4,633 research outputs found

    Transfer Learning-Based Crack Detection by Autonomous UAVs

    Full text link
    Unmanned Aerial Vehicles (UAVs) have recently shown great performance collecting visual data through autonomous exploration and mapping in building inspection. Yet, the number of studies is limited considering the post processing of the data and its integration with autonomous UAVs. These will enable huge steps onward into full automation of building inspection. In this regard, this work presents a decision making tool for revisiting tasks in visual building inspection by autonomous UAVs. The tool is an implementation of fine-tuning a pretrained Convolutional Neural Network (CNN) for surface crack detection. It offers an optional mechanism for task planning of revisiting pinpoint locations during inspection. It is integrated to a quadrotor UAV system that can autonomously navigate in GPS-denied environments. The UAV is equipped with onboard sensors and computers for autonomous localization, mapping and motion planning. The integrated system is tested through simulations and real-world experiments. The results show that the system achieves crack detection and autonomous navigation in GPS-denied environments for building inspection

    A Probabilistic Framework for Imitating Human Race Driver Behavior

    Full text link
    Understanding and modeling human driver behavior is crucial for advanced vehicle development. However, unique driving styles, inconsistent behavior, and complex decision processes render it a challenging task, and existing approaches often lack variability or robustness. To approach this problem, we propose Probabilistic Modeling of Driver behavior (ProMoD), a modular framework which splits the task of driver behavior modeling into multiple modules. A global target trajectory distribution is learned with Probabilistic Movement Primitives, clothoids are utilized for local path generation, and the corresponding choice of actions is performed by a neural network. Experiments in a simulated car racing setting show considerable advantages in imitation accuracy and robustness compared to other imitation learning algorithms. The modular architecture of the proposed framework facilitates straightforward extensibility in driving line adaptation and sequencing of multiple movement primitives for future research.Comment: updated references [17] and [33]; added journal inf

    Pathfinder autonomous rendezvous and docking project

    Get PDF
    Capabilities are being developed and demonstrated to support manned and unmanned vehicle operations in lunar and planetary orbits. In this initial phase, primary emphasis is placed on definition of the system requirements for candidate Pathfinder mission applications and correlation of these system-level requirements with specific requirements. The FY-89 activities detailed are best characterized as foundation building. The majority of the efforts were dedicated to assessing the current state of the art, identifying desired elaborations and expansions to this level of development and charting a course that will realize the desired objectives in the future. Efforts are detailed across all work packages in developing those requirements and tools needed to test, refine, and validate basic autonomous rendezvous and docking elements

    Vehicle and Traffic Safety

    Get PDF
    The book is devoted to contemporary issues regarding the safety of motor vehicles and road traffic. It presents the achievements of scientists, specialists, and industry representatives in the following selected areas of road transport safety and automotive engineering: active and passive vehicle safety, vehicle dynamics and stability, testing of vehicles (and their assemblies), including electric cars as well as autonomous vehicles. Selected issues from the area of accident analysis and reconstruction are discussed. The impact on road safety of aspects such as traffic control systems, road infrastructure, and human factors is also considered
    corecore