261 research outputs found

    Affective e-learning approaches, technology and implementation model: a systematic review

    Get PDF
    A systematic literature study including articles from 2016 to 2022 was done to evaluate the various approaches, technologies, and implementation models involved in measuring student engagement during learning. The review’s objective was to compile and analyze all studies that investigated how instructors can gauge students’ mental states while teaching and assess the most effective teaching methods. Additionally, it aims to extract and assess expanded methodologies from chosen research publications to offer suggestions and answers to researchers and practitioners. Planning, carrying out the analysis, and publishing the results have all received significant attention in the research approach. The study’s findings indicate that more needs to be done to evaluate student participation objectively and follow their development for improved academic performance. Physiological approaches should be given more support among the alternatives. While deep learning implementation models and contactless technology should interest more researchers. And, the recommender system should be integrated into e-learning system. Other approaches, technologies, and methodology articles, on the other hand, lacked authenticity in conveying student feeling

    Intelligent Tutoring System Authoring Tools for Non-Programmers

    Get PDF
    An intelligent tutoring system (ITS) is a software application that tries to replicate the performance of a human tutor by supporting the theory of learning by doing . ITSs have been shown to improve the performance of a student in wide range of domains. Despite their benefits, ITSs have not seen widespread use due to the complexity involved in their development. Developing an ITS from scratch requires expertise in several fields including computer science, cognitive psychology and artificial intelligence. In order to decrease the skill threshold required to build ITSs, several authoring tools have been developed. In this thesis, I document several contributions to the field of intelligent tutoring in the form of extensions to an existing ITS authoring tool, research studies on authoring tool paradigms and the design of authoring tools for non-programmers in two complex domains - natural language processing and 3D game environments. The Extensible Problem Specific Tutor (xPST) is an authoring tool that helps rapidly develop model-tracing like tutors on existing interfaces such as webpages. xPST\u27s language was made more expressive with the introduction of new checktypes required for answer checking in problems belonging to domains such as geometry and statistics. A web-based authoring (WAT) tool was developed for the purpose of tutor management and deployment and to promote non-programmer authoring of ITSs. The WAT was used in a comparison study between two authoring tool paradigms - GUI based and text based, in two different problem domains - statistics and geometry. User-programming of natural language processing (NLP) in ITSs is not common with authoring toolkits. Existing NLP techniques do not offer sufficient power to non-programmers and the NLP is left to expert developers or machine learning algorithms. We attempted to address this challenge by developing a domain-independent authoring tool, ConceptGrid that is intended to help non-programmers develop ITSs that perform natural language processing. ConceptGrid has been integrated into xPST. When templates created using ConceptGrid were tested, they approached the accuracy of human instructors in scoring student responses. 3D game environments belong to another domain for which authoring tools are uncommon. Authoring game-based tutors is challenging due to the inherent domain complexity and dynamic nature of the environment. We attempt to address this challenge through the design of authoring tool that is intended to help non-programmers develop game-based ITSs

    Analysis of interaction patterns - attention

    Get PDF
    Dissertação de mestrado em Engenharia InformáticaThe attention, or focus, with which people perform their tasks has an important role on their success. Such tasks can be like study or work. Nowadays, our lifestyle can lead to a scatter of focus, especially when attending to several tasks or filtering loads of information, which in a laptop or desktop, can mean interacting with several applications simultaneously. This project will analyze and monitor the behavior of the users of desktop applications with the main aim to measure changes in user attention and focus throughout the day, and so, to know when a user is more focused and on better conditions to work. Leisure and work applications will also have an important play in this project, as the interaction with the laptop will be analyzed on both applications categories.A atenção, ou concentração, com que realizámos tarefas tem um papel importante na realização com sucesso das mesmas. Tais tarefas podem ser de estudo ou de trabalho. Hoje em dia, o nosso estilo de vida pode levar a uma dispersão da atenção, especialmente quando lidámos com várias tarefas ou informação, que num ambiente de trabalho pode significar interagir com várias aplicações simultaneamente. Este projecto irá analisar e monitorizar o comportamento dos utilizadores em aplicações com o objectivo principal de medir as mudanças na atenção do utilizador durante todo o dia, e assim saber quando um utilizador está mais focado e em melhores condições de realizar trabalho. Aplicações afectas ao lazer e ao trabalho também serão importantes neste projecto, dado que a interacção do utilizador com o portátil serão analisados em ambas as categorias.In order to be more productive at work, being focused is very important, as well as when studying or attending any other task. Nowadays, our lifestyle it can lead to a scatter of focus, especially when attending to several tasks, which in a laptop, or desktop, can mean interacting with several applications simultaneously. This project will analyze the behavior of the users of desktop applications with the main aim to measure changes in user attention and focus throughout the day. For this study data from a group of 20 people will be collected

    Easy Authoring of Intelligent Tutoring Systems for Synthetic Environments

    Get PDF
    ABSTRACT: We describe how the Extensible Problem Specifi

    The Multimodal Tutor: Adaptive Feedback from Multimodal Experiences

    Get PDF
    This doctoral thesis describes the journey of ideation, prototyping and empirical testing of the Multimodal Tutor, a system designed for providing digital feedback that supports psychomotor skills acquisition using learning and multimodal data capturing. The feedback is given in real-time with machine-driven assessment of the learner's task execution. The predictions are tailored by supervised machine learning models trained with human annotated samples. The main contributions of this thesis are: a literature survey on multimodal data for learning, a conceptual model (the Multimodal Learning Analytics Model), a technological framework (the Multimodal Pipeline), a data annotation tool (the Visual Inspection Tool) and a case study in Cardiopulmonary Resuscitation training (CPR Tutor). The CPR Tutor generates real-time, adaptive feedback using kinematic and myographic data and neural networks

    Med-e-Tel 2013

    Get PDF

    A Framework for Students Profile Detection

    Get PDF
    Some of the biggest problems tackling Higher Education Institutions are students’ drop-out and academic disengagement. Physical or psychological disabilities, social-economic or academic marginalization, and emotional and affective problems, are some of the factors that can lead to it. This problematic is worsened by the shortage of educational resources, that can bridge the communication gap between the faculty staff and the affective needs of these students. This dissertation focus in the development of a framework, capable of collecting analytic data, from an array of emotions, affects and behaviours, acquired either by human observations, like a teacher in a classroom or a psychologist, or by electronic sensors and automatic analysis software, such as eye tracking devices, emotion detection through facial expression recognition software, automatic gait and posture detection, and others. The framework establishes the guidance to compile the gathered data in an ontology, to enable the extraction of patterns outliers via machine learning, which assist the profiling of students in critical situations, like disengagement, attention deficit, drop-out, and other sociological issues. Consequently, it is possible to set real-time alerts when these profiles conditions are detected, so that appropriate experts could verify the situation and employ effective procedures. The goal is that, by providing insightful real-time cognitive data and facilitating the profiling of the students’ problems, a faster personalized response to help the student is enabled, allowing academic performance improvements

    Emotion and Stress Recognition Related Sensors and Machine Learning Technologies

    Get PDF
    This book includes impactful chapters which present scientific concepts, frameworks, architectures and ideas on sensing technologies and machine learning techniques. These are relevant in tackling the following challenges: (i) the field readiness and use of intrusive sensor systems and devices for capturing biosignals, including EEG sensor systems, ECG sensor systems and electrodermal activity sensor systems; (ii) the quality assessment and management of sensor data; (iii) data preprocessing, noise filtering and calibration concepts for biosignals; (iv) the field readiness and use of nonintrusive sensor technologies, including visual sensors, acoustic sensors, vibration sensors and piezoelectric sensors; (v) emotion recognition using mobile phones and smartwatches; (vi) body area sensor networks for emotion and stress studies; (vii) the use of experimental datasets in emotion recognition, including dataset generation principles and concepts, quality insurance and emotion elicitation material and concepts; (viii) machine learning techniques for robust emotion recognition, including graphical models, neural network methods, deep learning methods, statistical learning and multivariate empirical mode decomposition; (ix) subject-independent emotion and stress recognition concepts and systems, including facial expression-based systems, speech-based systems, EEG-based systems, ECG-based systems, electrodermal activity-based systems, multimodal recognition systems and sensor fusion concepts and (x) emotion and stress estimation and forecasting from a nonlinear dynamical system perspective

    Entertainment capture through heart rate activity in physical interactive playgrounds

    Get PDF
    An approach for capturing and modeling individual entertainment (“fun”) preferences is applied to users of the innovative Playware playground, an interactive physical playground inspired by computer games, in this study. The goal is to construct, using representative statistics computed from children’s physiological signals, an estimator of the degree to which games provided by the playground engage the players. For this purpose children’s heart rate (HR) signals, and their expressed preferences of how much “fun” particular game variants are, are obtained from experiments using games implemented on the Playware playground. A comprehensive statistical analysis shows that children’s reported entertainment preferences correlate well with specific features of the HR signal. Neuro-evolution techniques combined with feature set selection methods permit the construction of user models that predict reported entertainment preferences given HR features. These models are expressed as artificial neural networks and are demonstrated and evaluated on two Playware games and two control tasks requiring physical activity. The best network is able to correctly match expressed preferences in 64% of cases on previously unseen data (p−value 6 · 10−5). The generality of the methodology, its limitations, its usability as a real-time feedback mechanism for entertainment augmentation and as a validation tool are discussed.peer-reviewe
    corecore