where γ can be an arbitrarily small positive number.

Formally, the parameterized version of the bipartite planarization problem

can be stated as follows:

Given an instance of the bipartite planarization problem and a pa-

rameter k, either find a solution to the instance that removes at most k

edges, or report that no such solution exists.

Let us first define a few terms. Let u ∈ V1 be the leftmost neighbor of a node

z ∈ V2, and v ∈ V1 be the rightmost. We call the pair of edges {u, z}, {z, v} an arc, and

denote it by z(u, v). We say that the arc z(u, v) conflicts with an edge {w1, w2} if it is

necessary to remove {w1, w2} in order to keep both edges {z, u}, {z, v} in a solution.

To help simplify the following discussion, for each pair of arcs z(u, v), z′(u, v) – i.e.,

they share the same leftmost and rightmost neighbors u, v in V1 – we also consider

{z, u} a conflict edge of z′(u, v). Similarly {z′, u} is also a conflict edge of z(u, v).

The conflict number of an arc z(u, v) is the number of edges that conflict with

the arc. (See Figure 23 (a) for an illustration of the terms.)

The conflict number of a given arc z(u, v) is simply the summation of the following

two numbers: (1) the number of edges incident to nodes (exclusively) between u, v
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in V1 but not z; (2) the number of arcs that of the forms z′(u, v) (where z′ 6= z),

i.e. they share the same leftmost (rightmost) node in V1. The set of edges that are

conflicting with a given arc can also be decided easily by definition.

u v v’w qtu’

pz z’ z

u
e

......

......

v

s z’’

s t

(b)(a)

Fig. 23. (a) z(u, v) is an arc; the edges {p, q}, {s, t}, {z′′, u} conflict with z(u, v); the

conflict number of z(u, v) is then 3; z′(u′, v′) strictly covers z(u, v) and has

a larger conflict number 7. (b) cover number and conflict number at virtual

edge e(s, t): there are at least f − 1 edges incident to nodes between u and s

but not z.

The following lemma shows the relationship between cover numbers and conflict

numbers.

Lemma IV.6 If there is a virtual edge e in V1 with cover number f , there must exist

an arc that has conflict number at least f − 1. In other words, if no arc has conflict

number larger than f − 1, no virtual edge in V1 will have cover number larger than

f .

Proof. Suppose the left-most walls of e are incident to u in V1. Let z(u, v) be the

arc such that v in V1 is the furthest away to the right of u. Hence {z, u} is a leftmost

wall of e and v is the right-most neighbor of the cover nodes adjacent to u. Each of

the f − 1 cover nodes (other than z) of e either is adjacent to u and has no neighbor

exclusively to the right of v, or has its left-most wall exclusively to the right of u.

By definition, each of these f − 1 cover nodes (other than z) of e will contribute at
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least 1 to z(u, v)’s conflict number. Either their rightmost walls (if they are adjacent

to u but not v) or their leftmost walls will be conflict edges of z(u, v). The conflict

number of z(u, v) is, therefore, at least f − 1.

We present the FPT algorithm as Fig. 24. The constant β is any predefined

positive number that is no smaller than 1. The algorithm returns a solution if there

exists a solution that removes at most k edges, and returns false otherwise. (With a

little abuse of notations, when the algorithm returns true, it returns the solution as

well.) Note that when a solution is found, the conflict number of every arc becomes

0.

Input: G(V1 ∪ V2, E), k, β ≥ 1
Output: Gplanar: A solution removing no more than k edges.
1: z(u, v)← the arc with the maximum conflict number c(z).
2: if c(z) = 0 then return true
3: if k < c(z) then return false
4: if c(z) ≤ β then
5: planarize G using the procedure Exact-BiPP. (That is, run Exact-

BiPP(G).)
6: if Exact-BiPP(G) removes at most k edges, return true; else return false
7: end if
8: E(z)← the set of edges conflicting with z(u, v)
9: if FPT-BiPP(G(V1 ∪ V2, E \ E(z)), k − c(z)) return true;
10: if FPT-BiPP(G(V1 ∪ V2, E \ {{z, u}}), k − 1) return true;
11: if FPT-BiPP(G(V1 ∪ V2, E \ {{z, v}}), k − 1) return true;
12: return false

Fig. 24. Algorithm FPT-BiPP: solve the BiPP problem in FPT time.

The following theorem proves the correctness and complexity of the algorithm.

Theorem IV.7 The algorithm FPT-BiPP will either find a solution for the bipar-

tite planarization problem by removing at most k edges, or correctly report that

there is no such solution. The running time of the algorithm is upper bounded by

(2 + 1/β)knβ+log β+O(1).
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Proof. During the calling of the routine Exact-BiPP in line 5 (that is, when

c(z) ≤ β), since the conflict numbers of the nodes in V1 are upper bounded by β, by

Lemma IV.6, the cover number of the virtual edges in V1 will be bounded by β + 1.

Again by Lemma IV.4, the running time of Exact-BiPP in this algorithm will be

bounded by T1 = nβ+log β+O(1).

As for the recursive calls in lines 9, 10 and 11, we branch into three cases where

k decreases by 1, 1 and c(z), respectively. Since we enter this stage only if c(z) > β,

if we use T (k) to denote the running time of the algorithm, the following recurrence

relationship holds for T (k):

T (k) ≤ 2T (k − 1) + T (k − β).

We use induction to show that T1(2 + 1/β)k is an upper bound for T (k). In the

case when k < c(z), we return false right away. If c(z) ≤ k ≤ β, we already have

T (k) ≤ T1. Hence when k ≤ β, we always have T (k) ≤ T1(2 + 1/β)k.

Suppose for β ≤ k < t we have T (k) ≤ T1(2 + 1/β)k. Using basic calculus, it is

easy to verify that when β ≥ 1, 2(2 + 1/β)β−1 + 1 ≤ (2 + 1/β)β. Thus we have

T (t) ≤ 2T (t− 1) + T (t− β)

≤ 2T1(2 + 1/β)t−1 + T1(2 + 1/β)t−β

≤ T1(2 + 1/β)t−β
[

2(2 + 1/β)β−1 + 1
]

≤ T1(2 + 1/β)t

Therefore we have proved that the running time of the algorithm is bounded by

(2 + 1/β)knβ+log β+O(1).

The exponential part of the running time of the algorithm FPT-BiPP can be
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arbitrarily close to 2k by choosing a large enough value for β.

The difference between the approximation approach and a parameterized ap-

proach is that the latter gives the optimal solution. Although the problem is NP-

hard, the FPT algorithm solves the problem in polynomial time when the parameter

is small, i.e., the exponential part of the running time is independent of the number

of the nodes in the input graph. As we will show later in simulations, the number of

edges to be removed is actually very small (less than 15 in most cases for networks of

up to 2500 nodes) for networks with practical models.

E. Implementation and simulations

We conducted extensive simulations to test the performance of the planarization

method. The performance has been very stable for different network models, sensor

deployment methods, network sizes and sensor densities. In the following, we present

some typical simulation results. A planarized network has numerous applications,

including topology discovery, localization, geographic routing, etc. (For geographic

routing, embedding is needed and such embedding algorithms are available [23, 36,

37, 75].) We illustrate the performance of our result by showing its application to

topology discovery. We show that our planarized network can locate holes and outer

boundaries of the sensor fields accurately, significantly improving the known results

on topology discovery.

Let us explain the distributed implementation of our planarization method. The

method utilizes a few shortest path trees, and a practically limited amount of local-

ized flooding to refine the final result. (The total cost of the localized flooding is

about the same as flooding the network once or twice.) Both building shortest path

trees and localized flooding are very mature techniques in networking. Both algo-
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rithms presented in the chapter planarize the network layer by layer, which naturally

corresponds to a distributed implementation. While planarizing two adjacent layers,

we take the simple approach of letting one node in the two layers act as a proxy and

run the algorithm in a centralized way. (The nodes in the two layers can easily send

their information to the proxy node via the corresponding shortest path tree.) We

comment that our algorithms take the divide and conquer approach, so it is simple

to decentralized its implementation; but we decide not to use it for networks of less

than 2500 nodes because of the already very low communication and computation

overhead.

The faces in the planarized network are always very clear throughout the pla-

narization process. That is because nodes are planarized layer by layer, and the

planarization algorithm sorts the edges incident to each node by ordering the nodes

in the two adjacent layers. That makes the refinement step and the topology discovery

application of using faces to recognize holes/boundaries very simple.

Our method works well for networks of moderate or sparse edge densities. For

dense networks (average degree 15 or more), the following simple preprocessing ap-

proach can effectively reduce the edge density and edge crossing: for every maximal

clique in the network, we remove some edges from it so that the remaining edges form

a star. Note that the average degree of a planar graph is always less than 6. So such

an edge-reduction preprocessing step goes along well with planarization.

We have presented two planarization algorithms: an approximation algorithm

and an FPT algorithm. They have very similar performance in practice. Due to

the space limitation, we present the simulation results for the FPT algorithm only.

(The results for the approximation algorithm are very close.) In most simulations,

the optimal planarization solution removes less than 15 edges for all the layers. So

by setting k = 15 or a little above, the FPT algorithm finds the optimal solution and
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maintain a low time complexity at the same time.

1. Network planarization

(a) (b)

Fig. 25. Wireless sensor network and its planarization. (a) The dark (green and black)

edges are the planarized network. The light (grey) edges are the remaining

edges in the original network. The original network is a quasi-UDG with

N = 2000 nodes and average degree 12, where transmission ranges vary by as

much as R/r = 5. (b) A plane embedding of the planarized network.

We randomly deploy N sensors uniformly randomly in a 15000 × 15000 square

area. The network follows the quasi unit disk graph (quasi-UDG) model: two nodes

do not have a link if their distance is greater than R, have a link if their distance is

less than r, and have a link with probability 1/3 if their distance is between r and

R. (Here r ≤ R.) Let α = R/r. When N and α are given, we adjust r and R

to obtain the desired average node degree. To make the sensor field non-trivial, we

also randomly place holes in the network. Our reported results are for two holes of

radius about 2R. For each parameter configuration, 1000 networks are generated and
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measured.

A typical planarization result is shown in Fig. 25. To quantitatively analyze the

performance of planarization, we measure the stretch (str.) of hop distance and its

standard deviation σ. Let u, v be two nodes, whose hop distance is h(u, v) before

planarization and is h′(u, v) after planarization. The multiplicative stretch is defined

as h′(u, v)/h(u, v), and the additive stretch is h′(u, v)−h(u, v). To better characterize

the stretch of different node pairs, we measure the multiplicative stretch for nodes

whose hop distance is greater than 1/4 of the network diameter, and measure the

additive stretch for the others. The results are shown in Table VII where d is the

average degree of the input networks, dp is the average degree of the planar spanning

subgraph found and D is the average diameter of the input networks.

Table VII. Planarization results for N = 1500.
d=7 d=9 d=11

Additive stretch for nodes within Diameter/4 hops
α D str. σ D str. σ D str. σ
1 48.3 4.03 9.80 40.1 3.56 8.04 36.1 3.36 7.27
2 36.2 3.45 8.11 30.6 3.28 7.19 27.4 3.24 6.66
5 28.9 3.23 6.76 24.0 3.05 6.25 21.5 2.98 6.00
10 27.0 3.11 6.82 23.7 3.01 6.13 21.4 2.96 5.83
Multiplicative stretch for nodes more than Diameter/4 hops apart
α dp str. σ dp str. σ dp str. σ
1 3.5 1.27 0.57 3.8 1.28 0.56 3.8 1.30 0.57
2 3.7 1.31 0.54 3.8 1.35 0.56 3.9 1.38 0.58
5 3.7 1.36 0.55 3.8 1.40 0.55 3.8 1.43 0.56
10 3.7 1.36 0.54 3.8 1.40 0.55 3.8 1.43 0.57

We see that for networks of very different connectivity models and densities,

the stretch is constantly small. This shows the good performance of the planarized

networks.
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2. Topology discovery

One important application of network planarization is topology discovery [97] [36] [37].

In topology discovery, we use the large faces in a planarized network to find holes and

the outer boundary of the sensor field. The importance of such prominent features

in sensor fields has been presented earlier in the Introduction. Mainly, they help

us learn about the sensor field, detect obstacles and abnormal events, interpret the

sensed data, and balance routing load.

In our simulations, we place two circular holes of radius 2R in the sensor field,

where the sensors cannot be deployed. We comment that the actual holes are very

irregular and look far from circles, because of the random deployment of nodes and

the sparsity of edges. By checking large faces (faces containing 20 edges or more), we

are able to identify the faces close to the boundaries of holes and the outer boundary

in more than 95% cases for all configurations.

Four typical results are shown in Fig. 26. To quantitatively analyze the perfor-

mance of topology discovery, we compare the Euclidean length of the actual hole or

outer boundary, l, to the Euclidean length of the face, l′, surrounding it. Both l and

l′ are computed off-line using real coordinates of the nodes. (Note that the actual

boundary consists of a set of fractional segments of edges since edges can cross.) The

results are shown in Table VIII where σ is the standard deviation of l′/l and m is the

average of the total number of edges removed to planarize both shortest path trees

for each network.

Table VIII. Hole detection results for N = 1500.
d=7 d=9 d=11

α l′/l σ m l′/l σ m l′/l. σ m
1 1.02 0.06 4.8 1.15 0.31 9.5 1.20 0.05 14.6
2 1.13 0.05 6.4 1.22 0.04 10.1 1.29 0.19 13.2
5 1.37 0.26 8.9 1.43 0.46 11.2 1.50 0.16 11.2
10 1.41 0.82 8.5 1.48 0.49 9.9 1.42 0.46 12.2
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(a) (b)

(c) (d)

Fig. 26. Typical hole detection results: green edges are those in the planarized network;

black cycles are detected boundaries. (a) UDG network with N = 2000 nodes

and average degree 8.14. (b) UDG network with N = 1500 nodes and average

degree 12.72. (c) quasi-UDG network with N = 2500 nodes and average

degree 8.05, where the transmission ranges vary by as much as R/r = 10

times. (d) quasi-UDG network with N = 1500 nodes and average degree

12.05, where the transmission ranges vary by as much as R/r = 5 times.
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We see that the length ratio is usually very close to 1. This shows the excellent

performance of the results. Our results compare favorably with the known results

on topology discovery. In [36, 37, 97], the authors presented very nice algorithms for

detecting holes and outer boundaries. Their algorithms work for large holes (radius

are 5 times the communication range of the sensors or more) or very dense networks

(e.g., average degree larger than 15). In comparison, our method detects holes whose

radius are twice the communication range or more, and works for both low and high

densities. So the improvement in performance is actually remarkable.
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CHAPTER V

SORTING BASED DATA CENTRIC STORAGE

Data-centric storage is a very important concept for sensor networks, where data of

the same type are aggregated and stored in the same set of nodes. It is essential

for many sensornet applications because it supports efficient in-network query and

processing. Multiple approaches have been proposed so far. Their main technique is

the hashing technique, where a hashing function is used to map data with the same key

value to the same geometric location, and sensors closest to the location are made to

store the data. Such solutions are elegant and efficient for implementation. However,

two difficulties still remain: load balancing and the support for range queries. When

the data of some key values are more abundant than data of other key values, or

when sensors are not uniformly placed in the geometric space, some sensors can store

substantially more data than other sensors. Since hashing functions map data with

similar key values to independent locations, to query a range of data, multiple query

messages need to be sent, even if the data of some key value in the range do not exist.

In addition to the above two difficulties, obtaining the locations of sensors is also a

non-trivial task.

In this chapter, we propose a new data-centric storage method based on sorting.

The idea is to sort the data in the network based on their key values, so that queries

– including range queries – can be easily answered. The sorting method balances the

storage load well, and we present a sorting algorithm that is both decentralized and

very efficient. It requires no location information, and is robust to different network

models. We present both rigorous theoretical analysis and extensive simulations for

analyzing its performance. They show that the sorting-based method has excellent

performance for both communication and storage.
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A. Introduction

Wireless sensor networks are widely deployed nowadays to collect data from different

types of environments. In many systems, sensors also collaborate to aggregate data

and answer queries. For sensor networks, where and how to store data is an important

issue.

There have been two basic approaches for data storage: the sink-based storage,

and the in-network storage. In the sink-based storage approach, all the data collected

by sensors are transmitted to a powerful server, which is connected to the sensor

network through a gateway. This approach is simple and easy to configure. But it also

have some shortcomings. First, such a connection to a server may not be available,

especially for sensors deployed in remote areas, emergency areas, combat fields, or

robotic/mobile systems. A server can also be expensive. Second, transmitting all the

data to the sink makes the sensors near the sink lose their energy quickly.

The in-network storage approach, where data are stored in the sensors them-

selves, removes the dependency on servers, and balances power consumption better.

It also supports in-network processing well, which is important for real-time applica-

tions. Like a database, the data in a sensor network are labelled by their key value.

To answer queries efficiently, the data with the same key value should be aggregated

and stored in the same place, and that place should be easily accessible by any sensor

querying the data. That is the basic principle of data-centric storage, which has been

a well accepted concept in sensor networks.

There have been a number of data-centric storage schemes proposed in recent

years. Their main technique is the geographic hash table, where the location to stored

the data with the same key value is determined by a hash function. The hash function

takes the key as input and outputs a geographic location, and the data are stored in



108

the sensor (or sensors) closest to that location. Any sensor querying the data can use

the same hash function to find their location. To better support the routing process –

both for transmitting the data from the sensors collecting them to the sensor storing

them, and for a sensor querying and retrieving the data – the geographic routing

algorithm GPSR is used.

Although the hash-based method is an elegant solution for data-centric storage,

two difficulties still remain: storage load balance and the support for range queries.

When the data with some key values are more abundant than the data with other

key values, the sensors corresponding to the first group of data need to store more

data than the second group. Also, since the hash function builds a simple mapping

between keys and locations, when there is a hole in the sensor network, the sensors

around the hole often need to store much more data than others. Both are common

scenarios in sensor networks, which are usually deployed in complex environments.

And in fact, we will show that even the random deployment of sensors alone can lead

to substantial load balancing problems. On the other side, since the hash function

maps similarly key values independently to different locations, range query becomes

expensive. Range query is a very common and useful query in sensor network, where

a sensor queries the data whose key values are in a range. With the hash-based

method, for every key value in the range, a separate query message need to be sent,

even if the data of some key values do not exist. Therefore, the communication cost

can be high. In addition to the above two difficulties, obtaining the locations of nodes

is also a non-trivial task for sensor networks.

In this chapter, we propose a new data-centric storage method: sorting-based

storage. The idea is to sort the data in the network based on their key values. A

primary path in the network is used to provide a linear order of the data, and all the

edges are used to make both the sorting process and the query process efficient. The



109

sorting process naturally balances the storage load for sensor well, regardless of the

distribution of data or the shape of the network. And since adjacent data are stored

sequentially in nearby sensors, range queries can be easily answered. We present

a sorting algorithm that is both decentralized and efficient. It requires no location

information, and is robust to different network models. We present both rigorous the-

oretical analysis and extensive simulations for analyzing its performance. They show

that the sorting-based method has excellent performance for both communication

and storage.

The rest of the chapter is organized as follows. In Section B, we present an

overview of related work. In Section C, we introduce the basic concepts of the sorting-

based storage scheme. In Section D, we present the sorting algorithm, and provide a

general performance evaluation. In Section E, we analyze the sorting algorithm for

two-dimensional networks. We describe the implementation of the storage scheme in

Section D, and use simulation to evaluate its performance in Section G. In Section

H, we present the concluding remarks.

B. Related work

The concept of data-centric storage was proposed in [81], where a storage scheme

named GHT (Geographic Hashing Table) was presented. GHT maps the key value of

data to a geographic location using a hash function, and stores the data in the nodes

closest to the geographic location. GHT uses the geographic routing algorithm GPSR

for data forwarding and query. Since the locations of sensors are often hard to obtain

and GPSR is not always a feasible routing algorithm, a new routing algorithm named

GEM was proposed in [76]. GEM embeds a tree with additional short-cut edges

in the network, which the authors called the ringed tree. The ringed tree defines a
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virtual polar coordinates for the nodes. GEM uses the ringed tree for routing with

guaranteed delivery. It can also be used for data-centric storage, where data are

mapped to the virtual coordinates using a hash function.

A number of schemes have been proposed to store the indexes of data, instead

of the data themselves, in an organized way so that they can be easily looked up.

In [24], a two-tier storage architecture called TSAR was proposed. In TSAR, the high

level proxy nodes keep track of the indexes of data using a virtual structure called the

interval skip graph, which is a distributed search tree for indexing intervals. TSAR

supports spatio-temporal and value queries. In [64], a storage architecture called DIM

was proposed to store indexes in a distributed way. DIM maps key values to physical

zones, which are organized similar to k-d trees and are independent of the network

topology itself. The key values are assigned to zones in a way that makes similar keys

more likely to be stored near each other. DIM supports multi-dimensional queries,

and it uses the GPSR geographic routing protocol.

The idea of replicating data along a curve or in a set of nodes has been explored

in multiple publications. In [83], a scheme called double ruling was studied, where

the data from each sensor is replicated along a curve called the replication curve. To

query the data from a sensor, a query message is transmitted along a curve called

the retrieval curve. If the two curves are guaranteed to meet, the retrieval of data is

guaranteed. In [29], data are replicated on a curve called finger trees. In the above

schemes, for the replication curve and the retrieval curve to meet, a planar network

is desirable. In addition to the above schemes, some location service schemes can

also be applied to replicate data and support data query. In [63], a scheme called

GLS (Geographic Location Service) was proposed, where the location information

from each sensor is replicated in a set of sensors. To query the information, a query

message is routed using ring-structured routing tables until it meets a sensor storing



111

the replicated information. In the above schemes data are replicated to many nodes,

so that finding the data becomes easier.

Multi-resolution storage of data was studied in [39], where a scheme called DI-

MENSIONS was used to store data with multiple resolutions. It supports multi-

resolution data access and spatio-temporal pattern mining. The idea of using multi-

ple powerful nodes to provide data service was studied in [89]. The authors proposed

algorithms that aim at minimizing the energy cost needed to collect the aggregated

data.

Distributed in-place sorting has been a classic topic in the field of parallel comput-

ing [62]. In particular, synchronized parallel algorithms have been studied extensively

to sort data that are stored in different topologies. For a linear array of size n, the

odd-even transposition sort algorithm takes O(n) rounds to sort n numbers. For an

n×n mesh, the Shearsort algorithm takes O(n logn) rounds to sort n2 numbers, and

an asymptotically tight O(n)-round algorithm is also available [62]. Here each round

usually involves only a constant number of operations for each processor (node) in

the network.

C. Basic concepts and terms

In this section, we introduce some basic concepts of the sorting-based data-centric

storage scheme, and some terms that will be used in the rest of the chapter.

Consider a network G with n nodes and m data objects. Every data object has a

key, whose value is an integer. The network contains a path P that goes through every

node at least once. The length of the path isN (i.e., N nodes, where N ≥ n). (Ideally,

the path would go through every node exactly once. However, such a Hamiltonian

path may not exist, or may not be easy to construct.) Sorting data means that the
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data are stored in the nodes so that the order of their key values is consistent with the

order of the corresponding nodes in the path. In other words, if we walk through the

path P , we sequentially visit the m data objects whose key values keep monotonically

increasing (or decreasing).

If two data objects have the same key value, then their relative order in the path

can be arbitrarily decided on. Note that a node may appear in the path more than

once. The following is a simple example of sorting.

Example 1 The network G contains four nodes: a1, a2, a3 and a4. An example of

the path P is P = a1, a2, a1, a3, a4. There are six data objects in the network, whose

key values are 2, 4, 6, 6, 7 and 8, respectively. Then the following is an example of

sorting: a1 stores 2 and 6, a2 stores 4, a3 stores 6, a4 stores 7 and 8.

To well balance the storage load, the nodes should store approximately the same

number of data objects. If we construct such a path in the network and sort the

data based on the path, then data query, including the range query, will be simple,

because a message can follow the key values to the queried data. The routing need

not strictly follow the path. In fact, most of the time, the routing can use the edges

outside the path that serve as shortcuts.

We will present an asynchronous sorting algorithm for an arbitrary network.

The following definition defines two terms used for evaluating the complexity of an

asynchronous algorithm.

Definition V.1 Given a distributed network G with n nodes, during an asynchronous

computational process in the network each node takes actions. We call it a round when

every node has taken exactly one action or given up the chance to take an action. We

call each action a step.



113

Note that the round we defined here is logical, i.e., different rounds could be

overlapping in the time frame due to the asynchrony of the process. By definition,

there can only be at most n steps taken in each round. The work of the process can

then be measured by the total number of steps taken and be estimated by the total

number of rounds in the process.

We will use the term load factor to measure the load balance of a data storage

scheme, as follows.

Definition V.2 Given a storage scheme where the average load is d data objects per

node, the maximum load is dmax data objects in a node and the minimum load is dmin

data objects in a node, the load factor of the scheme is then max{dmax/d, d/dmin}.

The sorting algorithm we present does not depend on how the path P is con-

structed. In particular, if the nodes know their locations, it is simple to construct

a path with good performance. However, obtaining locations is a highly non-trivial

task for sensors. In this chapter, we present a method to construct P for non-localized

sensor networks, where node location information is unknown. The construction uses

some concepts related to planar graphs, which are defined below.

Definition V.3 Given a planar graph Gp embedded in the plane, a face F is adjacent

to another face F ′ if F and F ′ share an edge or a vertex. Similarly we say that a

face F is adjacent to a path P if F and P share an edge or a vertex. The distance

from a face F to a path P is the minimum number of faces we need to walk through

in order to walk from F to a face adjacent to P (by walking through adjacent faces,

not counting F itself). The distance between an edge e and a path P is the smallest

value among the distances from the faces adjacent to e to the path P . The distance

between two paths P, P ′ is the smallest value among the distances from the edges in

P to the path P ′.
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An example of the above terms is shown in Fig. 27.
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Fig. 27. Adjacency and distance between edges, paths and faces: the faces f1, f2, f3

are adjacent to each other (i.e., distance 1 from each other); f1 and f2 are

adjacent to the path P1 (indicated by the green edges at the top); f3 and f4

are adjacent to the path P2 (indicated by the blue edges at the bottom); the

distance from f2 to P2 is 1; the distance from the edge e to P1 is 0, and the

distance from e to P2 is 1; the distance between P1 and P2 is 1.

D. Network sorting and balanced data storage

In this section, we present a distributed algorithm to solve the network sorting

problem. That is, given a network G of n nodes, a path P of length N , and m data

objects that are stored in the network, the nodes sort the data with the additional

constraint that in the end, the numbers of data objects stored in the nodes are as

balanced as possible.

We first describe an algorithm for a simplified version of the problem, where the

path P is a Hamiltonian path (i.e., each node appears in P exactly once) and every
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node initially stores one data object (namely, n = N = m). Later we will show how

to generalize the algorithm to solve the sorting problem for general cases.

During the sorting process, every node remembers the keys of its own data and

its neighbors’ data. The basic step in the sorting algorithm is a local sorting operation:

• A node sorts its own data and its neighbors’ data based on their positions in

the path. After it sorts the data, each of those nodes (whose data are sorted)

informs its neighbors of the key of its new data.

For example, suppose that a node a has four neighbors b, c, d, e, and the keys of

their data are 2, 4, 1, 5, 6, respectively. Suppose their order in the path is (b, a, c, e, d).

Then after a sorts the data, the nodes a, b, c, d, e store data with the keys 2, 1, 4, 6,

5, respectively.

The key of the algorithm is to carry out the local sorting operations asyn-

chronously and efficiently. To do that, we need to use a scheduling scheme to avoid

multiple nodes accessing the same data simultaneously (namely, conflicts), and avoid

deadlocks. Our algorithm utilizes a modified scheduling scheme from the d-scheduling

algorithm described in [67]. Our algorithm assigns IDs 1, 2, · · · , n to the nodes ac-

cording to their order in the path P . Every node u is assigned a priority (ru, ID),

where ru is a integral variable whose initial value is 0, and ID is the ID of u. The

value of the priority is determined by the concatenated value of ru and ID, which is

ru · n + ID. For example, if the priority of node u is (2, 16), then the value of u’s

priority is 2n+ 16. In general, in the sorting algorithm, the smaller a node’s priority

is, the higher a priority the node has for carrying out a local sorting operation.

The general process of sorting with scheduling is as follows:

• If a node u finds that its priority is the smallest among the priorities of the

nodes within two hops, and that the data within one hop need sorting, node
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u sorts the data within one hop. After this local sorting operation, node u

increases its variable ru by one. Every node in the network sorts data in this

way.

We can see that when a node u is sorting data, its neighbors can neither sort

data nor have their data sorted by any node other than u. For the nodes two hops

away from u, although they cannot sort data, they can have their data sorted by

other nodes.

The formal presentation of the sorting algorithm is presented in Fig. 28. It

describes the protocol that a node u follows. Every node follows the same protocol,

and the sorting ends when no node needs to sort more data. The algorithm shows

the detailed messages sent in the sorting process.

When the graph underlying the network is a simple path, the above algorithm

becomes the distributed bubble sort algorithm.

Since during the sorting process, each node u’s priority is decided by (ru, ID),

the priorities of all the nodes are in total order at any moment. The dependent graph

obtained from the network G by putting a directed edge from a node to each neighbor

with a higher priority is always a DAG (directed acyclic graph). Therefore there will

be no deadlock and the execution of the algorithm will not be halted. Here we call

the actual local sorting operation performed by a node in the network a step.

Note that by the scheduling scheme, each node will have a chance to perform a

step at least after all its two hop neighbors have performed a step.

We show an example of the sorting process in Table IX, which is an instance

of the network sorting problem shown in Fig. 29. Initially, the data objects in the

network are in the reversed order of the nodes. (The order of the nodes in the path

P is a1, a2, · · · , a8. The numbers in the nodes are the keys of data.) Each row in
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Input: A node u in a network G
Output: Data objects in the network are sorted
1: Initially: u sends its ID and the key of the data it currently has to all its

neighbors; ru ← 0.
2: if the order of the data objects in u’s neighborhood is not consistent to the order

of the IDs then
3: Send REQUEST to every neighbor
4: else
5: Send SKIP to all neighbors
6: end if
7: Wait until it hears from all neighbors
8: if u gets REQUESTs from neighbors then
9: Put all requests in a priority queue (the smaller the value of the priority is, the

higher the priority)
10: Send CONFIRM to the node with the smallest priority (including itself) that

is requesting
11: Send PENDING to all others
12: end if
13: if u gets CONFIRM from all neighbors then
14: send LOCK to its neighbors
15: Perform sorting operation, i.e., sort the data objects in the neighborhood
16: increase its ru by 1
17: send UNLOCK to its neighbors
18: end if
19: if u gets PENDING from a neighbor then
20: u waits for further message from the neighbor
21: end if
22: if u gets LOCK from a neighbor then
23: u sends REJECT to its requesters
24: end if
25: if u gets REJECT from a neighbor then
26: u send CANCELREQUEST to its neighbors
27: u send CONFIRM to the next requested node in queue
28: end if
29: if u gets CANCELREQUEST from a neighbor then
30: u send CONFIRM to the next requested node in queue
31: end if
32: if u gets UNLOCK from a neighbor then
33: if u’s data has been exchanged then
34: Notify its neighbors about the new key
35: end if
36: Send REQUEST to every neighbor if necessary
37: end if

Fig. 28. Algorithm NetworkSorting: running by each node in the network to solve

the network sorting problem.
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the table presents the result after the nodes in the first column perform local sorting

operations (i.e, steps) simultaneously. It takes only two rounds to sort the data

objects in the example.

a2 a3 a5a4 a6 a7 a8a1

8 7 6 5 4 3 2 1

Fig. 29. A sample network sorting instance

Table IX. The sorting process of the sample network in Fig. 29.
Nodes a1 a2 a3 a4 a5 a6 a7 a8

Initially 8 7 6 5 4 3 2 1
Round 1

n1, n8 4 7 6 5 8 3 1 2
n3 4 3 5 6 8 7 1 2

n2, n7 3 4 5 6 8 1 2 7
n4 3 4 1 5 6 8 2 7
n6 3 4 1 2 5 6 8 7
n5 2 4 1 3 5 6 8 7

Round 2
n2, n8 1 2 4 3 5 6 7 8
n3 1 2 3 4 5 6 7 8

The total number of rounds is a measure of the maximum work performed by

each node. In the following theorem we show that it takes at most O(N) rounds to

sort all the data objects in the network. We note that it is a general bound. For

two dimensional networks, the actual performance can be much better, which we

will show later. The theorem below not only gives a upper bound on the number of

rounds needed to solve the simplified network sorting problem, but also proves

the correctness of the algorithm.
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Theorem V.4 The sorting algorithm described above solves the network sorting

problem for N = n = m after at most N rounds.

Proof. W.l.o.g., suppose the keys of the data objects are 1, 2, . . . , N and the

nodes are a1, a2, . . . , aN as ordered on P . For simplicity we identify each data object

with its key. Assume after k ≤ N rounds, the data i is on the node afi,k
. If suffices

to show that for any k, i, if fi,k > i, fi,k ≤ N − k + i − 1; otherwise, if fi,k < i,

fi,k ≥ i + k − N + 1. That is, the data i is at most N − k − 1 hops away from its

destination on P .

We use induction on i and k. For the data 1, it is trivial since each round it

makes progress towards a1 unless it is already there. Now suppose for any s < i, it is

true for the data s. Let us look at the data i+ 1. At k = 0 rounds, the conclusion is

true because any two nodes in P have distance at most N − 1.

Suppose after k − 1 rounds, it is still true. Assume that fi+1,k−1 > i+ 1; by the

induction hypothesis, we know that fi+1,k−1 ≤ N−k+i+1. In the k-th round, if data

i+1 has made progress towards its destination, then fi+1,k ≤ fi+1,k−1−1 ≤ N−k+i =

N − k + (i+ 1)− 1. On the other hand, if data i+ 1 failed to make progress in the

k-th round, it must have been passed by a smaller data object i′ (here i′ ≤ i + 1).

Again by the induction hypothesis, we have fi+1,k = fi′,k−1 = N − (k − 1) + i′ − 1 =

N − k + i′ ≤ N − k + i.

The case when fi+1,k−1 < i+ 1 can be proved by symmetry.

When fi+1,k−1 = i+ 1, if data i+ 1 did not move, the statement is trivially true.

Otherwise it has either been exchanged with a smaller data i′ or a larger data i′′. We

will either have fi+1,k = fi′,k−1 = N − (k − 1) + i′ − 1 = N − k + i′ ≤ N − k + i, or

have fi+1,k = fi′,k−1 = k − 1 + i′ − N + 1 = k + i′ − N ≥ (i+ 1) + k − N − 1. This
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completes the proof.

Since by definition, each round consists of at mostN steps, the following corollary

is straightforward.

Corollary V.5 The sorting algorithm described above solves the network sorting

problem when N = n = m in at most O(N2) steps.

Now let us consider the case where P is not a Hamiltonian path (i.e., N > n) and

we have m = N data objects (one for each occurrence of a node in the path P ). Each

node may have multiple IDs because it may appear multiple times in the path P .

Since we can always view a node with multiple occurrences on P as multiple copies

of the same node, we can map the data to the IDs so that they are consistent in the

path. That is, in the end, the data object with the smallest key should be matched

to the smallest ID, the second smallest key should go with the second smallest ID,

. . ., and so on. The above NetworkSorting algorithm can be applied to sort data,

which will again end in O(N) rounds and O(N2) steps. The only unsolved issue is

that data may not be well balanced, whose solution we will discuss in the following

most general case.

In the general case, there is no constraint for n, N and m. We call this problem

the generalized network sorting problem. To solve this problem, we need to

modify the algorithm. First of all, a node at the end of the path learns the values of

n, N and m (which is easy), and sends a message along the path to let every ID know

how many data objects it should have in the end. (Every node should have ⌈m/n⌉ or

⌊m/n⌋ data objects in total in the end.) Then, during the sorting process, every node

u keeps track of the number of data objects stored by each neighboring ID (a copy of

the neighbor). When a node u performs the local sorting operation, u collects all the

keys in its neighborhood, sorts them, and re-distribute the data objects so that the
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neighbors and itself store the data as evenly as possible. Note that here the IDs may

be attached with different numbers of data objects to ensure the nodes hold similar

numbers of data objects. The scheduling part of the algorithm remains unchanged.

The following theorem proves that the modified NetworkSorting algorithm solves

the general network sorting problem in O(Nm) rounds and O(N2m) steps.

Theorem V.6 The sorting algorithm described above solves the generalized net-

work sorting problem in O(Nm) rounds and O(N2m) steps.

Proof. As we have showed before, there is no deadlock during the execution of

the algorithm. In that case the smallest data will reach its destination in at most

N − 1 rounds. After that the second smallest data will be in place in at most N − 2

rounds. And so on . . . Since there are m data objects in the network, the conclusion

of the theorem follows.

E. Sorting performance in mesh networks

The upper bounds presented so far for the sorting performance are for general net-

works. In this section, we analyze the sorting performance for one- and two-dimensional

arrays. We show that the performance of the NetworkSorting algorithm meets

the lower bound when the network is a one-dimensional array. When the network is

a two-dimensional array, the algorithm achieves the same performance as the well-

known synchronized shear-sort algorithm. The performance for arrays is much better

than the previous upper bounds.

The analysis here provides evidence that the actual sorting performance in sensor

networks can be much better than the upper bounds presented earlier, because sensor



122

networks often resemble two-dimensional mesh networks. We will further demonstrate

the good sorting performance in sensor networks by extensive simulations later.

In the following analysis, we assume the previously discussed simplified model,

where the path P is a Hamiltonian path, and the number of data objects equals the

number of nodes. That is, n = N = m.

When the network is an n1× n2 array, then it is easy to get the following simple

lower bounds.

Fact V.7 For any distributed sorting algorithm sorting data in an n×1 array, in the

worst case, Ω(n) rounds are needed. Furthermore, Ω(n2) data exchanges are necessary

to sort data in this network.

Fact V.8 For any distributed sorting algorithm sorting data in a
√
n×√n array, in

the worst case, Ω(
√
n) rounds are needed. Furthermore, Ω(n

√
n) data exchanges are

necessary to sort data in this network.

1. Sorting in linear array

When the underlying network is a linear array of n nodes, our algorithm has the same

performance as the odd-even transposition sort algorithm described in [62] and meets

the lower bound performance, by Theorem V.4 and Fact V.7. We have the follow

theorem directly.

Theorem V.9 The NetworkSorting algorithm solves the network sorting prob-

lem on a linear array of size n in O(n) rounds.

2. Sorting in
√
n×√n grid

Now suppose our network is a
√
n×√n grid and the path P is a snake-like path [62].

An example of such path is shown in Fig. 30, where the path is indicated by the
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arrows. Making a path be snake-like helps improve the sorting performance, which

we have adopted in our implementation of the storage scheme.

a2 a3 a4a1

a9

a5 a7a6 a8

a12a11a10

a13 a14 a15 a16

Fig. 30. A snake-like path marked by arrows in a 4× 4 mesh.

We show that our sorting algorithm will sort data in O(
√
n log n) rounds. Since

our algorithm is oblivious, we will use the following 0-1 sorting lemma [62] in our

proof.

Lemma V.10 The 0-1 Sorting Lemma. If an oblivious comparison-exchanged

algorithm sorts all input sets consisting solely of 0s and 1s, then it sorts all input sets

with arbitrary values. [62]

In the proof of the following lemma, we assume that the data in the network are

either 0 or 1.
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Lemma V.11 Suppose the data to be sorted are only 0s and 1s. Suppose in a n1×n2

grid (n1 ≤ n2), all the data objects in the first i (1 ≤ i < n1) rows are sorted according

to the snake-like path P , and so are all the data objects in the last n1 − i rows. The

NetworkSorting algorithm will sort all the data objects in the grid in 2n2 rounds.

Proof. We use induction on n1. When n1 = 2, the only choice for i is 1. Suppose

we have more 1s than 0s in the network. In the first round, all 1s in the first row will

be put into the second row and the second row will contain no 0. After n2 rounds, the

algorithm will sort the data in the first row (hence all data in the network). Similarly

when there are more 0s than 1s, in the first round all 0s in the second row will be

pushed up to the first row. And the algorithm will sort the second row in n2 rounds.

Now suppose for n1 = k, our conclusion holds. Let us look at the case when

n1 = k + 1. Since the first i rows are sorted, if the first row contains only 0s,

this row will not be touched by the algorithm. Hence the sorting only involves the

i− 1 + n1 − i = k rows. By the induction hypothesis, the proof is done. Similarly, if

the n1-th row contains only 1s, the algorithm can also sort the network in 2n2 rounds.

If on the contrary, the first row contains 1s and the last row contains 0s, then

we know that all the rows from 2 to i are filled with 1s and all the rows from i+ 1 to

n1 − 1 are filled with 0s. In this case, the following sorting is essentially inside each

column, which is similar to sorting in a linear array. So the algorithm will sort the

network in n1 + n2 ≤ 2n2 rounds. This completes the proof.

Now we are ready to prove the following lemma.

Lemma V.12 The NetworkSorting algorithm solves the network sorting problem

on a
√
n×√n grid with data being 0s and 1s in O(

√
n log n) rounds.
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Proof. We first consider a constrained version of the algorithm. For the first 2
√
n

rounds, we disallow data exchanges between different rows; for the next 2n rounds,

we allow data exchanges only between row 2i − 1 and 2i where 1 ≤ i ≤ √n/2; and

so on . . . . . .. That is, in general, at the k-th 2
√
n rounds, we split the grid into

chunks each of which has 2k−1 rows, and disallow data exchanges between rows that

belong to different chunks. By Lemma V.11, after each k-th 2
√
n rounds, we have

the subnetwork within each chunk sorted according to the snake-like path P . Hence

after O(
√
n log

√
n) rounds, the whole network will be sorted.

Since the NetworkSorting algorithm does not have the above constraints, its

data exchange is more efficient than the above constrained version, as explained in

the following. For both the original algorithm and the constrained version, note that

we only have 0s and 1s in the network. Consider the row that a data object is in. The

data object will never move “backwards”. that is, once a 0 has reached row i, it will

never be pushed down to a row j with j > i; on the other hand, once a 1 has reached

row i, it will never be pushed up to a row j with j < i. Therefore for a given instance

and each row i in the mesh, the number of 0s pushed up from rows with id greater

than i to rows with id smaller than or equal to i is fixed in either algorithm. Since

the NetworkSorting algorithm does not have the constraints in the constrained

version, the 0’s are pushed up at least as fast as the above constrained version of the

algorithm. Hence the number of rounds needed for the NetworkSorting algorithm

is also O(
√
n logn).

By the 0-1 sorting lemma, we get have the following theorem.

Theorem V.13 The NetworkSorting algorithm solves the network sorting

problem on a
√
n×√n grid in O(

√
n log n) rounds and O(n logn) steps.

The above upper bound for the NetworkSorting algorithm matches the per-
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formance achieved by the Shear Sort algorithm [62], which requires global synchro-

nization. Since the NetworkSorting algorithm is asynchronous, it is more appro-

priate for sensor networks.

F. Implementation for unlocalized sensor networks

In this section, we present our sorting-based balanced data storage scheme. Recall

that the network sorting problem requires a path P that traverses all nodes in the

network. For better performance, we prefer the path to be snake-like. If the sensors’

locations are known, constructing such a path is simple. However, obtaining location

information is often difficult. In this chapter, we consider unlocalized sensor networks,

where no information is known, and present a solution.

The storage scheme stores data in a sorted and load-balanced way. The former

property ensures that queries, including range queries, can be efficiently answered. In

addition to presenting the construction of the path P , we also discuss other aspects

of the data-centric storage scheme.

1. Constructing the path P

Although the NetworkSorting algorithm has no specific requirement on the path

P , the actual complexity of the sorting algorithm relies on its shape and length. A

short snake-like path is desirable. As we will show later with our simulation results,

a shorter path incurs much lower communication costs. We know that determining

if a graph has a Hamiltonian path is NP hard [41]. So clearly, finding the shortest

path that traverses all nodes in a given graph is also NP hard. It is therefore very

unlikely that the optimal solution can be found efficiently. On the other side, the

path’s length is at least n, and the traversing of any spanning tree of the network
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will give us a path of length 2n. This gives us a simple ratio-2 approximation for the

path.

In this subsection, we present a practical algorithm that constructs the path P ,

which is typically much shorter than 2n for unlocalized wireless sensor networks. The

performance of our algorithm will be verified later with extensive simulations.

The algorithm for finding such a path consists of three major steps: (1) planarize

the network; (2) construct a snake-like backbone path in the planarized network; (3)

extend the path to include all nodes in the original network.

There have been several papers on how to obtain a planarized network efficiently

for unlocalized wireless sensor networks [35, 97, 98]. We skip the details here because

it is not the focus of this chapter. In the following we will discuss the second and the

third steps.

a. Construct the backbone path

Assume that the network is already planarized and we have a topological embedding

of the planar network, which we denote by Gplanar. We also assume that the true

network G is deployed in a plane. Gplanar is a subgraph of G. To simplify the

discussion, we assume that the outer face of the planar graph Gplanar is a simple

cycle. (Otherwise the graph is 1-connected and we can deal with each part of the

tree-like structure easily.)

Let f be the outer face of the network Gplanar. We split f into four path segments

P1, P2, P3, P4 of roughly equal lengths. Next we stretch the outer face into a square

such that P1, P2, P3, P4 are on the north, east, south and west side of the square,

respectively. In the following discussion, the outer face is not to be considered in

super paths or the measurement of distances.

Let us first look at a simple algorithm that will find the medial axis of two paths
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on the outer face. The medial axis is defined as a path that is at roughly the same

distance from those two paths. We assume that the distance between the two input

paths is at least one, i.e., no two edges on P1 shares any face with edges on P3.

Input: Gplanar, P1, P3

Output: P ′: a path formed by nodes whose distances to P1, P3 are roughly equal.
1: G′ ← the subgraph induced by faces and edges (excluding the outer face and its

edges) whose distances to P1 and P3 are equal.
2: Let u, v be two nodes in G′ that are on the east and west boundaries of Gplanar,

respectively.
3: return a path P ′ from u to v in G′

Fig. 31. Algorithm Medial-Axis: find the medial axis between two disjoint paths in

a planar graph.

Now we prove that the Medial-Axis algorithm shown in Fig. 31 returns a simple

path if P1, P3 have distance at least one.

Theorem V.14 Given the planar graph Gplanar and the paths P1, P3 on the outer

face, the Medial-Axis algorithm in 31 returns a simple path P ′ such that the dis-

tances from the edges in P ′ to P1 and P3 differ by at most 1, and P ′ separates P1 and

P3 in G. Furthermore, P ′ does not share edges with P1 or P3.

Proof. If two faces are adjacent, their distances to a given path differ by at most

one. Hence for each edge in G′, its distances to P1 and P3 differ by at most one. It

suffices to show that G′ is a connected graph.

Define the super path between two faces fs, ft in the planar graph Gplanar as the

path in the dual graph of Gplanar, i.e., the super path is a sequence of faces in G such

that every two adjacent faces in the sequence share at least one edge and the sequence

starts at fs and ends at ft.
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Consider any two edges e1 in P1 and e2 in P3. Any super path between any face

adjacent to e1 and any face adjacent to e2 must come across a face or an edge in G′.

If the super path visits a face that has equal distance to P1 and P3, we are done.

Otherwise there must be an edge e in Gplanar shared by two faces on the super path

such that the distances from e to P1 and P3 are equal. Let the distances from e1

to P1, P3 be 0 and Y , respectively. Let the distance from e2 to P1, P3 be X and 0,

respectively. Here X > 1, Y > 1. These distances are also distances from the first

and the last faces on the super path to P1, P3. We know that on the super path, the

distance from two adjacent faces to a path can change by at most 1. Consider the

distance pairs as coordinates on a plane. If we connect the points defined by each

pair of adjacent faces on the super path, we obtain a curve from (0, Y ) to (X, 0).

The continuity of the plane implies that this curve must cross the line x = y. If

the crossing point is also on the super path, we have a face in G′. Otherwise there

are two adjacent faces F1, F2 on the super path such that d(F1, P1) = d(F2, P2) and

d(F1, P2) = d(F2, P1). (Here d(·) is the distance.) Hence the edge shared by F1, F2 is

in G′.

Therefore G′ separates P1 and P3, not only in Gplanar but also in the dual graph.

In other words, if we block faces and edges in G′ from Gplanar, there will be no

super path between faces adjacent to P1 and faces adjacent to P3. Suppose G′ is

disconnected, since both Gplanar and G′ are planar and Gplanar is connected, there

would exist a super path from some edge on P1 to some edge on P3 that do not cross

G′, which is a contradiction.

Now that G′ is a connected graph and separates P1 and P3, it must contain nodes

on both the east and the west boundaries of Gplanar. Therefore the algorithm returns

a path P ′ that separates P1 and P3.

Suppose P ′ shares an edge e with P1. Then the distance from e to P1 is 0. Hence
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the distance from e to P3 is 0, which is impossible since we assume that P1 is at least

distance 1 away from P3.

The path P ′ separates the network Gplanar into two subgraphs. For each sub-

graph, we apply the same algorithm to find its medial axis path. We recursively

partition the network and find medial axis paths. In the end, we get a set of “hori-

zontal paths” in the network Gplanar that do not cross each other. (A technical detail:

during the recursive process, if the northern and southern boundaries of a new sub-

graph are adjacent, the subgraph can be disconnected by removing a face. In this

case, we can either choose not to run the algorithm on it, or choose to find a medial

axis path for each of the two separated components, and then connect the two paths

into a single path by going through the northern boundary.)

The algorithm for constructing all the horizontal paths in the network is pre-

sented in Fig. 32.

Input: Gplanar, P1, P3

Output: Horizontal paths containing all the nodes in Gplanar.
1: if P1 = P3, return
2: P ′ ← Medial-Axis(Gplanar , P1, P3)
3: Ouput P ′

4: G1 ← the subgraph between P1 and P ′

5: Horizontal-paths(G1, P1, P
′)

6: G2 ← the subgraph between P ′ and P3

7: Horizontal-paths(G2, P
′, P3)

Fig. 32. Algorithm Horizontal-paths: construct a set of horizontal paths.

b. Construct the path traversing all nodes

In the previous step we have obtained a set of horizontal paths that do not cross each

other. They form a total order from top to bottom (that is, from north to south). A
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straightforward way to get the snake-like path is to take the first path from left to

right, connect it to the right end of the second path (which is simple to do), and walk

through the second path from right to left, then turn on the third path in a similar

way, and so on.

The horizontal paths could have some overlapping edges. To make the path

short, we try to avoid repeating the common segment of the horizontal paths. Since

every two adjacent horizontal paths must have adjacent end nodes, we only need to

distinguish two cases here.

If there are an even number of paths sharing both ends, as shown in Fig. 33 (a)

(in which a, b, c, d, e, f are sub paths in the horizontal paths), assume e is the shortest

one among c, d, e, f , the we traverse these paths as a− c− d − e− f − e− b. (That

is, use e twice.) If there are an odd number of paths sharing both ends, as shown in

Fig. 33 (b), we traverse these paths in the order a− c− d− e− b. The approach can

be used recursively to minimize the length of the path.

The path constructed so far may not include all the nodes of the original network

G. To include all the nodes into the path P , we can use the following simple heuristic.

If a node has two neighbors that are consecutive in the path, it inserts itself into the

middle of the neighbors. After that, if there are still a few nodes not in the path, use

a tree to attach to the path, and use the traverse of the tree as part of the path. This

approach makes P include all the nodes well and very quickly.

2. Sorting data in the network

We assume that each node knows the total number m of data objects stored in the

network, the number n of nodes in the network, and the length N of the path P .

(These numbers can be easily learned with a simple information collection operation,

especially with the help of the path P .) Then every node should store m/n data
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objects. A node knows how many times it appears in the path, so it can decide how

many data objects to assign to each of its copy in the path. The sorting process is

described as before. It generates a sorted and balanced storage result.

3. Data access and query

With the sorted data and the path P , querying data is simple. When a node u wants

to query data objects with the key value k, it sends a query message that contains

the value k and its own ID. Every relay node chooses the neighbor whose data objects

have a key closest to k as the next hop. The process continues until the query message

reaches the destination node. The routing is guaranteed to succeed because the edges

in P can always be used for routing if necessary. In practice, most of the time the

edges not in P are shortcuts and make routing much more efficient. To send the data

back to u, a similar routing protocol is used, except that node u’s ID is used for

routing instead of the key k. And the routing is also guaranteed to succeed.

The range query is answered with the same method, because data with adjacent

key values are stored next to each other in the path P .

4. Data dynamics

When a data object of key k is inserted into the network, the initiator of the insertion

will send the object as if it were a query message for k. Once the message reaches

its destination (where it should be stored), the new data object will be stored there.

Certainly, the load balance is affected over time. We discuss its solution in the

following.

The total number of the data objects in the network will be calculated and

broadcasted periodically. With the existence of the path P , this task is simple. Once

a node discovers that its load is too heavy or too light, it first tries to solve the
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imbalance locally by exchanging data with its neighbors on the path P . If local

operations fail to bring back load balance, it triggers a re-balance process. This

process is similar to the sorting process, only cost less.

In practice we make the threshold of balanced ratio be 2 and 1/2. That is, if a

node’s load is more than twice the average load or less than half the average load,

it will try to work with its neighbors to bring the load factor to below 2, or trigger

the re-balance process. Therefore at any moment the load factor of our scheme is no

worse than 2.

The more data objects there are in the network, the more data insertions will be

needed to trigger the re-balance process, given that the distribution of the new data

objects is not too skewed. In practice the overhead brought by the re-balance process

is quite light if it is averaged over each data insertion.

Data deletion is dealt in a very similar way as insertions. We skip the details.

G. Performance evaluation

We conduct extensive simulations to test the performance of our sorting based data

centric storage scheme. Our results show that the performance is very stable for

different network models and different degree of data loads. We compare our results

with GHT. Our schemes outperforms GHT in terms of communication costs for stor-

age, query and, more importantly, data load balance. In this section we present some

typical simulation results.

We randomly deploy n = 1500 nodes in the sensor field. The network model we

explore contains UDG and quasi-UDG. We also test the storage schemes with holes

present in the sensor field. For quasi-UDG(R, r), when two nodes’ distance is between

r and r, we set the probability them having a direct link in between to be 0.3. The
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data objects are generated by random nodes with keys in the range [0, n]. The total

number of data objects we examined ranged from 100n to 1000n. In each experiment,

1000 random queries are initiated by random nodes.

Three storage scheme were compared: GHT, sorting based on snake like path

(sorting(snake) for short), and sorting based on spanning tree path (sorting(tree)

for short). Sorting(snake) is the scheme we discussed throughout this chapter. Sort-

ing(tree) scheme differs from sorting(snake) in the sense that instead of going through

the preprocessing stage to construct a path that traverses all nodes, it simply traverse

the graph using DFS method and use the trajectory as the path. Sorting(tree) has

very simple preprocessing stage. However, the simulation results show that its overall

performance is worse than sorting(snake) approach.

Since GHT requires nontrivial pre-process, especially when GPSR is to be used

for routing. This is true even when the location information of the nodes is known.

In the following discussion, we will assume GHT has the position of each node and

we ignore the cost for GHT to find which node is the closest to given location in the

sensor field.

The qualities of the paths obtained by sorting(snake) and sorting(tree) are com-

pared in table X. The lengths of the paths are the product of the average frequency of

the nodes and the number of nodes, n. From the table we see that the tree based path

is substantially longer than that of the snake path. As we have shown previously in

the analysis of our sorting algorithm, the sorting and query performance are closely

related to the length of the path we have. We will show later that the performance of

the storage scheme based on the tree path is worse than the one based on the snake

path. In figure 34 we show four typical networks in our simulations. In the figures

the red (thick) paths are the intermediate snake-like paths during the construction of

the path that traverses all nodes. Blue (thicker) paths are typical query paths in the
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Table X. Path qualities: maximum /average freq of nodes appearing.
UDG UDG(hole) 2-qUDG

max avg max avg max avg
Snake path 9.31 1.51 9.36 1.50 9.62 1.49
Tree path 4.01 1.98 4.04 1.98 4.58 1.98

networks after the storage process is done.

During the sorting process, we assume the total number of data objects in the

network is known by every node (This information can be collected and broad casted

easily by traversing our path no more than twice). Although the sorting algorithm

described in previous sections is for one data per node, it can be easily generalized to

deal with multi data object. In the sorting process, each node that is performing a

sorting operation will distribute the data objects in its neighborhood equally to the

nodes within the neighborhood. If every node in the neighborhood is holding roughly

the same amount of data (with differences δ ≤ 20, no redistribution will happen. In-

stead, data objects will be exchanged to ensure the order property. Table XI contains

the load distribution of total 500N data objects in the network. In that case the

average load of the nodes is all 500. Fig. 35 shows the typical data load distribution

of GHT and sorting(snake) based scheme on a UDG with average degree roughly 7.

We could make the load distribution for the sorting based schemes more balanced by

make δ smaller. But that in turn will increase the communication cost for storage

and data rebalance.

The comparison of the communication costs among the three schemes we have

is presented in Table XII and Table XIII. For GHT, the costs per data object for

storage, query, data dynamics are all the same since they are basically the length of

the routing path between two nodes. In GHT, routing is done by combining greedy

forwarding and local flooding. A message is always tried to be relied to a node that
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(a) (b)

(c) (d)

Fig. 34. Sample networks: the red paths are the intermediate snake-like path we are

work on; the blue(thicker) paths are typical query paths in each network: (a)

UDG with average degree 6.8; (b) UDG with average degree 7.1 and holes;

(c) quasi-UDG with average degree 7.3 and R/r = 5; (d) quasi-UDG with

average degree 7.4 and R/r = 10.
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Table XI. Data load: max load/std. deviation. Note that the averages are all the

same: 500.

UDG UDG(hole) 2-qUDG
max σ max σ max σ

GHT 4271.18 577.56 4737.01 592.03 3740.59 571.05
Snake 564.42 6.18 561.50 6.10 560.17 5.54
Tree 633.05 6.16 627.97 6.12 613.54 5.54
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Fig. 35. Typical data load distributions of GHT scheme and sorting based scheme on

the same UDG network with average degree 7.
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Table XII. Communication cost for storage and data dynamics: average number of

messages per data object per operation.
Scheme operation average UDG UDG 2-qUDG

load (hole)
GHT * * 291.14 372.47 59.45

storage
100 34.39 33.23 27.46

Sorting 500 182.37 175.97 142.77
(snake)

insertion
100 62.24 62.62 57.35
500 67.62 66.14 62.20

storage
100 42.00 40.55 34.67

Sorting 500 217.66 207.67 177.69
(tree)

insertion
100 95.66 97.46 98.32
500 93.79 93.18 93.75

is closer to the destination. When a local maxima is encountered, the message enters

the local flooding mode to overcome it. While doing local flooding, a node doubles

the radius of flooding if the last attempt fails until a closer node is found.

We show the performance of our sorting based schemes for the cases when the

average number of data objects is 100 and 500 on each node. During the sorting pro-

cess we ignore the control messages being exchanged between adjacent nodes because

they are all very small in size comparing to the data objects and routing messages.

From the table, we can see that the query performance is very stable for both scheme.

In all cases, the query cost of our scheme is better than that of GHT. To measure

the cost for data dynamics, we insert data into the network. When a node find that

its load is more than two times the average or less than half the average, it triggers

a rebalance operation to force the network to redistribute the load. We measure the

cost for data insertion as the cost for storing the data on proper nodes plus rebal-

ancing the network. The simulations show that average cost for data insertions is

independent with the total amount of data we have in the network.

To characterize the storage process more vividly, we sample 1000 data object
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Table XIII. Communication cost for query: average number of messages per data ob-

ject per operation.
Scheme average UDG UDG 2-qUDG

load (hole)
GHT * 291.14 372.47 59.45

Sorting 100 45.22 45.41 35.37
(snake) 500 45.33 45.54 35.03
Sorting 100 53.40 54.63 43.27
(tree) 500 53.56 53.22 42.50

randomly and measure the distances they travelled in the storage process for each

storage scheme. In Fig. 36 we show the distribution of such distances for the three

network model we present. The distance of the data objects travelled is more stable

in the sorting based schemes than that of GHT.

H. Conclusion

We present sorting based data centric storage schemes for wireless sensor networks.

Our protocol does not require location information of the nodes and achieves load

balance in term of the amount of data each node is storing. Our schemes support

ranged query in a natural way. The communication costs for both storage and query

outperform the GHT scheme even with the knowledge of the location of each node.

The average maintenance cost per data insertion is also plausible.

Our future work includes (1) further improve the performance of our storage

scheme; (2) generalize our method to multi-dimensional data. We observed that

during the data query process, the messages tend to follow the base path when the

shortcuts in the network are more than 3 hops long. One possible way to improve

the query performance is to store simple shortcut information on each node so that

messages will take the shortcuts more.
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Fig. 36. The distribution of the distance of 1000 sample data objects travelled during

the storage process. (a) UDG with average degree 6; (b) UDG with average

degree 6 and holes; (c) quasi-UDG with average degree 6 and R/r = 2.
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CHAPTER VI

IMPROVED ALGORITHMS FOR PATH, MATCHING, AND PACKING

PROBLEMS

We develop new and improved randomized and deterministic algorithmic techniques

for path, matching, and packing problems. We introduce a new divide-and-

conquer technique. It leads to significant improvements to the random algorithms

for these problems. For example, our randomized algorithm for the k-path problem

runs in time O(4kk3.42m) and space O(nk log k + m), improving the previous best

randomized algorithm of running time O(5.44kkm) and space O(2kkn +m). For de-

terministic algorithms, we present an improved k-color coding scheme. We develop

an improved upper bound O(6.4kn) on the number of k-colorings in a k-color coding

scheme. This leads directly to a deterministic algorithm of time O(12.8knm) for the

k-path problem, improving the previous best deterministic algorithm for the prob-

lem that runs in time O(cknm), where c > 8000. Our techniques also lead to similar

or more significant improvements on randomized and deterministic algorithms for

matching and packing problems, such as 3-d matching, 3-set packing, and

triangle packing.

A. Introduction

This chapter studies new and improved algorithmic techniques for exact and param-

eterized algorithms for the NP-hard problems path, matching, and packing. This

research direction has recently drawn considerable attention [1, 17, 31, 49, 52, 56, 68,

71, 80, 88].

The k-path problem (given a graph G and an integer k, either construct a

simple path of k vertices in G or report that no such path exists) is closely re-
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lated to a number of well-known NP-hard problems, such as the longest path

problem, the hamiltonian path problem, and the traveling salesman prob-

lem. Earlier algorithms [7, 71] for the k-path problem have running time bounded

by O(2kk!nO(1)). Papadimitriou and Yannakakis [78] studied a restricted version of

the problem, the (log n)-path problem, and conjectured that it can be solved in

polynomial time. This conjecture was confirmed by Alon, Yuster, and Zwick [1],

who presented for the k-path problem randomized and deterministic algorithms of

running time O(2O(k)nO(1)). This also provides currently the best polynomial time

approximation algorithm of ratio O(n/ logn) for the longest path problem. Very

recently, the k-path problem has found applications in bioinformatics for detecting

signaling pathways in protein interaction networks [88] and for biological subnetwork

matchings [52].

The exact and parameterized matching and packing problems were first stud-

ied in [26]. In particular, deterministic algorithms of running timeO(2O(k)(3k)!n log4 n)

were developed for the 3-d matching problem (given a set S of triples and an integer

k, either find a subset of k disjoint triples in S or report that no such subset exists)

and the 3-set packing problem (given a collection C of 3-sets and an integer k, ei-

ther find a sub-collection of k disjoint 3-sets in C or report that no such sub-collection

exists). The upper bounds for the complexity of these problems were subsequently

improved to O((5.7k)kn) based on the greedy localization techniques [17, 49]. Koutis

[56] developed randomized algorithms of time O(10.883knO(1)) and space O(23k +m),

and deterministic algorithms of time O(2O(k)nO(1)) for these problems. This upper

bound was further improved to O((12.7D)3knO(1)) (where D ≥ 10.4) by Fellows et al.

[31]. Algorithms for packing a small subgraph in a given graph, such as triangle

packing (given a graph G and an integer k, either find a set of k vertex-disjoint

triangles or report that no such set exists), have also been studied [31, 68, 80].
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Currently, the best randomized and deterministic algorithms for the k-path

problem [1] and the matching and set packing problems [31, 56] are all based on

a technique called color coding developed by Alon, Yuster, and Zwick [1]. Take the

k-path problem as an example. We say that a simple path in a graph G is properly

colored under a coloring of the vertices in G if no two vertices on the path are colored

with the same color. The algorithms proposed in [1] proceed as follows. Suppose that

there is a path P of k vertices in G, starting from a vertex v0. To find the path P ,

first we color the vertices of the graph G using k colors so that the path P is properly

colored. Then we use a (deterministic) dynamic programming algorithm, which for

each vertex u records every possible color set C such that there is a properly colored

simple path from v0 to u that uses exactly the colors in the set C. Since there are

at most 2k different color sets, the dynamic programming algorithm runs in time

O(2kkm) and space O(2kkn +m).

Therefore, the critical step is how to construct a coloring for the graph G so that

the path P is properly colored. Alon, Yuster, and Zwick [1] proposed two approaches

to this problem. The first is a randomized algorithm of running time O(ekn) that

produces O(ek) colorings for the graph G in which with high probability at least one

coloring properly colors the path P . The second is a deterministic algorithm based on

the hashing schemes studied by Fredman, Komlos, and Szemeredi [34] and Schmidt

and Siegel [87], which constructs a set of O(cknO(1)) colorings for the graph G in which

at least one colors the path P properly, where c ≫ 1 is a constant. This, plus the

above dynamic programming algorithm, gives for the k-path problem a randomized

algorithm of running time O((2e)knO(1)) = O(5.44knO(1)) and space O(2kkn + m)

and a deterministic algorithm of running time O((2c)knO(1)). The currently best

randomized and deterministic algorithms for matching and set packing [56, 31]

follow the same principle: first color the elements so that no two elements in the subset
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of interest are colored with the same color, then apply a deterministic algorithm (e.g.,

dynamic programming) on the set of colored elements to search for the subset.

This method is of great theoretical importance. In particular, it confirms Pa-

padimitriou and Yannakakis’s conjecture that the (logn)-path problem can be solved

in polynomial time. On the other hand, both the time complexity and the space com-

plexity are quite high. It can be verified that for the deterministic algorithm of time

O((2c)kknO(1)) for the k-path problem described in [1], the constant c is at least

4000 (a more detailed analysis on the algorithm will be given in later discussions).

In consequence, the deterministic algorithm proposed in [1] has running time of the

form O(dknO(1)), where d > 8000. Obviously, such an algorithm will quickly become

impractical even for very small values of k. Moreover, the space complexity of all

the randomized algorithms described above for path, matching, and packing is

exponential in k, which is also remarkable.

In this chapter, we study new techniques to develop improved randomized and

deterministic algorithms for the path, matching, and packing problems. Our first

result is a randomized divide-and-conquer method. Roughly speaking, suppose that

we are looking for a subset Sk of k elements in a universal set S. We first randomly

partition the set S into two parts, then recursively look for a subset of k/2 elements

in each part. This simple method leads directly to improved randomized algorithms.

For the k-path problem, this new method gives a randomized algorithm of time

O(4kk3.42m) and space O(nk log k + m), improving the previous best randomized

algorithm for the problem of time O(5.44kkm) and space O(2kkn+m) [1]. For the 3-

d matching and 3-set packing problems, the method gives randomized algorithms

of time O(2.523kn) and space (nk log k+m), improving the previous best randomized

algorithms for the problems of time O(10.883knO(1)) and space O(23k +m) [56].

To develop improved deterministic algorithms for the path, matching, and
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packing problems, we study the complexity of k-color coding schemes. A k-coloring

of a set S is a mapping from S to {0, . . . , k − 1}. A collection C of k-colorings of

S is a k-color coding scheme for S if for every subset Sk of k elements in S there

is a k-coloring F in C such that no two elements in Sk are colored with the same

color under F . Denote by τ(n, k) the minimum size of a k-color coding scheme for

a set of n elements. We study upper bounds for the function τ(n, k). To improve

the upper bound for τ(n, k), we propose a new four-level hashing procedure that uses

the techniques of kernelization, collision minimization, and recursive construction.

The kernelization technique used in the first level of the procedure is based on the

hashing function studied in [34]. The next two levels in the procedure use a hashing

function that is nearly optimal in terms of collision minimization. The last level

of the procedure uses a non-trivial recursive formula for τ(n, k) and performs careful

constructions of k-color coding schemes for small values of k. These techniques induce

a new k-color coding scheme of size O(6.4kn). This is much better than the previous

upper bound for τ(n, k), which is larger than 4000k [1].

The improved upper bound on τ(n, k) directly induces significant improvements

on deterministic algorithms for the path, matching, and packing problems. A

comparison of the previous best algorithms and our improved algorithms is given in

Table XIV.

We make a few remarks on our results before proceeding to technical discussions.

Many NP-hard problems are concerned with searching for a subset Sk of k elements in

a given set S such that the subset Sk satisfies certain properties. The k-color coding

schemes seem to provide a convenient “pre-classification” of the elements in S so that

all elements in the subset Sk are colored with distinct colors, which will significantly

narrow down the search space for the problem. From this point of view, the study of

k-color coding schemes seems to be of general interest in solving NP-hard problems.
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Table XIV. Comparison of deterministic algorithms (each entry t denotes a running

time of O(tnO(1))).

Reference k-path 3-D match 3-set pack triangle pack
[1] > 8000k

[56] > 320003k > 320003k

[31]* (12.7D)3k (12.7D)3k (12.7D)3k

Ours 12.8k 12.83k 12.83k 12.83k

Ours+[66] 2.773k 4.613k 4.613k

* Fellows et al. [31] developed a 13k-color coding scheme of size 12.73k, and left the
remaining procedures for the algorithms unspecified. Here we use O(D3k) to denote
the complexity of searching for a subset of 3k symbols in a set colored with 13k colors.
A straightforward implementation of this process will have D ≥ 10.4.

We also remark on how significant our improvement of the upper bound for

τ(n, k) is. All the functions 4k, 5.44k, 6.4k, and 4000k are of the form 2O(k). However,

these functions are not linearly related. In fact, for algorithms whose running time

is of the form O(cknO(1)), where ck is the dominating term (as is the case for many

NP-hard problems), a small reduction on the constant c will result in a significant

improvement on the running time. In particular, 4000k is larger than the fourth power

of 6.4k.

B. Randomized divide-and-conquer

In this section, we describe a new randomized divide-and-conquer method, which

will induce improved randomized algorithms for a number of path, matching, and

packing problems. To make our discussion more specific, we will describe the method

in detail based on the k-path problem. We then explain briefly how the method is

applied to matching and packing problems. Throughout this chapter, we will

denote by e = 2.718 · · · the base of the natural logarithm.

The randomized algorithm find-paths for k-path is given in Fig. 37. A simple
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path in a graph G is a (u, k)-path if it contains exactly k vertices and if one end of

the path is u. In particular, for any vertex u, a (u, 1)-path consists of a single vertex

u. When the vertex u is irrelevant, a (u, k)-path will be simply called a k-path. Our

algorithm find-paths(G′, P ′, k) on the subgraph G′ and a set P ′ of k′-paths (where

no vertex on the paths in P ′ is in G′) returns a set P of paths, each is a concatenation

of a k′-path in P ′ and a k-path in G′ (if no such paths exist, the algorithm returns an

empty set). In particular, the algorithm find-paths(G′, ∅, k) returns a set of k-paths

in the graph G′.

Lemma VI.1 For integer k > 1, ⌈log k⌉ = ⌈log(⌈k/2⌉)⌉+ 1.

Theorem VI.2 On a graph G = (V,E) with n vertices and m edges and an integer

k ≥ 1, if the graph G contains a (u, k)-path for a vertex u, then with probability

larger than 1− 1/e > 0.632, the set P returned by the algorithm find-paths(G, ∅, k)

contains a (u, k)-path. The algorithm find-paths(G, ∅, k) runs in time O(4kk3.42m)

and in space O(nk log k +m).

Proof. To prove the first part, we prove the following claims using induction on

k:

1. If P ′ = ∅ and G′ has a (u, k)-path, then with probability larger than 1−1/e, the

set P returned by the algorithm find-paths(G′, P ′, k) includes a (u, k)-path.

2. If P ′ 6= ∅ and G′ has a (u, k)-path whose other end is connected to an end vertex

of a path in P ′, then with probability larger than 1 − 1/e, the set P returned

by the algorithm find-paths(G′, P ′, k) contains a (u, k′ + k)-path.

The claims are obviously true for k = 1. Let k > 1. First consider the case when
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Input: G′: a subgraph of G, P ′ a set of k′-paths in G that contains no vertex in G′,
an integer k ≥ 1;

Output: a set P of paths, each a concatenation of a k′-path in P ′ and a k-path in
G′

1: P ← ∅
2: if k=1 then
3: if P ′ 6= ∅ then
4: return all 1-paths in G′

5: else
6: for each (u, k′)-path p in P ′ and each vertex w in G′ do
7: if (u, w) is an edge in G then
8: concatenate p and w to make a (w, k′ + 1)-path p′

9: add p′ into P if no (w, k′ + 1)-path is in P
10: end if
11: end for
12: end if
13: return P
14: end if
15: for 2.51 · 2k times do
16: randomly partition the vertices of G into VL and VR

17: let GL and GR be the subgraphs induced by VL and VR, respectively
18: PL ←find-paths(GL, P

′, k − ⌈k/w⌉)
19: if PL 6= ∅ then
20: PR ←find-paths(GR, PL, k − ⌈k/w⌉)
21: for each (u, k′ + k)-path p in PR do
22: add p to P if no (u, k′ + k)-path is in P
23: end for
24: end if
25: end for
26: return P

Fig. 37. Algorithm find-paths: extend a set of k′-paths to longer length.
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P ′ = ∅. Suppose that

[u1, u2, . . . , uk1, uk1+1, . . . , uk]

is a (uk, k)-path in G′, where k1 = ⌈k/2⌉. Then with probability 1/2k, step 3.1 of the

algorithm puts vertices u1, u2, . . . , uk1 into VL, and vertices uk1+1, . . . , uk into VR. If

this is the case, then the graph GL contains the (uk1, k1)-path [u1, . . . , uk1], and the

graph GR contains the (uk, k− k1)-path [uk1+1, . . . , uk]. By the inductive hypothesis,

with probability larger than 1− 1/e, PL obtained from step 3.3 includes a (uk1, k1)-

path. The (uk, k−k1)-path [uk1+1, . . . , uk] in GR has its other end uk1+1 connected to

the (uk1, k1)-path in PL. Therefore with probability larger than 1− 1/e, PR obtained

in step 3.5 contains a path of length k1 + (k − k1) = k that ends with uk, i.e., a

(uk, k)-path. Therefore in each loop of step 3, the probability ρ that a (uk, k)-path is

added to the set P is larger than

(1− 1/e)2

2k
>

0.6322

2k
>

1

2.51 · 2k
.

When P ′ 6= ∅, we follow the same argument as before except that we require that

the (uk, k)-path in G′ its other end connected to the end of a k′-path in P ′. So PL

contains a (uk1, k
′+k1)-path p that is a concatenation of a k′-path in P ′ and a k1-path

in GL, and PR contains a (uk, k
′ + k)-path that is a concatenation of a (k′ + k1)-path

in PL and a (k − k1)-path in GR.

Since step 3 of the algorithm loops 2.51 · 2k times, the overall probability that

the algorithm returns a set of paths that contains a (uk, k)-path (when the set P ′ is

empty) or a (uk, k
′ + k)-path (when the set P ′ is not empty) is

1− (1− ρ)2.51·2k

> 1−
(

1− 1

2.51 · 2k

)2.51·2k

> 1− 1

e
.

This proves the first part of the theorem.
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To analyze the time complexity, let T (k) be the running time of the algorithm

find-paths(G′, P ′, k). Without loss of generality, we can assume that m ≥ n. From

the algorithm, we get the following recurrence relation:

T (k) = 2.51 · 2k(cm+ T (⌈k/2⌉) + T (k − ⌈k/2⌉)),

where c > 0 is a constant. We claim that for all k > 0,

T (k) ≤ c · (10.7)⌈log k⌉22km, (6.1)

and we prove it by induction on k. Obviously T (1) ≤ cm if c is sufficiently large, so

inequality (6.1) holds for k = 1. Let k > 1, then

T (k) = 2.51 · 2k (cm+ T (⌈k/2⌉) + T (k − ⌈k/2⌉))

≤ 2.51 · 2k
(

cm+ 2c · (10.7)⌈log⌈k/2⌉⌉m22⌈k/2⌉)

≤ 2.51 · 2k

(

cm+
2c

10.7
· (10.7)⌈log⌈k/2⌉⌉+1m2k+1

)

= c · (10.7)⌈log k⌉22km · 2.51

(

1

10.7⌈log k⌉2k
+

4

10.7

)

≤ c · (10.7)⌈log k⌉22km · 2.51

(

1

10.7 · 4 +
4

10.7

)

< c · (10.7)⌈log k⌉22km.

Here in the second step of the above derivation, we have used k − ⌈k/2⌉ ≤ ⌈k/2⌉. In

the third step, we have used 2⌈k/2⌉ ≤ k + 1, and in the fourth step we have used

Lemma VI.1. Thus the running time T (k) of the algorithm find-paths(G, ∅, k) is

O((10.7)⌈log k⌉22km) = O(4kk3.42m).

In terms of the space complexity, each recursive call to the algorithm find-paths

uses O(nk) space (mainly for the sets PL, PR, and P ). Since on a graph G and an

integer k, the recursive depth of the algorithm is O(log k), we conclude that the space
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complexity of the algorithm find-paths(G, ∅, k) is O(nk log k +m).

Using Theorem VI.2, we can develop O(4kk3.42m) time randomized algorithms

of arbitrarily small error bound for the k-path problem. For example, to achieve an

error bound of 0.0001, we can run the algorithm in Theorem VI.2 t times, where t

satisfies (1/e)t ≤ 0.0001 (e.g., t = 10).

We compare our algorithm in Theorem VI.2 with previously known algorithms for

the k-path problem. To our knowledge, there are two kinds of randomized algorithms

for the k-path problem. The first kind is based on random permutations of vertices

followed by searching in a directed acyclic graph (see [1, 52] for details). The algorithm

runs in time O(mk!) and space O(m). The second kind, proposed by Alon, Yuster, and

Zwick [1], is based on random coloring of vertices followed by dynamic programming

to search for a k-path in the colored graph. The algorithm runs in time O((2e)kkm) =

O(5.44kkm) and space O(2kkn+m) (the space is mainly for the dynamic programming

phase). Compared to these algorithms, our algorithm has a significantly improved

running time and uses polynomial space. In fact, if we only need to know if the graph

has a k-path or not, a slight modification of our algorithm can reduce the space

complexity to O(n log k +m).

Remark 1. Recently, Kneis et al. [55] have independently developed a similar

randomized algorithm for the problem, whose complexity is slightly worse than ours.

Remark 2. It seems that we have to be more careful when we analyze an ex-

ponential time algorithm based on the divide-and-conquer method. Certain common

techniques from traditional algorithm analysis do not seem to be directly applicable.

For example, we cannot simply assume that the parameter k is a power of 2 since the

extension from this special case to the case for general k does not seem to give the

same complexity bound. In fact, when k is a power of 2, it is quite trivial to verify

(by induction) that T (k) ≤ O(4kk2.52m). However, it seems not easy to extend this
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bound to the case for general k.

The above randomized divide-and-conquer method can also be used to develop

improved algorithms for matching and packing problems. Consider the 3-d match-

ing problem (given a set S of triples and an integer k, either find a subset Sk of k

disjoint triples or report that no such subset exists). In the case when such a subset

Sk exists, let Ak be the set of 3k symbols in the triples in Sk. With probability
(

k
k/2

)

/23k = O(1/(22k
√
k)), we can partition the symbols in Ak into two subsets A′

k

and A′′
k such that A′

k contains 3k/2 symbols in the k/2 triples in Sk and A′′
k contains

3k/2 symbols in the other k/2 triples in Sk. The set S of triples can be partitioned into

two subsets S ′ and S ′′ in terms of A′
k and A′′

k, and a subset of k/2 triples is searched

recursively in each of the sets S ′ and S ′′. An analysis similar to that in Theorem VI.2

shows that this algorithm runs in time O(2.523kn) and space O(nk log k + m) and

finds the subset of k triples with high probability. It is straightforward to modify

this approach to obtain an algorithm of the same time and space complexity for the

3-set packing problem (given a collection of 3-sets and an integer k, either find a

sub-collection of k disjoint 3-sets or report that no such sub-collection exists).

Theorem VI.3 The 3-d matching and 3-set packing problems can be solved by

randomized algorithms in time O(2.523kn) and space O(nk log k +m).

Note that the previous best randomized algorithms for the problems [56] take

time O(10.883knO(1)) and space O(23k +m), where the space is exponential in k.

C. A new color coding scheme

The k-color coding scheme is a general used technique. The concept and techniques

were first proposed by Alon, Yuster, and Zwick [1], who also showed how to use

the techniques to solve a number of important NP-hard problems more effectively.
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The complexity of those algorithms depends directly on the size of the k-color coding

scheme they used. Any improvement on the size of the scheme will improve algorithms

based on color coding (e.g., [1, 31, 56]). In this section, we develop a new k-color

coding scheme of size significantly smaller then previous results.

We start from some definitions. Let S be a set and let W be a subset of S. A

function f on S is injective from W if for any two different elements x and y in W , we

have f(x) 6= f(y). For each integer m, denote by Zm the integer set {0, 1, . . . , m−1}.

In particular, if m is a prime number, then Zm is a field under the addition and

multiplication modular m.

Definition VI.4 A k-coloring of a set S is a function from S to Zk. A collection

F of k-colorings of S is a k-color coding scheme for S if for every subset W of k

elements in S, there is a k-coloring fW in F that is injective from W . The size of

the k-color coding scheme F , noted by |F|, is the number of k-colorings in F .

1. A special collection of color coding schemes

Let us first look at a few simple lemmas on color coding schemes.

Lemma VI.5 For any positive integers n and k, n ≥ k, there is a k-color coding

scheme for Zn of size bounded by
(

n
k

)

.

Proof. For each subset W of k elements in Zn, construct a k-coloring FW for

Zn that assigns each element in W a distinct color and colors all other elements in

Zn arbitrarily. The k-coloring FW is obviously injective from W . The collection

{FW | W ⊆ Zn, |W | = k} of
(

n
k

)

k-colorings is a k-color coding scheme for the set

Zn.
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Lemma VI.6 For n ≥ 2, there exist (1) a 1-color coding scheme for Zn of size 1;

(2) an n-color coding scheme for Zn of size 1; and (3) a 2-color coding scheme for Zn

of size ≤ ⌈log n⌉.

Proof. Statement (1) and statement (2) are obvious. We prove statement (3) by

induction on n. It can be easily verified for the cases of n ≤ 4 the statement holds.

Inductively, suppose that for n ≤ 2g, g ≥ 2, statement (3) is true. Now consider the

case 2g < n ≤ 2g+1.

Partition the n elements in Zn into two subsets Z ′ and Z ′′ such that |Z ′| = 2g and

|Z ′′| = n− 2g ≤ 2g. By the inductive hypothesis, there exist a 2-color coding scheme

F ′ = {F ′
1, . . . , F

′
g′} of size g′ for Z ′ and a 2-color coding scheme F ′′ = {F ′′

1 , . . . , F
′′
g′′}

of size g′′ for Z ′′, where g′ ≤ ⌈log |Z ′|⌉ = g and g′′ ≤ ⌈log |Z ′′|⌉ ≤ g. Without loss of

generality, we assume g′ ≥ g′′.

Construct g′ 2-colorings for Zn:

(F ′
1, F

′′
1 ), (F ′

2, F
′′
2 ), . . . , (F ′

g′′ , F
′′
g′′), (F

′
g′′+1, F

′′
g′′), . . . , (F

′
g′, F

′′
g′′), (6.2)

where the coloring (F ′
i , F

′′
j ) colors the elements in Z ′ using the 2-coloring F ′

i , and the

elements in Z ′′ using the 2-coloring F ′′
j (both F ′

i and F ′′
j use the color set {0, 1}). We

also construct a new 2-coloring F for Zn that assigns 0 to all elements in Z ′ and 1 to

all elements in Z ′′.

Let W be any subset of two elements in Zn. If the two elements in W are both

in Z ′ or both in Z ′′, then since F ′ and F ′′ are 2-color coding schemes for Z ′ and

Z ′′, respectively, one of the 2-colorings in (6.2) will assign the two elements in W

with different colors. On the other hand, if one element of W is in Z ′ and the other

element of W is in Z ′′, then the 2-coloring F colors the two elements of W with

different colors. In conclusion, the 2-coloring F plus the g′ 2-colorings in (6.2) makes
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a 2-color coding scheme of size g′ + 1 ≤ g+ 1 = ⌈log n⌉ for the set Zn. The induction

goes through and the lemma is proved.

For general k, we have the recurrence relation shown in the following lemma.

Lemma VI.7 Let n = n1 + · · ·+nr, where all nj ≥ 1 are integers. Let τ(n′, k′) be an

upper bound for the size of a k′-color coding scheme for the set Zn′, where n′ < n and

k′ ≤ k. Then there is a k-color coding scheme for the set Zn whose size is bounded by

k1+···+kr=k
∑

0≤k1≤n1,...,0≤kr≤nr





τ(#[kj ≤ 1],#[kj = 1])
(

#[kj≤1]
#[kj=1]

)

∏

kj≥2

τ(nj , kj)





where #[kj ≤ 1] and #[kj = 1] are the numbers of kj’s in the list [k1, . . . , kr] such

that kj ≤ 1 and kj = 1, respectively.

Proof. Arbitrarily partition the set Zn into r disjoint subsets Y1, . . ., Yr, where

|Yj| = nj for all j. Let L be the collection of all lists [k1, . . . , kr] of r integers satisfying

k1 + · · · + kr = h and 0 ≤ kj ≤ nj for all j. We say that two lists [k1, . . . , kr] and

[k′1, . . . , k
′
r] in L are conjugate if for every j either kj ≥ 2 or k′j ≥ 2 will imply kj = k′j.

It is clear that this conjugation is an equivalence relation and partitions the lists in L

into equivalence classes. A conjugation equivalence class will be called a (k1, . . . , kr)-

class for any list [k1, . . . , kr] in the class. Each (k1, . . . , kr)-class contains exactly
(

#[kj≤1]
#[kj=1]

)

lists in L: this is because when the values and positions for all kj ≥ 2 are

fixed in [k1, . . . , kr], there are exactly
(

#[kj≤1]
#[kj=1]

)

ways to determine the #[kj = 1] “1”s

in the remaining #[kj ≤ 1] positions in [k1, . . . , kr].

Fix a (k1, . . . , kr)-class. For each j such that kj ≥ 2, let Fnj ,kj
be a kj-color

coding scheme of size bounded by τ(nj , kj) for the set Znj
. Moreover, let F be a

(#[kj = 1])-color coding scheme of size bounded by τ(#[kj ≤ 1],#[kj = 1]) for the

set Z#[kj≤1]. Let the color sets used by all these schemes be disjoint. We construct a
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set of at most

τ(#[kj ≤ 1],#[kj = 1])
∏

kj≥2

τ(nj , kj)

k-colorings for the set Zn: each of these k-colorings consists of a kj-coloring from

the scheme Fnj ,kj
for the set Yj for each kj ≥ 2, plus a (#[kj = 1])-coloring from

the scheme F that treats each set Yj with kj ≤ 1 as a single element and assigns all

elements in Yj with the same color.

We apply the above process to each (k1, . . . , kr)-class, which gives a collection of

k1+···+kr=k
∑

0≤k1≤n1,...,0≤kr≤nr





τ(#[kj ≤ 1],#[kj = 1])
(

#[kj≤1]
#[kj=1]

)

∏

kj≥2

τ(nj , kj)





k-colorings for the set Zn (note that each (k1, . . . , kr)-class contains exactly
(

#[kj≤1]
#[kj=1]

)

lists in the collection L). To complete the proof of the lemma, it remains to show

that this collection makes a k-color coding scheme for the set Zn.

Let W be an arbitrary subset of k elements in Zn. Suppose that for each j, W

has exactly kj elements in the set Yj. Note that [k1, . . . , kr] is a list in the collection L.

For each kj ≥ 2, since Fnj ,kj
is a kj-color coding scheme for Yj, one kj-coloring Fj in

Fnj ,kj
must be injective from the kj elements of W that are in Yj. On the other hand,

since F is a (#[kj = 1])-color coding scheme for the set Z#[kj≤1], one (#[kj = 1])-

coloring F in F assigns each of the #[kj = 1] sets Yj with kj = 1 a distinct color.

Therefore, the combination of these kj-colorings Fj and the (#[kj = 1])-coloring F ,

which is one of the k-colorings constructed above, makes a k-coloring for the set Zn

that is injective from the subset W . This completes the proof of the lemma.

By Lemma VI.6 and Lemma VI.7, for small values of n and k, we can construct

a k-color coding scheme easily based on Lemma VI.7. We use a computer program to

construct color coding schemes for special pairs (n, k) for small values of n = k(k−1)

and k. The sizes of the color coding scheme we constructed are given in Table XV
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(the last column in the table will be used for later discussion).

Table XV. Upper bound on the size of a k-color coding scheme for Zn

k n = k(k − 1) upper bound τ(n, k) Bk = (τ(n, k))4/n

2 2 1 1
3 6 3 2.0801
4 12 12 2.2895
5 20 82 2.4142
6 30 434 2.2474
7 42 2,937 2.1394
8 56 16,960 2.0050
9 72 115,251 1.9108
10 90 655,756 1.8136
11 110 4,731,907 1.7488
12 132 33,489,268 1.6906
13 156 260,723,566 1.6437
14 182 1,426,381,707 1.5893
15 210 13,008,846,025 1.5584
16 240 58,465,192,360 1.5117
17 272 676,712,910,839 1.4928
18 306 6,079,615,220,515 1.4693

2. A k-coloring algorithm with a parameter set

Assuming that we have two integers n, k where n ≥ k, we introduce a k-coloring algo-

rithm of the set Zn in this subsection and prove that the algorithm actully constructs

a k-color coding scheme later.

Let p0 and p be prime numbers satisfying n ≤ p0 < 2n and k2 < p < 2k2 (such

prime numbers exist by Bertrand’s Conjecture [48]). The prime numbers p0 and p

can be obtained in time O(n
√
n) and O(k2

√
k2) = O(k3), respectively, using a trivial

primality testing algorithm.

We present a k-coloring algorithm for the set Zn. The algorithm is associated

with a set of parameters satisfying the following properties:

C0. an integer a0, where 0 ≤ a0 ≤ p0 − 1;
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C1. a pair of integers (a, b), where 0 < a ≤ p− 1, 0 ≤ b ≤ p− 1;

C2. an ordered list C = [c0, c1, . . . , ck′] of non-negative integers, where k′ = k/4− 1,

∑k′

j=0 cj = k, and
∑k′

j=0 cj(cj−1) ≤ 4k. Let C>1 be the sublist of C by removing

all cj ≤ 1;

C3. an ordered list L = [(a1, b1), (a2, b2), . . . , (ar, br)] of pairs of integers, where 0 <

ai ≤ p− 1, 0 ≤ bi ≤ p− 1, and r ≤ log |C>1|;

C4. a mapping from the elements in the list C>1 to the elements in the list L such

that at least half of the cj ’s in C>1 are mapped to (a1, b1), at least half of the

cj’s that are not mapped to (a1, b1) are mapped to (a2, b2), at least half of the

cj’s that are not mapped to (a1, b1) and (a2, b2) are mapped to (a3, b3), and so

on.

C5. an ordered list of colorings [Fc0 , Fc1, . . . , Fck′
], where for each cj ≥ 2, Fcj

is a cj-

coloring from the cj-color coding scheme Fcj
for Zcj(cj−1) given in Lemma VI.8

(for cj ≤ 1, Fcj
is irrelevant).

We also define two functions as follows. For an integer m, let pm be the smallest

prime number such that m ≤ pm < 2m. For two given integers s and a, where

1 < s < m and 0 ≤ a ≤ pm − 1, we define a function ψa,s from Zm to Zs by

ψa,s(x) = (ax mod pm) mod s, (6.3)

and for three given integers s, a, b, where 1 < s < m, 0 < a ≤ pm − 1, and

0 ≤ b ≤ pm − 1, we define a function φa,b,s from the set Zm to the set Zs by

φa,b,s(x) = ((ax+ b) mod pm) mod s. (6.4)

Our k-coloring algorithm on the set Zn is given in Fig. 38.
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Input: n, k and parameters as specified in C1–C5;
Output: a k-coloring of the set Zn;
1: for j = 0 to k′ = k/4− 1 do
2: Uj = {x | x ∈ Zn, φa,b,k/4(x) = j};
3: end for
4: for each Uj such that cj > 1 do
5: suppose that cj is mapped to (ai, bi)
6: for t = 0 to cj(cj − 1)− 1 do
7: Uj,t = {x | x ∈ Uj, φai,bi,cj(cj−1)(x) = t};
8: create cj new colors τj,0, τj,1, . . . , τj,cj−1;
9: assign all elements in Uj,t with color τj,s if the cj-coloring Fcj

for Zcj(cj−1)

assigns color s to the element t
10: end for
11: end for
12: for each cj = 1 do
13: create a new color τj and assign all elements in Uj the color τj
14: end for
15: assign all elements in

⋃

cj=0Uj arbitrarily using the colors created in steps 2–3

Fig. 38. Algorithm Coloring: construct a color coding scheme.

We make some remarks on the algorithm Coloring:

(1) the function ψa0,k2 in step 0 is from Zn to Zk2, which implies that x̄ ∈ Zk2;

(2) the function φa,b,k/4 in step 1 is from Zk2 to Zk/4, which implies that φa,b,k/4(x̄) ∈

Zk/4;

(3) for each j such that cj > 1, the function φai,bi,cj(cj−1) in step 2 is from Zk2 to

Zcj(cj−1),

which implies that φai,bi,cj(cj−1)(x̄) ∈ Zcj(cj−1);

(4) by steps 2-3, for each cj ≥ 1, we create cj new colors. By C2,
∑k/4−1

j=0 cj = k.

Therefore,

the total number of colors used by the algorithm Coloring is exactly k. In

consequence,

the algorithm produces a k-coloring for the set Zn.

For each given set of parameters satisfying the conditions C0-C5, the algorithm
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Coloring produces a k-coloring for the set Zn. A collection F of k-colorings of Zn can

be obtained by running over all possible sets of parameters that satisfy the conditions.

We first consider the size of this collection F .

3. The size of the collection F

To get an upper bound for the size of F , we will need the following lemma.

Lemma VI.8 Let [c0, c1, . . . , cr] be a list of non-negative integers such that
∑r

j=0 cj =

k and
∑r

j=0 cj(cj − 1) ≤ 4k. Then there is a collection {Fc0,Fc1, . . . ,Fcr
} of color

coding schemes, where Fcj
is a cj-color coding scheme for the set Zcj(cj−1), such that

∏

cj≥2 |Fcj
| ≤ 2.4142k.

Proof. For 2 ≤ cj ≤ 18, we use the cj-color coding scheme Fcj
for the set Zcj(cj−1)

given in Table XV, whose size is bounded by τ(cj(cj − 1), cj) in the third column of

the table. For cj > 18, we simply use the trivial cj-color coding scheme Fcj
for the set

Zcj(cj−1) given in Lemma VI.5, whose size is bounded by τ(cj(cj − 1), cj) =
(

cj(cj−1)
cj

)

.

Let Bcj
= (τ(cj(cj − 1), cj))

4/cj(cj−1). It is easy to verify from the table in Ta-

ble XV that Bcj
≤ 2.4142 for cj ≤ 18 (see the fourth column in the table).

Now let cj > 18. By our definition,

Bcj
= (τ(cj(cj − 1), cj))

4/cj(cj−1) =

(

cj(cj − 1)

cj

)4/cj(cj−1)

.
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Consider

f(x) =

(

x(x− 1)

x

)
1

x(x−1)

=

[

[x(x− 1)][x(x− 1)− 1] · · · [x(x− 1)− x+ 1]

x!

]
1

x(x−1)

≤
[

[x(x− 1)− x−1
2

]x√
2πx(x/e)x

]

1
x(x−1)

<

[

(2x(x−1)−(x−1)
2

)x

(x/e)x

]
1

x(x−1)

=

(

e(2x− 1)(x− 1)

2x

)
1

x−1

,

where in the first inequality, we have used the inequalities ab ≤ [(a+ b)/2]2 and

x! ≥
√

2πx(x/e)x).

Let g(x) = [e(2x − 1)(x − 1)/(2x)]1/(x−1). It can be verified that when x ≥ 7,

g(x) is strictly decreasing. In particular, for cj ≥ 19, we have

Bcj
= (f(cj))

4 < (g(cj))
4 ≤ (g(19))4 = 2.3599.

Thus, Bcj
≤ 2.4142 for all cj . Combining this with

∑r
j=0 cj(cj − 1) ≤ 4k, we

obtain

∏

cj≥2

|Fcj
| ≤

∏

cj≥2

τ(cj(cj − 1), cj) =
∏

cj≥2

Bcj(cj−1)/4
cj

≤
∏

cj≥2

2.4142cj(cj−1)/4

= 2.4142
P

cj≥2 cj(cj−1)/4
= 2.4142

Pr
j=0 cj(cj−1)/4 ≤ 2.4142k

This completes the proof of the lemma.

To derive an upper for the size of the collection F we constructed in the pre-

vious subsection, we discuss the number of possible combinations of the parameters

satisfying the conditions C0-C5.
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Condition C0: the parameter a0 satisfies 0 ≤ a0 ≤ p0 − 1, where p0 < 2n.

Therefore, there are at most 2n− 1 = O(n) possible values for the parameter a0.

Condition C1: the parameters a and b satisfy 0 < a ≤ p− 1 and 0 ≤ b ≤ p− 1,

where p < 2k2. Therefore, there are at most O(k4) pairs of integers (a, b) satisfying

condition C1.

Condition C2: we represent each list C = [c0, . . . , ck′] satisfying condition C2

using a single binary string BC of length 5k/4− 1 in which there are exactly k/4− 1

0-bits. The k/4 − 1 0-bits in BC divide BC into k/4 “segments” such that the j-th

segment contains exactly cj 1-bits (in particular, the segment between two consecutive

0’s in BC corresponds to a cj = 0). It is easy to verify that any list C satisfying

condition C2 is uniquely represented by such a binary string BC . Note that the

number of binary strings of length 5k/4 − 1 with exactly k/4 − 1 0-bits is equal to
(

5k/4−1
k/4−1

)

≤ 1.8692k. We conclude that the total number of different lists satisfying

condition C2 is bounded by 1.8692k. Note that all these lists can be systematically

enumerated based on the binary string representation described above.

Condition C3: since r ≤ log(|C>1|) ≤ log(k/4) = log k − 2, there are at most

log k − 2 pairs in each list L satisfying condition C3. By condition C3, there are

O(p2) = O(k4) possible pairs for each (ai, bi). Thus, the total number of lists L

satisfying condition C3 is O(k4 log k−8).

Condition C4: now we discuss the case when a list C = [c0, . . . , ck′] satisfying

condition C2 and a list L = [(a1, b1), . . . , (ar, br)] satisfying condition C3 are given,

how many different mappings from C>1 to L can be there that satisfy condition C4.

Let q = |C>1| ≤ k/4. We use a binary string A>1 to represent a mapping from

C>1 to L, as follows. The binary string A>1 has q 0-bits, which divide A>1 into q

segments, each starting with a 0-bit. For each j, the j-th segment of form 01i−1 in

A>1 represents the mapping from the j-th element in C>1 to the integer pair (ai, bi)
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in L. By Condition C4, at least half of the segments in A>1 have no 1-bit, at least

half of the remaining segments in A>1 have the form 01, and at least half of the

remaining segments that are not of the form 0 or 01 in A>1 have the form 011, and

so on. Therefore, the length of the binary string A>1 is bounded by

q

2
+ 2

q

22
+ 3

q

23
+ · · · < 2q ≤ k

2

In consequence, the number of different mappings from the list C>1 to the list L

satisfying condition C4 is bounded by 2k/2 = 1.4143k.

Condition C5: in the list [Fc0 , Fc1, . . . , Fck′
] of colorings, for each cj ≥ 2, Fcj

is a

cj-coloring from the cj-color coding scheme Fcj
for Zcj(cj−1) given in Lemma VI.8.

Moreover, by Lemma VI.6, for cj = 1, we have |Fcj
| = 1. Therefore, the to-

tal number of different lists [Fc0 , Fc1, . . . , Fc′
k
] satisfying condition C5 is equal to

∏k′

j=0 |Fcj
| = ∏

cj≥2 |Fcj
|, which, by Lemma VI.8, is bounded by 2.4142k (note that

the list [c0, c1, . . . , ck′] satisfies condition C2).

Summarizing the above discussion, we have the following theorem.

Theorem VI.9 Running the algorithm Coloring in Fig. 38 over all possible param-

eters satisfying the conditions C0-C5 gives a collection F of O(6.383kklog k−4n) k-

colorings for the set Zn. These k-colorings can be constructed in time O(6.383kklog k−4n2).

Proof. By the above analysis, the total number of possible combinations of the

parameters satisfying the conditions C0-C5 is bounded by

O(n) ·O(k4) · 1.8692k ·O(k4 log k−8) · 1.4143k · 2.4142k = O(6.383kklog k−4n2)

From the above discussion, these k-colorings can be constructed systematically. Since

each k-coloring of the set Zn can be printed in time O(n), the collection F can be
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constructed in time O(6.383kklog k−4n2).

4. The collection F makes a k-color coding scheme for Zn

We derive in this subsection that the collection F of k-colorings for the set Zn in

Theorem VI.9 is a k-color coding scheme for the set Zn. We show that for any subset

W = {w1, . . . , wk} of k elements in Zn, there is a combination of parameters satisfying

the conditions C0-C5 on which the algorithm Coloring produces a k-coloring for

the set Zn that is injective from W .

First let us consider the function ψa,s used in step 0 of the algorithm Coloring.

The function ψa,s has been studied in the construction of universal hashing functions

[34, 87]. It was first suggested by Alon, Yuster, and Zwich for the implementation of

k-color coding schemes [1]. One of the key properties of the function is summarized

in the following theorem.

Theorem VI.10 ([34]) For the subset W of k elements in Zn, there is an integer a0,

0 ≤ a0 ≤ p0 − 1, such that the function ψa0,k2 is injective from W .

Therefore, there is an integer a0 satisfying the condition C0 such that if we

let wi = ψa0,k2(wi) for all 1 ≤ i ≤ k, then the set W = {w1, w2, . . . , wk} is a

subset of k elements in Zk2. For each 1 ≤ i ≤ k, define a subset Wi of Zn by

Wi = {x | x ∈ Zn & ψa0,k2(x) = wi}. Let W = {W1, . . . ,Wk} be the collection of

these subsets.

Now consider the function φa,b,s, which has been studied by Carter and Weg-

man [13]. We first study some basic properties of the function.

Consider the following two sets of ordered pairs of integers (recall that p is a
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prime number satisfying k2 < p < 2k2):

F1(p) = {(a, b) | 0 < a ≤ p− 1 and 0 ≤ b ≤ p− 1}

F2(p) = {(r, q) | 0 ≤ r, q ≤ p− 1 and r 6= q}

Fix two distinct integers x and y, 0 ≤ x, y ≤ p−1, we construct a mapping as follows:

π : (a, b) −→ ((ax+ b) mod p, (ay + b) mod p)

Lemma VI.11 For any two integers x and y such that 0 ≤ x, y ≤ p− 1 and x 6= y,

the mapping π is a one-to-one mapping from F1(p) to F2(p).

Proof. Since p is a prime number, the set Zp is a field in terms of the additions

and multiplications modular p. For a pair (a, b) in F1(p), from (ax + b) mod p =

(ay + b) mod p, we would get x = y (recall that p is a prime and a 6= 0). Therefore,

the mapping π maps each element in F1(p) to an element in F2(p). Moreover, for

a pair (r, q) in F2(p), where r 6= q, the linear equations (ax + b) mod p = r and

((ay + b) mod p = q have a unique solution (a, b), where a, b ∈ Zp and a 6= 0, i.e.,

(a, b) ∈ F1(p). The lemma now follows directly from the fact that both sets F1(p)

and F2(p) have exactly p(p− 1) elements.

Let 0 < a ≤ p − 1, 0 ≤ b ≤ p − 1, and 1 < s ≤ k2. For the subset W of k

elements in Zk2 and for each integer j, 0 ≤ j ≤ s − 1, denote by B(a, b, s,W, j) the

number of integers x in W such that φa,b,s(x) = j. We have the following lemma.

Lemma VI.12 Suppose p mod s = h. Then for the subset W of k elements in Zk2,

we have

∑

(a,b)∈F1(p)

s−1
∑

j=0

(

B(a, b, s,W, j)

2

)

=
k(k − 1)(p− h)(p− (s− h))

2s
(6.5)
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Proof. Let p = gs+h, where g and h are integers. Then Zp = {0, 1, . . . , gs+h−1}.

Let

A0 =
∑

(a,b)∈F1(p)

s−1
∑

j=0

(

B(a, b, s,W, j)

2

)

=
s−1
∑

j=0

∑

(a,b)∈F1(p)

(

B(a, b, s,W, j)

2

)

The value A0 is equal to the number of different ways of picking an ordered pair (a, b)

in F1(p), and two different elements x and y in W such that φa,b,s(x) = φa,b,s(y), or

equivalently

((ax+ b) mod p) mod s = ((ay + b) mod p) mod s.

By Lemma VI.11, for two different elements x and y in W , the mapping

π : (a, b) −→ ((ax+ b) mod p, (ay + b) mod p)

is a one-to-one mapping from F1(p) to F2(p). Therefore, the value A0 is also equal

to the number of different ways of picking an ordered pair (r, q) in F2(p) and two

different elements x and y in W such that

r mod s = q mod s.

The number of different ways to pick two different elements x and y in W is equal

to k(k − 1)/2. Therefore, the value A0 is equal to k(k − 1)/2 times the number of

different ways of picking an ordered pair (r, q) in F2(p) such that r mod s = q mod s.

For each j, if 0 ≤ j ≤ h − 1, then there are g + 1 elements q in Zp such that

q mod s = j; while if h ≤ j ≤ s − 1, then there are g elements q in Zp such that

q mod s = j. Therefore, for each j, 0 ≤ j ≤ h−1, there are g(g+1) ordered pairs (r, q)

in F2(p) such that r mod s = q mod s = j while for each j, h ≤ j ≤ s− 1, there are
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g(g− 1) ordered pairs (r, q) in F2(p) such that r mod s = q mod s = j. In summary,

there are totally hg(g+ 1) + (s−h)g(g− 1) = g(p− (s− h)) = (p−h)(p− (s− h))/s

ordered pairs (r, q) in F2(p) such that r mod s = q mod s.

Therefore, we have proved

A0 =
∑

(a,b)∈F1(p)

s−1
∑

j=0

(

B(a, b, s,W , j)

2

)

=
k(k − 1)(p− h)(p− (s− h))

2s

This completes the proof of the lemma.

Corollary VI.13 Let 1 < s ≤ k2. For the subset W of k elements in the set Zk2,

there is an ordered pair (a, b) in F1(p) such that

s−1
∑

j=0

(

B(a, b, s,W , j)

2

)

<
k(k − 1)

2s

Proof. Since there are exact p(p− 1) ordered pairs in F1(p), from Lemma VI.12,

there is at least one ordered pair (a, b) in F1(p) such that

s−1
∑

j=0

(

B(a, b, s,W, j)

2

)

≤ k(k − 1)(p− h)(p− (s− h))
2sp(p− 1)

Since p = gs+h is a prime number, we have 1 ≤ h ≤ s−1 and 1 ≤ s−h ≤ s−1.

Therefore, both (p − h) and (p − (s − h)) are not larger than p − 1. In particular,

(p− h)(p− (s− h)) is strictly smaller than p(p− 1). Now the corollary follows.

The result in Corollary VI.13 is a significant improvement over the bound given

in [34], which is the bound used to implement the color coding scheme suggested

by Alon, Yuster, and Zwick [1]. In particular, the result derived in [34] uses the

hash function ψa,s and gave an upper bound of k2/s. We will see that the bound

improvement from k2/s to k(k − 1)/(2s) significantly improves the size of k-color

coding schemes.
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Lemma VI.14 For the subset W of k elements in Zk2, there is a pair (a, b) in F1(p)

such that
k/4−1
∑

j=0

B(a, b, k/4,W, j)(B(a, b, k/4,W, j)− 1) < 4k

Proof. Let s = k/4. From Corollary VI.13,there is a pair (a, b) in F1(p), such that

k/4−1
∑

j=0

(

B(a, b, k/4,W, j)

2

)

< 2(k − 1),

which directly implies the lemma.

Corollary VI.15 For the subset W of k elements in Zk2, there is a pair (a, b) sat-

isfying the condition C1, such that if we let W j = {w | w ∈ W & φa,b,k/4(w) = j}

and cj = |W j| for all 0 ≤ j ≤ k′ = k/4− 1, then the list C = [c0, . . . , ck′] satisfies the

condition C2.

Since each element wi in the set W corresponds uniquely to an element wi in the

set W , according to Corollary VI.15, there is a pair (a, b) satisfying condition C1,

such that each set Uj , 0 ≤ j ≤ k′ = k/4 − 1, constructed in step 1 of the algorithm

Coloring contains exactly cj elements in W , and the list C = [c0, . . . , ck′] satisfies

the condition C2.

Lemma VI.16 Let W be a collection of some of the subsets W j with cj > 1, as given

in Corollary VI.15. Then there is a pair (a, b) satisfying condition C1 such that for

at least one half of the subsets W j in W, the function φa,b,cj(cj−1) is injective from W j

to Zcj(cj−1).

Proof. Fix a subset W j in W, where cj = |W j| > 1. Applying Lemma VI.12 to
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W j and let s = cj(cj − 1) (where we have let p mod s = h > 0), we get:

∑

(a,b)∈F1(p)

s−1
∑

i=0

(

B(a, b, s,W j , i)

2

)

=
cj(cj − 1)(p− h)(p− (s− h))

2s

<
cj(cj − 1)p(p− 1)

2s
=
p(p− 1)

2

Since the set F1(p) totally has p(p − 1) pairs, the above relation claims that for at

least one half of the pairs (a, b) in F1(p), the equality

s−1
∑

i=0

(

B(a, b, s,W j, i)

2

)

= 0

holds, i.e., B(a, b, s,W j , i) ≤ 1 for all i. Therefore, for at least one half of the pairs

(a, b) in F1(p), the function φa,b,cj(cj−1) is injective from the subset W j. Applying this

analysis to each subset W j inW and using simple counting argument, we derive that

there is at least one pair (a, b) in F1(p) (i.e., a pair (a, b) satisfying condition C1) such

that for at least one half of the subsets W j in W , the function φa,b,cj(cj−1) is injective

from W j.

Corollary VI.17 LetW>1 be the collection of all subsets W j in Corollary VI.15 with

cj = |W j | > 1. Then there is an ordered list L = [(a1, b1), . . . , (ar, br)] satisfying the

condition C3 such that for at least one half of the subsets W j in W>1, the function

φa1,b1,cj(cj−1) is injective from W j to Zcj(cj−1), for at least one half of the remaining

subsets W j in W>1, the function φa2,b2,cj(cj−1) is injective from W j to Zcj(cj−1), and

for at least one half of the remaining subsets W j in W>1, the function φa3,b3,cj(cj−1)

is injective from W j to Zcj(cj−1), and so on.

Proof. Applying Lemma VI.16 to W>1, we get a pair (a1, b1) satisfying condition

C1 that, for at least one half of the subsets W j in W>1, is injective from W j . Let

W ′
>1 be the remaining subsets inW>1. Applying Lemma VI.16 toW ′

>1, we get a pair
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(a2, b2) satisfying condition C1 that, for at least one half of the subsets W j inW ′
>1, is

injective from W j , and so on. This process stops after at most r ≤ log q steps, where

q is the total number of subsets in W>1. The list of pairs L = [(a1, b1), . . . , (ar, br)]

constructed this way satisfies the condition C3.

From Corollary VI.17, we get immediately,

Corollary VI.18 Let W j be the subset, 0 ≤ j ≤ k′, as given in Corollary VI.15,

cj = |W j|, and C = [c0, . . . , ck′]. Then there is a list L = [(a1, b1), . . . , (ar, br)]

satisfying condition C3 and a mapping from C>1 to L satisfying condition C4, such

that for all j, if cj > 1 is mapped to (ai, bi), then the function φai,bi,cj(cj−1) is injective

from W j.

Therefore, for the pair (a′, b′) and the list C ′ = [c′0, . . . , c
′
k′] in Corollary VI.15,

which satisfy conditions C1 and C2, respectively, and for the list

L′ = [(a′1, b
′
1), . . . , (a

′
r, b

′
r)]

and the mapping from C ′
>1 to L′ in Corollary VI.18, which satisfy conditions C3 and

C4, respectively, each function φa′
i,b

′
i,c

′
j(c

′
j−1) is injective from the subset Wj to Zc′j(c

′
j−1)

for all j. For each j, let W ′
j be the image of Wj under the function φa′

i,b
′
i,c

′
j(c

′
j−1), then

W ′
j ⊆ Zc′j(c

′
j−1) and |W ′

j| = c′j. Now since Fc′j
is a c′j-color coding scheme for the

set Zc′j(c
′
j−1), one Fc′j

of the c′j-colorings in Fc′j
is injective from W ′

j . According to

the algorithm Coloring, when this c′j-coloring Fc′j
is used for the algorithm, the c′j

elements in Wj are colored with distinct colors. Running this for all j, we conclude

that there is a list [Fc′0
, Fc′1

, . . . , Fc′
k′
], where Fc′j

is a c′j-coloring in the c′j-color coding

scheme Fc′j
, satisfying condition C5 such that all elements in the subset W are colored

with distinct colors.

Summarizing the above discussion, we have the following theorem.
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Theorem VI.19 For each subset W of k elements in Zn, there is a combination of

parameters satisfying conditions C1-C5 on which the algorithm Coloring produces

a k-coloring for Zn that is injective from W .

Combining Theorem VI.19 with Theorem VI.9, and recall that we have let n = k2,

we get

Theorem VI.20 If k is divisible by 4, then τ(k2, k) = O(6.383kklog k−4), i.e., there

is a k-color coding scheme of size O(6.383kklog k−4) for the set Zk2.

5. Extension to general n and k

By Theorem VI.10, the following theorem for general value of n is straightforward.

Theorem VI.21 For any integer n, and integer k divisible by 4,

τ(n, k) = O(6.383kklog k−4n),

i.e., there is a k-color coding scheme of size O(6.383kklog k−4n) for the set Zn .

Now let us consider the case when k is not divisible by 4. Suppose that k = 4k′−h,

where 1 ≤ h ≤ 3. We first construct a (4k′)-color coding scheme F ′ of size

O(6.3834k′

(4k′)log(4k′)−4n) = O(6.383kklog(k+h)−4n)

for the set Zn. Now for each (4k′)-coloring F in F ′, we construct
(

4k′

h

)

= O(k3)

k-colorings for Zn by selecting every subset of h colors in F and replacing them

arbitrarily by the remaining k = 4k′ − h colors. This gives a collection F of

O(k36.383kklog(k+h)−4n) = O(6.4kn)

k-colorings for the set Zn. To show that this is a k-color coding scheme for the set

Zn, let W be any subset of k elements in Zn. Let W ′ be a subset of 4k′ elements
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in Zn obtained from W by adding arbitrarily h elements. Since F ′ is a (4k′)-color

coding scheme for Zn, there is a (4k′)-coloring F ′ in F ′ that is injective from W ′. In

particular, this (4k′)-coloring F ′ is also injective from W . Now the k-coloring F in F

obtained from F ′ by removing the other h colors is injective from W .

Hence we have proved the following theorem.

Theorem VI.22 For any integers n and k, where n ≥ k, τ(n, k) = O(6.4kn), i.e.,

there is a k-color coding scheme of size O(6.4kn) for the set Zn .

D. Final remarks

We have developed new randomized and deterministic algorithms for path, match-

ing, and packing problems. Our randomized algorithms are the first group of ran-

domized algorithms of running time O(2O(k)nO(1)) and polynomial space for these

problems. Moreover, our algorithms also improve the running time of the best previ-

ous algorithms.

Our deterministic algorithms for path, matching, and packing problems sig-

nificantly improve the previous best algorithms. Our algorithms are based on a new

k-color coding scheme of significantly improved size. A number of new techniques

have been used in the development of the new k-color coding scheme, including an

upper bound on the size of k-color coding schemes and a four-level hashing procedure.

The color coding technique seems to provide a new approach to exact algorithms

for solving NP-hard problems, especially for those that are concerned with finding k

proper elements in a set of n elements. Recent research [18] has shown that for certain

NP-hard problems, such searching seems to have to take time nΩ(k). Therefore, a pre-

processing by k-coloring the n elements so that the k searched elements are colored

distinctly seems to significantly narrow down the search space. For example, suppose
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that we have colored the vertices of a graph G with k colors such that the vertices of

a k-clique in G are all colored with distinct colors. Then searching for the k-clique

can be easily done in time O((n/k)k), which seems to be significantly faster than

searching for the k-clique in an uncolored graph.

We would like to point out that it is possible to further improve the upper bound

on the size of k-color coding schemes for the set Zn.
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CHAPTER VII

ON PRODUCT COVERING IN 3-TIER SUPPLY CHAIN MODELS: NATURAL

COMPLETE PROBLEMS FOR W [3] AND W [4]

The field of supply chain management has been growing at a rapid pace in recent

years, both as a research area and as a practical discipline. In this chapter, we

study the computational complexity of product covering problems in 3-tier supply

chain models, and present natural complete problems for the classes W [3] and W [4]

in parameterized complexity theory. This seems the first group of natural complete

problems for higher levels in the parameterized intractability hierarchy (i.e., the W -

hierarchy), and the first precise complexity characterizations of certain optimization

problems in the research of supply chain management. Our results also derive strong

computational lower bounds and inapproximability for these optimization problems.

A. Introduction

Parameterized complexity theory [26] is a recently proposed and promising approach

to the central issue of how to cope with intractable problems – as is so frequently

the case in the natural world of computing. An example is the NP-complete problem

vertex cover (determining whether a given graph has a vertex cover of size k),

which now is solvable in time O(1.285k + kn) [19] and becomes quite practical for

various applications. The other direction of the research is the study of parameter-

ized intractability, based on a parameterized intractability hierarchy, the W -hierarchy
⋃

t≥1W [t]. Under a parameterized reduction, the fpt-reduction, a large number of well-

known computational problems have been proved to be complete for certain levels of

the W -hierarchy [26]. For example, clique, independent set, set packing, v-c

dimension, and weighted 3-sat are complete for the class W [1], and dominating
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set, hitting set, set cover, and weighted sat are complete for the class W [2].

The completeness of a problem in a level of the W -hierarchy characterizes precisely

the parameterized complexity of the problem.

However, no complete problem is known for any level W [t] for t > 2, except the

generic problems based on weighted satisfiability on bounded depth circuits and their

variations [14, 26]1. Therefore, it is interesting to know whether high levels of the

W -hierarchy, which are defined in terms of formal mathematics, catch the complexity

of certain natural computational problems.

In this chapter, we present natural complete problems for the classes W [3] and

W [4], based on computational problems studied in the areas of supply chain man-

agement. The study of supply chain management has been growing at a rapid pace

in recent years, as a research area and as a practical discipline (see recent survey

papers [43, 70]). It has provided extremely rich contexts for the definition of new

large-scale optimization problems. Efforts to improve supply chain management have

gained the attention of academic researchers, along with the enthusiastic support of

government and industry. Therefore, our completeness results in the W -hierarchy

for computational problems in the study of supply chains will also contribute to the

understanding of this new computation model. Moreover, based on the recent re-

search on parameterized intractability and inapproximability [18], our results also

imply directly inapproximability for these problems.

We give a quick review on the related background.

A parameterized problem consists of instances of the form (x, k), where x is

the problem description and k is an integer called the parameter. A parameterized

1We note that a similar situation has occurred in the study of the popular poly-
nomial time hierarchy, for which complete problems for the first level Σp

1 =NP have
been extensively studied while the research on natural complete problems for higher
level Σp

t for t > 1 has just started recently [84, 85, 86].
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problem Q is fixed parameter tractable if it can be solved by an algorithm of running

time O(f(k)nO(1)), where f is a function independent of n = |x|. Denote by FPT the

class of all fixed parameter tractable problems.

A Πt-circuit of n input variables x1, . . ., xn is a (t + 1)-leveled circuit in which

(1) the 0-th level is a single output gate that is an and-gate; (2) each level-t gate

is an input gate labeled by either xi (a positive literal) or xi (a negative literal),

1 ≤ i ≤ n; (3) the outputs of a level-j gate can only be connected to the inputs of

level-(j − 1) gates; and (4) and-gates and or-gates are organized into t alternating

levels. A circuit is monotone (resp. antimonotone) if all its input gates are labeled

by positive literals (resp., negative literals). A circuit represents naturally a boolean

function. A truth assignment α to the variables of a circuit C satisfies C if α makes

C output 1. The weight of an assignment α is the number of variables assigned value

1 by α.

The problem weighted satisfiability on Πt-circuits, briefly wcs[t], consists of in-

stances of the form (C, k), where C is a Πt-circuit that is satisfied by an assignment

of weight k. The W -hierarchy,
⋃

t≥1 W [t], in parameterized complexity theory is

defined based on wcs[t] via a new reduction, the fpt-reduction. We say that a pa-

rameterized problem Q is fpt-reducible to another parameterized problem Q′ if there

are two recursive functions f and g, and an algorithm A of running time bounded

by f(k)|x|O(1), such that for an input (x, k), the algorithm A produces a pair (x′, k′),

where k′ ≤ g(k), and (x, k) is a yes-instance of Q if and only if (x′, k′) is a yes-instance

of Q′. It is easy to verify that the fpt-reducibility is transitive [26]. For an integer

t ≥ 2, a parameterized problem Q1 is in the class W [t] if Q1 is fpt-reducible to the

problem wcs[t], a parameterized problem Q2 is W [t]-hard if the problem wcs[t] is

fpt-reducible to Q2 (or equivalently, if all problems in W [t] are fpt-reducible to Q2),

and a parameterized problem Q3 is W [t]-complete if Q3 is in W [t] and is W [t]-hard.
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In particular, the problem wcs[t] is a generic W [t]-complete problem for t ≥ 2.2

We briefly review the related concepts in supply chain management, which has

been the subject of a growing body of research literature. The readers are referred to

[20, 22, 91] for detailed and systematic discussions, and [43, 44, 70, 94] for more recent

progresses. The underlying structure of a supply chain model is a network consisting

of various functional units (such as material suppliers, manufactures, storages, mar-

keting/sales and retailers, and customers) and connections between different units (in

the means of both material and information). A supply chain may have numerous

tiers in the case of that substructure of manufactures forms a lengthy network itself

[70]. Supply chain management involves the management of flows between and among

the units in a supply chain to maximize total profitability [43]. The research in supply

chain management includes the studies in strategic-, tactical-, and operational-level

decisions [43]. In particular, tactical-level decisions, which is the subarea directly

related to our current chapter, are concerned with medium-range planning efforts,

such as production and distribution quantity planning among multiple existing fa-

cilities, system-wide inventory policies, and distribution frequency decisions between

facilities.

B. Three-tier single product cover and W [3]-completeness

We follow the supply chain model studied in [90], which is a slight generalization of

the model studied in [53]. The model is a 3-tier supply chain that consists of three

kinds of units: (material) suppliers, (product) manufacturers, and retailers, such that:

1. A supplier can be linked to a manufacturer, and a manufacturer can be linked

2The corresponding definitions for the class W [1] are somehow special and not
directly related to our discussion, thus are omitted. The readers are referred to [26]
for details.
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to a retailer, standing for transportations/transactions between the units (link

capacity is assumed unlimited);

2. A supplier can provide certain materials;

3. A manufacturer can produce a product if all needed materials for the product

are provided by suppliers linked to the manufacturer;

4. A retailer has supply of a product if a manufacturer linked to the retailer pro-

duces the product.

Such a supply chain can be modeled by a directed graph G = (S ∪M ∪ R,E),

where each unit is represented as a vertex in G and each directed edge in E represents

a link between the corresponding units, here S is the set of all suppliers, M is the set

of all manufacturers, and R is the set of all retailers. The objective of optimization

studied in the current chapter on this model is to maximize the channel profit [20, 91],

that is, to study the strategies that ensure that all retailers have supply of certain

products they want to carry. In particular, we say that a product covers all retailers

if all retailers have supply of that product.

Now suppose that we want to test the market of a new product at the widest

range of customers, using as little experimental resource (i.e., suppliers) as possible

and without overloading any supplier. For this, we assign at most one kind of material

needed for the new product to each supplier and would like that the product covers all

retailers. Obviously, the problem is directly related to the complexity of the product,

i.e., the number k of different kinds of materials needed for the product. Formally,

the problem can be formulated as the following parameterized problem:

3-scm single-product cover:
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Let G = (S ∪ M ∪ R,E) be a supply chain model, and k an integer,

and suppose that we are going to produce a new product that requires

k different kinds of materials. Is it possible to pick k suppliers, each for

a different kind of material, to produce the new product, such that the

product covers all retailers?

Before we prove our main result in this section, we first define the problem

weighted satisfiability on antimonotone Π3-circuits, shortly wcs−[3]. The

problem wcs−[3] is a subproblem of the problem wcs[3] that requires that in the

input pair (C, k) the Π3-circuit C be antimonotone (i.e., all input gates of C be

labeled by negative input literals). It is known that the problem wcs−[3] is also

W [3]-complete [26]. Thus, to prove the W [3]-completeness for the problem 3-scm

single-product cover, it suffices to derive fpt-reductions between wcs−[3] and

3-scm single-product cover.

Theorem VII.1 The problem 3-scm single-product cover is W [3]-complete.

Proof. As explained above, we first present an fpt-reduction from wcs−[3] to

3-scm single-product cover. Let (C, k) be an instance of wcs−[3], where C is

an antimonotone Π3-circuit. Let g0 be the output and-gate of C (which is at level

0), L1 be the set of or-gates at level 1 in C (whose outputs are inputs to g0), L2 be

the set of and-gates at level 2 in C (whose outputs are inputs to gates in L1), and

L3 be the set of input gates in C (which are inputs to gates in L2 and are labeled by

negative input literals).

Construct a 3-tier supply chain model G = (S ∪M ∪ R,E) as follows: (1) each

retailer ρi in R corresponds to an or-gate ui in L1; (2) each manufacturer µi in M

corresponds to an and-gate vi in L2; (3) each supplier σi in S corresponds to an input

gate xi in L3. The vertices in G are connected in the following way: (1) there is a link
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from a manufacturer µi to a retailer ρj if and only if the corresponding and-gate vi is

an input to the corresponding or-gate uj; and (2) there is a link from a supplier σi to

a manufacturer µj if and only if the corresponding input gate xi is not an input to the

corresponding and-gate vj (note that C is an antimonotone circuit). This completes

the description of the 3-tier supply chain model G. We prove that the circuit C has

a satisfying assignment α of weight k if and only if we can pick k suppliers in the

supply chain G, each for a different kind of material for a new product that needs k

kinds of materials, so that the new product covers all retailers.

Suppose that the circuit C has a satisfying assignment α of weight k. Let Xk

be the set of k variables in C that are assigned value 1 by α. Let Sk be the k

suppliers corresponding to the k input variables in Xk. We show that we can pick the

k suppliers in Sk, each for a different kind of material for the new product that needs

k kinds of materials, such that the product covers all retailers in G. Consider any

manufacturer µi in M . If µi has the supply for all k kinds of materials for the new

product, i.e., if µi has links from all the k suppliers in Sk, then by the construction of

the supply chain model G, the corresponding and-gate vi in C has no input from any

input gate xj where xj is an input variable in Xk. Therefore, under the assignment

α, all inputs to the gate vi have value 1 and the output of vi has value 1. On the

other hand, if the manufacturer µi does not receive supply from a supplier σj in Sk,

then the input gate xj is an input to the and-gate vi, and under the assignment α,

the output of gate vi has value 0. In summary, the and-gate vi outputs value 1 if

and only if the corresponding manufacturer µi has supply from all k suppliers in Sk

and is able to produce the new product. Now, a retailer ρi has supply of the new

product if and only if it has a link from a manufacturer µj that can produce the new

product, which by the above analysis if and only if the corresponding and-gate vj in

L2 outputs value 1 under the assignment α. Since the retailer ρi has a link from a
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manufacturer µj if and only if the corresponding or-gate ui in C has input from the

corresponding and-gate vj, we conclude that the retailer ρi has supply of the new

product if and only if the corresponding or-gate ui in C outputs value 1 under the

assignment α. Finally, since the output and-gate g0 of C is connected to all or-gates

in L1, we conclude that the circuit C has value 1 if and only if all retailers have supply

of the new product. In consequence, if α is a satisfying assignment for the circuit C,

then picking the k suppliers in Sk results in the new product that covers all retailers

in G.

Conversely, suppose there is a set Sk of k suppliers, each for a different kind of

material for the new product such that the new product covers all retailers. We let

Xk be the k input variables in the circuit C corresponding to the k suppliers in Sk.

Let α be a weight-k assignment to C that assigns value 1 to the k variables in Xk

and value 0 to all other input variables. Then following exactly the same reasoning

as above, we can verify that the assignment α satisfies the circuit C.

This completes the analysis of the reduction from wcs−[3] to 3-scm single-

product cover. The reduction is obviously an fpt-reduction. In conclusion, we

have proved that the problem 3-scm single-product cover is W [3]-hard.

To show that the problem 3-scm single-product cover is in W [3], it suffices

to show that 3-scm single-product cover is fpt-reducible to wcs−[3]. The con-

struction is very similar to the one described above: for an instance (G, k) of 3-scm

single-product cover, where G = (S∪M∪R,E) is a supply chain model and k is

an integer, we construct an instance (C, k) of wcs−[3], where each level-1 or-gate in

C corresponds to a retailer in R, each level-2 and-gate in C corresponds to a manu-

facturer in M , and each input gate in C (labeled by a negative literal) corresponds to

a supplier in S. A level-1 or-gate has an input from a level-2 and-gate if and only if

the corresponding retailer has a link from the corresponding manufacturer in G, and
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a level-2 and-gate has an input from an input gate if and only if the corresponding

manufacturer has no link from the corresponding supplier. Now by the exact method,

we can verify that the circuit C has a satisfying assignment of weight k if and only

if there are k suppliers, each for a different kind of material for the new product,

such that the new product covers all retailers. In consequence, the problem 3-scm

single-product cover is in the class W [3].

This proves that the problem 3-scm single-product cover is W [3]-complete.

C. Three-tier multiple product cover and W [4]-completeness

To describe W [4]-complete problems, we consider a more general model of 3-tier

supply chains by allowing a supplier to provider multiple kinds of materials, a manu-

facturer to produce multiple kinds of products, and a retailer to carry multiple kinds

of products.

We first consider a problem that is concerned with the covering by a line of

homogeneous (i.e., similar) products. Formally, let P be a given line of homogeneous

products and let T be a set of materials, where each product π in P is associated

with a set of materials in T that are needed for producing the product. In a 3-

tier supply chain G = (S ∪ M ∪ R,E), each supplier σ in S is associated with a

list of materials in T that the supplier σ can provide, each manufacturer µ in M is

associated with a list of products in P that the manufacturer µ can produce when

necessary materials are provided by suppliers linked to µ, and each retailer ρ in R is

associated with a suggested list of products in P that the retailer ρ is interested in

carrying when the products are produced by the manufacturers linked to ρ. We are

interested in the following problem in supply chain management: for a new line P



184

of homogeneous products, we want to use limited amount of resource (i.e., a small

number of suppliers) to test the product market in the widest range of customers

(i.e., make all retailers have supply of some of the new products). This is formulated

as the following parameterized general 3-scm H-product-line cover problem.

Given a line P of homogeneous products, a general supply chain model

G = (S ∪M ∪ R,E), and an integer k, is it possible to pick k suppliers

for the products in P so that each retailer has supply of some products in

its associated product list?

To study the complexity of this problem, we consider the problem weighted

satisfiability on monotone Π4-circuits, shortly wcs+[4], which is a subprob-

lem of the problem wcs[4] with an additional constraint that in the input pair (C, k)

the Π4-circuit C be monotone (i.e., all input gates of C be labeled by positive input

literals). It is known that the problem wcs+[4] is alsoW [4]-complete [26]. Thus, in or-

der to prove the W [4]-completeness for general 3-scm H-product-line cover, it

suffices to present fpt-reductions between wcs+[4] and general 3-scm H-product-

line cover.

Lemma VII.2 The problem general 3-scm H-product-line cover is in W [4].

Proof. We show how the problem general 3-scm H-product-line cover

is fpt-reducible to the problem wcs+[4].

Let (P,G, k) be an instance of general 3-scm H-product-line cover, where

P = {π1, . . . , πh} is a product line and each product πi is associated with a set of

materials needed for producing πi, G = (S∪M ∪R,E) is a general 3-tier supply chain

with the supplier set S = {σ1, . . . , σn}, the manufacturer set M = {µ1, . . . , µm}, and

the retailer set R = {ρ1, . . . , ρt}. Let T = {τ1, . . . , τp} be the set of different materials
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that are needed for the products in P (T can be obtained directly from the product

list P ). Each supplier σi is associated with a subset of T , indicating the materials

that can be provided by σi; each manufacturer µi is associated with a subset of P ,

indicating the products that can be produced by µi when necessary materials are

provided by the suppliers linked to µi; and each retailer ρi is associated with a subset

of P , indicating the products that the retailer ρi is interested in carrying from the

manufacturers linked to ρi.

We construct an instance (C, k) for wcs+[4], where the monotone Π4-circuit C

has the following structure:

(V0) The level-0 output and-gate in C is g0;

(V1) The set of level-1 gates in C consists of t or-gates ui, 1 ≤ i ≤ t, corresponding

to the t retailers in G;

(V2) For each manufacturer µi and each product πj in the associated product list of

µi, there is an and-gate vij in level 2 in C;

(V3) For each manufacturer µi and each material τj that is needed for a product in

the associated product list of µi, there is an or-gate wij in level 3 in C;

(V4) the set of level-4 gates in C consists of n input gates labeled xi, 1 ≤ i ≤ n,

respectively, corresponding to the n suppliers in G.

The gates in the circuit C are connected as follows:

(E1) all level-1 gates are inputs to the output gate g0;

(E2) a level-2 gate vij is an input to a level-1 gate us if there is a link in G from the

manufacturer µi to the retailer ρs in the supply chain G, and if the product πj

is contained in both associated product lists of µi and ρs;



186

(E3) a level-3 gate wij is an input to a level-2 gate vis if the material τj is needed

for the product πs, and the product πs is contained in the associated product

list of the manufacturer µi;

(E4) an input gate labeled xi is an input of a level-3 gate wjs if and only if the

supplier σi can provide the material τs and if the supplier σi is linked to the

manufacturer µj (note that by the construction, the material τs is needed for

some product in µj).

This completes the description of the circuit C, which is obviously a monotone

Π4-circuit. We now show that (P,G, k) is a yes-instance for general 3-scm H-

product-line cover if and only if (C, k) is a yes-instance for wcs+[4]. For this,

we establish a one-to-one mapping between the subsets of k suppliers in G and the

weight-k assignments to the circuit C, as follows: each subset Sk of k suppliers in G

corresponds to the assignment φ(Sk) in C that assigns value 1 to an input variable

xi if and only if the supplier σi is in Sk. To prove the lemma, it suffices to show that

φ(Sk) is a satisfying assignment for C if and only if picking the k suppliers in Sk will

make all retailers in G have supply for some products in P . This can be verified by

the following facts:

(F1) By rule (E4), a level-3 or-gate wjs has value 1 under the assignment φ(Sk) if

and only if the manufacturer µj has supply of material τs under the supplier

selection Sk;

(F2) By rule (E3), a level-2 and-gate vis has value 1 under the assignment φ(Sk) if

and only if the manufacturer µi has supply for all needed materials for product

πs under the supplier selection Sk, that is, if and only if µi can produce the

product πs;

(F3) By rule (E2), a level-1 or-gate us has value 1 under the assignment φ(Sk) if
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and only if the retailer ρs has supply of some products in its associated product

list under the supplier selection Sk.

Summarizing facts (F1), (F2), and (F3), we conclude that the weight-k assignment

φ(Sk) satisfies the circuit C if and only if all retailers in G have supply for some

products in P under the selection of the k suppliers in Sk. Since the mapping from

Sk to φ(Sk) is a one-to-one mapping from the subsets of k suppliers in G to the

weight-k assignments for the circuit C, this verifies that this reduction from general

3-scm H-product-line cover to wcs+[4] is an fpt-reduction. In consequence, the

problem general 3-scm H-product-line cover is in the class W [4].

Now we verify the W [4]-hardness for the problem general 3-scm H-product-

line cover.

Lemma VII.3 The problem general 3-scm H-product-line cover is W [4]-

hard.

Proof. As explained in the paragraph before Lemma VII.2, it suffices to present

an fpt-reduction from the problem wcs+[4] to the problem general 3-scm H-

product-line cover.

Let (C, k) be an instance of wcs+[4], where C is a monotone Π4-circuit. Let the

output and-gate of C be g0, and suppose that in the circuit C there are t level-1

or-gates ui, 1 ≤ i ≤ t, q level-2 and-gates vi, 1 ≤ i ≤ q, m level-3 or-gates wi,

1 ≤ i ≤ m, and n input gates labeled xi, 1 ≤ i ≤ n. We first perform a preprocessing

on the circuit C as follows. If any gate g (at any level) has exactly the same input

as another gate g′ at the same level, then we “merge” these two gates into a single

gate g′′ of the same type, and let the output of g′′ connect to the outputs of g and

g′ in the original circuit. It is easy to see that such a modification can be done in

polynomial time and does not change the circuit function. With this preprocessing,
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we can assume, without loss of generality, that no two gates at the same level in the

circuit have exactly the same input.

We construct an instance (P,G, k) for general 3-scm H-product-line cover,

where G = (S ∪M ∪R,E), as follows. Each level-3 gate wi corresponds to a different

material τi, 1 ≤ i ≤ m, and each input variable xi corresponds to a supplier σi,

1 ≤ i ≤ n (thus, S = {σ1, . . . , σn}). A material τi is in the supplier σj (recall that

each supplier is specified by a set of materials that can be provided by the supplier) if

and only if the variable xj is an input to the level-3 gate wi. There are q products πi

in P , 1 ≤ i ≤ q, such that a material τj is needed for the product πi if and only if the

level-3 gate wj is an input to the level-2 gate vi (thus, P = {π1, . . . , πq}, note that by

our preprocessing, all products in P require different subsets of materials). There are

also q manufacturers µi, corresponding to the q level-2 gates vi in C, 1 ≤ i ≤ q (thus,

M = {µ1, . . . , µq}). For each i, the manufacturer µi is associated with the product set

{πi} consisting of a single product πi. Finally, there are t retailers ρi, corresponding

to the t level-1 gates ui in C, 1 ≤ i ≤ t (thus, R = {ρ1, . . . , ρt}). The product set

associated with a retailer ρi consists of exactly those products πj such that the level-2

gate vj is an input of the level-1 gate ui. The suppliers in S and the manufacturers

in M are fully connected (i.e., every supplier is linked to every manufacturer), and a

manufacturer µi is linked to a retailer ρj if and only if the level-2 gate vi is an input to

the level-1 gate uj. This completes the description of the general 3-tier supply chain

model G and the product set P .

As we did in Lemma VII.2, we establish a one-to-one mapping between the

subsets of k suppliers in G and the weight-k assignments for the circuit C, by mapping

a subset Sk of k suppliers to the assignment φ(Sk) such that φ(Sk) assigns value 1 to

a variable xi if and only if the supplier σi is in the subset Sk. Again we show that

φ(Sk) is a satisfying assignment for the circuit C if and only if the selection of the k
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suppliers in Sk makes all retailers in R to have supply for some products in P . This

can be proved by verifying the following facts.

(F1) By our construction of the suppliers in S, and since the suppliers and the

manufacturers in G are fully connected, a level-3 or-gate wi in C has value 1

under the assignment φ(Sk) if and only if the material τi can be provided (to

all manufacturers) under the supplier selection Sk;

(F2) A level-2 and-gate vi has value 1 under the assignment φ(Sk) if all of its inputs

in level 3 have value 1, equivalently, if all needed materials for product πi are

provided for the manufacturer µi under the supplier selection Sk. Therefore,

a level-2 gate vi has value 1 under the assignment φ(Sk) if and only if the

manufacturer µi can produce the product πi under the supplier selection Sk

(note that πi is the only product that can be produced by the manufacturer

µi);

(F3) Finally, by our connections between the manufacturers and retailers in G, a

retailer ρi has supply of a product πj in P under the supplier selection Sk if

and only if the manufacturer µj is linked to ρi and can produce the product πj ,

equivalently, if and only if the level-2 gate vj in C is an input of the level-1 or-

gate ui and vj has value 1 under the assignment φ(Sk). Therefore, the retailer

ρi has supply of some products in P under the supplier selection Sk if and only

if the level-1 gate ui has value 1 under the assignment φ(Sk).

This completes the verification that the assignment φ(Sk) satisfies the circuit C

if and only if every retailer in G has supply of some products in P . It clearly gives

an fpt-reduction from wcs+[4] to general 3-scm H-product-line cover. In

consequence, the problem general 3-scm H-product-line cover is W [4]-hard.
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Combining Lemma VII.2 and Lemma VII.3, we get immediately,

Theorem VII.4 The problem general 3-scm H-product-line cover is W [4]-

complete.

TheW [4]-completeness also provides precise complexity characterization for other

computational problems in 3-tier supply chain management. For example, sup-

pose now that a firm is interested in investigating the market for a set P of non-

homogeneous products. The 3-tier supply chain is again given as a network of suppli-

ers, manufacturers, and retailers, where each supplier is given as before and associated

with a set of materials that can be provided by the supplier. Each manufacturer µ

is associated with a set Tµ of materials and a set Pµ of products such that when

all materials in Tµ are provided by suppliers linked to µ, the manufacturer µ can

produce all products in Pµ. Finally, each retailer ρ is associated with a requested list

of products that must be carried by the retailer ρ. This supply chain model gives a

parameterized problem as follows:

general 3-scm product-set cover:

Given a product set P , a general supply chain model G = (S ∪M ∪R,E)

as described above, and an integer k, is it possible to pick k suppliers in

S for materials so that every retailer in R has supply of all products in

its associated product list?

The main difference between general 3-scm H-product-line cover and

general 3-scm product-set cover is that in the former model each retailer

only needs to carry some of the products in its associated list while in the latter

model each retailer must carry all products in its associated list.
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The proof for the following theorem is similar to (actually, slightly simpler than)

that for Lemma VII.2 and Lemma VII.3. We omit it and leave it to the interested

readers.

Theorem VII.5 The general 3-scm product-set cover problem is

W [4]-complete.

D. Computational lower bounds and inapproximability results

Theorem VII.1, Theorem VII.4 and Theorem VII.5 provide strong lower bounds for

the complexity of the problems 3-scm single-product cover, general 3-scm

H-product-line cover, and general 3-scm product-set cover.

Theorem VII.6 For any recursive function f , the problem 3-scm single-product

cover cannot be solved in time f(k)mO(1)no(k) unless W [2] = FPT, and the prob-

lems general 3-scm H-product-line cover and general 3-scm product-set

cover cannot be solved in time f(k)mO(1)no(k) unless W [3] = FPT, where n is the

number of suppliers and m is the size of the instance of the problems.

Proof. Suppose that the problem 3-scm single-product cover could be

solved in time f(k)mO(1)no(k), then by the fpt-reduction from wcs−[3] to 3-scm

single-product cover given in Theorem VII.1, it is easy to see that the problem

wcs−[3] can also be solved in time f(k)mO(1)no(k), where m is the instance size and n

is the number of input variables in the circuit. By Theorem 4.2 in [18], it would imply

W [2] = FPT. The lower bounds for general 3-scm H-product-line cover and

general 3-scm product-set cover can be proved in the same way using the

same theorem in [18].

Since it is generally believed that W [t] 6= FPT for all t > 0, Theorem VII.6 pro-

vides a computational lower bound f(k)mO(1)nΩ(k) for the problems 3-scm single-
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product cover, general 3-scm H-product-line cover, and general 3-scm

product-set cover. Note that this is an asymptotically tight lower bound for the

problems as the algorithm that exhaustively enumerates and examines all subsets of

k suppliers in a problem instance solves the problems in time O(m2nk) trivially.

Theorem VII.6 further implies inapproximability results for certain optimization

problems in 3-tier supply chain management. For this, we need to first review some

related terminologies in approximation algorithms. The readers are referred to [4] for

more detailed definitions and more comprehensive discussions.

An optimization problem Q consists of a set of instances, where each instance x

is associated with a set of solutions. Each solution y of an instance x of Q is assigned

an integral value fQ(x, y). The problem Q is a maximization (resp. minimization)

problem if for each instance x of Q, we are looking for a solution of maximum (resp.,

minimum) value. Such a solution is called an optimal solution for the instance, whose

value is denoted by optQ(x).

An algorithm A is an approximation algorithm for an optimization problem Q if,

for each instance x of Q, the algorithm A returns a solution yA(x) for x. The solution

yA(x) has an approximation ratio r if it satisfies the following condition:

• optQ(x)/fQ(x, yA(x)) ≤ r if Q is a maximization problem

• fQ(x, yA(x))/optQ(x) ≤ r if Q is a minimization problem

The approximation algorithm A has an approximation ratio r if for any instance x

of Q, the solution yA(x) constructed by the algorithm A has an approximation ratio

bounded by r. A polynomial time approximation scheme (PTAS) forQ is an algorithm

A′ that on an instance x of Q and a real number ǫ > 0, constructs a solution for x

whose approximation ratio is bounded by 1+ǫ, and the running time of A′ is bounded

by a polynomial of |x| for each fixed ǫ (see [4] for more detailed discussions on PTAS).
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Now consider the following optimization problems in supply chain management:

The 3-scm most complicated product cover problem:

Given a 3-tier supply chain G, we say a product P that requires k different

materials is viable if we can select k suppliers in G, each for a different kind

of material, such that P can be produced and all retailers in G have supply

of P . Our goal is to find the largest such k, i.e. the most complicated

product viable to G.

the general 3-scm minimum-resource H-product-line cover prob-

lem:

Given a line P of homogeneous products and a general 3-tier supply chain

G (as defined in general 3-scm H-product-line cover), select the

minimum number of suppliers in G for the product line P , such that each

retailer in G has supply of some products in its associated product list.

and the general 3-scm minimum-resource product-set cover

problem:

Given a set P of non-homogeneous products and a general 3-tier supply

chain G (as defined in general 3-scm product-set cover), select the

minimum number of suppliers in G for the product set P , such that each

retailer in G has supply of all products in its product list.

Note that 3-scm most complicated product cover is a maximization problem

while general 3-scm minimum-resource H-product-line cover and gen-

eral 3-scm minimum-resource product-set cover are minimization problems.

An optimization problem Q can be parameterized using the following formulation

[18]:
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Definition VII.7 The parameterized version of an optimization problem Q is defined

as follows:

1. If Q is a maximization problem, then the parameterized version of Q is defined

as Q≥ = {(x, k) | x is an instance of Q andoptQ(x) ≥ k};

2. If Q is a minimization problem, then the parameterized version of Q is defined

as Q≤ = {(x, k) | x is an instance of Q and optQ(x) ≤ k}.

Now we consider the parameterized versions of the problems 3-scm most com-

plicated product cover, general 3-scm minimum-resource H-product-

line cover, and general 3-scm minimum-resource product-set cover. The

parameterized versions of these problems look slightly different from the correspond-

ing problems in Theorem VII.6. For example, an instance (x, k) of general 3-scm

H-product-line cover asks whether we can pick exact k suppliers so that all

retailers are covered by a given product line, while an instance (x, k) of the param-

eterized version of general 3-scm minimum-resource H-product-line cover

asks whether we can pick at most k suppliers so that all retailers are covered by a

given product line. However, a more careful examination shows that the two problems

are in fact equivalent. In particular, if (x, k) is a yes-instance of the problem gen-

eral 3-scm H-product-line cover, then obviously (x, k) is also a yes-instance

of the parameterized version of the problem general 3-scm minimum-resource

H-product-line cover. On the other hand, suppose that (x′, k) is a yes-instance

of the parameterized version of the problem general 3-scm minimum-resource

H-product-line cover, where x′ = (P, (S ∪M ∪ R,E)), P is a product line, and

(S ∪M ∪ R,E) is a general supply chain model, as given in the description of the

problem general 3-scm H-product-line cover. Then there are k1 suppliers in

S for the given product line P , where k1 ≤ k, so that selecting these k1 suppliers
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will make the product line P cover all retailers in R. Note that picking these k1

suppliers plus any k − k1 other suppliers in S will give k suppliers whose selection

also makes the product line P cover all retailers in R. This shows that (x′, k) is also

a yes-instance for the problem general 3-scm H-product-line cover. Thus,

(x, k) is a yes-instance for the problem general 3-scm H-product-line cover

if and only if (x, k) is a yes-instance for the parameterized version of the problem

general 3-scm minimum-resource H-product-line cover. This shows the

equivalence between the two problems. Similarly, the equivalences can be derived

between the problem 3-scm single-product cover and the parameterized ver-

sion of the problem 3-scm most complicated product cover and between the

problem general 3-scm product-set cover and the parameterized version of

the problem general 3-scm minimum-resource product-set cover.

Now we are ready for the following theorem.

Theorem VII.8 For any recursive function f , the problem 3-scm most compli-

cated product cover has no PTAS of running time f(1/ǫ)mO(1)no(1/ǫ) unless

W [2] = FPT, and the problems general 3-scm minimum-resource H-product-

line cover and general 3-scm minimum-resource product-set cover have

no PTAS of running time f(1/ǫ)mO(1)no(1/ǫ) unless W [3] = FPT, where n is the

number of suppliers and m is the instance size of the problems.

Proof. We give the detailed proof for the problem general 3-scm minimum-

resource H-product-line cover. Suppose that this problem has a PTAS of

running time f(1/ǫ)mO(1)no(1/ǫ) for a recursive function f , then by Theorem 5.1 in

[16], its parameterized version can be solved in time f(2k)mO(1)no(k). Since the

parameterized version of the problem general 3-scm minimum-resource H-

product-line cover is equivalent to the problem general 3-scm H-product-



196

line cover, this would imply that the problem general 3-scm H-product-line

cover can be solved in time f(2k)mO(1)no(k), which, by Theorem VII.6, would imply

W [3] = FPT. The inapproximability for the problems 3-scm most complicated

product cover and general 3-scm minimum-resource product-set cover

can be proved using the same logic.

Since it is commonly believed in parameterized complexity theory that W [t] 6=

FPT for all t ≥ 1, Theorem VII.8 implies that even for a moderate error bound ǫ > 0,

any PTAS for the problems, if exists, will become impractical.

E. Final remarks

This chapter studies the complexity issues for certain computational problems aris-

ing from the research in supply chain management, and characterizes these problems

in terms of parameterized completeness in higher levels in the W -hierarchy. The

research contributes to both parameterized complexity theory and to the study of

supply chain management. For parameterized complexity theory, we presented the

first group of natural complete problems for the classes W [3] and W [4], which had

no known natural complete problems except the generic complete problems wcs[3]

and wcs[4] and their variations. For the study of supply chain management, to the

authors’ knowledge, our results provide first group of precise complexity characteri-

zations for certain computational problems in the area, which derive directly strong

computational lower bounds and inapproximability results for the problems. The

hardness results of these problems will provide useful information in the study of

supply chain management.

A supply chain model has its units classified into different kinds, which makes

it natural to map the computation in the supply chain model to that of bounded
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depth circuits. However, the mapping is not always straightforward and in many

cases must be with care. As we have seen in the current chapter, problems on 3-tier

supply chains can either correspond to the class W [3], which is associated with the

satisfiability problem on Π3-circuits of 3 levels, or correspond to the class W [4], which

is associated with the satisfiability problem on Π4-circuits of 4 levels.

To further clarify this phenomenon, we consider a 4-tier supply chain model based

on the e-waste recycling system studied by Nagurney and Toyasaki [74]. An e-waste

recycling system consists of four kinds of units: the waste-sources, the recyclers, the

processors, and the markets. A waste-source is linked to a recycler if the waste-source

sends waste to the recycler. A recycler is linked to a processor if the recycler sends

materials to the processor for processing and manufacturing. A processor is linked

to a market if products produced by the processor are carried by the market. The

problem we are concerned here is the market pollution problem. We assume that

a waste-source may send harmful waste (probably on purpose) to recyclers without

notifying the recyclers, and that a recycler has no knowledge about if it has collected

harmful waste. Therefore, a recycler that collected harmful waste will deliver harmful

materials to processors that, in turn, will produce dangerous products. Finally, a

market will be polluted if it carries dangerous products. Now the question is if there

exist a small number of waste-sources that can send harmful waste and pollute all

markets. The problem is formulated as the following parameterized problem.

e-recycling and market pollution:

Given an e-waste recycling system H(S,R, P,M, T ) and an integer k,

where S is the set of waste-sources, R is the set of recyclers, P is the set

of processors, M is the set of markets, and T is the set of connections

between adjacent tiers (i.e. from S to R, from R to P , or from P to M).



198

Is there a collection W of k waste-sources such that if all waste-sources in

W send harmful waste then all markets are polluted?

Theorem VII.9 e-recycling and market pollution is W [2]-complete.

Proof. Consider the weighted satisfiability on monotone Π2-circuits

problem, shortly wcs+[2], which is a subproblem of the problem wcs[2] with an

additional constraint that in the input pair (C, k) the Π2-circuit C be monotone

(i.e., all input gates of C be labeled by positive input literals). It is known [26]

that the problem wcs+[2] is W [2]-complete. Therefore, to prove the theorem, it

suffices to present fpt-reductions between the problems wcs+[2] and e-recycling

and market pollution.

Let (C, k) be an instance of the problem wcs+[2], where C is a monotone Π2-

circuit with input variables x1, . . ., xn and or-gates g1, . . ., gm. We construct an

e-waste recycling system H(S,R, P,M, T ), where

• the set S consists of n waste-sources σ1, . . ., σn;

• the set R consists of m recyclers ρ1, . . ., ρm, where a recycler ρi is linked to

a waste-source σj if and only if the or-gate gi in C has the variable xj as an

input (note that the circuit C is monotone);

• the set P consists of m processors π1, . . ., πm, where for each i, the processor

πi is linked to the recycler ρi; and

• the set M consists of m markets µ1, . . ., µm, where for each i, the market µi is

linked to the processor πi.

It is easy to verify that there is a weight-k assignment φ satisfying the circuit C (i.e.,

the assignment φ makes all or-gates g1, . . ., gm in C have value 1) if and only if there

are k waste-sources in the e-waste recycling system H(S,R, P,M, T ) that can pollute
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all markets in M . Therefore, this is an fpt-reduction from wcs+[2] to e-recycling

and market pollution. In consequence, the problem e-recycling and market

pollution is W [2]-hard.

To show that the problem e-recycling and market pollution is in W [2],

we reduce each instance (H(S,R, P,M, T ), k) of the problem to an instance (C, k) of

wcs+[2] as follows. For each waste-source σi in S, the circuit C has an input variable

xi, and for each market µj in M , the circuit C has an or-gate gj. The variable xi

is an input to the or-gate gj in the circuit C if and only if there is a direct path in

H(S,R, P,M, T ) from the waste-source σi to the market µj. Again it is routine to

verify that this gives an fpt-reduction from e-recycling and market pollution

to wcs+[2], which implies that the problem e-recycling and market pollution

is in W [2].

Theorem VII.9 shows that the computational complexity of the problems in sup-

ply chain management does not directly depend on the number of tiers in the model

but is more closely related to the actual applications. In particular, the research in

supply chain management has opened an area in computational complexity and opti-

mization, and provided very rich contexts for new large-scale optimization problems

that are both theoretically interesting and practically important.
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CHAPTER VIII

SUMMARY AND FUTURE RESEARCH

In this dissertation, we took a topological approach in designing efficient protocols for

wireless sensor networks, developing effective parameterized algorithms for a set of

well-known NP-hard problems and showing their applications in bioinformatics. The

protocols and algorithms discussed in this dissertation can be improved in terms of

overhead and efficiency. Furthermore researches in this dissertation are a good start

for future research in the area of wireless sensor networking, ubiquitous computing

and bioinformatics.

A. Dissertation summary

For wireless sensor networking, we studied the separability and the existence of a

power efficient spanner for general wireless sensor networks. Based on these prop-

erties we derived efficient compact routing protocols for such networks. We also

designed a novel routing algorithm based on face tracing that does not rely on any

network model. The face tracing based routing algorithm can utilize the knowledge

of node positions but still works when such information is not available. We devel-

oped robust planarization algorithms for unlocalized wireless sensor networks. Such

planarization has applications in routing, data storage, and topology discovery. We

present our sorting based data storage scheme that can achieve data load balance

and supports ranged query in a natural way. We conduct extensive simulations to

verify the excellency of our protocols. The simulation results showed that our routing

schemes, topology discovery and data storage scheme have low overhead and outper-

form previous approaches.

For general computational optimization, we study the color coding technique.
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We present the application in solving k-path problem. Our algorithm runs in time

O(12.2kP (n)) and improve previous algorithm significantly. Then we extend our

color coding technique to solve the enumeration problems. We showed that certain

techniques include branch and bound, color coding, and bounded treewidth can be

generalized to solve the enumeration version of many NP-complete problems. At last

we presented a polynomial formulation of the signaling pathway problem that can

produce seemingly nice results for most cases in our simulations.

B. Future work

With the continuing advancement of the mobile communication technology and the

wide spreading of personal computing devices, we are entering an era of ubiquitous

computing [45, 47]. All kinds of information devices will be connected together to form

a ubiquitous network where information and services can be accessed at any time,

anywhere by anyone. Wireless sensor networks are very good examples of ubiquitous

networks. The strong combination of collecting data, performing computations and

communicating in sensor networks has become a strong force for scientific research

and engineering. There are many questions in ubiquitous computing waiting to be

answered.

To achieve the goal of ubiquitous computing, data should be stored properly

within the network to enable efficient query and retrieval. However, unlike a LAN

or the Internet, ubiquitous networks usually are not nicely structured. Furthermore,

many nodes in a ubiquitous network could be wireless nodes that rely on battery

power. This constraint limits the computational power and communication power of

the nodes and brings new challenges to us. For example, we have to carefully balance

the load between nodes to avoid a single node from being quickly drained out of
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power. Fundamental problems like routing, data security and network dynamics are

other examples of the difficulties we have to deal with in ubiquitous computing.

1. Topological structure of ubiquitous networks

Ubiquitous networks are complex networks with inner structures hidden behind their

topology. To discover these structures, one does not necessarily have to seek help

from expensive devices (e.g., GPS). In many cases such hidden structures can be

found algorithmically. The topology of wireless networks is closely correlated to the

geometrical location of each node. The topological properties of the network can often

tell us enough about the structures of the network to achieve certain goals (routing

etc.). Based on such structures we can then develop algorithms and protocols that

do not rely on the knowledge other than the network topology itself. Furthermore,

knowledge of the topological features of the network can help improve the compu-

tation/communication process even when the nodes’ positions are known. However,

the study of the topological properties of the underlying graph model for general

wireless networks has just started. There are many works assuming that the network

is deployed in a 2-D space with idealized models. I will continue my study on general

network models where the network is deployed in a 3-D space and the underlying

graph model of the network is more complex and realistic.

2. Efficient routing protocols for ubiquitous computing

Routing is the building block for many applications in distributed networks. In the

case of ubiquitous networks, an efficient routing algorithm is essential for data storage

and information retrieval schemes. Geographic routing has been very successful in

wireless sensor networks where the model is restricted to UDG or some special quasi-

UDGs with the knowledge of node location information. There have been a few
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papers addressing the case of unlocalized general sensor networks. Most of them

assume either very dense networks or very large scale networks. I will focus on the

realistic network model of low density and different scales.

3. Balanced data storage in ubiquitous networks

Studying of load balancing in terms of the amount of data each node stores has not

been done much for in-network storage in wireless networks. The amount of data

stored in a node usually directly decides how often this node will be accessed in the

future. To balance the energy consumption it is very desirable to have all the nodes

store the same amount of data. Furthermore, efficient ranged query, if available,

will increase the quality and performance of data service significantly for ubiquitous

networks. Our current research provides a very good start of efficient schemes for

high quality data service.
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