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General Introduction

Learning is a fundamental part of human nature. The knowledge acquired from
learning new skills helps individuals in changing their cognitive and affective be-
haviour. Learning is the centre of human growth and development and it is hoped
to be the mean for happiness, safety, emancipation, productivity, societal success.
Education, as the set of all planned learning processes and activities, is the “mean by
which men and women deal critically and creatively with reality and discover how
to participate in the transformation of their world” (Freire, 1970).

Despite being so important in the development of an individual, learning is not
always easy. In 1978, Vygotsky explained the difficulty of learning by introducing
the Zone of Proximal Development (Vygotsky, 1978) indicating the psychological
processes that the learner can reach with the support of knowledgeable guidance.
According to Vygotsky, there are certain skills and competencies that the learner can
only acquire if given the right support. With the right guidance, each learner can
stretch outside of the zone of comfort and is able to experience and learn new skills
and concepts. Besides external guidance, also internal factors play a determining
role in learning success. Those are for example motivation to learn (Pintrich, 1999),
the self-determination of an individual (Ryan and Deci, 2000) or meta-cognitive
skills like self-regulation (Winne and Hadwin, 1998; Zimmerman, 2002) and the
right set of dispositions (Buckingham Shum and Crick, 2012), skills, values and
attitudes.

For several decades, educational researchers were busy understanding the “black
box” of learning, trying to unveil the underlying dynamics and the factors that
lead towards successful learning. More recently the education technology research
community has been busy trying to understand the following question: is there a
place for technology to facilitate learning and teaching?

In modern history, scientists have tried to apply technological tools as a means to
investigate and understand complex natural phenomena. For example, in 1609,
Galileo Galilei designed and implemented the first scientific telescope by which he
admired the cratered surfaces of the moon or the details of the milky way. In 1665,
the scientist Robert Hooke inspired the use of microscopes for scientific exploration,
which paved the way to the theory of biological evolution. In 1822, Charles Babbage
started working on the Difference Engine, the ancestor of modern calculators, a
machine made to automatically compute the values of polynomial functions.
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General Introduction

Scientists made use of technology to solve mathematical problems, understand
the complexity of the universe, study the composition of natural elements and
living creatures. Leveraging new technologies has also always been a valid research
approach chosen by researchers to study and understand human learning.

The first massive implementation of digital technologies in education dates back
to the mid-1980s, with the diffusion of the modern personal computer. American
universities started sharing course content in the university libraries implementing
the so-called Computer-Based Learning. Higher education institutions took advantage
of the computer by developing distance courses and primitive forms of e-learning
systems. In parallel to this, the 1980s saw also a “new spring” for Artificial Intelligence
(AI) research. The invention of the back-propagation rule, which allowed Artificial
Neural Networks to learn complex, non-linear problems, generated a new wave of
enthusiasm. The 1980s were characterised by the surge of Expert Systems, computer
programs typically written in LISP that modelled specific portions of knowledge.
In the domain of education and training, these systems took the name Intelligent
Tutoring Systems (ITS), adaptive computer programs which aimed at providing rich
interaction with the student (Yazdani, 1986; Anderson et al., 1985). The ITS research
introduced the idea of the Intelligent Tutor, an intelligent algorithm able to adapt
to the individual learner characteristics and that works as an “instructor in the
box” (Polson et al., 1988) capable of replacing the human teacher. The AI-ITS vision
was both controversial and technically complex to achieve for the 1980s. It did not
fully take-off as much as other educational technologies such as e-learning.

In the 1990s, the e-learning systems took further steps of developments. E-learning
became more popular as it was less ambitious and more applicable also to more
ill-structured subjects, other than mathematics, programming or other natural sci-
ence. E-learning became a tool that could support Computer-Supported Collaborative
Learning (Dillenbourg, 1999). The computer in education shifted from being a
knowledge diffusion system to a platform which encouraged the sharing and the
development of knowledge between groups of learners.

In the 2000s, digital technologies met a fast development also thanks to the fast
spreading of the internet and the World Wide Web. In education research, the
Technology-Enhanced Learning (TEL) community emerged. The initial focus of TEL
was on e-learning systems, learning objects and multimedia educational resources.
While these educational contents were previously only accessible via a personal
computer, in the late 2000s they became available for portable computing devices
such as smartphones, tablets or laptops. These new technological affordances
established the research focus on ubiquitous and mobile learning (Sharples et al.,
2009), i.e. learning anywhere at any time without physical nor geographical location
constraints.

In the 2010s, we observed a data-shift in education technologies with the rise of the
Learning Analytics (LA) research community (Ferguson, 2012). The core idea at the
basis of LA research was that learners interacting with computer devices leave behind
a considerable number of digital footprints which can be collected and analysed for
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describing the learning progress and help to optimise it (Greller and Drachsler, 2012).
Ten years after LA research was introduced, the field has moved forward considerably
by identifying additional fundamental challenges (Selwyn, 2019). Despite the vast
amount of data that can be collected, there is still some confusion on how these
data can be harnessed to support learners. One part of LA research aims to foster
self-regulated learning by stimulating learners to improve their meta-cognitive skills
through self-reflection and social comparison with peer learners (Winne, 2017).
Nevertheless, the common idea of simply providing learners with LA dashboards
for raising their awareness does not seem to change their behaviour and meet their
goals (Jivet et al., 2017). Other challenges LA deals with is how to ensure ethics and
privacy (Drachsler and Greller, 2016)and how to change and inform learning design
with learning analytics and data-driven methods (Schmitz et al., 2017).

Another limitation addressed by the LA community is related to the data source
used. So far, the LA data are mostly related to learners interacting with a digital
platform (e.g. Learning Management System) utilising mouse and keyboard. LA
research – as well as its predecessors – were born nested into the glass slab era: the
main learning and productivity tools are mediated by a computer screen, a mouse
or a keyboard. With such tools, there is little space for interactions with physical
objects in the physical world. The lack of physical interactions during learning led
to a reality drift for learning science. According to the theory of embodied cognition,
humans have developed their cognitive abilities together with the use of their bodies
and that is encoded in the human DNA (Shapiro, 2019). For example, the hands are
made for grasping physical objects, or the human senses developed for witnessing
sound, smell or light. The limited data sources raise valid questions concerning
the understandability and interpretability of the digital footprints analysed by LA
researchers. Trying to derive meaning from limited educational data brings the
risk of falling into the street-light effect (Freedman, 2010), the common practice in
science of searching for answers only in places that are easy to explore.

To include novel data sources and new forms of interaction, a new research fo-
cus has emerged within LA research, coined as Multimodal Learning Analytics
(MMLA) (Blikstein, 2013). The objective of MMLA is to track learning experi-
ences by collecting data from multiple modalities and bridging complex learning
behaviours with learning theories and learning strategies (Worsley, 2014). The
multimodal shift is motivated from a theoretical point of view by the need to achieve
more comprehensive evidence and analysis of learning activities taking place in
the physical realm such as co-located collaborative learning (e.g. Pijeira-Díaz et al.,
2018), psychomotor skills training (e.g. Schneider and Blikstein, 2015; Di Mitri
et al., 2019b), dialogic classroom discussions (e.g. D’mello et al., 2015) which were
underrepresented in LA research and other data-driven learning research. In parallel,
the multimodal shift is also stimulated from a technological push given by the latest
technology developments (Dillenbourg, 2016). Learning researchers are making use
of new technological affordances for gathering evidence about learning behaviour.
In recent years, the low costs of sensor devices made them more affordable. Sensors
can be found embedded in smartphones, fitness trackers, wrist-based monitors or
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General Introduction

Internet of Things devices and provide the possibility to continually measure human
behaviour. These devices can collect data streams and measure life aspects such as
hours and quality of sleep, working and productivity time, food intake, physiological
responses such as heart-rate or electrodermal activity. Multimodal sensors can collect
“social signals” – thin slices of interaction which predict and classify physical and
non-verbal behaviour also in group dynamics. Multimodality is relatively novel in the
field of learning. For this reason, we introduce the metaphor of the unexplored land
which encloses the promise – or probably the hope – to better understand learning
and human behaviour.

In the 2020s, a new kind of educational technology is taking off. With this doctoral
thesis, we introduce it under the name of Multimodal Tutor, a new approach for gen-
erating adaptive feedback from capturing multimodal experiences. The Multimodal
Tutor capitalises on the support of multimodal data for understanding learning and
human behaviour, pushing it to the next level. It proposes a theoretical and method-
ological approach to deal with the complexity of multimodal data by combining the
support of machine learning, artificial intelligence and human assessment. With this
hybrid approach, the Multimodal Tutor carries an advanced promise for learners,
making learning more authentic, adaptive and immersive. We argue the Multimodal
Tutor may enable to move towards a learner-centred and constructionist idea of learn-
ing, as an active and contextualised process of construction of knowledge (Piaget,
1952). The multimodal approach is learner-centred as it focuses on the full span of
human senses and embodied cognitive abilities. It moves away from non-natural
interactions introduced by computers or smartphones and it stimulates interactions
with the physical world. In the meantime, it tracks information about the learner’s
physiology, behaviour, and learning context.

The Multimodal Tutor advocates for reuniting two branches of developments in
education technology which have been developing in parallel. The first one is
Learning Analytics and TEL research that has been focusing primarily on deriving
insights from learning data to support human decision making. The second one is
AI-ITS research, which for almost three decades has designed, developed and tested
artificially intelligent systems that model the knowledge of the learners and guide
them through the learning activities domain.

Outline of the Thesis

This doctoral thesis is organised into four parts and seven chapters. Part I describes
the “Exploratory mission”, characterised by the experiment Learning Pulse described
in Chapter 1. Learning Pulse unveils the complexity of using multimodal data for
learning and paves the way to the Multimodal Tutor. Learning Pulse discovers
empirically a series of complex dynamics, of both conceptual and methodological
nature, derived by using multimodal data for predicting learning performance.

Part II provides a “Map of Multimodality”. Enriched by several lessons learnt with
the Learning Pulse study, in Chapter 2, we explore the concept of multimodality by
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analysing existing constructs and by conducting a literature survey. This qualitative
research approach leads to the formulation of the Multimodal Learning Analytics
Model (MLeAM), a conceptual model which serves as the “Map of Multimodality”.
The MLeAM sheds light on the multimodal feedback loop that the Multimodal Tutor
is set to accomplish. However, if the MLeAM indicates the “way to go”, it does not
say “how to get there”. There is, in fact, the need for a better understanding of the
problem from a technological standpoint and the formulation of the possible solution.
We describe this in chapter 3 with the “Big Five challenges” for the Multimodal Tutor.
The size of the enterprise is then more clear, as much as its multifaceted complexity.

In Part III we reflect on the methodological approach needed to address the chal-
lenges identified in Part II. This results in the “Preparation of the Navy”, a series of
tools needed to be developed for our MMLA journey. There is a large expedition
to realise, designing and implementing technical infrastructure able to follow the
MLeAM, the “map” which led towards the Multimodal Tutor. From there originates
the idea of the Multimodal Pipeline described in Chapter 5. The Multimodal Pipeline
exploits the cyclic nature of the MLeAM and addresses the “Big Five” challenges with
a technical infrastructure. The Multimodal Pipeline reveals to be the most critical
part of the Multimodal Tutor research. The multimodal data streams are complex
to align, synchronise and store. We identify a promising solution by combining
the Multimodal Pipeline with an already existing MMLA prototype, the Multimodal
Learning Hub (Schneider et al., 2018).

Chapter 4 focuses on one specific, unsolved aspect of the Multimodal Pipeline: the
Data Annotation. From this challenge emerges the idea of creating a Visual Inspection
Tool, an application for annotating and inspecting multimodal data streams, which
allows to “read between the lines”. After this achievement, the “navy” is prepared
and ready to sail toward the new promising land to apply MMLA research. In this
phase, we decide to narrow the focus to the specific domain of Cardiopulmonary
Resuscitation Training (CPR). In Chapter 6 we focus on modelling the CPR domain, in
particular how to detect multimodal mistakes using machine learning techniques.

Finally, Part IV describes the conclusive “conquest mission” of the CPR Tutor, an
instance of the Multimodal Tutor. In Chapter 7, the CPR Tutor is employed in a field
study for feedback generation. we report the design, development and experimental
testing of the CPR Tutor.
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Part I

Exploratory mission





Chapter 1

Learning Pulse

Learning Pulse explores whether using a machine learning approach on multimodal
data such as heart rate, step count, weather condition and learning activity can
be used to predict learning performance in self-regulated learning settings. An
experiment was carried out lasting eight weeks involving PhD students as parti-
cipants, each of them wearing a Fitbit HR wristband and having their application
on their computer recorded during their learning and working activities throughout
the day. A software infrastructure for collecting multimodal learning experiences
was implemented. As part of this infrastructure, a Data Processing Application was
developed to pre-process, analyse and generate predictions to provide feedback to
the users about their learning performance. Data from different sources were stored
using the xAPI standard into a cloud-based Learning Record Store. The participants
of the experiment were asked to rate their learning experience through an Activity
Rating Tool indicating their perceived level of productivity, stress, challenge and
abilities. These self-reported performance indicators were used as markers to train a
Linear Mixed Effect Model to generate learner-specific predictions of the learning
performance. We discuss the advantages and limitations of the used approach,
highlighting further development points.

This chapter is based on:

Di Mitri, D., Scheffel, M., Drachsler, H., Börner, D., Ternier, S., & Specht, M. (2017).
Learning Pulse: a Machine Learning Approach for Predicting Performance in Self-
Regulated Learning Using Multimodal Data. In: Proceedings of the Seventh Interna-
tional Learning Analytics & Knowledge Conference 2017 (LAK ’17) (pp. 188–197).
New York, NY, USA. ACM. DOI: 10.1145/3027385.3027447.
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1.1 Introduction

The permeation of digital technologies in learning is opening up interesting oppor-
tunities for educational research. Flipped classrooms, ubiquitous and mobile learning
as other technology-enhanced paradigms of instruction are enabling new data-driven
research practices. Mobile devices, social networks, online collaboration tools as
well as other digital media are able to generate a digital ocean of data (Dicerbo and
Behrens, 2014) which can be “explored” to find new patterns and insights. The
opportunities that data opens up are unprecedented to educational researchers as
they allow to analyse and understand aspects of learning and education which were
difficult to grasp before.

The disruption lies primarily in how the evidence is gathered: “data collection is
embedded, on-the-fly and ever-present” (Cope and Kalantzis, 2015). Collecting
data is not enough to extract useful information: the data must be pre-processed,
transformed, integrated with other sources, mined and interpreted. Reporting on
historical raw data only does not bring, in most of the cases, added value to the
final user. As Li points out (Li, 2015) individuals are already exposed to so many
data they risk to “drawn” into data. What is instead more desirable is receiving
support in-the-moment which can prescribe positive courses of action, especially for
twenty-first-century learners which need to orient themselves continuously in an
ocean of information with very little guidance (Ferguson and Shum, 2012).

Machine learning and predictive modelling can play a major role in extracting high-
level insights which can provide valuable support for learners. Such ability highly
depends whether the attributes taken in consideration to describe the learning exper-
iences (the Input space) are descriptive for the learning process, they carry enough
information to be able to accurately predict a change in the learning performance
(the Output space). The relation between these two dimensions is further described
in section 1.3.1.

The standard data sources in the reviewed predictive applications are most of the time
Learning Management Systems (LMS) and the Student Information Systems. Looking
only at clickstreams, keystrokes and LMS data alone gives a partial representation of
the learning activity, which naturally occurs across several platforms (Suthers and
Rosen, 2011). Several authors have pointed out the need to explore data “beyond
the LMS” (Kitto et al., 2015) to be able to get more meaningful information on the
learning process. We believe that an interesting alternative could be found in the
Internet of Things (IoT) and sensor community. Schneider et al. 2015a have listed
82 prototypes of sensors that can be applied for learning. The employment of IoT
devices allows collecting real-time and multimodal data about the context of the
learning experience.

These considerations have shaped the motivation for the Learning Pulse experiment.
The challenges it seeks to answer are the following: (1) define a set of data sources
“beyond the LMS”; (2) find an approach to couple multimodal data with individual
learning performance; (3) design a system which collects and stores learning ex-
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perience from different sensors in a cloud-based data store; (4) find a suitable data
representation for machine learning; (5) identify a machine learning model for the
collected multimodal data.

Learning Pulse’s main contribution to the Learning Analytics community consists in
outlining the main steps for a new practice to design automated multimodal data
collection to provide personalised feedback for learning with the ultimate aim to
facilitate prediction and reflection, the two most relevant objectives of learning ana-
lytics (Greller and Drachsler, 2012). This proposed practice borrows the modelling
approach from the machine learning field and uses it to model, investigate and
understand human learning.

1.2 Related Work

Learning Pulse belongs to the cluster of Predictive Learning Analytics applications.
The scope of this sub-field in Learning Analytics was framed by the American
research institute Educause with a manifesto (ECAR, 2015) reporting some example
applications, including Purdue’s Signals (Arnold, 2010) or the Student Success
System (S3) by Desire To Learn (D2L) (Essa and Ayad, 2012). These applications rely
solely on LMS data for predicting academic outcomes or student drop-outs. Learning
Pulse goes beyond those Predictive Analytics Applications by using multimodal data
from sensors to investigate the learning process.

The field of multimodal data was given more prominence in the last Conference
Learning Analytics and Knowledge (LAK16) with the workshop Cross-LAK: learning
analytics across physical and digital spaces (Martinez-Maldonado et al., 2016). The
concept behind Learning Pulse was presented at the Cross-LAK workshop (Di Mitri
et al., 2016). In this workshop, several topics were touched: data synchronisa-
tion (Echeverría et al., 2016), technology orchestration (Martinez-Maldonado, 2016)
or face to face collaboration settings (Wong-Villacres et al., 2016).

With a mission similar to Learning Pulse, a data challenge workshop on Multimodal
Learning Analytics (MLA’16) took place at LAK’16 for investigating learning hap-
pening on the physical or virtual world through multimodal data including speech,
writing, sketching, facial expressions, hand gestures, object manipulation, tool use,
artefact building.

Finally, there has been a paper by Pijeira Diaz et. al (Pijeira-Díaz et al., 2016)
who used mutimodal data for Computer-Supported Collaborative Learning in a
school setting. Although not focused on using machine learning, the link made with
psychophysiology theory introduces a novel research question, i.e. the possibility to
infer psychological states including cognitive, emotional and behavioural phenomena
from physiological responses such as sweat regulation, heartbeat or breath (Cacioppo
et al., 2007).
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1.3 Method

The background exposed in the previous chapter has led to the formulation of an
overarching research question:

How can we store, model and analyse multimodal data to predict per-
formance in human learning? (RQ-MAIN)

This main research question leads to three sub-questions:

(RQ1) Which architecture allows the collection and storage of multimodal data in a
scalable and efficient way?

(RQ2) What is the best way to model multimodal data to apply supervised machine
learning techniques?

(RQ3) Which machine learning model is able to produce learner specific predictions
on multimodal data?

To further investigate these research questions, we designed the Learning Pulse exper-
iment that involved nine PhD students as participants and generated a multimodal
dataset of approximately ten thousands records.

1.3.1 Approach

While frameworks already exist for standard within-the-LMS Predictive Learning
Analytics, e.g. the PAR Framework (Wagner and Davis, 2014), there are no structured
approaches to treat beyond-the-LMS data in the context of multimodal data. For this
reason, in this work, a novel approach for predictive applications inspired by machine
learning is proposed. The objective is to learn statistical models out of the learning
experiences and outcomes. Using a mathematical formalism that corresponds to
learning a function f in the equation y = f(X), where X is a vector containing the
attributes of one learning experience which work as the input of the function and, y
is a particular learning outcome.

By using such an approach, three elements need to be further clarified: (1) the
scope of the investigation (the learning context); (2) the attributes encompassed
by multimodal data (the Input space); (3) the learning performance object of the
predictions (the Output space).

Learning context

The learning context investigated is self-regulated learning (SRL) which is defined as
“the active process whereby learners set goals for their learning and monitor, regulate,
and control their cognition, motivation, and behaviour, guided and constrained by
their goals and the contextual features of the environment” (Pintrich Zusho, A.,
2007). Self-regulated learners are able to monitor their learning activity by defining
strategic goals and that drive them not only to academic success but lead to increased
motivation and personal satisfaction (Zimmerman, 2002). There is an overarching
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difference between self-regulated and non-self-regulated learners: the former are
generally more engaged with their learning activities and desire to improve their
learning performance (Butler and Winne, 1995). On the contrary, the latter ones are
less experienced, they do not perceive the relevance of their learning program and,
for this reason, need to be followed closely by a tutor.

Input space

Learning is a complex human process and its success depends on several endogenous
(e.g. psychological states) and exogenous factors (e.g. learning contexts). Defining
the Input space consists of selecting the relevant attributes of the learning process and
structuring them into a correct data representation. This modelling task is non-trivial:
according to Wong (Wong, 2012) modern “seamless” learning encompasses up to
ten different dimensions. In this project, two of them are of main interest: Space
and Time. The Input space can be imagined as the sequence of events happening
throughout the learning time across digital and physical environments as shown on
the left of figure 1.1.

Learning in a digital space means “mediated by a digital medium” i.e. by technolo-
gical devices like laptops, smartphones or tablets. Digital learning data are easier
to collect as most of the digital tools leave traces of their use. On the contrary,
learning happening in the physical space refers to the learning not mediated by
digital technology, like ‘reading a book’ or ‘discussing with a peer’. Although the line
between Digital and Physical gets blurred with the pervasiveness of technology, the
bulk of the learning activities still happens offline and should be “projected into data”
through a sensor-based approach to be able to take advantage of those moments.

Time is also a relevant dimension: the data-driven approach works best whenever the
data collection becomes continuous and unobtrusive for the learner. This requirement
inevitably limits the scope of investigation only to tangible events whose values are
easy to measure over time. If on the one hand, this constraint makes data collection
easier as there is no need to employ time-consuming surveys and questionnaires,
on the other hand, this approach does not make it possible to directly capture
psychological states which manifest during the learning.

Besides spanning across physical and digital space, the Input space of Learning
Pulse can be grouped into three layers as shown in figure 1.1: those are (1) Body
encompassing physiological responses and physical activity, (2) Learning Activities
(3) and Learning Context.

Output space

The Output space of the prediction models corresponds to the range of possible learn-
ing performances. These outputs are crucial for the machine learning algorithms
to distinguish between successful learning moments from the unsuccessful ones.
As self-regulated learners decide on their own learning goals and required learn-
ing activities, we need performance indicators which go beyond common course
grades.
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Figure 1.1 Bi-spatial and three-layered Input Space.

An interesting approach to measure learning productivity is the concept of Flow
theorised by the Hungarian psychologist Csikszentmihalyi. The Flow is a mental
state of operation that individuals experience whenever they are immersed in a state
of energised focus, enjoyment and full involvement with their current activity. Being
in the Flow means feeling in complete absorption with the current activity and being
fed by intrinsic motivation rather than extrinsic rewards (Csikszentmihalyi, 1997).
In the model theorised by Csikszentmihalyi depicted in figure 1.2, the Flow naturally
occurs whenever there is a balance between the level of difficulty of the task (the
challenge level is high) and the level of preparation of the individual for the given
activity (the abilities are high).

To measure the Flow we applied experience sampling (Larson and Csikszentmihalyi,
1983): the participants reported about their self-perceived learning performance.
As self-assessment is strictly subjective it has the advantage to be exclusively based
on the learner’s personal feelings. If carefully designed, self-assessment can lead to
models tailored on personal dispositions. This brings clear advantage in the context
of self-regulated learning: what is perceived as good (or productive, stressful etc.) is
classified as such, meaning that what is good is only what the learner thinks is good.

1.3.2 Participants and Tasks

The experiment took place at the Welten Institute of the Open University of the
Netherlands involving nine doctoral students as participants, five males and four
females, aged between 25 and 35 with a background in different disciplines including
computer science, psychology and learning science. PhD students are good self-
regulated learners, as they are generally experienced learners and have strong
engagement and motivation with their tasks.

All participants were provided with a Fitbit HR wristband and installed the tracking
software on their laptops. As sensitive data were collected, every participant signed
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Figure 1.2 Csikszentmihalyi’s Flow model.

an informed consent. In addition, to ensure their privacy, their data were anonymised
making use of the alias ARLearn plus an ID between 1 and 9.

The experimental task requested from the study participants was to continue their
typical research activity throughout the day: the only additional action consisted
in rating their learning activity every working hour between 7 AM and 7 PM (for
the number of hours they worked) through the Activity Rating Tool (described in
sec. 1.3.4).

The actual experiment lasted for eight weeks and consisted of three phases: 0)
Pre-test, (1) Training and (2) Validation.

Phase 0: Pre-test System infrastructure was tested in all its functionalities. A
presentation was rolled out to introduce the experimental setting and the study’s
rationale to the participants. Participants were instructed to set-up the data collection
software on their laptop as well as the fitness wristband.

Phase 1: Training The first phase of the experiment lasted three weeks and
consisted of the rating collection: participants have rated their activities hourly. The
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only visualisation they could see at that point was the ratings during that day. The
first phase was named training because the collected data and ratings were necessary
to train the predictive models.

Phase 2: Validation After two weeks of break, the second phase started lasting for
another two weeks. In the Validation phase, the activity rating collection continued
in a Learner Dashboard visualisation. The second phase was called Validation as its
purpose was to compare the predicted performance indicators with the actual rated
ones and to determine the prediction error.

1.3.3 Data sources

#ActorID
Age
Gender
Height
Weight

Actors

#Timestamp
#ActorID
HeartRate
Stepcount

Biosensors

1-to-n

#Timstamp
#ActorID
Temperature
Humidity
Pressure
Precipitation
WeatherType

Weather

#ActivityID
Title
Category

Activities

1-to-n

#Timestamp
#ActorID
#ActivityID
Duration

Actor_Activity

1-to-n

#Timestamp
#ActorID
ActivityType
Challenge
Abilities
Productivity
Stress
Latitude
Longitude

Ratings
1-to-n1-to-n

Figure 1.3 The Entity-Relation model of the data.

Biosensors

The physiological responses and physical activity (Biosensor data for short) in this
study are represented by heart rate and step count respectively. The approach used
to track these “bodily changes” consisted of making use of wearable sensors. The
decision of the most suitable wearable tracker was dictated by following criteria: (1)
heart rate tracking sensor; (2) price per single device; (3) accuracy and reliability of
the measurements; (4) comfort and unobtrusiveness; (5) openness of the APIs and
data for analysis.
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The choice converged to Fitbit Charge HR1: standing out on the cost-quality trade
off, Fitbit HR complied with all the requirements, in particular by offering open
access to the collected data through the Fitbit API. Such a way of accessing data was
beneficial on the one hand, as the software application developed for the project had
to communicate exclusively with the Fitbit cloud datastore - while being agnostic
to sensor trackers and their interfaces. The downside, on the other, hand was the
dependence to the API specifications: the maximum level of detail available was a
heart rate value updates every five seconds and step count update every minute.

It is relevant to point out the difference of the heart rate and step count signals:
while the heart rate values are a continuous time-series, also called fixed event, the
number of steps per minute is a random event as it represents a voluntary human
activity and not an involuntary process as the heartbeat. The value of step count at
one time point is not dependent on the previous ones (i.e. is random) while the
heart rate value at time t surely depends on the value at time t− 1.

Learning Activities

To monitor self-directed learning we decided to track PhD students’ activities on their
laptops, being those the main learning medium in which they perform their PhD
activities. Given the variety of learning tasks executed by the participants during
the experiment, the actual learning happens across different platforms including
software applications, websites, web tools. To capture and represent this hetero-
geneous complex of digital activities a software tracking tool was installed on the
working laptop of the participants. The idea is that the use of particular software or
application adds up a valuable piece of information to consider when abstracting the
learning process.

The tool chosen to monitor working efficiency was RescueTime, a time management
software tool. RescueTime stores an array containing the applications in use by the
learner, weighted by their duration in seconds, into a proprietary cloud database
every five minutes (maximum level of detail allowed by its API specifications). Each
activity in one interval has an activity ID and duration in seconds. The duration
ranges between 1 and 300 (max seconds in five minutes), as the zero-valued entries
are the applications not used in an interval.

Given the diversity of research topics and learning tasks there is a high intersubject
difference on the set of applications used during the learning experience; apart from
a few common applications, the majority of applications used are very sparse. To
mitigate this problem applications were grouped into categories by hand. The name
of the categories chosen were: (1) Browsing, (2) Communicate and Schedule, (3)
Develop and Code, (4) Write and Compose, (5) Read and Consume, (6) Reference Tools,
(7) Utilities, (8) Miscellaneous, (9)Internal Open Universiteit, (10) Sound and Music.

In figure 1.4, the distribution of the applications is compared with their categories.
The height of the bars represents the number of executions that application had

1https://www.fitbit.com/chargehr
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during the experiment, which equals to the presence of that application in one of
the five-minute intervals. While in the left-hand chart the long tail effect due to the
sparsity is quite noticeable, on the right hand side that does not appear.

Figure 1.4 Plots showing the number of executions per Applications (left), per Application
category (right).

Performance indicators

The indicators used in Learning Pulse are four: Stress, Productivity, Challenge and
Abilities. The four indicators were collected with the following questions.

1. Stress: how stressful was the main activity in this time frame?

2. Productivity: how productive was the main activity in this time frame?

3. Challenge: how challenging was the main activity in this time frame?

4. Abilities: how prepared did you feel in the main activity in this time frame?

Each participant had to rate each of these indicators retroactively with respect to
the main activity performed in the time frame being rated. The participants were
expected to answer these questions at the end of every working hour from 7AM
to 7PM using for each of them a slider in the Activity Rating Tool described in
section 1.3.4 which translated the rating into an integer ranging from 0 to 100.

The Flow The Flow is operationalised through a single numerical indicator calcu-
lated based on the Challenge and Abilities indicators. i identifies a specific learners,
while j references a specific time frame. Fij is the Flow score for the learner ith at
the time frame jth; Aij and Cij is the level of Abilities and Challenge rated by the
learner ith at the time frame jth.

Fij = (1− |Aij − Cij |) ∗
|Aij + Cij |

2
(1.1)

Figure 1.5 plots the ratings of all the participants throughout the whole experiment
in a two-dimensional space, where the x-axis are the level of Abilities and the y-axis
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is the level of Challenge. Both indicators are expressed as percentages. The dots
in the scatter plot are coloured depending to their Flow-value calculated with the
Equation 1.

Figure 1.5 Scatter plot of the Flow of all study participants.

The colour scale used for the Flow goes from red over yellow to green recalling the
metaphor of a traffic light: high Flow values are green, medium ones are yellow and
low Flow values are red. The plot visualises how the equation of the Flow works.
The Flow is higher if two conditions apply: (1) the difference between Abilities and
Challenge is small, meaning they are close to line x = y; (2) the mean between
Abilities and Challenge is close to one, meaning the observation falls into the top-
right corner of the plot, which corresponds to the Flow zone, as in the original
definition of Flow (see figure 1.2).

Besides the four questions also the Activity Type was sampled along with the GPS
coordinates. The Activity Type was a categorical integer representing the following
labels (1) Reading, (2) Writing, (3) Meeting, (4) Communicating, (5) Other.

The rationale behind this labelling was to have a hint on the nature of the main
learning task executed during that time frame. Finally, the GPS coordinates consisted
of two floating points which are the latitude and longitude of the location where the
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Figure 1.6 Plot showing the ratings given by one participant in one day.

rating was submitted with the Activity Rating Tool.

Figure 1.6 shows the ratings of the four indicators of one participant during one day
of the experiment, as well as the calculated Flow indicator. The background colours
represent the different activity types, as the legend visually indicates.

Environmental context

The third data source is made up of the surrounding context of learning as the
environment might also have an impact on the final learning outcomes. The ideal
solution would be to track information about the indoor surrounding environment,
such as measuring the light intensity, humidity and heat inside the office, thus
combining these with the information about the weather.

Given the lack of adequate sensors to employ in the office environment, only the
outdoor weather conditions were monitored. For each participant, the GPS coordin-
ates were stored that allowed to call the weather data API through the online service
OpenWeatherMap2 and to store weather data specific to the location from where
each participant was operating. The weather API was called automatically every
ten minutes for each of the nine participants. The attributes extracted from these
statements were (1) Temperature, (2) Pressure, (3) Precipitation, (4) Weather Type,
with the first three being floating points while the latter is a categorical integer.

2https://openweathermap.org/
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1.3.4 Architecture

Combining different Data Sources into a central data store and processing them in
real-time is not a trivial task. Figure 1.7 presents a transversal view of the system
architecture which is divided into three layers.

At the top level, the Application Layer groups all the services that the end-user
interfaces with including the Fitbit wristband and the RescueTime application here
called to Third Party Sensors. The Activity Rating Tool (ART) belongs to the same
level.

The middle level is the Controllers Layer which gathers the back-end components
of the Applications. In this layer, as figure 1.7 shows, the software is running on
two server infrastructures: the Cloud and the Virtual Machine. Not reported here
are the controllers of the Third Party Sensors and the Learner Dashboard as the
System Architecture described here is agnostic towards their implementation. On
the Cloud side, there are the Learning Pulse Server, a scripting software responsible
for importing data from different APIs and storing them into the Learning Record
Store. In addition, also running on the Cloud, there is the server software of the
Activity Rating Tool which connects the client user interface with the database. The
scripting software running on the Virtual Machine is the Data Processing Server,
which as the name indicates, implements the post-processing operations including
data transformation, model fitting and predictions.

The lowest level is the Data Layer. While the Third Party Services use their own
APIs which receive regular queries by the importers of the Learning Pulse Server, the
main datastore is the Learning Record Store. Consisting of a Fact Table and a Big
Query Index, the Learning Record Store is the cloud-based database which collects
the data about the learning experience of all participants. It also runs on the Cloud
infrastructure and is further described in section 1.3.4.

Even though they are not directly part of the Learning Record Store, also the results
of the Data Processing server are pushed into a datastore which is also shown in the
Data Layer. This datastore is developed with a non-relational database and collects
the predictions (also referred as forecasts) and the transformed representation of the
historical data, namely the learning experience data in the Learning Record Store
opportunely processed and transformed. Finally, the Data Processing Server makes
use of further persistent data, for example the Learners’ Models, which are stored
locally, reused constantly and regenerated once a day.

Activity Rating Tool

Responsible for collecting the participants’ ratings about their learning experience,
designed and developed as a scalable web application, the Activity Rating Tool runs
App Engine using webapp2 lightweight Python web framework. While the back-end
was written in pure Python, the front-end uses Bootstrap3.

3http://getbootstrap.com/
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Figure 1.8 Two screenshots of the Activity Rating Tool: on left side the list of time frames
available for rating, on the right the rating form of a time frame.

The interface of the tool was designed to be as intuitive as possible and to make the
rating action quick and easy for the participants considering they needed to use it
several times a day. Figure 1.8 shows two screenshots of the application’s main page;
on the left-hand side, it shows the list of all the past time frames between 7 AM
and the hour previous to the current. To rate a time frame the form shown on the
right-hand side of figure 1.8 opened. The users are asked to select the Activity Type
through five different icons; below, users can input the rating for the four indicators
through four sliders, differently coloured for each indicator. Once the desired values
are chosen, the sliders translate the position of the slide into an integer between
0 and 100. To prioritise straightforwardness and to avoid information overload,
the guiding questions were hidden into a help tool-tip at the right-hand side of the
sliders.

Once the participant pressed “Submit" the time frame turned green coloured in the
time frame list. The participant could also delete ratings or resubmit in case of
errors. Additionally, a Daily Rating Plot is shown just before the “Submit" button
which shows the past ratings recorded that day with the purpose of reminding the
participant their previous ratings that day in order to support a coherent overall
rating.
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Learning Pulse Server

The Learning Pulse Server is the script component responsible for pulling the data
from the third party APIs and transforming them into learning records and handing
out their identifiers. The learning records are first stored into the Fact Table by
assigning a UUID (Universally Unique Identifiers). The Learning Pulse Server script
and the Fact Table were implemented as application and data store in the Cloud,
which allowed to balance the data load on a distributed architecture for scalability
purposes. From the Fact Table, the data were synchronised into a Query Index,
implemented with a scalable non-relational database, which contrarily to the Fact
Table, allowed to query the distributed learning statements with SQL language. The
synchronisation between the Fact Table and the Query Index happens using a queue,
such that no learning record could get lost.

While the Learning Pulse Server is the application script responsible for pushing
and pulling the learning records, the Fact Table and the Query Index together form
the LRS. Implementing the LRS with a cloud-based solution allowed to achieve
properties such as (1) high availability: the LRS could be reached at any time, with
respect to the privileges of the client; (2) high scalability: although the size of
the data collected was about 1 Gigabyte the number of learning statements could
easily scale up tens or even hundreds of times more; (3) high reliability: the cloud
infrastructure chosen provided performance and security.

Experience API

The chosen data format for the learning records was the Experience API (or xAPI)
data standard, an open-source API language through which systems send learning
information to the LRS. XAPI is a RESTful web service, with a flexible standard which
aims at interoperability across systems. The XAPI standard has the format actor-verb-
object and is generated and exchanged in JSON format, opportunely validated by
and stored in the LRS. The main advantage of using xAPI is interoperability: learning
data from any system or resource can be captured and eventually queried by the
third party authenticated services. For each event captured in Learning Pulse, an
xAPI statement template was designed following the Dutch xAPI specification for
learning activities (Berg et al., 2016) 4.

1.3.5 Data processing

After being stored in the LRS, learning records were processed, transformed and
mined to generate predictions to be shown to the learners. Data collection and Data
processing can be seen as two legs which walk side by side, complementing each
other’s role. The data processing software was named Data Processing Application5

(DPA) and its main responsibilities consisted of (1) fetching the data from the

4A list of the statements can be found here http://bit.ly/DutchXAPIreg
5The source code of the Data Processing Application is available at https://github.com/WELTEN/learning-

pulse-python-app
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Learning Record Store; (2) transforming the new data by time resampling and
features extraction; (3) learning and exploiting different regression models; and (4)
storing the results of the regression.

The DPA needed to run continuously on a server always-on without the need for
human interaction. Other important requirements for the DPA were the possible
integration with other software components (e.g. interfacing with the LRS) and
availability of statistical and Machine Learning tools. The final choice converged on
using Python as the main programming environment, mainly because of its flexibility
and wide support for data analysis.

Learning 
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User 
models

Importer Model 
fitting

OpenWeatherMap

Virtual Machine

History Forecasts

Prediction

Update 
model?New data?

Scheduler

NO YES

Transformer
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Third party API

BigQuery

Copyright ©  Daniele Di Mitri 

Figure 1.9 The data processing workflow.

For the Data Processing Server, namely the computer infrastructure which hosted
the DPA, cloud options were considered including popular cloud IaaS solutions. For
financial reasons, the choice directed towards an in-house server solution constituting
of a Virtual Machine running an OpenSuse Linux distribution.

The diagram in figure 1.9 shows the data processing workflow, a close-up of the
system architecture shown in section 1.3.3. The figure is divided into three layers:
the controllers, the data and the visualisations.

Data fetching

A cron-job on the Virtual Machine activated the scheduler every ten minutes, every
working day, from 7AM to 7PM. The main task of the scheduler was to query the
Learning Record Store and to realise whether new intervals could be formed based
on the learning records retrieved. In order to be valid, the learning intervals have
to be completed for Biosensor, Activity and Weather data. If any of these data are

25



Learning Pulse

not available, the execution of the Data Processing Application is interrupted and
postponed to the next round. To connect to the Learning Record Store, the DPA uses
Pandas’ Big Query connector. This interface can authenticate the client (the DPA
Python script) to the Big Query service, submit a query and fetch the results that are
returned into a data frame, the popular data format for structuring tabular data in
Pandas.

Multi-instance representation

Each data source had its frequency of data generation: the ratings were submitted
every hour, the heart rate was updated every five seconds, the step count every
minute, the activities every five minutes and the weather every ten minutes. That
resulted in the so-called relational representation as for each participant a different
number of relations corresponded with all the other entities depending on how
frequent their values were updated. Relational representations are not ideal for
machine learning as the input space which needs to be examined can become very
broad (De Raedt, 2008).

The problem was therefore translated into a multiple instance representation where
each training sample is a fixed-length time interval. The interval length is determined
by how frequently the labels i.e. the ratings, are updated. As the ratings here equal
the working hours (say 8 hours), if multiplied by the experiment days (say 15), that
would result in the best-case scenario of 120 samples for each participant, which is
too small in size for a training set. To overcome this problem the compromise was
found selecting 5 minutes long intervals. This decision, however, triggered another
problem, what to do with those attributes that are updated more or less frequently.
The approach used was different for each entity. Ratings, which are updated hourly,
were linearly interpolated; the step count, which is updated every minute, was
aggregated with a sum function; the weather, which was updated every 10 minutes,
was copied backwards; the activities came already with a five minutes frequency,
therefore no action was required. Finally, to represent a five minutes heart rate signal
into one or more features, the best solution was to use different aggregate functions,
namely: (1) the minimum of the signal, (2) the maximum, (3) the mean, (4) the
standard deviation and (5) the average change - i.e. the mean of the absolute value
of the difference between two consequent data points. This naive approach consists
of plugging in several different features and letting the machine learning algorithm
decide which ones are the most influential in predicting the output. It is, however,
useful to point out that more sophisticated techniques for feature extraction from
the heart rate exist, such as the Heart Rate Variability (Wang and Huang, 2012) or
the Sample Entropy.

Data storing

Similarly to the data collection, also the data processing had to be the same. In order
not to repeat the processing step of the same data multiple times, it was convenient
to store the results of the transformation in a permanent data store, to be able to
retrieve it when necessary. To do so a Big Query table was created called History:
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the name was used to differentiate the transformed historical data with the forecast
about the future, whose table is called Forecasts.The Big Query was preferred over
other solutions since the LRS was developed with the same technology. In addition,
Pandas offers an easy Big Query interface, which allows pushing and pulling data
easily from the Cloud Database.

1.3.6 Regression approach

As the collected data were longitudinal, the fixed effects showed stochastic behaviour
implying that the observations were highly dependent on one another. In formal
terms, this means that observing the behaviour of one participant at time t, the
output variable yt is described by the equation yt = α+ βXt + et. The dependence
among the samples means that given a later observation at time t+1, the covariance
cov(et, et+1) 6= 0 with t 6= t+ 1.

As the samples were intercorrelated it was not possible to employ common regression
models, as most of these techniques assume that the residuals are independent and
identically distributed normal random variables. Treating correlated data as if they
were independent can yield wrong p-values and incorrect confidence intervals. To
overcome this problem the chosen approach was the Linear Mixed Effect Models
(LMEM).

LMEM relax the dependency constraint of the data and they can both treat data of
mixed nature, including fixed and random effects, plus they describe the variations
of the response variables with respect to the predictor variables with coefficients that
can vary for each group (Lindstrom and Bates, 1988). In formal terms, the LMEM as
described by (Laird and Ware, 1982) consist in a ni-dimensional vector y for the i-th
subject:

yi = Xiβ + Ziγi + εi, i = 1, ...,Mγi ∼ N(0,Σ) (1.2)

• ni is the number of samples for subject i
• Y is a ni dimensional vector of response variables
• X is a ni × kfe dimensional matrix of fixed effects coefficients
• β is a kfe-dimensional vector of fixed effects slopes
• Z is a ni × kre dimensional matrix of random effects coefficients
• γ is a kre−dimensional random vector with mean zero and covariance matrix; each
subject gets its independent γ
• ε is a ni−dimensional within-subject error with mean 0 and variance Σ2 with a
spherical Gaussian distribution.

1.4 Analysis and Results

At the end of the experimental phase, the transformed dataset presented the fol-
lowing characteristics: a total of 9410 five-minute learning samples, counting for all
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nine participants. The biggest sample size was ARLearn5 with 1725 samples, while
the one with the smallest number of samples was ARLearn4 with 514. There were 29
attributes in total.

As a single-output LMEM implementation was chosen, five different models were
learnt each of them having as response variable one of the five performance indicators
(Abilities, Challenge, Productivity, Stress and Flow). The models were initialised
with the following parameters:

• Fixed Effects: timeframe, latitude, longitude, weatherConditionId, pressure, temp,
humidity, hr_min, hr_avc, hr_mean, hr_std, hr_max

• Random Effects: Browsing, Communicate_Schedule, Develop_Code,Internal_OU,
Miscellaneous, Read_Consume,Reference, Sound_Music, Utilities, Write_Compose,
Steps.

As the rating style of each participant was different, the predicted values were
normalised with respect to the learner-specific historical min and max using the
following formula.

xnew =
(xmax − xmin) ∗ xi

100
+ xmin

For the evaluation of the predicted results, we used R-squared, a statistical measure-
ment which scores how close the data are to the regression line and outputs a number
from 0 and 1 which measures the goodness-of-fit of the model. The results obtained
were the following: Stress: 0.32, Challenge: 0.22, Flow score: 0.16, Abilities: 0.08,
Productivity: 0.05.

1.5 Discussion

The first question (RQ1) focused on the best architectural setup to process mul-
timodal data. The answer found to the question was satisfactory as architecture
design discussed in section 1.3.3 was capable of: (1) importing a great number of
learning statements from the sensors and their APIs; (2) feeding the statements
into a cloud-based LRS avoiding collisions among them and information loss; (3)
combining the statements with the self reports regularly provided by the learners;
(4) programmatically transforming the learning statements by extracting relevant
attributes and by re-sampling into uniform intervals; (5) fitting the predictive model
on historical observations and saving for the reuse with the newer observations and
(6) saving the predictions in a separate store to be able to compare with the actual
values. On the other hand, the architectural design had some limitations. First of all,
it exhibited a real-time syncing issue: the data synchronisation with the wearable
trackers was slower than expected; in the best-case scenario, the data about the heart
rate and the steps were available in the LRS only 15 to 20 minutes later. Secondly,
the Data Processing Server hosting the Data Processing Application was poor in
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performance: the weak processing power slowed down the data processing and that
resulted in long job cycles.

The second research question (RQ2) was concerned with finding the best way to
model multimodal data suitable for machine learning. The solution found was to
treat the problem using a Multiple Instance Representation as detailed in section 1.3.5,
i.e. using a tabular representation where each row represents a five-minute learn-
ing interval and each column a different attribute. This representation helped to
overcome the problems derived from the relational nature of the collected data.
Additionally, third party APIs influenced a lot the type of data that is possible to be
retrieved from the sensors. An example is the Fitbit Charge HR, whose API only
allows to get values of the heart rate every five seconds and no inter-beat distance.
This scarcity of available data did not allow to calculate useful measurements on
the heart rate, like the Heart Rate Variability which has been proven to be a good
predictor for workload stress (Taelman et al., 2009).

The third research question (RQ3) asked which machine learning model for regres-
sion is best suited for the heterogeneous type of data. The solution discussed in
section 1.3.6 consisted in using the Linear Mixed Effect Models as they allow (1) tak-
ing into account data specific to each learner; (2) distinguishing between fixed and
random effects; (3) taking categorical data into account. Despite LMEM being the
appropriate model for the intended task, the R-squared evaluation test yielded poor
prediction accuracies for the five outputs. One possible reason might be the sparsity
of random effects, especially those that refer to the least used activity categories
(whose distribution is shown in figure 1.4). We observed that while adding up sparse
attributes (random effects) as predictors decreases the prediction accuracy, fixed
effects improve the general accuracy.

The answers to the three sub research questions provide an answer to the main
research question (RQ-MAIN): a way to store, model and analyse multimodal data
was successfully found. Nevertheless, the limited significance of the prediction
results does not allow us to assert that accurate and learner-specific predictions can
be generated. This might have been caused by (1) the combination of multimodal
data selected in the experiment; (2) no clear learning task to be executed, high
variance of the learning context explored; (3) sparse random effects were still too
many as opposed to fixed effects.

1.6 Conclusions

This paper described Learning Pulse, an exploratory study whose aim was to use pre-
dictive modelling to generate timely predictions about learners’ performance during
self-regulated learning by collecting multimodal data about their body, activity and
context. Although the prediction accuracy with the data sources and experimental
setup chosen in Learning Pulse led to modest results, all the research questions
have been answered positively and have led towards new insights on the storing,
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modelling and processing multimodal data.

We raise some of the unsolved challenges that can be considered a research agenda
for future work in the field of Predictive Learning Analytics with “beyond-LMS”
multimodal data. The ones identified are: (1) the number of self-reports vs unobtrus-
iveness; (2) the homogeneity of the learning task specifications; (3) the approach to
model random effects; (4) alternative machine learning techniques.

There is a clear trade-off between the frequency of self-reports and the seamlessness
of the data collection. The number of self-reports cannot be increased without
worsening the quality of the learning process observed. On the other side, having
a high number of labels is essential to make supervised machine learning work
correctly.

In addition, a more robust way of modelling random effects must be found. The
found solution to group them manually into categories is not scalable. Learning is
inevitably made up by random effects, i.e. by voluntary and unpredictable actions
taken by the learners. The sequence of such events is also important and must be
taken into account with appropriate models.

As an alternative to supervised learning techniques, also unsupervised methods can
be investigated, as with those methods fine graining the data into small intervals
does not generate problems with matching the corresponding labels also the amount
of labels is no longer needed.

Regarding the experimental setup, it would be best to have a set of coherent learning
tasks that the participants of the experiment need to accomplish, contrarily to as it
was done in Learning Pulse, where the participants had completely different tasks,
topics and working rhythms. It would be also useful to have a baseline group of
participants, which do not have access to the visualisations while another group does
have access; that would allow seeing the difference of performance, whether there is
an actual increase.

To conclude, Learning Pulse set the first steps towards a new and exciting research
direction, the design and the development of predictive learning analytics systems
exploiting multimodal data about the learners, their contexts and their activities to
predict their current learning state and thus being able to generate timely feedback
for learning support.
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Map of Multimodality





Chapter 2

From Signals to Knowledge

Multimodality in learning analytics and learning science is under the spotlight. The
landscape of sensors and wearable trackers that can be used for learning support is
evolving rapidly, as well as data collection and analysis methods. Multimodal data
can now be collected and processed in real-time at an unprecedented scale.With
sensors, it is possible to capture observable events of the learning process such as
learner’s behaviour and the learning context. The learning process, however, consists
also of latent attributes, such as the learner’s cognition or emotions. These attributes
are unobservable to sensors and need to be elicited by human-driven interpretations.
We conducted a literature survey of experiments using multimodal data to frame
the young research field of multimodal learning analytics. The survey explored the
multimodal data used in related studies (the input space) and the learning theories
selected (the hypothesis space). The survey led to the formulation of the Multimodal
Learning Analytics Model whose main objectives are of (O1) mapping the use of
multimodal data to enhance the feedback in a learning context; (O2) showing how to
combine machine learning with multimodal data; and (O3) aligning the terminology
used in the field of machine learning and learning science.

This chapter is based on:

Di Mitri, D., Schneider, J., Specht, M., & Drachsler, H. (2018). From signals to
knowledge: A conceptual model for multimodal learning analytics. Journal of
Computer Assisted Learning, 34(4), 338–349. DOI: 10.1111/jcal.12288
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2.1 Introduction

With the rise of data-driven techniques to discover insights and generate predictions
from the learning process such as learning analytics, the need for 360 degrees data
about learners has grown consistently. Combining data coming from multiple sources
has become a prominent necessity in learning research and has led to an increased
interest in multimodality and consequently into multimodal data analysis. To clarify
the concept of multimodality, we use the definition provided by Nigay and Coutaz.
The term “multi” refers to “more than one”, whereas the term “modal” stands both for
“modality” and for “mode”. The modality is the type of communication channel used
by two agents to convey and acquire information that defines the data exchange. The
mode is the state that determines the context in which the information is interpreted
(Nigay and Coutaz, 1993). The reasons why multimodality in learning is drawing so
much attention can be summarized according to four developments.

First of all, multimodality is a consolidated theory. It has been subjected of invest-
igation already for two decades in different fields including functional linguistic,
conversational analysis, and social semiotics (Jewitt et al., 2016). Research in mul-
timodal interaction investigated how different modalities interact and complement
each other to convey and densify meaning (Norris, 2004). Different experiments
using multimodal data in learning scenarios also date back to the early 90s. In
1993, Ambady and Rosenthal found out that college teachers were able to predict
students’ end–of-semester results by observing “thin slices” of interactions, that is,
looking at their physical and non-verbal behaviour with short video clips (Ambady
and Rosenthal, 1992). These early findings paved the way towards a new research
hypothesis, the possibility to infer cognitive and social processes by using multiple
data sources and social signal processing (Poggi et al., 2012).

Second, multimodal tracking has recently become more feasible. This happens be-
cause of recent technological developments such as the Internet of Things, wearable
sensors, cloud data storage, and increased computational power for processing and
analysing big data sets. To date, sensors can be used to gather high-frequency and
fine-grained measurements of micro-level behavioural events as, for example, move-
ment, speech, body language, or physiological responses. The Internet of Things
approach, that is, connecting sensors to physical world objects or to human bodies,
allows computers to take measurements of the world as well as the physiological
phenomena, encoding them into machine-interpretable data.

Third, modelling across physical and digital worlds is a rising need. A general “call
formultimodality” has been fostered in computer-supported collaborative learning
and learning with interactive surfaces communities (Schneider and Blikstein, 2015).
Multimodal data systems are needed to link digital and physical interactions and
shed a light on collaborative learning and collective sense-making (Martinez et al.,
2011; Pijeira-Díaz et al., 2016). Sensors and wearable trackers can be used in
learning settings to collect attributes from face-to-face physical learners’ interactions,
such as speech, body movement, and gestures. These bodily micro-actions can be
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combined with digital interactions recorded with tabletops and stored in log files.
A similar need exists in the Learning Analytics & Knowledge, for achieving a more
complete picture of the learning process. Such need originates from the fact that
traditional data sources, like logs, clickstreams, and content interactions taking place
within the learning management system, only represent a small proportion of the
learning activities and not the whole learning process (Pardo and Kloos, 2011).
Multimodal data, in summary, can mitigate the streetlight effect1, by adding more
street lights and expand the visible area and complete the learner’s digital profile in
the computer (Heckmann, 2005).

Finally, the multimodal approach is more aligned with the nature of human commu-
nication. The use of multiple modalities in human communication is redundant and
complementary (Calvo et al., 2015). This reflects also when the human interacts with
the computer. Humans communicate their intentions and emotions using multiple
modalities such as facial expression, voice intonation, or body movements. When
analysing incomplete data sets, especially those having missing data (e.g., due to
hardware failures), the information overlap across multiple modalities is convenient
because it allows their overall meaning to be preserved (Bosch et al., 2015).

The developments here described paved the way for a new approach in data-driven
learning support, that is, the multimodal learning analytics (Blikstein, 2013). MMLA
is a research field located at the crossroad between learning science, machine
learning. MMLA leverages the advances in multimodal data capture and signal
processing to investigate the learning in complex learning environments (Ochoa and
Worsley, 2016). MMLA can establish a bridge between complex learning behaviour
and learning theories (Worsley, 2014). MMLA can offer new insights into learning
spaces and tasks in which learners have open choices to differentiate their learning
trajectories by facilitating the provision of feedback (Blikstein, 2013).

Despite the increased interest that the MMLA research field is receiving, it remains a
new kind of “data geology,” which faces several challenges. Some of these challenges
are inherited by the complex and multiform nature of multimodal data. On this
extent, the most relevant multimodal data challenges were described by Lahat
et al. (2015) and include high-dimensionality, different modality resolutions, noise,
missing data, data fusion techniques, and choice of the right model.

MMLA also faces challenges specific to its application domain of education and learn-
ing. In this article, we aim to get an overview of the MMLA field and its challenges.
First, we proposed a classification framework for MMLA research consisting of input
space and hypothesis space divided by the observability line. Thereafter, we conduc-
ted a literature survey where we explored MMLA empirical studies (Section 2.2),
and we further operationalized the input and the hypothesis spaces. The literature
survey helped to identify three main challenges in the field of MMLA: (C1) There is a
lack of understanding of how multimodal data relate to learning and how these data

1The streetlight effect describes the common practice in science of searching for answers (i.e., the lost
key) only into places that are easy to explore,s that is, the streetlights (Freedman, 2010)
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can be used to support learners achieving the learning goals; (C2) it is still unclear
how to combine human and machine interpretations of multimodal data; and (C3)
the fields of machine learning and learning science use different terminologies that
are ambiguous and need to be aligned. The surveyed literature allowed us to go
a step further and address the exposed challenges by introducing the Multimodal
Learning Analytics Model (MLeAM, Section 2.3). MLeAM was designed to fulfil three
objectives: (O1) mapping the use of multimodal data to enhance the feedback in a
learning context; (O2) showing how to combine machine learning with multimodal
data; and (O3) aligning the terminology used in the field of machine learning and
learning science.

2.2 Literature Survey

In this section, we first describe the classification framework (Section 2.2.1) used
to conduct the literature survey in the field of MMLA. We detail the two main
components of the classification framework: the input space and the hypothesis
space. In Section 2.2.2, we describe the selection process and criteria adopted to
identify the relevant articles. In Section 2.2.3, we present the results of the survey
by proposing the taxonomy of multimodal data for learning and the classification
table of the hypothesis space. Lastly, in Section 2.2.3, we discuss the results, and we
draw the conclusions in terms of future challenges for the MMLA community.

2.2.1 Classification framework

Some aspects of the learning process such as the learner’s behaviour can be directly
observed and measured by means of sensors. Some other aspects, such as learner’s
cognition or emotions, are latent attributes that cannot be directly measured by
sensors and thus can only be inferred. For our literature survey, we named these
aspects as input space and hypothesis space, which is a distinction widely used
in machine learning. In the case of human learning, the input space includes, for
example, the learner’s behaviour and the learning context. These aspects of learning
can be captured automatically into multimodal data. It is relevant to point out that
sensors have a different viewpoint than humans; sensors are not capable of making
interpretations or assigning meaning to the data they collect. The hypothesis space
encompasses the range of possible interpretations, that is, attributes not directly
observable by sensors but that can also be expressed as data. The hypothesis space
includes semantic interpretations of the multimodal data,which can be based on
psychological and learning-related constructs such as emotions, beliefs, motivation,
cognition, or learning outcomes. These attributes belong to the learner’s sense-
making process, which in classroom activities remains invisible for educators and
researchers (Kim et al., 2011).

The input and hypothesis spaces are therefore conceptually separated by the ob-
servability line: a line of separation between the observable evidence and all the
possible interpretations. The attributes of both spaces are facets of the same iceberg,
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Figure 2.1 The observability line: The multimodal data can capture only the observable
attributes.

the ones “above the waterline” are noticeable from the point of view of a generic
sensor. While, the attributes “underwater”, require multiple levels of interpretation,
depending on how deep they stand from the observability line. The distinction
between observable/unobservable is conceptual and can vary in practice. Figure 2.1
presents one possible instantiation of this concept. The distinction is useful when
employing sensors and using machine-guided interpretations. For computers, the
interpretation process, that is moving from the input to the hypothesis space, is
increasingly difficult.

Although input and hypothesis spaces are separated for computers and sensors,
they are tightly intertwined for humans. Humans can interpret behavioural cues, by
reasoning and drawing conclusions, for example, yawning corresponds to boredom or
tiredness. Psychological and educational theories tell us how these relationships can
be drawn. For example, the affective-behaviour-cognition theory connects observed
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behaviour with emotions and cognition (Ostrom, 1969). Similarly, Damasio proposed
the idea of “somatic markers” that are special instances of feelings in the body
associated with emotions such as rapid heartbeat is associated with anxiety or
nausea is associated with disgust (Damasio et al., 1991). At the biological level, the
process of self-regulation as a response to physical and external demands is known
as homeostasis, which supports the idea of the human body working as a complex
system. An example of this homeostasis for learning is the state of arousal known as
the degree of physiological activation and responsiveness caused by a situation or
collaborative activities (De Lecea et al., 2012). Low arousal is an indication for a
harmful physiological state for learning such as frustration or boredom, whereas high
arousal indicates an active or responsive mode that is supportive for learning (Bjork
et al., 2013; Pijeira-Díaz et al., 2018).

Input space: Multimodal data

Learning is a complex and multidimensional process (Wong, 2012). Defining the
input space, that is, identifying the relevant modalities and extracting informative
attributes, is not trivial tasks. To facilitate these tasks, we expand the initial notion
of multimodal data for learning by describing their distinctive features.

An important requirement to be fulfilled is that the modalities must be periodically
measurable. To explain this, we pick the counterexample of biomarkers testing
extensively employed in medicine (Koh and Jeyaratnam, 1998). Analysing samples
of blood, body fluids, or tissue, biomarker tests can be used to investigate the genomic
structure, the presence of molecules or hormones concentration like dopamine or
norepinephrine (noradrenaline). The presence or lack of one of these substances can
indicate potential disease or a certain body state. The way these tests are conducted
does not allow for continuous measurements and monitoring: For this reason, these
dimensions are out of the scope of multimodal data analytics.

The modalities belong to the input space and can be either endogenous or exogenous
(behaviour vs. context), depending on if they explain the learner’s behaviour or
the learning environment affordances that are external but might influence the
learning process. The behavioural modalities can be divided between motoric
and physiological. Motoric modalities are movements and describe events mainly
governed by the somatic nervous system and actuated by the muscles and the
skeleton. These modalities are generally deliberated, they should be seen as random
events, as there exists no evident correlation between consequent values. Conversely,
the physiological modalities that are governed by the autonomic nervous system are
generally involuntary, their role is to help to self-regulate, and they should be seen
as continuous events. An example is the cardiovascular activity controlled by the
heart: The value of the heart rate at one-time point is dependent on the previous
values and, for this reason, must fall into a range.

The division between intentional and unintentional events is however not so black
and white as it seems. Anderson (2002) illustrates how humans have different levels
of cognition like biological, cognitive, rational, or social, and human actions can be
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classified accordingly to these levels depending on which timescale they take place.
The reaction time for an action can span from microseconds for biological reactions to
minutes, hours, days, or weeks for social actions. The rational and social actions are
pondered; they require enough time to go through different layers of consciousness;
for this reason, they are associated with a higher level of intentionality. One example
can be standing in a very hot room with closed windows: A common unintentional
biological reaction can be starting to sweat, whereas a common rational action can be
opening the window. Both actions and reactions can be considered self-regulatory.

At the biological level, the Neurovisceral Integration Model supports the idea of
coordination: It shows how the human body works as a complex interconnected
system, adapting its functioning according to the stimuli it receives and to goals it
wants to reach (Thayer et al., 2009). For example, the mind under effort is associated
with physiological arousal and therefore with increased heart rate. The discipline
that studies the correlations between physiological activity and psychological states
including cognitive, emotional phenomena is called psychophysiology.Cacioppo
et al. (2000) found interesting correlations between heart rate accelerations and
emotions such as anger, fear, and sadness. For example, an increase in heart rate
variability (HRV) is correlated with joy and amusement, whereas the decrease of
HRV is correlated with happiness.

Another distinction that can be made is between verbal and nonverbal modalities.
Non-verbal expressions are thought to make up to 93% of the meaning during
face-to-face communication and social interaction (Mehrabian, 1971). In particular,
kinesics, commonly referred as body language and physical appearance, is thought
to have an important role, especially during learning. Teachers, for instance, often
use kinesics to reinforce the meaning of the words (Leong et al., 2015). Verbal
modalities, on the other hand, use natural language as communication and, for this
reason, have a much higher interpretation complexity. For an intelligent computer,
it is way more complicated to make sense of the meaning of what one person is
saying (or writing and drawing) as compared with how she is saying it. The surveyed
studies using speech modalities focus on prosodic features rather than discourse
analysis.

Hypothesis space: Learning theories

The hypothesis space, a term which is widely used in inductive logic and machine
learning, specifies the range of possible states of a phenomenon. In the case of
the MMLA field, the hypothesis space lists all the possible interpretations that can
be assigned to the observed learning process and are driven by validated learning
theories or by psychological constructs. One state in the hypothesis space is a unique
value combination of the attributes describing a phenomenon. The learning states
are represented by data through the learning labels. The learning labels are typically
assigned by human inference to specific time intervals of multimodal data recordings.
The act of repeatedly assigning learning labels to multimodal data intervals is called
an annotation. The annotation is often the only way to provide the baseline to
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multimodal data, that is, the truth values that will be used to train the machine
learning models and test their accuracy. A careful definition of the hypothesis
space weighs a lot in the optimal success of the data-driven solution. Defining the
hypothesis space consists in three points: (a) defining actionable components; (b)
selecting the most appropriate data representation for the learning labels; and (c)
devising an annotation strategy.

Defining actionable components for the hypothesis space The size of the hypo-
thesis space is proportional to its descriptive power, that is, the number of possible
interpretations that it describes, but it is inverse proportional to its generalizability.
This is the well-known bias-variance trade-off (Friedman, 1997). One good heuristic
for deciding the most useful hypothesis space is thinking in terms of actionability.
The predicted state in the hypothesis space should support the design of valuable
and actionable feedback for the learner. Hence, the hypothesis space specification
must be guided by the question: “what is relevant for the learner to know to improve
the performance?” The answer to this question is not trivial and can be properly
addressed with careful feedback design (Hattie and Timperley, 2007). The machine
learning models, alongside predicting the learning labels in the hypothesis space,
can contribute by determining the attribute importance (e.g., how much a modality
weigh in for the prediction). The attribute importance is the extent by which each
attribute contributes to predicting the learning labels in the hypothesis space that can
be used for targeted suggestions. Multimodal data can also provide historical values
records and can shed a light on the historical changes in both the input and the
hypothesis spaces. Predictions, attribute importance, and the historical multimodal
records are three integrative elements that can enhance the learner’s feedback.

Data representation of the learning labels From a data representation point
of view, the learning labels of the hypothesis space can be represented as binary
variables (e.g., focused vs. not focused) and can be specified in a numerical scale
or as discrete categories (e.g., bored, engaged, and confused). The number of
required learning labels depends on the size of the input space, that is, the number
of attributes selected by the multiple modalities. In general, the number of labels
required to properly run supervised machine learning is still quite high, for example,
thousands of labels per individual learner. Many researchers in the machine learning
field are currently researching techniques based on transfer learning to minimize the
problem of the required labels, for example, using techniques such as pretraining
with unlabelled data (Pan and Yang, 2010). The frequency of the annotations can
also vary from 10 s to hours.

Annotation strategy Generally, there are two approaches for annotating mul-
timodal data recordings: The first is asking experts to provide the learning labels
and the second is asking the learner to fill self-reports on a regular or random basis.
Both approaches come with their set of pros and cons, and both are subject to bias.
One advantage of using external experts could be not to interfere with the natural
task execution flow during learning; the con is that experts are expensive and hard
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to organize. Self-reports, instead, produce imbalanced class distribution (Hussain
et al., 2012), which require some down-sampling approach, which means losing data.
Self-reports, however, can be given in-the-moment, leveraging the short memory and,
for this reason, producing more trustworthy reports compared with retrospective
ratings (Edwards et al., 2017).

2.2.2 Literature survey selection process

Using the concept of observability line, we conducted a literature survey of empirical
studies in the field of MMLA. The survey was first aimed to discover both the most
frequent modalities and learning theories used in MMLA research and therefore the
existing patterns and commonalities in the definition of the input and hypothesis
spaces. In this survey, we identify representative MMLA studies, and we used
them to specify our conceptual model for MMLA (see Table 2.3). The selected
articles were found by going through all the papers of the last 5 years’ Learning
Analytics & Knowledge conference proceedings (2014–2018), the six editions of
the MMLA Data Challenge workshop series (2013–2018), the Learning Analytics
Across Physical and Digital Spaces workshop series (2016–2018), and additional
publications by influential researchers in the MMLA field. We filtered the retrieved
studies by applying two selection criteria: (a) the data set analysed in the studies was
generated using more than one modality and (b) the multimodal data were linked to
clear learning theories. We obtained a subset of 20 empirical studies fulfilling these
criteria. We consider this number to be sufficient for getting an overview of the field;
however, we foresee an increase of similar studies in the future.

2.2.3 Results of the literature survey

Following the description of the input space (Table 2.2.1) and the hypothesis space
(Table 2.2.1), we further operationalize both spaces with insights gained from the
literature survey: in Section 2.2.3, the Taxonomy of multimodal data for learning and
Section 2.2.3, the Classification table of the hypothesis space.

Taxonomy of multimodal data for learning

The Taxonomy of multimodal data for learning is the first approach to organize the
complexity of the observable modalities (input space), which can be monitored by
sensors and are mentioned in the surveyed studies. This taxonomy is not meant to
be an exhaustive classification of the modalities for learning or a technical review
of different sensor types. For the latter, we refer to the review of Schneider et al.
(2015a) that provides an extensive list of sensors that can be applied in the domain
of education.
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The taxonomy is presented from the perspective of a generic sensor. The underlying
idea is that a sensor can monitor one (or multiple) modalities. We consider here
the modality as a measurable property belonging to a specific part of the body or
the context. The modalities are communicated through signal channels. Continuous
sampling of a signal channel leads towards the longitudinal collection of one (or
multiple) modalities. For instance, a microphone (sensor) can sample the voice
(channel) to detect speech (modality), or a video camera can track at the same
time voice, movements, and facial traits and therefore provide speech, gross body
movements (GBMs), and facial expressions. To make an overview of the proposed
taxonomy, we analysed the two main branches: (a) behavioural motoric and (b)
behavioural physiological modalities by providing meaningful examples found in
the surveyed literature of multimodal experiments. For the third main branch, (c)
the contextual modalities, we remind to the work of Zimmermann et al. (2005),
who propose a framework for context-aware systems in ubiquitous computing that
combines personalisation and contextualization.

For simplicity, the motoric modalities can be split between the ones concerning the
“body” or the “head.” Part of the subcategory body is the torso, legs, arms, and hands.
The movements of the torso can provide GBM, which is typically derived from video
cameras. GBM was used by Raca and Dillenbourg (2014) in their study for assessing
students’ attention from their body posture, gesturing, and other cues. Similarly,
Bosch et al. (2015) used GBM to detect learners’ emotions in combination with facial
expression and learning activity. Although movements of the legs can be trackedwith
step counters and provide good indicators for physical activity, arms and hands are
body parts richer in meaning. Movements of the arms can be detected by video
cameras, a popular choice, in this case, is Microsoft Kinect, for gestures and body
postures recognition; several studies opted for this solution in the survey, especially
those focusing on presentation skills (Barmaki and Hughes, 2015; Echeverría et al.,
2014; Schneider et al., 2015b). An alternative to arm movements and gestures can
be traced with electromyographic sensors (EMG): Hussain et al. (2012), for instance,
used EMG in their study in emotion detection. Finally, hands are probably the
parts of the body that can provide the best insights on the learner’s activity: Hands
movement can be traced in search for specific hand signs or to track the handling of
objects as well as pen strokes or drawings. For instance, Oviatt (2013) gathered a
data set known as Math Data Corpus in which they combined analysed pen strokes
with modalities captured from video and speech records in group settings with the
aim to detect expert from non-expert students.

The motoric modalities of the head include analysis of the facial expressions, eye
movements, and speech analysis. These three body parts can provide relevant inform-
ation to the point that three well established research communities are dedicated to
advancing the techniques and methodologies for data acquisition. Facial expressions
are highly investigated in learning for emotion recognition in the affective comput-
ing research and have been quite extensively used in multimodal human-computer
interaction experiments (Alyuz et al., 2016; Bosch et al., 2015; Hussain et al., 2012,
e.g.). Eye-tracking is commonly used as an indicator for learners’ attention has also
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been used with multimodal data sets (Edwards et al., 2017; Prieto et al., 2016; Raca
and Dillenbourg, 2014). Finally, an analysis of the speech spans from paralanguage
analysis like speaking time, keywords pronounced, or prosodic features like tone and
pitch (Prieto et al., 2016) to actual recognition of spoken words in dialogic settings
like student-teacher interactions (D’mello et al., 2015). In theory, speech recognition
opens up the possibility to transcribe discourse and use natural language processing
to look for deeper level semantic interpretations. In practice, due to its high-level
technical complexity, discourse analysis is a frontier that we envision in multimodal
learning but which has been not yet explored in related works.

The physiological modalities can be also divided into corresponding body parts. For
instance, heart, brain, and skin are the main organs of which is possible to derive
physiological information. The most popular approaches to detect brain activity is
the electroencephalogram (EEG), which measures the difference of potential inside
of the brain. EEG was used by Prieto et al. (2016) in combination with eye tracking,
from a teacher analytics perspective to predict social plane of interaction and concrete
teaching activity. Different techniques can be used to calculate measurements of
the heart activity like the heart rate and HRV: the electrocardiogram (ECG) or the
photoplethysmography. Galvanic skin response (GSR), also referred as electrodermal
activity (EDA), is the measure of electrical conductance of the skin. If the body
receives stimuli that are physiologically arousing, the skin conductance increases.
Arousal is widely considered to be one of the two main dimensions of an emotional
response. Alzoubi et al. (2012) used the combination of EEG, ECG, and galvanic
skin response to detecting naturalistic expressions of affect. EDA was used by
Pijeira-Díaz et al. (2016) in combination with BVP, heart rate, skin temperature, and
pupil size. Heart rate has been used by Di Mitri et al. (2017) to predict Flow in
combination with steps and activity data. Edwards et al. (2017) used EDA to detect
presence and lack of attention. Hussain et al. (2012) combined ECG, EMG, EDA, and
respiration with video features to predict emotions. Also, Grafsgaard et al. (2014)
used multimodal analysis to predict emotions combining EDA (skin conductance)
with facial expression derived from video, gestures, and posture.

Classification table of the hypothesis space

Table 1 provides a summary of the learning theories found in the selected studies
that used multimodal data. The table classifies the studies according to the chosen
theoretical construct, hypothesis space specification, data representation type, and
annotation method, and it provides a reference to study.
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The most advanced studies using multimodal data focus on predicting emotions.
Emotions as they are considered readouts of physiological changes in the body, chan-
ging as the response to certain stimuli. According to the Somatic Marker Hypothesis,
physiological changes occur in the body and are passed to the brain when they are
interpreted as emotions (Damasio et al., 1991). People adapt their environment and
emotional stimuli via the autonomic nervous system responses (Kemper and Lazarus,
1992). It is possible therefore to correlate certain autonomic nervous system activity
to emotional states. Emotions are thought to have also an important role in learn-
ing (Boekaerts, 2010). Typical emotions during learning are confusion, boredom,
engagement, curiosity, interest, surprise, delight, anxiety, and frustration (Hussain
et al., 2012). D’Mello (2013) provided a meta-analysis of the incidence of emotions
during learning.

A psychological construct used is the Flow, a mental state of operation that individuals
experience whenever they are immersed in the state of energized focus, enjoyment,
and full involvement with their current activity. “Being in the flow” means feeling in
complete absorption with the current activity and being fed by intrinsic motivation
rather than extrinsic rewards (Csikszentmihalyi, 1997). The Flow naturally occurs
whenever there is a balance between the level of difficulty of the task and the level
of preparation of the individual for the given activity.

Another construct found in the literature is the one of Cognitive load refers to the
demands within working memory that occur during learning: Too little load fails to
engage learners sufficiently, whereas too much load overruns the capacity of working
memory (Van Merriënboer and Sweller, 2005). Eveleigh et al. (2010) measured
cognitive load of basketball players using speech during think-aloud protocols and
using external experts to annotate through a 9-point Likert scale low or high cognitive
load.

Epistemological frames are a way of understanding student reasoning and have to
deal with the student motivation toward the learning activity. Examples of these
frames are hesitant, calm, active (Andrade and Danish, 2016); talk, flow, action,
stress (Worsley and Blikstein, 2015). These frames were also named action codes
by Worsley and Blikstein (2013), which aimed to develop a system that based on
speech and gesture recognition would be able to detect three levels of expertise in
construction building.

2.2.4 Discussion

This literature survey deepens the knowledge about the modalities for learning
and learning theories and how these were operationalised in the learning scenarios
investigated in related studies. Among the “Taxonomy of multimodal data for
learning” and the “Classification table of the hypothesis space,” we identified three
main challenges of MMLA revealed by the literature survey.

First of all, analysing the literature according to the proposed observability line
(Table 2.2.1) evidenced that the MMLA community has not yet clarified how mul-
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timodal data can ultimately support learners in their learning process. None of the
studies describes how multimodal data can be used to provide actionable feedback
or even an intervention to learners. Hence, the first challenge identified is that (C1)
there is a lack of understanding of how multimodal data relates to learning and how
these data can be used to support learners achieving the learning goals.

Second, we noticed that generating analytics with multimodal data and letting
humans (learners and teachers) making sense them is increasingly complex. The
raw multimodal data are generally very noisy and have a large number of attributes
and a low semantic value (Dillenbourg, 2016). When the number of attributes
in the data set increases, the data become hard to visualize and to interpret for
humans. In contrast, intelligent computer agents are able to deal more efficiently
with multimodal data and can be employed to process vast amounts at scale and
be trained to perform interpretations. Therefore, the second challenge is that (C2)
it is still unclear how to combine human and machine interpretations of multimodal
data.

Third, the field with MMLA is a field located at the intersection of different disciplines
including learning science, machine learning, and social signal processing. We have
noticed that learning science and machine learning talk differently about “learning”
and that results in very ambiguous meanings and less fruitful discussions. The third
challenge identified is that (C3) the fields of machine learning and learning science
use different terminologies which are ambiguous and need to be aligned.

2.3 The Multimodal Learning Analytics Model

To address the challenges found by the literature survey (Section 2.4), we introduce
the MLeAM, a conceptual model for the emerging research field of MMLA.

The design of MLeAM originates by the necessity to make optimal use of multimodal
data for supporting learning activities through intelligent tutoring and learning ana-
lytics. The intended MLeAM contributions are framed more clearly into the following
three main objectives, respectively, addressing the three challenges described in
Section 2.2.4.

The first objective of MLeAM (O1) is to map the use of multimodal data to enhance the
feedback in a learning context. Although other conceptual models were proposed,
such, for example, the Learning Analytics Framework (Greller and Drachsler, 2012),
until today, no conceptual model for learning was specifically designed to deal with
multimodal data. MLeAM can, therefore, provide more structure to drive further
research into the new research field of MMLA and help researchers to design future
experiments. With such a structured approach, the community can better identify
and describe major challenges that than can be addressed by independent research
teams globally.

The second objective (O2) is to show how to combine machine learning with multimodal
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data. Multimodal data have the potential to provide a digital representation of the
physical world in a way that both humans and artificial agents can process. The
MLeAM shows explicitly for the MMLA community how to best combine human
interpretations with machine learning and automatic inference.

The third objective (O3) is to establish a joint terminology across the two main scientific
disciplines that the MMLA field combines: learning science, machine learning. With
MLeAM, we hope to establish a shared MMLA terminology to make it meaningful for
educational researchers but also express well-established terms from the educational
world to the machine learning community. To address these objectives, we propose
the MLeAM represented in Figure 2.3. Along with the observability line (Section 2.1)
separating the input and hypothesis spaces, MLeAM introduces a second orthogonal
dimension: the Mixed reality line. Mixed reality is defined as the contiguous space
where physical and digital worlds meet (Milgram et al., 1994). We believe that
the separation between physical and digital world helps to understand the benefit
which intelligent computer agents and digital technologies can bring into the learning
process. The behaviour of the learners and the feedback transmitted to them happens
in the physical world. The multimodal data representation of the modalities and
their processing and annotation live in the digital world. The intersection between
the observability line and mixed reality line creates four quadrants as represented in
Figure 2.3. The transition between these quadrants is guided by a process (“P”) that
generates a result (“R”). The model proceeds clockwise iteratively starting from the
top centre.

2.3.1 From sensor capturing to multimodal data

The model starts with (P1) sensor capturing. This process consists of automatically
sampling sensors’ recording data from several modalities. These chosen modalities
relate to the attributes of the input space (see Section 2.1) such as learner’s body
position, gaze direction, and facial expression. These data can be extracted from of
the learner’s behaviour and actions or from the learning environment; in either case,
the modalities reside in the physical world. P1 continuously transforms different
modalities into their digital representation: multiform data streams that we call (R1)
multimodal data. A transversal cut into the multimodal data streams corresponds to a
digital snapshot of the learner in the learning context at one specific time point. There
are three important aspects to be considered when designing a P1 implementation:
(a) definition of the used input space: the heuristic selection of the modalities
and their data representation; (b) identification of the most suitable sensors to
capture the selected modalities for the specific learning scenario; and (c) design and
implementation of a sensor architecture, a hardware and software infrastructure
for collecting and serializing the data streams from multiple sensors (Di Mitri et al.,
2017). The design of the sensor architecture must take care of several technical
aspects including sensor network engineering, raw data synchronization, fusion
techniques, and data storage logic for sensor data persistence. A similar challenge
regarding sensor data collection has also been addressed by Specht (Specht, 2015)
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Figure 2.3 Multimodal Learning Analytics Model (MLeAM).

in the AICHE model.

2.3.2 From annotation to learning labels

The second process is the (P2) annotation, a repeated procedure driven by human
such as an expert or by the learner. P2 aims at enriching the low-semantic multimodal
data with human judgments according to some predefined assessment scheme. The
scheme is based on the hypothesis space (see Section 2.2.1), that is, the unobservable
interpretations that the machine learning algorithms automatically derive from the
multimodal data. P2 can be seen as the assessment of a learning task in relation
to some learning goals. P2 is achieved through triangulation: A judge is exposed
to some human interpretable evidence of the learning task (e.g., videos or direct
observation). The judge assigns some (R2) learning labels to time segments of the
multimodal data. This process P2 annotation allows providing some meaning to
some time intervals of the raw data. Similarly, to P1, P2 requires to define all the
possible learning labels. This task corresponds to defining the hypothesis space and
its data representation. It also requires devising an annotation strategy consisting of
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a reporting tool and an annotation procedure. The procedure must minimize the
interpretation bias to provide the most reliable labels and should take into account
the nature of the observed tasks (i.e., the learning context and activities). The
minimum number of labels should be decided a priori. That is usually dependent on
the estimated number of attributes to be considered in the model.

2.3.3 From machine learning to predictions

The third process is the (P3) machine learning. The purposes of supervised machine
learning are (a) to learn statistical models (functions) out of observed (R1) mul-
timodal data and manually annotated (R2) learning labels and (b) to generalize
on future unobserved data similarly structured to generate (R3) predictions (Mohri
et al., 2012). The core machine learning task can be expressed with a mathematical
formalism, calculating a function: y = f(X) + ε where:

• X is a multimodal observation, input of the function f . X is a vector of n
attributes < x1, ..., xn > derived from the multiple learning modalities. All the
possible value combinations of X constitute the input space, the domain of f .

• y is the learning label (s), which locate each input observation into the hypo-
thesis space, the range of f of all possible learning labels.

• The function f is a generalization of the relationship between observations X
and learning labels y plus some error term ε.

• Given a new multimodal observation Xnew, the prediction task corresponds to
calculating the learning label (s) ynew = f(Xnew) + ε.

P3 also includes the following iterative steps: (a) preprocessing: resampling, handling
missing data; (b) fitting the model to the data; (c) post-processing: selection relevant
attributes, tuning the parameters; (d) validating the generalisability of the model
on new data; and (e) diagnostics: deriving relevance to determine the importance
that each attribute holds in predicting the learning labels. If the obtained model
is trained with reasonable accuracy, the system can be able to predict the learning
labels throughout unseen multimodal data. This prediction is a machine-assisted
estimation of the learner’s standpoint in the learning process. P3 automatizes using
machines the annotation procedure that has to be driven by humans. Predictions can
be used to enrich the learner model and have a more adaptive feedback model for
the learners and nudge them towards positive behavioural change. Both the learner
model and the feedback models as shown in Figure 2.3 are not part of MLeAM but
are connected to and extended by it.

2.3.4 From feedback interpretation to behavioural change

The final process is the (P4) feedback interpretation closing the machine-driven
feedback loop returned to the learner. The purpose of P4 is to exploit support of the
multimodal data and lead to (R4) behavioural change. P4 requires a feedback model
that has to be designed in advance. Devising an efficient feedback model is not within
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the scope of MLeAM (see Figure 2.3). The feedback model is highly dependent on
the learning activity and is defined by the task model. MLeAM does not deal with any
of the feedback dimensions (Mory, 2004) and also does not inform about effective
feedback strategies that depend on the learning activity. Nonetheless, MLeAM can
be used in combination with different models of feedback with relevant already
analysed information about the learners’ behaviour and context. Different forms of
feedback can be prompted to the learner based on the predictions obtained through
MLeAM. The feedback design should be able to facilitate the process of feedback
interpretation and lead the learner to some new learning behaviour. Similarly, to the
(P2) annotation, the P4 feedback interpretation is fully human-driven.

2.4 Conclusions

In this article, we analysed the emerging field of MMLA. In Section 1, we introduced
the origins of this new field according to four main developments. We highlighted
the main mission for MMLA: using multimodal data and data-driven techniques
for filling the gap between observable learning behaviour and learning theories. In
Section 2.2.1, we described two components as input space and the hypothesis space
separated by the observability line. We used them as a classification framework
to conduct a literature survey (Section 2.2) of MMLA studies. By analysing the
related literature, we were able to derive general characteristics of the multimodal
data for learning (the input space, Section 2.2.1) and the learning theories and
other constructs (the hypothesis space, Section 2.2.1). As a result of the literature
survey, we proposed the Taxonomy of multimodal data for learning (Section 2.2.3, Fig-
ure 2.2) and the Classification table for the hypothesis space (Section 2.2.3), Table 2.1).
The literature survey also unveiled three main challenges for the MMLA field (Sec-
tion 2.2.3). We addressed these challenges introducing the MLeAM (Section 2.3), a
conceptual model to support the emerging field of MMLA. MLeAM has three main
objectives: (O1) mapping the use of multimodal data to enhance the feedback in a
learning context; (O2) showing how to combine machine learning with multimodal
data; and (O3) aligning the terminology used in the field of machine learning and
learning science. We acknowledge that MLeAM is not to be considered in its final
stage. In the future, we aim to extend MLeAM with various activities. First of all, it
is important to extend the literature survey because some aspects were intentionally
not covered, by, for instance, the social dimension of learning, that is, the extent to
which both the teacher and the learning peers influence each other, for example,
during dialogic learning. We encourage the readers to contribute in expanding the
Taxonomy of multimodal data for learning2 (Figure 2.2) and the Classification table of
the hypothesis space3 (Table 2.1) with further studies using a combination of different
modalities and presenting convincing results in terms of accuracy and their adapt-
ability to different learning settings. Further empirical studies and meta-analysis
can also focus on which is the most suitable data representation for each modality;

2Available online for comments at http://bit.ly/MLEAMtree
3Available online for comments at http://bit.ly/MLEAMtheory
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the heuristics for best modality combination; best pairing between modality and
available sensors in commerce; and providing guidelines for the data analysis of
multimodal data sets (P3 in MLeAM). On this particular point, multimodal data for
learning needs best practices to achieve real-time time series analysis and classi-
fication, in combination with random events and proper balance between learner
specificity and generalization across groups. Baselines for future experiments must
be established, preventing to reinvent the wheel every time. This could technically
be done on the one hand by extending the current interoperability standards (e.g.,
Experience API-xAPI) to better work with a high-frequency sensor and consequent
data analysis. Meaningful baselines can also be software prototypes such as the
Multimodal Learning Hub (Schneider et al., 2018), or hardware prototypes that
can be used off-the-shelf for data collection: for instance, Process Pad (Salehi et al.,
2012) or the Multimodal Selfie (Domínguez et al., 2015), two low-cost devices that
can be used in classrooms for capturing multimodal data. Finally, the MLeAM classi-
fication evidenced a shortage of studies that focus on feedback and interventions
for the learner and their learning process. In particular, more research is needed to
invest feedback systems that use timely predictions generated by multimodal data.
We encourage further collaboration with feedback experts to discover what kind of
feedback is valuable for the learner and is it able to trigger fundamental behavioural
changes.
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Chapter 3

The Big Five challenges

The analysis of multimodal data in learning is a growing field of research, which
has led to the development of different analytics solutions. However, there is
no standardised approach to handle multimodal data. In this paper, we describe
and outline a solution for five recurrent challenges in the use of multimodal data
for supporting learners: the data collection, storing, annotation, processing and
exploitation. For each of these challenges, we envision possible solutions.

This chapter is based on:

Di Mitri, D., Schneider, J., Specht, M., & Drachsler, H. (2018) The Big Five: Address-
ing Recurrent Multimodal Learning Data Challenges. In R. Martinez-Maldonado et
al. (Eds.), Proceedings of the Second Multimodal Learning Analytics Across (Physical
and Digital) Spaces (CrossMMLA), Vol. 2163. CEUR Proceedings.

53



The Big Five challenges

3.1 Background

The Learning Analytics & Knowledge (LAK) community has acknowledged the
necessity of taking into account physical and co-located learning activities as much
as practice-based skills training; it is undeniable that in the classroom and at the
workplace these “offline moments” still represent the bulkiest set of learning activities.
Bringing these moments into account requires extending the data collection to
additional data sources which go beyond the conventional ones, such as online
learning systems, Massive Online Open Courses (MOOCs) platforms or student
information systems. With the term multimodal data, we refer to the learning
data sources collected “beyond user-computer interaction”, i.e. those data sources
collected during learning moments alternative to the classic desktop-based learning
scenario. Although user-computer interaction data could still hold some relevant
information, they can be complemented by additional multimodal data; these data
can be classified into 1) data describing the learner’s behaviour: including motoric
and physiological data; 2) data regarding the learning situation, including social
context, learning environment and learning activity. Most of these aspects can be
monitored through wearable sensors, cameras or Internet of Things (IoT) devices.
These tools can capture only what is “visible” by a generic sensor, meaning they
generally do not have the ability to reason on the meaning behind the collected data.
The observability line – i.e. what is visible by sensors and whatnot, conceptually
separates multimodal data by human-driven qualitative interpretations, like expert
reports or teacher assessments. The latter, that are more qualitative and human-
driven, describe dimensions that the sensors cannot directly observe, such as learning
outcomes, cognitive aspects or affective states.

Bridging the gap between learner’s complex behavioural patterns with learning the-
ories and other unobservable dimensions is the paramount challenge for multimodal
analysis of learning (Worsley, 2014). Multimodal data can be used as historical
evidence for the analysis and the description of the learning process: this field of
research is called Multimodal Learning Analytics (Blikstein, 2013). The related
literature shows the potential to apply a multimodal approach in a variety of learn-
ing settings including dialogic learning in teacher-student discourse (D’mello et al.,
2015); computer-supported collaborative learning during knowledge-sharing and
group discussions (Martinez-Maldonado et al., 2018; Schneider and Blikstein, 2015);
in practice-based and open-ended learning tasks, when understanding and executing
a practical learning task (Ochoa et al., 2013).

The potential benefits of multimodal data are not only limited to analytics, e.g.
human interpretation of dashboards or other visual metaphors. If multimodal data
are reliable and correctly addressed and exploited, they can be used as the base
to drive machine intelligence and achieve better personalisation and adaptation
during learning. Multimodal data is expanding the horizon of the Learning Analytics
community and its moving towards Intelligent Tutoring Systems and Artificial Intelli-
gence in Education research communities. For decades the long-term goal of these
communities consisted in designing intelligent computer agents empathic to the
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learners which work as an instructor in the box and that can implement strategies to
reduce the difference between experts and student performance (Polson et al., 1988).
Multimodal data can facilitate achieving this goal, by equipping intelligent tutors
with action-based recognition and reasoning, so that they can deal with open-ended
learning tasks in uncontrolled environments.

3.2 Multimodal challenges

The analysis of multimodal data in learning is a fairly new but steadily growing
field of research. As the interest tracing learning through the use of multimodal
data grows, the opportunities stemming from it become more evident. As some
authors have pointed out, the field of MLA faces a set of open challenges that create
research gaps that need to be filled (Blikstein and Worsley, 2016). For instance,
the LAK community (and its CrossMMLA interests group) still lacks a standardised
approach for modelling of the evidence extracted from the learning process and
producing valuable feedback with multimodal data. In contrast, multiple tailored ad-
hoc solutions have been developed in related researches. A standardised approach to
MMLA, in our understanding, should help researchers in setting-up their multimodal
experiments by clarifying how the collection, storage, analysis and exploitation of
the multimodal data takes place in a pragmatic and scalable manner that can be
adopted into real-life educational settings. To contribute to filling this gap, in this
paper, we outline five main challenges stemming from the feedback loop empowered
by multimodal data and learning analytics. For each of these challenges, we describe
possible solutions or approaches.

3.2.1 Data collection

The first step of the journey is the data collection, that being the creation of datasets
through multiple sensors and external data sources. The sensors employed are most
likely to be produced by different vendors, hence to have different specifications and
support. The approach used for data collection must be flexible and extensible to
different sensors, it should allow the collection of data at different frequencies and
formats. Strongly connected to the collection is the data synchronisation. Proposed
solution: to address this challenge, we introduce the LearningHub, a software
prototype whose purpose is to synchronise and fuse different streams of multimodal
data generated by the multiple sensor-applications. The LearningHub’s main role
is to deal with the low-level specifications of every sensor offering a customisable
interface to start and stop the capturing of a meaningful part of a learning task,
i.e. moments definable by atomic actions; we call this an Action Recording. The
LearningHub is responsible to collect the updates for every sensor, organising and
synchronising them chronologically.
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3.2.2 Data storing

The second step is the data storing that encompasses the serialisation, storing and
logic for retrieval of the action recordings. This step is crucial to organise the
complexity of multimodal data which has multiple formats and big sizes. Proposed
solution: The LearningHub channels the data from multiple sensors and provides as
output multiple JSON files, which serialise and synchronise the sensor values for each
sensor application. The JSON files allow for sensors having multiple attributes with
different time frequencies and formats; they work as exchange format documents
and provides also the logic to facilitate the action recording for storing and later
retrieval.

3.2.3 Data annotation

The data annotation challenge consists in finding a seamless and unobtrusive ap-
proach for labelling the learning process, i.e. triangulating the multimodal action
recordings with the evidence (e.g. video clips) of the learning activities. The an-
notation step is rather crucial, as most of the time the meaning of a recording is
not trivial to derive just by looking at the sensor values. The format chosen for
assigning the semantics to the action recordings is also a relevant issue. Proposed
solution: to address this challenge, we propose the Visual Inspection Tool (VIT). The
VIT is a web-application prototype for the retrospectively analysis and annotation of
multimodal action recordings. The VIT allows to load multimodal datasets, plot them
on a common time scale and triangulate them with video recordings of the learning
activity. It allows to select a particular timeframe and annotate the multimodal data
slice with an Experience API (xAPI) triplet, assigning an actor, a verb and an object.
The VIT offers a human-computer interface which helps to deal with the complexity
of multimodal data.

3.2.4 Data processing

The data processing steps consist in extracting and aligning the relevant attributes
from the “raw” multimodal data and transforming them into a new data representa-
tion suitable for exploitation. The data processing steps depend tightly on the data
exploitation which is discussed in the next section. Common steps for data processing
include data cleaning (e.g. handling missing values, resampling and realigning the
time series), feature extraction, dimensionality reduction and normalisation. The
challenging side of the data processing for multimodal data is given by the size of the
multimodal datasets, the need to process them periodically and the need to process
as close to real-time as possible, a relevant aspect especially in the case of immersive
feedback generation.

Proposed solution: the idea is to have a Pipeline for multimodal data for learn-
ing, a cloud-based application which allows to plan and execute data processing
routines (e.g. Spark jobs). These routines should query the Learning Record Store
and fetch the all recent/relevant xAPI statements and load into memory all the
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action recordings connected to each xAPI statement. The raw action recordings
will be transformed according to the set of operations specified which will output a
transformed action recording which is saved and ready to be fed into a data mining
algorithm.

3.2.5 Data exploitation

Through an analysis of the related experiments in the literature using multimodal
data in learning settings, we concluded that there are different use cases generally
used for enhancing and facilitating the learning process with multimodal data. Pro-
posed solution: we classify the different use cases into five exploitation strategies:

1. Light-weight feedback: hard-coded rules and feedback based on heuristics of
the form “if sensor value is x then y”;

2. Replica: replays of the action recordings, e.g. ghost-tracks of motoric sensors
data;

3. Historical reports: aggregated visualisations in forms of analytics dashboard,
a group of data visualisations that show the historical progress of the sensor
recordings in condensed form;

4. Frequent patterns: mining of recurrent sensor values occurrences within one or
multiple sensor recordings;

5. Predictions: estimation of the human-annotated labels during similar action
recordings.

The strategies can be used for different purposes and applications. They differ in the
level of data processing used and consequently by the methods used for data analysis;
these include descriptive statistics, supervised or unsupervised machine learning.
For example, light-weight feedback requires simple hard-coded rules; historical
reports require visualisations that can be grouped into analytics dashboard; frequent
patterns or predictions require training either machine learning models, store them
into memory, and use them to estimate the value or the class of a particular target
attribute. Historical reports also differ by the effort required by human experts, for
example in collecting the labels or for interpreting the visualisations; similarly, the
strategies differ by the level of machine reasoning, e.g. between those using machine
learning and those which use heuristics.

3.3 Conclusions

In this paper, we have introduced five main challenges connected to the use of
multimodal data in learning. These challenges deal with the data collection, storing,
annotation, processing and exploitation and constitute important research questions
for all the CrossMMLA community. Along with these challenges, we briefly explained
some practical solutions. Being these ideas preliminary, we use them as agenda points
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and research questions for the Cross-Multimodal Learning Analytics (CrossMMLA)
research community. We hope that pointing out these challenges can raise interest
and awareness in the current research endeavours in the area of multimodal learning
analytics.
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Chapter 4

Read Between The Lines

This chapter introduces the Visual Inspection Tool (VIT) which supports researchers
in the annotation of multimodal data as well as the processing and exploitation
for learning purposes. While most of the existing Multimodal Learning Analytics
(MMLA) solutions are tailor-made for specific learning tasks and sensors, the VIT
addresses the data annotation for different types of learning tasks that can be cap-
tured with a customisable set of sensors flexibly. The VIT supports MMLA researchers
in (1) triangulating multimodal data with video recordings; (2) segmenting the
multimodal data into time-intervals and adding annotations to the time-intervals;
(3) downloading the annotated dataset and using it for multimodal data analysis.
The VIT is a crucial component that was so far missing in the available tools for
MMLA research.

This chapter is based on:

Di Mitri D., Schneider J., Specht M., & Drachsler H. (2019) Read Between the Lines:
An Annotation Tool for Multimodal Data for Learning. In: Proceedings of the Ninth
International Learning Analytics & Knowledge Conference 2019 (LAK ’19) (pp. 51–60).
New York, NY, USA. ACM. DOI: 10.1145/3303772.3303776.
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4.1 Introduction

Multimodal interaction methods are becoming increasingly popular in learning
science. User-computer interaction data, traditionally derived from software logs
or clickstreams are being enriched by additional data sources. These new data
sources are gathered with wearable sensors, Internet of Things (IoT) ubiquitous
devices or embedded systems. The driving reason for this shift is to achieve a
more comprehensive evidence and analysis of learning activities taking place in
the physical realm. In the last decade, research in learning science using data-
driven technologies such as learning analytics, educational data mining or intelligent
tutoring systems have focused primarily on online, desktop or mobile learning. In
these settings, learning activities are mediated by computer devices. In contrast,
settings as co-located collaborative learning, practical skills training, or dialogic
classroom discussions are less addressed in data-driven learning research. Including
novel data sources to investigate these learning activities happening in the physical
space is in line with the overarching theme of the Learning Analytics & Knowledge
conference 2019, which focuses on ‘inclusion’.

In support of these new forms of interaction, within the Learning Analytics com-
munity, a new research focus has emerged, coined as multimodal learning analytics
(MMLA) (Blikstein, 2013). The objective of MMLA is to track learning experiences by
collecting data from multiple modalities and bridging complex learning behaviours
with learning theories and learning strategies (Worsley, 2014). MMLA, however,
is an emerging research field that needs more evidence: a recent survey analysed
eighty-two MMLA papers, forty-six of which are empirical, while the reminder
theoretical (Worsley, 2018). Along with more evidence, MMLA needs structured
technological practice. Whilst the learning analytics community put considerable
efforts into standardisation and interoperability into data collection, analysis and
exchange, these efforts did not yet meet multimodal data. Researchers using mul-
timodal interaction approaches face multiple challenges that stem from the complex
nature of multimodal data (Lahat et al., 2015). For the case of MMLA, when
using multimodal data for learning, the challenges have been grouped into five
categories (Di Mitri et al., 2018b).

1. The data collection: the approach used for capturing, aggregating and syn-
chronising data from multiple modalities and sensor streams;

2. the data storing: the approach used for organising multimodal data which
having multiple formats and big sizes, for storing them the and logic for later
retrieval;

3. the data annotation: the approach for providing meaning to portions of mul-
timodal recordings and collecting human interpretations through expert or
self-reports;

4. the data processing: various steps for cleaning, aligning, integrating, extracting
relevant features from the “raw” multimodal data and transforming them into
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a new data representation suitable for exploitation;

5. the data exploitation: the approach to ultimately support the learner during
the learning process with the predictions and the insights obtained by the
multimodal data.

As a recent review concluded, MMLA has yet no structured approach to handling
multimodal data for learning gathered from different sources (Shankar et al., 2018).
In contrast, multiple tailor-made solutions have been developed in related research
adapted for specific use-cases, making the process of MMLA time consuming and
expensive. This aspect constitutes, in our view, a great shortcoming for the field
which hinders MMLA solutions to be adopted in the practice. Standard approaches
could help researchers simplify the setup of their experiments. They would allow
practitioners benefiting from more inclusive Learning Analytics that go beyond
mouse and keyboard interaction, including learning activities in the physical space.
To fill this gap in the current research, we propose a structured approach for MMLA.
We first explain in section 4.2 the differences that multimodal bring about compared
to traditional user-interaction data (section 4.2.1). We describe the challenges
introduced by sensors (section 4.2.2) as well as the potential of the multimodal
approach (section 4.2.3). We then review different existing multimodal tools and
see how they compare them in terms of their functionalities and purposes and
classifying them their features according to five MMLA challenges (section 4.2.4).
In section 4.3 we introduce our prototypical solution, consisting of the design and
implementation of the Visual Inspection Tool (VIT). The VIT is a generic solution
for the third category of MMLA challenges, the data annotation. We list a set
of functional requirements for the VIT (section 4.3.1) and we describe how we
implement the different components of it (section 4.3.2). We propose a procedure
for the data processing (section 4.3.3) and data exploitation (section 4.3.4) and we
test the VIT in three use cases (section 4.3.5). In section 4.4, we discuss the findings
of our approach positioning the VIT within an integrated workflow, the Multimodal
Learning Analytics Pipeline which works as a guideline for MMLA researchers. Finally,
in section 4.4 we draw conclusions and point to future directions.

4.2 Background

4.2.1 Computer Assisted Learning without mouse and keyboard

To date, learning research communities and practitioners using data-d riven ap-
proaches in learning focus on traditional and easy-to-retrieve data sources. These
sources include interaction data with the learning platform, such as the Learning
Management System (LMS) the Massive Online Open Course (MOOC), data crawled
from social media or collected from mobile applications. The accessibility and the
richness of these “traditional” data sources has in recent years motivated and in-
spired learning science research communities, such as the Learning Analytics and
Knowledge community (Greller and Drachsler, 2012). These traditional data sources
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only capture the learner’s interactions with the learning system or platform, hardly
capture any other moment in which learning occurs. For instance, it was found that
the usage of a mobile application used for learning was not a reliable source for
measuring the actual time the learner was spending on the learning task (Tabuenca
et al., 2015b). The ‘traditional’ learner-computer interactions are events that share
similar properties. For each of those events, it is straightforward to derive who did
what, as they are already sorted by user, action and activity. Such semantic encoding
is used by interoperability standards as Experience API for specifying events such
as “user likes post”, “user watches video”. With these types of events, there is no
need to decipher who did the action, when it was done and what kind of action it
was. This semantic encoding is easy to be interpreted by humans and for machines.
They are easily summarisable with aggregate functions and fed into visualisations
or dashboards showing the activity level and the learning effort. But what happens
during the learning moments in which the interaction with a computer is not the
main activity? For instance, when learning how to use a circular saw in a carpentry
school, when elaborating a solution to a challenge in a co-located group discussion,
or when participating in classroom discussions with teachers and peers. These
are examples of learning activities frequently happening in everyday classroom or
workplace settings. Psychomotor skills training, dialogic learning and co-located
group interactions are dominated by physical interactions, which remain most of
the time untracked. The physical interactions are not captured and, therefore, are
not included in the datasets used for analysis. In these physical learning scenarios,
mobile devices or laptops are not used as main media, but rather as side-tools, for
example for taking notes or looking-up web resources. Bringing these moments
into account requires a more seamless data collection that goes beyond the direct
learner-computer interactions derived from clicks, keystrokes or nested software
logs.

4.2.2 Sensors in learning

Beyond mouse and keyboard events there are multimodal sensor data, i.e. data
that can be collected with sensors, computer chips, wearable trackers, microphones,
cameras and other computer input devices. Consumer-level sensors, wearables
and IoT devices introduce new multimodal affordances that can be exploited to
collect evidence of learning actions in a wide range of situations. There exist a
large variety of sensor devices that can be used in learning contexts. Schneider et
al. (Schneider et al., 2015a), have identified more than 23 different sensor devices
that have been or can be used in the domain of learning. Sensors can monitor both
the physical environment where the learner operates and the learner’s behaviour
including 360-degrees body movements, physiological responses such as heart rate
or body temperature, or interpersonal communication, student-teacher or student-
peer discussions. In related literature, sensors have been used to track different
modalities such as hand gestures (Ochoa et al., 2013; Worsley and Blikstein, 2018),
gross body movements (Bosch et al., 2015), eye-tracking (Prieto et al., 2016; Raca
and Dillenbourg, 2014), facial expressions (Arroyo et al., 2009; Bahreini et al., 2015).
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Sensors were also used to monitor physiological signals such as heart rate (Hussain
et al., 2012; Alzoubi et al., 2012), galvanic skin response (Pijeira-Díaz et al., 2018;
Grafsgaard, 2014), brain waves (Alzoubi et al., 2012; Prieto et al., 2016). The
recent framework of Limbu et al. proposes how to use sensors to capture the
expert performance and re-enact it through Augmented Reality using a variety of
approaches, coined as Transfer Mechanisms (Limbu et al., 2018b). Despite the
extensive body of literature featuring sensors, still, a very small percentage of studies
opted for non-tailored and more generic approaches. In addition, to the best of our
knowledge, there is little use of MMLA solutions in actual educational practices.
While in many sectors such as automotive, manufacturing, retail, smart living or
health care, IoT and sensor-based systems are now very common, similar systems
have not been developed yet for education and learning. Compared to other domains,
human learning is a more complex and individual process much harder to model. The
learning environment for humans is usually open-ended and highly unpredictable.
There are many factors which influence learning, including the social relationships
with teacher and peers, or the necessity to close the feedback loop to correct and
improve learning behaviour.

4.2.3 Multimodal data for personalised learning

Multimodality is a theoretical assumption that can be used to provide more structure
in the use of sensors for investigating learning. The idea of using multimodality in
learning derives from the theory of embodied communication. According to this
theory, humans use their whole body to communicate, they use a multitude of chan-
nels to exchange messages in shared contexts (Wachsmuth et al., 2012). Similarly
to human-human communication, the multimodal principle can also be employed
in human-computer interaction. Sensor-based multimodal interfaces can monitor
the variation of different modalities during learning activities: including dialogic
learning in the classroom (D’mello et al., 2015), in computer-supported collaborative
learning during knowledge-sharing and group discussions (Martinez et al., 2011;
Praharaj et al., 2018), practice-based and open-ended learning tasks (Worsley, 2014),
when understanding and executing a practical learning task (Ochoa et al., 2013)
or training presentation skills (Schneider et al., 2015b). The benefit of multimodal
data is, first of all, enriching the learner’s digital representation as well as the ones
of the learning context, environment or task. Enriched representations can shed
more light on cognitive states or metacognitive factors that influence learning. Di
Mitri et al. 2018a provided a model, the Multimodal Learning Analytics Model that
frames the different phases of MMLA and describes how MMLA outcomes can be
used for personalised feedback and reflection for learners. Using the multimodal
data collected during a learning task, machine learning algorithms can be trained to
classify, cluster or predict learning dimensions that are “invisible” to sensors, such as
learner’s emotion, learner’s cognition or outcomes. These predictions can be used to
tailor different types of feedback, which can be used to guide the learner towards
predefined learning goals, whether this is improving a particular task or stimulating
self-reflection. Multimodal data can be used to enhance intelligent tutoring systems
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(ITSs) employed in physical learning activities, providing a more accurate student
model representation. Figure 4.1 represents this aspect with a typical ITS tripartite
structure (1) Knowledge domain, (2) Student model, (3) Pedagogical model (Polson
et al., 1988) enhanced by multimodal data collected in the physical realm.

Student
Model

Knowledge
Domain

Pedagogical 
model

Learner

User interface Multimodal 
data

Evaluation &
Diagnosis

Tailored instruction

- Task complexity
- Task order
- Group role

- Interaction data
- Contextual data
- Physiological data

Extend

Physical world

Intelligent Tutoring System

Figure 4.1 Multimodal data can extend the digital representation of the learner in the system.

4.2.4 Tools for Multimodal Data

One relevant aspect of MMLA research is the design of the technical infrastructure
and the choice of technical tools to handle the data gathered from multiple modalities.
Compared to learner-computer interaction data, sensor data pose a much bigger
challenge: single behavioural particles have low semantic meaning if considered
singularly (Dillenbourg, 2016). For example, the skeleton data recorded with
Microsoft Kinect can record the full-body movements which translate to more than
fifty sensor attributes. On the one hand, visually representing raw data values for
human inspection is not informative, on the other hand, multimodal data can be
processed by computer-based algorithms which need more complex architectures
which lack in the learning domain. There exist, however, technical tools in contiguous
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disciplines to MMLA as social signal processing, which can solve some specific parts
of the data-informed cycle. In this section, we review seven of these tools, later we
classify them into five categories previously introduced.

Social Signal Interpretation & NovA

The Social Signal Interpretation (SSI) (Wagner et al., 2011) is an open source
framework for real-time recognition of social signals during social interactions.
SSI supports synchronised data recording from a large range of sensor devices to
recognise behavioural cues such as gestures, head movements, and emotional speech.
SSI allows the user to collect their own training corpora and obtain personalised
models. Through an XML editor, SSI allows to draft and run pipelines by connecting
multiple sensors, to data processing techniques (transformations) and visualisations
(consumer applications). While SSI has plugins for multiple existing sensors, it does
not clarify how to connect new ones. One relevant extension, NovA (NonVerbal
behaviour Analyzer) (Baur et al., 2013) allows the user to annotate behavioural
cues and measure the quality of the social interactions, in terms of user’s levels of
engagement and activation in the interaction. SSI is an open source software (GPL
license) written in C++.

Lab Streaming Layer

Lab Streaming Layer (LSL) focuses on a unified collection, synchronisation and
storing time series data (Kothe et al., 2018). Developed by the Swartz Center for
Computational Neuroscience, LSL implements plug-ins for multiple brain-computer
interface devices primarily used in neuroscience research such as electroencephalo-
grams (EEG). LSL creates stream outlets where streaming data can be published in
samples or chunks with regular or irregular sampling ranges. Receiver nodes can
also subscribe through stream inlets, topics to which computers in the same network
can subscribe. LSL uses functions to discover and resolve streams of data in the
network. LSL also features a built-in clock that allows assigning timestamps to the
collected data samples in order of sub-millisecond accuracy using the Network Time
Protocol. LSL uses a custom data format, the eXtensible Data Format (XDF). LSL is
open source cross-platform software that offers interfaces in C, C++, Python, Java,
C#, Matlab.

Data Curation Framework (DFC)

Data Curation Framework (DFC) focuses on raw sensory data acquisition, cura-
tion and monitoring (Amin et al., 2016). It implements an IoT approach for data
collection in real time from multiple modalities distributed environment over a cloud-
based platform. DFC implements a rule-based anomaly detection system. As the
computation is performed over the cloud platform, the interesting side of DFC is the
scalability. DFC introduces the concept of user’s lifelogs curation through continuous
monitoring of the sensory data. The DFC system was created for pervasive health
monitoring and, for this reason, it implements algorithms as anomaly detection
based on expert hardcoded rules. DFC is written in Java and Javascript and released
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open source under Apache license 2.0.

ChronoViz

ChronoViz is a tool for the visualisation of time-based data from multiple synchron-
ised streams of data (Fouse et al., 2011). ChronoViz allows researchers to navigate
multimodal data, including video, audio, digital nodes and geographic data and add
text-based annotations. It is designed to support multiple videos and support log
data (e.g. from flight simulator), geographic coordinates, video and audio transcripts
or notes were taken on paper with a digital pen. The annotations are overlaid on top
of the synchronised graphs and they can be grouped into categories of annotations
that have different colours. ChronoViz runs as a local Mac OSX application, its code
is open source under Apache license 2.0.

RepoVizz

RepoVizz is a data repository and visualisation tool for storage and user-friendly
browsing of music performance multimodal recordings (Mayor et al., 2013). Re-
poVizz offers means for researchers to access music performance online in a shared
multimodal database. RepoVizz supports several formats for audio and video. It also
accepts sensor files in CSV format (e.g., motion capture or physiological signals).
The data is structured into an XML (repoVizz Struct) which through metadata allows
the user to organize multimodal data in a hierarchy. The XML files and all the
multimodal data sources are called repoVizz Datapack and are uploaded into zip
files. It differentiates users types into Producers and Consumers allowing different
downloading, uploading and annotating rights. RepoVizz allows annotations for
different sound streams to segment different notes to identify different instruments
playing in collaborative musical settings such as orchestras. RepoVizz is an open
source software written with Javascript-HTML5 front-end, Java backend and MySQL
database.

Generalized Intelligent Framework for Tutoring

GIFT is a framework that provides tools, methods and standards for the design
and evaluation of computer-based tutoring systems (Sottilare et al., 2012). GIFT
is developed by the Learning in Intelligent Tutoring Environments Laboratory, part
of the U.S. Army Research Laboratory. GIFT consists of a sensor module interfacing
with commercial sensors for processing and storing sensor data; a domain module
providing the content to support the training and assessing the learner’s performance
against standards; the pedagogical module identifying the need for feedback. GIFT
uses sensor data to identify the learner’s affective, cognitive and psychomotor states.
GIFT source code is available via registration.

Multimodal Learning Hub

The Multimodal Learning Hub (LearningHub) is a system that focuses on the data
collection and data storing of multimodal learning experiences (Schneider et al.,
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2018). It uses the concept of Meaningful Learning Task (MLT) and introduces a new
data format (MLT session file) for data storing and exchange. The LearningHub
implements a set of specifications that shape it for certain types of learning activities.
It was created to be compatible primarily with commercial devices (e.g. Microsoft
Kinect, Leap Motion, Myo Armband) and other sensors with drivers running with
the most common operating systems. It focuses on short and meaningful learning
activities ( 10 minutes) and uses a distributed, client-server architecture with a mas-
ter node controlling and receiving updates from multiple data-provider applications.
It also handles video and audio recordings with the main purpose to support the
human annotation process. The expected output of the LearningHub is one (or mul-
tiple) MLT session files including (1) one-to-n multimodal, time-synchronised sensor
recordings; (2) a video/audio file providing evidence for retrospective annotations.
The LearningHub is open-source and developed in C#.
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4.3 Methodology

Among the five categories of challenges of MMLA this paper puts its focus primarily
on data annotation and consequently on data processing and exploitation to comple-
ment which, as the review of multimodal tools reveals, are the MMLA challenges
which are not sufficiently addressed. To address this gap, we formulate the following
research questions: (RQ1) How to design a system to annotate multimodal recordings?
(RQ2)What processing techniques can be used with annotated multimodal record-
ings? (RQ3) How to exploit annotated multimodal recordings in different learning
scenarios?

4.3.1 Design specifications

Data annotation requires a human evaluator, typically an expert, who can be a
researcher or a trainer. The user assigns meaning to portions of the multimodal
sensor recording through direct or retrospective observations. This procedure is
also known as triangulation: the user views the interpretable evidence (e.g. video)
while plotting and visualising synchronised multimodal recordings; thus, the user
adds annotation transferring meaning to multimodal recordings which are hard to
interpret. The annotations should be customised according to the chosen annotation
scheme and the output - the annotated dataset - can be downloaded. Most of the
time, multiple experts need shared access to the same datasets. Depending on
the richness of the sensors, processing the dataset can become computationally
expensive, therefore a scalable and dynamic allocation of processing power is needed.
This scenario can be seen in the form of functional requirements:

(FR1) the user can plot and visualise a multimodal recording file, featuring multiple
synchronised data streams;

(FR2) the user can view video of the session synchronised with the multimodal data;

(FR3) the user can add annotations to single time intervals in attribute-value form;

(FR4) the user can add custom annotations;

(FR5) the user can download the annotations or attach them to the session file;

(FR6) the tool should be compatible with cloud-based solutions for scalability and
shared access.

For the specific challenge of data annotation, the existing tools that best fulfil these
requirements are ChronoViz and repoVizz. ChronoViz fulfils FR1 and FR2, however,
it is not designed to handle datasets having a large number of sensor attributes. It
runs locally and therefore does not fulfil FR6. It allows custom annotations but only
consisting of text (not attribute-value) therefore does not fulfil FR3. Similarly, it
does not allow to select time intervals but only time points. repoViz instead fulfils
FR1, FR2, FR6. When it comes to annotations, however, the tool focuses more on
annotating the different contributions of single modalities (e.g. musical instruments)
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rather than annotating a new corpus to prepare it machine learning or feedback.
On this note, SSI and its extension NovA focus on creating custom corpora. One
aspect implemented in DCF and repoVizz is the use of web compatible technologies
which relate to FR6. repoVizz, contrarily to the other software, implements a web
interface while DCF performs operations in the cloud. These decisions allow for
better scalability than software running locally on a single computer.

As our solution focuses primarily on multimodal data annotation, we need to apply
other solutions for data collection and storing. Among the reviewed tools, the
candidates are SSI, LSL and LearningHub. The upside of LSL is the high fidelity data
collection and custom format. For SSI are the wider community and support and the
variety of plugins. Both do not clearly explain their extensibility with new sensors
and their contribution to user feedback. The LearningHub, despite being more recent
and experimental, focuses on learning and therefore prioritises the feedback loop.
We decide to adopt the LearningHub and its data format (MLT session file) providing
synchronised multimodal sessions with video recordings.

4.3.2 Implementation

To fulfil the design requirements, we develop the Visual Inspection Tool. The VIT
is developed as a server-less web application in Javascript and HTML5 running on
an Internet browser. We chose this technology because it is highly compatible. The
VIT allows for plotting datasets and while playing multimedia files such as videos,
and high performance is not a requirement for this type of application. VIT can
plot the multimodal data of the video recording of the session for triangulation. A
comprehensive screenshot is represented in Figure 4.2. VIT contains a parser for the
custom MLT data format and is currently able to handle a great number of sensors
attributes. In the use cases, we have tested in section 4.3.5, we were able to load up
to one hundred different attributes. This number can easily scale higher, since, by
defaults, the attributes are not loaded into the chart unless they are clicked by the
user.

Session file

The multimodal recordings used as input corresponds to an MLT session file of the
LearnigHub. The data format of these sessions is a zip compressed folder. In this
version of the session folder, it can be loaded on the panel Session load (Figure 4.2,
A, top-left) by picking a session stored on the local drive. If VIT runs on an online
server, the session files could also be picked from a cloud repository. When selecting a
session an asynchronous parser is activated to scan the content of each file contained
in the session zip folder. Following the specs of the LearningHub, the files can be
either JSON (Sensor application files) or MP4 file formats. The JSON files will be
parsed as described in the next section and the video will be loaded (Figure 4.2, G,
top-right). An example of such a file is shown in Listing 1.
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Figure 4.2 The VIT features the following elements: (A) Session loader MLT session file
custom data format; (B) Attribute list; (C) Annotation file loader; (D) Time
intervals editor; (E) Annotation editor; (F) Attribute plots; (G) Video player of
the recording.

1 {
2 "recordingID": "11H57M49S371",
3 "applicationName": "Myo",
4 "frames": [
5 {
6 "frameStamp": "00:00:00.0035019",
7 "frameAttributes": {
8 "orientation_X": "-0.6087646",
9 "accelerometer_Y": "-0.3989258",

10 "gyroscope_Z": "2.9375",
11 "EMGpod_1": "-2",
12 "EMGpod_2": "-8",
13 "EMGpod_3": "-54",
14 }
15 }, ... {

Listing 4.1 Example of one of the JSON file contained in the session file for the Myo
application.

Sensor attributes

Sensor attributes are relevant components of multimodal data since they constitute
the facets through which the sensor measures a phenomenon, for example, the
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electromyogram data of the learner). The sensor attributes are specified in each
application file contained in the session file. When the sensor file is loaded in,
the sensor attributes are hierarchically sorted in the Attribute list (Figure 4.2, B,
bottom-left). Each sensor application (e.g. “Kinect”) is one top-node on the list. The
parser of the VIT can nest the sensor attributes using underscores. For example, if
the parser reads an attribute named “3_Hand_Right_Tip_X”, it will nest the attribute
in the following hierarchy 3 > Hand > Right > Tip > X. The sensor attributes can
be either numerical time-series or categorical series. Multiple sensor attributes can
be selected with a checkbox on the Attribute list, this action will update the chart
plotting all the selected attributes (Figure 4.2, F, centre-right).

Time intervals

Time intervals allow partitioning the sensor recording into shorter segments that
have different purpose and meaning. The user can add a new time interval by
selecting a time region under the plot F. Each time interval is represented as light
yellow rectangles in the plot, which as a segment of the x-axis (time dimension).
The time interval is defined by their start-time and end-time, which is the relative
duration in seconds from the start of the session. All the added time intervals are
listed in panel D. The user can click on one or more time intervals on this list and
highlight visually the time intervals in the plot which will turn from light yellow
to blue. The time intervals are added independently by the sensor attributes. The
sensor attributes, however, vary within each time intervals and their value change is
important for the annotations. Time intervals can also overlap.

Annotations

The intervals define portions of the sensor recording with a specific meaning which
can be assigned through custom properties. We call these properties annotations. In
the case of our implementation, the annotations are provided in the time domain
rather than the spatial or the frequency domain. The user provides an annotation
that is valid for a time interval, i.e. between two time points of the multimodal
dataset. In contrast, the user cannot provide an annotation to specific regions of
the video or to certain frequencies of the sensor attributes. Each time interval can
be annotated with 0-to-n annotations. The annotations can be both loaded via the
Annotation file (Figure 4.2, C, top-centre) or can be defined manually (Figure 4.2,
E, centre). All the time intervals share the same set of annotations, this leads to an
Attribute-Value representation in which the annotated dataset can be seen as a table
in which each time interval is a row and each annotation constitutes a column. The
value not assigned will be treated as a null value. As time intervals can overlap also
annotations can also do the same. This allows for annotations at different levels
of granularity, and for example, break down activities into smaller sub-activities or
atomic actions.
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Annotation procedure

The annotation procedure consists of assigning all the time intervals to the right
annotation values. To do so, the user can be helped by the video (if available) in
identifying the right affiliation between time intervals and annotations. After the
annotation procedure, the user can click “export” which enables three different
follow-up actions for the user: download the single annotation file in JSON format.
The same file format is accepted by the Load annotation panel (Figure 4.2, C, center-
top); download the session file in zip format embedding the annotation file. The file
will be renamed “recordingID_annotated.zip” add the annotations in the Attribute list
(Figure 4.2, B, bottom-left) to be able to plot them along with the sensor attributes.
This feature works best with numerical data and can be useful to visualise the
variations of annotation values.

4.3.3 Data processing

Data transformation

As output, the VIT produces an annotated dataset “recordingID_annotated.zip” which
can be downloaded and is ready to be transformed. We have implemented this
routine in Python outside of the VIT, since, while the transformation requirements
might change, the annotated dataset remains unchanged. In Figure 4.3, we provide
a graphical representation of this transformation. The routine takes all the time
intervals (t1...tn) which are specified in the annotation file and make them as one
row in the tabular representation. Each of this row has corresponding annotations
(y1, ..., yn). Consequently, we use the time intervals as time window on the sensor
application files, each of them containing a different set of attributes. This windowed
selection gives as output multiple smaller time-series, one for each attribute con-
tained in each application file. In each time-series, we then apply feature selection, to
extract numerical features to transform the variable length of the smaller time series.
A great number of features can be extracted, spanning from the most classic time-
domain features (e.g. min, max, st. deviation, variance, mean) to frequency-domain
features (eg. no. peaks, Fast Fourier transform). In addition, there are signal specific
features, which vary depending on whether the time series describes a physical
movement or a physiological response. The appropriateness of the features must
be found in the literature dealing with those particular signals. At the end of this
process, the end result is a table with i rows (number of intervals) and (p∗w ∗n+m)
columns, where p is the number of attributes for the sensor application files, w is the
number of aggregating function φ, n is the number of applications and m the target
values contained in the annotation file.

Model creation

The techniques for processing multimodal data highly depend on the goal of the
system. Here we list a set of techniques to derive models from the transformed
data.
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Figure 4.3 Attribute-value transformation of the annotated dataset.

1) Supervised machine learning models are computed a posteriori using the labels
collected with the annotation as target attributes for prediction or classification.
VIT has been designed particularly for using these models. The annotation allows
distinguishing optimal from non-optimal learning moments, e.g. if the learning
performance meets the learning goals or if the learner commits an error.

2) Unsupervised models do not use labels as the reference system for the optimal
learning trajectory, but cluster similar learning moments together. This analytical
approach allows discovering patterns of behaviour that are close to each other.
Unsupervised techniques can be used in case no annotation scheme can be found. In
that case, it could still be useful to use the VIT to segment the learning experience
into meaningful parts.

3) Rule-based models, in this case, the sensor thresholds for the ideal performance
are presumed a priori. This approach is also known as constraint-based models
(CBMs). CBMs use constraints in the form of tuples < Cr, Cs >, where Cr is the
relevant condition and Cs is the satisfaction condition. When Cr applies, then Cs is
tested, if not satisfied then feedback is triggered (Kodaganallur and Weitz, 2005).
With this approach, VIT does not have a central role and can be bypassed.

4) Probabilistic models such as Bayesian Networks or Structural Equation Model-
ling. These models also require the VIT and the annotation procedure. Differently
from the discriminative models such as supervised or unsupervised learning, these
models learn the conditional distribution which can be used for diagnostic or for
informing about the relations between different factors that influence the target
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Data exploitation
strategy

Data processing
technique

Feedback
medium Model

Use of
the VIT

Actionability Interpretability

A) Corrective
non-adaptive

feedback
3) Rule-based models ITS Presumed No High High

B) Predictive adaptive
feedback

1) Supervised ML
models ITS Computed

Intervals,
annotations High Low

C) Patterns
identification

2) Unsupervised
ML models Dashboard Computed Intervals Low Medium

D) Historical reports Descriptive statistics Dashboard No model No Low Low
E) Diagnostic analysis

of factors 4) Probabilistic models Dashboard Computed
Intervals,

annotations Low High

F) Comparison 5)
Expert-learner

comparison Dashboard Presumed Intervals Low Medium

Table 4.2 Mapping the processing techniques to exploitation strategies for multimodal data.

attributes.

5) Expert-learner models can compare two or more performances, e.g. learner
against the expert’s performance to search for the presence of erratic behaviour. This
approach requires a pairwise comparison between the expert’s performance and
trainee’s performance. It uses similarity algorithms, such as Dynamic Time Warping
considering that sessions might have different execution times. The VIT can be used
to segment the multimodal recordings in relevant activities. However, it can become
complex when multimodal recordings have hundreds of attributes.

4.3.4 Data exploitation

The data-driven system can have multiple benefits for learning such, for instance: A)
providing immediate feedback for correcting erroneous behaviour; B) tailor a more
personalised learning experience; C) find patterns in the course of action; D) provide
an in-depth overview of the learning process; E) diagnose factors and triggers for
learning; F) compare the learner with the expert. All these forms of feedback can be
delivered differently, for example, through an ITS or via a dashboard. In Table 4.2,
we map the strategies with the data processing techniques discussed in previous
section 4.3.3. We classify these strategies based on whether the model is presumed
a priori or computed a posteriori; if the output is actionable for the learner (i.e.
suggest the learner what exactly to do or improve) and if the model is interpretable
(i.e. explains how the model was created).

4.3.5 Technical use cases

To test the VIT in authentic learning scenarios we have used it with three different
ITSs designed for three different psychomotor learning scenarios (Figure 4.4) (1)
training how to present in public with Presentation Trainer; (2) cardiopulmonary re-
suscitation training with the CPR Tutor; (3) calligraphy training with the Calligraphy
Tutor. For each of these three scenarios, the authors developed an ITS which uses
the LearningHub in the backhand for the data collection and synchronisation. This
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allowed collecting session files with a structure that can be loaded into the VIT.

Presentation trainer

the Presentation Trainer (PT) (Schneider et al., 2015b) is a research prototype
designed to support the development of nonverbal communication skills for public
speaking (Figure 4.4, top). The multimodal data used are audio and skeleton via
Microsoft Kinect. The feedback implemented in the PT is rule-based corrective. The
model of ideal presentation has been designed a priori by interviewing presentation
experts. The performance of the learner is compared against such a model. PT is
only able to detect gestures, not able to differentiate among types of gestures such
as iconic, deliberate, unconscious or bigger than usual gestures. The role of the VIT
in the data generated by PT is to identify different types of gestures and enhance the
feedback of the PT.

Multimodal Tutor for CPR

The Multimodal Tutor for CPR (Di Mitri, 2018) was designed for training people to
perform cardiopulmonary resuscitation using patient manikins (Figure 4.4, centre).
The tutor uses a multi-sensor setup for tracking the CPR execution and generating
personalised feedback The feedback is based on the multimodal data it predicts when
the CPR correct posture for chest compression is violated. It uses supervised machine
learning models to generate these predictions. The multimodal data considered are
trainee’s body position (with Microsoft Kinect), electromyogram (with Myo armband)
and compression rates data derived from the manikin. The VIT was used in the
CPR Tutor for annotating the single chest compressions, if and when errors in the
from the CPR correct posture occurred. The following binary target attributes were
annotated: copressionRate (speed of the compression), compressionDepth (depth of
the compression), compressionRelease (hands correctly released from the manikin),
armsLocked (whether arms were kept locked), bodyWeight (if the whole body weight
was used when compressing).

Calligraphy Tutor

the Calligraphy Tutor (Limbu et al., 2018a) application runs on Microsoft Surface
tablet and is designed to record the fine motor movements of calligraphy experts
(Figure 4.4, bottom). The multimodal data used are pen strokes with Microsoft
Surface pen, Myo electromyogram data. The feedback provided guides the calli-
graphy trainees guides to learn calligraphy for the first time. The VIT was used for
annotating letters. Letters consisting of different pen strokes were grouped into
different intervals, and their execution was evaluated by a calligraphy expert.
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Figure 4.4 Use cases for the VIT: (1) Presentation trainer, (2) CPR Tutor, (3) Calligraphy
Tutor.
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4.4 Discussion

We answered RQ1 by listing six functional requirements (section 4.3.1) and by
describing how the components of the VIT fulfil these requirements (section 4.3.1).
The testing of VIT in the three technical use cases (section 4.3.5) shows that VIT
in combination with the LearningHub are tools that can be applied in a variety
of learning tasks. There are, however, some limitations: the scenarios used as
technical use cases are characterised by learning experiences conducted by one
learner individually and the learner executes practical tasks which are evident for
the sensors. We have not tried VIT for collaborative settings or for learning activities
that require cognitive tasks which are difficult to capture with sensors, these areas
require future work.

To answer RQ2 we show in section 4.3.2 how to transform the output of the VIT
in tabular representation (attribute-value) having the annotated time intervals
as individual learning samples. This transformation provides the researcher a
dataset ready for being further analysed with a variety of techniques, some of
these summarised in section 4.3.3.

Finally, we addressed RQ3 providing a set of use cases where the VIT can be applied
and support specific learning tasks (section 4.3.5). The use cases are also enriched
with a list of different strategies of exploitation for multimodal data for learning. We
consider that the answer to RQ3 is highly relevant for the MMLA community as it
contributes to close the feedback loop that begins with multimodal data collection
and ends to the learner.

As we evidenced in the review of existing tools in section 4.2.4, the data exploitation,
is the part of MMLA that requires more research effort by the community. We also
argue that the contribution of the VIT, together with LearningHub and other technical
tools for MMLA from our review can be part of an integrated workflow, which can
work as a toolkit for MMLA researchers to quickly set up their experiment without
having to “reinvent the wheel” and create each time new systems from scratch. We
call this the Multimodal Learning Analytics Pipeline. The MMLA Pipeline is composed
of five steps (as shown in Figure 5.1), corresponding to the five MMLA challenges:
(1) collection, (2) storing, (3) processing, (4) annotation and (5) exploitation of
multimodal data.

The MMLA Pipeline is a workflow for researchers which allows multimodal tracking
of learning activities using wearable sensors, IoT devices, audio and video recordings.
There could be multiple routes in the MMLA Pipeline: in Figure 5.1, for example,
we show the first four exploitation strategies that we discussed in section 4.3.4: A)
Corrective feedback, B) Predictions, C) Patterns, D) Historical reports. The first two
routes (A, B) can be implemented within an ITS for, respectively, instantaneous cor-
rections and adaptation. The second two (C, D) provide the possibility to orchestrate
the learning activity by detecting the frequency of patterns or to raise awareness on
the historical development of the modalities. The use cases we tested in section 4.3.5
can be positioned into the MMLA Pipeline. The Presentation Trainer would take
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route A), as feedback is directly processed in the LearningHub and it requires no
storing, annotation, exploitation. The Tutor for CPR will take the route B), as the
VIT is used and therefore prediction models are trained. The Calligraphy Tutor will
take route D or C, depending on whether the VIT used for annotating the letters.

4.5 Conclusions

In this paper, we introduced the Visual Inspection Tool, which addresses the data
annotation challenge and facilitates data processing and exploitation. In contrast to
most of the existing MMLA architectures and tools tailored-made for specific learning
tasks and sensors, the VIT allows addressing data annotation generically, for any type
of psychomotor learning task that can be captured with a customisable set of sensors.
The VIT enables the user (1) to triangulate multimodal data with video recordings;
(2) to segment the multimodal data into time intervals and to add annotations to
the time intervals; (3) to download the annotated dataset and use the annotations
as labels for machine learning predictions. The flexibility introduced by VIT terms
of dataset accepted makes it with the LearnigHub a structured research solution
solving different challenges introduced MMLA. We called this solution Multimodal
Learning Analytics Pipeline. The MMLA Pipeline is a new integrated workflow that
works as a toolkit for supporting MMLA researchers to set up new experiments in a
variety of learning scenarios. Using components from this toolkit allows reducing
developing time to set up experiments and facilitates the transfer of knowledge. In
the future, we plan to continue working on the MMLA Pipeline, to further improve
this structured approach for MMLA, which can bring the benefits of the multimodal
data, machine learning and data analysis also into the learning settings beyond
mouse and keyboard happening in the physical space.
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Chapter 5

The Multimodal Pipeline

We introduce the Multimodal Pipeline, a prototypical approach for the collection,
storing, annotation, processing and exploitation of multimodal data for supporting
learning. At the current stage of development, the Multimodal Pipeline consists
of two relevant prototypes: 1) Multimodal Learning Hub for the collection and
storing of sensor data from multiple applications and 2) the Visual Inspection Tool
for visualisation and annotation of the recorded sessions. The Multimodal Pipeline is
designed to be a flexible system useful for supporting psychomotor skills in a variety
of learning scenarios such as presentation skills, medical simulation with patient
manikins or calligraphy learning. The Multimodal Pipeline can be configured to
serve different support strategies, including detecting mistakes and prompting live
feedback in an intelligent tutoring system or stimulating self-reflection through a
learning analytics dashboard.

This chapter is based on:

Di Mitri, D., Schneider, J., Specht, M., & Drachsler, H. (2019) Multimodal Pipeline:
A generic approach for handling multimodal data for supporting learning. First
workshop on AI-based Multimodal Analytics for Understanding Human Learning in
Real-world Educational Contexts (AIMA4EDU). IJCAI’19 Macau, China.

Note: this contribution received the Best Paper Award at the AIMA4EDU workshop
at IJCAI’19.
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5.1 Introduction

The diffusion of wearable fitness trackers, sensor-rich smartphones, mixed reality
headsets, cameras and Internet of Things devices is introducing new technological
affordances that can be leveraged in the field of education and learning. Educational
researchers are increasingly embedding multi-sensor and multimodal interfaces
and approaches to track learner’s behaviour in authentic learning contexts. These
new technologies allow moving beyond the typical human-computer interaction,
where the user sits in front of a computer, and move towards more immersive
and multimodal interactive experiences across spaces through the manipulation of
physical and digital objects and environments. This paradigm shift allows a more
careful investigation of ‘psychomotor’ learning activities, i.e. those practical skills
that require fine coordination between body and mind. In learning science, learning
analytics and human-computer interaction, we are witnessing a drastic increase in
the use of multi-sensor interfaces and multimodal data sources (Oviatt et al., 2018).
Nevertheless, in these fields of research, the technological solutions chosen to gather
multimodal data opted primarily for tailor-made and ad-hoc solutions. Researchers
are still required to take many architectural decisions to collect their data set to
reach a stage they can collect their datasets to do their investigation.

5.2 Proposed solution

To change this idea, we present our scientific contribution: the Multimodal Pipeline,
a generic approach for systematically collect, store, annotate, process and exploit
multimodal data in a learning scenario. The Multimodal Pipeline enables researchers
to design their experiment and quickly obtain synchronised multimodal datasets
so that they can focus on the data analysis. The Multimodal Pipeline proposes a
technological solution to the different steps. With the Multimodal Pipeline, we
aim at addressing the lack of tools and support for the MMLA researchers. The
Multimodal Pipeline provides an approach for collecting and exploiting multimodal
data to support activities across physical and digital spaces. The Multimodal Pipeline
facilitates researchers in setting up their multimodal experiments, reducing setup
and configuration time required for collecting meaningful datasets. The multimodal
data collected can support researchers to design more accurate student modelling,
learning analytics and intelligent machine tutoring. Using the Multimodal Pipeline,
researchers can decide to use a set of custom sensors to track different modalities,
including behavioural cues or affective states. Hence, researchers can quickly obtain
multimodal sessions consisting of synchronised sensor data and video recordings.
They can analyse and annotate the sessions recorded and train machine learning
algorithms to classify or predict the patterns investigated. A comprehensive overview
of the Multimodal Pipeline is given in Figure 1. The Multimodal Pipeline is a
cycle consisting of five steps, which propose a solution to the five main MMLA
challenges.

(1) The data collection: techniques used for capturing, aggregating and synchronizing
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Figure 5.1 Graphical representation of the Multimodal Learning Analytics Pipeline.

data from multiple modalities and sensor streams;

(2) the data storing: the approach used for organizing multimodal data which having
multiple formats and big sizes, for storing and retrieving them later;

(3) the data annotation: how to provide meaning to portions of multimodal record-
ings and to collect human interpretations through expert or self-reports;

(4) the data processing: approach for cleaning, aligning, integrating, extracting
relevant features from the ‘raw’ multimodal data and transforming them into a new
data representation suitable for exploitation;

(5) the data exploitation: the approach to ultimately support the learner during the
learning process with the predictions and the insights obtained by the multimodal
data.

The Multimodal Pipeline offers a bird-eye view on the life-cycle of multimodal data
that are collected from and used to support the learner. We imagine the Multimodal
Pipeline in two phases, the ‘research’ phase and the ‘production’ phase. The first
one includes several expert-driven operations, such as sensor selections, annotations,
model training, parameter tuning. These configurations are used in a later stage of
‘production’ in which the Multimodal Pipeline is used as the multimodal data back-
bone infrastructure for collecting the learning data and using them for improving
the learning activities. In real-life learning activities, multimodal data can be sup-
portive in different ways. We call these the exploitation strategies. For example, an
Intelligent Tutor using the Multimodal Pipeline can prompt instantaneous feedback,
nudging the learner towards the desired behaviour. Alternatively, the learner data
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can be used for retrospective feedback, in the form of an analytics dashboard.

5.3 Technological advantages

Learning activities vary by a significant number of factors. For instance, they can take
place inside or outside the classroom, they can be individualised or collaborative,
more or less structured. Aiming at creating a system which can support all different
combination is an ambitious task. For this reason, we restrict the number of options
and better frame the contribution of the Multimodal Pipeline. We use the notion
of Meaningful Learning Task (MLT), which is an instance of learning activity with a
clear ‘start’ and ‘end’. In this time, we define the interval in which the sensor data
have to be gathered. We focus on individual psychomotor learning activities, with a
maximum of 15 minutes per recording. In the MLT session, the learning activity is
recorded through one-to-n sensors having corresponding sensor applications. The
learning activity needs to be structured and sequential: it should be possible in one
session to identify sequences of smaller steps which can be assessed individually. The
assessment or annotation scheme defines the ‘goodness’ of the learning performance
and is highly dependent on the learning activity investigated. It is preferable that the
learning task is repetitive, so that it is possible, within one session, to get multiple
examples of the same action or movement (e.g. CPR procedure).

5.4 Current prototypes

At the current stage, Multimodal Pipeline consists of two main prototypes: 1) the
Multimodal Learning Hub and 2) the Visual Inspection Tool.

5.4.1 The Multimodal Learning Hub

The LearningHub (Schneider et al., 2018) is a research prototype which allows
controlling multiple sensor applications. The user can specify one-to-n applications
running either in the local machine or in the local computer network. Hence, the
user can ‘start’ and then ‘stop’ the sensor recording for all the selected applications.
Each sensor application will record the data from its connected devices and, once
the recording is stopped, it will return a JSON file to the LearningHub with all
the sensor updates. Since the LearningHub is activating each application, it can
communicate the precise timestamp to all the sensor applications, which allows
obtaining the sensor data synchronised with the same clock. In addition to the
JSON files, also audio and video can be recorded. All these files will be compressed
into a zipped folder: the MLT session. The LearningHub is developed in C# for
Windows and released under Open Source1. At this moment, there exist a variety of
sensor applications library already connected for many existing commercial sensors

1Code available at https://github.com/janschneiderou/LearningHub
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(Kinect, Myo, Leap, Empatica, Android, etc.). The LearningHub is programmed that
is relatively easy integrating a new sensor application.

5.4.2 Visual Inspection Tool

The recorded MLT sessions can be loaded into the Visual Inspection Tool (VIT) (Di
Mitri et al., 2019a). VIT allows the manual and semi-automatic annotation of
MLT sessions enabling the researcher to 1) triangulate multimodal data with video
recordings; 2) to segment the multimodal data into time intervals and to add
annotations to the time intervals; 3) to download the annotated dataset and use
the annotations as labels for machine learning classification or prediction. The
annotations created with the VIT are saved into MLT data-format as the other sensor
files. The annotations are treated as an additional sensor application, where each
frame is a time interval with relative ‘startTime’ and ‘stopTime’ instead of that a
single timestamp. Using the standard MLT data-format, the user of the VIT can both
define custom annotation schemes or load existing annotation files. Also, the VIT is
released with Open Source license2.

5.5 Practical use cases

The Multimodal can be used for different purposes. In case of the structured task,
the Multimodal Pipeline can be used in conjunction with an Intelligent Tutoring
System to detect learning mistakes which can be the base for instantaneous and
actionable feedback. In the alternative, in the case of less-structured tasks, the
data collected with the Multimodal Pipeline can also be summarised into learning
analytics dashboards to stimulate reflection from the learner or the teacher. In the
following sections, we report three practical use cases in which the multimodal
pipeline was used in conjunction with an ITS.

5.5.1 Cardiopulmonary Resuscitation training

We employed the Multimodal Pipeline in the pilot study for the Multimodal Tutor for
CPR (Di Mitri, 2018) (figure 5.2). CPR is a highly standardised procedure consisting
of repetitive movements. The multi-sensor setup consisted of Microsoft Kinect and
Myo armband. In the pilot study, we involved 11 experts and we tracked their body
position. We validated the collected data against the performance metrics derived
by the ResusciAnne manikin. We also used VIT to annotate additional mistakes
currently not tracked by the manikin such as correct locking of the arms and correct
use of the body weight. After that, we trained multiple recurrent neural networks
each of them achieving a classification accuracy of the performance indicators above
70%. With the trained models, we can implement automatic corrective feedback
while the trainee is doing CPR.

2Code available at https://github.com/dimstudio/visual-inspection-tool
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Figure 5.2 Screenshot of the VIT in the CPR use case

5.5.2 Learning a Foreign Alphabet

The second use case considered was learning how to write in a foreign alphabet
using the Calligraphy Tutor (Limbu et al., 2018a) (figure 5.3). This tutor allows the
expert to write a baseline sentence so that the learner can practice reproduce it with
feedback by the tutor. The Calligraphy tutor uses Microsoft Surface and its capacitive
pen as well as Myo. The coordinates and pressure of the pen were also combined
with myogram and gaze information. The authors used these information to study
the features of optimal feedback and correlated it with the user’s cognitive load.

5.5.3 Training public skills

The Multimodal Pipeline was also used with the Presentation Trainer (Schneider
et al., 2015b) (figure 5.4) a Kinect-based system which gives real-time feedback on
different features of the presentation including posture, pauses, volume and hands
position. The learners using the presentation trainer were enthusiastic using it as it
allowed to receive feedback from practice their presentations. In the Presentation
Trainer, the use of multimodal data is two-fold: it is used both for instantaneous and
corrective feedback and, at the end of the session, it is presented in form of visual
summary for self-reflecting about the performance.
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Figure 5.3 Screenshot of the Calligraphy Tutor

Figure 5.4 Screenshot of the Presentation Trainer

5.6 Future research directions

We plan to progressively improve the Multimodal Pipeline by refining its current
components and adding additional ones. We are planning, for instance, to release a
data processing called DataFlow, which allows to process and run machine learning
on the annotated MLT sessions. We are also evaluating the possibility to have a
machine learning script for each modality to stack-up modality-dependent classifiers
(e.g. one for movements, one for heart rate etc). We are currently working on a
runtime feedback engine, the Multimodal Runtime Framework, which can channel
feedback across sensor applications. In this way, there is a centralised interface
where the researcher can set-up feedback rules depending on the task and learning
design. Necessary also to point out, the Multimodal Pipeline is a research prototype
which has been almost exclusively tested in laboratory settings. We do not exclude
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in the near future to roll it out in authentic classroom or learning environments.

In addition, with the support of the scientific community in Multimodal Learning Ana-
lytics, we are planning to develop additional use cases for the Multimodal Pipeline.
For instance, one idea is to collect EEG and electrodermal activity to study visual
attention in computer games. Another idea is to develop a smartphone application
which can be used by students during classrooms and collects kinematic and inter-
action data. Moreover, we are optimising the Multimodal Pipeline to also work in
collaborative learning situations, using, for example, multiple microphones. This
requires a layer of user-identification. With this setup in mind, we are investigating
how to extract features from audio and video signals. At this stage, the analysed data
are restricted only the sensor data while the videos are used only by the researchers
for annotation.
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Chapter 6

Detecting Multimodal Mistakes

This study investigates to what extent multimodal data can be used to detect mis-
takes during Cardiopulmonary Resuscitation (CPR) training. We complemented the
Laerdal QCPR ResusciAnne manikin with the Multimodal Tutor for CPR, a multi-
sensor system consisting of a Microsoft Kinect for tracking body position and a Myo
armband for collecting electromyogram information. We collected multimodal data
from 11 medical students, each of them performing two sessions of two minutes
chest compressions (CCs). We gathered in total 5254 CCs that were all labelled
according to five performance indicators, corresponding to common CPR training
mistakes. Three out of five indicators, CC rate, CC depth and CC release, were
assessed automatically by the ResusciAnne manikin. The remainder two, related to
arms and body position, were annotated manually by the research team. We trained
five neural networks for classifying each of the five indicators. The results of the
experiment show that multimodal data can provide accurate mistake detection as
compared to the ResusciAnne manikin baseline. We also show that the Multimodal
Tutor for CPR can detect additional CPR training mistakes such as the correct use
of arms and body weight. So far, these mistakes were identified only by human
instructors. Finally, to investigate user feedback in the future implementations of
the Multimodal Tutor for CPR, we conducted a questionnaire to collect valuable
feedback aspects of CPR training.

This chapter is based on:

Di Mitri, D., Schneider, J., Specht, M., & Drachsler, H. (2019). Detecting mistakes
in CPR training with multimodal data and neural networks. Sensors, 19(14), 1–20.
DOI: 10.3390/s19143099
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6.1 Introduction

Mastering practical skills is a requirement in several professions and working do-
mains. For example, working in construction requires to learn how to use a circular
saw; nursing requires learning how to draw blood samples from patients; and repair-
ing clothes requires being able to sew. Practical skill training, also known as psycho-
motor learning, entails the acquisition of an apprenticeship learning model (Schon,
1983). Typically, in this model, a human expert demonstrates to the learner how
to perform a specific task. The learner mimics the expert movements to develop
a mental model of the psychomotor skill and, after some practice, this model is
automated. For more complex tasks, practical skills are also trained through sim-
ulation, allowing the learner to perform the task in an authentic and controlled
environment. In simulations, feedback is mostly provided by the human instructor in
the debriefing phase after the simulation takes place. Human instructors, however,
are not always available to follow each learner step by step, and their time is costly.
The lack of instructors leads to the shortage of on-task, real-time and actionable
feedback affecting negatively the quality of the training and resulting in longer and
less efficient training sessions for the aspiring professionals.

The shortfall of human feedback can be addressed with the employment of Intelligent
Tutoring Systems (ITSs), automated computer programs designed to automatically
detect learners mistakes and generate personalised adaptive feedback, without
requiring the intervention of a human instructor. Although the concept of ITS
dates back to decades ago (e.g. Polson et al., 1988), ITS interfaces have been
designed as computer or web applications using the standard “mouse and keyboard”
interaction paradigm, in which the learner sits in front of a computer. In contrast,
practical learning activities take place primarily in physical space or, in some cases,
they are complemented with the use of mobile or tablet applications. Reliable
tracking of these activities, therefore, requires gathering data from multiple data
sources “beyond mouse and keyboard”. These various data sources can be seen as
modalities of human interaction: speech, biomechanical movements, interaction
with peers, manipulation of physical objects, physiological responses or contextual
and environmental information. With the diffusion of smartphones, fitness trackers,
wearable sensors, Internet of Things, cameras and smart objects (González García
et al., 2017), we can nowadays track human behaviour much more easily through
multimodal and multi-sensor interfaces (Oviatt et al., 2018). In support to the
diffusion of the multimodal approach, comes as well the progress of contiguous
scientific research areas such as body sensor networks (Gravina et al., 2017), social
signal processing (Vinciarelli et al., 2008), multimodal machine learning (Baltrusaitis
et al., 2019) and multimodal data fusion (Lahat et al., 2015).

In the past few years, the multimodal interaction approach has become increasingly
popular also in the learning science and learning analytics research communities.
This increase of popularity is witnessed by the rising interest in Multimodal Learning
Analytics (MMLA) (Blikstein, 2013; Ochoa and Worsley, 2016). MMLA integrates a
sensor-based approach with learning analytics, to bridge learning behaviour to com-
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plex learning theories (Worsley, 2014). MMLA focuses on how to present learners
and teachers insights from multimodal data through visualizations in analytics dash-
boards (Martinez-Maldonado et al., 2018) or data-storytelling (Echeverria et al.,
2018) in support of intuitive decision-making processes in ill-structured learning
situations (Cukurova et al., 2019). Recently, the MMLA community focuses more on
the challenges of tracking complex learning constructs with multimodal data (Ochoa
and Worsley, 2016). Some of the challenges identified include data collection,
storing, annotation, processing and exploitation of multimodal data for supporting
learning (Di Mitri et al., 2018b).

In this study, we built upon the approach proposed by the MMLA community and
further investigated how it can be applied for automatic mistake detection, which,
in turn, can be the base for automatic feedback generation for multimodal tutoring
systems in psychomotor learning scenarios. To do so, we selected cardiopulmonary
resuscitation (CPR) training as representative learning task and developed an Intelli-
gent Tutor for CPR using multimodal data (Multimodal Tutor for CPR). This study
validated the mistake detection system of the Multimodal Tutor for CPR, a multi-
sensor, intelligent tutoring system to train CPR using the ResusciAnne manikins.

The first objective of this study was validating the Multimodal Tutor for CPR accord-
ing to common performance indicators as implemented in the ResusciAnne manikin.
Thus, we used the manikin data as baseline measurements to compare the accuracy
of the Multimodal Tutor for CPR to broadly established measures (Validation). The
second objective was to explore how the Multimodal Tutor for CPR could detect
mistakes that are not tracked by the ResusciAnne and are typically only detected by
human instructors (Additional mistake detection).

CPR is a highly standardised medical procedure with clear performance indicators,
therefore there are already various commercial training tools in the market which
can assess most of the critical CPR performance indicators automatically. In this
study, we leveraged one of these commercial tools, the ResusciAnne QCPR manikin,
to derive some key performance metrics of CPR. We complemented the ResusciAnne
manikin with a multi-sensor setup consisting of Microsoft Kinect to track the learner’s
body position, a Myo armband for recording electromyogram data and performance
indicators derived from the ResusciAnne manikin. With this setup, we ran a pilot
study involving 11 experts. We used different components of the MMLA Pipeline to
collect, store, annotate and process the data from the experts. We used the processed
data to train five recurrent neural networks, each of them to detect common CPR
training mistakes. Three of those mistakes were derived from the ResusciAnne
manikin detection system while, the remaining two were annotated manually by the
research team.

The paper is structured as follows. In Section 6.2, we introduce the CPR procedure
(Section 6.2.1), the concept of ITSs and to what extent they were used in CPR
(Section 6.2.2) and we explain the added value of MMLA data for CPR training
(Section 6.2.3). Section 6.3 presents related studies. In Section 6.4, we detail
the design of this study. In Section 6.5, we report the performance score of the
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classification models which we discuss in Section 6.6, and answer the two research
questions. We also report the results of the participants’ questionnaire, aimed at
collecting participants’ opinions on how to implement effective CPR feedback based
on the additional mistakes detected by the models.

6.2 Background
6.2.1 Cardiopulmonary Resuscitation

Cardiopulmonary resuscitation (CPR) is a life-saving technique which is given to
someone who is in cardiac arrest. CPR is useful in many emergencies, including a
heart attack, near drowning or in the case of stopped heartbeat or breathing. In the
present study, we selected CPR as a representative task for the following reasons:

– CPR is a procedure which can be taught singularly to one learner.

– CPR is a highly standardised procedure consisting of a series of predefined
steps, that limits the set of possible actions that the learner can take.

– CPR has clear and well-defined criteria to measure the quality of the per-
formance (we use the performance indicators defined by the European CPR
Guidelines (Perkins et al., 2015)).

– CPR is a highly relevant skill, which everyone should learn not only medical
experts.

The cases of cardiopulmonary arrest are, unfortunately, widespread. The more
people are trained to do CPR, the higher the chance of saving lives. For this reason,
CPR is currently compulsory in several types of professions, and CPR training is
becoming standard practice in several public settings such as schools or public
workplaces.

Among the criteria for proper CPR, some indicators, such as correct CC rate, CC
depth or CC depth, are more common and tracked automatically by CPR training
tools such as the ResusciAnne manikins. Other CPR performance indicators are
neglected to down-scale the simulation environment. For this reason, they need
to be corrected by human instructors. Examples of these indicators are the use of
the body weight or the locking of the arms while doing the CCs. Commercial CPR
manikins such as the ResusciAnne manikin do not report on these two indicators,
which creates a feedback gap for the learner and higher responsibility for the course
instructors.

6.2.2 Intelligent Tutoring Systems

The intelligent tutoring system is a computer program working as “instructor in the
box”, meaning that it can provide learners with direct and custom instruction or
feedback, without requiring intervention from a human teacher. Traditional ITSs
were mostly designed within desktop interfaces for academic education subjects
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such as geometry and algebra (e.g. Koedinger et al., 1996; Canfield, 2001), and
computer science subjects (e.g. Mitrovic and Hausler, 2003). In traditional academic
learning, ITS has been proved to be nearly as good as human tutors (VanLehn, 2011),
outperforming other instruction methods and learning activities, including traditional
classroom instruction, reading printed text or electronic materials, computer-assisted
instruction, laboratory or homework assignments (Steenbergen-Hu and Cooper,
2014). Learning academic subjects in desktop-based interfaces is different from
learning practical skills in simulations. In the former, the learner’s behaviour is
represented by the words typed on the keyboard or the clicks on the correct answers.
In the latter, the learner’s behaviour is determined by the interaction with physical
objects using different modalities such as hands movement, gaze or speech. In
practical learning scenarios, psychomotor coordination plays a much more prominent
role.

In the medical field, some examples of ITS can be found in the literature. The Cardiac
Tutor (Eliot and Woolf, 1996) is an ITS for training basic life support tasks such as
CPR. It uses clues, verbal advice, and feedback in order to personalise and optimise
the learning process. The Collaborative Medical Tutor (COMET) (Suebnukarn and
Haddawy, 2007) an intelligent tutoring system for medical problem-based learning
that focuses on learners collaboration.

Only a few examples of ITS use multimodal interfaces. D’Mello et al. (2008) en-
hanced the ITS AutoTutor with a multisensor interface consisting of eye-tracking
and posture sensor embedded in the chair where the learner is sitting, so it can
detect learners’ affective and cognitive states. A comparable setup was also used
by Burleson (2007) in the Affective Learning Companion, using a camera for face
recognition, learner posture, wrist-based skin conductivity and mouse pressure to de-
tect learners’ affective states during game playing. In a more recent study, Schneider
et al. (2015b) used a Kinect-based system in the Presentation Trainer, an ITS for
training public presentation skills which give both real-time as well as retrospective
feedback about the quality of the presentation. Another example is the Calligraphy
Tutor by Limbu et al. (2018a), which uses EMG and capacitive pens for training
calligraphy and writing in a foreign language.

6.2.3 Multimodal Data for Learning

In the context of education and learning, with the term multimodal data, we refer to
learner’s motoric movements, physiological responses, information of the learning
context, environment and activity. Combining data from multiple modalities allows
obtaining a more accurate representation of the learning process (Blikstein and
Worsley, 2016). Multimodal data, therefore, can be used as historical evidence
for the analysis and the description of the learning process (Blikstein, 2013). Mul-
timodal data can be collected using wearable sensors, cameras, Internet of Things
(IoT) devices, and computer logs. Research in the field shows there are several
existing devices which can be used in the field of learning for collecting data and
prompting feedback (Schneider et al., 2015a).
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In the field of MMLA, related studies have used multimodal data to investigate learning
performances. In the context of classroom activities, Raca and Dillenbourg (2014)
analysed student attention from posture and computer vision. D’mello et al. (2015)
tracked teacher-student dialogues interaction using audio data. Domínguez et al.
(2015) used a tracking device, the Multimodal Selfie, to analyse video audio pen strokes
of each student.

In group collaboration settings, Ochoa et al. (2013) collected multimodal data
including video, audio and pen strokes, to classify expertise. In (Worsley, 2014),
researchers recorded video and audio from 13 students building simple structures
with sticks and tape. From video data, they derived skeletal position and gesture
movements, translating the multimodal transcripts into action codes and task-specific
patterns.

In the MMLA literature, it is possible to identify two approaches to MMLA: (1) the
“analytics” approach which aims at presenting insights to the educational actors,
helping them to provide better feedback, particularly useful in ill-structured learning
tasks (Cukurova et al., 2019); and (2) the “modelling” approach, used also by the
ITS community, which aims at using machine learning to automatically classify
or predict learning dimensions. There are, however, examples that combine the
two approaches (e.g., (Schneider et al., 2015b; Prieto et al., 2018)), which suggest
there is not a “black and white” division but rather a continuum between the ITS
and MMLA fields.

In the latter, the intelligent algorithms are fed with the multimodal data associated
with task performance measurements and are trained to classify or predict learning
goals, training mistakes and prompt on-time automatic and personalised feedback.
The modelling approach in the field of MMLA, is described by a recent model, the
Multimodal Learning Analytics Model (MLeAM) (Di Mitri, 2018).

Although the potentials of MMLA for learning are well documented, practical ap-
plications remain a challenge. Multimodal data are messy. To get meaningful and
supportive interpretations from multimodal data, intensive data geology steps are
required. Moreover, to the best of our knowledge, no standardised procedures exist
in this field. In this study, we use an emerging approach, the Multimodal Learning
Analytics Pipeline (MMLA Pipeline) (Di Mitri et al., 2019c), in the context of CPR
training for creating Multimodal Tutor for CPR. We believe that the selected method
can be used as roadmap for the general identification of learners mistakes using
multimodal data in authentic training procedures.

6.3 Related Studies

As CPR is a life-saving technique, there is a prosperous research community around
the topic, which also publishes in CPR-specific resuscitation journals and conferences.
Scouting the related literature, we also found that the idea of using Kinect-based
systems for tracking CPR is not new. The study by Semeraro et al. (2012) first piloted
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a Kinect-based system for providing feedback on CC depth noticing that the depth
camera is well suited for the CPR task and that Kinect-based system can improve
performance. In the study of Wattanasoontorn et al. (2013), the authors analytically
programmed an algorithm to detect the arm posture and CC rate, a weak part of
the approach was the calibration process needed to make the detection work. The
study in (Wang et al., 2018b) designed a Kinect-based real-time audiovisual feedback
device to investigate the relationship among rescuer posture, body weight and CC
quality. They tested 100 participants monitoring depth and rate of CC and providing
further real-time feedback. The result of this study is that kneeling posture provides
better CC than a standing posture and that audio-visual feedback can provide better
CC depth, rate, and effective CC ratio. In our study, we proposed the use of a neural
network to detect training mistakes in terms of CC rate, CC depth, and CC release, as
well as to detect additional training mistakes, not currently tracked by commercial
manikins, such as the correct locking of the arms during and the correct use of body
posture and body weight during CC. Moreover, in the setup we proposed, we also
included a Myo armband to prove the concept of a system learning from multiple
modalities. Differently from the previous studies that use tailor-made solutions, the
Multimodal Tutor for CPR is a multimodal system that uses generic solutions for data
collection described in the MMLA Pipeline.

6.4 Method

This study validated the mistake detection system of the Multimodal Tutor for
CPR, a multi-sensor, intelligent tutoring system to train CPR using the ResusciAnne
manikins. First, we aimed at validating the Multimodal Tutor for CPR on performance
indicators currently implemented in the ResusciAnne using the manikin data as
baseline measurements of the CPR performance (RQ1—Validation). After that, we
explored if the Multimodal Tutor for CPR could detect mistakes not tracked by the
ResusciAnne but typically only detected by human instructors (RQ2—Additional
mistake detection). Our research questions therefore are:

– Validation: How accurately can we detect common mistakes in compression
rate, compression depth and release depth in CPR training with multimodal
sensor data in comparison to the ResusciAnne manikin?

– Additional mistake detection: Can we use multimodal data to detect additional
CPR training mistakes such as “locking of the arms” and use of “body weight”
which are not tracked by ResusciAnne manikin and are only identified by
human instructors?

To answer these research questions, we conducted a quantitative observational
study in collaboration with AIXTRA, simulation centre of the Uniklink in Aachen,
Germany. The experiment involved collecting data from 11 participants. We focused
on the quality criteria of the CCs, which is a part of the procedure of the CPR. Each
participant performed two sessions of two minutes continuously doing CC, without
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rescue breaths. For answering RQ1, we used the ResusciAnne manikin data as the
baseline measurement to validate the correct mistake detection of the Multimodal
Tutor for CPR. To answer RQ2 and mark the presence of additional mistakes in the
CPR executions, the research team annotated manually the recorded sessions.

6.4.1 Experimental Setup

The multimodal setup, as represented in Figure 6.1, consisted of the following
devices:

– A Microsoft Kinect (v2), depth camera capable of recording three-dimensional
skeleton position of the expert, and video record the expert.

– A Myo armband, a Bluetooth device which records electro-myogram and accel-
erometer data of the person wearing it and provides haptic feedback.

– A Laerdal ResusciAnne QCPR full-body manikin, a popular CPR training manikin
optimised for multiple feedback.

– A Laerdal Simpad SkillsReporter, a touchscreen device that couples wirelessly
with the ResusciAnne manikin and allows to debrief the overall performance
CPR through the assessment of multiple CPR indicators.

The ResusciAnne manikin and its SimPad SkillsReporter are validated CPR instru-
ments, which allow extracting high-quality performance data and they are guideline-
compliant according to the official ECR guidelines (Perkins et al., 2015). We used
the indicators derived from the SimPad device as our baseline for measuring the
quality of the CPR training performance and answer RQ1. On the SimPad device,
we used the two-minute-long CC in “evaluation mode”.

Among the data that can be retrieved from the SimPad SkillsReporter, we considered
the following indicators (the first three in Table 6.1): (1) CC rate; (2) CC depth;
and (3) CC release. The remaining two indicators ((4) Arms position; and (5) body
position) are not tracked by the SimPad SkillsReporter.

Table 6.1 Considered CPR performance indicators and whether they are detected by the
SimPad SkillsReporter and by the human instructor.

Performance Indicator Ideal Value SimPad Instructor

CC rate 100 to 120 compr./min 3 3
CC depth 5 to 6 cm 3 ?
CC release 0–1 cm 3 ?

Arms position elbows locked 7 3
Body position using body weight 7 3
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Figure 6.1 The graphic representation of the experimental setting

6.4.2 Participants

CPR is a standard training procedure which requires to be taught by certified trainers.
For this reason, we decided that Multimodal Tutor for CPR, at least in the prototyping
phase, was not suitable to test complete beginner but rather participants who had
previous training knowledge. We selected 14 experts, advanced medical and medical
dentist students of the Uniklink Aachen University Hospital. As evidenced in the
questionnaire (reported in Section 6.5.3), each participant followed, on average,
five CPR training courses. All participants were asked to sign an informed consent
letter, describing the experimental details, as well as the data protection guidelines,
elaborated following the new European general data protection regulation (GDPR
2016/679). The data collected from the participants were fully anonymised.
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6.4.3 Experimental Procedure

The experimental procedure consisted of three phases: (1) prototyping phase; (2)
on-site experiment; and (3) analysis. In the first phase, before the on-site experiment,
we designed and improved the Multimodal Tutor for CPR iteratively. One or multiple
data collection sessions involving one participant, and consequent analysis of the
quality of the data collected followed each design iteration improvement of the
system. When the prototype reached a satisfactory level, we organised an on-site
experiment in cooperation with the University Hospital. Participants were tested
individually. Each test consisted of two sessions of two minutes doing CCs separated
by a five-minute break, during which the participant had to answer a questionnaire.
We recorded each two-minute session separately. Phase 3 was the in-depth data
analysis of the data collected. In this phase, we discarded the data from 3 out of 14
participants (6 out of 28 sessions) due to insufficient quality—either caused by faulty
Myo readings or incorrect booting of the LearningHub. We narrowed the number
of participants considered in the data analysis to 11, for a total of 22 sessions. To
identify mistakes “arms properly locked” and correct “body weight”, we also recorded
five extra sessions with mistakes conducted on purpose by one of the participants.

The technological approach used for the experiment uses the Multimodal Pipeline (Di
Mitri et al., 2019c), a workflow for the collection, storage, annotation, analysis and
exploitation of multimodal data for supporting learning. We used three existing
component implementations of the Multimodal Pipeline. In the next sections, we de-
scribe how we used each of these existing components in the experiment of the
Multimodal Tutor for CPR.

6.4.4 Data Collection

The data of each session were recorded using the Multimodal Learning Hub (Schneider
et al., 2018) (LearningHub), a system for data collection and data storing of mul-
timodal learning experiences using multiple sensors applications. It focuses on short
and meaningful learning activities (∼10 min) using a distributed, client–server archi-
tecture with a master node controlling and receiving updates from multiple sensor
data provider applications. Each sensor application retrieves data updates from
a single device, it stores it into a list of frames, and, at the end of the recordings, it
sends the list of frames to the LearningHub. In this way, the LearningHub allows col-
lecting data from multiple sensors streams produced at different frequencies. Already
various sensor applications have been implemented to work with the LearningHub,
both for commercial devices as well as for custom sensor boards. The LearningHub
and its sensor data provider applications have all been implemented Open Source.
In the Multimodal Tutor for CPR, the LearningHub was used together with three
sensor applications, the Kinect data provider, the Myo data provider and a screen
recorder. The Kinect data provider collected data from 15 body joints represented as
three-dimensional points in space and position features for a total of 60 attributes.
The Myo data provider collected accelerometer, orientation, gyroscope and readings
from eight EMG sensors for a total of 18 attributes. The screen recorder captured
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the video of the participant performing the CCs through the point of view of the
Kinect. For the data collection, we also used the ResusciAnne manikin data recorded
with the SimPad, which provided the baseline assessment of the CPR performance
of the participants. This device was not integrated with LearningHub but saved on
the local memory of the SimPad, hence transferred via USB to the computer used
for the analysis. The SimPad sessions were then manually synchronised with the
help of the Visual Inspection Tool (see Section 6.4.6) (Di Mitri et al., 2019a). The
most sensitive data, the video recording of the participants, were only included
during the annotation phase, exclusively by the research team. The video record-
ings were eventually taken out from the sessions files making the dataset entirely
anonymous. During the experiment, we asked each participant to fill in a short
questionnaire soon after the first session. The questionnaire aimed at collecting
additional information about the participant’s level of previous expertise. We asked
questions regarding previous training, kind of feedback received, pros and cons of
such feedback and self-perceived performance during the first CPR session. The
purpose of this questionnaire was also to gain extra information on how to build
useful feedback for the Multimodal Tutor for CPR. The results of this questionnaire
are detailed in Section 6.5.3.

6.4.5 Data Storage

The LearningHub uses the concept of Meaningful Learning Task introducing a new
data format (MLT session file) for data storing and exchange. The MLT session
comes as a compressed folder including (1) one or multiple time-synchronised
sensor recordings; amd (2) one video/audio of the recorded performance. The
sensor recordings were serialised into JSON and have the following properties:
an applicationId, an applicationName and a list of frames. The frames have a
timestamp and a key-value dictionary of sensor attributes and their corresponding
values. In the Multimodal Tutor for CPR, each two-minute CPR session was recorded
into a separate MLT session file and stored locally. Each session was 17 Mb and
contained initially two JSON files, one for the Myo, one for the Kinect and one MP4
file with the video recording. The example of Myo and Kinect is presented in table
view in Table 6.2 and 6.3.

6.4.6 Data Annotation

The CPR annotations were later synchronised with the sessions using the Visual
Inspection Tool (VIT) (Di Mitri et al., 2019a). VIT allows the manual and semi-
automatic annotation of psychomotor learning tasks which can be captured with a
set of sensors. The VIT enables the researcher: (1) to triangulate multimodal data
with video recordings; (2) to segment the multimodal data into time intervals and to
add annotations to the time intervals; and (3) to download the annotated dataset
and use the annotations as labels for machine learning classification or prediction. In
addition, the VIT is a software released under Open Source license. The annotations
created with the VIT are saved into MLT data-format as the other sensor files. The
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annotations were treated as an additional sensor application, where each frame is
a time interval with relative startTime and stopTime instead of a single timestamp.
Using the standard MLT data-format, the user of the VIT can both define custom
annotation schemes or load existing annotation files.

A screenshot of the VIT used for the Multimodal Tutor for CPR is given in figure 6.2.
We derived the annotation files by the sessions of the SimPad converted into MLT
data format. An example of such file is shown in figure 6.3 and in Table 6.4, having
an annotation attribute of the three indicators discussed in Table 6.1. As we added
the annotation file manually using the VIT, the time-intervals were not synchronised
with the other sensor recording. The VIT, however, allowed setting a time offset to
align the annotations manually to the sensor recordings. For each of the 22 CPR
sessions recorded, we loaded the corresponding annotation file, and synchronised it
manually, being guided by the sensor data plots and the video recordings. Hence,
we downloaded the annotated session, excluding the video file.

The classification scheme used for the performance indicators summarised in Table 6.1
was based on their ideal interval and on the feedback that the learner would receive.
In the case of CC rate, the value of the CC can be either lower than the interval
(Class 0) or within the interval (Class 1) or above the interval (Class 2). If labelled
with Class 0, the CC rate is “too slow”, and then the feedback should be to increase
the speed of the CC. If Class 2, the CC rate is “too fast”, and then the feedback should
be to decrease the speed of the CC. With Class 1, the CC rate is “on point”. A similar
approach is for CC depth: Class 0 the depth is “too shallow,” and the feedback should
be to “push harder”; Class 2 is too deep, and the feedback should be to “push less
hard”; and Class 1 indicates the CC depth is “on point”. CC release, arms position
and body position follow instead a binary classification approach, either the task
is correctly executed (Class 1) or not correctly executed (Class 0). Once again, we
based this decision on the type of feedback the learner should receive, which can be
“release the CC completely”, “lock your arms” or “use your body weight correctly”.

6.4.7 Data Analysis

The 22 annotated datasets were loaded into a Python script using Numpy and Pandas,
two data manipulation libraries widely used for statistical analysis. These libraries
allow the user to define custom data frames with custom time-indexes ideal for
time-series and perform various kinds of vectorised operations. The Python script
implemented the following routine. It created a list of all the available sessions, and
then iterated and processed each session singularly. The results of the processing are
stacked up into a single data frame.

Preparing the Data

The script processes first the annotation file, in order to have all the intervals (i.e.,
the CCs) into a single data frame DFintv. In the MLT format, the annotation file is
different from other sensor files as it is the only JSON file having a list of intervals
with start and end, instead of frames with timestamps. The script also computes the
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Figure 6.2 Screenshot of the VIT.

Table 6.2 Table view of the Myo armband data; (2) Kinect camera data; and (3) data from
Annotation.json, table view of the JSON in shown in figure 6.3.

frameStamp EMGPod0 ... EMGPod7 GyrX AccZ OriY

00:00:02.0160129 −5.0 ... −4.0 53.0625 −0.137695 −0.199036

00:00:02.0170122 −4.0 ... 0.0 45.5625 −0.343750 −0.186706

00:00:02.0297305 −2.0 ... −4.0 45.5625 −0.343750 −0.186706

duration of the interval subtracting end with start. As the session implement relative
timing, where t0 = 0, it is important to add the session date-time to the timer to
differentiate between sessions. Consequently, the script processes each of the sensor
JSON files. It transforms the list of frames each one with the same set of attributes
into a table having the frames as rows and the attributes as columns. It removes the
underscores and other special characters from the attribute names and it adds the
time-offset. It sets the timestamp as the index and removes the duplicates with the
same index. It discards all the attributes whose running total equals zero, which are
uninformative attributes. Note that this approach is only applicable to numerical and
not categorical data. Finally, it concatenates the results into one single, time-ordered
data frame DFattr. From such data frame, some attributes are excluded a priori, as
considered of not being informative. In our case, we excluded the data from ankles,
hips and head. The hips and ankles as the participants are on their knees when
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Figure 6.3 Example of the annotation file derived from the SimPad and loaded in the VIT.

Table 6.3 Table view of the Kinect camera data.

frameStamp ElbowLeftX ElbowRightY HandLeftX HeadZ ...

00:02.0282288 2.076761 0.275064 −0.520056 1.995384 ...

00:02.0607683 2.057799 0.258791 −0.513448 1.996636 ...

00:02.0932877 2.019825 0.249333 −0.502858 1.998549 ...

doing CPR and heads because sometimes people tend to raise their heads to look up,
right or left, which is a movement not influencing the quality of the CCs. At the end
of the iteration, we have two data frames:

– DFintv, in which the rows (t0..tn) are time intervals (i.e., CCs) and (y0, ..., ym)
columns are the target indicator values (annotations).

– DFattr, in which the rows (j0, ..., jp) are sensor updates and (a0, ..., aq) columns
are the sensor attributes. As the sensor applications have different update
frequencies, DFattr is a sparse matrix having many zeros.

We proceeded to mask DFattr with the time intervals (t0..tn), in order to create a
new data frame:
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Table 6.4 Table view of the JSON in shown in figure 6.3.

start end classDepth classRate classRelease compDepth compMeanRate compRelease

00:07.070 00:07.730 1 1 0 59.520001 110 6.11

00:07.750 00:08.380 2 0 1 60.910000 98 4.00

00:08.390 00:08.770 1 0 1 60.000000 97 2.00

– DFmask, which has n elements, (x0..xn). Each element is an array of (a0, ..., aq)
time series of about 0.5 s containing the sensor updates for that specific time
interval.

The issue with this was that time series in DFmask were of different sizes, not
smoothed and with missing values. For this reason, we resampled each of them with
equal size (S = 8). An example of this resampling is shown in Figure 6.4 (left). The
resampling process led us to a tensor of size (N × S ×Q) where N is the number of
intervals, S is the size chosen for the resampling, and Q is the number of attributes.
Figure 6.4 (right) shows a graphical representation of the tensor obtained.

Time slice

t1 t2 t3 t4 t5 t6 t7 t8

Time-bins (s=8)

a0

a1
a 2

a…
aqAttributes

(Q=41)

i1

i2

i3

i3

i…

in

Intervals
(N=5254)

Resampled
Time-series

Training sample

Figure 6.4 Left: example resampling of a time-series interval of the attribute Kin-
ect.ShoulderLeftY. Right: a graphic representation of the data transformation
into a tensor of shape (5254× 8× 41).

Training the Neural Networks

For machine learning, we opted for using Keras, an open source neural network
library written in Python. We used the Keras implementation of the Long Short Term
Memory networks (LSTM) (Hochreiter and Schmidhuber, 1997), a type of recurrent
neural network (RNN) able to learn over long sequences of data. RNNs are looping
networks in which each iteration leaves a footprint, which is used to calculate the
following iterations. For this reason, RNNs retain a memory of the previous iterations.
When the network updates, however, the memory degrades with a vanishing gradient
which can result in the loss of valuable information. To address this issue, LSTM
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networks use additional long-term memory, where important information are stored
to prevent them from degrading over time. The advantage of using LSTM in the CPR
domain is able to preserve relevant information throughout the entire CPR session.

We first scaled the tensor’s values in a range between 0 and 1. Then, the following
sub-routine was applied three times for each target class classRate, classDepth, and
classRelease. Then, we split the dataset in 66.6% training and 33.4% test using
random shuffling of the training samples. Then, the data were fed into the LSTM
neural network with two layers:

– LSTM input layer of size (8× 41) feeding into consisting of a hidden layer of
128 units; and

– dense layer sized as unique values of the target class (either 2 or 3).

In Figure 6.5, we present a graphical representation of the configuration of the LSTM
neural network. We compiled the LSTM neural network with the training dataset
selecting 30 fitting iterations (epochs). As model parameters, the loss function was
set using the Sparse Categorical Cross-Entropy was chosen, while we set the accuracy
as the performance metrics to evaluate the model. The model was also evaluated
using the remaining 33.4% of the dataset. The results obtained are discussed in
Section 6.5.

LSTM hidden 
units: 128

Input shape: (8, 41) 
(time bins, input dim)

Softmax output 
shape: 2 – 3 0 1 2

h1 h2 h3 h4 h5 h6 h7 h… h128

x1,1 x2,1 x3,1 x4,1 x..,1 x8,1

Training set
66.6%

(3520, 8, 41) 

Test set
33.4%

(1734, 8, 41) 

Figure 6.5 Graphical representation of the LSTM neural network configuration.

6.5 Results

The dataset transformed into a tensor of shape (5254 × 8 × 41) where 5254 are
the learning samples, 41 the attributes and 8 the fixed number of time updates
(time-bins) for each attribute. As the ratio chosen between split and test was 66/33,
the training set consisted of 3520 samples while the test set in 1734 samples.

106



6.5 Results

The annotation data retrieved from the ResusciAnne manikin are summarised in
Table 6.5. The data refer to the total across the 11 participants. While the mean
value for compression depth 54.49 mm and for compression release 4.74 mm
matches with the CPR guidelines in Table 6.1, the mean compression rate was
121.59 compression/minute, which is slightly above the guideline’s range. For this
reason, the training mistake which participants seemed to make most often was to
compress the chest too fast.

Table 6.5 Annotation data from the SimPad summarised across participants.

Indicator mean std min max

compDepth (mm) 54.49 6.00 60.22 62.94
compMeanRate (compression/min) 121.59 16.08 133.0 164.0

compReleaseDepth (mm) 4.74 3.64 6.11 30.0
duration (sec) 0.44 0.06 0.48 0.88

We report the individual performance of each participant in the three plots in Figure
6.6. In the case of classRate and classDepth, the target variables with three possible
class-values, it is interesting to acknowledge that each participant shifted almost
always in two classes out of three. Participants tended to make only one type of
mistake for a particular target, or, in other words, either they were too fast or too
slow, but not a combination of both. The performance of a single participant is
therefore not representative for the full span of possible mistakes that may occur
during training. A more even distribution of mistakes can only be achieved when
collecting data from multiple participants.

6.5.1 Neural Network Results

In Figure 6.7, we plot the results of the neural network training of the three classifiers,
showing both the loss function values (charts in the top row) and the model’s
accuracy (charts in the bottom row) through 30 fitting iterations (also called epochs).
At each iteration, we compare the results of the training set using 3520 samples
(dark line) with the result of the validation set using 1734 samples (light line). We
also mark with the red dashed line the inflection point which highlights when the
model starts overfitting the training data. In this point, the training loss function
(dark blue line) reduces progressively, whereas the validation loss (light blue line)
remains more or less stable. In this way, it is possible to identify the iteration where
the training of the model has to be stopped before it starts overfitting the data. For
classRate, this epoch is around the 24th iteration, for classDepth around the 19th,
and for classRelease around the 2nd.

Nonetheless, in Table 6.6, we can see all the three classifier reached an accuracy
higher than 70% before overfitting. The most accurate model is the one classifying
classRate, the binary class indicating if the CCs were executed at the right rate and
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Figure 6.6 Class distribution for each individual participant for: classRate (left); classRelease
(centre); and classRelease (right)

speed, followed by classDepth, indicating the correct depth of the compression, and
classRelease, indicating the correct release of the CC. To achieve better accuracy,
lower loss function and less premature overfitting, we would need to have more
training data.

Table 6.6 Accuracy scores, loss values and ROC-AUC scores for each of the target classes.

Test accuracy Test loss ROC-AUC score

classRate 0.8650 0.3241 n.a.
classRelease 0.7391 0.5121 0.7305
classDepth 0.7180 0.6144 n.a.

With an accuracy of 86.5%, classRate is the best-classified target. A plausible explan-
ation is that the depth-camera sensors, as well as the accelerometer embedded in
the Myo, can track temporal-related features such as the acceleration in doing the
compression. It is essential to point out that all three models shared the same set of
41 features, all CCs were re-sampled into eight bins and we did not take the actual
duration of each CC as an additional feature. The reason classRelease and classDepth
do not perform as well as classRate could stem from the fact that the compression
and the release are movements of few centimetres and the threshold of correctness
is thin to measure, even for a human observer.
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The confusion matrices in Figure 6.9 present the result of correct and incorrect
classifications of the three models. The tendency we can observe is that the highest
number of correct classification (darker colour) happens for class with the highest
number of examples (see Figure 6.8 for reference).

6.5.2 Manually Annotated Classes

For the two additional CPR training mistakes of arms not correctly locked (arms-
Locked) and failing to use entire body weight (bodyWeight), we used an additional
dataset consisting of five sessions with one participant mimicking the two mistakes.
The reason we opted for this solution was that all participants in the initial data
collection showed very good CPR technique and did not commit these two types of
errors.

For the new dataset, we used the same methodology described in Section 6.4. We
collected in this case 1107 CCs, 41 attributes and 8 time bins leading to a tensor
of size (1107 × 8 × 41). We trained two LSTM neural networks for 100 iterations,
the performances are shown in Figure 6.10 both for training and validation loss
and accuracy showing also the overfitting point. Before the model starts overfitting,
we achieved for armsLocked 93.4% accuracy and bodyWeight 97.8% accuracy, as
shown in Table 6.7. We also show for both target classes the Area Under the Receiver
Operating Characteristic Curve (ROC AUC), obtaining 93.7% and 98.3%, respectively.
The accuracy of the manual annotation is higher due to the fact that the training
errors of arms not correctly locked and incorrect body weight are easier to track with
a depth camera. The confusion matrices in Figure 6.11 also show the results of the
correct or incorrect classifications.

Table 6.7 Accuracy scores, loss function values and ROC-AUC score for the two manually
annotated classes.

Test Accuracy Test Loss ROC-AUC Score

armsLocked 0.9344 0.1595 0.9371
bodyWeight 0.9781 0.0694 0.9833

6.5.3 Questionnaire Results

The questionnaire entailed seven questions and had 14 respondents. The first
question concerned the number of CPR trainings. The answers spanned from 1 to 15
trainings, as shown o in Figure 6.12 (left).

The second question required an open answer and it concerned the type of feedback
received during those training. All respondents answered they had received verbal
feedback from the CPR trainer. Three respondents mentioned having received
feedback also directly from the manikin, and two from the device connected to the
manikin reporting the performance. One respondent mentioned the feedback was
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also written other than verbal, another that was also visual. Three mentioned the
feedback was given in real-time feedback while two others retrospectively.

The third question asked about what was the most crucial aspect of the feedback
received. Nine respondent agreed that the feedback from the instructor was the most
important and that was because the expert also makes an imitation of either the
training mistake or the correct position. Another mentioned aspect was to be able to
revise their performances looking at the and depth and frequency of the CCs.

The fourth question asked why the feedback was useful. The answers were more
diverse, including to get a better understanding of how to execute CPR optimally;
helping to keep calm during an emergency; the instructor showing the corrections to
adopt; the possibility to correct mistakes on time; being reminded to not lose strength.
A respondent answered that it is difficult to realise their mistakes while another
asserted that “even if you know the rules, practising, in reality, is different”.

The fifth question asked about any missing aspect of the feedback received in
the previous CPR trainings. Three respondents mentioned lack of information of
the depth compression, while other respondents remarked the need for real-time
feedback because the CPR procedure is tiring and during execution, there is little
awareness of the perceived performance.

The sixth question asked the participants desired feedback in CPR. The most men-
tioned was real-time audio (five times), then real-time visualisations, dashboards at
the end and haptic vibrations or augmented reality visuals.

Finally, we asked the participants to rate their CPR performance with a grade from 1
to 10. The results in Figure 6.12 show that the most frequent grade was 7, followed
by 8 and 9.
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Figure 6.7 Performance values of the three classifiers. Loss function (top) and Accuracy
(bottom) of the classifiers: classRate (left); classRelease (centre); and classRelease
(right), during training (dark line) and validation (light line). Dashed red lines
indicate the “overfitting points”, i.e., the epoch in which training loss continues
decreasing while the validation loss does not improve anymore.
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Figure 6.8 Overall class distribution for classRate, classDepth and classRelease.
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Figure 6.10 Performance values of the classifiers for the two manually annotated classes
armsLocked and bodyWeight. Loss function (top) and Accuracy (bottom) of the
classifiers: armsLocked (left); and bodyWeight (right), during training (dark line)
and validation (light line). Dashed red lines indicate the “overfitting points”, i.e.,
the epoch in which training loss continues decreasing while the validation loss
does not improve anymore.
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Figure 6.11 Confusion matrices for the manually annotated classes armsLocked and body-
Weight.
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Figure 6.12 (left) Answers on for Question 1, the number of previous CPR trainings for each
participant; and (right) the self-assessment ratings given by the participants to
their performance.
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6.6 Discussion

With the results presented in Section 6.5, we can answer the two research questions
of the study as outlined in Section 6.4.

RQ1 focused on the validation of the Multimodal Tutor for CPR and the collec-
ted multimodal data against the standardised ResusciAnne manikin measurements
(RQ1—Validation). With the approach described in Section 6.4, we were able to train
three models based on recurrent neural networks, capable of classifying the right
compression rate with 86% accuracy, correct compression release with 73% accuracy
and correct compression depth with 71% accuracy. Therefore, we can answer RQ1
positively, the Multimodal Tutor for CPR and the collected multimodal data can
detect standardised mistakes in CPR training almost as accurately as common CPR
training manikins. We also need to point out that the models were not heavily
optimised, which makes us confident that they can be improved to achieve even
higher accuracy scores.

Concerning the generalisability across learners, all models trained to classify training
mistakes tracked with the ResusciAnne manikin generalised well across different
users. Training for each participant would also be possible, however, in that case,
the data points would have been only around 400 instead of 5200. That would have
resulted in a higher accuracy score, but also a higher risk of over-fitting the training
data. In general, as CPR is a standard procedure that requires the same and repetitive
movements, the individual differences do not seem to hold a strong influence for
the classifiers. This condition, however, applies only when the experimental setup is
unchanged. In the case the setup changes, then generalising becomes more difficult.
For example, if the Kinect were moved to a different location, the values of the
sensors would be quite different, or, if a sensor were either added or taken out from
the current setup, it would result in a set of different features. A limitation of the
approach used therefore is the need to keep the learning activity setup as unchanged
as possible.

RQ2 focused on the classification of training mistakes that so far can only be detected
by the human instructors and not by the ResusciAnne manikin (RQ2—Extended
mistake detection). We specifically focused on locked arms and body position mistakes
to be detected by the Multimodal Tutor for CPR. To answer this question, we
trained our model on additional CPR session where the two training mistakes,
bodyWeight and armsLocked, were mimicked. We achieved an accuracy score of
93% for armsLocked and 97% for bodyWeight. Based on this high accuracy, we can
answer RQ2 positively: the Multimodal Tutor for CPR was able to detect additional
CPR training mistakes beyond the mistake detection of the standard ResusciAnne
manikin. As with the previous research question, a limitation of our approach is that
the set-up must remain unchanged.
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6.7 Conclusions

In this paper, we introduce a new approach for detecting CPR training mistakes with
multimodal data using neural networks.

The CPR use case was chosen as representative learning task for this study being
a standardised and relevant skill. Improving CPR learning feedback could reduce
training time and make the CPR procedure more efficient, which would result in
greater support for people having a cardiopulmonary arrest and consequently a
higher number of lives saved. We designed the Multimodal Tutor for CPR, a multi-
sensor setup for CPR, which is a specific implementation of the Multimodal Tutoring
System, consisting of a Kinect camera and a Myo armband. We used the Multimodal
Tutor for CPR in combination with the ResusciAnne manikin for collecting data from
11 experts doing CPR. We first validated the collected multimodal data upon three
performance indicators provided by the ResusciAnne manikin, observing that we can
classify accurately the training mistakes on these three standardised indicators. We
can further conclude that it is possible to extend the standardised mistake detection
to additional training mistakes on performance indicators such as correct locking of
the arms and correct body position. Thus far, these mistakes could only be detected
by human instructors. After these positive findings regarding the abilities of the
Multimodal Tutor for CPR, we envision a follow-up study to investigate different
feedback interventions for the learners during CPR training. To facilitate this further
research, we asked the participants to fill in a questionnaire to elicit the most
relevant aspects of the feedback they received during CPR training the elements
which they considered most useful. These principles can be used for the future study
of the Multimodal Tutor for CPR, along with the models trained to detect mistakes.
In addition, a run-time feedback engine which ensures the multimodal data are
captured in real-time and that the feedback is timely.

With the Multimodal Tutor for CPR, we demonstrate that multimodal data can be used
as the base to drive machine reasoning and adaptation during learning. This can be
used both for automatic feedback (modelling approach) as well as for retrospective
human feedback (analytics approach).

Among the findings to our research questions, we can also report that the MMLA
Pipeline for collecting multimodal data from various sensors (see Section 6.4.1)
and our MMLA approach for automatically identifying CPR training mistakes, has
proven to be highly effective. We are convinced that the suggested approach can be
extended to other psychomotor learning tasks. To prove this claim in future works,
Multimodal Tutoring Systems for additional psychomotor learning domains need to
be developed.

116



Part IV

Conquest mission





Chapter 7

Keep me in the Loop

We developed the CPR Tutor, a real-time multimodal feedback system for cardiopul-
monary resuscitation (CPR) training. The CPR Tutor detects mistakes using recurrent
neural networks for real-time time-series classification. From a multimodal data
stream consisting of kinematic and electromyographic data, the CPR Tutor system
automatically detects the chest compressions, which are then classified and assessed
according to five performance indicators. Based on this assessment, the CPR Tutor
provides audio feedback to correct the most critical mistakes and improve the CPR
performance. To test the validity of the CPR Tutor, we first collected the data corpus
from 10 experts used for model training. Hence, to test the impact of the feedback
functionality, we ran a user study involving 10 participants. The CPR Tutor pushes
forward the current state of the art of real-time multimodal tutors by providing: 1)
an architecture design, 2) a methodological approach to design multimodal feedback
and 3) a field study on real-time feedback for CPR training.

This chapter is based on:

Di Mitri D., Schneider J., Trebing K., Sopka S., Specht M., Drachsler H. (2020)
Real-Time Multimodal Feedback with the CPR Tutor. In: Bittencourt I., Cukurova M.,
Muldner K., Luckin R., Millàn E. (eds) Artificial Intelligence in Education. AIED 2020.
Lecture Notes in Computer Science, vol 12163. Springer, Cham. DOI: 10.1007/978-
3-030-52237-7_12

119

https://doi.org/10.1007/978-3-030-52237-7_12
https://doi.org/10.1007/978-3-030-52237-7_12


Keep me in the Loop

7.1 Introduction

In learning science, there is an increasing interest in collecting and integrating
data from multiple modalities and devices to analyse learning behaviour (Blikstein
and Worsley, 2016; Ochoa and Worsley, 2016). This phenomenon is witnessed by
the rise of multimodal data experiments especially in the contexts of project-based
learning (Spikol et al., 2018), lab-based experimentation for skill acquisition (Gian-
nakos et al., 2019), and simulations for mastering psychomotor skills (Santos, 2019).
Most of the existing studies using multimodal data for learning stand at the level
of “data geology”, investigating whether multimodal data can provide evidence of
the learning process. In some cases, machine learning models were trained with the
collected data for classifying or predicting outcomes such as emotions or learning
performance. At the same time, the existing research that uses multimodal and
multi-sensor systems for training different types of psychomotor skills feautures
neither personalised nor adaptive feedback (Santos, 2016).

In this study, we aimed at overcoming this knowledge gap and by exploring how
multimodal data can be used to support psychomotor skill development by providing
real-time feedback. We followed a design-based research approach: the presented
study is based on the insights of (Di Mitri et al., 2019b) (Chapter 6), in which
we demonstrated that it is possible to detect common CPR mistakes regarding the
quality of the chest compressions (CC) (CC-rate, CC-depth and CC-release). In (Di
Mitri et al., 2019b) (Chapter 6), we have also shown that it is possible to extend
the common mistake detection of commercial and validated training tools like the
Laerdal ResusciAnne manikin with the CPR tutor. We were able to detect the correct
locking of the arms while doing CPR and the correct use of the body weight when
performing the CCs. The mistake detection models were obtained training multiple
recurrent neural networks, using the multimodal data as input and the presence or
absence of the CPR mistakes as output. This study extends the previous efforts by
embedding the machine learning approaches for mistake detection with a real-time
feedback intervention.

7.2 Background

7.2.1 Multimodal data for learning

With the term “multimodal data”, we refer to the data sources derived from mul-
timodal and multi-sensor interfaces that go beyond the typical mouse and keyboard
interactions (Oviatt et al., 2018). These data sources can be collected using wearable
sensors, depth cameras or Internet of Things devices. Example of modalities relevant
for modelling a learning task is learner’s motoric movements, physiological signals,
contextual, environmental or activity-related information (Di Mitri et al., 2018a)
(Chapter 2). The exploration of these novel data sources inspired the Multimodal
Learning Analytics (MMLA) research (Ochoa and Worsley, 2016), whose com-
mon hypothesis is that combining data from multiple modalities allows obtaining
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a more accurate representation of the learning process and can provide valuable
insights to the educational actors, informing them about the learning dynamics
and supporting them to design more valuable feedback (Blikstein and Worsley,
2016). The contribution of multimodal data to learning is still a research topic
under exploration. Researchers have found out that it can better predict learning
performance during desktop-based game playing (Giannakos et al., 2019). The
MMLA approach is also thought to be useful for modelling ill-structured learning
tasks (Cukurova et al., 2019). Recent MMLA prototypes have been developed for
modelling classroom interactions (Ahuja et al., 2019) or for estimating success in
group collaboration (Spikol et al., 2018). Multimodal data were also employed for
modelling psychomotor tasks and physical learning activities that require complex
body coordination (Martinez-Maldonado et al., 2018). Santos et al. reviewed ex-
isting studies using sensor-based applications in diverse psychomotor disciplines
for training specific movements in different sports and martial arts (Santos, 2019).
Limbu et al. reviewed existing studies that modelled the experts to train apprentices
using recorded expert performance (Limbu et al., 2018b).

7.2.2 Multimodal Intelligent Tutors

We are interested in the application of multimodal data for providing automatic and
real-time feedback. This aim is pursued by the Intelligent Tutoring Systems (ITSs)
research. Historically ITSs have been designed for well-structured learning activities
in which the task sequence is clearly defined, as well as the assessment criteria and
the range of learning mistakes that ITS can detect. Related ITS research looked
primarily at meta-cognitive aspects of learning, such as the detection of learners’
emotional states (e.g. (D’Mello et al., 2008; Arroyo et al., 2009)). Several ITSs of this
kind are reviewed in a recent literature review (Alqahtani and Ramzan, 2019). Most
of these studies employed a desktop-based system where the user-interaction takes
place with a mouse and keyboard. To find applications of ITSs beyond mouse and
keyboard we need to look in the field of medical robotics and surgical simulations
into systems like DaVinci. These robots allow aspiring surgeons to train standardised
surgical skills in safe environments (Taylor et al., 2016).

7.2.3 Cardiopulmonary Resuscitation (CPR)

In this study, we focus on one of the most frequently applied and well studied
medical simulations: Cardiopulmonary Resuscitation. CPR is a lifesaving technique
applied in many emergencies, including a heart attack, near drowning or in the
case of stopped heartbeat or breathing. CPR is nowadays mandatory not only
for healthcare professionals but also for several other professions, especially those
more exposed to the general public. CPR training is an individual learning task
with a highly standardised procedure consisting of a series of predefined steps and
criteria to measure the quality of the performance. We refer to the European CPR
Guidelines (Perkins et al., 2015). There exists a variety of commercial tools for
supporting CPR training, which can track and assess the CPR execution. A common
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training tool is the Laerdal ResusciAnne manikins. The ResusciAnne manikins provide
only retrospective and non-real-time performance indicators such as CC-rate, CC-
depth and CC-release. Other indicators are neglected and that creates a feedback
gap for the learner and higher responsibility for the course instructors. Examples
of these indicators are the use of the body weight or the locking of the arms while
doing the CCs. So far, these mistakes need to be corrected by human instructors.

7.3 System Architecture of the CPR Tutor

The System Architecture of the CPR Tutor implements the five-step approach intro-
duced by the Multimodal Pipeline (Di Mitri et al., 2019c) (Chapter 4), a framework
for the collection, storing, annotation, processing and exploitation of data from
multiple modalities. The System Architecture was optimised to the selected sensors
and for the specific task of CPR training. The five steps, proposed by the Multimodal
Pipeline are numbered in the graphical representation of the System Architecture
in Fig. 7.1. The architecture also features three layers: 1) the Presentation Layer
interfacing with the user (either the learner or the expert); 2) the Application Layer,
implementing the logic of the CPR Tutor; 3) the Data Layer, consisting of the data
used by the CPR Tutor. In the CPR Tutor, we can distinguish two main phases which
have two corresponding data-flows: 1) the offline training of the machine learning
models and 2) the real-time exploitation in which the real-time feedback system is
activated.

7.3.1 Data collection

The first step corresponds to the collection of the data corpus. The main system
component responsible for the data collection is the CPR Tutor, a C# application
running on a Windows 10 computer. The CPR Tutor collects data from two main
devices: 1) the Microsoft Kinect v2 depth camera and 2) the Myo electromyographic
(EMG) armband. In the graphic user interface, the user of the CPR Tutor can ‘start’
and ‘stop’ the recording of the session. The CPR Tutor collects the data of the user in
front of the camera wearing the Myo. The collected data consist of:

– the 3D kinematic data (x,y,z) of the body joints (excluding ankles and hips)

– the 2D video recording from the Kinect RGB camera,

– 8 EMG sensors values, 3D gyroscope and accelerometer of the Myo.

7.3.2 Data storing

The CPR Tutor adopts the data storing logic of the Multimodal Learning Hub (Schneider
et al., 2018), a core component of the Multimodal Pipeline. As the sensor applica-
tions collect data at different frequencies, at the ‘start’ of the session, each sensor
application is assigned to a Recording Object a data structure an arbitrary number
of Frame Updates. In the case of the CPR Tutor, there are two main streams coming
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from the Myo and the Kinect. The Frame Updates contain the relative timestamp
starting from the moment the user presses the ‘start’ until the ‘stop’ of the session.
Each Frame Update within the same Recording Object shares the same set of sensor
attributes, in the case of the CPR Tutor, 8 attributes for Myo and 32 for Kinect,
corresponding to the raw features that can be gathered from the public API of the
devices. The video stream recording from the Kinect uses a special type of Recording
Object, specific for video data. At the end of the session, when the user presses ‘stop’,
the data gathered in memory in the Recording Objects and the Annotation Object is
automatically serialised into the custom format introduced by the LearningHub: the
MLT Session (Meaningful Learning Task). For the CPR Tutor, the custom data format
consists of a zip folder containing: the Kinect and Myo sensor file, and the 2D video
in MP4 format. Serialising the sessions is necessary for creating the data corpus for
the offline training of the machine learning models.

7.3.3 Data annotation

The annotation can be carried out by an expert retrospectively using the Visual
Inspection Tool (VIT) (Di Mitri et al., 2019a). In the VIT, the expert can load the MLT
Session files one by one to triangulate the video recording with the sensor data. The
user can select and plot individual data attributes and inspect visually how they relate
to a video recording. The VIT is also a tool for collecting expert annotations. In the
case of CPR Tutor, the annotations were given as properties of every single CC. From
the SimPad of the ResusciAnne manikin, we extracted the performance metrics of
each recorded session. With a Python script, we processed the data from the SimPad
in the form of a JSON annotation file, which we added to each recorded session
using the VIT. This procedure allowed us to have the performance metrics of the
ResusciAnne manikin as “ground truth” for the training the classifiers. As previously
mentioned, the Simpad tracks the chest compression performance monitoring three
indicators, the correct CC-rate, CC-release and CC-depth. By using the VIT, however,
the expert can extend these indicators by adding manually custom annotations, in
the form of attribute-value pairs. For this study, we use the target custom classes
armsLocked and bodyWeight corresponding to two performance indicators, currently
not tracked by the ResusciAnne manikins.

7.3.4 Data processing

For data processing, we developed a Python script named SharpFlow1. This com-
ponent is used both for the offline training and validation of the mistake detection
classifiers as well as for the real-time classification of the single CCs. In the training
phase, the entire data corpus (MLT Sessions with their annotations) is loaded into
memory and transformed into two Pandas data frames, one containing the sensor
data the other one containing the annotations. As the sensor data came from devices
with different sampling frequencies, the sensor data frame had a great number of
missing values. To mitigate this problem, the data frame was resampled into a

1Code available on GitHub (https://github.com/dimstudio/SharpFlow)

123

https://github.com/dimstudio/SharpFlow


Keep me in the Loop

fixed number corresponding to the median length of each sample. We obtained,
therefore, a 3D tensor of shape (#samples × #attributes × #intervals). The dataset
was divided in 85% for training and 15% for testing using random shuffling. A part
of the training set (15%) was used as validation set. We also applied feature scaling
using min-max normalisation with a range of -1 and 1. The scaling was fitted on
the training set and applied on the validation and test sets. The model used for
classification was a Long-Short Term Memory network (Hochreiter and Schmidhuber,
1997) which is a special type of recurrent-neural network. Implementation was
performed using PyTorch. The architecture of the model chosen was a sequence of
two stacked LSTM layers followed by two dense layers:

– a first LSTM with input shape 17x52 (#intervals times #attributes) and 128 hidden
units;

– a second LSTM with 64 hidden units;

– a fully-connected layer with 32 units with a sigmoid activation function;

– a fully connected layer with 5 hidden units (number of target classes)

– a sigmoid activation.

All of our classes have a binary class, so we use a binary cross entropy loss for
optimisation and train for 30 epochs using an Adam optimiser with a learning rate
of 0.01.

7.3.5 Real-time exploitation

The real-time data exploitation is the run-time behaviour of the System Architecture.
This phase is a continuous loop of communication between the CPR Tutor, the
SharpFlow application and the prompting of the feedback. It can be summarised in
three phases 1) detection, 2) classification and 3) feedback.

1) Detection. For being able to assess a particular action and possibly detect if
some mistake occurs, the CPR Tutor has to be certain that the learner has performed
a CC and not something different. The approach chosen for action detection is a
rule-based approach. While recording, the CC detector continuously checks the
presence of CCs by monitoring the vertical movements of the shoulder joints from
the Kinect data. These rules were calibrated manually so that the CC detector finds
the beginning and the end of the CCs. At the end of each CC, the CPR Tutor pushes
the entire data chunk to SharpFlow via a TCP client.

2) Classification. SharpFlow runs a TCP server implemented in Python which is
continuously listening for incoming data chunks by the CPR Tutor. In case of a new
chunk, SharpFlow checks if it has a correct data format and if it is not truncated. If
so, it resamples the data chunks and feeds them into the min-max scaler loaded from
memory, to make sure that also the new instance is normalised correctly. Once ready,
the transformed data chunk is fed into the layered LSTMs also saved in memory. The
results for each of the five target classes are serialised into a dictionary and sent back
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7.3 System Architecture of the CPR Tutor

to the CPR Tutor where they are saved as annotations of the CC. SharpFlow takes on
average 70 milliseconds to classify one CC.

3) Feedback. Every time the CPR Tutor receives a classified CC, it computes a
performance and an Error Rate (ER) for each target class. The performance is
calculated with a moving average with a window of 10 seconds, meaning it considers
only the CCs performed in the previous 10s. The Error Rate is calculated as the
inverse of sum of the performance: ERj = 1 −

∑n
i=0

Pi,j

n where j is one of the
five target classes, n is the number of CCs in one time window of 10s. Not all the
mistakes in CPR are, however, equally important. For this reason, we handcrafted
five feedback thresholds of activation in the form of five rules. If the ER is equal or
greater than this threshold the feedback is fired, otherwise, the next rule is checked.
The order chosen was the following: ERarmsLocked >= 5, ERbodyWeight >= 15,
ERclassRate >= 40, ERclassRelease >= 50, ERclassDepth >= 60. Although every CC
is assessed immediately after 0.5s we set the feedback frequency to 10s, to avoid
overloading the user with too much feedback. The modality chosen for the feedback
was sound, as we considered the auditory sense the least occupied channel while
doing CPR. We created the following audio messages for the five target classes:

1. classRelease: “release the compression”

2. classDepth: “improve compression depth”

3. armsLocked: “lock your arms”

4. bodyWeight: “use your body weight”

5. classRate: *metronome sound at 110 bpm*.

125



Keep me in the Loop

MLT sessions (.zip)

Video 
recording

(.mp4)

Myo data
(.json)

Kinect 
data 

(.json)

Annotations
(.json)

PR
ES

EN
TA

TI
O

N
 L

AY
ER

DA
TA

 L
AY

ER
AP

PL
IC

AT
IO

N
 L

AY
ER

CPRTutor (C#)

Kinect
Recording 

Object

Kinect Win API

Sensor devices

Kinect 3D 
depth 
sensor

Kinect 2D 
video

Myo 
armband

Myo
Recording

Object

Screen
Recorder

MyoSharp 
API

SharpFlow (Python)

Model fitting

Feedback devices

VisualizationsAudio 
speakers

Classification

Session loader

TCP 
server

Feedback 
logic

Processing 
stack

Visual Insp Tool

Annotations

3) Annotations 

4) Processing

Feedback
(.json)

TCP 
client

CC 
detector

Data 
chunker

Annotation 
Object

Feedback
object

Processing 
stack

Chunk loader

Models

Scaler LSTM

2) Storing

Data serialiser

5) Exploitation1) Collection

Figure 7.1 The System Architecture of the CPR Tutor.

7.4 Method

In light of the research gap on providing real-time feedback from multimodal sys-
tems, we formulated the following research hypothesis which guided our scientific
investigation.

H1: The proposed architecture allows the provision of real-time feedback for CPR
training.

H2: The real-time feedback of the CPR Tutor has a positive impact on the considered
CPR performance indicators.

7.4.1 Study design

To test H1, we developed the CPR tutor with a real-time feedback component
based on insights from our design-based research cycle. We planned a quantitative
intervention study in collaboration with a major European University Hospital.
The study took place in two phases: 1) Expert data collection involving a group
of 10 expert participants, in which the data corpus was collected; 2) a Feedback
intervention study involving a new group of 10 participants. A snapshot of the study
setup for both phases is shown in Fig. 7.2. All participants in the study were asked
to sign an informed consent letter detailing all the details of the experiment as well
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Figure 7.2 Study design of the CPR Tutor.

as the treatment of the collected data in accordance with the new European General
Data Protection Regulation (2016/679 EU GDPR).

7.4.2 Phase 1 - Expert data collection

The expert group counted 10 participants (M: 4, F: 6) having an average of 5.3
previous CPR courses per person. We asked the experts to perform 4 sessions of
one-minute duration. Two of these sessions, they had to perform correct CPR, while
the reminder two sessions they had to perform incorrect executions not locking
their arms and not using their body weight. In fact, from the previous study (Di
Mitri et al., 2019b) (Chapter 6) we noticed it was difficult to obtain the full span
of mistakes the learners can perform. Asking the experts to mimic the mistakes
was, thus, the most sensible option for obtaining a dataset with a balanced class
distribution. We, therefore, collected around 400 CCs per participant. The one-
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minute duration was set to prevent that physical fatigue influenced the novice’s
performance. Once the data collection was completed, we inspected each session
individually using the Visual Inspection Tool. We annotated the CC detected by the
CPR Tutor, by triangulating with the performance metrics from the ResusciAnne
manikin. The bodyWeight and armsLocked were instead annotated manually by one
component of the research team.

7.4.3 Phase 2 - Feedback intervention

The feedback intervention phase counted 10 participants (M: 5, F: 5) having an
average of 2.3 previous CPR courses per person. Those were not absolute novices
but recruited among the group of students that needed to renew their CPR certificate.
The last CPR training for these participants was, therefore, older than one year. Each
participant in the feedback intervention group performed 2 sessions of 1 minute, one
with feedback enabled and one without feedback.

7.5 Results

The collected data corpus from the expert group consisted of 4803 CCs . Each CC
was annotated with 5 classes. With the methodology described in sec. 7.3.4, we
obtained a tensor of shape (4803, 17, 52). As the distribution of the classes was too
unbalanced, the dataset was downsampled to 3434 samples (-28.5%). In Tab. 7.1,
we report the new distribution for each target class. In addition, we report the results
of the LSTM training reporting for each target class the accuracy, precision, recall
and F1-score. In the feedback group, we collected a dataset of 20 sessions from 10

Table 7.1 Five target classes distribution and performance of corresponding LSTM models
trained on the expert dataset.

class Class distribution Accuracy Precision Recall F1-score

classRelease 0: (1475, 42.9%), 1: (1959, 57.1%) 0.905 0.897 0.954 0.925

classDepth 0: (2221, 64.6%), 1: (1213, 35.4%) 0.954 0.955 0.953 0.954

classRate 0: (1457, 42.5%), 1: (1977, 575%) 0.901 0.815 0.819 0.817

armsLocked 0: (1337, 38.9%), 1: (2097, 61.1%) 0.981 0.975 1 0.987

bodyWeight 0: (1206, 35.1%), 1: (2228, 64.9%) 0.97 0.967 0.994 0.98

participants with 2223 CCs detected by the CPR Tutor and classified automatically.
The feedback function was enabled only in 10 out of 20 sessions. The feedback
was fired a total of 16 times. In Tab. 7.2, we report the feedback frequency for
each target class and the class distribution for each target class. We generated Error
Rate plots for each session. In Fig. 7.3, we provide an example plot of a session
having five feedback interventions (vertical dashed lines) matching the same colours
of the target classes. Although the Error Rates fluctuate heavily throughout each
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Figure 7.3 Plot of the error rates for one session.

session, we noticed that nearly every time the feedback is fired the Error Rate for the
targeted mistake is subject to a drop. We analysed the effect of CPR Tutor feedback
by focusing on the short-term changes in Error Rate for the mistakes targeted by
the CPR Tutor. In Tab. 7.2, we report the average ERs 10s before and 10s after the
audio feedback was fired. We report the average delta of these two values for each
target class. For classRelease, classDepth and classRate we notice a decrease of the
Error Rate, whereas for armsLocked and bodyWeight an average increase.
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Table 7.2 Average Error Rate for each target class 10s before and 10s after the audio feedback
were fired.

Class
Class

distribution

Freq.

Feedback

ER 10s

before

feedback

ER 10s

after

feedback

delta

classRelease 0: (475, 21.4%), 1: (1746, 78.6%) 2 46.60% 33.50% -13.10%

classDepth 0: (704, 31.7%), 1: (1517, 68.3%) 5 59.80% 55.00% -4.80%

classRate 0: (475, 21.4%), 1: (1746, 78.6%) 5 44.20% 34.5% -9.70%

armsLocked 0: (3, 0.1%), 1: (2218, 99.9%) 1 0.6% 5.1% 4.50%

bodyWeight 0: (69, 3.1%), 1: (2152, 96.9%) 3 10.70% 12.90% 2.20%

7.6 Discussion

In H1 we hypothesised that the proposed architecture for real-time feedback is
suitable for CPR training. With the System Architecture outlined in sec. 7.3, we
implemented a functional system which can be used both for the offline model
training of the CPR mistakes as well as for the real-time multimodal data exploitation.
The proposed architecture exhibited reactive performances, by classifying one CC
in about 70 milliseconds. The System Architecture proposed is the first complete
implementation of the Multimodal Pipeline (Di Mitri et al., 2019c) and it shows that
it is possible to close the feedback loop with real-time multimodal feedback.

In H2 we hypothesised that the CPR Tutor with its real-time feedback function
can have a positive impact on the performance indicators considered. With a first
intervention feedback study involving 10 participants, we noticed that there is a
short-term positive influence of the real-time feedback on the detected performance,
witnessed by a decrease of Error Rate in the 10 seconds after the feedback was fired
(Tab. 7.2). This effect is confirmed in three out of five target classes. The remaining
two classes show opposite behaviours. In these two cases, the increase of Error Rate
is smaller as compared to the former target classes. We suppose this behaviour is
linked to the extreme class distribution of these two classes. In turn, this distribution
can be due to the fact that the participants of the second group were not beginners
and therefore not perform common mistakes such as not locking the arms or not
using their body weight correctly. These observations cannot be generalised due to
the small number of participants tested for the study.

7.7 Conclusions

We presented the design and the development of real-time feedback architecture for
CPR Tutor. Building upon existing components, we developed an open-source data
processing tool (SharpFlow) which implements a neural network architecture as
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well as a TCP server for real-time CCs classification. The architecture was employed
in a first study aimed at expert data collection and offline training and the second
study for real-time feedback intervention allowing us to prove our first hypothesis.
Regarding H2, we collected observations that, while cannot be generalised, provide
some indication that the feedback of the CPR tutor had a positive influence on
the CPR performance on the target classes. To sum up, the architecture used for
the CPR Tutor allowed for the provision of real-time multimodal feedback (H1)
and the generated feedback seem to have short-term positive influence on the CPR
performance on the target classes considered.
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General Discussion

This doctoral thesis described the journey of ideation, prototyping and empirical
testing of the Multimodal Tutor, a system that supports psychomotor skills acquisition
with the support of machine learning and multimodal data. In the introduction
chapter, we compare this journey to a maritime expedition to the new, promising
land of multimodality. The journey consisted on the one hand of the theoretical
conceptualisation of multimodality, on the other hand of designing and developing
technical prototypes to support the creation of a proof-of-concept of the Multimodal
Tutor. This doctoral thesis was divided into four parts.

Part I described the “Exploratory mission”, characterised primarily by the experiment
Learning Pulse described in Chapter 1.

Part II provided a “Map of Multimodality”. In Chapter 2, we explored the concept of
multimodality by analysing existing constructs and by conducting a literature survey.
This qualitative research approach led to the formulation of the Multimodal Learning
Analytics Model (MLeAM). In chapter 3 we described the “Big Five challenges” for
the Multimodal Tutor.

In Part III we described the “Preparation of the Navy”, a series of tools needed to be
developed for the realisation of the Multimodal Tutor. In Chapter 5 we described the
Multimodal Pipeline, a generic technical infrastructure which addressed the “Big Five”
challenges. The first component of the Multimodal Pipeline was an external tool, the
Multimodal Learning Hub (Schneider et al., 2018). In Chapter 4, we decided on one
specific aspect of the Multimodal Pipeline, the Data Annotation. From this challenge
emerged the idea of creating a Visual Inspection Tool, an application for annotating
and inspecting multimodal data streams, which allowed to “read between the lines”.
In Chapter 6 we narrowed the focus to the specific domain of Cardiopulmonary
Resuscitation Training (CPR), in particular how to detect multimodal mistakes using
machine learning techniques.

Part IV described the conclusive “conquest mission” where the CPR Tutor, an instance
of the Multimodal Tutor, was employed in a field study for automatic feedback
generation during CPR training. Chapter 7 reported about the design, development
and experimental testing of the CPR Tutor.
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Main findings

Chapter 1 - Learning Pulse

The first, exploratory study of this doctoral thesis was Learning Pulse, described
in Chapter 1. Learning Pulse aimed at predicting levels of stress, productivity and
level of flow during self-regulated learning. In the study, we gathered multimodal
data from nine participants. The data consisted of (1) physiological data (heart-rate
and step count) from Fitbit HR wristbands; (2) software applications used on their
laptops from RescueTime; and (3) environmental information (temperature, humid-
ity, pressure and geolocation coordinates) using web APIs. In a period of two weeks,
the participants had to self-report every working hour via a mobile application, the
Activity Rating Tool. The data were collected in a Learning Record Store using custom
Experience API (xAPI) triplets. The experimental setup chosen allowed too much
diversity of tasks, resulting in an uncontrolled experiment and influencing negatively
the quality of the results. Although the nine participants were PhD students of
the same department, throughout the two weeks of the data collection, they used
different laptops and sets of software applications, which were thus grouped into
categories to ease analysis. The collected data were heterogeneous: some attrib-
utes such as ‘step-count’ exhibited random behaviour, some other attributes such as
‘heart-rate’ had instead continuous values. To accommodate both types of continuous
and random effects we opted for Linear Mixed Effect Model (LMEM), a multi-level
prediction algorithm typically used for time-series forecasting.

The collection of the labels needed for the data annotation was among the biggest
challenges of Learning Pulse. The self-perceived levels of stress, productivity and
flow were reported by the participants retrospectively every hour using the Activity
Rating Tool. We thus realised that the number of labels was not sufficient for su-
pervised machine learning. For this reason, from each labelled hour, we derived 12
labelled intervals of five minutes. Finally, the data processing approach (Fig. 1.7)
was elementary, especially the Data Processing Application. The processing pipeline
was tailor-made and not flexible, nor reusable for other purposes outside of the
experiment. The xAPI format turned out to be a bottleneck when using data ex-
change and storing of high-frequency sensor data such as heart-rate and step count.
Storing each heart-rate update with an xAPI triplet generated a load of redundant
information that slowed down the data import and the overall computation. Finally,
the poor results in the model accuracy did not allow to explore further the feedback
mechanisms.

Findings

• Data collections during long periods need to deal with the task diversity of
each user and uncontrolled setups.

• Tracking software applications used by the user leads to diverse sets of attrib-
utes for each user, which makes it more difficult to compare them.
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• Some modalities are continues variables (e.g. heart-rate), some other are
random variables (e.g. step-count), which makes it hard to combine them and
analyse them.

• Fixed-time (e.g. hourly) self-reports are not always reliable and are subject to
bias.

• There is a trade-off between the number of labels needed for supervised
machine learning and the time that humans need to annotate the data.

• Harnessing the potentials of multimodal data require run-time systems such as
data processing pipelines instead of data analysis scripts which run only once.

• xAPI is not suitable for storing and exchanging high-frequency sensor data,
due to high overhead of the XML format.

Chapter 2 - From Signals To Knowledge

The literature study in Chapter 2 aimed at mapping the state of the art of Multimodal
Data for learning, a field which was emerging as Multimodal Learning Analytics
(MMLA). The exploratory study Learning Pulse in Chapter 1 and the related work
done in the field were the main motivations driving this scientific investigation.
Surveying the related literature showed that MMLA covered a scattered scientific
field and not yet a coherent one. This work contributed to framing the mission of
MMLA: using multimodal data and data-driven techniques for filling the gap between
observable learning behaviour and learning theories. We coined this mission “from
signals to knowledge”. We conducted a literature survey (Section 2.2) of MMLA
studies using the proposed classification framework in which we separate two main
components: the input space and the hypothesis space that are separated by the
observability line. The literature survey led to the Taxonomy of multimodal data for
learning and the Classification table for the hypothesis space. Surveying the related
studies allowed discovering interesting commonalities as, for example, that most
of the studies using multimodal data looked primarily at metacognitive dimensions
such as the presence of certain emotions in learning.

The literature survey led to propose a new theoretical construct, the Multimodal
Learning Analytics Model (MLeAM), a conceptual model for supporting the emerging
field of MMLA. MLeAM has three main objectives: (1) mapping the use of multimodal
data to enhance the feedback in a learning context; (2) showing how to combine
machine learning with multimodal data; (3) aligning the terminology used in the
field of machine learning and learning science.

Findings

• Sensors can capture observable learning dimensions that include behavioural,
activity and contextual data – we refer to this as the input space.

• The unobservable learning dimensions such as cognitive, meta-cognitive or
emotional aspects stand below the observability line – we refer to this as the
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hypothesis space.

• Using human-driven data annotation and machine learning makes it possible
to infer the unobservable from the observable dimensions. This process is
described by the Multimodal Learning Analytics Model (MLeAM).

• MLeAM shows how best to exploit machine learning and multimodal data to
support human learning.

• The work in MMLA is jeopardised as it cannot yet rely on standardised ap-
proaches and techniques.

• Further research efforts must be put in technical prototypes, standardised tech-
nical infrastructures, run-time systems and common practices for multimodal
data for learning.

Chapter 3 - The ‘Big Five’ challenges

In Chapter 3, we addressed one structural shortcoming in the MMLA field, as
evidenced by the literature survey conducted in Chapter 2: the lack of standardised
technical approaches for multimodal data support of learning activities. We claimed
that this technical gap is holding back the development of the MMLA field by
imposing the MMLA researchers to duplicate efforts in setting up data collection
infrastructures and preventing them to focus on data analysis research questions
answering. In Chapter 3 the identified technical challenges were grouped into five
categories, named the ‘Big Five’ challenges of Multimodal Learning Analytics which
are the (1) data collection, (2) data storing, (3) data annotation, (4) data processing
and (5) data exploitation. The chapter attempted to provide possible solutions to the
challenges which are flexible enough for being employed in different contexts.

Findings

• The technical challenges of MMLA can be grouped into five categories: (1)
data collection, (2) data storing, (3) data annotation, (4) data processing and
(5) data exploitation.

• The five challenges represent the steps that need to be addressed for imple-
menting a data-driven feedback loop.

• Each of the challenge categories presents a set of sub-challenges which need
to be addressed by MMLA researchers.

• Tackling all these challenges together is a complicated research effort.

Additional Research - The Multimodal Learning Hub

As tackling all the five challenges requires a complex effort, we decided to build
upon an existing research prototype that a solution for the data collection and
synchronisation and the data storing: the Multimodal Learning Hub (Schneider
et al., 2018). The LearningHub is a platform which can collect data from multiple
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sensor applications and synchronise them into session files. Although not directly
included in this doctoral thesis, the LearningHub is an integral part of the research
reported in this doctoral thesis. The biggest research outputs of the LearningHub
are (1) a software prototype which can connect to multiple sensor applications
running on Windows, and (2) the introduction of a new data storing logic and
custom data-format which we coined as Meaningful Learning Task (MLT-JSON).

Findings

• Sensor devices have different software systems making the integration of data
from multiple sources not trivial.

• Sensors generate data at different frequencies.

• One sensor stream can be composed of several attributes.

• A typical problem of sensor fusion is the time synchronisation of different
devices which can be addressed using the LearningHub as a ‘master’ that
decides when the sensor applications should begin collecting the data.

• As continuous data collection is complex and expensive to realise, it is easier
adopting a ‘batch approach’, in which the user can decide when to ‘start’ and
‘stop’ the data collection.

• The MLT-JSON format allows creating a document for each sensor device with
multiple attributes and stores the data into human-readable format.

• Although MLT-JSON adopts a verbose format (due to repetitive JSON tags),
when compressed, its file-size is reduced by 90-95%.

Chapter 4 - Read Between The Lines

In Chapter 4 we focused on one of the five big challenges, the data annotation. This
challenge deals with how humans can make sense of complex multidimensional
data. In this chapter, we proposed a new technical prototype, the Visual Inspection
Tool (VIT). The VIT allows the researchers to visually inspect and annotate a variety
of psychomotor learning tasks that can be captured with a customisable set of
sensors. The file format supported by VIT is MLT-JSON, meaning that any recording
session recorded with LearningHub can be loaded, visualised and annotated using
the VIT. The VIT enables the researcher (1) to triangulate multimodal data with
video recordings; (2) to segment the multimodal data into time intervals and to add
annotations to the time intervals; (3) to download the annotated dataset and use the
annotations as labels for machine learning predictions. Beside generically addressing
the data annotation, the VIT also facilitates data processing and exploitation. The
VIT is released as Open Source software2.

2Code available on GitHub (https://github.com/dimstudio/visual-inspection-tool)
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Findings

• Sensor data are poorly informative when visualised, for this reason, they need
to be complemented by evidence interpretable by humans, such as video data
without which it is not easy to make sense of what happened in the recorded
session.

• The numerical sensor attributes (as opposed to categorical variables) can be
visualised as time-series. The visualisation of more than a couple of time-series
is tricky for the human eye; manually selecting the attributes to visualise
therefore is crucial.

• Audio and video data can be transformed into numerical time-series (e.g. by
extracting colours of pixels or audio features) and added in the multimodal
dataset.

• The annotation is a human interpretation of the data which apply to a specific
time interval with a beginning and end.

• Each time interval (annotation) can consist of multiple attributes, this approach
allows the optimal definition of binary and non-binary classes.

• Manually selecting the time-intervals is an expensive task, which should be
automated if possible – in the best-case scenario, the human role should be
only that of supervising, i.e. correcting and integrating the (semi)-automatic
annotations.

Chapter 5 - Multimodal Pipeline

The VIT, as well as the LearnigHub and its custom data format MLT-JSON, constitute
a chain of technical reusables which we coined as the Multimodal Pipeline and
that we described in Chapter 5. The Multimodal Pipeline is an integrated technical
workflow that works as a toolkit for supporting MMLA researchers to set up new
experiments in a variety of psychomotor learning scenarios. Using components from
this toolkit can reduce developing time to set up experiments and it can facilitate
and speed up the transfer of research knowledge in the MMLA community. The
Multimodal Pipeline connects a set of technical solutions to the “Big Five” challenges
described presented in Chapter 5. The Multimodal Pipeline has two main stages,
the first one is the ‘offline training’, in which the collected sessions are annotated
and the ML models are trained with the collected data. The second stage is the
‘online exploitation’, which corresponds to the ‘run-time’ behaviour of the Multimodal
Pipeline.

Findings

• The Multimodal Pipeline describes in technical terms the data-driven feedback
cycle proposed by MLeAM in Chapter 2.

• There are two flows of data in the Multimodal Pipeline: the ‘offline-training’
and the ‘online-exploitation’.
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• The Data Annotation happens typically before the data processing, as annota-
tions are required for training the models.

• The Data Annotation is not always required. The Multimodal Pipeline can
serve different strategies of exploitation for the Multimodal Pipeline, besides
predictive feedback using supervised ML (as discussed in Section 4.3.3; these
include rule-based corrective feedback, pattern identification, historical reports,
diagnostic analysis or expert learner comparison.

• The Multimodal Pipeline can harness multimodal data both for Learning Analyt-
ics Dashboards, for example for raising awareness and stimulate orchestration
in the learning activities; similarly, it can be embedded in Intelligent Tutors for
achieving better adaptation and personalisation of the tutoring experience.

Chapter 6 - Learning Domain: Detecting CPR Mistakes

In Chapter 6 we selected Cardiopulmonary Resuscitation (CPR) as an application
case for the Multimodal Tutor. We selected CPR training as a representative learning
task for carrying out a study on mistake detection. CPR was chosen primarily
because: it is an individual learning task, it is repetitive and highly structured, it has
clear performance indicators and because it is a training with high social relevance.
Among the different specialisation options that the Multimodal Tutor could take,
we decided to focus on the design of a CPR Tutor. We introduced a new approach
for detecting CPR training mistakes with multimodal data using neural networks.
The proposed system was composed in a multi-sensor setup for CPR, consisting of a
Kinect camera and a Myo armband. We used the system in combination with the
ResusciAnne manikin for collecting data from 11 experts performing CPR training.
We first validated the collected multimodal data upon three performance indicators
provided by the ResusciAnne manikin, observing that we can classify accurately the
training mistakes on these three standardised indicators. We further concluded that
it is possible to extend the standardised mistake detection to additional training
mistakes on performance indicators such as correct locking of the arms and correct
body position. So far, those mistakes could only be detected by human instructors.

Findings

• The quality of the data training corpus is crucial for ensuring solid model train-
ing. Collecting data and training classifiers for a small number of participant
leads to very specific models that do not generalise well. Diversity and amount
of training data is the key.

• There is no gold-number in the number of annotated samples (chest-compressions
- CC) which needs to be collected; there is, however, a dependency with the
number of attributes that will be considered.

• Given that the samples (CCs) have different duration, it is important to re-
sample to a fixed number of bins applying some trimming.
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• Applying normalisation and min-max scaling of all attributes is important for
achieving the best result, this has to follow the activation function used in the
neural networks.

• Increasing the number of input attributes (e.g. adding new modalities) in-
creases the classification accuracy of the model; these attributes work as
regularisation factor, adding more ‘background noise’ to the model and making
it more robust.

• Neural Networks seem robust in accepting heterogeneous input while conver-
ging to good results.

• It is difficult to capture the span of all possible mistake with a restricted number
of participants; each participant tends to make only a small subset of mistakes;
the solution found was asking participants to mimic some types of mistakes.

• The task structure of 2 sessions of performing 2 minutes of CC is a tiring task
for the participants.

• Body size is different among participants and it has an effect on sensor wearing;
for instance, people with thinner forearms had some trouble wearing the Myo
which was too loose.

Chapter 7 - Keep Me In The Loop

In Chapter 7, we presented the design and the development of real-time feedback
architecture for the CPR Tutor. To complete the chain of flexible technical solutions
proposed by the Multimodal Pipeline, we developed SharpFlow3, an open-source
data processing tool. SharpFlow supports the MLT-JSON format used as well by the
VIT and the LearningHub. The data serialised in this format are transformed by
SharpFlow into a tensor representation and fed into a Recurrent Neural Network
architecture which is trained to classify the different target classes contained in the
annotation files. SharpFlow also implements the two data-flows of offline training and
online exploitation. SharpFlow achieves the latter using a TCP server for classifying
in real-time every new chest compression. In Chapter 7, the architecture was first
employed in an Expert Study involving 10 participants, aimed at training the mistake
classification models, and second in a User Study involving 10 additional participants
in which the CPR Tutor was prompting real-time feedback interventions.

Findings

• Learning from experts is complicated as experts do not make enough mistakes;
instances of mistakes are needed to train the machine learning algorithm; in
Chapter 7 we asked the experts to mimic some common mistakes.

• The amount of training data collected from 10 experts was limited; while
the findings could not be generalised, they provided some indication that the

3Code available on GitHub (https://github.com/dimstudio/SharpFlow)

140

https://github.com/dimstudio/SharpFlow


feedback of the CPR tutor had a positive influence on the CPR performance on
the target classes.

• The proposed architecture used for the CPR Tutor allowed for successful
provision of real-time multimodal feedback.

• The generated feedback seemed to have a short-term positive influence on the
CPR performance on the target classes considered.

• There is a hierarchy among the performance indicators: some mistakes are
less frequent but more critical than others and they need to be corrected first;
some other mistakes are more frequent, but not so critical.

• Imbalanced class distribution is a real problem; there seems to be an amplifying
effect: the majority class in the training set tends to prevail even more in the
test set and in the classification of new instances.

• Down-sampling is not trivial; as we had five target classes, down-sampling one
class would also affect the other ones; finding a fair balance among the classes
was hard.

• Oversampling seemed not trivial either with time-series, generating fake data
could undermine the prior class distribution.

• Highest feedback frequency was set to 10s intervals; more frequent feedback
would distract or confuse the participant.

• The feedback messages must be explained to the participants beforehand so
that they know what to expect and what each message means preventing
confusion.

• The SharpFlow online exploitation was very fast (70ms for classifying each
instance); in this way, the overall system was not heavily disrupted every time
it had to assess every CC.

• For the longer-term influence of the feedback on the target performance
indicators we would need to (1) collect data from more participants; (2)
increase the number of sessions per participant; (3) select participants with
less experience so their performance is not optimal and feedback is fired more
frequently.

Contributions of thesis

This doctoral thesis describes the genesis from the ideation phase to final testing of
the Multimodal Tutor, a system for adaptive learning experiences from multimodal
data capturing. To illustrate the contribution of the thesis, we make use of the
metaphor of the reversed anchor, as shown in figure 7.4. The top-side of the figure is
the crown of the anchor which is its widest part and corresponds to the conceptual
framing of this thesis, the Multimodal Learning Analytics Model (MLeAM). The crown
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has two ‘arms’. The first arm is the theoretical ground corresponding to the learning
theories such as psychomotor learning and embodied cognition. The other arm is
the technology drive, the new technological affordances such as multimodal and
multi-sensor interfaces. The horizontal bar also called ‘stock’ of the anchor, is the
technical approach for the Multimodal Tutor, i.e. the Multimodal Pipeline. Finally,
the narrowest part of the anchor is its ‘ring’ which is the specific ‘learning domain’
we decided to select to demonstrate the functionality of the Multimodal Tutor, i.e.
Cardiopulmonary Resuscitation training. With this approach, the wider top of the
anchor specialises into a narrower bottom, working as a ‘hook’ for the work described
in this doctoral thesis.

Multimodal interfaces psychomotor learning,
embodied cognition 

Multimodal Learning Analytics Model

Multimodal  Pipeline

CPR

TECHNOLOGY DRIVE THEORETICAL GROUND

TECHNICAL   APPROACH

LEARNING   DOMAIN 

Chapter 1 - Learning Pulse

Chapter 2 - From Signals To Knowledge

Chapter 3 - The Big Five Challenges

Chapter 4 - Read Between the Lines

Chapter 5 - The Multimodal Pipeline

Chapter 6 - Detecting CPR Mistakes

Chapter 7 - The CPR Tutor

Part I - Exploratory mission

Part II - Map of Multimodality

Part III - Preparation of the navy

Part IV  - Conquest mission 

CONCEPTUAL MODEL

Figure 7.4 The structure of this doctoral thesis can be represented as a reversed anchor.

The Multimodal Tutor presents a set of advantages for the MMLA community. It
builds on top of a new proposed technological framework, the Multimodal Pipeline,
which, in turn, is composed of a chain of technological prototypes such as the (1)
Multimodal Learning Hub, (2) the Visual Inspection Tool and (3) SharpFlow. All these
tools adopt the same data-exchange format (MLT-JSON) and are released under the
Creative Commons - ShareAlike 4.0 International license4.

The main advantage for the MMLA researcher of using such tools is that there is
no longer a need to re-invent solutions for data collection, synchronisation, storing,
annotation, processing. The MMLA researcher can focus on more specific aspects of
their experiments, such as deciding which sensor configuration to use, depending
on which modalities need to be monitored or, similarly, deciding what hypothesis to
formulate, what unobservable dimensions of learning have to be assessed and how

4https://creativecommons.org/licenses/by-sa/4.0/
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these dimensions can be translated into an annotation scheme. MMLA researchers
can ultimately focus on modelling the learning task, on what the sets of atomic
actions are, or on what pedagogical and feedback intervention is suitable for correct-
ing or optimising the performance in each of these actions. Using the Multimodal
Tutor, and its underpinning technological frameworks (Multimodal Pipeline) and
conceptual model (Multimodal Learning Analytics Model), provides flexibility and
multipurposeness, pushes forward the entire MMLA field. By explaining how to
support learning with the use of multimodal data, the Multimodal Tutor generates
scientific added value for different data-driven learning research communities, like
the ones for Learning Analytics & Knowledge and the Intelligent Tutoring System /
Artificial Intelligence in Education. Ultimately, the Multimodal Tutor sets the way for
more emerging fields of research such as Hybrid Intelligence (Kamar, 2016) or Social
Artificial Intelligence or Social Robotics (Kanda and Ishiguro, 2017) that focus on
how to best interface human communication with artificial (robotic) intelligence.

Limitations of the thesis

Among many advancements in MMLA research, the Multimodal Tutor still carries
some limitations. First and foremost, the Multimodal Tutor still consists of a set
of research prototypes not ready to be launched in the market as fully working
products. To achieve production-ready software there has to be extensive testing,
quality-checking or control of the existing functionalities. Within the research
applications of the Multimodal Tutor, there exist also additional limitations which
can be divided into different levels: (1) learning domain level, (2) hardware level,
(3) software level, (4) data level and (5) model level.

At the learning domain level, we have been focusing primarily on CPR training,
which is a common type of medical simulation. Related research using the compon-
ents of the Pipeline have been created for Presentation Trainer (Schneider et al.,
2015b), Calligraphy Tutor (Limbu et al., 2018a), Tennis Table Tutor (forthcoming).
We group all these learning tasks as individual psychomotor learning tasks in the
physical space, i.e. practical training tasks where the learner has to individually
master skills that require a high level of psychomotor coordination that take place in
the physical realm. For this reason, in this subset, we intentionally left out learning
scenarios such as cognitive learning, i.e. tasks that require more reasoning and
cognitive abilities, or social learning, i.e. tasks that require interaction by multiple
actors and or by groups, or distance and online learning, including activities mediated
by mouse and keyboards. We decided to narrow the focus to make the research
contribution of the Multimodal Tutor more evident to the community. At the same
time, we believe the boundaries of these scenarios are blurry, therefore the proposed
categorisation may run into inconsistency. As specified in the next section, we
firmly believe that in the future the Multimodal Tutor can evolve to support also
different types of learning scenarios outside of its current focus. Modelling of the
learning task is a fundamental part to assess how the Multimodal Tutor can be most
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supportive. Psychomotor learning tasks can differ primarily by two factors: (1) by
their repetitiveness and (2) by their structuredness. Learning how to perform chest
compressions during CPR is a highly repetitive learning task, as the learner needs to
perform repetitive movements; at the same time, CPR is highly structured, as there
are very clear performance indicators that define the characteristics of a good CPR
performance. These two characteristics make CPR an ideal application scenario for
the Multimodal Tutor. On the contrary, the learning domain of calligraphy or foreign
alphabet learning used in the Calligraphy Tutor consists of training repetitive tasks
without such clear-cut performance indicators. The domain of public speaking of the
Presentation Trainer consists of diverse and not repetitive movements which lack
clear performance indicators for assessment.

At the hardware-level, sensors can influence importantly the quality of the collected
data, the quality of the model training and thus of the feedback. In the CPR Tutor,
as well as in related reference application scenarios, we opted for commercial
sensor devices in place of custom made boards. When compared to custom-made
boards, sensor devices such as Microsoft Kinect, Myo Armband or Fitbit HR have the
advantage of being widely tested, of providing high-level drivers and having an API
to easily connect and offer wide community support. Still, however, the commercial
devices have known limitations in terms of precision. In this doctoral thesis, we
realised that the choice of the sensor setup should be based on compromises between
precision, easiness of use and relevance for the learning task investigated.

The third level concerns the limitations at the software level. The CPR Tutor and
the LearningHub have been programmed using C# programming language that runs
on Microsoft Windows 10 machines. The reason for such choice was to make the
best use of Microsoft devices like Kinect. The VIT has been developed in Javascript
and HTML 5, but tested primarily with Google Chrome browser. SharpFlow has been
developed using Python 3.7. These choices could compromise the portability of the
software components on different operating systems, browsers or platforms.

The fourth level of limitation is at the data level. As mentioned earlier, the precision
and quality of the sensor devices can influence the quality of the data gathered.
However, the data limitations lay also in the choice of the participant size and the
diversity of these participants. Participants can have different body sizes, different
ways to approach the task and different physiological responses. We call this the
inter-subject variability among the participants. This variability can be mitigated by
training a model with a diverse population, which can generalise their behavioural
characteristics. There is, however, always the risk that the general model flushes
out individual peculiarities. As an alternative, it is possible to train one classifier for
each participant. The drawback of this approach is that the models will be suitable
only for one person and not generalisable to new participants.

Finally, some limitations can stand at the model level. There are several limitations
to using the supervised machine learning approach. Such an approach is optimal
when having a high number of annotated training samples available. In the case of
CPR, the more collected CCs, the more robust and general neural networks can be
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trained for mistake classification. Similarly, to set a clear division line between correct
and incorrect learning performance, the learning task must have clear performance
indicators. For example, in CPR the compression rate needs to have between 100
and 120 beats per minute for being optimal. The drawback of the supervised
learning is well known by the machine learning research community and there are
alternative ways that can be explored to reduce the amount of annotated samples
needed, those are unsupervised learning, one-shot learning or transfer-learning
techniques. Concerning the use of Recurrent Neural Networks, aside from the
amount of training data, the other common limitation is the tendency of overfitting
the training set. Besides dividing the collected data set between training, test,
validation and performing cross-validation at the level of the training samples, it
is important doing it at the subject level too. For example, it would be useful to
hold-one-participant-out, to make sure that the data of one or more participants are
completely new and unseen by the model.

Sailing into new horizons

In this doctoral thesis, the limitations can be seen as a research agenda for the
future implementations of the Multimodal Tutor. Future research endeavours should
go both in the theoretical and in the technical directions. From the theoretical
standpoint, as evidenced in the literature survey in Chapter 2, future works of the
Multimodal Tutor should also look into empirical studies and meta-analysis to focus
on the most suitable data representation for each modality and propose guidelines
for efficient modality combination. It could be useful knowing what is the best
between modality and available sensors in commerce; providing guidelines for the
data analysis of multimodal data sets.

Social Learning

Moreover, the Multimodal Tutor “of the future”, the Multimodal Pipeline will improve
and evolve as a concept to accommodate more reference application scenarios.
For instance, one aspect deliberately left out both from the theoretical and from
the application side, is the social dimension of learning: the extent by which the
teacher and the learning peers influence each other in a social context. For example,
during collaborative learning or physical classroom activities, social learning is of
paramount importance. We think of the implementation of the Multimodal Tutor
in the Classroom of the Future. Along the line of experimentation proposed by the
EduSense prototype (Ahuja et al., 2019), the Classroom of The Future will embed a
run-time framework which controls different sensors for example installed in laptops,
chairs or desk and connects to various actuators such as the projector, the smart
board, some lights. The purpose is to automatically orchestrate learning activities
in the classroom. For this purpose, a renewed conceptualisation of the Multimodal
Pipeline as a framework that runs continually on run-time is needed (Schneider
et al., 2019). From such a system, not only learners could profit, but also teachers,
for example, the system could identifying students at-risk. Along this line, the system
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Lumilo provides an inspiring example of real-time teaching support using augmented
reality, by identifying and signalling students at-risk to teachers with the help of
“virtual hands” (Holstein et al., 2018).

In the Cloud

From the technical point of view, future implementation of the Multimodal Tutor can
move away from collecting short and high-frequency data sessions towards longer
data collection periods which can last days or weeks. In our vision, the Multimodal
Tutor can become a learning companion that supports the learner throughout the
entire duration of a course until the target skill is properly mastered. For this reason,
we imagine future personalised learning technologies like the Multimodal Tutor can
be on-demand, wherever and whenever the learner needs them. The functionalities of
the Multimodal Tutor should be embedded in personal devices such as smartphones
or smartwatches which can be at the learner’s fingertips. To become fully ubiquitous,
the Multimodal Tutor needs to better leverage cloud-based technologies. In that
case, the learner would need only a device and an internet connection for using the
functionalities of the Multimodal Tutor for learning support. Given the great amount
and the data gathered from the sensors, sending the complete streams to the cloud
might be an overhead for the network infrastructure. An option alternative to cloud
computing that should be explored is fog computing (Bonomi et al., 2012), in which
only relevant data or decisions are sent to the online server.

User Experience

Finally, future research of the Multimodal Tutor should look at how to improve
the user experience from the learner perspective. As argued in this doctoral thesis,
self-reports, questionnaires and user-ratings are important for collecting the learning
labels necessary for annotating the multimodal experiences and for allowing the
system to learn from historical data. Repeatedly asking the learner to answer a
questionnaire or to submit a report, can become, nevertheless, a quite tiring task.
For being able to mature the Multimodal Tutor from a research to a productivity tool,
stratagems have to be thought to maximise its usability and user retention.

Ethics and Privacy

Connected to the user-experience, another paramount issue is to ensure user pri-
vacy when collecting high-frequency and highly personal multimodal data. Future
Multimodal Tutor applications need to be designed with better privacy features. For
instance, they need to implement multiple privacy layers, consisting of features such
as end-to-end encryption, authentication or distributed data saving. The Multimodal
Tutor should connect and use the concept of Trusted Learning Analytics (Drachsler
and Greller, 2016). The learner has to become the ultimate authority over the data
and the algorithms. The technology embedded in the Multimodal Tutor should
ultimately support and improve learning rather than judge and punish the learner.

146



References

Ahuja, K., Agarwal, Y., Kim, D., Xhakaj, F., Varga, V., Xie, A., Zhang, S., Townsend,
J. E., Harrison, C., and Ogan, A. (2019). EduSense: Practical Classroom Sensing
at Scale. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 3(3):1–26.

Alqahtani, F. and Ramzan, N. (2019). Comparison and efficacy of synergistic intelli-
gent tutoring systems with human physiological response. Sensors (Switzerland),
19(3).

Alyuz, N., Okur, E., Oktay, E., Genc, U., Aslan, S., Mete, S. E., Arnrich, B., and Esme,
A. A. (2016). Semi-supervised model personalization for improved detection
of learner’s emotional engagement. Proceedings of the 18th ACM International
Conference on Multimodal Interaction - ICMI 2016, pages 100–107.

Alzoubi, O., D’Mello, S. K., and Calvo, R. A. (2012). Detecting naturalistic expressions
of nonbasic affect using physiological signals. IEEE Transactions on Affective
Computing, 3(3):298–310.

Ambady, N. and Rosenthal, R. (1992). Thin slices of expressive behavior as predictors
of interpersonal consequences: A meta-analysis. Psychological Bulletin, 111(2):256–
274.

Amin, M. B., Banos, O., Khan, W. A., Bilal, H. S. M., Gong, J., Bui, D. M., Cho, S. H.,
Hussain, S., Ali, T., Akhtar, U., Chung, T. C., and Lee, S. (2016). On curating
multimodal sensory data for health and wellness platforms. Sensors (Switzerland),
16(7):1–27.

Anderson, C. (2008). The End of Theory: The Data Deluge Makes the Scientific
Method Obsolete. Wired Magazine, 16(07):1–2.

Anderson, J. R. (2002). Spanning seven orders of magnitude: A challenge for
cognitive modeling. Cognitive Science, 26(1):85–112.

Anderson, J. R., Franklin Boyle, C., and Reiser, B. J. (1985). Intelligent tutoring
systems. Science, 228(4698):456–462.

Andrade, A. and Danish, J. A. (2016). Using Multimodal Learning Analytics to Model
Student Behaviour: A Systematic Analysis of Behavioural Framing. Journal of
Learning Analytics, 3(2):282–306.

Arnold, K. E. (2010). Signals: Applying Academic Analytics. EDUCAUSE Quarterly,
33(1):87–92.

147



References

Arroyo, I., Cooper, D. G., Burleson, W., Woolf, B. P., Muldner, K., and Christopherson,
R. (2009). Emotion sensors go to school. Frontiers in Artificial Intelligence and
Applications, 200(1):17–24.

Bahreini, K., Nadolski, R., and Westera, W. (2015). Improved multimodal emotion
recognition for better game-based learning. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 9221:107–120.

Bakharia, A., Heathcote, E., and Dawson, S. (2009). Social networks adapting
pedagogical practice: SNAPP. Proceedings ASCILITE 2009, Auckland, pages 49–51.

Baltrusaitis, T., Ahuja, C., and Morency, L. P. (2019). Multimodal Machine Learning:
A Survey and Taxonomy. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 41(2):423–443.

Barmaki, R. and Hughes, C. E. (2015). Providing real-time feedback for student
teachers in a virtual rehearsal environment. ICMI 2015 - Proceedings of the 2015
ACM International Conference on Multimodal Interaction, pages 531–537.

Baur, T., Damian, I., Lingenfelser, F., Wagner, J., and André, E. (2013). NovA:
Automated analysis of nonverbal signals in social interactions. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), volume 8212 LNCS, pages 160–171. Springer,
Cham, Cham, Switzerland.

Berg, A., Scheffel, M., Drachsler, H., Ternier, S., and Specht, M. (2016). Dutch
cooking with xAPI recipes the good, the bad, and the consistent. In Proceedings -
IEEE 16th International Conference on Advanced Learning Technologies, ICALT 2016,
pages 234–236.

Bjork, R. A., Dunlosky, J., and Kornell, N. (2013). Self-Regulated Learning: Beliefs,
Techniques, and Illusions. Annual Review of Psychology, 64(1):417–444.

Black, P. and Dylan, W. (2009). Developing the Theory of Formative Assessment.
Educational Assessment, Evaluation and Accountability, 21(1):5–31.

Blikstein, P. (2013). Multimodal learning analytics. In Proceedings of the Third
International Conference on Learning Analytics and Knowledge - LAK ’13, pages
102–106, New York, USA. ACM.

Blikstein, P. and Worsley, M. (2016). Multimodal Learning Analytics and Education
Data Mining: Using Computational Technologies to Measure Complex Learning
Tasks. Journal of Learning Analytics, 3(2):220–238.

Boekaerts, M. (2010). The crucial role of motivation and emotion in classroom
learning. In Dumont, H., Istance, D., and Benavides, F., editors, The Nature of
Learning: Using Research to Inspire Practice, pages 91–112. OECD Publishing.

148



References

Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012). Fog computing and its role
in the internet of things. In MCC’12 - Proceedings of the 1st ACM Mobile Cloud
Computing Workshop, pages 13–15, New York, New York, USA. ACM Press.

Booth, M. (2012). Learning Analytics: The New Black. Educause Review, 47:52–53.

Börner, D. (2013). Ambient Learning Displays. PhD thesis, Open Universiteit.

Börner, D., Tabuenca, B., Storm, J., Happe, S., and Specht, M. (2015). Tangible
Interactive Ambient Display Prototypes to Support Learning Scenarios. Proceed-
ings of the Ninth International Conference on Tangible, Embedded, and Embodied
Interaction - TEI ’14, pages 721–726.

Bosch, N., Chen, H., Baker, R., Shute, V., and D’Mello, S. (2015). Multimodal Affect
Detection in the Wild. In Proceedings of the 2015 ACM on International Conference
on Multimodal Interaction - ICMI ’15, pages 645–649, New York, USA. ACM.

Boucsein, W. and Backs, R. W. (2000). Engineering psychophysiology: issues and
applications. page 400.

Brown, M., Dehoney, J., and Millichap, N. (2015). The Next Generation Digital
Learning Environment: A Report on Research. Technical report, Educase.

Brown, T. M. and Fee, E. (2002). Walter Bradford Cannon. American Journal of
Public Health, 92(10):1594–1595.

Buckingham Shum, S. (2011). Learning Analytics: Notes on the Future The lost key.
Slideshare.

Buckingham Shum, S. (2015). The Connected Intelligence Centre: Human-Centered
Analytics for UTS.

Buckingham Shum, S. and Crick, R. D. (2012). Learning dispositions and transferable
competencies: Pedagogy, modelling and learning analytics. In ACM International
Conference Proceeding Series.

Burleson, W. (2007). Affective learning companions. Educational Technology,
47(1):28.

Butler, D. L. and Winne, P. H. (1995). Feedback and Self-Regulated Learning: A
Theoretical Synthesis. Review of Educational Research, 65(3):245–281.

Cacioppo, J., Tassinary, L. G., and Berntson, G. G. (2007). The Handbook of Psycho-
physiology, volume 44. Cambridge University Press.

Cacioppo, J. T., Tassinary, L. G., and Berntson, G. G. (2000). Handbook fo Psycho-
physiology. book, page 21.

Calvo, R., D’Mello, S., Gratch, J., and Kappas, A. (2015). The Oxford handbook of
affective computing.

Campbell, J. P., DeBlois, P. B., and Oblinger, D. G. (2007). Academic Analytics: A
New Tool for a New Era. Educause Review, 42(August 2007):40–57.

149



References

Canfield, W. (2001). ALEKS: a Web-based intelligent tutoring system. Mathematics
and Computer Education, 35(2):152–158.

Clow, D. (2012). The learning analytics cycle. Proceedings of the 2nd International
Conference on Learning Analytics and Knowledge - LAK ’12, page 134.

Cope, B. and Kalantzis, M. (2015). Interpreting Evidence-of-Learning: Educational
research in the era of big data. Open Review of Educational Research, 2(1):218–239.

Csikszentmihalyi, M. (1997). Finding flow: The psychology of engagement with
everyday life. Basic Books.

Cukurova, M., Kent, C., and Luckin, R. (2019). Artificial intelligence and multimodal
data in the service of human decision-making: A case study in debate tutoring.
British Journal of Educational Technology, page bjet.12829.

Damasio, A. R., Tranel, D., and Damasio, H. C. (1991). Somatic markers and the
guidance of behavior: Theory and preliminary testing. In Frontal Lobe Function
and Dysfunction, pages 217–229. Oxford University Press.

De Lecea, L., Carter, M. E., and Adamantidis, A. (2012). Shining light on wakefulness
and arousal.

De Raedt, L. (2008). Logical and relational learning, volume 5249 LNAI. Heidelberg,
Springer-Verlag Berlin.

Dekker, G., Pechenizkiy, M., and Vleeshouwers, J. (2009). Predicting students drop
out: A case study. EDM’09 - Educational Data Mining 2009: 2nd International
Conference on Educational Data Mining, pages 41–50.

Di Mitri, D. (2018). Multimodal tutor for CPR. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 10948 LNAI, pages 513–516, Cham, Switzerland. Springer
International Publishing.

Di Mitri, D., Scheffel, M., Drachsler, H., Börner, D., Ternier, S., and Specht, M. (2016).
Learning Pulse: using Wearable Biosensors and Learning Analytics to Investigate
and Predict Learning Success in Self-regulated Learning. In CEUR proceedings,
pages 34–39.

Di Mitri, D., Scheffel, M., Drachsler, H., Börner, D., Ternier, S., and Specht, M.
(2017). Learning Pulse: a machine learning approach for predicting performance
in self-regulated learning using multimodal data. In LAK ’17 Proceedings of the
7th International Conference on Learning Analytics and Knowledge, pages 188–197,
New York, NY, USA. ACM.

Di Mitri, D., Schneider, J., Klemke, R., Specht, M., and Drachsler, H. (2019a). Read
Between the Lines: An Annotation Tool for Multimodal Data for Learning. In
Proceedings of the 9th International Conference on Learning Analytics & Knowledge -
LAK19, pages 51–60, New York, NY, USA. ACM.

150



References

Di Mitri, D., Schneider, J., Specht, M., and Drachsler, H. (2018a). From signals to
knowledge: A conceptual model for multimodal learning analytics. Journal of
Computer Assisted Learning, 34(4):338–349.

Di Mitri, D., Schneider, J., Specht, M., and Drachsler, H. (2018b). The Big Five: Ad-
dressing Recurrent Multimodal Learning Data Challenges. In Martinez-Maldonado
Roberto, editor, Proceedings of the Second Multimodal Learning Analytics Across
(Physical and Digital) Spaces (CrossMMLA), page 6, Aachen. CEUR Workshop
Proceedings.

Di Mitri, D., Schneider, J., Specht, M., and Drachsler, H. (2019b). Detecting mistakes
in CPR training with multimodal data and neural networks. Sensors (Switzerland),
19(14):1–20.

Di Mitri, D., Schneider, J., Specht, M., and Drachsler, H. (2019c). Multimodal
Pipeline: A generic approach for handling multimodal data for supporting learn-
ing. In AIMA4EDU Workshop in IJCAI 2019 AI-based Multimodal Analytics for
Understanding Human Learning in Real-world Educational Contexts, pages 2–4.

Dicerbo, K. E. and Behrens, J. T. (2014). Impacts of the Digital Ocean on Education
Impacts of the Digital Ocean on Education About the Authors. Technical Report
February.

Dietz-Uhler, B. and Hurn, J. (2013). Using learning analytics to predict (and
improve) student success: a faculty perspective. Journal of Interactive Online
Learning, 12(1):17–26.

Dillenbourg, P. (1999). What do you mean by collaborative leraning? In Collaborative
learning: Cognitive and computational approaches. Oxford: Elsevier.

Dillenbourg, P. (2016). The Evolution of Research on Digital Education. International
Journal of Artificial Intelligence in Education, 26(2):544–560.

D’Mello, S. (2013). A Selective Meta-Analysis on the Relative Incidence of Dis-
crete Affective States During Learning With Technology. Journal of Educational
Psychology, 105(4):1082–1099.

D’Mello, S., Jackson, T., Craig, S., Morgan, B., Chipman, P., White, H., Person,
N., Kort, B., El Kaliouby, R., Picard, R. W., and Graesser, A. (2008). AutoTutor
detects and responds to learners affective and cognitive states. IEEE Transactions
on Education, 48(4):612–618.

D’mello, S., Olney, A., Blanchard, N., Sun, X., Ward, B., Samei, B., and Kelly, S.
(2015). Multimodal Capture of Teacher-Student Interactions for Automated Dialo-
gic Analysis in Live Classrooms. In Proceedings of the 2015 ACM on International
Conference on Multimodal Interaction, pages 557–566, New York, USA. ACM.

Domínguez, F., Echeverría, V., Chiluiza, K., and Ochoa, X. (2015). Multimodal Selfies
: Designing a Multimodal Recording Device for Students in Traditional Classrooms.

151



References

Proceedings of the 2015 ACM on International Conference on Multimodal Interaction,
pages 567–574.

Drachsler, H. and Greller, W. (2016). Privacy and Learning Analytics - it ’ s a
DELICATE issue. In Proceedings of the Sixth International Conference on Learning
Analytics & Knowledge (LAK’16), pages 89–98. ACM Press.

ECAR (2015). The Predictive Learning Analytics Revolution: Leveraging Learning
Data for Student Success. ECAR working group paper., pages 1–23.

Echeverría, V., Avendaño, A., Chiluiza, K., Vásquez, A., and Ochoa, X. (2014).
Presentation Skills Estimation Based on Video and Kinect Data Analysis. Proceed-
ings of the 2014 ACM workshop on Multimodal Learning Analytics, pages 53–60.

Echeverría, V., Domínguez, F., and Chiluiza, K. (2016). Towards a distributed
framework to analyze multimodal data. CEUR Workshop Proceedings, 1601:52–57.

Echeverria, V., Martinez-Maldonado, R., Granda, R., Chiluiza, K., Conati, C., and
Shum, S. B. (2018). Driving data storytelling from learning design. Proceedings
of the 8th International Conference on Learning Analytics and Knowledge - LAK ’18,
2018(March):131–140.

Edwards, A. A., Massicci, A., Sridharan, S., Geigel, J., Wang, L., Bailey, R., and Alm,
C. O. (2017). Sensor-based Methodological Observations for Studying Online
Learning. In Proceedings of the 2017 ACM Workshop on Intelligent Interfaces for
Ubiquitous and Smart Learning - SmartLearn ’17, pages 25–30, New York, USA.
ACM.

Eliot, C. and Woolf, B. P. (1996). An intelligent learning environment for advanced
cardiac life support. Proceedings of the AMIA Annual Fall Symposium, pages 7–11.

Ericsson (2016). Ericsson Mobility Report.

Essa, A. and Ayad, H. (2012). Improving student success using predictive models
and data visualisations. Research in Learning Technology, 5:58–70.

Europa, O. E. (2014). Learning Analytics and Assessment. In Duval, E. and Koskinen,
T., editors, eLearning Papers, number 36, pages 1–48. P.A.U. Education, S.L.

Eveleigh, G. S., Ruiz, N., Liu, G., Yin, B., Farrow, D., and Chen, F. (2010). Teaching
Athletes Cognitive Skills : Detecting Cognitive Load in Speech Input. Training,
pages 2–5.

Ferguson, R. (2012). The state of learning analytics in 2012: a review and future
challenges. Technical Report KMI-12-01, 4(March):18.

Ferguson, R. and Shum, S. B. (2012). Social learning analytics. In Proceedings of the
2nd International Conference on Learning Analytics and Knowledge - LAK ’12, pages
23–33.

152



References

Fouse, A., Weibel, N., Hutchins, E., and Hollan, J. D. (2011). ChronoViz : A system
for supporting navigation of time-coded data. In Proceedings of the 2011 annual
conference extended abstracts on Human factors in computing systems - CHI EA ’11,
page 299, New York, NY, USA. ACM.

Freedman, D. H. (2010). Why Scientific Studies Are So Often Wrong : The Streetlight
Effect.

Freire, P. (1970). Pedagogy of the Oppressed. The Continuum International Publishing
Group Inc.

Friedman, J. H. (1997). On Bias, Variance, 0/1‚ÄîLoss, and the Curse-of-
Dimensionality. Data Mining and Knowledge Discovery, 1(1):55–77.

Giannakos, M. N., Sharma, K., Pappas, I. O., Kostakos, V., and Velloso, E. (2019).
Multimodal data as a means to understand the learning experience. International
Journal of Information Management, 48(February):108–119.

Goetz, T. (2011). Harnessing the power of feedback loops.

González García, C., Meana Llorián, D., Pelayo G-Bustelo, C., and Cueva-Lovelle,
J. M. (2017). A review about Smart Objects, Sensors, and Actuators. International
Journal of Interactive Multimedia and Artificial Intelligence, 4(3):7.

Grafsgaard, J. F. (2014). Multimodal Analysis and Modeling of Nonverbal Behaviors
during Tutoring. In International Conference on Multimodal Interaction, pages
404–408, New York, USA. ACM.

Grafsgaard, J. F., Wiggins, J. B., Boyer, K. E., Wiebe, E. N., and Lester, J. C. (2014).
Predicting learning and affect from multimodal data streams in task-oriented
tutorial dialogue. Proceedings of the Seventh International Conference on Educational
Data Mining, 123(24):122–129.

Gravina, R., Alinia, P., Ghasemzadeh, H., and Fortino, G. (2017). Multi-sensor fusion
in body sensor networks: State-of-the-art and research challenges. Information
Fusion, 35:1339–1351.

Greller, W. and Drachsler, H. (2012). Translating learning into numbers: A generic
framework for learning analytics. Educational Technology and Society, 15(3):42–57.

Hattie, J. and Timperley, H. (2007). The power of feedback. [References]. Review of
Educational Research, .77(1):16–7.

Heckmann, D. (2005). Ubiquitous User Modeling. PhD thesis, Technical University
Eindhoven.

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural
Computation, 9(8):1735–1780.

153



References

Holstein, K., McLaren, B. M., and Aleven, V. (2018). Student learning benefits of
a mixed-reality teacher awareness tool in AI-enhanced classrooms. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 10947 LNAI:154–168.

Hussain, M. S., Monkaresi, H., and Calvo, R. A. (2012). Categorical vs. dimensional
representations in multimodal affect detection during learning. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 7315 LNCS:78–83.

J. Baron, J. Whitmer, S. S. (2015). Predictive Learning Analytics: Fueling Actionable
Intelligence.

Jayaprakash, S., Moody, E. W., Lauria, E. J. M., Regan, J. R., and Baron, J. D. (2014).
Early Alert of Academically At-Risk Students: An Open Source Analytics Initiative.
Journal of Learning Analytics, 1(1):6–47.

Jewitt, C., Bezemer, J., and O’Halloran, K. (2016). Introducing multimodality.
Routledge.

Jivet, I., Scheffel, M., Drachsler, H., and Specht, M. (2017). Awareness Is Not
Enough: Pitfalls of Learning Analytics Dashboards in the Educational Practice. In
EC-TEL: European Conference on Technology Enhanced Learning. Springer.

Jones, C. (2004). Networks and learning: communities, practices and the metaphor
of networks. Alt-J, 12(1):81–93.

Kamar, E. (2016). Directions in hybrid intelligence: Complementing AI systems with
human intelligence. IJCAI International Joint Conference on Artificial Intelligence,
2016-Janua:4070–4073.

Kanda, T. and Ishiguro, H. (2017). Human-Robot Interaction in Social Robotics. CRC
Press.

Kemper, T. D. and Lazarus, R. S. (1992). Emotion and Adaptation. Contemporary
Sociology, 21(4):522.

Kim, J., Meltzer, C., Salehi, S., and Blikstein, P. (2011). Process pad: A multimedia
multi-touch learning platform. Proceedings of the ACM International Conference on
Interactive Tabletops and Surfaces, ITS’11, pages 272–273.

Kitto, K., Cross, S., Waters, Z., and Lupton, M. (2015). Learning Analytics beyond
the LMS: the Connected Learning Analytics Toolkit. Proceedings of the Fifth
International Conference on Learning Analytics And Knowledge (LAK ’15). ACM, New
York, NY, USA, pages 11–15.

Kodaganallur, V. and Weitz, R. R. (2005). A comparison of model-tracing and
constraint-based intelligent tutoring paradigms. International Journal of Artificial
Intelligence in Education, 15(2):117–144.

154



References

Koedinger, K. R., Anderson, J. R., Hadley, W. H., and Mark, M. A. (1996). Intelli-
gent Tutoring Goes To School in the Big City. International Journal of Artificial
Intelligence in Education (IJAIED).

Koh, D. and Jeyaratnam, J. (1998). Biomarkers, screening and ethics. Occupational
Medicine, 48(1):27–30.

Kothe, C., Grivich, M., Brunner, C., and Medine, D. (2018). Lab Streaming Layer.

Lahat, D., Adali, T., and Jutten, C. (2015). Multimodal Data Fusion: An Overview of
Methods, Challenges, and Prospects. Proceedings of the IEEE, 103(9):1449–1477.

Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data.
Biometrics, 38(4):963–74.

Larson, R. and Csikszentmihalyi, M. (1983). The Experience Sampling Method.

Leong, C. W., Chen, L., Feng, G., Lee, C. M., and Mulholland, M. (2015). Utilizing
depth sensors for analyzing multimodal presentations: Hardware, software and
toolkits. In ICMI 2015 - Proceedings of the 2015 ACM International Conference on
Multimodal Interaction, number 3, pages 547–556. ACM.

Li, I. (2015). Beyond Reflecting on Personal Data: Predictive Personal Informatics. In
Beyond Personal Informatics: Designing for Experiences with Data CHI 2015, pages
1–5.

Limbu, B., Schneider, J., Klemke, R., and Specht, M. (2018a). Augmentation of
practice with expert performance data: Presenting a calligraphy use case. In 3rd
International Conference on Smart Learning Ecosystem and Regional Development -
The interplay of data, technology, place and people, pages 1–13.

Limbu, B. H., Jarodzka, H., Klemke, R., and Specht, M. (2018b). Using sensors
and augmented reality to train apprentices using recorded expert performance: A
systematic literature review. Educational Research Review, 25(June 2017):1–22.

Lindstrom, M. and Bates, D. (1988). Newton-Raphson and EM Algorithms for Linear
Models for Repeated-Measures Data. Journal of the American Statistical Association,
83(404):1014–1022.

Lins, C., Eckhoff, D., Klausen, A., Hellmers, S., Hein, A., and Fudickar, S. (2019).
Cardiopulmonary resuscitation quality parameters from motion capture data using
Differential Evolution fitting of sinusoids. Applied Soft Computing Journal, 79:300–
309.

Lütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. Springer
Berlin Heidelberg, Berlin, Heidelberg.

M. Bienkowski, F. Mingyu, B. M. (2012). Enhancing Teaching and Learning Through
Educational Data Mining and Learning Analytics: An Issue Brief. U.S. Department
of Education Office of Educational Technology. Center for Technology in Learning SRI
International.

155



References

Martinez, R., Collins, A., Kay, J., and Yacef, K. (2011). Who did what? Who said
that? In Proceedings of the ACM International Conference on Interactive Tabletops
and Surfaces - ITS ’11, page 172, New York, USA. ACM Press.

Martinez-Maldonado, R. (2016). Seeing learning analytics tools as orchestration
technologies: Towards supporting learning activities across physical and digital
spaces. CEUR Workshop Proceedings, 1601:70–73.

Martinez-Maldonado, R., Echeverria, V., Santos, O. C., Santos, A. D. P. D., and Yacef,
K. (2018). Physical learning analytics. In Proceedings of the 8th International
Conference on Learning Analytics and Knowledge, number May, pages 375–379,
New York, NY, USA. ACM.

Martinez-Maldonado, R., Suthers, D., Aljohani, N. R., Hernandez-Leo, D., Kitto, K.,
Pardo, A., Charleer, S., and Ogata, H. (2016). Cross-LAK: Learning analytics across
physical and digital spaces. In ACM International Conference Proceeding Series,
pages 486–487.

Mayor, O., Llimona, Q., Marchini, M., Papiotis, P., and Maestre, E. (2013). repoVizz:
A Framework for Remote Storage, Browsing, Annotation, and Exchange of Multi-
modal D ata. In Proceedings of the 21st ACM international conference on Multimedia,
pages 415–416, New York, USA. ACM Press.

Mehrabian, A. (1971). Silent messages. Wadsworth Publishing Company.

Milgram, P., Takemura, H., Utsumi, a., and Kishino, F. (1994). Mixed Reality ( MR )
Reality-Virtuality ( RV ) Continuum. Systems Research, 2351(Telemanipulator and
Telepresence Technologies):282–292.

Mislevy, R. J. (1994). Evidence and inference in educational assessment. Psychomet-
rika, 59(4):439–483.

Mitrovic, A. and Hausler, K. (2003). An Intelligent SQL Tutor on the Web. Interna-
tional Journal of Artificial Intelligence in Education (IOS Press), 13:173–197.

Mohamed Chatti.,, A., Anna Dyckhoff.,, L., Ulrik, S., and Hendrik, T. (2012). A refer-
ence model for learning analytics. International Journal of Technology Enhanced
Learning, 4(5-6):1–22.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2012). Foundations of machine
learning. MIT Press.

Mory, E. H. (2004). Feedback research revisited. Handbook of research on educational
communications and technology, 45:745–784.

Nakagawa, S. and Schielzeth, H. (2013). A general and simple method for obtaining
R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution,
4(2):133–142.

156



References

Nicol, D. J. and Macfarlane-Dick, D. (2006). Formative assessment and self- regulated
learning: a model and seven principles of good feedback practice. Studies in Higher
Education, 31(2):199–218.

Nigay, L. and Coutaz, J. (1993). A design space for multimodal systems. In Pro-
ceedings of the SIGCHI conference on Human factors in computing systems - CHI ’93,
number January 1993, pages 172–178, New York, New York, USA. ACM Press.

Norris, S. (2004). Analyzing Multimodal Interaction. Number 1. Routledge.

North Dakota University (2014). Predictive Analytics Reporting: Using technology
to help students succeed.

Novak, T. P., Hoffman, D. L., and Yung, Y. F. (1998). Measuring the flow construct
in online environments: a structural modeling approach. Unpublished manuscript,
pages 1–48.

Ochoa, X., Chiluiza, K., Méndez, G., Luzardo, G., Guamán, B., and Castells, J. (2013).
Expertise estimation based on simple multimodal features. In Proceedings of the
15th ACM International Conference on Multimodal Iteraction (ICMI ’13), pages
583–590, New York, USA. ACM Press.

Ochoa, X. and Worsley, M. (2016). Augmenting Learning Analytics with Multimodal
Sensory Data. Journal of Learning Analytics, 3(2):213–219.

Oller, R. (2012). The Future of Mobile Learning (Research Bulletin). EDUCAUSE
Center for Applied Research,.

Open University, U. (2015). Policy on Ethical use of Student Data for Learning
Analytics. Technical Report September 2014, Open University UK.

Ostrom, T. M. (1969). The relationship between the affective, behavioral, and
cognitive components of attitude. Journal of Experimental Social Psychology,
5(1):12–30.

Oviatt, S. (2013). Problem solving, domain expertise and learning: Ground-truth
performance results for math data corpus. 2013 15th ACM International Conference
on Multimodal Interaction, ICMI 2013, pages 569–574.

Oviatt, S., Cohen, A., Weibel, N., Hang, K., and Thompson, K. (2013). Multimodal
Learning Analytics Data Resources : Description of Math Data Corpus and Coded
Documents. Technical report, University of Sydney.

Oviatt, S., Schuller, B., Cohen, P. R., Sonntag, D., Potamianos, G., and Krüger, A.
(2018). The Handbook of Multimodal-Multisensor Interfaces: Foundations, User
Modeling, and Common Modality Combinations - Volume 2. [s.n.].

Paas, F., Tuovinen, J. E., Tabbers, H., and Gerven, P. W. M. V. (2010). Cognitive
Load Measurement as a Means to Advance Cognitive Load Theory. Educational
Psychologist, 38(1):63–71.

157



References

Pan, S. J. and Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10):1345–1359.

Pardo, A. and Kloos, C. D. (2011). Stepping out of the box: towards analytics
outside the learning management system. 1st International Conference on Learning
Analytics and Knowledge (LAK11), pages 163–167.

Perkins, G. D., Handley, A. J., Koster, R. W., Castrén, M., Smyth, M. A., Olasveengen,
T., Monsieurs, K. G., Raffay, V., Gräsner, J.-T. T., Wenzel, V., Ristagno, G., Soar,
J., Bossaert, L. L., Caballero, A., Cassan, P., Granja, C., Sandroni, C., Zideman,
D. A., Nolan, J. P., Maconochie, I., and Greif, R. (2015). European Resuscitation
Council Guidelines for Resuscitation 2015: Section 2. Adult basic life support and
automated external defibrillation. Resuscitation, 95:81–99.

Piaget, J. (1952). The origins of intelligence in children. New York: International
Universities Press„ second edi edition.

Pijeira-Díaz, H. J., Drachsler, H., Järvelä, S., and Kirschner, P. A. (2016). Investigat-
ing collaborative learning success with physiological coupling indices based on
electrodermal activity. Proceedings of the Sixth International Conference on Learning
Analytics & Knowledge - LAK ’16, pages 64–73.

Pijeira-Díaz, H. J., Drachsler, H., Kirschner, P. A., and Järvelä, S. (2018). Profiling
sympathetic arousal in a physics course: How active are students? Journal of
Computer Assisted Learning, 34(4):397–408.

Pintrich, P. R. (1999). The role of motivation in promoting and sustaining self-
regulated learning. International Journal of Educational Research, 31(6):459–470.

Pintrich Zusho, A., P. R. (2007). Student motivation and self-regulated learning
in the college classroom. In The scholarship of teaching and learning in higher
education: An evidence-based perspective, pages 731–810. Springer.

Poggi, I., D’Errico, F., and Vinciarelli, A. (2012). Social signals: From theory to
applications.

Polakow, V. (1944). The Politics of Education: Culture Power and Liberation.
Phenomenology + Pedagogy, pages 86–89.

Polson, M. C., Richardson, J. J., and Soloway, E. (1988). Foundations of intelligent
tutoring systems. Erlbaum Associates Inc., Hillsdale, NJ, USA.

Praharaj, S., Scheffel, M., Drachsler, H., and Specht, M. (2018). Multimodal Analytics
for Real-time Feedback in Co-located Collaboration. Ec-Tel, 1:187–201.

Prieto, L., Sharma, K., Kidzinski, Ł., Rodríguez-Triana, M., and Dillenbourg, P. (2018).
Multimodal teaching analytics: Automated extraction of orchestration graphs from
wearable sensor data. Journal of Computer Assisted Learning.

158



References

Prieto, L. P., Sharma, K., Dillenbourg, P., and Jesús, M. (2016). Teaching analytics. In
Proceedings of the Sixth International Conference on Learning Analytics & Knowledge
- LAK ’16, pages 148–157, New York, USA. ACM.

Raca, M. and Dillenbourg, P. (2014). Holistic Analysis of the Classroom. Proceedings
of the 2014 ACM workshop on Multimodal Learning Analytics Workshop and Grand
Challenge - MLA ’14, 740(Cv):13–20.

Roll, I. and Winne, P. H. (2015). Understanding , evaluating , and supporting
self-regulated learning using learning analytics. Journal of Learning Analytics,
2:7–12.

Rosmalen, P. V. (2014). Instructional Designs for Real- time Feedback. Technical
Report October, Open Universiteit, Heerlen, The Netherlands.

Ryan, R. M. and Deci, E. L. (2000). Self-determination theory and the facilitation of
intrinsic motivation, social development, and well-being. American Psychologist.

Salehi, S., Kim, J., Meltzer, C., and Blikstein, P. (2012). Process pad: A low-cost
multi-touch platform to facilitate multimodal documentation of complex learning.
Proceedings of the 6th International Conference on Tangible, Embedded and Embodied
Interaction, TEI 2012, 1(212):257–262.

Santos, O. C. (2016). Training the Body: The Potential of AIED to Support Per-
sonalized Motor Skills Learning. International Journal of Artificial Intelligence in
Education, 26(2):730–755.

Santos, O. C. (2019). Artificial Intelligence in Psychomotor Learning: Modeling
Human Motion from Inertial Sensor Data. International Journal on Artificial
Intelligence Tools, 28(04):1940006.

Scheffel, M., Drachsler, H., Stoyanov, S., and Specht, M. (2014). Quality Indicators
for Learning Analytics. Journal of Educational Technology & Society, 17(4):117–
132.

Schmitz, M., van Limbeek, E., Greller, W., Sloep, P., and Drachsler, H. (2017).
Opportunities and challenges in using learning analytics in learning design. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics).

Schneider, B. and Blikstein, P. (2015). Unraveling Students’ Interaction Around
a Tangible Interface using Multimodal Learning Analytics. JEDM - Journal of
Educational Data Mining, 7(3):89–116.

Schneider, J., Börner, D., van Rosmalen, P., and Specht, M. (2015a). Augmenting the
Senses: A Review on Sensor-Based Learning Support. Sensors, 15(2):4097–4133.

Schneider, J., Börner, D., van Rosmalen, P., and Specht, M. (2015b). Presentation
Trainer, your Public Speaking Multimodal Coach. In Proceedings of the 2015 ACM
on International Conference on Multimodal Interaction - ICMI ’15, pages 539–546,
New York, USA. ACM.

159



References

Schneider, J., Di Mitri, D., Limbu, B., and Drachsler, H. (2018). Multimodal Learning
Hub: A Tool for Capturing Customizable Multimodal Learning Experiences. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 11082 LNCS, pages 45–58,
Cham, Switzerland. Springer.

Schneider, J., Mitri, D. D., Drachsler, H., and Specht, M. (2019). Multimodal Learning
Analytics Runtime Framework. In Proceedings of the Third Multimodal Learning
Analytics Across (Physical and Digital) Spaces (CrossMMLA)., pages 1–6.

Schon, D. (1983). The Reflective Practitioner. New York: Basic.

Selwyn, N. (2019). What’s the problem with learning analytics? Journal of Learning
Analytics, 6(3):11–19.

Semeraro, F., Frisoli, A., Loconsole, C., Bannò, F., Tammaro, G., Imbriaco, G., Mar-
chetti, L., and Cerchiari, E. L. (2012). A new Kinect-based system for the analysis
of performances in cardiopulmonary resuscitation (CPR) training. Resuscitation,
83:e20.

Shankar, S. K., Prieto, L. P., Rodriguez-Triana, M. J., and Ruiz-Calleja, A. (2018). A
review of multimodal learning analytics architectures.

Shapiro, L. (2019). Embodied Cognition. Routledge, Routledge, 2 edition.

Sharples, M., Arnedillo-Sánchez, I., Milrad, M., and Vavoula, G. (2009). Mobile
learning: Small devices, big issues. In Technology-Enhanced Learning: Principles
and Products, pages 233–249. Springer Netherlands.

Shaun, R., Baker, J. D., and Inventado, P. S. (2014). Chapter 4: Educational Data
Mining and Learning Analytics. Springer, Chapter 4:61–75.

Siemens, G. (2012). Learning Analytics: Envisioning a Research Discipline and a
Domain of Practice. In Proceedings of the 2nd International Conference on Learning
Analytics and Knowledge - LAK ’12, number May, page 4, New York, New York,
USA. ACM Press.

Siemens, G. and Long, P. (2011). Penetrating the Fog: Analytics in Learning and
Education. EDUCAUSE Review, 46:30–32.

Singley, M. and Lam, R. (2005). The classroom sentinel: supporting data-driven
decision-making in the classroom. Proceedings of the 14th international conference
on World Wide Web, pages 315–321.

Slade, S. and Prinsloo, P. (2013). Learning Analytics: Ethical Issues and Dilemmas.
American Behavioral Scientist, 57(10):1510–1529.

Sottilare, R. A., Brawner, K. W., Goldberg, B. S., and Holden, H. K. (2012). Adaptive
Tutoring & the Generalized Intelligent Framework for Tutoring.

160



References

Specht, M. (2015). Connecting Learning Contexts with Ambient Information Chan-
nels. In Seamless Learning in the Age of Mobile Connectivity, pages 121–140.
Springer Singapore, Singapore.

Spikol, D., Ruffaldi, E., Dabisias, G., and Cukurova, M. (2018). Supervised machine
learning in multimodal learning analytics for estimating success in project-based
learning. Journal of Computer Assisted Learning, 34(4):366–377.

Steenbergen-Hu, S. and Cooper, H. (2014). A meta-analysis of the effectiveness of
intelligent tutoring systems on college students’ academic learning. Journal of
Educational Psychology, 106(2):331–347.

Steve Leibson (2008). IPV6: How Many IP Addresses Can Dance on the Head of a
Pin?

Suebnukarn, S. and Haddawy, P. (2007). COMET : A Collaborative for Medical
Problem-Based Learning. IEEE Intelligent Systems, 22(4):70–77.

Suthers, D. and Rosen, D. (2011). A unified framework for multi-level analysis of
distributed learning. In Proceedings of the 1st International Conference on Learning
Analytics and Knowledge - LAK ’11, pages 64–74. ACM.

Swan, M. (2012). Sensor Mania! The Internet of Things, Wearable Computing,
Objective Metrics, and the Quantified Self 2.0. Journal of Sensor and Actuator
Networks, 1(3):217–253.

Tabuenca, B., Börner, D., Kalz, M., and Specht, M. (2015a). User-Modelled Ambient
Feedback for Self-regulated Learning. In Conole, G., Klobučar, T., Rensing, C., Kon-
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Summary

This doctoral thesis describes the journey of ideation, prototyping and empirical
testing of the Multimodal Tutor, a system designed for providing digital feedback
that supports psychomotor skills acquisition using learning and multimodal data
capturing. The feedback is given in real-time with the machine-driven assessment
of the learner’s task execution. The predictions are tailored by supervised machine
learning models trained with human-annotated samples. The doctoral thesis is
organised into four parts and seven chapters.

Chapter 1 describes the exploratory experiment Learning Pulse, a study which has
aimed at predicting levels of stress, productivity and level of flow during self-
regulated learning. We have gathered multimodal data from nine participants,
PhD students of the Open Universiteit’s TELI department. The data consisted of
(1) physiological data (heart-rate and step count) from Fitbit HR wristbands; (2)
software applications used on their laptops from RescueTime; and (3) environmental
information (temperature, humidity, pressure and geolocation coordinates) using
web APIs. During the two weeks, the participants had to self-report every working
hour via a mobile application, the Activity Rating Tool. The data have been collected
in a Learning Record Store using custom Experience API (xAPI) triplets. Throughout
the two weeks of data collection, the nine participants have used different laptops
and sets of software applications, which have been thus grouped into categories to
ease analysis. As the collected data were heterogeneous, we opted for the Linear
Mixed Effect Model (LMEM), a multi-level prediction algorithm. The poor results in
the model accuracy did not allow to explore further the feedback mechanisms. This
outcome led us to reconsider several methodological decisions, setting the basis of
the following experiments.

The literature study in Chapter 2 has aimed at mapping the state of the art of
Multimodal Data for learning, a field which was emerging as Multimodal Learning
Analytics (MMLA). Surveying the related literature has shown that MMLA covered a
scattered scientific field and not yet a coherent one. This work has contributed to
framing the mission of MMLA: using multimodal data and data-driven techniques for
filling the gap between observable learning behaviour and learning theories. We have
conducted a literature survey (Section 2.2) of MMLA studies using the proposed
classification framework in which we have separated two main components: the input
space and the hypothesis space that are separated by the observability line. The results
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of the literature survey have led to the Taxonomy of multimodal data for learning,
to the Classification table for the hypothesis space and to a conceptual model for
supporting the emerging field of MMLA the Multimodal Learning Analytics Model
(MLeAM). MLeAM has three main objectives: (1) mapping the use of multimodal
data to enhance the feedback in a learning context; (2) showing how to combine
machine learning with multimodal data; (3) aligning the terminology used in the
field of machine learning and learning science.

In Chapter 3, we have addressed another the structural shortcomings in the MMLA
field: the lack of standardised technical approaches for multimodal data support of
learning activities. This aspect is holding back the development of the MMLA field
by imposing the MMLA researchers to duplicate efforts in setting up data collection
infrastructures and by preventing them to focus on data analysis. In Chapter 3, the
identified technical challenges have been grouped into five categories, named the
‘Big Five’ challenges of Multimodal Learning Analytics which are the (1) data collection,
(2) data storing, (3) data annotation, (4) data processing and (5) data exploitation.

In Chapter 4 we have focused on one of the five big challenges, the data annotation.
This challenge deals with how humans can make sense of complex multidimensional
data. In this chapter, we have proposed a new technical prototype, the Visual
Inspection Tool (VIT). The VIT allows the researchers to visually inspect and annotate
a variety of psychomotor learning tasks that can be captured with a customisable set
of sensors. The VIT enables the researcher (1) to triangulate multimodal data with
video recordings; (2) to segment the multimodal data into time intervals and to add
annotations to the time intervals; (3) to download the annotated dataset and use the
annotations as labels for machine learning predictions. Beside generically addressing
the data annotation, the VIT also facilitates data processing and exploitation. The
VIT is released as Open Source software5.

In Chapter 5, we have coined the term Multimodal Pipeline, a chain of technical
reusable components which includes the VIT, the Multimodal Learning Hub and its
custom data format MLT-JSON. The Multimodal Pipeline is an integrated technical
workflow that works as a toolkit for supporting MMLA researchers to set up new
experiments in a variety of psychomotor learning scenarios. We argue that using
components from this toolkit can reduce developing time to set up experiments
and it can facilitate and speed up the transfer of research knowledge in the MMLA
community. The Multimodal Pipeline connects a set of technical solutions to the “Big
Five” challenges described presented in Chapter 5. The Multimodal Pipeline has two
main stages: the ‘offline training’, in which the collected sessions are annotated and
the ML models are trained with the collected data; the ‘online exploitation’, which
corresponds to the ‘run-time’ behaviour of the Multimodal Pipeline.

In Chapter 6 we have selected Cardiopulmonary Resuscitation (CPR) as an applica-
tion case for the Multimodal Tutor, a representative learning task for carrying out a
study on mistake detection. CPR was chosen mainly because: it is an individual learn-

5Code available on GitHub (https://github.com/dimstudio/visual-inspection-tool)
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ing task, it is repetitive and highly structured, it has clear performance indicators and
because it is a training with high social relevance. We introduced a new approach for
detecting CPR training mistakes with multimodal data using neural networks. The
proposed system is composed in a multi-sensor setup for CPR, consisting of a Kinect
camera and a Myo armband. We have used the system in combination with the
ResusciAnne manikin for collecting data from 11 experts performing CPR training.
We have first validated then collected multimodal data upon three performance
indicators provided by the ResusciAnne manikin, observing that we can classify
accurately the training mistakes on these three standardised indicators. We further
have concluded that it is possible to extend the standardised mistake detection to
additional training mistakes on performance indicators such as correct locking of
the arms and correct body position. So far, those mistakes could only be detected by
human instructors.

In Chapter 7, we have presented the design and the development of real-time
feedback architecture for the CPR Tutor. To complete the chain of flexible technical
solutions proposed by the Multimodal Pipeline, we have developed SharpFlow6, an
open-source data processing tool. SharpFlow supports the MLT-JSON format used
as well by the VIT and the LearningHub. The data serialised in this format are
transformed by SharpFlow into a tensor representation and fed into a Recurrent
Neural Network architecture which is trained to classify the different target classes
specified by the human annotations. SharpFlow implements the two data-flows of
offline training and online exploitation. The latter is achieved using a TCP server for
classifying in real-time every new chest compression. In Chapter 7, the architecture
has been first employed in an Expert Study involving 10 participants, aimed at
training the mistake classification models, and second in a User Study involving 10
additional participants in which the CPR Tutor was prompting real-time feedback
interventions. The analysis of the detected mistakes in the User Study has proved that
there is a short-term positive effect on the CPR mistakes targeted by the automatic
feedback.

The discussion of continues by presenting the findings of each study of this doctoral
thesis, along with the contributions and the limitations of this research. With its
underpinning technological frameworks (Multimodal Pipeline) and conceptual model
(Multimodal Learning Analytics Model), the Multimodal Tutor pushes forward the
entire MMLA field, by explaining how to support learning with the use of multimodal
data. The Multimodal Tutor generates scientific added value for different data-driven
learning research communities including the Learning Analytics & Knowledge and
the Intelligent Tutoring System/Artificial Intelligence in Education. Ultimately, the
Multimodal Tutor sets the way for more emerging fields of research such as Hybrid
Intelligence, Social Artificial Intelligence or Human-AI Teaming, that focus on how to
best interface human communication with artificial (robotic) intelligence.

6Code available on GitHub (https://github.com/dimstudio/SharpFlow)
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Samenvatting

Deze dissertatie beschrijft de reis van ideevorming, prototyping en de empirische
testen van de Multimodal Tutor, eeen systeem dat is ontworpen om het verwerven van
psychomotorische vaardigheden te ondersteunen door middel van het vastleggen van,
en feedback geven over, multimodale gegevens tijdens het leren. De feedback wordt
in real-time gegeven met een machine gestuurde beoordeling van de uitvoering van
de taak van de leerling. De voorspellingen worden op maat gemaakt met behulp van
bewaakte modellen voor machine learning die worden getraind met door mensen
geannoteerde voorbeelden. De doctoraalscriptie is opgezet in vier delen en zeven
hoofdstukken.

Hoofdstuk 1 een studie die gericht is op het voorspellen van het stress niveau, de
productiviteit en het niveau van doorstroming tijdens het zelfregulerend leren. We
hebben multimodale gegevens verzameld van negen deelnemers, promovendi van
de afdeling TELI van de Open Universiteit. De data bestond uit (1) fysiologische
gegevens (hartslag en aantal stappen) via Fitbit HR- polsbandjes; (2) softwaretoep-
assingen van RescueTime op hun laptops; en (3) omgevingsinformatie (temperatuur,
vochtigheid, luchtdruk en geolocatiecoördinaten) via web-API‚Äôs. Gedurende twee
weken moesten de deelnemers elk werkuur zelf rapporteren via een mobiele ap-
plicatie, de Activity Rating Tool. De gegevens zijn verzameld in een Learning Record
Store met behulp van aangepaste Experience API (xAPI) statements. Gedurende de
twee weken van dataverzameling hebben de negen deelnemers gebruik gemaakt
van verschillende laptops en sets van softwareapplicaties, die gegroepeerd zijn in
categorieën om de analyse te vergemakkelijken. Omdat de verzamelde gegevens
heterogeen waren, hebben we gekozen voor het Linear Mixed Effect Model (LMEM),
een voorspellingsalgoritme met meerdere niveaus. De slechte resultaten in het model
lieten niet toe om de terugkoppelingsmechanismen verder te onderzoeken. Dit res-
ultaat leidde tot het heroverwegen van een aantal methodologische beslissingen, die
de basis vormden voor de volgende experimenten.

De literatuurstudie in hoofdstuk 2 heeft zich gericht op het in kaart brengen van
de stand van zaken van de techniek van Multimodale Data voor het leren, een
veld nu beter bekend als Multimodal Learning Analytics (MMLA). Uit onderzoek
van gerelat eerde literatuur is gebleken dat MMLA een versnipperd en nog niet
samenhangend wetenschappelijk gebied bestrijkt. Dit werk heeft bijgedragen aan
het formuleren van de missie van MMLA: het gebruik van multimodale data en data
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gestuurde technieken om de kloof tussen waarneembaar leergedrag en leertheorieën
te dichten. We hebben een literatuuronderzoek (Section 2.2) van MMLA-studies
uitgevoerd aan de hand van het voorgestelde classificatieraamwerk waarin we twee
hoofdcomponenten hebben gescheiden: de input space en de hypothesis space die
door de observability line worden gescheiden. De resultaten van de literatuurstudie
hebben geleid tot de Taxonomy of multimodal data for learning, tot de Classification
table for the hypothesis space en tot een conceptueel model ter ondersteuning van het
opkomende veld van MMLA het Multimodal Learning Analytics Model (MLeAM).
MLeAM heeft drie hoofddoelstellingen: 1) het in kaart brengen van het gebruik van
multimodale data om de feedback in een leercontext te verbeteren; (2) laten zien
hoe machine learning kan worden gecombineerd met multimodale gegevens; en
(3) de terminologie die wordt gebruikt op het gebied van machine learning en de
leerwetenschap op elkaar afstemmen.

In hoofdstuk 3, hebben we nog een andere structurele tekortkoming op het gebied
van MMLA aangepakt: het gebrek aan gestandaardiseerde technische benaderingen
voor multimodale gegevensondersteuning van leeractiviteiten. Dit aspect belemmert
de ontwikkeling van het MMLA-veld. Het zet de MMLA-onderzoekers ertoe aan om
dubbel werk te doen bij het opzetten van infrastructuren voor gegevensverzameling
en het voorkomt dat ze zich concentreren op gegevensanalyse. In hoofdstuk 3, tzijn
de geïdentificeerde technische uitdagingen gegroepeerd in vijf categorieën, genaamd
de ‘Big Five’ challenges of Multimodal Learning Analytics die zijn: (1) dataverzamel-
ing, (2) (2) gegevensopslag, (3) gegevensannotatie, (4) gegevensverwerking en (5)
gegevensexploitatie.

In hoofdstuk 4 whebben we ons gericht op een van de vijf grote uitdagingen, de
data annotatie. Deze uitdaging gaat over hoe mensen complexe multidimensionale
gegevens kunnen begrijpen. In dit hoofdstuk hebben we een nieuw technisch prototype
voorgesteld, de Visual Inspection Tool (VIT). De VIT stelt de onderzoekers in staat om
verschillende psychomotorische leertaken die kunnen worden vastgelegd met een
aanpasbare set van sensoren, visueel te inspecteren en te annoteren.. De VIT stelt de
onderzoeker in staat om (1) multimodale data te trianguleren met videoopnames;
(2) de multimodale data te segmenteren in tijdsintervallen en annotaties toe te
voegen aan de tijdsintervallen; en (3) de geannoteerde dataset te downloaden en
de annotaties te gebruiken als labels voor machine learning voorspelling. Naast de
algemene aanpak van de data annotatie vergemakkelijkt de VIT ook de verwerking en
exploitatie van de gegevens. De VIT wordt uitgebracht als Open Source software7.

In hoofdstuk 5, hebben we de term Multimodal Pipeline, een keten van technische
herbruikbare componenten die de VIT, de Multimodal Learnig Hub en het aange-
paste gegevensformaat MLT-JSON omvat, uitgewerkt. De Multimodal Pipeline is
een geïntegreerde technische workflow die werkt als een toolkit om MMLA- on-
derzoekers te ondersteunen bij het opzetten van nieuwe experimenten in diverse
psychomotorische leerscenario’s. Wij stellen dat het gebruik van componenten uit
deze toolkit de ontwikkeltijd voor het opzetten van experimenten kan verkorten en

7Code beschikbaar op GitHub (https://github.com/dimstudio/visual-inspection-tool)
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de overdracht van onderzoekskennis in de MMLA-community kan vergemakkelijken
en versnellen. De Multimodal Pipeline verbindt een reeks technische oplossingen
met de “Big Five” uitdagingen die in hoofdstuk 5 worden beschreven. De Mul-
timodal Pipeline kent twee hoofdfasen: de ‘offline training’, waarbij de verzamelde
sessies worden geannoteerd en de ML-modellen worden getraind met de verzamelde
gegevens; en (2) de ‘online exploitatie’, die overeenkomt met het ‘run-time’ gedrag
van de Multimodal Pipeline.

In hoofdstuk 6 hebben we Cardiopulmonale Reanimatie (CPR) geselecteerd als een
toepassing voor de Multimodale Tutor, omdat dit een representatieve leeropdracht
voor het uitvoeren van een onderzoek naar foutdetectie is. Reanimatie is vooral
gekozen omdat: het een individuele leeropdracht is, het is repetitief en zeer ge-
structureerd is, het heeft duidelijke prestatie-indicatoren heeft en het een training
is met een hoge sociale relevantie. We hebben een nieuwe aanpak geïntroduceerd
voor het opsporen van reanimatiefouten met behulp van multimodale gegevens met
behulp van neurale netwerken. Het voorgestelde systeem is samengesteld in een
multi-sensor opstelling voor reanimatie, bestaande uit een Kinectcamera en een
Myo armband. We hebben het systeem gebruikt in combinatie met de ResusciAnne-
testpop voor het verzamelen van gegevens van 11 experts die reanimatietraining
geven. We hebben eerst de multimodale gegevens gevalideerd, en vervolgens de
gegevens verzameld op basis van drie prestatie-indicatoren die door de ResusciAnne-
testpop zijn verstrekt, waarbij we hebben opgemerkt dat we de trainingsfouten
op deze drie gestandaardiseerde indicatoren nauwkeurig kunnen classificeren. We
hebben verder geconcludeerd dat het mogelijk is om de gestandaardiseerde foutde-
tectie uit te breiden naar extra trainingsfouten op prestatie-indicatoren zoals correcte
vergrendeling van de armen en correcte lichaamshouding. Tot nu toe konden deze
fouten alleen door menselijke instructeurs worden opgespoord.

In hoofdstuk 7, hebben we het ontwerp en de ontwikkeling van een real-time
feedbackarchitectuur voor de reanimatietutor gepresenteerd. Om de keten van flex-
ibele technische oplossingen die de Multimodal Pipeline voorstelt te vervolledigen,
hebben we SharpFlow8, aontwikkeld, een open source dataverwerkingstool. Sharp-
Flow ondersteunt het MLT-JSON-formaat dat ook door de VIT en de LearningHub
wordt gebruikt. De in dit formaat opgeslagen gegevens worden door SharpFlow
getransformeerd in een tensorrepresentatie en worden gevoed met een Recurrent
Neural Network architectuur die is getraind in het classificeren van de verschillende
doelklassen die door de menselijke annotaties worden gespecificeerd. SharpFlow
implementeert de twee datastromen van offline training en online exploitatie. De
laatste wordt bereikt met behulp van een TCP-server voor het classificeren in real-
time van elke nieuwe borstcompressie. In hoofdstuk 7, is de architectuur eerst
toegepast in een Expert Study met 10 deelnemers, gericht op het trainen van de
foutclassificatiemodellen, en vervolgens in een User Study met 10 extra deelnemers,
waarbij de reanimatietrainer realtime feedbackinterventies uitvoerde. De analyse
van de gedetecteerde fouten in de Gebruikersstudie heeft aangetoond dat er op

8Code beschikbaar op GitHub (https://github.com/dimstudio/SharpFlow)
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korte termijn een positief effect is op de reanimatiefouten waarop de automatische
feedback is gericht.

De discussie hierover wordt voortgezet met een presentatie van de bevindingen van
elke studie van dit proefschrift, samen met de bijdragen en de beperkingen van dit
onderzoek. De Multimodale Tutor duwt met zijn ondersteunende technologische
kaders (Multimodal Pipeline) en conceptueel model (Multimodal Learning Analytics
Model) het hele MMLA-veld naar voren, door uit te leggen hoe het leren met behulp
van multimodale data kan worden ondersteund. De Multimodale Tutor genereert
wetenschappelijke meerwaarde voor verschillende data gestuurde leer-onderzoeks
community, waaronder de Learning Analytics & Knowledge en het Intelligent Tu-
toring System/Artificial Intelligence in Education community. Uiteindelijk zet de
Multimodale Tutor de weg vrij voor meer opkomende onderzoeksgebieden zoals
Hybride Intelligentie, Social Artificial Intelligence of Human-AI Teaming, die zich
richten op hoe de menselijke communicatie het beste kan worden gekoppeld aan
kunstmatige (robotachtige) intelligentie.
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Riassunto

Questa tesi di dottorato descrive il percorso di ideazione, prototipazione e speri-
mentazione empirica del Multimodal Tutor, un sistema progettato per fornire feed-
back digitale e supportare l’acquisizione di competenze psicomotorie tramite l’analisi
di dati multimodali. Il feedback viene fornito dal sistema in tempo reale mentre
l’allievo esegue un compito psicomotorio. Il sistema effettua una valutazione auto-
matica dell’allievo tramite la rilevazione e la classificazione di errori procedurali per
via da modelli di machine learning supervisionati. Tali modelli sono addestrati con
campioni annotati manulamente. La tesi di dottorato è organizzata in quattro parti e
sette capitoli.

Il capitolo 1, riporta uno studio che ha lo scopo di predire i livelli di stress, la produt-
tività e il livello di Flow durante l’apprendimento auto-regolato. Abbiamo raccolto
dati multimodali da nove partecipanti, dottorandi del dipartimento TELI della Open
University of The Netherlands. I dati multimodali raccolti consistevano in (1) dati
fisiologici (frequenza cardiaca e conteggio dei passi) reccolti attraverso i braccialetti
Fitbit HR; (2) dati software, registrati con l’applicazione RescueTime utilizzata ed
installata sui computer di ogni partecipante; (3) dati relativi ad informazioni ambient-
ali (temperatura, umidità, pressione e coordinate di geolocalizzazione) utilizzando
varie web-API. Al contempo, i partecipanti dovevano riportatare i valori percepiti
di produttività stress e Flow al termine di ogni singola ora di lavoro utilizzando
un’applicazione mobile Activity Rating Tool. I dati sono stati raccolti in un Learning
Record Store utilizzando statements Experience API (xAPI) personalizzate. Durante le
due settimane di raccolta dati, i nove partecipanti hanno utilizzato diversi computer
portatili e set di applicazioni software, che sono stati così raggruppati in categorie
per facilitarne l’analisi. Poichè i dati raccolti erano eterogenei, nell’analizzarli ab-
biamo optato per il Linear Mixed Effect Model (LMEM), un algoritmo di previsione
multilivello. Gli scarsi risultati nell’accuratezza del modello non hanno permesso
di esplorare ulteriormente i meccanismi di feedback. Questo risultato ci ha portato
a riconsiderare diverse decisioni metodologiche, ponendo le basi per i seccessivi
esperimenti, dettagliati nei capitoli successivi di questa tesi.

Il capitolo 2 riguarda lo studio della letteratura mirato a identificare e mappare lo
stato dell’arte dei dati multimodali per l’apprendimento, un campo che sta emer-
gendo con il nome di Multimodal Learning Analytics (MMLA). Questo studio ha
dimostrato che MMLA copre un campo scientifico disperso e non ancora coerente.
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Sottolineare questa mancanza ha contribuito a inquadrare la missione di MMLA:
utilizzare dati multimodali e tecniche guidate dai dati per colmare il divario tra il
comportamento di apprendimento osservabile e le teorie dell’apprendimento. L’indagine
della letteratura (Section 2.2) é stato condotta utilizzando un framework di classi-
ficazione composto da due componenti principali: lo spazio degli input e lo spazio
delle iposesi. Queste sono separate dalla linea di osservabilità. I risultati dell’indagine
di letteratura hanno portato alla Tassonomia dei dati multimodali per l’apprendimento,
alla tabella di classificazione per lo spazio delle ipotesi e ad un modello concettuale
a supporto del campo emergente di MMLA, il Multimodal Learning Analytics Model
(MLeAM). MLeAM ha tre obiettivi principali: (1) mappare l’uso dei dati multimodali
per migliorare il feedback, dato agli allievi, in un contesto di apprendimento; (2)
mostrare come combinare l’apprendimento automatico con dati multimodali; (3)
allineare la terminologia utilizzata nel campo dell’apprendimento automatico e della
scienza dell’apprendimento.

Nel capitolo 3, abbiamo affrontato un’altra delle carenze strutturali nel campo della
MMLA: la mancanza di approcci tecnici standardizzati per il supporto di dati mul-
timodali per le attività di apprendimento. Questo aspetto sta frenando lo sviluppo del
settore MMLA imponendo ai ricercatori MMLA di duplicare gli sforzi nella creazione
di infrastrutture di raccolta dati e impedendo loro di concentrarsi sull’analisi dei
dati. Nel capitolo 3, le sfide tecniche identificate sono state raggruppate in cinque
categorie, denominate le cinque grandi sfide delle Multimodal Learning Analytics
ovvero: la (1) raccolta di dati, (2) la memorizzazione dei dati, (3) l’annotazione dei
dati, (4) l’elaborazione dei dati e (5) lo sfruttamento dei dati.

Nel capitolo 4, ci siamo concentrati su una delle cinque grandi sfide, l’annotazione dei
dati. Questa sfida riguarda il modo in cui gli esseri umani possono dare un senso a dati
multidimensionali complessi. In questo capitolo abbiamo proposto un nuovo prototipo
tecnico, il Visual Inspection Tool (VIT). Il VIT permette ai ricercatori di ispezionare
visivamente e annotare una varietà di compiti di apprendimento psicomotorio che
possono essere catturati con un set di sensori personalizzabili. Il VIT consente
al ricercatore (1) di triangolare i dati multimodali con registrazioni video; (2) di
segmentare i dati multimodali in intervalli di tempo e di aggiungere annotazioni;
(3) di scaricare il set di dati annotati e di utilizzare le annotazioni come ‘labels’ per i
modelli di machine learning. Oltre ad affrontare genericamente l’annotazione dei
dati, il VIT facilita anche l’elaborazione e lo sfruttamento dei dati. Il VIT è rilasciato
come software Open Source9.

Nel capitolo 5, abbiamo coniato il termine Multimodal Pipeline, una catena di com-
ponenti tecnici riutilizzabili che comprende il VIT, il Multimodal Learnig Hub e il
suo formato dati personalizzato MLT-JSON. La Multimodal Pipeline è un framework
tecnico integrato che funziona come un toolkit per supportare i ricercatori MMLA
nell’impostare nuovi esperimenti in una varietà di scenari di apprendimento psico-
motorio. In questo capitolo sosteniamo che l’utilizzo dei componenti di questo toolkit
può rendere piú efficace il lavoro del ricercatore, riducendo i tempi di sviluppo per

9Codice disponibile su GitHub (https://github.com/dimstudio/visual-inspection-tool)
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impostare gli esperimenti e può facilitare e accelerare il trasferimento delle con-
oscenze della ricerca nella comunità MMLA. La Multimodal Pipeline collega una
serie di soluzioni tecniche alle “cinque grandi sfide” descritte nel capitolo 5. La
Multimodal Pipeline ha due fasi principali: (1) il “training offline”, in cui le sessioni
raccolte vengono annotate e i modelli di appredndimento vengono addestrati con
i dati raccolti; (2) lo “sfruttamento online”, che corrisponde al comportamento
“run-time” della Multimodal Pipeline.

Nel capitolo 6, abbiamo selezionato la Rianimazione Cardiopolmonare (RCP) come
task rappresentativo per la realizzazione di uno studio sul rilevamento degli errori di
esecuzione/performance dell’allievo. La RCP è stata scelta principalmente perché:
è un compito di apprendimento individuale, è ripetitivo e altamente strutturato,
ha chiari indicatori di performance e perché è una formazione ad alta rilevanza
sociale. In questo studio abbiamo introdotto un nuovo approccio per il rilevamento
degli errori di esecuzione nell’apprendimentio di RCP con dati multimodali che
utilizzano le reti neurali. Il sistema proposto è composto da un setup multisensore
per la RCP, costituito da una camera Kinect e una fascia da braccio Myo. Abbiamo
utilizzato il sistema in combinazione con il manichino ResusciAnne per raccogliere
i dati di 11 esperti che hanno eseguito la RCP. I dati dati multimodali sono stati
prima convalidati e poi raccolti su tre indicatori di performance forniti dal manichino
ResusciAnne. Abbiamo osservato che é possibile classificare accuratamente gli
errori di apprendimento su questi tre indicatori di performance. Questo ci ha
permesso di concludere che è possibile estendere la rilevazione ad ulteriori errori di
apprendimento RCP, quiali: il corretto bloccaggio delle braccia e la corretta posizione
del corpo. Errori, che fino ad ora, potevano essere rilevati solo da istruttori in carne
ed ossa.

Nel capitolo 7, abbiamo presentato la progettazione e lo sviluppo dell’architettura di
feedback in tempo reale per il tutor della RCP. Per completare la catena di soluzioni
tecniche flessibili proposte dalla Multimodal Pipeline, abbiamo sviluppato Sharp-
Flow10, uno strumento di elaborazione dati open source. SharpFlow supporta il
formato MLT-JSON utilizzato anche da VIT e dal LearningHub. I dati serializzati
in questo formato vengono trasformati da SharpFlow in un ‘tensor’ e inseriti in
un’architettura di Rete Neurale Ricorrente che è addestrata a classificare le diverse
classi di destinazione specificate dalle annotazioni. SharpFlow implementa i due
flussi di dati della training offline e dello sfruttamento online. Quest’ultimo è ottenuto
utilizzando un server TCP per classificare in tempo reale ogni nuova compressione
toracica. Nel capitolo 7, l’architettura è stata impiegata per la prima volta in uno
studio con esperti che ha coinvolto 10 partecipanti, finalizzato al training dei modelli
di classificazione degli errori, e per la seconda volta in uno studio con utenti che
ha coinvolto altri 10 partecipanti. Il Tutor RCP ha fornito interventi di feedback in
tempo reale. L’analisi degli errori rilevati nello Studio Utente ha dimostrato che
vi è un effetto positivo a breve termine sugli errori di RCP oggetto del feedback
automatico.

10Codice disponibile su GitHub (https://github.com/dimstudio/SharpFlow)
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La tesi di dottorato si conclude con la discussione che presenta i risultati di ogni
studio insieme con i contributi e i limiti di questa ricerca. Con il suo framework
tecnologico di base (Multimodal Pipeline) e il modello concettuale (Multimodal
Learning Analytics Model), il Multimodal Tutor permette l’avanzamento dell’intero
campo MMLA, spiegando come supportare l’apprendimento con l’uso di dati mul-
timodali. Il Multimodal Tutor genera valore scientifico aggiunto per diverse comunità
di ricerca sull’apprendimento, tra cui la comunità di Learning Analytics & Knowledge
e la comunità di l’Intelligent Tutoring System/Artificial Intelligence in Education.
In definitiva, il Tutor Multimodale spiana la strada a campi di ricerca più emer-
genti come l’Hybrid Intelligence, l’ Intelligenza Artificiale Sociale o Human-AI Teaming,
che si concentrano su come interfacciare al meglio la comunicazione umana con
l’intelligenza artificiale.
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